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Introduction

The Research Assistant

You are back in DC! Yes. It is as hot and humid as it was for your internship,
maybe even hotter and humiditier. You managed to secure a job as an “RA”
at the US Federal Trade Commission. You are in the Bureau of Economics in
AT1. You have an awesome place in Navy Yard, not far from the Nats stadium,
the Wharf and the home for DC United. A mate from college is your room
mate and they started at the Fed last week. Your career is about to begin!

First Day

What the heck is he talking about? A colleague, was it John or Jeff, maybe
Dave, has been talking 100 mph for last few minutes and you are just catching
snippets. “We need to estimate WTP.”“Can you believe they are using Elzinga-
Hogarty.”“I hope Alabama joins the suit.”“Bill Town is great.” You have been
nodding but you quickly lost the thread of the conversation.

You decided to go with a suit, which was definitely a mistake. Even though
you were hardly outside, you are sweating buckets and no one else seems to be
in a suit, not even the managers. The managers are lovely and seemed very
excited that you were starting. They liked that you had coding experience
in R and had done some cool work in your internship on minimum wages.
Apparently, you are going to jump straight into a case.

John/Jeff/maybe-Dave is explaining the case to you. It seems to have
something to do with hospitals in Alabama. Your screen is full of data, there
are columns with things you recognize like zip codes, age, and then things like
DRG which you have no idea about. Apparently, this data is from a payer,
although you are not sure what that is. The rows are claims. There is a column
with the price, but they seem wrong. The numbers are enormous, 150008,
25020, 83251. Is this dollars? You were in hospital a few weeks back getting
some stitches after an incident playing kick ball. You are pretty sure it was
$25.00

Your job is to determine the relationship between price and WTP. You just
wish you knew what WTP stood for.

xiii



xiv Introduction

Second Day

Yesterday you were able to get R and RStudio set up and get access to the
payer data. You were able to calculate WTP for the hospitals and you showed
Dave the results.

OK. Now we need to calculate WTP post-merger. You responded that you
didn’t think you had the data, you were pretty sure that there was no indicator
for merger in the data. Dave laughed out loud. Then he saw the expression on
your face, caught himself, and stated matter-of-factly, no we have to simulate
the merger.

Simulate the merger? How would we know what would happen to prices
after the hospitals merge? How do we know how prices are determined now?
From what you could gather so far there were three hospitals in the city and
five insurance companies serving beneficiaries in the area. The prices in the
data were determined by bargaining between these hospitals and the insurance
companies. You search your memory back to microeconomics, you remember
the class on monopoly pricing, when the seller had market power to determine
price. Do these hospitals have market power? You remember something in the
text book about monopsony, when the buyer has market power to determine
price. Do the insurers have market power? Do both the hospitals and the
insurers have market power?

The Book

This is an empirical game theory book. Traditionally, game theory is presented
as a theoretical subject. Generally, applications are discussed but there are no
explicit empirical applications. Yet, since the 1990s, game theory has been at
the heart of empirical analysis of competition and markets in the economics
sub-field of industrial organization. In economics, this layering of theory on to
empirical analysis is called structural econometrics. This book is focused on
the game theory, not necessarily the econometrics.

What Does it Cover?

The book aims to provide an introduction game theory, a mathematical ap-
proach to understanding economic relationships. The goal is for the reader to
understand what a game is and how the mathematics works. The reader will
be able to create a game that explains behavior of economic actors observed
in her data. She will be able to ask how questions. She will be able to see how
parameters of the game relate to characteristics of the data. She may be able
to use the game to ask what if questions. What would the economic actors
observed in the data do if the world was different? What if the government
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introduced a new policy? What if technology changed. What if the hospitals
merged?

The book covers standard game theory concepts such as normal form games,
exentensive form games, Nash equilibrium, mixed strategy Nash equilibrium,
and subgame perfection. It also covers standard empirical methods such as
linear regression, two-way fixed effects, logit models, and maximum likelihood
estimation. But it covers a number of concepts that are important to the
intersection of game theory and data analysis such as generalized method of
moments and two-step estimators.

What is the Approach?

The book teaches game theory through code, in particular, it will use the
scripting language R. It is not primarily aimed at teaching R. Rather, it
is primarily aimed at teaching game theory. This idea of using computer
programming as a tool of instruction goes back to at least Seymour Papert and
MIT’s AI lab in the 1970s.1 Papert helped develop a programming language
called Logo. The goal of Logo was to teach geometry by programming how a
turtle moves around the screen. You may have used one of the offspring of
Logo, such as Scratch or Lego Mindstorms.

The book uses Papert’s ideas to teach game theory. You will learn the math
of the game or estimation method and then how to program that game or
estimation method. The book makes particular use of the computer’s ability
to simulate data. This allows us to experiment with more complicated and
realistic games than is possible with pen and paper.

The book is written in RStudio using Sweave. Sweave allows LATEX to be
integrated into R. LATEX is a free type-setting language that is designed for
writing math. Much of the code that is used in the book is actually presented
in the book. Sometimes it is more practical to create a data set outside the of
book. In those cases, the data and the code that created the data are available
here https://github.com/christopherpadams/EmpiricalGameTheory. In a
couple of other cases, the preferred code does not produce nice output for the
book, so it is left out.

What is How Analysis?

Often we want to understand patterns we see in the data. How are prices
related to the number of firms in the market? Why do firms enter some markets
and not others?

For those questions, we can use game theory to guide our thinking and our
analysis. A game theoretic model of firm entry can help us understand why
some markets had both Borders and Barnes & Noble, other markets had just
one, and many more have none.

1https://el.media.mit.edu/logo-foundation/

https://github.com/christopherpadams/EmpiricalGameTheory
https://el.media.mit.edu/logo-foundation
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What is What If Analysis?

Game theory is also important in what if analysis. In those analysis, we want to
understand how behavior will change when faced with a situation not observed
in the data. What would have happened if Borders and Barnes & Noble would
have merged in the mid-1990s? Would there have been more or fewer mega
bookstores? Should the federal government allow bidders to collude in oil
drilling auctions? We can estimate the parameters of game theoretic model
using observed data and then make changes to the model to simulate what
would happen in the case that is not observed in the data. We can then run the
model and predict the outcome. We can simulate a merger between Borders
and Barnes & Noble in the mid-1990s or what happens to bids on oil drilling
leases when bidders are allowed to collude.

What About the Real World?

The book presents interesting and important questions. The book presents an
analysis of competition between various types of firms and asks what happens
if mergers are allowed or not. It considers price regulation policies for retail
gasoline and whether these regulations lead to higher prices for consumers.
It looks at how the US federal government runs auctions for timber and oil
drilling leases. Hopefully, the book points you to new questions and new data
to answer existing questions.

The book does not recommend policies. The government economist, Alice
Rivlin, argued that it is extremely important to provide policy makers with
objective analysis. In a memo to staff of the Congressional Budget Office
(CBO), she said the following.2

We are not to be advocates. As private citizens, we are entitled to our
own views on the issues of the day, but as members of CBO, we are
not to make recommendations, or characterize, even by implication,
particular policy questions as good or bad, wise or unwise.

Economists in government, the private sector and the academy, work on
important policy questions. Economists are most effective when they do not
advocate for policy positions, but present objective analysis of the economics
and the data. This book presents an objective analysis of interesting policy
questions but doesn’t state whether the policy positions are good or bad, wise
or unwise.

2https://www.cbo.gov/sites/default/files/Public_Policy_Issues_Memo_Rivlin_

1976.pdf

https://www.cbo.gov/sites/default/files/Public_Policy_Issues_Memo_Rivlin_1976.pdf
https://www.cbo.gov/sites/default/files/Public_Policy_Issues_Memo_Rivlin_1976.pdf
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The Outline

The book is laid out the same way Robert Gibbons laid out his classic text,
Game Theory for Applied Economists. There are four parts. Static games of
complete information, dynamic games of complete information, static games
of incomplete information, and dynamic games of incomplete information.

Static Games of Complete Information

This part presents the simplest version of a game.
Chapter 1 introduces the basic mathematical concepts of game theory. It

analyzes the most famous game in game theory, the prisoner’s dilemma. The
game is used in a TV game show and the chapter uses data on actual behavior
in the game where the players of the game make choices worth thousands of
dollars. Do real people on a TV game show play the game as the mathematics
predicts?

Chapter 2 introduces two important equilibrium concepts, dominant strat-
egy equilibrium and Nash equilibrium. The chapter uses Nash equilibrium to
understand how the number of tire retailers varies from city to city.

Chapter 3 studies oligopoly, markets with a small number of competitors,
and three models of how these markets work, Cournot, Bertrand, and Hotelling.
The most general model allows competing firms to be similar but not the same.
This model is used to understand pricing competition between McDonald’s
outlets in late 1990s Santa Clara county.

Chapter 4 considers the implications of multiple Nash equilibria in a game
where two firms are choosing whether or not to enter the same market. This
game is used to analyze the entry decisions by the mega bookstores in the
1990s, Borders and Barnes & Noble. The chapter analyzes problems where the
game does not always make a single prediction.

Chapter 5 analyzes mixed strategies in the context of both coordination
games and zero-sum games. It uses mixed strategies to model entry by the
mega bookstores, Borders, and Barnes & Noble. Zero-sum games were the
first types of games analyzed using game theory. Many parlor games like chess,
droughts, and poker are zero-sum games. The chapter uses mixed strategies
and zero-sum games to understand the choices made by soccer players when
kicking and defending penalty kicks in the English Premier League.

Dynamic Games of Complete Information

These games are substantially more complicated than the games presented in
the first part of the book. In response, we need to make a number of simplifying
assumptions that allow us to use the richness of the dynamics without being
overwhelmed by the complexities.
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Chapter 6 introduces subgame perfection and uses the concept to analyze
the entry dynamics of the mega bookstores, Borders and Barnes & Noble.

Chapter 7 presents three different models of bargaining. It asks whether
the simplest, the ultimatum game, makes predictions that are consistent with
actual behavior of actual people when making decisions involving large sums
of money. The answer is no, not really. A more complicated game makes more
reasonable predictions. Luckily the Rubenstein alternating offers game makes
predictions similar to a much simpler analytical tool, the Nash bargaining
solution. This tool is used to analyze mergers between hospitals in Palm Beach
County, the home county for the publisher of this book.

Chapter 8 returns to oligopoly markets but allows more complicated in-
teractions between the firms. The chapter analyzes the pricing behavior of
gasoline retailers in Perth Australia. The chapter presents a model to explain
the weird saw tooth pattern in retail gas prices. It considers the extent of
the prediction error when a merger model assumes firms choose prices more
independently than they actually do.

Static Games of Incomplete Information

In the first two parts of the book, the players of the game are assumed to know
everything. In the second two parts of the book, that assumption is relaxed.

Chapter 9 revisits analysis of entry by mega bookstores, Borders and Barnes
& Noble. The difference is that each firm observes its own entry costs but not
the entry costs of the other firm. In this model equilibrium, the firms do not
know their competitors unobserved costs of entry. The firms know their own
costs of entering a new market, but not their competitors costs of entering that
same market. While the game is more complicated than the game presented in
Chapter 4, it is sometimes simpler to use in data analysis.

Chapter 10 and Chapter 11 analyze auctions. Chapter 10 uses two of the
main auction types, sealed bid auctions and English auctions to analyze bidding
behavior and collusion in US Forestry auctions conducted in the 1970s.

Chapter 11 considers auctions where the bidders don’t know exactly how
much to value the item they are bidding on. The classic example is oil drilling
auctions on the US Outer Continental Shelf (OCS). The chapter asks whether
the government should allow firms to collude in those auctions.

Dynamic Games of Incomplete Information

The fourth part of the book analyzes the problems of moral hazard and adverse
selection.

Chapter 12 considers the principal-agent problem and uses it to analyze
the use of corporate financing in 19th-Century whaling in New England. What
sort of contracts were used by firms and families to finance whaling expeditions,
where the whaling ships were literally sailing around the world?
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Chapter 13 brings game theory to health insurance markets. The chapter
presents a model of the used car market, which suggests that information
problems will cause the market to fail. Similarly, information problems in
health insurance markets suggest that government interventions such as large
tax subsidies for people insured through their work are necessary in order to
have people insured.

Notation

As you have seen above, the book uses particular fonts and symbols for various
important things. It uses the symbol R to refer to the scripting language. It
uses typewriter font to represent code in R. Initial mentions of an important
term are in bold face font.

When discussing actual data, it uses xi to refer to the observed characteristic
for some individual i. It uses x to denote a vector of the xi’s. For matrices, it
uses X for a matrix and X′ for the matrix transpose. A row of that matrix is
Xi or X

′
i to highlight that it is a row vector. Lastly, for parameters of interest

it uses Greek letters. For example, β generally refers to a vector of parameters,
although in some cases it is a single parameter of interest, while β̂ refers to
the estimate of the parameter.

Hello R World

To use this book you need to download R and RStudio on your computer.
Both are free.

Download R and RStudio

First, download the appropriate version of RStudio here: https://www.

rstudio.com/products/rstudio/download/#download. Then you can down-
load the appropriate version of R here: https://cran.rstudio.com/.

Once you have the two programs downloaded and installed, open up
RStudio. To open up a script go to “File > New File > R Script.” You should
have 4 windows, a script window, a console window, a global environment
window, and a window with help, plots, and other things.

Using the Console

Go to the console window and click on the >. Then type print("Hello R

World") and hit enter. Remember to use the quotes. In general, R functions
have the same basic syntax, functionname with parentheses, and some input
inside the parentheses. Inputs in quotes are treated as text while inputs without

https://www.rstudio.com/products/rstudio/download/#download
https://cran.rstudio.com
https://www.rstudio.com/products/rstudio/download/#download
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quotes are treated as variables.

> print("Hello R World")

[1] "Hello R World"

Try something a little more complicated.

> a = "Chris" # or write your own name

> print(paste("Welcome",a,"to R World"))

[1] "Welcome Chris to R World"

Here we are creating a variable called a. The # is used in R to “comment
out” lines in codes. R does not read the line following the hash.

In R we can place one function inside another function. The function paste

is used to join text and variables together. The function paste() defaults to
placing a space between the inputs. When placing one function inside another
make sure to keep track of all of the parentheses. A common error is to have
more or less closing parentheses than opening parentheses.

> paste(

"Welcome",

a,

"to R World"

) |>

print(

)

[1] "Welcome Chris to R World"

R can also accept code that looks like above. Using spaces and new lines
helps a human reader understand what the code is saying. The symbol |>
says take the result from above and use it in the following function. For some
reason, there are two different symbols used %>% or |>. You can select which
type under global options. Here |> is used.

Thanks

I’m grateful to my wife, Deena Ackerman, for allowing me time to work on this
project. Thank you to numerous friends and colleagues for providing feedback
and suggestions on the book. I am particularly grateful to Devesh Raval and
Emek Basker who gave extensive feedback on early drafts. Thanks also to a
number of researchers who have been willing to provide me with the data used
in the book including Raph Thomadsen, Eric Hilt and David Byrne. All errors
are my own.
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Discussion and Further Reading

The book is laid out the same way as Gibbons (1992). If you are looking for
a more detailed or technical description of the various types of games then
see Fudenberg and Tirole (1991). A lot of the applications presented in this
book are from the sub-field of economics called industrial organization. The
classic theory text for that field is Tirole (1988). Recently more empirical-
oriented industrial organization books have come out including Aguirregabiria
(2021) and Hortaçsu and Joo (2023). Paarsch and Hong (2006) have a similar
orientation with a focus on auctions. If you are interesting in some of the
economic experiments presented in the book, then Camerer (2003) is a good
but somewhat dated overview of experimental game theory.

The book uses the coding language R to illustrate models and empirical
problems. It generally uses the tidyverse and data.table flavors. The best
introduction to the language is the books by Hadley Wickham and coauthors,
in particular R for Data Science which is here https://r4ds.had.co.nz/.

https://r4ds.had.co.nz
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Games

1.1 Introduction

Game theory provides answers to life’s many questions. Which side of the
street should you walk on when there is no sidewalk? Will we ever talk to
aliens? When should you turn across traffic at an intersection? Which mergers
should be allowed? Should government intervene to stop bank runs? Who
rides shotgun? During the COVID-19 emergency how many potential vaccines
should the US government promise to purchase? Should NFL teams punt on
4th down more than they do?1

When there is no side walk, you should walk on side facing the oncoming
traffic. The reason is that you can see the car coming toward you, but more
importantly, you can see that the car coming toward you, can see you. You know
that they know you are there. And, importantly, they know that you know,
that you are there. Of course, you know that they know that you know that
you are there. And they even know that. In game theory, we call this infinite
circle of knowledge, common knowledge, and it is a fundamental assumption
of most games. Players in the games analyzed in this book know everything,
they even know that.

The chapter provides an introduction to games and game theory. It in-
formally introduces a couple of strategic situations. It asks why there is no
hijackings of airplanes any more. It presents data showing a significant drop off
in hijackings early in the 2000s. The chapter presents the most famous game
in game theory, the prisoner’s dilemma. The chapter ends with an empirical
analysis of how actual people play the prisoner’s dilemma game. It uses data
from the TV game show, Friend or Foe.

1.2 Some Strategic Situations

The section introduces two strategic situations: communicating with aliens
and turning into traffic.

1The answers are: The opposite side of which cars drive. No. It depends where you live.
How close competitors are the firms? Yes. Winner of Rock-Paper-Scissors. Many more than
they actually did. No.

DOI: 10.1201/9781003351603-1 3
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1.2.1 Aliens Attack!

Many years ago you could sign up to have your computer used for something
called the Search for Extraterrestrial Intelligence (SETI). The idea is that the
program would use all the spare computing power around the world to work
through a huge data set of radio signals from the world’s radio telescopes. It
was like Bitcoin mining, but for aliens, this search would look for evidence that
the signal was generated by an intelligent life form from another planet.

To determine the reasonableness of this exercise, consider a game. This
game has two players, an Earthling and an Alien. Each player has two choices.
They can listen for a signal from the other player or they could send a signal
to the other player. Because of physics we will assume that for both players
listening for the signal is substantially cheaper than sending the signal. Consider
the Earthling’s choices. If they listen for a signal, it is pretty cheap and if
they hear a signal then jackpot. We learn that we are no longer alone in the
Universe! If the Earthling sends a signal, then it is expensive and there is a
possibility that the Alien may hear the signal and they will learn that we exist.
For the Alien, the outcomes are similar for their two choices.

What is an Earthling to do? If they listen, it is cheap and there is some
possibility of finding out something amazing. If they send a signal, it is
expensive, and while the Alien may learn something, the Earthling may not.
The Earthling is probably better off listening for the signal. The Alien is also
better off just listing for the signal. Given that both the Earthling and the
Alien are listening, they are never going to hear anything and the search for
extraterrestrial intelligence may not in fact be very intelligent.

1.2.2 Can AI Cope with Traffic?

It is not clear that we can or should have humans and AI-driven cars interact
on the road. Consider the problem of turning across traffic at a traffic light.
Most Americans, when confronted with the question of when to turn across
traffic, will generally wait for the green arrow. While the through traffic often
speeds up on the yellow. In Australia in the 1980s, there were few lights with
green arrows and so drivers were pretty aggressive at turning across traffic.
Australians tend to slow and stop at a yellow light, lest you T-bone the person
aggressively turning across traffic. In Vermont, you may be surprised to learn
that it is customary to allow drivers to turn across traffic on the green light. It
is a bit of a shock to hit the gas only to look up and see a car turning across
you. As in Australia, Vermont drivers learn to go easy when the light goes
green in order to allow the turning traffic through. There are three different
equilibrium outcomes in three different places. Would an AI-driven car know
these rules and know how they change from place to place?
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1.3 End of Skyjacking

Airplane hijacking used to be a thing. The high point was the late 1960s and
early 1970s with over 50 a year, but even as late as 2000, there were over 20
hijackings a year. By the Twenty teens, there were some years with zero. To
see what happened? See Figure 1.1

1.3.1 More Security?

Was there an increase in security? Yes. Security increased in the 1970s and
1980s. Obviously, there was a huge increase in security in the 2000s after the
terrorist attacks on September 11, 2001. But that is not the reason, at least
not the reason for the difference in the number hijackings before and after
September 11, 2001. What changed was the game between passengers and
hijackers.

When hijackers take over a plane, they are way outnumbered by the
passengers. Hijacking relies on an implicit understanding between hijackers
and passengers. Passengers agree to sit quietly in order to be safely released.
Hijackers agree to release passengers so that they can get the plane or the
ransom or whatever it is that hijackers want. You might think that hijackers
have weapons while passengers don’t, but neither may be true. The September
11 hijackers used box cutters, not exactly an AR-15.

1.3.2 Hijacking Data using R

We can see what happened by importing and plotting data on airline hijack-
ings.2 Here we use read.csv() which creates a data.frame object called df.
This object is basically the stock standard data set we use in Stata or any
other statistical programming language. If you go over to the Environment
window and click on df, you will see an excel-like sheet with variable names
as the column names and years on the rows. To call out variables in the data
set df, we use the symbol $ and then the name of the variable, for example
df$Year.

> # dir = "ENTER LOCATION OF DATA FILES"

> file = paste0(dir, "Airline_Hijackings.csv")

> df = read.csv(file)

> plot(df$Year, df$Hijackings, type = "l")

> abline(v = 2001)

2Data from the Aviation Safety Network, https://aviation-safety.net/statistics/
period/stats.php?cat=A1.

https://aviation-safety.net/statistics/period/stats.php?cat=A1
https://aviation-safety.net/statistics/period/stats.php?cat=A1
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FIGURE 1.1
Annual count of airline hijackings around the world from 1940 to 2021. The
plot shows the increase up to the 1970s and then a slow decline into the 90s,
then a dramatic dropoff after 2001.

Figure 1.1 presents the annual count of airline hijackings around the world.
Hijacking really spiked in the late 60s early 70s. It then steadily declined to
2001. The figure shows the dramatic change in the number of hijackings before
and after 2001.

Figure 1.1 is made with the base R plotting system. The function plot()

creates a scatter plot with years on the x-axis and the number of hijacking in
the y-axis. In order to get the line, use the option type = "l". In addition, a
vertical line is added using the function abline() setting v = 2001.

1.3.3 United Arlines Flight 93

Figure 1.1 suggests that something changed in the early 2000s. We actually
know exactly when and where the game between hijackers and passengers
changed. It changed on United Airlines Flight 93 over central Pennsylvania
on the morning of September 11, 2001. There had been three flights hijacked
earlier in the morning, the hijackers took over the plane and the passengers
sat quietly. The passengers and crew assumed that they would be safe as long
as they obeyed the instructions. The hijackers were playing a different game.
They didn’t want to take the plane to somewhere or get the ransom money.
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They wanted to fly the plane into New York’s World Trade Center or the
Pentagon in Arlington, VA. Passengers and crew on Flight 93 learned that
the game had changed through text messages and phone calls. They knew
that sitting quietly was not going to get them home to their families safely.
Passengers and crew overwhelmed the hijackers and brought the plane down
in a field killing all on board.

The game had changed. Hijackers can no longer rely on the compliance of
crew and passengers. We see this even with people being rowdy on planes. The
passengers and crew overwhelm them and the rowdy passenger ends up tied
down to their seat with duct tape.

1.4 A Game

A game is a formal mathematical object. This formalism is super important.
New students to game theory will often substitute their own intuition for the
formal mathematics. This is a big error. Keep your intuition in check. Intuition
is useful for understanding the result you get or suggesting that you may have
made an error in your calculation. To find the solution to a game, use math.

The section presents the formal mathematical objects used in game theory.

1.4.1 Definitions

A basic game has three formal parts.

• A set of players

• A set of strategies

• A set of payoffs

Definition 1. A player is a strategic actor in the game. They have choices and
make their choices based on what other players in the game do.

What makes game theory different from other mathematical models of
economic activity is the assumption that players in the game are strategic
actors. They account for the reaction of other players in the game when
making their choice. In Econ 101, we assumed that the players of the game, the
consumers or businesses, are not strategic. These player may optimize utility
or profits, but they take the actions of the other players as fixed. Players in a
game account for the strategic behavior of other players in the game.

Definition 2. A strategy is a complete plan of actions for every possible cir-
cumstance faced by the player in the game.
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When we start in this book, the strategies will be very simple. They will just
be actions. Each player will have a limited set of choices and their strategies
correspond to those choices. In the second part of the book things get a
whole lot more complicated. A strategy is a complete plan. Think about how
complicated this object can be. Think about the game chess. There are millions
and millions of different configurations. It is estimated that there are 1044

possible legal positions in a game of chess.3 That is 1 followed by 44 zeros. A
strategy for chess must state what the player will do in each possible case!

Definition 3. Payoffs are the outcomes of interest to the players of the game,
these may be winning or losing, monetary values or utilities.

The third object of a game is the payoffs. The payoffs to players depend
directly upon the combination of actions taken by players in the game. It is
this dependence that makes it a strategic situation.

Often in games the absolute magnitude of the payoffs is less important
than the relative magnitude. Students new to game theory may be put off by
the weird precision that seems to exist in the games. In reality, the numbers
are just stand ins, what really matters is the relative ordering of the outcomes.

1.4.2 Examples

To get a bit more of a feel for what a game is, consider the examples mentioned
above.

First up is the SETI game. There are three formal parts of the game,
players, strategies and payoffs. Assume that when the player chooses to signal
they also listen for a signal.

• Players: Earthling, Alien

• Strategies:

– Earthling: Listen, Signal

– Alien: Listen, Signal

• Payoffs:

– Earthling: Listen, Alien: Listen

∗ Earthling: Nada

∗ Alien: Nada

– Earthling: Listen, Alien: Signal

∗ Earthling: Earthling learns there are Aliens and it changes the course
of human history!

∗ Alien: Nada plus a large cost for sending the signal.

3https://github.com/tromp/ChessPositionRanking accessed 4/14/23.

https://github.com/tromp/ChessPositionRanking


A Game 9

– Earthling: Signal, Alien: Listen

∗ Earthling: Earthling pays a large cost for nothing

∗ Alien: Aliens learn there are Earthlings changing the whole course of
Alien history!

– Earthling: Signal, Alien: Signal

∗ Earthling: Earthling pays a large cost but learn their are Aliens!

∗ Alien: Aliens pay a large cost but learn there are Earthlings!

Earthlings and Aliens pay a large cost but both learn each other exists.

We can do the same thing and formally present the hijacking game.
Hijacking game:

• Players: Hijacker, Passenger

• Strategies:

– Hijacker: Kill passengers, Don’t kill passengers

– Passenger: Fight hijacker, Don’t Fight hijacker

• Payoffs:

– Hijacker: Kill, Passenger: Fight

∗ Hijacker: Dead

∗ Passenger: Dead

– Hijacker: Kill, Passenger: Don’t Fight

∗ Hijacker: Dead or arrested

∗ Passenger: Dead

– Hijacker: Don’t Kill, Passenger: Fight

∗ Hijacker: Dead or injured

∗ Passenger: Dead or injured

– Hijacker: Don’t Kill, Passenger: Don’t Fight

∗ Hijacker: Get money or where they are going

∗ Passenger: Go home to their families

Prior to Flight 93, everyone thought that game was such that the Don’t
Kill, Don’t Fight outcome was the most likely to occur. In the first three flights
of September 11, 2001, the hijackers took advantage of the fact that crew and
passengers thought that by choosing Don’t Fight, they would have a reasonable
possibility of going home to their families. During Flight 93, passengers and
crew realized that hijackers were playing the Kill strategy and adjusted their
behavior accordingly. Today passengers and crew will almost certainly play
Fight. Given that strategy, Hijackers are better off not hijacking in the first
place.
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1.5 Prisoner’s Dilemma

It is probably the most famous game in game theory. If anyone has heard all
about game theory, then they have heard of the prisoner’s dilemma game.
The classic version of the tale is that there are two suspects to a crime. The
suspects are taken into two different cells. The detectives visit each suspect in
turn. They offer the same deal to both. The deal is that if the suspect rolls
over and cops to the crime implicating the other suspect then they get to walk.
While if they stay quiet and their mate rolls over they go away for a long time.
Each suspect is presented with this deal and made aware that their mate also
got the deal.

The suspects also know that if they stay mum, they will probably get
charged with a less serious crime. The police don’t have anything to tie them
to the more serious crime except each other. Finally, if they both squeal, then
they both get an intermediate sentence.

The section presents a formal analysis of the prisoner’s dilemma game.

1.5.1 The Game

Table 1.1 presents the normal form representation of the prisoner’s dilemma
game. Each player has two choices, stay mum or squeal, with Suspect 1’s choice
on the rows. The payoffs for each outcome are in the cells, with Suspect 1
listed first. The payoffs are in number of years of prison, with bigger numbers
being worse, and thus negative.

TABLE 1.1
Normal form representation prisoner’s dilemma game, with two players S1 and
S2. For S1 their choices are the rows and their payoffs are listed first in each
cell.

S1, S2 Mum Squeal
Mum −1,−1 −5, 0
Squeal 0,−5 −3,−3

We can also write the game out like we did above.

• Players: Suspect 1, Suspect 2

• Strategies:

– Suspect 1: Mum or Squeal

– Suspect 2: Mum or Squeal
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• Payoffs:

– {Mum, Mum}: {−1, −1}
– {Mum, Squeal}: {−5, 0}
– {Squeal, Mum}: {0, −5}
– {Squeal, Squeal}: {−3, −3}

There are four outcomes, both choose Mum, both choose Squeal, Suspect 1
chooses Mum and Suspect 2 chooses Squeal, and Suspect 1 chooses Squeal and
Suspect 2 chooses Mum.

1.5.2 What is the Best Outcome?

The outcome with the highest payoff for both players is {Mum, Mum}. NOTE,
the outcome is not payoffs, but strategies.

This outcome gives a total of −2 points, while other outcomes give both
players less in total (−5 and −6). This outcome is Pareto optimal. The only
way to make one player better off is by making the other player worse off. The
only outcome that is not Pareto optimal is {Squeal, Squeal}. Moving from
{Squeal, Squeal} to {Mum, Mum} makes both players better off.

1.5.3 What should You Do?

Assume you are Suspect 1. What should you do?

• Assume Suspect 2 chooses Mum. The payoffs from your choices are as
follows:

– Mum: −1

– Squeal: 0

• Assume Suspect 2 chooses Squeal. The payoffs from your choices are as
follows:

– Mum: −5

– Squeal: −3

If your mate is going to stay mum, then you get a big payoff from squealing.
You get to walk out a free person. So in that case you are better off squealing.
What if your mate squeals? That rat bastard! Well, if you stay mum then you
go down for a long time. If you also squeal you at least reduce your sentence.
So in that case you should squeal. In fact, in both cases you should squeal.

We say that squealing is a dominant strategy because for every possible
strategy of the other player, you are always better off squealing.
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1.5.4 Does This Make Sense?

The reason that the prisoner’s dilemma game is so famous is that it suggests
an outcome that some find unintuitive. It suggests that both players would
squeal when both players would be better off if they both agreed to stay mum.
By squealing they both end up spending three years in prison, while if they
had stayed mum they would have both only spent one year in prison. Why
would they end up at the outcome that makes them worse off?

1.6 Empirical Analysis: Friend or Foe using R

What happens when real people play games like the prisoner’s dilemma pre-
sented above? One way economists test this is by running experiments. These
are often done on college students for small payoffs, say money or a Starbucks
gift card. What about the real world?

In the early 2000s, a game show aired on the Game Show Network called
Friend or Foe. The show had players pair up and compete against other teams
to answer trivia questions. The teams earned cash by answering the questions
correctly. However, before taking their winnings home, the two players in the
winning team had to play a game. Not a game show game, well sure a game
show game, but a game theory game as well. A prisoner’s dilemma game to be
precise, the game was called Trust Box.

The cool thing is that someone watched these games and created a data set
with the payoffs, the outcomes, the strategies chosen and some demographic
information on the players. Note also that amounts here are in thousands of
dollars. So real people playing for real money in a completely unreal situation.

The section presents the game and uses R to analyze data collected on how
actual contestants played the game.

1.6.1 Trust Box

TABLE 1.2
Normal form representation Trust Box game, with two players P1 and P2. For
P1 their choices are the rows and their payoffs are listed first in each cell. The
team’s winnings is x. It is amount which will vary based on how well the team
did in the trivia part of the show.

P1, P2 Friend Foe
Friend 0.5x, 0.5x 0, x
Foe x, 0 0, 0

Table 1.2 presents the normal form representation of the Trust Box game.
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Each player is in a box with a button to press, Friend or Foe. If both players
press Friend then they share the proceeds evenly, 0.5x each, where x is the
team’s winnings from the trivia part of the game. If the first player chooses
Foe and the second player chooses Friend, then the first takes home all the
winnings and the second gets nothing, x and 0. If both players choose Foe,
then they take home nothing, 0.

While the strategies have different names, this game has the same ranking
of payoffs as the prisoner’s dilemma game presented in the previous section.
Remember it is the ranking of the payoffs that matters.

The choice Foe is a weakly dominant strategy for Player 1. Let Player 2
play Friend, for Player 1 Foe is better as x > 0.5x. Let Player 2 play Foe,
for Player 1 Foe and Friend give the same payoff (0). If a strategy gives the
highest payoff against some strategies and the equal highest against all other
strategies, we say it is weakly dominant. Player 1 is better off choosing Foe.
Player 2 is also better off choosing Foe.

1.6.2 Data Analysis in R

We can bring in the data from the game show that is available from the Ecdat
package.4 You can see that using the function data() you create an object
called FriendFoe which is the data set. Each row is a different game and the
two players are differentiated by whether or not there is a 1 after the variable
name. These are the data described in Kalist (2004).

We can ask how actual people play the prisoner’s dilemma game and look at
which cells of the game described in Table 1.2 the players end up in. The syntax
uses the pipe operator (|>). The result of the code on one line is inserted into
the function on the next line. The syntax creates an object called game_mat

which is eventually going to end up as a 2× 2 matrix. The columns and rows
of game_mat are named with the names of the action in the game. The table
is printed using the xtable package.

> library(Ecdat)

> library(tidyverse)

> data("FriendFoe")

> game_mat = FriendFoe |>

+ summarize(

+ mean(play == "friend" & play1 == "friend"),

+ # this creates a vector of 0 and 1s depending whether

+ # the statement inside the parenthesis is true

+ # note the use of "==" to ask whether something is true

+ mean(play == "foe" & play1 == "friend"),

+ mean(play == "friend" & play1 == "foe"),

+ mean(play == "foe" & play1 == "foe")

+ ) |>

4To use this package you need to install it using the menu or install.packages().
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+ matrix(, nrow = 2)

> colnames(game_mat) = rownames(game_mat) = c("Friend","Foe")

> library(xtable)

> print(xtable(game_mat, digits = 2), floating = FALSE)

TABLE 1.3
Fraction of games that finish in each cell. Almost a third of the time the players
end up at {Foe, Foe} and take home nothing.

Friend Foe
Friend 0.23 0.26

Foe 0.19 0.32

Table 1.3 presents the results of the game. It shows which cells everyone
ends up in. Was this what you were expecting? The largest group of people
end up playing Foe and Foe and getting nothing. Why is this? Do you think
the game show designed it this way? Was the game show hoping that even
more people would choose this option? What change to the game could you
make to get more people to choose Foe?

1.6.3 Analysis in R

Table 1.3 raises lots of questions. Does the outcome of the game depend on the
stakes of the game, that is, how much prize money the two players have won?
Does it depend on the gender of the players or how similar the two players are
or how much experience they had together.

The next bit of code creates a similarity index based on whether the two
contestants are the same gender, the same race and similar in age. This uses
the function mutate().

> FriendFoe = FriendFoe |>

+ mutate(

+ similar = (sex == sex1) +

+ (max(abs(age - age1)) - abs(age - age1))/10 +

+ (white == white1)

+ )

For some of the analysis, it is helpful to reshape the data. The following
code takes the columns associated with the first player and stacks them on
top of the columns associated with the second player. The index c(1:4, 12)

keeps the variables of interest for first player listed, while c(8:11,13) does
the equivalent for the second player listed. The first data set is called df1

and the second is df2. The code then labels the columns of df2 using the
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column names of df1. It then joins the two data set together using the function
rbind(), where the r is for row and calls the new data set df.

> df1 = FriendFoe[ , c(1:4, 12)]

> df2 = FriendFoe[ , c(8:11, 13)]

> colnames(df2) = colnames(df1)

> df = rbind(df1,

+ df2)

The data then create some new variables or recreate some previous variables
lost from the original data. The function rep() repeats the vector or value in
the first space by the number in the second. The variable game creates an id
for each game in the data.

> df$game = rep(1:227, 2)

> df$round = rep(FriendFoe$round, 2)

> df$season = rep(FriendFoe$season, 2)

> df$cash = rep(FriendFoe$cash, 2)

> df$similar = rep(FriendFoe$similar, 2)

Now we can do some analysis on this data. What is the relationship between
how much a player earns during the trivia part of the game, their demographics
and how far they get in the game? Also, does their strategy choice in the
prisoner’s dilemma depend on their demographics, or the amount of cash on
the table? For the first part we estimate the relationship with standard linear
regression using the lm() function.lm1 is an object created in R that can be
used by other code to create regression result tables. For the second part, we use
a logit model and a probit model. These are standard methods for analyzing
problems where the outcome has two possibilities. Here play could be either
"friend" or "foe". In R we use the glm() function for generalized linear
model. To specify a logit model, you need to state family = binomial(link

= "logit").

> lm1 = lm(cash ~ sex + white + age + round + season,

+ data = df)

> glm1 = glm(play == "friend" ~ sex + white + age +

+ similar + cash,

+ family = binomial(link = "logit"),

+ data = df)

> glm2 = glm(play == "friend" ~ sex + white + age +

+ similar + cash,

+ family = binomial(link = "probit"),

+ data = df)

We can display the results using the stargazer package.5

5Here the package is transforming the R output into LateX code.
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TABLE 1.4
Linear regression estimates for the relationship between the amount earned
in the trivia part of the game as well as logit and probit estimates of the
probability of playing friend in the Trust Box part of the game.

> require(stargazer)

> stargazer(list(lm1, glm1, glm2),

+ keep.stat = c("n", "rsq"),

+ float = FALSE)

Dependent variable:

cash play == “friend”

OLS logistic probit

(1) (2) (3)

sexmale 0.102 −0.105 −0.067
(0.175) (0.193) (0.120)

whiteyes 0.309 0.441∗ 0.275∗

(0.234) (0.265) (0.163)

age −0.005 0.041∗∗∗ 0.025∗∗∗

(0.011) (0.013) (0.008)

round2 2.242∗∗∗

(0.215)

round3 5.090∗∗∗

(0.206)

season2 −0.553∗∗∗

(0.183)

similar 0.077 0.049
(0.121) (0.075)

cash 0.007 0.005
(0.034) (0.021)

Constant 1.246∗∗∗ −2.028∗∗∗ −1.270∗∗∗

(0.449) (0.770) (0.476)

Observations 454 454 454
R2 0.591

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.4 presents the regression results. The first column of results is for
the linear regression. It shows the relationship between the size of the prize,
demographic characteristics, and characteristics of the team’s performance.
The last two columns present the logit and probit regressions respectively.
These show the relationship between a player’s demographic characteristics
and playing the strategy friend in the Trust Box game.

Table 1.4 shows that the amount of cash earned increases significantly in the
latter rounds. It also seems that the budget decreased in season 2. In addition,
the table shows that the strategies of the players do seem to change with the
player demographics. Older players seem to be much more willing to cooperate.
The stakes, although in thousands of dollars, seem less important. Similarity
of demographics does not seem important either. That said, according to List
(2006), there is a selection round where players are matched into teams and
that selection may account for the results.

1.7 Discussion and Further Reading

Games are all around us. Strategic behavior is very common. This book aims
to give you the tools to understand how the real world works. It aims to make
you comfortable understanding the strategic behavior generating the data you
are analyzing.

The Trust Box analysis is based on List (2006) and Kalist (2004). The
American economist, John List, has made his career pioneering the running
of economic experiments in the real world, field experiments. One objective
of these experiments is to test the predictions of the game theory models
(Camerer, 2003). The book uses data from another field experiment in Chapter
8.



2

Nash Equilibrium

2.1 Introduction

The modern version of game theory began with the PhD dissertation of the
American mathematician, John Nash. You may recognize the name from the
hit movie, A Beautiful Mind with Australian Russell Crowe playing West
Virginian Nash. Nash showed that for a large set of games, there is at least
one outcome that is stable. Nash was interested in which outcome of the game
is likely to occur. Stability seems like a prerequisite for any outcome that we
are likely to observe. Stability says that if an outcome happens to occur then
the outcome of the game is unlikely to change. In contrast, instability says
that if an outcome happens to occur then the outcome of the game is likely to
change. We are unlikely to observe an unstable outcome. The fact that Nash’s
solution concept is both a prerequisite for an outcome that is likely to occur
and exists for a large set of games, makes it a super valuable idea. Today we
call his proposed outcome a Nash equilibrium

Nash worked in the sub field of game theory called non-cooperative game
theory. As he himself points out in his Nobel essay, this style of game theory was
not in style.1 It differed substantially from the ideas of Johnny von Neumann
who was a senior mathematician at Princeton where Nash did his dissertation.
Hungarian-American von Neumann helped develop game theory and was one
of the first to suggest its use in economics. His collaboration with German-
American economist, Oskar Morgenstern, produced the first game theory text,
Theory of Games and Economic Behavior (1944). Luckily for us, Nash was
stubborn and his efforts helped turn non-cooperative game theory into what
today we just call game theory.

In this chapter, we will introduce this workhorse equilibrium concept as
well as the concept of a dominant strategy equilibrium. The chapter illustrates
these concepts by looking at the market structure in retail tire stores. How
many stores are there going to be in the market? How does the number of
stores relate to the price of tires in the market?

1https://www.nobelprize.org/prizes/economic-sciences/1994/ceremony-speech/.
Accessed on 2/23/23.
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2.2 What is a Nash Equilibrium?

What is an equilibrium? We are looking for an outcome that is a reasonable
prediction of the game. We are not looking for the best outcome or the worst
outcome, but the outcome with the most empirical content. The one that we
are likely to observe in the wild. This outcome is not chosen in some ad hoc
manner but based on a set of assumptions. A set of rules.

Definition 4. An equilibrium concept is a set of rules for determining which
outcome(s) of the game will occur.

There are various assumptions we may want to hold in order to say that a
particular outcome is a reasonable prediction of the game. The section presents
the idea of dominance and how we may come up with a prediction of the game
based only on assuming that the players of the game make choices that are
rational.

2.2.1 Dominance

Before we get to Nash equilibrium, consider an alternative equilibrium concept,
called dominant strategy equilibrium. Chapter 1 introduced the concept of a
dominant strategy and weakly dominant strategy.

Definition 5. A strategy is dominant if it gives the player the highest payoff
irrespective of the strategies of the other players. A strategy is weakly dominant
if for some strategies of the other players, the payoff is equal highest.

A dominant strategy is always the best choice. It does not matter what any
other player of the game does. Given that it is always the best choice, then
presumably it is the one that a rational player is most likely to choose.

Definition 6. A (weakly) dominant strategy equilibrium is an outcome of the
game where all players play strategies that are (weakly) dominant strategies.

If we assume that players are rational, and there exists an outcome which
is a dominant strategy equilibrium, then we would expect that outcome to be
the one we observe. The issue is that such outcomes may not exist in the game
we are studying.

In the discussion above there is a subtle but important assumption. If a
player has two choices, A and B, where A is part of a proposed equilibrium but
B gives the player the exact same payoff, then A is still part of the equilibrium.
For A not to be part of an equilibrium, there must be a B that makes the
player strictly better off.
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2.2.2 Prisoner’s Dilemma

Consider a version of the prisoner’s dilemma game presented in Chapter 1. In
this version, the actions have generic names, but the payoffs have the same
ordering as they did in the version presented in the previous chapter. Remember
it is the ordering that matters, just like in Formula 1.

TABLE 2.1
Normal form representation of a prisoner’s dilemma game with players P1 and
P2 and actions BLACK and RED. P1’s actions are on the rows. The payoffs
are in the cells with P1’s in the first position.

P1, P2 BLACK RED
BLACK 3, 3 0, 5
RED 5, 0 2, 2

Table 2.1 presents the generic prisoner’s dilemma game with two players
P1 and P2 and two actions BLACK and RED. The payoffs are written out in
normal form, which is a matrix-like representation of the game.

The outcome that has both players playing dominant strategies is {RED,
RED}.

If you are player 1, you see that you are better off choosing RED irrespective
of what player 2 does. In the table, player 1’s payoff is the first element in
the cell. Player 1’s strategies are the rows. If player 2 chooses BLACK, we see
that RED has a payoff of 5 which is greater than 3. If player 2 chooses RED,
we that RED has a payoff of 2 which is greater than 0. RED is the dominant
strategy for player 1. Similarly for player 2.

The reason the prisoner’s dilemma is so famous is that it predicts an
outcome which is bad for the players of the game. Even though two rational
players will end up at the dominant strategy equilibrium, both players would
be better off choosing {BLACK, BLACK} which has a payoff of {3, 3}. This
outcome has a payoff that is strictly better for both players than the predicted
outcome which has a payoff of {2, 2}. Our equilibrium concept predicts the
outcome that we believe is most likely to occur not necessarily the outcome
that is the best for the players.

The prediction of this game drives real world policy. The US Department
of Justice (DOJ) has an explicit policy of giving leniency to firms that are the
first to provide evidence of collusion in a market.2 The policy explicitly aims
to create a prisoner’s dilemma among colluding firms.

Does dominant strategy equilibrium predict outcomes in real games?
Chapter 1 analyzes data from a real TV program where players are play-
ing a prisoner’s dilemma game for real money. In Friend or Foe, if both players
choose Foe then they each leave the show without any of their winnings. While

2https://www.justice.gov/atr/leniency-program accessed on November 12 2023.

https://www.justice.gov/atr/leniency-program
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if they both choose Friend then they would share their winnings. In the data,
we see that {Foe, Foe} has the highest probability of occurring.3

2.2.3 Coordination Game

Now consider a slightly different game. We call the game presented in normal
form in Table 2.2, a coordination game. We will soon see why.

TABLE 2.2
Normal form representation of a coordination game with players P1 and P2

and actions RED and BLACK. P1’s action choices are on the rows. Payoffs
are in brackets with P1 listed first.

P1, P2 BLACK RED
BLACK 2, 5 0, 0
RED 0, 0 5, 2

Assume you are player 1. Can you work out your best strategy? We can go
through the best choice for each choice made by player 2.

• Assume P2 chooses BLACK. P1’s payoffs are:

– BLACK: 2

– RED: 0

• Assume P2 chooses RED. P1’s payoffs are:

– BLACK: 0

– RED: 5

Is there a dominant strategy to this game? No. The best choice for you
depends on the choice of player 2. If player 2 plays BLACK, then you should
also play BLACK because 2 > 0. If player 2 plays RED, then you should also
play RED because 5 > 0. See a coordination game! Both players should
coordinate on the color.

What outcome do you predict will happen in this game? While both players
want to coordinate they do not agree on which outcome to coordinate. Player 1
prefers that they coordinate on RED and Player 2 prefers that they coordinate
on BLACK.

3The second part of the book considers changes to the prisoner’s dilemma game that lead
to predicted outcomes where the players have higher payoffs.
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2.3 Nash Equilibrium

The section discusses the definition of a Nash equilibrium and illustrates how
to find one or more Nash equilibria in games that have been presented earlier
in the chapter, the prisoner’s dilemma and the coordination game.

2.3.1 Definition

Definition 7. A Nash equilibrium is a set of strategies such that each player’s
strategy has the highest payoff given the strategies of the other players.

Like with the dominant strategy equilibrium, we assume that each player
chooses the strategy that gives the highest payoff. Our base assumption is
that the players of the game are rational. The difference here is that choice is
dependent on the choice of the other players.

Stability is baked into Nash’s concept. Each player is choosing the best
option given the choices of all the other players. If all players are choosing the
best option, then there is no need for any player to change. The outcome is
stable.

2.3.2 Algorithm for Finding Nash Equilibrium

While Nash equilibrium has a number of nice properties, finding it is not one
of them. We will use the following cumbersome algorithm. One issue new
students have with game theory is that it seems like the teacher just picked
some outcome at random and voila, it is an equilibrium! Of course, the teacher
did not just pick at random. They already knew the answer. In reality, you do
not know which one to pick and so unfortunately you just have to try them
all. There are no short cuts.

• Step 1: Choose a candidate outcome (set of strategies).

• Step 2: Hold Player 1’s strategy fixed. Is Player 2’s strategy optimal?

– Yes: Go to Step 3.

– No: Not a Nash equilibrium.

• Step 3: Hold Player 2’s strategy fixed. Is Player 1’s strategy optimal?

– Yes: Nash equilibrium.

– No: Not a Nash equilibrium.

If the game has more than two players, then the algorithm can be expanded
to go through each player in turn.
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2.3.3 Prisoner’s Dilemma Game

Let’s test out our algorithm on a game we already know, the prisoner’s dilemma.
For this game, there exists a more efficient algorithm, but we are illustrating
how this more general algorithm works. Remember the first step is just picking
an outcome. No magic.

• Step 1: {BLACK,BLACK}

• Step 2: P1 plays BLACK. Is BLACK optimal for P2?

– BLACK: 3, RED: 5

– No: Not a Nash equilibrium.

Let’s pick another one.

• Step 1: {RED,RED}

• Step 2: P1 plays RED. Is RED P2’s optimal strategy?

– BLACK: 0, RED: 2

– Yes. Go to Step 3.

• Step 3: P2 plays RED. Is RED P1’s optimal strategy?

– BLACK: 0, RED: 2

– Yes!

– {RED,RED} is a Nash equilibrium.

OK. There is some magic. You should try the algorithm on the other two
outcomes.

2.3.4 Coordination Game

Let’s try something a little more complicated, the coordination game presented
in Table 2.2.

• Step 1: {BLACK,BLACK}

• Step 2: P1 plays BLACK. Is BLACK optimal for P2?

– BLACK: 5, RED: 0

– Yes. Go to Step 3.

• Step 3: P2 plays BLACK. Is BLACK optimal for P1?

– BLACK: 2, RED: 0

– Yes.

– {BLACK,BLACK} is a Nash equilibrium.
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That was easy/lucky. Are there any other Nash equilibria of this game?

• Step 1: {RED,RED}

• Step 2: P1 plays RED. Is RED P2’s optimal strategy?

– BLACK: 0, RED: 2

– Yes. Go to Step 3.

• Step 3: P2 plays RED. Is RED P1’s optimal strategy?

– BLACK: 0, RED: 5

– Yes.

– {RED,RED} is a Nash equilibrium.

There are two Nash equilibria. Actually, there are even more, but we will
come back to that in Chapter 5.

One of the valuable things about a Nash equilibrium is that it always
exists.4 Unfortunately, the cost is that there may be more than one Nash
equilibrium in any game. Is one of the Nash equilibria of the coordination
game more reasonable than the other? What is the most reasonable prediction
of the game? This question of whether there exists more reasonable equilibria
is called refinement. In this book, we will consider a number of refinements of
Nash equilibrium. Chapter 4 analyzes what happens when the game we want
to take to the data has multiple equilibria.

2.4 Entry Games

The section introduces empirical entry games. It presents the framework for
how economists generally think about determinants of the number of firms in
the market. You will often hear policy makers complain that prices are high
because there is a lack of competition. There are too few firms in the market.
Rarely, do policy makers step back and ask why there are too few firms in the
market. The section presents a game in which a small number of firms choose
to enter the market.

2.4.1 Bresnahan and Reiss

In a series of papers published in the early 1990s, the American economists,
Tim Bresnahan and Peter Reiss, analyze the empirical implications of a simple
entry game. Bresnahan and Reiss (1991b) analyze average prices for retail

4A Nash equilibrium exists for any finite game, that is any game where the number of
players and the number of strategies is finite.
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tire stores in various U.S. towns. The data shows that there is basically no
relationship between observed average prices for tires and the number of tire
retailers in the market.5 Why do you think that is?

The problem is endogeneity.6 The raw observations do not account for the
fact that these tire retailers choose whether or not to be in the market based
on various factors including the cost of selling tires. We are more likely to see
more firms in larger markets, but some of these firms are going to have higher
costs of selling tires and these higher costs will drive up prices. We have two
countervailing forces, more competition driving down prices and less efficient
firms driving up prices.

This is not just some academic issue. It was a central concern in the US
Federal Trade Commission’s (FTC) case against the merger of Staples and
Office Depot (Ashenfelter et al., 2006). In the late 1990s, the two office supply
super stores wanted to merge. As evidence against the merger, the FTC showed
that prices where lower in cities with more stores. Is that a causal statement?
Did the increase in the number of stores cause prices to fall? Moreover, would
the opposite happen. If the merger took place and the number of independent
firms in the market fell, would prices go up?

2.4.2 Two Firm Entry Game

Consider a relatively simple version of an entry game where there are just
two firms. If only one firm enters then that firm earns monopoly profits and
pays a fixed cost of entry, represented by the number 2. If that firm doesn’t
enter, nothing happens, which is represented by 0. If both firms enter there is
competition but the firms also have to pay the fixed costs of entry. This payoff
is represented by −1, which is bad. So a firm is willing to enter the market,
but only if they are a monopolist.

More formally we have two players, the firm’s strategies are entered or
don’t enter and the payoffs depend on whether the other firm enters as well.

• Players: Firm 1, Firm 2

• Strategies:

– Firm 1: Enter, Don’t Enter

– Firm 2: Enter, Don’t Enter

• Payoffs:

– {Enter, Enter}: {−1, −1}
– {Enter, Don’t}: {2, 0}

5Surprisingly the authors state that their data shows that “entry lowers margins”. It is
unclear how they come to this conclusion.

6In econometrics we use the term endogeneity to mean that different cases observed in
the data may not be determined at random. Importantly, case assignment may be directly
related to the observed outcome.
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– {Don’t, Enter}: {0, 2}
– {Don’t, Don’t Enter}: {0, 0}

We can also represent this game in a normal form payoff matrix.

TABLE 2.3
A normal form representation of a two firm entry game. Firm 1’s strategies
are the rows and the Firm 2’s strategies are the columns. The payoffs are in
the cells, with Firm 1’s payoff first.

Firm 1, Firm 2 Enter Don’t
Enter −1, −1 2, 0
Don’t 0, 2 0, 0

Table 2.3 presents the normal representation of the game. What is the Nash
equilibrium of the game? It seems unlikely that both firms will enter and we
see quickly that is not an equilibrium. If both firms enter, then Firm 1 would
have been better off not entering as 0 is greater than −1. See the first column
and the payoffs of the first element which are for Firm 1.

How about the case where both firms don’t enter? Again we see that Firm
1 is better off entering. Look at the second column and see that 2 is greater
than 0.

Let’s check the other outcomes more systematically using our algorithm.

• Step 1: {Enter, Don’t}

• Step 2: Firm 1 plays Enter. Is Don’t optimal for Firm 2?

– Enter: −1, Don’t: 0

– Yes. Go to Step 3.

• Step 3. Firm 2 plays Don’t. Is Enter optimal for Firm 1?

– Enter: 2, Don’t: 0

– Yes. It is a Nash equilibrium!

Is that the only Nash equilibrium of the game?
No. There is another Nash equilibrium where Firm 2 enters but Firm 1

does not.7 This entry game is a coordination-type game.
Game theory makes an interesting prediction. It predicts that the market

will be a monopoly, but it doesn’t predict which firm will be the monopoly. This
turns out to have some implications for the empirical analysis of bookstores
analyzed in Chapter 4.

7Again there are other equilibria but we will get to them. Be patient!
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2.4.3 Many Firm Entry Game

We can make the game more general by having up to N̄ firms choosing whether
or not to enter.

• Players: N̄ > 0 firms

• Strategies: Enter, Don’t Enter

• Payoffs:

– Enter: (a−c)2

b(N+1)2 −F , where N ≤ N̄ , where N is the number of firms that

choose Enter.

– Don’t Enter: 0

In this case we have a small number of firms, N̄ . Each firm has a entry cost
F . Entry costs may include finding a retail space, developing the space to sell
tires, contracting with wholesalers and manufacturers, etc. Once firms enter
(or not), the market mechanism determines the profits each firm will make.

The profit function is on the complicated side. Notice that the profits the
firms make in the market are determined by the number of firms that enter
(N). The more firms that enter, the lower the profits. Competition drives down
prices and profits. Moreover, profits could be so low that they are below the
fixed cost of entry. In that case, the firms are better off not entering.

To see where the complicated profit function comes from, assume price is
determined by the following function.8

p =
a

N + 1
+

Nc

N + 1
(2.1)

where c is the marginal cost of production, a is a demand parameter, and N is
the number of firms that enter the market. As the number of firms enter the
price falls and it converges to marginal cost as N gets large. The first part is
close to zero when N becomes big. The second part is close to c because the
fraction of N over N + 1 is close to 1 when N is big. The marginal cost of
production refers to the incremental costs of selling a tire, this may include
hourly wages and the wholesale cost of the tire itself.

If a firm enters the market their profits are determined by quantity that
they sell (q) multiplied by their profit margin (p− c). Demand in the market is
assumed to be determined by the following linear function Q(p) = a− bp. The
parameter a determines the level of demand and the parameter b determines the
sensitivity of demand to price. Demand falls more dramatically for a particular
price increase if b is larger. Each firm in the market is identical and so they
just split demand evenly, q = Q

N .

q × (p− c) =
(a− c)2

b(N + 1)2
(2.2)

Multiplying demand by margin gives the profit function.

8This is the solution to a Cournot game with N symmetric firms which is a game discussed
in Chapter 3.
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2.4.4 Nash Equilibrium

What is the outcome of this game? A Nash equilibrium requires that each firm
is playing its optimal strategy given the actions of all the other firms.

Each firm will enter if and only if the following inequality holds.

(a− c)2

b(N + 1)2
> F (2.3)

This means that if there areN firms in the market in equilibrium. The inequality
above must hold. If it didn’t some of the firms would not enter the market.
Also, it can’t be profitable for another firm to enter. What if one more firm
enters? In that case, profits for each firm must fall below the fixed cost of
entry.

(a− c)2

b(N + 2)2
< F (2.4)

If there are N < N̄ firms in the market, then it must be profitable for all of
those firms to enter, but not profitable for any more firms to enter.

2.4.5 Fixed Cost of Entry

Let’s add one more complication to the game. Let the fixed costs be a function
of the number of firms that enter, F = θ(N + 1)K , where K and θ are some
parameters of costs. This assumption states that when more firms are in the
market their costs of entry are higher. It may be that land or facility space
becomes more expensive when there are more firms looking to use the land
or space to sell tires. This is the idea that different firms have different fixed
costs of entry. In markets with a small number of firms, those that enter will
have low fixed cost of entering. In markets with a large number of firms in
equilibrium, the firms will have higher fixed cost of entering.

2.4.6 Equilibrium Number of Firms

The number of firms in the market is an integer, a counting number, 1, 2,
85, etc. Unfortunately, while these numbers are easy they are annoying to
use for solving equations. To make solving the equation easier we will make
the unrealistic assumption that the number of firms in the market is a real
number.9 Real numbers are useful because they have the property that there
exists a solution to our equilibrium equation.

In equilibrium the following equality holds.

(a− c)2

b(N + 1)2
= θ(N + 1)K (2.5)

9Real numbers include integers and rational numbers (fractions) but also more exotic

numbers like π or
√

(2).



Entry Games 29

If N firms enter then for each firm they get the same profits from entering or
not entering. The Nash equilibrium does not predict which N firms enter just
that there will be N firms that enter. Solving, the equilibrium number of firms

is N =
(

(a−c)2

bθ

) 1
K+2 − 1. Below we will use logs and it will look nicer.

We see that the equilibrium number of firms is increasing in the profitability
of the market and decreasing in the customer’s sensitivity to price.

2.4.7 Simulation of Entry Game in R

To understand how this game works, we can simulate entry into thousands of
markets. In the simulation, there are 1,000 markets with a maximum of 10
firms. Demand and cost parameters vary from market to market as do entry
costs.

The code uses the function runif(). This generates a set of random numbers
that are uniformly distributed between 0 and 1. The probability of drawing
any particular number between 0 and 1 is the same. To be able to replicate the
results exactly it uses set.seed().10 The different values used are just made
up.

> set.seed(123456789)

> M = 1000

> N_bar = 10

> a = 4 + 1*runif(M)

> b = 0 + 0.6*runif(M)

> c = 1 + 2*runif(M)

> theta = 0 + 0.05*runif(M)

> K = 0.9

We can put the solution to Equation (2.5) in code form. Given the equi-
librium entry, we can then plug the numbers back into the pricing equation
to determine equilibrium prices in each of the markets. This is an example of
where R shines. We can write out something that looks pretty similar to the
math, but is hiding a lot more complexity. These two lines actually determine
the equilibrium number of firms and equilibrium prices for all 1,000 markets.

> N = (((a - c)^2)/(b*theta))^(1/(K+2)) - 1

> p = a/(N+1) + (N*c)/(N+1)

We can compare equilibrium prices to the theoretical relationship between
prices and the number of firms. To determine the equilibrium prices we calculate
the average price at each equilibrium level of the number of firms. To do this, we
use the package data.table.11 This package is very useful for doing calculations

10Computers don’t actually generate random numbers. The numbers come from a compli-
cated non-linear function. They look random, but if you know the previous number in the
sequence and the function used, then you can exactly determine the next number in the
sequence.

11The syntax used by data.table is different from base R and also from tidyverse().
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on lots of different subsets of the data. Here we want to do the calculation for
each market with the same number of equilibrium entrants. Round the number
of firms using round() so that the number of firms is an integer. The resulting
data set dt, for data table, has two variables “N” and “p”. The next line takes
the average price for each market with N firms and creates a new data set dt1.

> library(data.table)

> dt = data.table(N = round(N),

+ p = p)

> dt1 = dt[, .(p = mean(p)), by = N]

To calculate the theoretical equivalent, we take the average for the parameter
values and calculate the price if the number of firms in the market was
determined exogenously rather than in equilibrium. The last line uses the price
formula from Equation (2.1).

> a_m = mean(a)

> c_m = mean(c)

> N_m = 1:N_bar

> p_m = a_m/(N_m + 1) + (N_m*c_m)/(N_m + 1)

Figure 2.1 presents the relationship between the number of firms in the
market and the price. This is only an example, but it does show that the
theoretical relationship between price and the number of firms can differ from
the empirical relationship. The theoretical relationship shows that prices fall
with competition. In the simulated data, the relationship between the number
of firms and the price in the market is less negative, at least for a small number
of firms. The reason is that the empirical relationship is an equilibrium where
the firms are taking account of what the price will be when deciding to enter
the market.

If we just naively take the number of firms in a market and regress that on
price, we are not finding the true relationship between price and competition.
We are estimating a relationship mediated by equilibrium decisions of firms.
Once we acknowledge this, we have two choices. Throw up our hands and give
up or think seriously about these equilibrium decisions and how the data is
generated.

2.5 Empirical Analysis: Tire Markets using R

Bresnahan and Reiss wrote a series of papers where they thought carefully
about the empirical implications of entry games. In one of those papers, the
authors get data on the number of firms in geographically distinct towns over
a wide variety of industries including retail tire stores.
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FIGURE 2.1
Scatter plot of prices from simulated data gives the number of firms (N) in the
market. The equilibrium prices (dt1$p) (red triangles) fall less quickly than
the theoretical prices (p_m) (black circles).

The section discusses the data on retail tire markets and how to take the
model presented earlier in the chapter to the data. It estimates the parameters
of the game and uses the game to simulate changes to policy such as reducing
the costs associated with setting up a new firm.

2.5.1 Data

Those data provide information on the number of tire stores in each town, the
population of each town, the number of commuters into the town, various eco-
nomic indicators such as house prices and land prices and various demographic
indicators such as age and family income.12

The code below also loads the data and plots the data. The data are in a
csv file and is read in using read.csv(). The variable dir needs to be defined.
This is set equal to the path where the data resides. The data is then plotted
using ggplot() from the package ggplot2 (or tidyverse).

12The data used here comes from Jeremy Bejara and his Github reposi-
tory from a 2019 structural industrial organization course, https://github.com/

jmbejara/comp-econ-sp19/blob/master/lectures/5-14_Structural_IO_with_MLE/

bresnahan-reiss-1991-discussion.ipynb

https://github.com/jmbejara/comp-econ-sp19/blob/master/lectures/5-14_Structural_IO_with_MLE/bresnahan-reiss-1991-discussion.ipynb
https://github.com/jmbejara/comp-econ-sp19/blob/master/lectures/5-14_Structural_IO_with_MLE/bresnahan-reiss-1991-discussion.ipynb
https://github.com/jmbejara/comp-econ-sp19/blob/master/lectures/5-14_Structural_IO_with_MLE/bresnahan-reiss-1991-discussion.ipynb
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> file = paste0(dir, "BresnahanAndReiss1991_DATA.csv")

> read.csv(file) |>

+ ggplot(mapping = aes(TPOP,

+ TIRE)) +

+ geom_point() +

+ labs(x = "Total Population (000s log scale)",

+ y = "Number of Tire Stores") +

+ scale_x_log10()
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FIGURE 2.2
Scatter plot of the empirical relationship between the number of tire stores
and the population of the town. It shows the general positive relationship with
larger towns having more retail tire stores.

Our interest is figuring out what determines the number of stores in a
market. Figure 2.2 shows that as the market gets larger, the number of firms
increases.

2.5.2 Structural Model

We will follow Bresnahan and Reiss (1991b) and build a structural model. The
basic idea is that the game theory provides the empirical relationship which
we can then match to the data. From that matching, we can back out the
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parameters of the game theoretic model. Once we have the model parameters
we can run policy simulations. At least that is the theory.

We can write Equation (2.5) in logs. We take logs of both sides of the
equation and then rearrange to put the log of the number of firms on the
left-hand side. This makes the equation look more like a linear regression
equation.

(a− c)2 = b(N + 1)2θ(N + 1)K

or
(2 +K) log(N + 1) = 2 log(a− c)− log(b)− log(θ)
or
log(N + 1) = 2

2+K log(a− c)− 1
2+K log(b)− 1

2+K log(θ)

(2.6)

This transformation is useful for enabling us to use a standard linear regression
estimator.

The relationship from the structural model states that the number of
firms is increasing in average profits of the firm (a− c) and decreasing in the
substitution to other products (b) and the entry costs (θ). The rate of increase
is determined by the parameter K.

2.5.3 Entry Estimator

Equation (2.6) states that in equilibrium the number of firms (log of the
number of firms) is determined by factors determining demand size such as
total population and per-capita income, factors determining costs such as
wages, factors determining the slope of the demand function such as closeness
of substitutes and finally factors determining the cost of entry such as property
rental costs.

Unfortunately, it is not clear how our data maps into our theoretical
parameters. We do have good measures for overall demand, like total population,
but we don’t have information on wages. We have some information about land
prices which may affect rental prices and entry costs. We have information on
the number of commuters which may be a measure of both market size and
substitution out of the market.

2.5.4 Estimation in R

To do the estimation we can run a linear regression with the log of the number
of retail tire stores against characteristics of the town such as the population,
number of commuters, income, and land values. The code below reads in the
data and then runs the regression. The data.frame called data removes any
observations with missing values using na.omit().13 The code then runs two
regressions. The first regression includes only the population of the town.

13R uses NA to represent missing values.
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TABLE 2.4
OLS estimates of the relationship between market characteristics and the
number of retail tire stores.

Dependent variable:

log stores

(1) (2)

population 0.08∗∗∗ 0.07∗∗∗

(0.01) (0.01)

cummuters 0.04
(0.07)

income 0.13∗∗∗

(0.04)

land value 0.07
(0.19)

Constant 0.74∗∗∗ −0.03
(0.05) (0.22)

Observations 202 202
R2 0.36 0.40

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

> data = read.csv(file) |>

+ mutate(

+ log_stores = log(TIRE + 1),

+ population = TPOP,

+ cummuters = OCTY,

+ income = PINC,

+ land_value = LANDV

+ ) |>

+ na.omit()

> lm1 = lm(log_stores ~ population, data)

> lm2 = lm(log_stores ~ population + cummuters +

+ income + land_value, data)

Table 2.4 shows the empirical relationship between number of stores and
various economic factors. It shows that there is strong positive relationship
between market size and the number of firms. The empirical relationship
between other factors is not obvious, at least in this data.
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2.5.5 Structural Estimation

The estimates presented in Table 2.4 provide the empirical relationship between
the number of firms in the market and observed characteristics of the market.
We are interested in mapping those estimates into our game theoretic model.
Assume that the observed relationship captured by the second column of Table
2.4 is generated by the game described above (Equation (2.6)). Specifically, it
represents a set of Nash equilibria of that game.

We will make the following assumptions.

• a = a0 exp(population)
a1 exp(commuters)a2ϵa

• c = ϵc

• b = b0 exp(income)b1ϵb

• θ = θ0 exp(land value)θ1ϵθ

That is the demand level is a function of population and commuters and some
unobserved characteristic (ϵa). You will see in a sec why we wrote this down
in such a weird way.14 The marginal cost is unobserved. We will be forced to
assume that ϵc = 0 for what we do below.15 The slope of demand is a function
of income and an unobserved characteristic (ϵb). Lastly, the cost of entry is a
function of land values and an unobserved characteristic (ϵθ).

Given these assumptions and the regression results in Table 2.4 we have
the following relationships.16 The coefficient estimates are on the changes in
the values of the observed characteristics.

0.07 = 2
2+K a1

0.04 = 2
2+K a2

0.13 = − 1
2+K b1

0.07 = − 1
2+K θ1

(2.7)

We can’t uniquely determine the parameter values from these equations. In
order to move forward we will assume that a1 = 1. Given this assumption
K = 0.86, a2 = 0.06, b1 = −0.37 and θ1 = −0.20. The parameter estimates are
determined relative to the coefficient on population.

We have one more empirical relationship up our sleeve. The constant in
the regression is -0.03. Given our assumptions, we have that 0.70 log(a0) −
0.35 log(b0)− 0.35 log(θ0) = −0.03. Again, we don’t have enough information
to pin down all the parameters. If we assume that a0 = b0 = 1, then θ0 = 1.09.

14In economics we generally refer to this specification as a Cobb-Douglas function.
15Given that we don’t observe marginal costs our policy estimates will be OK as long as

we don’t try to model big changes.
16We are just taking the coefficient values from Model (2) and not worring about how well

those coefficients are estimated.
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2.5.6 Policy Simulation in R

What happens if the market size increases or if entry costs fall?
In this case to determine the equilibrium number of tire stores and equilib-

rium prices we create two functions using function(). These functions take
in values for log of total population, log of commuters, log of income, and log
of land values. They are based on Equations (2.6) and (2.1) respectively. The
p() includes the equilibrium number of firms through the function N().

> N = function() {

+ exp((2/(2 + K))*(log(a_0) + a_1*population + a_2*commuters) -

+ (1/(2 + K))*(log(b_0) + b_1*income) -

+ (1/(2 + K))*(log(theta_0) + theta_1*land_value) - 1)

+ }

> p = function() {

+ exp((log(a_0) + a_1*population + a_2*commuters))/

+ (N()+1)

+ }

We can use the estimates of the parameters of the game theoretic model to
understand the likely impact of various policy changes.

> K = 0.86

> a_0 = 1

> a_1 = 1

> a_2 = 0.06

> b_0 = 1

> b_1 = -0.37

> theta_0 = 1.09

> theta_1 = -0.20

These are our baseline estimates given the observed data and our baseline
estimates for the number of firms and the price in the market, N0 and p0

respectively.17

> population = mean(data$TPOP)

> commuters = mean(data$OCTY)

> income = mean(data$PINC)

> land_value = mean(data$LANDV)

> N0 = N()

> p0 = p()

Consider a policy that increases commuters by 10%. This may be a policy
that makes it easier to drive to the town or increases railway capacity or

17Defining variables outside any function means that they are global variables that can be
accessed by any function. In this case those variables can be accessed by N() and p().
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reduces parking costs downtown or requires government workers to return to
the office. Note the weird way that the change comes in, this is because the
measures are in logs.

> commuters = mean(data$OCTY) + log(1.1)

> N()/N0

[1] 1.004007

> p()/p0

[1] 1.002058

The policy has a very small effect, increasing the number of firms in the market
by 0.4% and prices by about 0.2%.

Alternatively, consider a policy that increases the population by 10%. This
might be something that increases the connectedness of the town to near by
towns or allows more housing to be built.

> population = mean(data$TPOP) + log(1.1)

> commuters = mean(data$OCTY)

> N()/N0

[1] 1.068922

> p()/p0

[1] 1.034692

This policy increases the number of firms by 7% and prices by about 3.5%.
Both of these policies increase the number of firms in the market but also
increase the retail price of tires. Demand increases, which increases prices, but
the impact is mediated by the equilibrium change in the number of firms and
competition.

Lastly, consider a policy that decreases entry costs by 10%. This may be
a policy that makes it easier for a retail tire store to enter the market, like
reducing the permits required to set up the store or construct the store.

> population = mean(data$TPOP)

> theta_0 = 0.9*theta_0

> N()/N0

[1] 1.037526

> p()/p0

[1] 0.9667752

This policy increases the number of firms by 4% and reduces prices by 3%.
We may naively expect a policy that reduces entry costs to have a significant

impact on both entry and prices. Both effects are mitigated in equilibrium.
As it becomes cheaper to enter the market, firms understand that entering
may not be that profitable because prices will fall. Similarly, because entry
response is modest the price response is modest.
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2.6 Discussion and Further Reading

In a series of papers, Tim Bresnahan and Peter Reiss showed how game theory
could be used to improve empirical analysis of market structures. This chapter
uses data from Bresnahan and Reiss (1991b) to illustrate a structural model of
firm entry in the retail tire market. In the original paper, the authors examine a
number of markets and include information on prices for the retail tire market.

This chapter introduces the idea of a Nash equilibrium. In the entry game,
firms will enter as long as it is profitable given all the other firms that will also
enter. Because firms can strategically respond to the decisions of other firms,
policies that we may naively believe to significantly lower prices, may not.

The chapter introduces the idea of using a structural model to interpret
the data. It assumes that the observed relationships in the data are a Nash
equilibrium of a particular entry game. While a lot of questionable assumptions
are required given the data available, the analysis helps us to understand why
various policies may have pretty modest impact on the number of firms in the
market and the prices of tires.

In the FTC’s case against Staple’s acquisition of Office Depot, the FTC
presented evidence that there was a positive relationship between prices and
the number of retail office supply stores (Ashenfelter et al., 2006). A concern
with the analysis is that both the prices and the number of stores may be
driven by other factors such as land values (Manuszak and Moul, 2008). The
game theory can help us understand potential pitfalls in the empirical analysis
and which econometric methods may provide solutions. Chapter 4 revisits firm
entry games by analyzing the decisions of Barnes & Noble and Borders to
enter various markets in the United States.
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Oligopoly

3.1 Introduction

When most people, even most economists, discuss competition they have in
mind the model presented in Econ 101. There are many firms all adding a
small amount to the market. No firm has control over the price that they
receive. Each firm can leave or enter the market at will, so any large profits
get bid away as more firms enter. In this world, prices are equal to marginal
cost and the amount of goods is such that consumers and firms cannot be
made better off (without one or the other being made worse off). This is not
what industrial organization economists mean when they discuss competition.
Economists that work in antitrust and competition policy, distinguish between
firms who work together to determine price and firms that work independently
of each other.

This chapter presents the standard model of how firms set prices and output
when they are doing so independently of each other. Chapter 8 will return to
oligopoly and allow less independence in price setting. The chapter presents
three standard models of competition, Cournot, Bertrand, and Hotelling.1 The
chapter uses R to simulate the Nash equilibrium of a Cournot game with three
firms.

The Hotelling model is used to understand pricing of hamburgers in Santa
Clara County California in the late 1990s. In particular, the chapter analyzes
data on the price of the McDonald’s Big Mac and the Burger King Whopper at
the outlets throughout Santa Clara County. The model allows us to estimate
how prices are affected by competition between firms that are differentiated
by location. If one franchisee purchased all the McDonald’s outlets in Santa
Clara County, what would happen to the price of both the Big Mac and the
Whopper in the county?

1Confusingly the Hotelling model is often called a Bertrand model. While this chapter
presents two examples of a price setting game, many people assign the Bertrand name to
any static price setting game where the products are not homogeneous.
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3.2 Cournot’s Model

In the 1850s a French applied mathematician made a far fetched claim. Au-
gustine Cournot suggested having competing firms does not necessarily mean
that prices will be equal to marginal cost. Tabarnak! How could this be? It is
almost by definition that prices equal marginal cost in economics. Some fifty
years later, another Frenchman, François Bertrand, argued that Cournot was
full of merde. Even with just two firms, prices would equal marginal cost.

The section presents a two-firm version of the Cournot model and then
generalizes that to a N -firm version. It uses R to numerically simulate the
Nash equilibrium in a three-firm version of the model.

3.2.1 Two Firm Model

Formally we have the following game where we have two firms choosing quantity
(qi) and contemplating the impact of their collective choices on profits.

• Players: Firm 1 and Firm 2.

• Strategies:

– Firm 1: q1 ≥ 0

– Firm 2: q2 ≥ 0

• Payoffs:

– Firm 1: p(q1, q2)× q1 − c(q1)

– Firm 2: p(q1, q2)× q2 − c(q2)

The first part of Firm 1’s payoff is revenue. The price p(q1, q2) is a function of
each firm’s output in the market. The price is multiplied by the output produced
by Firm 1 which is q1. The second part is costs which is a function of the
amount of output produced. To keep things simple let p(q1, q2) = a−b×(q1+q2)
and cj(qj) = c× qj . That is, we have linear demand and constant marginal
cost. Assume also that a− c > 0. This will become important later.

Cournot’s game assumes that both firms make identical goods. This may
be a good model of a wheat market or an electricity market. In such markets
each firm decides how much to produce and supplies to a centralized exchange
that takes in demand and determines the price everyone gets. In the game,
each firm does not know how much the other firm produces.

3.2.2 Best Response

One issue that people new to game theory find very confusing is the idea of
a best response function. In the presentation of the game above, it is clearly
stated that each firm does not know the other firm’s choice when choosing its
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action. Then five minutes later we claim that firms have a function such that
its action is a best response to the other firm’s action. How can they both not
know what the other firm is doing and have a best response to it? Makes no
sense.

Both statements can be true because they refer to different concepts. One
is a description of the game and the other is a description of the algorithm
used to find the Nash equilibrium of the game. The games discussed in this
part of the book assume the players choose actions once and simultaneously. In
this sense, each firm does not know how much the other firm is producing. The
best response function is an analytical tool used to find the Nash equilibrium.
The Nash equilibrium is where each firm chooses the optimal output given the
output chosen by the other firm. That is the Nash equilibrium is where each
firm’s output choice is a best response to the other firm’s output choice.

The best response function is the solution to the following optimization
problem.

maxq1 (a− bq1 − bq2)q1 − cq1 (3.1)

The solution to this optimization problem is given by the first order condi-
tion.

a− bq1 − bq2 − c− bq1 = 0
or

q1 = a−c−bq2
2b

(3.2)

The best response function states that Firm 1’s quantity is increasing in
the difference a− c, decreasing in the quantity of Firm 2 (q2) and decreasing
in the willingness of customers to substitute out of the market (b). In this
model, the actions of the two players are strategic substitutes, in words, when
one firm increases its output, the other firm responds by decreasing its output.

3.2.3 Nash Equilibrium

The Nash equilibrium is where each firm is playing the best response to the
other firm. That is, where the first order condition for Firm 1 (Equation (3.2))
and the equivalent condition for Firm 2 both hold. To solve for the equilibrium
we need to solve for two unknowns from a system of two linear equations.
Simply counting the number of unknowns and the number of independent
linear equations we know that the solution exists and is unique.

In this case, we can use a nice trick to solve it. Because both firms are
identical then it must be that in equilibrium they produce the exact same
amount. That is q1 = q2 = q. Substituting this into Equation (3.2) allows us
to find the solution.

q = a−c−bq
2b

2bq = a− c− bq
3bq = a− c
q = a−c

3b

(3.3)
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This is each firm’s output in equilibrium. Equation (3.3) states that output will
fall when marginal cost (c) increases and when substitutability (b) increases. In
order for equilibrium output to be positive it must be the case that a− c > 0,
which is an assumption made above.

If we substitute this back into demand we can determine price. We have
two firms so we need to substitute back both equilibrium quantities.

p = a− 2ba−c
3b

= 3a−2a+2c
3

= a+2c
3

(3.4)

Equation (3.4) states that price will increase with marginal cost, but are they
higher than marginal cost?

p > c
⇔ a+2c

3 > c
⇔ a+ 2c > 3c
⇔ a− c > 0

(3.5)

As long as there is positive output in the market, prices will be greater
than marginal cost. Mayhem. Cats and dogs living together!

3.2.4 Cournot Model with N Firms

What happens as the number of firms increase? Do we get back to perfect
competition?

In this case, Firm 1’s best response becomes.

q1 =
a− c− b

∑N
j=2 qj

2b
(3.6)

Again to solve for equilibrium with symmetric firms we can do the trick of
setting all the output levels to be the same.

q = a−c−b(N−1)q
2b

2bq = a− c− b(N − 1)q
(N + 1)bq = a− c
q = a−c

(N+1)b

(3.7)

So in equilibrium, output is decreasing proportionately with the number of
firms in the market.

Substituting equilibrium quantities back into demand we can determine
prices. Remember we have to multiply by N .

p = a− bN a−c
(N+1)b

= (N+1)a−Na+Nc
N+1

= a+Nc
N+1

= a
N+1 + N

N+1c

(3.8)
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Look familiar? It is the equation used to determine price in Chapter 2.
We can see that as N gets large, p converges to c. That is Cournot’s model

does give perfect competition but only for a large number of firms in the
market.

3.2.5 Cournot Model in R

In order to better understand how the model works it helps to program it up in
R. The function price_cournot() is used to determine the price given market
output q. The function br_cournot() determine the firm’s output given the
output of the other two firms. This function is based on Equation (3.6). The
notation q[-i] is used to refer to all the elements of q except the ith element.

> price_cournot = function(q) a - b*sum(q)

> br_cournot = function(q, i) {

+ if (price_cournot(q) > 0) {

+ return(max(c(0, (a - c[i] - b*sum(q[-i]))/(2*b))))

+ } else {

+ return(0)

+ }

+ }

The best response function checks to make sure prices and quantities are
positive. It is based on Equation (3.6).

3.2.6 Solve for the Nash Equilibrium with R

The algorithm below looks for an equilibrium where the best response’s of
each firm lead to the same quantity. The algorithm chooses a starting level of
output and then calculates the best response for each firm to get a new level
of output. It then checks whether the new level of output is the same as the
old level of output. If it is, then we have a Nash equilibrium. Remember a
Nash equilibrium is where each firm is choosing a level of output that is a best
response to all the other firms. If the new level of output is different from the
old level of output, the algorithm sets the old level of output to the output just
calculated and finds the best response to that amount. The algorithm stops
when the new and old amounts become equal or close to equal.

In the code we have a default maximum number of iterations (maxit =

100) and a default level of convergence (epsilon = 1e-5).2 The code uses
epsilon to refer to a small number. It uses a while() loop to run until one
of the conditions fails to hold.

The initial value for the output is determined by Equation (3.7) assuming
all firms in the game have the same costs. The algorithm then calculates the

21e-5 is a way to write small numbers, in this case 0.00001.
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best response for each firm and checks whether the new output is the same
as the old output. The algorithm sets the old output to the new output and
calculates the best response to that output. The algorithm continues until the
difference between the new and old output is less than epsilon or the number
of iterations exceeds maxit. The algorithm returns the output in equilibrium
and whether the algorithm converged.

> ne_cournot = function(maxit=100, epsilon=1e-5,

+ trace=FALSE, converged=TRUE) {

+ diff = 10000 # some big number

+ iter = 1

+ N = length(c)

+ q_old = rep((a - mean(c))/((N+1)*b), N)

+ # initial values for q_old

+ while(diff > epsilon & iter < maxit) {

+ q_new = rep(0, N)

+ for(i in 1:N) {

+ q_new[i] = br_cournot(q_old, i)

+ }

+ diff = sum(abs(q_new - q_old))

+ iter = iter + 1

+ if(trace) {

+ print(diff)

+ print(iter)

+ }

+ q_old = q_new

+ }

+ if(iter == maxit) {

+ converged = FALSE

+ }

+ return(list(q_star = q_new, converged = converged))

+ }

This algorithm is not super sophisticated and it takes advantage of unique-
ness of the result. The algorithm does allow us to simulate more interesting
models than the simple symmetric-firm model presented above.

3.2.7 Simulation of Cournot Model in R

The following simulation allows the costs to vary between firms and shows how
variation in marginal costs leads to differences in market share for firms.

> set.seed(123456789)

> N = 3

> a = 0.5

> b = 0.2
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> c = a*runif(N) # so costs vary between firms.

> q_star = ne_cournot()$q_star

> p_star = price_cournot(q_star)

The results are as follows. The marginal costs (c) are determined randomly.
The output (q_star) and the price (p_star) are determined by the equilibrium
algorithm.

> c

[1] 0.3465879 0.3364405 0.3269508

> q_star

[1] 0.1545377 0.2052715 0.2527168

> p_star

[1] 0.3774948

In this example Firm 1 has the highest costs and the lowest quantity, while
Firm 3 has the lowest cost and the highest quantity.

This simulation illustrates a standard result of the Cournot model, the less
efficient (higher marginal cost) firms have lower market share and the more
efficient (lower marginal cost) firms have higher market share.

It also makes it clear that less efficient firms could be in the market. There
is nothing about the basic Cournot game that forces them to leave the market.

3.3 Bertrand’s Model

Bertrand was having none of it. Perfect competition was not some edge case.
In Cournot’s game the firms choose quantity, but what happens if the firms
choose price?

The section presents a two-firm version of Bertrand’s game. Think about
two ice-cream stands that are next to each other. Each stand displays the
price of a cone of ice-cream cone. If one ice-cream stand charges more than the
other, then everyone will buy from the cheaper stand. If both stands charge
the same price, then they split the market.

3.3.1 Two-Firm Game

This time the two firms choose a price and payoffs are determined by the
quantity which is a function of both prices.

• Players: Firm 1 and Firm 2.

• Strategies:
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– Firm 1: p1 ≥ 0

– Firm 2: p2 ≥ 0

• Payoffs:

– Firm 1: p1 × q1(p1, p2)− c1 × q1(p1, p2)

– Firm 2: p2 × q2(p2, p1)− c2 × q2(p2, p1)

Again the payoffs for each firm are revenue less costs. This time, the firm
chooses the price to charge and the market mechanism determines how much
quantity the firm will sell.

q1 =

 1 if q1 < q2
0.5 if q1 = q2
0 if q1 > q2

(3.9)

Let’s assume that the market size is 1. Equation (3.9) says that if you have the
lowest price, then everyone buys from you and if you have the highest price
then no one buys from you. If both firms have the same price, they split the
market.

This is a market where it is very easy for customers to substitute. One
slight reduction in price can cause the whole market to shift.

A real-world example might be a supply contract request for quotes. Which
ever firm offers the lowest price gets the full supply contract.

3.3.2 Nash Equilibrium

Consider a simple case where both firms have the same marginal cost, c1 =
c2 = c. The unique Nash equilibrium is p1 = p2 = c.

To confirm that it is an equilibrium, assume that p1 = c. What happens if
p2 > c? In this case, Firm 2’s output is 0 and profits are 0. What if p2 = c. In
this case, Firm 2’s output is 0.5, but Firm 2’s profits are 0. Lastly, if p2 < c,
then Firm 2’s output is 1, but Firm 2’s profits are negative. So Firm 2 is
indifferent between choosing p2 = c or p2 > c. Given that Firm 2 cannot do
better than the Nash equilibrium, this confirms p2 = c is optimal for Firm 2.
We can make the exact same argument for Firm 1.

It is not only an equilibrium but a unique equilibrium. A candidate equilib-
rium is, p1 = p2 > c. Again, keep Firm 1’s price at p1 > c. If Firm 2 charges
p2 > p1, then Firm 2’s profits are 0. If Firm 2 charges p2 = p1 then Firm 2’s
profits are positive, 0.5(p1 − c). If Firm 2 charges p2 = p1 − ϵ where ϵ is some
small number, then Firm 2’s profits are (p1 − c− ϵ). These profits are a lot
higher. Sure price is slightly lower, but Firm 2 went from selling to half the
market to selling to the whole market. In this game there is a huge incentive
to slightly undercut your rival in this market. Because of this incentive, there
is no other Nash equilibrium.
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Bertrand proved his point. With just two firms, price equals marginal cost,
an important characteristic of perfect competition.

What happens in Bertrand’s model if the two firms have different marginal
costs (cj)?

3.4 Hotelling’s Model

To go from perfect competition being some edge case to it being a constant
of the model all we needed to do was assume firms choose price instead of
quantity! Nonsense. If you look more closely, the models proposed by the two
Frenchmen are very different from each other. In particular, the demand in
the Bertrand model is very particular.

Early in the Twentieth Century, the American statistician and economist,
Harold Hotelling, suggested a compromise. He suggested a model where firms
choose price but where demand was not nearly so particular as Bertrand
assumes.

The section presents Hotelling’s original model. It then presents a model of
differentiated goods with linear demand and determines the Nash equilibrium
in prices for that model.

L RxL

FIGURE 3.1
Hotelling’s line with Firm L located at 0 and Firm R located at 1. Everyone
“living” left of xL purchases from Firm L.

3.4.1 Hotelling’s Line

Figure 3.1 represents Hotelling’s game. There are two firms L and R. Customers
for the two firms “live” along the line. Consider two frozen custard (ice cream)
places located at each end of a beach board walk. Your beach chairs may be
located closer to one frozen custard place than the other. Customers prefer
to go to the closer firm if the products and prices are otherwise the same.
Hotelling’s key insight is that while firms often compete by selling similar
products, these products may not be identical. Moreover, some people may
prefer one product to the other. Some people actually prefer Pepsi to Coke.
The location on the line represents how much the customer prefers L to R.

The line and the distance between the customer and the firm represent how
willing they are to purchase from a particular firm. Importantly, it represents
how much the two firm’s products are substitutes for each other. In the
hamburger example presented below, we use the actual distance between stores
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to measure substitutability but more generally Hotelling’s line is a metaphor
for how similar or different two products are from each other. The closer the
two firms are, the easier it is to substitute between them and the lower the
price is likely to be.

3.4.2 Differentiated Goods Game

Now consider a game where there are N firms that all sell a product that
is similar but not the same as each other. For example, a set of hamburger
restaurants in Santa Clara. While the Big Mac may be the same, the location
of each McDonald’s outlet is different.

• Players: N firms where each firm has a location {xi, yi} ∈ ℜ2.

• Strategies: pi ≥ 0 for all i ∈ {1, ..., N}

• Payoffs: (pi − ci)× qi(pi, p−i)

Each of the N firms chooses a price pi. The profits are the price less marginal
cost (ci) multiplied by the quantity sold qi. This quantity is determined by
both the price the firm chargers pi, by all the prices all the other firms charge
p−i and by the distances between the firms.3

To make things simpler and more concrete, assume that there are just two
firms i and j, Firm i’s sales are affected by pi and pj in the following way.

qi(pi, pj) = α+ βpi +
γpj
dij

+ ϵi (3.10)

It is a linear demand model similar to the model presented earlier in the chapter.
The quantity sold by Firm i is a function of the price Firm i charges, the price
Firm j charges, and some unobserved term ϵi. Assuming, β < 0, then the higher
the price the lower the demand for i’s product. Demand is also a function of the
competitor’s price pj . The extent of this is determined by γ, which is positive.
The demand for i is higher when the competitor charges a higher price. The
extent of the competitor’s price matters depends on the distance between the
outlets. The larger that distance (dij), the less the two firms compete with
each other for customers. Again, dij could represent physical distance or just
a measure of the difference between the two products.4

3.4.3 Best Response

Given all this, what will be the price in the market? We assume that the price
is determined by the Nash equilibrium. The Nash equilibrium is the price such
that Firm i is unwilling to change their price given the price charged by Firm
j, and Firm j is unwilling to change their price given Firm i’s price.

3−i means not i.
4We will Euclidean distance, dij =

√
((xi−xj)

2+(yi−yj)
2). This is the as-the-crow-flies

distance.
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Firm i’s problem is as follows.

maxpi
(pi − ci)(α+ βpi +

γpj

dij
) (3.11)

The solution to the optimization problem is the solution to the first order
condition.

(α+ βpi +
γpj
dij

) + β(pi − ci) = 0 (3.12)

Firm j’s problem is similar. The two equations from the first order conditions
are the best response functions for each firm.

3.4.4 Nash Equilibrium

Given the two equations derived from the first-order conditions, we can write
down a system of equations. Each firm’s best response function is as follows.

pi =
ci
2 − α

2β − γpj

2βdij

pj =
cj
2 − α

2β − γpi

2βdij

(3.13)

The prices are higher when costs are higher. Prices are strategic complements.
While there is a negative sign in front of γ, we said above that β is negative.
When pj increases, then Firm i’s best response is to increase pi. Again, how
much the two firm’s interact depends on γ and the distance dij .

3.5 Empirical Analysis: Hamburger Competition with R

When he was doing his PhD at Stanford, Wash U Marketing professor, Raph
Thomadsen, decided to study competition for hamburgers in Santa Clara
County. Raph was interested in competition between the two big chains,
McDonald’s and Burger King as well as competition within the chain brands.

To study competition he got information on each outlet from the health
department. Most importantly he got the outlet’s location. He then physically
visited each outlet determining the price of the hamburgers offered and whether
the outlet had other features like a drive through or a playland.

This section models the prices for hamburgers in the late 90s in Santa Clara
County using the model presented earlier.

3.5.1 Data

The data is provided by Raph Thomadsen and used in his RAND paper
(Thomadsen, 2005).5 For each outlet there is information about the brand,

5There is a slight descrepancy between the coordinates in the code and the location of
the outlets using Google maps.
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ownership structure, features of the outlet, age of the outlet, and price of the
sandwich.

FIGURE 3.2
McDonald’s and Burger King outlets in Santa Clara County. The size of the
logo indicates whether the price of the sandwich is in the top third of prices,
the middle third, or the bottom third.

Figure 3.2 is created using the leaflet package in R with the coordinates
from the code and importing the icons. The figure gives some idea how competi-
tion works in Santa Clara county. There is a logo at each brand’s location. The
size of the logo represents the price charged for the signature sandwich. The
higher the price, the bigger the icon. The outlets up near the Stanford campus
have fairly high prices. Often a Burger King is paired with a McDonald’s, but
neither has really low prices. Prices on the west and south side of San Jose
seem lower than on the east side and north east side.

You may be surprised by how much prices for a Big Mac vary across one
city. You may also be surprised that the competition of the most interest
is competition between McDonald’s outlets. How can that be? Doesn’t the
McDonald’s corporate headquarters set prices for the Big Mac? No. It depends.
Some outlets in this data are owned by the McDonald’s corporation and for
those, yes, corporate headquarters would have a lot of say over price. But
most of the outlets are owned by franchisees. Under California law, corporate
headquarters is restricted in what it can require of them. Headquarters cannot
determine the price charged by the outlet for its sandwiches.
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3.5.2 Estimation (Part 1)

It is traditional when estimating the parameters of a game theory model, to
first present estimates from a standard model like a linear regression model.
The game theory helps us think about what to put into that regression model
but also makes clear that we should be careful in interpreting the results. The
raw prices are adjusted to make the regression results look nicer.

The data used in the rest of the analysis is restricted to outlets that are
not corporate owned. The issue is that their pricing strategies may look very
different from the franchise locations.

> file = paste0(dir,"outlets_gt_ch3.csv")

> data = fread(file) |>

+ mutate(

+ LPrice1 = log(100*(Price - 2.49)),

+ BK = BK == 1

+ )

> lm1 = lm(LPrice1 ~ BK, data)

> lm2 = lm(LPrice1 ~ BK + Playland +

+ DriveThru + Mall, data)

> lm3 = lm(LPrice1 ~ BK + Playland +

+ DriveThru + Mall + Race + Male, data)

Table 3.1 presents some regression results of log of sandwich price on
characteristics of the outlet. This set up seems to match relatively closely to
the table presented in Thomadsen (2005). Prices are lower for The Whopper
(on average) and are lower at outlets with various amenities and in Malls as well
as in various locations based on demographic characteristics. The coefficients
on most of the characteristics are not statistically significantly different from
zero. This is probably due to the small sample size. One coefficient that is
statistically significantly different from zero is the dummy on being a Burger
King outlet. The Whopper is cheaper than the Big Mac.

3.5.3 Empirical Equilibrium

As we did in the previous chapter, we will assume that the prices observed in
the data are determined by the Nash equilibrium of the game described above.
The implication is that for the whole set of prices we see from all the outlets,
the whole set of best responses must hold. In the final data set we have prices
and information for 79 outlets in Santa Clara County.

Our estimation problem is to find the α, β, and γ such that our 79 best
response equations hold given the 79 prices we observe and the distance between
each location. Actually, we are going to make our empirical model slightly
more complicated by adding parameters for observed characteristics of the
outlet.

2βpi − βci +X′
iα+

γpj
dij

+ ϵi = 0 (3.14)
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TABLE 3.1
OLS estimates of the equilibrium relationship between price and observed
characteristics of the outlet and their location.

Dependent variable:

LPrice1

(1) (2) (3)

BK −0.21∗∗∗ −0.23∗∗∗ −0.22∗∗∗

(0.05) (0.05) (0.05)

Playland −0.08 −0.07
(0.06) (0.06)

DriveThru −0.02 −0.04
(0.06) (0.06)

Mall −0.13 −0.12
(0.10) (0.10)

Race 0.50
(0.64)

Male 0.16
(0.19)

Constant 4.54∗∗∗ 4.59∗∗∗ 4.50∗∗∗

(0.03) (0.06) (0.11)

Observations 79 79 79
R2 0.19 0.22 0.23

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

where Xi is a vector of observed characteristics for outlet i, e.g.
(1, brandi, drivethrui), where brandi indicates the brand of the outlet and
drivethrui is 1 if the outlet has a drive through and 0 otherwise.6 The parameter
α is now a vector of parameters (α0, α1, α2).

7

Writing this down for all the outlets we have 79 equations that need to hold
(J = 79). How much they affect each other depends on the parameter γ and the
distance between each outlet, dij . The other thing to notice is the assumption
that the demand parameters (α, β, γ) are the same for every outlet. What
differs between the outlets is the observed characteristics Xi, their marginal
cost ci and the distance to the other outlets dij and unobserved characteristics

6The matrix notation X to represent a block of data. In this case, each row is an outlet
and each column is a characteristic of the outlet.

7We are using matrix notation where two vectors of three elements x′y means (x1y1 +
x2y2 + x3y3). As you can see the matrix notation is a lot more compact.
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of the outlet ϵi.

2βp1 − βc1 +X′
1α+ γ

∑J
j=2

pj

d1j
+ ϵ1 = 0

2βp2 − βc2 +X′
2α+ γ( p1

d12
+
∑J

j=3
pj

d2j
) + ϵ2 = 0

...

2βpJ − βcJ +X′
Jα+ γ

∑J−1
j=1

pj

dJj
) + ϵJ = 0

(3.15)

This is quite a mess. It is a lot more compact to write this out using matrix
notation.

To see what is going on look at the case where there are just two firms
(J = 2). Also let’s assume that marginal costs are zero and there are no
observed characteristics or unobserved characteristics of the outlets.

2βp1 + γ p2

d12
= 0

2βp2 + γ p1

d21
= 0

(3.16)

We can write this out with matrices.

2β

[
p1
p2

]
+ γ

[
0 1

d12
1

d21
0

] [
p1
p2

]
=

[
0
0

]
(3.17)

Remembering the matrix multiplication rules, we can write this out to get the
equations above. In full matrix notation, we have the following.

2βp+ γDp = 0 (3.18)

where D is a matrix representing the distances between the stores with zeros
on the diagonal and the inverse distance between the stores in each cell, and p
is a vector of prices for the sandwiches.

The full empirical equilibrium can be written in matrix notation.

2βp− βc+Xα+ γDp+ ϵ = 0 (3.19)

where p is the vector of prices for the sandwich, c is a vector of marginal costs
for each outlet, X is the matrix of observed characteristics for each outlet, α
is a vector of representing how customers value those characteristics and D
is a full matrix with the distances between all of the outlets in Santa Clara
County. You have to admit, it looks a lot nicer.

3.5.4 Estimator

Our estimation problem is to find the parameters of the model such that
equilibrium prices in the model most closely matche the observed prices. To do
this we will use a method of moments estimator. It sounds pretty fancy but
it is just least squares. The idea is that because there are some unobserved
characteristics that are determining the price, represented by ϵ in Equation
(3.19) the equation will not precisely hold.
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However we will assume that the Equation (3.19) holds on average for
each outlet. We are assuming that the unobserved term is zero on average in
equilibrium. Assumption 1 makes this idea formal.

Assumption 1. E(ϵi|Xi, p, ci,Di) = 0 for all i ∈ {1, ..., N}, where Di is the
vector of distances from outlet i to every other outlet.

Now we don’t actually know the set of average prices for the outlets in the
market. Rather we only observed a set prices for each outlet once. So we are
going to assume that the analog of Assumption 1 holds in the data we observe.
Rather than requiring that this equation is exactly zero, we will look for the
parameters that make the average of ϵi squared as small as possible. We are
going to minimize the sum of squares, or least squares.

min{α,β,γ}
1
N

∑N
i=1(2βpi − βci +Xiα+ γDip)

2 (3.20)

In the actual estimation we will add one more complication. We don’t
observe ci, the marginal cost at the outlets. We don’t think that is a big
deal because within a brand, the marginal costs will be very similar across
the outlets in the data. One requirement from corporate headquarters is that
each outlet use a supplier of similar quality to corporate’s preferred supplier.
They can’t require a particular supplier be used but they can require certain
standards be maintained. It is reasonable to think the cost of ingredients into
the sandwich is pretty similar across all the outlets within a brand. In addition,
all the outlets face similar labor markets and would pay similar wages. All this
means that we assume ci = brandi + ϵc.

3.5.5 Estimator in R

Now we need to translate all the math above into code so that we run the
estimator on the data. The function outlet_price_f() maps Equation (3.20)
into R code. It looks pretty similar but it is not quite the same. There is an
extra matrix Omega. We will worry about this matrix in the next section. For
the moment it is going to be the identity matrix, that is a matrix with all 1’s
on the diagonal and zeros every where else. Given this, the function is identical
to Equation (3.20).8 To do matrix multiplication in R the operation is A%*%B
where A and B are two matrices where the number of columns of A is equal to
the number of rows of B. While the operation A*B means that each cell of A is
multiplied by each cell of B.9

> outlet_price_f = function(price, D, Omega, cost, X,

+ alpha, beta, gamma) {

+ epsilon = beta*price +

8Do some matrix algebra with the identity matrix to convince yourself.
9A and B should have the same dimensions, but it is not strictly necessary but does lead

to weird results if it does not hold.
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+ gamma*D%*%price +

+ beta*(price - cost) +

+ gamma*(Omega*D)%*%(price - cost) +

+ X%*%alpha

+ sos = mean(epsilon^2)

+ return(sos)

+ }

The first function tries to look as close to the math as possible. The
second function is a translation function. It translates from what works best
as a function to optimize to what looks nicest. This translation function
(outlet_price_f_int()) makes it clear to R that X is a matrix.10. It then
translates a vector par which is used by the optimization function optim(),
into our parameters, alpha, beta, and gamma. We force beta to be negative
and gamma to be positive. We do this using the exp() function, which takes
a number and makes it greater than 0.11 As a rule optimization algorithms
are not good at subtlety. Better to let it choose what ever parameter values
it likes and then translate its choice into what ever restrictions you want to
place on the parameter.

> outlet_price_f_int = function(par, price, D, Omega, BK, X) {

+ X = as.matrix(X)

+ J = dim(X)[2]

+ alpha = par[1:J]

+ beta = -exp(par[J+1])

+ gamma = exp(par[J+2])

+ cost = cbind(1,BK)%*%par[c(J+3,J+4)]

+ return(outlet_price_f(price, D, Omega, cost,

+ X, alpha, beta, gamma))

+ }

3.5.6 Distances

In order to use the distance between outlets in our estimation we need to calcu-
late distance between outlets. The code uses the dist() function to calculate
the Euclidean distance between two points (“as the crow flies distance”). It is
used in the loop to calculate the distance between all the outlets in the data
set. The code runs a loop in R using for(). Whenever running a loop in R it
is good practice to create an empty object, here it is a matrix dist_mat, that
gets filled in during the loop.12

10R sometimes gets confused about what is a matrix and what isn’t, so you need to repeat
yourself a bit.

11It is the exponential function.
12This little trick speeds up the R substantially.
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> dist = function(lat0, lon0, lat1, lon1) {

+ return(sqrt((lat0 - lat1)^2 + (lon0 - lon1)^2))

+ }

> J = dim(data)[1]

> dist_mat = matrix(NA, J, J)

> for(i in 1:J) {

+ for(j in 1:J) {

+ dist_mat[i,j] = dist(data$lat[i], data$lon[i],

+ data$lat[j], data$lon[j])

+ }

+ }

Now we can create our matrix D by finding the inverse of the distance for
each outlet combination and setting the values on the diagonal to 0.13 Lastly
we need to set the stores that have the same location to have a distance that
is very close.14

> D = 1/dist_mat

> diag(D) = 0

> D[is.infinite(D)] = 1/0.006

3.5.7 Ownership

Almost there. There is one more thing to discuss before estimating prices and
that is ownership. In the pricing model, we made the simplifying assumption
that each outlet is priced independently. That is not true in the data. In the
data, there are people that own multiple franchises. In this case, the owner is
going to price their sandwiches accounting for the fact that they own other
outlets.

Assume that one person owns two outlets and must choose the optimal
price for each. Remember the demand function for each outlet depends on the
prices of both outlets.

max{p1,p2} q1(p1, p2)(p1 − c1) + q2(p2, p1)(p2 − c2) (3.21)

For this case the first order conditions are as follows.

p1 : q1(p1, p2) +
dq1
dp1

(p1 − c1) +
dq2
dp1

(p2 − c2) = 0

p2 : q2(p2, p1) +
dq1
dp2

(p1 − c1) +
dq2
dp1

(p2 − c2) = 0
(3.22)

So this time if they raise the price of the sandwich in outlet 1, they lose sales
( dq1dp1

) but they gain back profits in proportion of the people that switch to

13In R the operation 1/D calculates the inverse at each cell of the matrix, not the matrix
inverse. To calculate the matrix inverse use solve().

140.006 is the minimum distance of stores that don’t have the same location.
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the other outlet ( dq2dp1
). Because the cost to the outlet of increasing price is

mitigated by the recapturing of customers, prices will be higher.
In our problem, we have the following.

dq1
dp1

= β
dq1
dp2

= γ
d12

(3.23)

The omega notation allows us to keep track of the various ownership possibilities.
Each outlet is assumed to own itself (ω11 = ω22 = 1), but there is a possibility
that both outlets are owned by the same person (ω12 = ω21 = 1) or by different
people (ω12 = ω21 = 0).

βp1 + γ p2

d12
+ ω11β(p1 − c1) + ω12γ

p2−c2
d12

= 0

βp2 + γ p1

d21
+ ω22β(p2 − c2) + ω21γ

p1−c1
d21

= 0
(3.24)

We can write it in the following form.

2βp− βc+ γDp+ γΩ ·D(p− c) = 0 (3.25)

where Ω ·D means cell by cell multiplication and Ω is the ownership matrix.

Ω =

[
ω11 ω12

ω21 ω22

]
(3.26)

Remember that the diagonals of the matrix D are zeros.

3.5.8 Ownership of Outlets

In the data, there is an index for the different owners. If the ownership variable
is 0 the outlet is independent and individually owned. If the variable is 1, then
it is corporate owned (and has been dropped). If the variable is greater than 1
then the number is used to identify which outlets have the same owner. For
example, outlets with ownership set to 6 have the same owner. The code below
uses which() to find the column where the ownership code is the same. Each
outlet is assumed to be owned by itself so the diagonal of the matrix is 1s.

> Omega = matrix(0, J, J)

> for(j in 1:J) {

+ if(data$Ownership[j] > 1) {

+ Omega[j,which(data$Ownership == data$Ownership[j])] = 1

+ }

+ }

> diag(Omega) = 1
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3.5.9 Estimation (Part 2)

The final piece of the puzzle is to use the optim() function. This is a basic
optimization algorithm used in R. It is used because it was made freely available
by John C. Nash, no relation to John F. Nash, of Nash equilibrium fame. To
use this function we give it a set of starting values (init). Here these are
set to zero for alpha and very small numbers for beta and gamma. When the
first function is called, it hits these values with exp() and exp(log(a)) = a.
That is, log is the inverse of exp. The diag() function creates a matrix with
values on the diagonal and zeros every where else. The function dim() finds
the dimensions of a matrix, where the first element is the number of rows. We
give optim() the initial values of the parameters, the function to optimize,
then any extra information that the function will need. In this case the values
for D, price, Omega, BK, and X. Lastly we can control the maximum number
of iterations it will use before stopping. The default is small, so you may want
to make this big using maxit. The parameter trace gives you a print out of
what the function is doing when it is set to 1.

> init = c(rep(0, 5), log(0.001), log(0.001), c(0,0))

> a1 = optim(par = init,

+ fn = outlet_price_f_int,

+ D = D,

+ price = exp(data$LPrice1),

+ Omega = Omega,

+ BK = data$BK,

+ X = cbind(data$Playland,

+ data$Mall,

+ data$DriveThru,

+ data$Race,

+ data$BK),

+ control=list(trace = 0,maxit = 10000000))

> # alpha

> a1$par[1:5]

[1] -0.005985475 -0.017518129 0.005481921 -0.006670482

-0.005309910

> # beta

> -exp(a1$par[6])

[1] -2.308111e-05

> # gamma

> exp(a1$par[7])

[1] 2.583274e-08

> # cost

> a1$par[8:9]

[1] 4.717501 8.238029
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Standard errors have not been calculated for these estimates. How would
you do that?

3.5.10 Goodness of Fit

It is standard in structural econometrics to present some type of goodness of
fit analysis. Here we can use the parameter values to generate the predicted
price. We can then compare the prediction to the observed prices.

To do the analysis we need to create a new function. This function finds
the new set of prices given the parameter values we found above.

> outlet_price_f_int2 = function(par, D, Omega,

+ cost, X, alpha, beta, gamma) {

+ X = as.matrix(X)

+ price = exp(par)

+ return(outlet_price_f(price, D, Omega,

+ cost, X, alpha, beta, gamma))

+ }

> init = data$LPrice1

> b1 = optim(par = init,

+ fn = outlet_price_f_int2,

+ D = D,

+ Omega = Omega,

+ cost = cbind(1,data$BK)%*%a1$par[8:9],

+ X = cbind(data$Playland,

+ data$Mall,

+ data$DriveThru,

+ data$Race,

+ data$BK),

+ alpha = a1$par[1:5],

+ beta = -exp(a1$par[6]),

+ gamma = exp(a1$par[7]))

Figure 3.3 presents the goodness of fit of the simulation using the estimated
parameters. In this exercise, we use the estimated parameters and then simulate
the prices that satisfy the Nash equilibrium condition. The fitted curve is a
little higher than the actual prices.

3.5.11 A Merger of McDonald’s Outlets

It is not clear if the FTC has ever analyzed the impact of concentration among
McDonald’s franchisee owners. The economic theory is not different from
analyzing the impact of a merger between hospitals or supermarkets.
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Our experiment is for the independent McDonald’s outlets to be purchased
by the same person.

> data$Ownership2 = ifelse(data$BK == 2,

+ 10,

+ data$Ownership)

> J = length(data$Ownership2)

> Omega2 = matrix(0, J, J)

> for(j in 1:J) {

+ if(data$Ownership2[j] > 1) {

+ Omega2[j, which(data$Ownership2 == data$Ownership2[j])] = 1

+ }

+ }

> diag(Omega2) = 1

We will assume the merger changes the ownership of the outlets but not
the existence of the outlets. In our math and our code, this change is captured
using Omega matrix. The code above finds all the McDonald’s outlets that are
independently owned and sets them to all have the same ownership.

The new firm’s pricing decision for any outlet accounts for how that outlet’s
price affects demand at their other outlets. When one McDonald’s increases
the price for their Big Mac, some customers will switch to another outlet. After
the merger many of these customers switch to outlets that are owned by the
same firm. The merger reduces the loss in profits when prices are increased.
The merger will lead to higher prices for Big Macs.

> init = b1$par

> c1 = optim(par = init,

+ fn = outlet_price_f_int2,

+ D = D,

+ Omega = Omega2,

+ cost = cbind(1,data$BK == 1)%*%a1$par[c(8,9)],

+ X = cbind(data$Playland,

+ data$Mall,

+ data$DriveThru,

+ data$Race,

+ data$BK),

+ alpha = a1$par[1:5],

+ beta = -exp(a1$par[6]),

+ gamma = exp(a1$par[7]))

The code below generates the ggplot() of the density of prices for the
actual prices, the predicted prices from the estimated model and the predicted
prices from the model of the merger of independent McDonald’s outlets.
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> ggplot_dens_outlets = data.frame(

+ Price = exp(data$LPrice1),

+ sim = exp(b1$par),

+ merger = exp(c1$par)

+ ) |>

+ ggplot(aes(x = Price)) +

+ geom_density(aes(y = ..scaled..), alpha = 0.5) +

+ geom_density(aes(x = sim, y = ..scaled..),

+ alpha = 0.5,

+ linetype = "dashed") +

+ geom_density(aes(x = merger, y = ..scaled..),

+ alpha = 0.5,

+ linetype = "dotted") +

+ geom_text(aes(x = 50, y = 1, label = "Actual")) +

+ geom_text(aes(x = 75, y = 0.3, label = "Sim")) +

+ geom_text(aes(x = 140, y = 0.4, label = "Merger Sim")) +

+ labs(x = "Price (normalized)",

+ y = "",

+ title = "") +

+ ## no numbers on y axis

+ scale_y_continuous(breaks = NULL) +

+ theme_minimal()

> ggplot_dens_outlets

Figure 3.3 shows both the goodness of fit of the model and the simulated
impact on price of a merger between all the independent McDonald’s outlets.
The roll-up of independent McDonald’s outlets would lead to a substantial
increase in the prices of outlets in the market. Not only the McDonald’s outlets
but also the Burger King outlets that they compete with.

3.6 Discussion and Further Reading

Using game theory to analyze oligopoly models of competition actually predates
game theory. In fact, all three models presented in this chapter predate Nash’s
analysis of game theory, even though all rely on the equilibrium concept.

Hotelling’s 1929 paper, Stability in Competition, provides much of the
intuition for the way many industrial organization economists think about
competition for retail products (Hotelling, 1929). In the model, it is the
“distance” between products that matters for competition. Not so much the
exact number of competitors but how close the competitors are to each other
in the minds of consumers.
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FIGURE 3.3
Plot of density of actual prices (solid line), predicted prices (dashed line) from
the estimating model and simulated prices from the model of the merger of
independent McDonald’s outlets (dotted line). The dotted line is shifted up
from the actual and simulated price distributions.

Somewhat confusingly we refer to a general model of differentiated price
competition as a Bertrand model.15 The classic paper taking this model to the
data is Berry et al. (1995).

The subtlety of the Hotelling model didn’t fit well into how US antitrust
conducted merger review. The standard merger screen is a measure called
the Herfindahl-Hirschman index (HHI) and the change the index caused by
the merger. It is calculated by determining which firms are in the market,
calculating each firm’s share, squaring them and adding them up. While HHI
is not a bad approximation of competition in homogeneous goods markets
modeled by Cournot, it doesn’t make a lot of sense for differentiated goods
markets modeled by Hotelling. In the simple Hotelling line, the extent of
competition can vary substantially without any change in the HHI.

The 2010 Merger Guidelines from the Department of Justice and the Federal
Trade Commission, made an adjustment suggesting that a different screen may
be better for differentiated goods mergers. The Upward Price Pressure screen
measures how close two firms are by how many customers are diverted for a
price increase.16

15Chapter 7 works through this model.
16https://www.justice.gov/atr/horizontal-merger-guidelines-08192010 accessed on

11/21/23.

https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
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Empirical Entry Games

4.1 Introduction

This chapter revisits the entry game presented in Chapter 2. In this game,
we have two firms considering whether or not to enter a market. The issue is
that it is costly to enter and both firms would prefer to have the market to
themselves. In equilibrium, we will tend to have one firm in the market, but
the game theory may not predict which one.

The chapter applies an entry game to the question of which markets the
mega bookstores, Borders and Barnes & Noble entered in the 1990s. The 90s
saw massive changes in book retailing. Changes in distribution technology
made it profitable for big box book stores to enter the market with a huge
range of titles as well as other products such as music, games, and even coffee.
The chains, Borders and Barnes & Noble led the charge by purchasing smaller
chains and entering green fields sites. Which markets did these firms enter?
What would have happened if they had been allowed to merge?

The chapter introduces an empirical model of entry based on the decision
making model of Dan McFadden. The empirical model is extended to allow
the firms to make decisions that are dependent on each other, a game. The
chapter analyzes the effect of a merger, if that merger would have occurred in
the early 90s.

4.2 Empirical Model

The section begins with a description of a standard choice model. This model
was originally developed by Dan McFadden in the early 1970s to analyze
consumer choice problems. McFadden was interested in who would use the
new subway system that had been built in San Francisco, the Bay Area Rapid
Transit (BART) system. Here we are adapting the model to analyze the choice of
which market the firm will enter. The model is generalized to allow unobserved
characteristics of the market to be correlated across firms. It is generalized
again to allow firms to make choices that are dependent upon each other.

DOI: 10.1201/9781003351603-4 63

https://doi.org/10.1201/9781003351603-4


64 Empirical Entry Games

4.2.1 Single Firm Entry Model

By the year 2000, Barnes & Noble had bookstores in 283 counties in the United
States, but this is out of over 3,000 counties. Placing these large stores in a
location is not cheap, particularly if they involve new construction. So which
counties dd Barnes & Noble choose to locate?

Assume that the firm’s latent profits from locating in a particular county
are as follows.

π1i = X′
iβ1 + ξ1i (4.1)

where Xi are market characteristics such as population size, β1 determines how
these characteristics are mapped into profits for the firm and ξ1i is unobserved
characteristics of the market and can be thought of as representing entry
costs for the firm. These unobserved characteristics are unobserved by the
econometrician (that’s you) but they are observed by the firm itself.

If the data include information on the market such as population size (pop)
and median income (income), then the decision to enter can be written as
follows.

π1i = β10 + β11popi + β12incomei + ξ1i (4.2)

For Firm 1, their profits in market i depend on popi and incomei as determined
by the parameters β11 and β12, respectively.

In matrix notation we have that the vector of parameters is written as
follows.

β1 =

 β10

β11

β12

 (4.3)

Similarly, the matrix of observed characteristics for N markets as follows.

X =


1 pop1 income1
1 pop2 income2
· · ·
1 popN incomeN

 (4.4)

The first column is just 1’s. In the matrix algebra, this column is multiplied
by the β10 parameter to give a constant across all the markets. We use the
notation X′

i to emphasize that we are using the ith row of the matrix and that
is being multiplied by the vector of parameters β1.

Barnes & Noble enter the market if and only if the following inequality
holds.

X′
iβ1 + ξ1i > 0 or

ξ1i > −X′
iβ1

(4.5)

So if the unobserved entry costs are low enough, then Barnes & Noble will
enter the market.

We expect firm profits to determined by various factors affecting demand
for books, costs associated with selling books, and fixed costs associated
with the location of the store. If we assume that the unobserved costs of
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entry are distributed standard normal, ξi ∼ N (0, 1), then the probability of
entry is Φ(−X′

iβ1), where Φ() is the cumulative distribution of the standard
normal. This is the probit model introduced in Chapter 1. We can estimate
the parameters β1 using the glm() procedure we used in Chapter 1.

max
β1

N∑
i=1

y1i log(Φ(−X′
iβ1)) + (1− y1i) log((1− Φ(−X′

iβ1)) (4.6)

To estimate the model we can find the β1 that maximizes the likelihood of the
data, where y1i is the observed entry decision for each county.1

4.2.2 Multiple Firm-Independent Entry Model

Taking baby steps to our full model, consider a model where we have two firms
entering a market but the two firms are making decisions independently of
each other. This could be a model of entry of Barnes & Noble and Best Buy.
Both are big box stores whose decision to enter a market will be based on
similar things, both observed and unobserved by the econometrician. However,
with one focused on books and the other focused on electronics, it is unlikely
that their decisions to enter a particular market will be dependent on each
other.

The two firms will enter market i if and only if the following inequalities
hold.

X′
iβ1 + ξ1i > 0

X′
iβ2 + ξ2i > 0

(4.7)

Again Xi represents observed characteristics of the market such as population
size. These characteristics are mapped into each firm’s profit function by the
parameter vectors β1 and β2.

So far this doesn’t seem to be different from the model in the previous
section. The difference is that we can allow the unobserved characteristics of the
market to be correlated across the two firms. Assume that {ξ1i, ξ2i} ∼ N (µ,Σ)
where µ = {0, 0} and

Σ =

[
1 ρ
ρ 1

]
(4.8)

In words, we allow the unobserved characteristics of the markets to be dis-
tributed standard bivariate normal. The parameter ρ ∈ [−1, 1] represents the
correlation across the two firms. This parameter is likely to depend on how
similar the two firms are in terms of their customer base and costs of setting up
the store. A fast food restaurant and big box book store may have unobserved
characteristics that are not vary correlated ρ = 0, while two big box stores
may have a highly positive correlation (a high ρ).

1We log the probabilities so that we don’t run into problems because the numbers are
too small for the computer to represent.
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−X′
iβ1

−X′
iβ2

ξ1

ξ2

{0, 0} {1, 0}

{1, 1}{0, 1}

FIGURE 4.1
Empirical implications of the two firm independent entry model. Firm 1’s entry
is denoted in the first position of the brackets. If both firms have unobserved
characteristics that are low then neither will enter {0, 0}, if Firm 1’s unobserved
characteristic is high then Firm 1 will enter {1, 0}, if Firm 2’s unobserved
characteristic is also high the Firm 2 will also enter {1, 1}.

Let 1 denote entry and 0 denote the choice not to enter. In this model we
observe four cases, neither firm enters {0, 0}, Firm 1 enters but Firm 2 does
not {1, 0}, Firm 1 doesn’t enter but Firm 2 does {0, 1}, and both firms enter
{1, 1}.

Figure 4.1 presents the four cases given the distribution of the unobserved
characteristics of the markets for the two firms. The pattern of entry across
markets will tell us if the unobserved characteristics are correlated across firms.
If we see lots of cases where both firms do the same thing, both enter the
market or neither enters the market, then that is consistent with positively
correlated unobserved characteristics. If we see lots of cases where there is just
one firm in the market but which is pretty evenly distributed, then that is
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consistent with the unobserved characteristics being uncorrelated or negatively
correlated across the two firms.

Again we want to find the β1, β2 and ρ that maximize the likelihood of the
observed data which is represented by y1 and y2.

4.2.3 Entry Game

After all of that set up, we can write down our empirical entry game. Like in
the previous section we have two firms considering whether or not they should
enter market i. They will enter if the following inequalities hold.

X′
iβ1 −D2iα1 + ξ1i > 0

X′
iβ2 −D1iα2 + ξ2i > 0

(4.9)

where D1i ∈ {0, 1} and D2i ∈ {0, 1}. There are a couple of differences between
these inequalities and the inequalities in Equation (4.7). The first is that
there are two extra parameters α1 and α2. These represent the reduced profits
associated with competing with the other firm. This only occurs if the other
firm enters the market. The profits for Firm 1 are lower if D2i = 1 by the
amount α1, where D2i = 1 if and only if the second inequality holds. The
profits for Firm 2 are lower if D1i = 1 which only occurs if the first inequality
holds.

Now you may be able to start seeing the issue. The first inequality depends
on the outcome of the second inequality which depends on the outcome of
the first inequality! To see what is going on consider a version of the figure
presented above.

Figure 4.2 represents the game. If the unobserved benefits for both firms
are high (fixed cost of entry is low), then both firms will enter {1, 1}, if they
are low, then neither will enter {0, 0}. If they are very high for Firm 1 and very
low for Firm 2, then Firm 1 will enter {1, 0}. Similarly the other way {0, 1}.
There is also the intermediate outcome where the model does not make a clear
prediction on what will happen. It could be that Firm 1 enters while Firm 2
does not, or it could be the other way around. The model clearly predicts that
one firm will enter, it just does not predict which.

4.3 Empirical Analysis: Bookstore Entry with R

The section presents the code for estimating the empirical models presented
above. To show the progression from the original entry model to the entry
game, the section presents code for all three models. The first model is just a
probit, so you could use the glm() function baked into R. However, including
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FIGURE 4.2
Empirical implications of the entry game. Firm 1’s entry is denoted in the first
position of the brackets. The region in the middle square has an in determinant
outcome. One firm will enter, but it is not clear which.

the code for this case makes it easier to see how the more complicated models
work.

4.3.1 Single Firm Entry Model in R

The estimation algorithm is maximum likelihood. In this method, we find
the parameter values that maximize the likelihood that the data we observe
was generated by a particular model. We will need a function that calculates
the probability that the observed data occurred given a particular parameter
value. There are a couple of different ways of doing that in R. In this section,
we will calculate the probabilities numerically. That is the section presents a
method for approximating the probability by having the computer do a lot of
calculations. This method is not as efficient as using a built-in C-based function,
but it is easier to see what is going on, particularly as the problem gets more
complicated.
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> set.seed(123456789)

> K = 10000

> Z_1 = rnorm(K)

This code generates K = 10000 pseudo-random draws from a standard
normal distribution. The function rnorm() is the R function for drawing from
a standard normal. These are global variables, meaning that they are available
to any function we write. The function set.seed() is used to make sure that
the results can be exactly replicated.

> f_entry = function(X, beta1) {

+ X1 = as.matrix(cbind(1, X))

+ N = dim(X1)[1]

+ xi = Z_1

+ Xb = X1%*%beta1

+ p = rep(0, N)

+ for(k in 1:K) {

+ pi_k = Xb + xi[k]

+ p = p + (pi_k > 0)

+ }

+ return(p/K)

+ }

> f_loglik = function(X, y, beta) {

+ epsilon = 1e-5

+ p = f_entry(X, beta)

+ return(-mean((y == 1)*log(p + epsilon) +

+ (y == 0)*log(1 - p + epsilon)))

+ }

The function f_entry() takes in the matrix of data X (without the column
of 1’s) and the vector of parameters beta. The matrix X consists of columns of
data stating observed characteristics of each market, such as population size
and median income.

The probability of entering market i is determined by the probability
that profits will be positive given a large number of possible values for the
unobserved characteristic xi.

The function f_loglik calculates the probability that the model is true
given the observed data. This code is equivalent to Equation (4.6). This
function takes a vector of outcomes, y. The vector y states whether or not
the firm entered each of the markets in the data where 1 denotes entry and 0
denotes that the firm did not enter the market. The function transforms the
probability into logs so that we don’t run into problems where the numbers we
are calculating are smaller than the smallest number the computer can handle.
Later when we apply this function to an actual problem, we will benefit from
the fact that the optimal value for beta is the same for the log-transformed
function as it is for the original function. Notice that there is a negative sign in
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front of the mean() function. This is there because the optimize algorithm used
defaults to find the minimum so the minimum of the negative log-likelihood is
the maximum log-likelihood. The value epsilon is a small number designed
to make sure that the computer doesn’t crash if it tries to calculate the log of
zero.

4.3.2 Multiple Firm-Independent Entry in R

> Z_2 = rnorm(K)

This time we need a distribution with two dimensions. So the first step is
to create another large set of random numbers drawn from a standard normal
function.

> f_2entry = function(X, beta_1, beta_2, rho) {

+ N = dim(X)[1]

+ xi_1 = Z_1

+ xi_2 = Z_2*sqrt(1 - rho^2) + rho*Z_1

+ Xb_1 = X%*%beta_1

+ Xb_2 = X%*%beta_2

+ p_00 = p_01 = p_11 = rep(0, N)

+ for(k in 1:K) {

+ pi_1k = Xb_1 + xi_1[k]

+ pi_2k = Xb_2 + xi_2[k]

+ p_00 = p_00 + (pi_1k < 0 & pi_2k < 0)

+ p_01 = p_01 + (pi_1k < 0 & pi_2k > 0)

+ p_11 = p_11 + (pi_1k > 0 & pi_2k > 0)

+ }

+ return(list(p_00 = p_00/K,

+ p_01 = p_01/K,

+ p_11 = p_11/K))

+ }

> f_loglik_2 = function(X, y, beta_1, beta_2, rho) {

+ epsilon = 1e-10

+ Lik = f_2entry(X, beta_1, beta_2, rho)

+ return((y[,1] == 0 & y[,2] == 0)*log(Lik$p_00 + epsilon) +

+ (y[,1] == 0 & y[,2] == 1)*log(Lik$p_01 + epsilon) +

+ (y[,1] == 1 & y[,2] == 1)*log(Lik$p_11 + epsilon) +

+ (y[,1] == 1 & y[,2] == 0)*log(1 -

+ Lik$p_00 -

+ Lik$p_01 -

+ Lik$p_11 +

+ epsilon))

+ }

> f_loglik_2_int = function(par, X, y) {
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+ X = as.matrix(cbind(1, X))

+ J = dim(X)[2]

+ beta_1 = par[1:J]

+ beta_2 = par[(J+1):(2*J)]

+ rho = -1 + 2*exp(par[2*J+1])/(1 + exp(par[2*J+1]))

+ return(-mean(f_loglik_2(X, y, beta_1, beta_2, rho)))

+ }

Just by counting lines of code, we see that things are a lot more complicated
when we have two firms whose decisions are independent but correlated. The
function f_2entry() has parameters for Firm 1 (beta_1) and Firm 2 (beta_2)
and the correlation between the unobserved term (rho). The unobserved term
xi_2 is a function of both Z_1 and Z_2. The higher rho the more it weights
Z_1. The function determines the probability of observing three cases neither
enter, only Firm 1 enters, and both enter. The fourth case is calculated as the
residual because probabilities must add to 1.

The code now includes an additional function f_loglik_2_int(). This is
an intermediate function designed to be used by the R’s optimization algorithm
optim(). In this case, the parameter rho is restricted to be between −1 and
1. It is good coding practice to allow the optimization algorithm to choose
what ever values it likes, but then transform those values into the restricted
set required by the model. To do this the code uses exp(x)/(1 + exp(x)),
also known as the softmax function. This function takes any value of x and
turns it into a number that lies between 0 and 1.

4.3.3 Entry Game in R

While the entry game is quite a bit more complicated than the previous
model, the estimator is not that different. There are two additional parameters
alpha_1 and alpha_2 but everything else is pretty much the same. The big
difference is that the model cannot distinguish two cases in the data. The
model predicts when one firm will enter the market, but it does not predict
which firm that will be. Therefore, we need to combine those two cases in order
to estimate our model.

> f_entry_game = function(X, beta_1, beta_2, alpha_1, alpha_2

+ , rho) {

+ N = dim(X)[1]

+ xi_1 = Z_1

+ xi_2 = Z_2*sqrt(1 - rho^2) + rho*Z_1

+ Xb_1 = X%*%beta_1

+ Xb_2 = X%*%beta_2

+ p_00 = p_11 = rep(0, N)

+ for(k in 1:K) {

+ pi_1k = Xb_1 + xi_1[k]

+ pi_2k = Xb_2 + xi_2[k]
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+ p_00 = p_00 + (pi_1k < 0 & pi_2k < 0)

+ p_11 = p_11 +

+ (pi_1k - alpha_1 > 0 & pi_2k - alpha_2 > 0)

+ }

+ return(list(p_00 = p_00/K,

+ p_11 = p_11/K))

+ }

The function f_loglik_game_int() is pretty similar to the equivalent
function in the previous section. The difference is that there are two additional
parameters. We will restrict these two parameters to be positive. We will impose
the result that an increase in competition lowers profits (or does nothing).

> f_loglik_game = function(X, y, beta_1, beta_2, alpha_1,

+ alpha_2, rho) {

+ epsilon = 1e-10

+ Lik = f_entry_game(X, beta_1, beta_2, alpha_1, alpha_2, rho)

+ return((y[,1] == 0 & y[,2] == 0)*log(Lik$p_00 + epsilon) +

+ (y[,1] == 1 & y[,2] == 1)*log(Lik$p_11 + epsilon) +

+ ((y[,1] == 1 & y[,2] == 0) +

+ (y[,1] == 0 & y[,2] == 1))*log(1 -

+ Lik$p_00 -

+ Lik$p_11 +

+ epsilon))

+ }

> f_loglik_game_int = function(par, X, y) {

+ X = as.matrix(cbind(1, X))

+ J = dim(X)[2]

+ beta_1 = par[1:J]

+ beta_2 = par[(J+1):(2*J)]

+ alpha_1 = exp(par[2*J+1])

+ alpha_2 = exp(par[2*J+2])

+ rho = -1 + 2*exp(par[2*J+3])/(1 + exp(par[2*J+3]))

+ return(-mean(f_loglik_game(X, y, beta_1, beta_2, alpha_1,

+ alpha_2, rho)))

+ }

4.4 Empirical Analysis: Bookstore Entry using R

Barnes & Noble dates itself to the 1800s, but in the early 1990s, the firm
developed the super bookstore. The big box of bookstores. The objective was
to carry a huge range of books, music, games, and even food and coffee. It
revolutionized book retail in the United States.
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Where did Barnes & Noble choose to enter? What determined those loca-
tions?

4.4.1 Data

The data used here is from Adams and Basker (2025). The authors combine
information from publicly available census data and published directories of
retail bookstores.

TABLE 4.1
Mean County Characteristics by Presence of Barnes & Noble and Borders.

College
Population Income Share (%) Bookstores (#)

None 37,857 33,513 15 2
Only Barnes & Noble 275,435 43,210 27 14
Only Borders 548,218 49,118 31 40
Both 272,191 46,476 26 12

Notes: Presence of Barnes & Noble and Borders referes to the year 2000.
There are 2,792 counties with neither chain, 155 counties with only Barnes
& Noble, 36 counties with only Borders, and 128 counties with both chains.
Population, income, and college share use data from 2000. Income refers to
median county-level household income in 2000. College share is the share of
population aged 25 and older with a college degree in 2000. Bookstores is the
total number of bookstores in the county in 1990.

Table 4.1 shows the difference between counties with and without Borders
and Barnes & Noble stores. Unsurprisingly, the firms entered counties with
larger populations, richer counties, counties with higher educated population,
and counties with more bookstores in 1990.

4.4.2 Estimation of Single Firm Entry

The model presented in Equation (4.5) can be estimated by combining data on
the location of Barnes & Noble stores with various economic and demographic
information at the county level. In addition to these data, we have information
on the number of book stores in the county in 1990, which is generally earlier
than the Barnes & Noble super bookstores came into existence. We can similarly
model the entry of Borders.

In this analysis, there is no game. Barnes & Noble and Borders are assumed
to make their entry decisions optimally, but these decisions are completely
independent of each other. To estimate the parameters of the model, we can
either use a maximum-likelihood estimator and the functions f_loglik() and
f_enter() or we can use the glm() procedure introduced in Chapter 1.
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> file = paste0(dir, "book_2000.csv")

> dt = fread(file)

> glm1 = glm(enter ~ log_pop_2000 + med_income + college +

+ stores_1990,

+ data = dt,

+ family = binomial(link = "probit"))

This function is used to estimate cases where the outcome is binary, enter
or did not enter, and where the unobserved characteristic of the market is
distributed as a normal distribution with mean of 0 and standard deviation of
1. This is a probit model.

> init = glm1$coefficients

> data = data.frame(y = dt$enter,

+ pop = dt$log_pop_2000,

+ income = dt$med_income,

+ college = dt$college,

+ stores_1990 = dt$stores_1990)

> data = na.omit(data)

> res1 = bs(init, f_loglik,

+ y = data$y,

+ X = cbind(data$pop,

+ data$income,

+ data$college,

+ data$stores_1990))

The glm1 results are used as the initial starting value for the maximum
likelihood estimator using f_loglik(). The code then creates the data to
be used by the estimator, including information on which stores Barnes &
Noble entered, population size of the county, percentage of college graduates
in the county and the number of book stores in the county in 1990. The object
res1 stores the results. This uses a function called bs() which creates pseudo
samples from the data set and uses the optim() function to determine the
parameter values that maximize the likelihood using the f_loglik() function.2

> dt$enter2 = ifelse(dt$borders > 0, 1, 0)

> glm2 = glm(enter2 ~ log_pop_2000 +

+ med_income +

+ college + stores_1990, data = dt,

+ family=binomial(link="probit"))

The data set is adjusted to remove observations with missing values. The
function na.omit() is used to do this.3

2The bs() function is available from the github page for the book.
3R uses NA to denote missing values.
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> init = glm2$coefficients

> data = data.frame(y = dt$enter2,

+ pop = dt$log_pop_2000,

+ income = dt$med_income,

+ college = dt$college,

+ stores_1990 = dt$stores_1990)

> data = na.omit(data)

> res2 = bs(init, f_loglik,

+ y = data$y,

+ X = cbind(data$pop,

+ data$income,

+ data$college,

+ data$stores_1990))

The code above similarly creates a data set for estimating the choice of
market to enter for Borders stores. It estimates the probit model using the
bs() function and stores the results in the object res2.

4.4.3 Estimation of Two Firm Entry Model

Table 4.2 presents the results from the different entry models discussed above.
The first model assumes that the two firms make optimal decisions that
are independent of each other. In addition, it assumes that the unobserved
characteristics faced by the two firms in each market are independent across
the two firms.

The two-firm model is similar to single firm entry model. The entry decisions
of the two firms are independent of each other but the unobserved characteristics
of the markets may be correlated across firms. We say that the firms are
strategically independent but the markets are statistically dependent. This is
a biprobit model. The code again creates the data set for the analysis removes
missing values and uses the bs() function calling f_loglik_2_int. It stores
the results in res3.

> init = c(glm1$coefficients,

+ glm2$coefficients,

+ 0)

> data = data.frame(y_1 = dt$enter,

+ y_2 = dt$enter2,

+ pop = dt$log_pop_2000,

+ income = dt$med_income,

+ college = dt$college,

+ stores_1990 = dt$stores_1990)

> data = na.omit(data)

> res3 = bs(init, f_loglik_2_int,

+ y = cbind(data$y_1,

+ data$y_2),
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+ X = cbind(data$pop,

+ data$income,

+ data$college,

+ data$stores_1990))

4.4.4 Estimation of the Entry Game Model

For the third model, we have two firms entering the markets and again the
unobserved characteristics of the two firms are correlated across markets. This
time the decision to enter depends on the choice of the other firm. Decisions
are now dependent. This model uses the same data as the previous model.
It uses the bs() function with the f_loglik_game_int() likelihood function
and saves the results in the object res4.

> init = c(glm1$coefficients,

+ glm2$coefficients,

+ 0,

+ 0,

+ 0)

> res4 = bs(init, f_loglik_game_int,

+ y = cbind(data$y_1,

+ data$y_2),

+ X = cbind(data$pop,

+ data$income,

+ data$college,

+ data$stores_1990))

The table of results also presents information on the standard errors of the
estimates of the parameters. These values are determined using a bootstrap
method. This method approximates how estimates may vary when a different
sample is used.4

Table 4.2 presents the estimated parameter values for the three models
discussed above. The α parameters state that having two firms lowers profits.
The store locations are positively associated with population size, education,
and the number of existing bookstores. It is unclear if income has any impact.
Finally, the unobserved entry costs are highly correlated across the two firms.

4.4.5 Model Fit

We can use the estimated parameters to simulate the model and compare
the predicted entry decisions to the actual entry decisions. This provides one
test of the model’s fit. The code, not shown, simulates the model 1,000 times

4The bootstrap method approximates estimates from a new sample by resampling the
current data and restimating the model using the new pseudo-sample.
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TABLE 4.2
Results from estimates of the three models. The first set of columns labeled
“Probit” are estimates assuming that the two firms are making entry decisions
that are both strategically independent and statistically independent. The
second set of columns labeled “BiProbit” assumes the firm entry decisions are
strategically independent. It allows unobserved characteristics of the market
to be correlated across firms. The two columns labeled “Game” refer to the
case where the entry decisions of the two firms are both strategically and
stochastically dependent. The columns labeled “SD” refer to the bootstrap
standard errors.

Probit SD BiProbit SD Game SD
const 1 −15.06 0.22 −15.03 0.09 −15.11 0.25
Pop 1 1.08 0.02 1.09 0.01 1.07 0.01

Income 1 −1.03 0.44 −1.04 0.25 −0.76 0.48
College 1 5.68 0.66 5.51 0.34 5.65 0.55

Stores 1990 1 0.28 0.09 0.28 0.07 0.37 0.11
const 2 −11.57 0.26 −11.54 0.11 −11.37 0.20
Pop 2 0.66 0.03 0.66 0.01 0.65 0.02

Income 2 1.75 0.51 1.74 0.25 1.31 0.80
College 2 2.49 0.70 2.59 0.33 2.70 0.55

Stores 1990 2 0.52 0.08 0.49 0.06 0.79 0.11
alpha 1 0.73 0.18
alpha 2 0.70 0.12

rho −0.08 0.10 0.47 0.10

and compares the predicted entry decisions to the actual entry decisions. The
results are presented in Table 4.3.

Table 4.3 presents model fit results for the three models. There is not much
difference between the three estimators, although the game theory model is
slightly better at predicting the one-firm market.

4.5 Policy Analysis using R

What would happen if Barnes & Noble and Borders had merged? Here we
are not going to worry about the effect on prices but on which counties the
merged firm would enter. Assume that the α parameters remain the same
post merger.5 The difference the merger brings is that it allows the firms to
coordinate entry. This analysis assumes that the merged firm will keep the two
distinct brands.

To determine what would happen in this alternate universe, we can simulate

5Given that the α parameters are accounting for both diversion between stores and prices,
we would expect them to be smaller but not zero post merger.
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TABLE 4.3
Comparison of predictions of the three models to the actual outcomes. The
higher percentage on the diagonal the better fit of the model. All models are
good at predicting the high probability event, which is no entry by either firm.
The non-strategic models are best at predicting when there will be two firms
in two-firm markets, while the game theory model is best at predicting the
one-firm market.

None One Firm Two Firm
Probit: None 97.2 42.3 9.4
Probit: One 2.5 38.8 34.9
Probit: Two 0.3 18.9 55.6

BiProbit: None 97.1 41.6 9.0
BiProbit: One 2.6 40.0 35.9
BiProbit: Two 0.3 18.4 55.1
Game: None 97.1 41.0 9.0
Game: One 2.6 41.7 36.6
Game: Two 0.3 17.3 54.4

thousands of outcomes in the markets for which have data using the parameter
values estimated above.

TABLE 4.4
Comparison of actual entry to simulated entry in 2000 and simulated entry
under a merger.

Actual Sim Merge
none 2919 2895 2895

BN or Borders 170 191 238
both 128 93 46

Table 4.4 presents summary of simulations of a merger between Borders
and Barnes & Noble. The simulations tend to predict more counties with stores
than we actually see, but fewer counties where both stores are present. The
model predicts that the merger will lead to fewer markets with a Borders and
Barnes & Noble. Not presented is the variation in the estimates, but it is pretty
clear that there will be fewer markets with both stores. As some consumers
prefer one or the other, people in those markets are worse off. We can think
of that as a quality reduction. In addition, the reduced competition in those
markets is likely to lead to higher prices.6

The value in the first row of columns 2 and 3 is the same. The merger
changes whether or not the market is will have two firms or one, but not
whether or not at least one firm will enter. The reason is that the game
explicitly assumes that the two firms coordinate on entry. Chapters 5 and 8

6See the analysis presented in Chapter 3.
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consider games where the firms cannot coordinate. In these cases, the merger
may actually lead more firms to enter the market.

4.6 Discussion and Further Reading

The analysis is based on Adams and Basker (2025). The authors analyze the
entry of mega bookstores in the US using publicly available census data and
directories of retail bookstores. The entry game analysis is based on Bresnahan
and Reiss (1991a) and Tamer (2003). Chapters 5, 6, and 8 revisit this problem
under different modeling assumptions. Chapter 5 revisits the problem assuming
that the outcome of the game in the data is a mixed strategy Nash equilibrium.

Game theory provides a better explanation of the entry decisions we observe,
however it can also makes the analysis more challenging. Entry problems are
a type of coordination game and like other coordination games they tend to
have multiple equilibria. This means for a set of parameter values, a model
makes multiple predictions about what we will see in the data. This makes the
models a challenge to estimate. The solution presented here follows Bresnahan
and Reiss (1991a) which simply combines all the equilibria into one observed
outcome. Tamer (2003) presents a method for estimating a more efficient model.
Many papers in empirical industrial organization make alternative assumptions
that lead to unique predictions from the game. Chapter 6 discusses this option.

Borders and Barnes & Noble did not propose to merger in the 1990s or
2000s. Did they contemplate it? Were they dissuaded by the FTC’s challenge
of the merger between Blockbuster and Hollywood Video in 1999 and again
in 2005?7 Borders went into bankruptcy proceedings in 2011 and Barnes &
Noble acquired some of its intellectual property.8

7https://www.nytimes.com/2005/03/26/business/media/

blockbuster-ends-bid-for-rival.html
8https://www.barnesandnobleinc.com/about-bn/history/. Accessed on 2/20/23.

https://www.nytimes.com/2005/03/26/business/media/blockbuster-ends-bid-for-rival.html
https://www.barnesandnobleinc.com/about-bn/history
https://www.nytimes.com/2005/03/26/business/media/blockbuster-ends-bid-for-rival.html
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Mixed Strategies

5.1 Introduction

Chapter 2 stated that John Nash showed that the Nash equilibrium exists in
a large set of games. This is a powerful result and is part of the reason why
Nash equilibrium is so important. But Nash’s proof relies on mixed strategies.
Mixed strategies are a more complicated method for determining the outcome
of a game. Mixed strategies are vital for the analysis of parlor games like chess
or cards, and useful for the analysis of games with multiple equilibria like the
coordination game presented in earlier chapters.

The chapter introduces mixed strategies using the classic childhood game
Rock-Paper-Scissors. It analyzes penalty kicks in soccer’s English Premier
League. The chapter revisits the entry of big box bookstores analyzed in
Chapter 4. This time it assumes players are playing a mixed strategy when
there are multiple equilibria.

5.2 Zero-Sum Games

Zero-sum games are the oldest types of games studied in game theory. They
are a natural way to represent parlor games like chess. In those games, there
is a winner and a loser. What the winner wins, the loser loses. This section
introduces some important zero-sum games and discusses how to find the
equilibrium.

5.2.1 Rock-Paper-Scissors

Rock-Paper-Scissors is one of the more famous childhood games. It requires
two players with at least one hand. The game provides solutions to many
previously unsolvable problems - who gets the last slice of cake, who gets to
ride shotgun, who gets to mow the lawn.

• Players: Player 1 and Player 2

DOI: 10.1201/9781003351603-5 80
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• Strategies: Rock, Paper, Scissors

• Payoffs: See Table 5.1

Table 5.1 provides a normal form representation for the game. There are
only three outcomes in the game, win, lose, and draw. We can represent these
outcomes as payoffs, 1, −1 and 0 respectively. If both players choose the same
shape, it is a draw. Then Rock beats Scissors, Paper beats Rock, and Scissors
beats Paper. Notice that the numbers in each cell add to 0, this is what we
mean by zero-sum.

TABLE 5.1
Normal form representation of Rock-Paper-Scissors with two players P1 and
P2, the strategies for P1 are on the rows and P2’s strategies are on the columns.
Payoffs are each cell, with P1’s payoff listed first.

P1, P2 ROCK PAPER SCISSORS
ROCK 0, 0 −1, 1 1, −1
PAPER 1, −1 0, 0 −1, 1
SCISSORS −1, 1 1, −1 0, 0

5.2.2 Nash Equilibrium

Does Rock-Paper-Scissors have a Nash equilibrium? To check whether a partic-
ular outcome is a Nash equilibrium we can follow the standard algorithm. In
the first step, we posit the Nash equilibrium. Then in the second step, assume
all but one player plays the posited strategy, determine the optimal strategy
for the remaining player(s). If the posited strategy is not optimal, then it is
not a Nash equilibrium.

• Step 1: ROCK, ROCK

• Step 2: P1 plays ROCK. Is ROCK optimal for P2?

– ROCK: 0, PAPER: 1, SCISSORS: −1

– No: Not a Nash equilibrium.

We see that if we posit that P1 plays Rock, then it is optimal for P2 to play
Paper. Remember, Paper beats Rock. So {ROCK,ROCK} is not a Nash
equilibrium.

Similarly we can use the algorithm to determine if {PAPER,ROCK} is a
Nash equilibrium.

• Step 1: PAPER, ROCK

• Step 2: P1 plays PAPER. Is ROCK optimal for P2?
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– ROCK: −1, PAPER: 0, SCISSORS: 1

– No: Not a Nash equilibrium.

Can you check other outcomes?
Chapter 2 states that there exists a Nash equilibrium for this game. Why

can’t we find it?

5.2.3 Mixed Strategies

Theorem 1. For any finite game, there exists a Nash equilibrium, where that
equilibrium may be in mixed strategies.

Nash found that for any game with a finite number of players and strategies
there exists a Nash equilibrium, but only if you allow players to play mixed
strategies.

Definition 8. A mixed strategy is a strategy that puts weights on each action,
such that those weights are positive and sum to one.

An example of a mixed strategy in Rock-Paper-Scissors is {0.2, 0.3, 0.5},
where that is 20% of the time the player chooses ROCK, 30% of the time they
choose PAPER and 50% of the time they choose SCISSORS. This may not
be a good mixed strategy but it is a mixed strategy. A strategy that puts 100
percent of the weight on a single action is a pure strategy. A pure strategy
Nash equilibrium is just the Nash equilibrium discussed in Chapter 2.

5.2.4 Penalty Kicks

Let’s consider another famous zero-sum game. In soccer there are situations
where one player can kick the ball at the goal with only the goal keeper to try
to stop it. This may occur when the defending team fouls the team with the
ball. The result of the foul is that the team with the ball gets a free shot on
goal. In soccer, goal keepers are small relative to the goal and the Kicker is
close enough that it is probably the case that the Kicker will score if they kick
to one side or the other, unless the Goalie moves that direction at the same
time as the kick is made. Because the Kicker is so close, the Goalie can’t wait
to see where the ball is aimed before diving.

Here is a basic version of the game.

• Players: Kicker, Goalie

• Strategies:

– Kicker: Kick Left, Kick Right

– Goalie: Dive Left, Dive Right

• Payoffs: See Table 5.2
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TABLE 5.2
Normal form representation of a penalty kicks game, where the Kicker’s actions
are in the rows, the payoffs are in the cells and the Kicker’s payoff is listed
first.

Kicker, Goalie LEFT RIGHT
LEFT −1, 1 1, −1
RIGHT 1, −1 −1, 1

Table 5.2 presents the normal form representation of the game. Again, the
values in each cell sum to zero. If the Kicker scores a goal, they get 1 and
the Goalie gets −1. It is set up assuming that if the Kicker kicks left and the
Goalie dives left then the goal is saved. The Goalie gets 1 and the Kicker gets
−1. If the Goalie dives to the left and the kick goes right it is a goal! The
Goalie gets −1 and the Kicker gets 1.

Below the chapter looks at real data from penalty kicks. In the real game,
a score increases the probability that the scoring team wins (and decreases the
probability that the Goalie’s team wins).

5.2.5 Algorithim for Mixed Strategy Nash Equilibrium

To understand the algorithm for determining a mixed strategy, think about
what must be true in equilibrium. If we are in a mixed strategy equilibrium then
each player must be indifferent between their strategy choices when the other
player’s strategy is taken as given. The Goalie must be indifferent between
diving to the left or diving to the right, given the Kicker’s strategy. If that
wasn’t the case, the Goalie would prefer to dive left (or dive right) which is a
pure strategy. So for there to exist a mixed strategy equilibrium both players
must be exactly indifferent to each pure strategy. They must be sitting on this
knife’s edge. Sounds painful.

Let p be the probability that Kicker chooses LEFT. Let q be the probability
Goalie chooses LEFT.

• Find q such that for Kicker, the payoff for LEFT equals the payoff for
RIGHT.

• Find p such that for Goalie, the payoff for LEFT equals the payoff for
RIGHT.

If the Goalie’s strategy is q, the weight on diving LEFT, then the Kicker’s
payoffs are:

• LEFT: (q)(−1) + (1− q)(1) = 1− 2q

• RIGHT: (q)(1) + (1− q)(−1) = −1 + 2q
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Reading Table 5.2 and the first row, we see that if the first column is chosen,
the Kicker gets −1 and 1 if second column is chosen (the first element).

The algorithm states that we need to find the q such that the Kicker is
indifferent between LEFT and RIGHT. What strategy by the Goalie makes
the Kicker indifferent between kicking LEFT or RIGHT? What strategy of
the Goalie gives the Kicker the same expected payoff? What q is such that
1− 2q = −1 + 2q? To repeat. We need to find the strategy of the Goalie that
makes the Kicker indifferent between her two choices.

−4q = −2
4q = 2
q = 2

4
q = 0.5

(5.1)

Now let Kicker choose p, the weight on kicking LEFT. Goalie’s payoffs are:

• LEFT: (p)(1) + (1− p)(−1) = −1 + 2p

• RIGHT: (p)(−1) + (1− p)(1) = 1− 2p

To see this look at the first column of Table 5.2 and the second element, the
Goalie gets 1 if LEFT is chosen and −1 if RIGHT is chosen.

To find the equilibrium level for p, determine where the Goalie is indifferent
between LEFT and RIGHT. This time, we need to find the strategy of the
Kicker that makes the Goalie indifferent between his choices.

−1 + 2p = 1− 2p
4p = 2
p = 2

4
p = 0.5

(5.2)

Nash equilibrium is {p = 0.5, q = 0.5}
One of the greatest penalty scorers was the Argentinian, Diego Maradona.

According to Maradona, his secret to penalty kicks was to wait and see what
the goalie did and then do the opposite. He cheated! Just like you used to do
with your younger sibling when playing Rock-Paper-Scissors. Maradona was
playing a different game. A dynamic game.

5.3 Rock-Paper-Scissors

We saw above that there is no pure strategy Nash equilibrium for the Rock-
Paper-Scissors game. This section finds the mixed strategy Nash equilibrium
(MSNE). It then explores how the equilibrium changes when the game becomes
more complicated.
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5.3.1 Mixed Strategy Nash Equilibrium

Now we know how to find a mixed strategy Nash equilibrium, consider a
standard version of Rock-Paper-Scissors. Can you guess what the equilibrium
is?

Let Player 2 choose {q1, q2}. So q1 is the probability Player 2 chooses
ROCK, q2 is the probability that Player 2 chooses PAPER and 1 − q1 − q2
is the probability that Player 2 chooses SCISSORS. Find {q1, q2, 1− q1 − q2}
such that Player 1 is indifferent.

Quick algorithm: Guess and confirm.
Guess: {q1 = 1

3 , q2 = 1
3} Confirm:

• ROCK: (q1)(0) + (q2)(−1) + (1− q1 − q2)(1) =
0
3 + −1

3 + 1
3 = 0

• PAPER: (q1)(1) + (q2)(0) + (1− q1 − q2)(−1) = 1
3 + 0

3 + −1
3 = 0

• SCISSORS: (q1)(−1) + (q2)(1) + (1− q1 − q2)(0) =
−1
3 + 1

3 + 0
3 = 0

Confirmed!
Given that the two players are identical we can guess that the Nash

equilibrium choices are the same: {{p1 = 1
3 , p2 = 1

3}, {q1 = 1
3 , q2 = 1

3}}. Can
you check that this is in fact the Nash equilibrium?

Are there any others? How would you check?

5.3.2 More Complicated Version

Now let’s make things a bit more interesting. Assume Player 1 gets a high
value of playing ROCK when Player 2 plays SCISSORS. And because this is a
zero sum game, Player 2 gets a low value from playing SCISSORS when Player
1 plays ROCK. Probably best not to ask too many more questions. Given this
preference for ROCK, what do you think will be the Nash equilibrium?

That’s a good guess, but it is wrong.

TABLE 5.3
Normal form representation of a more complicated Rock-Paper-Scissors. The
payoff changed in the top right cell.

P1, P2 ROCK PAPER SCISSORS
ROCK 0, 0 −1, 1 2, −2
PAPER 1, −1 0,0 −1, 1
SCISSORS −1, 1 1, −1 0, 0

What are the payoffs for Player 1? Let Player 2’s strategy be {q1, q2, 1−
q1 − q2}.

• ROCK: (q1)(0) + (q2)(−1) + (1− q1 − q2)(2)

• PAPER: (q1)(1) + (q2)(0) + (1− q1 − q2)(−1)
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• SCISSORS: (q1)(−1) + (q2)(1) + (1− q1 − q2)(0)

This lets us work out which mixed strategy of Player 2 that makes Player 1
indifferent between their choices. OK. That is, for what values of q1 and q2
are all three values equal to each other? This looks complicated. Let’s use the
computer.

5.3.3 Using R to Determine when Player 1 is Indifferent

We can write the payoffs for Player 1 has functions of Player 2’s mixed strategy
choice. We can then plot the functions to see if there is a point where Player 1
is indifferent. We can keep adjusting q1 and q2 until all three lines intersect.

> rock = function(q1, q2) {

+ q1*0 + q2*(-1) + (1 - q1 - q2)*(2)

+ }

> paper = function(q1, q2) {

+ q1*1 + q2*0 + (1 - q1 - q2)*(-1)

+ }

> scissors = function(q1, q2) {

+ q1*(-1) + q2*(1) + (1 - q1 - q2)*(0)

+ }

The code creates the object ggplot_rps which is a plot of the expected
value of playing ROCK, PAPER, and SCISSORS for different 10 different
values of q1 and q2 = 0.42. We are cheating a bit by assuming we already know
the value of q2.

> ggplot_rps = data.frame(

+ q_1 = seq(0, 1, by = 0.1),

+ rock = rock(seq(0, 1, by = 0.1), rep(0.42, 10)),

+ paper = paper(seq(0, 1, by = 0.1), rep(0.42, 10)),

+ scissors = scissors(seq(0, 1, by = 0.1), rep(0.42, 10))

+ ) |>

+ ggplot(aes(x = q_1)) +

+ geom_line(aes(y = rock)) +

+ geom_line(aes(y = paper), linetype = "dotted") +

+ geom_line(aes(y = scissors), linetype = "dashed") +

+ geom_vline(xintercept = 0.33,

+ linetype = "dashed",

+ color = "gray") +

+ scale_x_continuous(breaks = seq(0, 1,

+ by = 0.1)) +

+ scale_y_continuous(breaks = seq(-2, 2,

+ by = 1)) +

+ labs(title = "Payoff to Player 1",
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+ x = "Probability P2 chooses ROCK",

+ y = "") +

+ geom_text(aes(x = 0.5, y = -1, label = "rock")) +

+ geom_text(aes(x = 0.5, y = 1, label = "paper")) +

+ geom_text(aes(x = 0.8, y = 0, label = "scissors"))

> ggplot_rps

rockrockrockrockrockrockrockrockrockrockrock

paperpaperpaperpaperpaperpaperpaperpaperpaperpaperpaper

scissorsscissorsscissorsscissorsscissorsscissorsscissorsscissorsscissorsscissorsscissors

−1

0

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability P2 chooses ROCK

Payoff to Player 1

FIGURE 5.1
The figure plots the expected value of playing ROCK, PAPER and SCISSORS
when q2 = 0.42 for different values of q1. Player 1 is indifferent between all
three strategies when q1 = 0.33.

Figure 5.1 shows where Player 1 is indifferent for different values of q.
Player 2 tends to play PAPER! If Player 2 chooses ROCK about one-third of
the time and PAPER 42% of the time, then Player 1 is indifferent.

5.3.4 Solving for MSNE using R

What about Player 2? Let Player 1 choose {p1, p2}.

• ROCK: (p1)(0) + (p2)(1) + (1− p1 − p2)(−1)

• PAPER: (p1)(1) + (p2)(0) + (1− p1 − p2)(−1)



88 Mixed Strategies

• SCISSORS: (p1)(−2) + (p2)(1) + (1− p1 − p2)(0)

For what strategy choice, is Player 2 indifferent between their three choices?
For what values of p1 and p2 are these three values equal to each other?

> rock1 = function(p1, p2) {

+ p1*0 + p2*(1) + (1 - p1 - p2)*(-1)

+ }

> paper1 = function(p1, p2) {

+ p1*1 + p2*0 + (1 - p1 - p2)*(-1)

+ }

> scissors1 = function(p1, p2) {

+ p1*(-2) + p2*(1) + (1 - p1 - p2)*(0)

+ }

For this case, let’s use computer muscle to solve the problem. The function
f_rps() determines the values of p1 and p2 such that Player 2 is indifferent
between the three choices. It does this by calculating the Euclidean distance be-
tween the choices, or the sum of squared differences. The function f_rps_int()

is the intermediate function for optim(). This function translates the values
chosen by the optimization algorithm into probabilities using the soft-max
function.

> f_rps = function(p1, p2) {

+ (rock1(p1, p2) - paper1(p1, p2))^2 +

+ (rock1(p1, p2) - scissors1(p1, p2))^2

+ }

> f_rps_int = function(par) {

+ p = exp(par)/(1 + sum(exp(par)))

+ return(f_rps(p[1], p[2]))

+ }

> init = c(0,0)

> a_rps = optim(init, f_rps_int)

> exp(a_rps$par)/(1 + sum(exp(a_rps$par)))

[1] 0.2499962 0.2500044

Player 1 plays ROCK with probability of about one quarter and plays
PAPER with probability one quarter and SCISSORS half the time.

What the heck is going on? We said that Player 1 prefers ROCK but ends
up playing SCISSORS most of the time. The reason is that Player 2 doesn’t
like it if Player 1 chooses ROCK so they tend to play PAPER and because
Player 2 plays PAPER, Player 1 tends to play SCISSORS. Clear? No?
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5.4 Empirical Analysis: Penalty Kicks using R

In soccer penalty kicks occur for two reasons. The first may occur if a player
with the ball is fouled near goal, actually in what is known as the penalty
box. This area extends 16 meters either side of the goal and 16 meters forward
of the goal. Once fouled in this area, the team with the ball gets a penalty
kick. The second is when there is a drawn game and penalty kicks are used
to determine the winner. In both cases, the team with the ball gets to kick
the ball from 11 meters in front of goal with only the goal keeper between the
player and the goal. The Goalie has so little time to react to the kick that we
can think of the Goalie and the Kicker choosing their strategies simultaneously.

The section analyzes data from the English Premier League, which is the
highest league in English and Welsh soccer.

5.4.1 Penalty Kick Game

TABLE 5.4
Normal form representation of a penalty kicks game, where the Kicker’s actions
are in the rows, the payoffs are in the cells and the payoffs are the parameters
to be estimated. It is a zero-sum game.

Kicker, Goalie LEFT CENTER RIGHT
LEFT pll plc plr
CENTER pcl pcc pcr
RIGHT prl prc prr

Table 5.4 presents the normal form representation of the game we will
take to the data. Each player has three action choices, LEFT, CENTER, and
RIGHT. The payoffs are given by the 9 parameters to be estimated. The
parameter pij is the probability that the Kicker scores a goal given that the
Kicker chooses i ∈ {l, c, r} and the Goalie chooses j ∈ {l, c, r}. The value to
the Goalie is just the negative. It is a zero-sum game.

We will allow the two players to use mixed strategies. The vector represent-
ing the Kicker’s strategy is as follows.

qk =
[
qkl qkc qkr

]
(5.3)

The weights must some to one,
∑

i∈{l,c,r} qki = 1. Similarly, we can represent
the Goalie’s strategy.

qg =
[
qgl qgc qgr

]
(5.4)
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5.4.2 Data

The data used here are from Kaggle and covers penalty kicks in the English
Premier League during the 2016/2017 season.1

> file = paste0(dir, "penalty_data.csv")

> data = fread(file) |>

+ filter(

+ Kick_Direction != ""

+ )

The code brings in the data and removes the cases where the kick direction
is missing. The code uses fread() which is part of data.table. The first step
is calculating the strategies for both players. The assumption is that every
Kicker and Goalie is using the same strategy. Alternatively, you can think of
this as the average strategy choice from a distribution of strategies. The code
uses table() to count the number of each case and then divides by the total
number of observations to get the probability of each strategy choice. The
vector qk is then reordered to match the order in Table 5.4. The same is done
for the Goalie.

> q_k = table(data$Kick_Direction)

> q_k = q_k/sum(q_k)

> q_k = q_k[c(2, 1, 3)]

> q_g = table(data$Kick_Direction)

> q_g = q_g/sum(q_g)

> q_g = q_g[c(2, 1, 3)]

We can also calculate the parameter value from Table 5.4.

> action = c("L", "C", "R")

> res_mat = matrix(NA, 3, 3)

> for(i in 1:3) {

+ for(j in 1:3) {

+ dt_ij = data[data$Kick_Direction == action[i] &

+ data$Keeper_Direction == action[j]]

+ res_mat[i,j] = mean(dt_ij$Scored == "Scored")

+ }

+ }

Table 5.5 presents the empirical results of the penalty kick game. Does it
look like what you expected? We would expect a lower probability of scoring

1https://www.kaggle.com/datasets/mauryashubham/english-premier-league-

penalty-dataset-201617 license: CCO: Public Domain, ShubhamMaurya, English
Premier League Penalty Dataset, 201617.

https://www.kaggle.com/datasets/mauryashubham/english-premier-league-penalty-dataset-201617
https://www.kaggle.com/datasets/mauryashubham/english-premier-league-penalty-dataset-201617
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TABLE 5.5
Strategies and conditional probabilities for penalty kicks in the English Premier
League in the 2016/2017 season. The first column is Kicker’s strategy and
the first row is the Goalie’s strategy. The cells the probability that the Kicker
scores given the action chosen by the Kicker and the Goalie.

q k G:LEFT G:CENTER G:RIGHT
q g 0.46 0.17 0.38

K:LEFT 0.46 0.65 1.00 0.88
K:CENTER 0.17 1.00 0.00 0.89
K:RIGHT 0.38 0.83 1.00 0.56

when the Goalie chooses the same direction as the Kicker. These are on the
diagonal and we see that in fact the lower probabilities are on the diagonal.
Kicking to the center leads to a really low probability of scoring when the
Goalie also chooses not to move. You may be surprised how often the Kicker
still scores even when the Goalie chooses the same direction. It is 65 percent
when kicking LEFT and 56 percent when kicking RIGHT. It is also interesting
that it is not symmetric. The probability of scoring when kicking LEFT is
higher than the probability of scoring when kicking RIGHT. Kickers are a
little more likely to kick LEFT than RIGHT.

Right footed kickers may have a better chance of scoring when kicking to
the LEFT. From a right footed kicker, the ball will naturally curve across and
away from the Goalie. We can check to see if there are differences in payoffs
and strategies between left and right footed kickers.

5.4.3 GMM Estimator

One issue with looking at differences by the footedness of the kicker is that
the data is limited. A solution is to bring in more information from the game
theory.

We know a few things that must be true in the game. In particular, in
equilibrium, the strategy for the Kicker must make the Goalie indifferent
between the choices. And the strategy for the Goalie must make the Kicker
indifferent between the choices.

The Kicker and the Goalie choose qk and qg, respectively, such that the
following equalities hold. The periods in the subscripts mean that it represents
any choice.

q′kp.l = q′kp.c = q′kp.r
q′gpl. = q′gpc. = q′gpr.

(5.5)

The vector qk is laid down on its side and we use matrix multiplication rules to
multiply it with the conditional probabilities when the Goalie chooses LEFT.
These conditional probabilities are the first column of Table 5.4. The elements
in qk are multiplied with the corresponding elements in p.l and the three
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numbers are summed together to give the probability of a goal when the Kicker
plays strategy qk and the Goalie plays LEFT.

We will guess the matrix of strategies, p, then use equilibrium relationship
to solve for qk and qg. In addition, we directly observe qk, qg and p in the data.
Don’t we have too many conditions? Yes we do. Won’t requiring that there
is a mixed strategy Nash equilibrium lead to different estimates? Yes. Yes it
will. The data combined with the game theory provide too many conditions
and thus too many estimates. The solution is to average over the estimates.
We are over identified. The generalized method of moments (GMM) algorithm
provides a way to find that average. A method of moments estimator was used
in Chapter 3. Here we have multiple moments.2

5.4.4 GMM Estimator in R

The first step is to create functions f_mixed() and f_mixed_int(). These
functions are used to determine the equilibrium strategy of the Kicker and
the Goalie given a set of conditional probabilities of scoring. Given a set
of conditional probabilities p, optim() is used to determine the equilibrium
strategies q_k and q_g. This is done by finding the strategies that minimize
the sum of squared differences between payoffs of the three options for the
other player.

> f_mixed = function(q_k, q_g, p) {

+ p = matrix(unlist(p), nrow=3)

+ pi_1 = t(q_k)%*%p[,1]

+ pi_2 = t(q_k)%*%p[,2]

+ pi_3 = t(q_k)%*%p[,3]

+

+ pi_4 = t(q_g)%*%p[1,]

+ pi_5 = t(q_g)%*%p[2,]

+ pi_6 = t(q_g)%*%p[3,]

+ return((pi_1 - pi_2)^2 + (pi_1 - pi_3)^2 +

+ (pi_4 - pi_5)^2 + (pi_4 - pi_6)^2)

+ }

> f_mixed_int = function(par, p) {

+ q_k = exp(par[1:3])/sum(exp(par[1:3]))

+ q_g = exp(par[4:6])/sum(exp(par[4:6]))

+ return(f_mixed(q_k, q_g, p))

+ }

The function f_penalty() takes in the proposed estimate of the conditional
probabilities p and the observed actions and outcomes X. It then calculates

2The term refers to a characteristic of the distribution such as the mean (the first moment)
or the variance (related to the second moment). But here we use the term more generally
and include characteristics of the equilibrium.
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7 moments. For instance, it determines the difference between the estimate
of the Kicker’s probability of kicking LEFT against the observed probability
that the Kicker kicked LEFT. It also compares the proposed estimate of the
conditional probabilities to the actual conditional probabilities in the data.
The function f_penalty_int() is an intermediate function called by optim().
It turns the parameter values into numbers between 0 and 1. It then calls
f_gmm(), which is a generic function for calculating the GMM optimization
problem.3 The standard errors are calculated using the bootstrap.

> f_penalty = function(p, X) {

+ N = dim(X)[1]

+ init = rep(0, 6)

+ p = matrix(p, nrow = 3)

+ q = optim(par = init, fn = f_mixed_int, p = p)

+ q_k = exp(q$par[1:3])/sum(exp(q$par[1:3]))

+ q_g = exp(q$par[4:6])/sum(exp(q$par[4:6]))

+ g_k = g_g = matrix(0, 3, N)

+ for(i in 1:3) {

+ g_k[i,] = q_k[i] - (X$kicker == action[i])

+ g_g[i,] = q_g[i] - (X$goalie == action[i])

+ }

+ g_s = rep(0, N)

+ for(i in 1:3) {

+ for(j in 1:3) {

+ index_ij = which(

+ X$kicker == action[i] & X$goalie == action[j]

+ )

+ g_s[index_ij] = p[i,j] -

+ (X$score[index_ij] == "TRUE")

+ }

+ }

+ G = rbind(g_k,

+ g_g,

+ g_s)

+ return(G)

+ }

> f_penalty_int = function(par, X) {

+ p = exp(par)/(1 + exp(par))

+ p = matrix(p, nrow = 3)

+ G = f_penalty(p, X)

+ return(f_gmm(G, K = 7))

+ }

3The f_gmm() function is available from the github site for the book.
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5.4.5 Difference By Footedness

Does the behavior of the Kicker and the Goalie change depending on the which
foot the Kicker generally kicks with? In general a right-footed Kicker will have
an easier time scoring to the LEFT. The Kicker will generally strike the ball
with their foot slightly to the right of center, that will put a counter-clockwise
rotation on the ball which will then curve in the air from right to left.

So kicking LEFT for a right-footed Kicker will generally be better, holding
the Goalie’s strategy constant. Of course the Goalie gets a say in this. The
Goalie may want to choose LEFT more often and thus be more likely to stop
the ball when the right-footed Kicker chooses LEFT. For left-footed Kickers,
the opposite is true.

> dt_R = dt[dt$Foot == "R"]

> p = matrix(NA, 3, 3)

> for(i in 1:3) {

+ for(j in 1:3) {

+ index_ij = which(dt_R$Kick_Direction == action[i] &

+ dt_R$Keeper_Direction == action[j])

+ p[i,j] = mean(dt_R$Scored[index_ij] == "Scored")

+ }

+ }

> p[is.nan(p)] = NA

In the code the function is.nan() is used replace infinite values with
missing values (NA). The matrix p gives the conditional probability that the
Kicker scores given the Kicker is right footed.

> X = data.frame(

+ "kicker" = dt_R$Kick_Direction,

+ "goalie" = dt_R$Keeper_Direction,

+ "score" = dt_R$Scored == "Scored"

+ )

> epsilon = 1e-10

> init = log(p + epsilon)

> a = optim(par = init,

+ fn = f_penalty_int,

+ X = X,

+ control = list(trace = 0,

+ maxit = 100000))

Similarly for Left footers.

> dt_L = dt[dt$Foot == "L"]

> p = matrix(NA, 3, 3)

> for(i in 1:3) {

+ for(j in 1:3) {
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+ index_ij = which(dt_L$Kick_Direction==action[i] &

+ dt_L$Keeper_Direction == action[j])

+ p[i,j] = mean(dt_L$Scored[index_ij] == "Scored")

+ }

+ }

> p[is.nan(p)] = 0

TABLE 5.6
Strategy estimates for Right and Left footed players. The first and fourth
columns are the averages from the bootstrap for the two cases respectively.
The top three rows are the strategies for the Kicker, while the bottom three
rows are the strategies for the Goalie.

Right 0.05 0.95 Left 0.05 0.95
Kicker - L 0.53 0.44 0.61 0.47 0.28 0.69
Kicker - C 0.19 0.13 0.26 0.01 0.00 0.06
Kicker - R 0.28 0.20 0.35 0.52 0.31 0.67
Goalie - L 0.54 0.44 0.62 0.19 0.03 0.36
Goalie - C 0.07 0.02 0.12 0.01 0.00 0.11
Goalie - R 0.39 0.31 0.48 0.80 0.64 0.95

Table 5.6 presents the strategies given the footedness of the Kicker. Right-
footed kickers will generally more accurate kicking LEFT and we see that they
choose LEFT 53% of the time, while left-footed kickers choose RIGHT 52% of
the time. Goalie’s respond by playing LEFT to a right-footed kicker 54% of
the time and RIGHT to a left-footed kickers 80% of the time!

The analysis suggests that the Goalie’s strategy is completely different
depending on the footedness of the kicker.

5.5 Multiple Equilibria

Another reason why we may see mixed strategies in a game is because there
are multiple equilibria. We saw this in the coordination game. The two players
would like to coordinate but it is unclear which choice they should coordinate on.
In that situation a mixed strategy Nash equilibrium may be a more reasonable
prediction of the outcome. Similarly, there was a coordination problem in our
analysis of entry of mega bookstores. This section reconsiders the problem
assuming that Borders and Barnes & Noble are playing a mixed strategy Nash
equilibrium.
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5.5.1 Coordination Game

Here is the normal form representation presented in Chapter 2.

TABLE 5.7
Normal form representation of a coordination game from Chapter 2.

P1, P2 BLACK RED
BLACK 2, 5 0, 0
RED 0, 0 5, 2

We use the same algorithm as for zero-sum games to find the MSNE. What
is your guess on the equilibrium? Remember that we don’t have the zero-sum
game weirdness here.

Let q1 and q2, respectively, be the probability that Player 1 and Player
2 choose BLACK. What is the q2 that makes Player 1 indifferent between
BLACK and RED?

2q2 = 5(1− q2)
7q2 = 5
q2 = 5

7

(5.6)

What is the q1 that makes Player 2 indifferent between BLACK and RED?

5q1 = 2(1− q1)
7q1 = 2
q1 = 2

7

(5.7)

Yes. Player 1 prefers RED and so weights their play to RED, while Player 2
prefers BLACK and weights their play to BLACK.

5.5.2 Bookstore Entry

Chapter 4 presents a game describing entry of two mega bookstores, Barnes
& Noble and Borders. In the game Barnes & Noble will enter market i if the
following inequality holds.

X′
iβ1 −D2iα1 + ξ1i ≥ 0 (5.8)

where D2i ∈ {0, 1} represents the choice to enter market i of Borders. Under
the assumptions of the equilibrium the value of D2i is known by Barnes &
Noble when they make their entry decision. Both bookstores also know ξ1i,
which is the value the econometrician doesn’t observe.

In Chapter 4 we showed that there is a case where Barnes & Noble will
enter but only if Borders does not, and similarly Borders will enter but only if
Barnes & Noble does not. At these values of the ξs, we have a coordination
game with multiple equilibria.

We can use the same algorithm to determine the mixed strategy Nash
equilibrium. Let q1 be the probability that Barnes & Noble enters and q2 be
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the probability that Borders enters. What q2 makes Barnes & Noble indifferent
between entering and not entering?

X′
iβ1 − q2iα1 + ξ1i = 0

or

q2i =
X′

iβ1+ξ1i
α1

(5.9)

Similarly we can solve for q1

q1i =
X′

iβ2 + ξ2i
α1

(5.10)

If we assume that Barnes & Noble and Borders are at a mixed strategy
Nash equilibrium, then we no longer have a indeterminacy problem with our
estimator. For every value of ξ1 and ξ2 we have a known probability over which
outcome will occur.

5.5.3 MSNE Estimator in R

The estimator is pretty similar to the one used in Chapter 4. There are a couple
of differences with f_entry_mix(). First, the area where there is indeterminacy
about which firm will enter, the mixed strategy Nash equilibrium determines
what outcome will occur. Second, because there is no indeterminacy we can
ask the probability that Firm 2 enters while Firm 1 does not.

To determine the mixed strategy Nash equilibrium we use Equations (5.10)
and (5.9). The mixed strategy only occurs when the profits are such that
it is only profitable for one of the two firms to enter. Because it is a mixed
strategy, there is a possibility that any of the four outcomes occur. If there is
an indeterminant outcome the mixed strategy Nash equilibrium determines the
probabilities. In the code these are given by q_1k and q_2k. The probability
of an indeterminant outcome is given by p_ind.

> f_entry_mix = function(X, beta_1, beta_2, alpha_1, alpha_2,

+ rho) {

+ N = dim(X)[1]

+ xi_1 = Z_1

+ xi_2 = Z_2*sqrt(1 - rho^2) + rho*Z_1

+ Xb_1 = X%*%beta_1

+ Xb_2 = X%*%beta_2

+ p_00 = p_01 = p_11 = rep(0, N)

+ for(k in 1:K) {

+ pi_1k = Xb_1 + xi_1[k]

+ pi_2k = Xb_2 + xi_2[k]

+ q_1k = max(c(min(c((pi_2k)/alpha_2,1)),0))

+ q_2k = max(c(min(c((pi_1k)/alpha_1,1)),0))

+ p_ind = (pi_1k > 0 &
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+ pi_1k - alpha_1 < 0 &

+ pi_2k > 0 &

+ pi_2k - alpha_2 < 0)

+ p_00 = p_00 +

+ (pi_1k < 0 & pi_2k < 0) +

+ p_ind*(1 - q_1k)*(1 - q_2k)

+ p_01 = p_01 +

+ (pi_1k < 0 & pi_2k > 0) +

+ p_ind*(1 - q_1k)*q_2k

+ p_11 = p_11 +

+ (pi_1k - alpha_1 > 0 & pi_2k - alpha_2 > 0) +

+ p_ind*q_1k*q_2k

+ }

+ return(list(p_00 = p_00/K,

+ p_01 = p_01/K,

+ p_11 = p_11/K))

+ }

5.6 Empirical Analysis: Bookstore Entry with MSNE
using R

The analysis presented in this section uses exactly the same data used in
Chapter 4. It also uses much of same empirical machinery.

Table 5.8 shows that the two different assumptions lead to similar results.
Assuming that the outcome is a mixed strategy Nash equilibrium leads to an
estimate that Borders is less impacted by competition with Barnes & Noble
than the other way around. It also estimates less statistical dependence between
the two stores.

Table 5.9 simulates the effect of a merger between Borders and Barnes &
Noble on the willingness to have both brands in a market. The welfare impact
of the merger is ambiguous. While it is the case that we see a reduction in
competition. The merged firm is less like to have both brands in the market.
In this way the merger leads to fewer brands in a market which reduces quality
and the reduced head to head competition leads to higher prices. However,
you see that there is a small reduction in the number of markets without a
bookstore. The merger has the benefit of allowing the brands to coordinate
their entry decision. While we have a game of complete information, the players
cannot coordinate their choice in the mixed strategy Nash equilibrium. Because
there is a possibility of having too many firms enter a market, firms reduce
their willingness to enter some markets. The merger solves the coordination
problem, reduces the possibility of having too many firms enter a market, and
increases the willingness for the combined firm to enter some markets.
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TABLE 5.8
Results from estimates of the game theory model from Chapter 4 and the
model assuming a mixed strategy Nash equilibrium. The two columns labeled
“Pure” refer to the case where the entry decisions of the two firms are both
strategically and statistically dependent, but we assume a pure strategy Nash
equilibrium. The two columns labeled “Mix” refer to the same model but
assuming the outcome is a mixed strategy Nash equilibrium.

Pure SD Mix SD
const 1 −15.11 0.25 −14.82 0.20
Pop 1 1.07 0.01 1.05 0.02

Income 1 −0.76 0.48 −0.97 0.23
College 1 5.65 0.55 5.71 0.28

Stores 1990 1 0.37 0.11 0.39 0.07
const 2 −11.37 0.20 −11.48 0.20
Pop 2 0.65 0.02 0.63 0.02

Income 2 1.31 0.80 1.91 0.38
College 2 2.70 0.55 2.82 0.39

Stores 1990 2 0.79 0.11 0.77 0.10
alpha 1 0.73 0.18 0.70 0.21
alpha 2 0.70 0.12 0.56 0.15

rho 0.47 0.10 0.30 0.10

TABLE 5.9
Comparison of actual entry to simulated entry in the year 2000 and simulated
entry under a merger. These results are based on the assumption that Borders
and Barnes & Noble are playing a mixed strategy Nash equilibrium

Actual Sim Merge
none 2919 2895 2881
BN 155 135 176

Borders 15 54 72
both 128 95 51

5.7 Discussion and Further Reading

Mixed strategy Nash equilibria are weird. Many people find them unintuitive
and the algorithm for finding them is less than obvious. But for some games,
they seem like the correct prediction.

While soccer penalty kicks may not represent the types of games you are
interested in, it does provide an example of real people making real decisions
with real consequences. Sporting contests provide researchers with access to
large amounts of data on relatively simple strategic situations. This makes
sports a good laboratory for testing game theory’s predictions. Adams (2020)
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presents an analysis of play choice in NFL games.
The chapter introduces one of the most important empirical methodologies

in structural estimation, the generalized method of moments (Hansen, 1982).
Games often provides more moments than parameters to estimate, GMM
provides a way to average over the moments.

The chapter also revisits the entry game analyzed in Chapter 4. The entry
game has multiple equilibria. This chapter assumes that the outcome is the
result of a mixed strategy Nash equilibrium. It revisits the merger simulation
under the mixed strategy Nash equilibrium assumption. As before the merger
reduces the number of markets with both brands, but unlike Chapter 4, the
merger increases the number of markets with at least one firm.
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6

Dynamic Games

6.1 Introduction

The first part of the book considers static games of complete information.
These games have very simple strategies. Perhaps with the exception of games
with mixed strategies, these games are straightforward to analyze. This part
of the book considers dynamic games. These games have strategies that can
be substantially more complex than those we have seen. This complexity will
force us to make important simplifying assumptions.

A dynamic game refers to the information available to the player at the
time of their choice of action. If the player has no information about what the
other players are doing, then it is a static game. If at least one player is able
to observe the actions of the other player prior to making their choice, then
we have a dynamic game.

To restate whether or not a game of complete information is static or
dynamic has to do with information, not time. We can have static games where
players move at different times, but they don’t get to observe the other player’s
action prior to their move. We can have dynamic games where players move
more or less at the same time, but where at least one player observes the action
of the other player prior to their move.

Definition 9. In a dynamic game at least one player observes information
about the other player’s actions prior to choosing their action.

This chapter introduces an alternative representation of a game, the exten-
sive form representation. Chapter 1 introduced the normal form representation
of a game. This is the matrix like object with one player on the columns and
the other on the rows. The normal form representation is associated with static
games while the extensive form representation is associated with dynamic
games. There is nothing to stop you from using normal form representations
for dynamic games or extensive form for static games, but we will see the value
of the extensive form representation for dynamic games.

The chapter introduces a new equilibrium concept, subgame perfection.
Perfection refers to equilibrium refinements. We are interested in reducing
the number of predictions for the game that we believe are reasonable. The
chapter revisits our analysis of entry game and the choices of Borders and
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Barnes & Noble about which counties to enter. We can reduce the multiplicity
of equilibria in the entry game by assuming that Barnes & Noble moves first
and using subgame perfection.

6.2 Extensive Form

The section makes an adjustment to the coordination game introduced in
Chapter 2 to illustrate the extensive form representation.

6.2.1 Coordination Game

Consider a variation on the coordination game. Assume that Player 1 chooses
their action first and Player 2 observes that action before choosing their action.

• Players: Player 1 and Player 2

• Strategies:

– Player 1: {BLACK, RED}
– Player 2:

∗ If Player 1 plays BLACK, then BLACK. If Player 1 plays RED, then
BLACK.

∗ If Player 1 plays BLACK, then RED. If Player 1 plays RED, then
BLACK.

∗ If Player 1 plays BLACK, then BLACK. If Player 1 plays RED, then
RED.

∗ If Player 1 plays BLACK, then RED. If Player 1 plays RED, then
RED.

• Payoffs

– {BLACK, {{BLACK: BLACK}, {RED: BLACK}}}: {2, 5}
– {BLACK, {{BLACK: RED}, {RED: BLACK}}}: {0, 0}
– {BLACK, {{BLACK: BLACK}, {RED: RED}}}: {2, 5}
– {BLACK, {{BLACK: RED}, {RED: RED}}}: {0, 0}
– {RED, {{BLACK: BLACK}, {RED, BLACK}}}: {0, 0}
– {RED, {{BLACK: RED}, {RED: BLACK}}}: {0, 0}
– {RED, {{BLACK: RED}, {RED: RED}}}: {5, 2}
– {RED, {{BLACK: BLACK}, {RED: RED}}}: {5, 2}
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Wow. Things got complicated right quick! Player 1’s strategy is simple.
This player does not have any information before they choose their action,
so their strategies are just their actions. Things are a lot more complicated
for Player 2. Player 2 gets to observe Player 1’s action prior to making their
choice. Therefore Player 2’s strategy must account for this information. Player
2 has four possible strategies. This is because there are two possible states,
Player 1’s action choice, and two choices for each state. Two times two is four.

We will use the notation {BLACK: BLACK} to mean if Player 1 plays
BLACK, then Player 2 plays BLACK.

6.2.2 Strategies Revisited

Strategies are one of the three main components of a game. In Chapter 1, we
stated the definition of a strategy.

Definition 10. A strategy is a function that maps from the player’s information
set to the player’s actions.

While in the first part of the book, a strategy was simply an action. Here
it is a function. It maps from the information observed to an action. Moreover,
it is a function that maps from every possibility to an action. Sure, this is just
another way of saying it is a function, but it is really important to remember
that it is a complete plan. It states what the player will do in every possible
and every conceivable case.

6.2.3 Nash Equilibrium of the Coordination Game

Remember the Nash equilibrium algorithm asks us to posit a candidate set
of strategies for all the players and then check that each player’s strategy is
optimal given the posited strategies.

Player 1’s strategy is just RED or BLACK, while Player 2’s strategy
describes what they will do for the two possible cases. The strategy states
what Player 2 will do for a situation that never actually occurs. This is what is
meant by a complete plan. Player 2’s strategy states what they will do under
every circumstance, not just what happens in the proposed equilibrium.

Candidate: {RED, {{BLACK : BLACK}, {RED : RED}}}

• Assume Player 1 plays RED

• Player 2’s payoffs

– {{BLACK : BLACK}, {RED : RED}}: 2
– {{BLACK : RED}, {RED : RED}}: 2
– {{BLACK : RED}, {RED : BLACK}}: 0
– {{BLACK : BLACK}, {RED : BLACK}}: 0
– Yes. Player 2’s strategy is optimal (not dominated).



106 Dynamic Games

• Assume Player 2 plays {{BLACK : BLACK}, {RED : RED}}

• Player 1’s payoffs

– RED: 5

– BLACK: 2

– Yes. It is a Nash equilibrium.

It is an equilibrium for Player 1 to choose RED and for Player 2 to also choose
RED.

Are there any others?
Candidate: {BLACK, {{BLACK : BLACK}, {RED : BLACK}}}

• Assume Player 1 plays BLACK

• Player 2’s payoffs

– {{BLACK : BLACK}, {RED : RED}}: 5
– {{BLACK : RED}, {RED : RED}}: 0
– {{BLACK : RED}, {RED : BLACK}}: 0
– {{BLACK : BLACK}, {RED : BLACK}}: 5
– Yes. Player 2’s strategy is optimal (not dominated).

• Assume Player 2 plays {{BLACK : BLACK}, {RED : BLACK}

• Player 1’s payoffs

– RED: 0

– BLACK: 1

– Yes. It is a Nash equilibrium.

There are at least two Nash equilibrium.
Is {BLACK, {{BLACK : BLACK}, {RED : BLACK}}} a likely outcome

from the game? The two players coordinate on black, which is fine. What
about the idea that Player 2 would choose BLACK when they know Player 1
has chosen RED. Is that reasonable?

6.2.4 Game Tree

One way to see the issue with the Nash equilibria is to look at the game tree,
the extensive form representation presented in Figure 6.1.

A game tree is a directed graph, it consists of nodes and edges. The nodes
represent places where a player makes a decision. An edge is the line and arrow
from node to a node further along the game tree. The edge represents the flow
of information.
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{2, 5} {0, 0} {0, 0} {5, 2}

FIGURE 6.1
Extensive form representation of the dynamic coordination game tree.

Definition 11. A node of a game tree is a place where the player makes a
choice.

Consider the Nash equilibrium {BLACK, {BLACK : BLACK,RED :
BLACK}}. We checked that it was in fact a Nash equilibrium above. Look at
what happens on the tree. If Player 1 plays RED, then Player 2 has a choice
of BLACK or RED. In the equilibrium, they choose BLACK, but their payoff
would have been higher if they had chosen RED.

Working down the tree, the equilibrium states that Player 1 chooses RED,
so we go down the right branch. Now it is Player 2’s turn. They can choose
RED or BLACK. If they choose RED they get 2, while if they choose BLACK
they get 0. In equilibrium they choose BLACK. Does that make sense? In the
next section, we will consider an equilibrium refinement that rules out this
case.

6.3 Subgame Perfection

The first equilibrium refinement we will consider is subgame perfection. An
equilibrium refinement is an additional property of the predicted outcome
that must be true. Subgame perfection requires a set of strategies be a Nash
equilibrium but also that the subset of strategies associated with each subgame
be a Nash equilibrium of the subgame.

The section defines subgame perfection and then works through the impli-
cations for the coordination game presented above.



108 Dynamic Games

6.3.1 Definition

Definition 12. A subgame is a game that can be played from any node of the
game tree.

Definition 12 introduces the idea of a subgame. When you look at the game
tree in Figure 6.1, there are three distinct nodes. For Player 2, there is the
node after which Player 1 plays black and the node after which Player 1 plays
red. There is also the initial node where Player 1 makes their choice of black
or red. At each of these nodes we describe a separate game. This game is a
subgame.

Definition 13. A subgame perfect Nash equilibrium is a Nash equilibrium where
the strategies in each subgame are a Nash equilibrium from that subgame.

If for a particular Nash equilibrium strategy set we can look at each subgame
and associate the strategies with a Nash equilibrium for that subgame, then
the strategy set is subgame perfect.

6.3.2 Coordination Game

In the coordination game, there are three subgames. The whole game is a
subgame. The other two begin at Player 2’s decision node. In these two
subgames, there is just one player (Player 2) and their strategies are just the
actions {BLACK, RED}.

Is {BLACK, {{BLACK: BLACK}, {RED: BLACK}}} subgame perfect?
Consider the subgame at the node where Player 1 choose RED.

• Players: Player 2

• Strategies: {BLACK, RED}

• Payoffs: BLACK: 0, RED: 2

It is not a Nash equilibrium of the subgame for Player 2 to choose BLACK
because they would be better off choosing RED.

Subgame perfection removes outcomes that allow non-credible strategies.
Nash equilibrium requires the players to choose strategies that are optimal
given the strategies of the other players. Subgame perfection requires players
to choose actions that are optimal even if in equilibrium these actions will
never be played.

Is it better to be Player 1 or Player 2 in this game? You may think Player
2, as they get to see what Player 1 does and react to it. If we rule out non-
credible threats, then Player 1 always gets their way. Player 1 has a first-mover
advantage. If the first move in the game can commit to a strategy then they
have a distinct advantage. They can force the other player to choose actions
that the first player prefers.
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6.3.3 Empirical Entry Game

Consider a different version of entry game analyzed in Chapter 4. Instead
of having Borders and Barnes & Noble enter at the same time, assume that
Barnes & Noble moves first. Borders observed Barnes & Noble’s decision to
enter or not and then decides to enter.
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FIGURE 6.2
Dynamic entry game tree. a = {X′

iβ1 − α1 + ξ1i,X
′
iβ2 − α2 + ξ2i}, b =

{X′
iβ1 + ξ1i, 0}, c = {0,X′

iβ2 + ξ2i} and d = {0, 0}.

Figure 6.2 represents the entry game. Barnes & Noble moves first and
chooses whether or not to enter the market and then Borders chooses. The
payoffs state that upon entry the firm earns X′

iβ1, but if they face competition
then those profits fall by α1. The entry costs are captured by ξ1i.

6.3.4 Equilibrium in Entry Game

To determine the subgame perfect Nash equilibrium, we solve the last subgame
first. If Barnes & Noble entered the market, Borders will enter if and only if
the following inequality holds.

X′
iβ2 − α2 + ξ2i ≥ 0 (6.1)

Borders will only enter if the duopoly profits more than outweigh the entry
costs. While if Barnes & Noble has not entered, Borders will enter if the
following inequality holds.

X′
iβ2 + ξ2i ≥ 0 (6.2)

This time, Borders enters if monopoly profits are high enough.
Now we go back and consider Barnes & Noble’s choices. If they enter, there

are two cases. Case 1 is that Borders enters (X′
iβ2 − α2 + ξ2i ≥ 0), they will
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also enter if the following inequality holds.

X′
iβ1 − α1 + ξ1i ≥ 0 (6.3)

Case 2 is that Borders does not enter, and so Barnes & Noble will enter if and
only if X′

iβ1 + ξ1i ≥ 0.
If Barnes & Noble chooses not to enter, then there are also two cases. In Case

1, where Borders enters, it is an equilibrium if and only if X′
iβ1 − α1 + ξ1i ≤ 0.

In Case 2, it is an equilibrium if and only if X′
iβ1 + ξ1i ≤ 0.

6.3.5 Empirical Implications

To summarize our four observed outcomes are a subgame perfect Nash equilib-
rium if the following inequalities hold.

• Both enter: X′
iβ1 − α1 + ξ1i ≥ 0 and X′

iβ2 − α2 + ξ2i ≥ 0.

• BN enters only: X′
iβ1 + ξ1i ≥ 0 and X′

iβ2 − α2 + ξ2i ≤ 0

• Borders enters only: X′
iβ1 − α1 + ξ1i ≤ 0 and X′

iβ2 + ξ2i ≥ 0.

• Neither firm enters: X′
iβ1 + ξ1i ≤ 0 and X′

iβ2 + ξ2i ≤ 0

How do these compare to the outcomes in Chapter 4? There is no indeterminacy.
If you go back and look at Figure 4.2 and the middle square it has {0, 1}
or {1, 0}. Under this set up with subgame perfection it becomes {1, 0}. Only
Barnes & Noble will enter. Where before it there were two equilibria (more if
you include mixed strategies), here there is always a unique subgame perfect
Nash equilibrium. Of course, the price is that we need to make very strong
assumptions about how the game is played.

6.4 Empirical Analysis: Bookstore Entry with Subgame
Perfection in R

The estimator for the subgame perfect Nash equilibrium is basically the same as
in Chapter 4. The difference is that f_entry_spne() can separately estimate
the cases where there is just one firm. Where previously there were multiple
equilibria, now Barnes & Noble enters, while Borders does not.

6.4.1 SPNE Estimator

The code for the estimator is somewhat longer than the estimator used in
Chapter 4. The reason is that we now assume a unique equilibrium and so we
can separately estimate all four possible cases.
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> f_entry_spne = function(X, beta_1, beta_2, alpha_1,

+ alpha_2, rho) {

+ N = dim(X)[1]

+ xi_1 = Z_1

+ xi_2 = Z_2*sqrt(1 - rho^2) + rho*Z_1

+ Xb_1 = X%*%beta_1

+ Xb_2 = X%*%beta_2

+ p_00 = p_01 = p_11 = rep(0, N)

+ for(k in 1:K) {

+ pi_1k = Xb_1 + xi_1[k]

+ pi_2k = Xb_2 + xi_2[k]

+ p_00 = p_00 + (pi_1k < 0 & pi_2k < 0)

+ p_01 = p_01 + (pi_1k - alpha_1 < 0 & pi_2k > 0)

+ p_11 = p_11 + (pi_1k - alpha_1 > 0 & pi_2k - alpha_2 > 0)

+ }

+ return(list(p_00 = p_00/K,

+ p_01 = p_01/K,

+ p_11 = p_11/K))

+ }

6.4.2 SPNE Estimates

Table 6.1 shows that the assumption about simultaneous move gives very
similar estimates to the assumption that Barnes & Noble moves first. The big
difference is on the estimates of the impact of competition on the two firms. In
order to reconcile the observed entry decisions with modeling assumptions, the
estimator states Barnes & Noble is not affected much by competition, while
Borders is.

Table 6.2 compares the model predictions to the actual data for the model
presented in Chapter 4 and for a model presented here where Barnes & Noble
moves first and there is a subgame perfect Nash equilibrium. The subgame
perfect Nash equilibrium model does a better job of predicting the case where
there is only one firm, but a substantially worse job of predicting the two-firm
case.

6.5 Discussion and Further Reading

Notice that so far in this part of the book, there has been no discussion of time
in these so-called dynamic games. This goes back to the point made earlier,
dynamics has to do with information not time. Chapters 7 and 8 introduce
time.
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TABLE 6.1
Results from estimates of the game theory model from Chapter 4 and the model
assuming Barnes & Noble moves first with a subgame perfect Nash equilibrium.
The two columns labeled “Multi” refer to the case where we assume there could
between two pure strategy Nash equilibrium. The two columns labeled “SPNE”
refer to the model where Barnes & Noble moves first and there is a subgame
perfect Nash equilibrium.

Multi SD SPNE SD
const 1 −15.11 0.25 −15.12 0.06
Pop 1 1.07 0.01 1.04 0.02

Income 1 −0.76 0.48 −1.01 0.21
College 1 5.65 0.55 5.61 0.19

Stores 1990 1 0.37 0.11 0.15 0.06
const 2 −11.37 0.20 −11.15 0.15
Pop 2 0.65 0.02 0.65 0.02

Income 2 1.31 0.80 1.93 0.17
College 2 2.70 0.55 2.85 0.17

Stores 1990 2 0.79 0.11 0.63 0.08
alpha 1 0.73 0.18 0.50 0.16
alpha 2 0.70 0.12 1.08 0.14

rho 0.47 0.10 0.39 0.06

TABLE 6.2
Comparison of predictions of the two models. The subgame perfect Nash
equilibrium is somewhat better at fitting the case where there is only one firm,
but not when there are two firms.

None One Firm Two Firm
Multi: None 97.1 41.0 9.0
Multi: One 2.6 41.7 36.6
Multi: Two 0.3 17.3 54.4

SPNE: None 97.5 48.8 14.0
SPNE: One 2.4 43.2 53.3
SPNE: Two 0.1 8.0 32.7

The empirical analysis in this chapter is based on work presented in Adams
and Basker (2025). The authors use information on the location of Barnes &
Nobel and Borders collected from bookstore directories and firm websites to
analyze the dynamics of the retail bookstore industry.
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Repeated Games

7.1 Introduction

Repeated games are the lens through which we are adapting our thinking
on competition and competition policy. In the late 1990s, the economics of
competition policy changed pretty dramatically. Game theory and structural
econometrics provided antitrust authorities with new tools for modeling mergers.
Chapters 3 and 4 introduce methods used to analyze the impact of retail
mergers. While these models substantially improved our ability to understand
competition and predict the outcomes of mergers, something was not quite
right. Our approach to collusion and markets with collusive pricing remained
rudimentary. Using the new models to analyze collusion was like pushing a
square peg into a round hole.

The analysis presented here on collusive pricing is influenced by two papers.
First, economists Nathan Miller, Gloria Sheu, and Matthew Weinberg presented
compelling evidence that our new models worked poorly when used to analyze
the US beer industry. Their paper, “Oligopolistic Price Leadership and Mergers:
The United States Beer Industry,” was published in the American Economic
Review in 2021, and suggested a major rethink in the models we need for
analyzing competition. Second, Canadian and Australian economists, David
Byrne and Nic de Roos, analyzed pricing in the retail gasoline market in
Perth Western Australia. Their paper, “Learning to Coordinate: A study in
retail gasoline” was published in the American Economic Review in 2019. The
authors use daily pricing data from a large number of retailers to show evidence
of price leadership and coordination.

This chapter shows how the lens of repeated games can be used to explain
firm behavior and pricing. Repeated interactions change the strategic relation-
ships quite dramatically. In a single shot game, players don’t have to account
for the consequences of their actions. In repeated games they do.

Using data from Perth retail gasoline stations, the chapter presents two
models of competition and pricing based on repeated interactions. The first
model is a standard static pricing model that was introduced in Chapter 3. The
second is a collusive oligopoly pricing model. This model shows how pricing
is constrained by the incentives of firms to cheat and choose a lower price.
The chapter estimates the parameters using data from gas stations in Perth
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in a period where margins where low in 2008. It then compares the profit
margins predicted by the collusive model to the actual profit margins of the
same firms in 2012. While well-intentioned, price transparency regulation by
the state government seems to cause Perth motorists to pay more for their
petrol (gasoline).

The chapter runs a merger simulation using each of the two models of
pricing behavior. It suggests that merger analysis should account for these
changes when analyzing the likely effect of the merger. The predicted price
increase using a repeated game model may be substantially higher than the
predicted price increase using the standard static game presented earlier in
the book.

7.2 Repeated Prisoner’s Dilemma

The prisoner’s dilemma is the most famous games in game theory. The game
shows that the predicted outcome may not be the outcome that is best for
both players. It may not be Pareto efficient. How much of that result is due
to the set up of the game? What if players had to account for each other’s
actions? What if the game repeated?

This section presents the prisoner’s dilemma game and shows how the Nash
equilibrium change when dynamics are added. In particular, it shows when
playing Cooperate is supported as a subgame perfect Nash equilibrium.

7.2.1 Prisoner’s Dilemma

The game set up is as follows. We will relabel the strategies of the game
presented in Chapters 1 and 2.

• Players: Player 1 and Player 2

• Strategies: Cooperate or Defect

• Payoffs:

– {Cooperate, Cooperate}: {3, 3}
– {Cooperate, Defect}: {0, 5}
– {Defect, Cooperate}: {5, 0}
– {Defect, Defect}: {2, 2}

In this game, the Nash equilibrium is {Defect, Defect}, even though both
would be better off with the {Cooperate, Cooperate} outcome. The question is
whether making a slight change to the set up of the game changes the predicted
outcome.
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7.2.2 Normal Form Representation

Chapter 1 introduced the normal form representation of a game.

TABLE 7.1
Normal form representation prisoner’s dilemma game, with two players, Player
1 and Player 2. For Player 1, their choices are the rows and their payoffs are
listed first in each cell.

P1, P2 Cooperate Defect
Cooperate 3, 3 0, 5
Defect 5, 0 2, 2

Table 7.1 presents the normal form of the prisoner’s dilemma game. We can
determine the Nash equilibrium by looking at the second column and seeing
whether Player 1 is better off choosing the top row or the bottom row. Player
1 gets nothing from choosing the top row and 2 from the bottom. Similarly
for Player 2, we can check the Nash equilibrium by looking at the bottom row
and seeing if Player 2 wants the first column or the second column. Player 2
gets 0 from the first column and 2 from the second column. {Defect, Defect}
is a Nash equilibrium.

7.2.3 Finitely Repeated Game

Consider a version of the game where the static prisoner’s dilemma (above)
is repeated a finite number of times (T times). This could be 20 periods, for
example.

The game is different. The players are the same but the strategies are
completely different. A strategy is a function that maps from the complete
history of the game to an action. In period 1, the complete history is null,
so the strategy is just the action choices {Cooperate, Defect}. In period 2,
the complete history is what ever the outcome was in period 1. There are 4
possibilities as listed above. From each possibility, the strategy states which
action the player will choose. In period 3, things are even more complicated.
Now the history includes 16 possibilities. For each of the 4 possible outcomes in
period 1, there are 4 possible outcomes in period 2. Again the strategy states
what the player will do in period 3 given each of the 16 possible histories. As
you can imagine, for a game with twenty periods, there are an awful lot of
possibilities.

What is the Nash equilibrium of this game? It is probably better to ask,
what isn’t. Consider any set of strategies where one player plays Cooperate
in the last period. The game in the last period is essentially the same as a
one period game. We know from the analysis of the one period game that the
best response must be a strategy where they play Defect in the last period.
Now consider sets of strategies where the player always plays Defect in the last
period but Cooperate in the second to last period. Again, the best response
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must be a strategy that states the player plays Defect in the second to last
period and Defect in the last period. Using this logic, we can show that the
Nash equilibria are associated with playing Defect in every period. That is
to say, despite adding a lot of complexity to the game, the prediction doesn’t
change.

7.2.4 Infinitely Repeated Prisoner’s Dilemma

What if we make one more change to the game? This time, we repeat the
game above for an infinite number of periods. Does this seem like a reasonable
change? Infinity is quite a long time. For the strategic behavior to change, we
don’t literally need an infinite number of periods, we just need the players
to be unsure when the game is going to end. It is better to think of a finite
period game as one where every player knows exactly when the game is going
to end. While an infinitely repeated game is one where players don’t know
exactly when the game will end.

For this case, we need to add another parameter to the payoffs, r ∈ [0, 1).
This represents a discount rate and is a number between 0 and 1. The practical
reason for adding a discount rate is that with an infinite number of periods we
cannot analyze the game. The payoffs are infinite under all possible strategies.
As you may remember from calculus, an infinite sum of a non-decreasing
sequence is infinite. But with a discount rate, we can create a decreasing
sequence that decreases fast enough that our infinite sum sums to a finite
number. A player’s utility given a particular strategy s is an infinite sum of a
discounted sequence of per period payoffs.

U(s) =

∞∑
t=1

rtπt(s) (7.1)

where s is the strategy. If we assume that the payoff to the players in each
period (πt(s)) is bounded and there is a discount rate so that the payoff is lower
in the future than today (r < 1), then the infinite sum, U(s) < ∞. Now we
can analyze the game because different strategies may have different payoffs.

We can also use a very useful trick. If πt(s) = π(s), that is, if the per-period
payoff is constant for a given strategy s and r is strictly between 0 and 1,
which it is, we have the following simplification.

U(s) =
π(s)

1− r
(7.2)

So if the discount rate is 0.9, then the total payoff is 10 times the per-period
payoff for the strategy s.

Where does this discount rate come from? What does it mean? The most
obvious way to think about it is as an interest rate. Actually, one minus the
interest rate. When we are thinking about dynamic decisions it makes sense
for decision makers to refer to the interest rate when determining the value of
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future decisions. Here, it may be reasonable to think of the discount rate as
representing the probability that the game continues into the next period.

7.2.5 Cooperation as a Nash Equilibrium

Can having both players cooperate every period be supported as a Nash
equilibrium of the infinitely repeated prisoner’s dilemma? Yes.

To construct the supporting strategies, we need to allow players to punish
defection. There are many strategies that have this feature but the simplest is
called the grim-trigger strategy. In this strategy, the player plays Cooperate
unless the history includes one of the players playing Defect. In that case, the
player plays Defect forever. So “grim” is for the fact that the threat is the worst
possible kind and “trigger” is for the fact that the strategy involves a simple
event that changes behavior.

A strategy maps from the complete history of the game into the choice of
Defect or Cooperate in each period. It is a set of functions for each period
t, {st}∞t=1. Each function is st : Ht → {Defect, Cooperate}, where Ht is the
complete history of possible actions that could have happened in the previous
t− 1 periods. In this case, if Ht includes Defect, then st(Ht) = Defect while if
it doesn’t, then st(Ht) = Cooperate.

Is the grim-trigger a subgame perfect Nash equilibrium? Consider the case
where both players are playing the grim-trigger. Payoffs are as listed in the
previous section.

1. Grim-trigger: 3
1−r

2. In period t play Defect: 5 + r
(

2
1−r

)
So against the grim-trigger in which the other player is playing Cooperate, if
you play Cooperate each period you get 3 each period. If you play Defect in
one period, you get 5 for that period but the grim strategy kicks in and you
get 2 for every period. For the grim-trigger to be an equilibrium choice (1)
must give a higher payoff than choice (2).

The player would prefer to play grim-trigger if the following inequality
holds.

3
1−r > 5 + r

(
2

1−r

)
3 > 5(1− r) + r2
3 > 5− 5r + 2r
0 > 2− 3r
3r > 2
r > 2

3

(7.3)

As long as the players care about the future enough, r is high enough, they
will play Cooperate against the grim-trigger. If they are very myopic, r is low,
then they will cheat and take the high payoff today.
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Just to tie things up we should also check that both players will keep
playing Defect after the trigger has been pulled. Looking back at the discussion
above we see that this must be the case.

7.3 Bertrand Competition

This section revisits the Bertrand pricing game presented in Chapter 3. It
presents this model assuming logit demand, which is the more common assump-
tion in the literature. It uses this model to estimate parameters of demand
using data for retail gasoline from Perth Australia.

7.3.1 Two Firm Model

Consider a model where we have two firms that choose prices. The two firms
sell similar products but are not exactly the same. For example, the products
may be stores that are located in different places. The differentiation between
the products is enough to induce some market power for each firm. That is for
a small price increase, the firm is not going to lose all its customers. Below we
will use this model to analyze retail gasolone. The gasoline itself is identical as
it literally comes from the same pipe.1 What is different between stations is
there location and their brand.

In this model, Firm 1 chooses their price (p1) to maximize the margin
which is price less cost (c1) multiplied by Firm 1’s share (s1(p1, p2))

maxp1
(p1 − c1)s1(p1, p2) (7.4)

The logit model assumes demand has the following form.

s1(p1, p2) =
exp(δ1)

exp(δ1) + exp(δ2)
(7.5)

where δ1 = −α1p1 + ξ1 and δ2 = −α2p2 + ξ2. In this model, demand for Firm
1 is determined by firm specific value ξ1 and by Firm 1’s price p1. Sensitivity
to price is determined by the parameter α1.

7.3.2 J Firm Model

Assume that we have J firms and logit demand.

δj = −αjpj + ξj (7.6)

sj(pj , p−j) =
exp(δj)

1 +
∑J

j′=1 exp(δj′)
(7.7)

1Some stations may add in additives at the end.
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where pj is the price charged by firm j, αj represents the price sensitivity
of firm j’s customers, and ξj is a set of characteristics other than price that
determine demand. The notation −j means all the other firms that are not j.

7.3.3 Nash Equilibrium in R

The following are the functions for determining the Nash equilibrium using
the logit demand system. The function f_share() determines the shares
from the logit model given the vectors of ξs, αs and prices. The function
pi_f() determines the vector of firm profits, while pi_i() determines the
profits for firm i given a vector of prices for the other firms. The function
pi_i_opt() determines firm i’s best response to a set of prices, while pi_opt()
determines the vector of best response. The function ne_f() determines the
Nash equilibrium vector of prices.

> f_share = function(xi, price, alpha) {

+ delta = xi - alpha*price

+ exp_delta = c(1,exp(delta))

+ return((exp_delta/sum(exp_delta))[-1])

+ }

> pi_f = function(xi, price, alpha, cost) {

+ return((price - cost)*f_share(xi, price, alpha))

+ }

> pi_i = function(i, p_i, xi, price, alpha, cost) {

+ price[i] = p_i

+ return(pi_f(xi, price, alpha, cost)[i])

+ }

> pi_i_opt = function(i, xi, price, alpha, cost) {

+ a_i = optimize(f=pi_i, interval=c(0, 400),

+ i = i,

+ xi = xi,

+ price = price,

+ cost = cost,

+ alpha = alpha,

+ maximum = TRUE)

+ return(a_i$maximum)

+ }

> pi_opt = function(xi, price, alpha, cost) {

+ N = length(xi)

+ price_new = rep(NA, N)

+ for(i in 1:N) {

+ price_new[i] = pi_i_opt(i,xi,price,alpha,cost)

+ }

+ return(price_new)

+ }



120 Repeated Games

Nash equilibrium is determined using a similar iterative approach that we
used to determine equilibrium of the Cournot model in Chapter 3. It uses a
while() to determine when the sequence of price choices converges.

> ne_f = function(xi, price, alpha, cost,

+ tol=1e-10, maxiter=10000,

+ trace=0) {

+ price_0 = price

+ diff = sum(abs(price_0))

+ iter = 1

+ converge = FALSE

+ while(diff > tol & iter < maxiter) {

+ price_1 = pi_opt(xi, price_0, alpha, cost)

+ diff = sum(abs(price_1 - price_0))

+ price_0 = price_1

+ if(trace > 0) {

+ print(diff)

+ print(iter)

+ }

+ iter = iter + 1

+ }

+ if(diff < tol) {converge=TRUE}

+ return(list(price=price_1,converge=converge))

+ }

7.4 Empirical Analysis: Retail Gasoline Pricing using R

This section estimates the parameters of the model assuming the Perth retail
gas oline market is priced competitively, i.e., consistent with static Bertrand
Nash equilibrium.

7.4.1 Perth Gas Price Data

Figure 7.1 presents the average margins by week for the gas stations. While
there is a lot of variation in margins in 2008 and 2009, the average stays pretty
steady. Things seems to change in 2010, with margins steadily increasing. Why
would that be?

7.4.2 Estimating Parameters

In the analysis below, we aggregate up to the brand level and estimate the
pricing game between the brands. We assume that margins and shares are the
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> file = paste0(dir, "perth_gas_data.csv")

> dt = fread(file)

> dt[,.(

+ margin = mean(margin),

+ date = mean(date)

+ ),

+ by = c("week", "year")] |>

+ ggplot(aes(x=date, y=margin)) +

+ geom_point(color = "gray") +

+ geom_smooth(se = FALSE) +

+ labs(title = "Margin (cents/liter)",

+ x = "",

+ y = "")

4

8
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16

2008 2009 2010 2011 2012

Margin (cents/liter)

FIGURE 7.1
Plot of weekly margins from 2008, 2009, 2010, and 2011. There is a lot of
variation from 2006 to 2010 but prices are moving around the same average.
After 2010, the average price starts to increase.

result of Nash equilibrium of the static pricing game. The data provide daily
prices, daily wholesale price, the location of the stations and the number of
stations for each brand.

To estimate the firm’s marginal costs, we regress prices on the distance
between the station and the Kwinana terminal, which is located south of Perth.
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The assumption is that variation in prices due to distance is determined by
the trucking costs of the fuel. We use a quadratic on distance, brand dummies
and week dummies to estimate marginal costs for each station. These values
are added to the terminal price to get the estimated cost for each station. As
we don’t have access to quantity information, the brand share is assumed to
be equal to the proportion of stations that the brand has.

The model requires estimates of two parameters for each firm. The price
sensitivity parameter, αj , and the unobserved quality parameter, ξj . The first
is found from the firm’s first order condition when demand is determined by a
logit model.

αj =
1

(pj − cj)(1− sj)
(7.8)

The second value is from inverting the logit demand to get the unobserved
characteristic as a function of the observed prices, shares, and the parameter
αj .

ξj = αjpj + log(sj)− log(s0) (7.9)

where s0 is the outside share.

7.4.3 Parameter Estimates

From Equation (7.8) and (7.9), we determine α and ξ for each firm from the
observed prices and shares. We are assuming that the observed prices and
shares are determined as the outcome of a static Bertrand Nash equilibrium.
We are also assuming that the outside good are the independent stations and
the smaller brands, Mobil, Wesco and Better Choice. Finally, we are assuming
that Caltex and Caltex Woolworths make pricing decisions as if they are the
same firm.

To do this analysis we will aggregate up to annual average prices, costs,
margins, and shares.

The first step is to select the variables and the year (2008) we will use. Also
redefine some of the brand names to make the analysis easier.

> dt2 = dt |>

+ filter(year == 2008) |>

+ select(

+ date,

+ store = TRADING_NAME,

+ brand = BRAND_DESCRIPTION,

+ price = PRODUCT_PRICE,

+ margin

+ )

> dt2$brand[grep("Caltex", dt2$brand)] = "Caltex"

> dt2$brand[which(dt2$brand %in% c("Independent",

+ "Mobil",
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+ "Wesco",

+ "Better Choice"))] = "Independent"

The next step is to calculate the shares by determining the number of
stations for each brand and then calculating the share for each brand.

> stores = dt2[, .N, by = brand]

> stores$shares = stores$N/sum(stores$N)

> dt2 = merge(dt2, stores, by = c("brand"))

The next step creates a data set with prices, margins, shares, and costs
averaged up to the brand level for 2008. This also calculates α for each brand.

> dt3 = dt2[, .(

+ price = mean(price, na.rm = TRUE),

+ margin = mean(margin, na.rm = TRUE),

+ share = mean(shares, na.rm = TRUE),

+ cost = mean(-margin + price, na.rm = TRUE),

+ alpha = 1/(mean(margin, na.rm = TRUE)*(1 - mean(shares,

+ na.rm = TRUE)))

+ ),

+ by = brand]

Next, is calculating ξ for each brand. This calculation assumes that the
independent stores are the outside option.

> index_ind = grep("Independent", dt3$brand)

> dt3$xi = NA

> dt3$xi[-index_ind] =

+ dt3$alpha[-index_ind]*dt3$price[-index_ind] +

+ log(dt3$share[-index_ind]) -

+ log(dt3$share[index_ind])

The final step is to use the function ne_f() to determine the Nash equilib-
rium.

> a_f = ne_f(dt3$xi[-index_ind],

+ dt3$price[-index_ind],

+ dt3$alpha[-index_ind],

+ dt3$cost[-index_ind])

Table 7.2 presents the estimates for α and ξ for each brand. These values
reconcile the observed equilibrium margins and the observed equilibrium shares.
BP is able to have higher margins and only slightly lower share because its
customers are less price sensitive than Caltex.

Can you compare the parameter estimates using the algebraic approach to
the numeric approach to determining the Nash equilibrium? Are they exactly
the same? Would you expect them to be?



124 Repeated Games

TABLE 7.2
The table presents the prices, margins, market share, and estimates for α and
ξ. BP is able to have higher margins and only slightly lower share because its
customers are less price sensitive than for Caltex.

Brand Price Cost Share α ξ
1 Ampol 153.70 142.53 0.02 0.09 12.93
2 BP 148.53 140.77 0.23 0.17 26.16
3 Caltex 146.14 139.46 0.30 0.21 32.56
4 Coles Express 144.65 139.92 0.10 0.23 34.28
5 Eagle 152.32 147.32 0.00 0.20 26.47
6 Gull 144.00 138.06 0.11 0.19 27.70
7 Liberty 145.23 138.06 0.03 0.14 19.70
8 Peak 139.98 136.33 0.04 0.29 39.42
9 Shell 152.11 142.57 0.07 0.11 17.20
10 United 138.25 135.42 0.02 0.36 48.59

7.5 Repeated Oligopoly

The standard differentiated goods Bertrand model of price competition suggests
that the outcome we would expect, while higher than perfect competition, it
is not collusion. In the static game, it is always better for the firms to “cheat”
and lower their prices in order to increase profits. The question then is whether
we would expect to see collusion when firms interact repeatedly.

The section adapts the static Bertrand game to an infinitely repeated
setting and determines the optimal pricing under collusion.

7.5.1 Collusive Equilibrium

Choosing the static equilibrium Bertrand prices in each period can be supported
as a subgame perfect Nash equilibrium of the infinitely repeated game. Like
with prisoner’s dilemma, it is always fine to play Defect every period.

Given this, we ask whether or under what circumstances can a trigger
strategy support collusion. Let πN denote the per-period profits in a Nash
equilibrium of the static game, πC denote the collusive profits and πD the
profits from defecting and choosing an optimal price when the other firm is
offering the collusive price. We have πD > πC > πN . This is exactly the same
as for a prisoner’s dilemma.
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Like the prisoner’s dilemma, collusion can be supported by a trigger strategy
if the following inequality holds.

πC

1−r > πD + r
(

πN

1−r

)
πC > (1− r)πD + rπN

r(πD − πN ) > πD − πC

r > πD−πC

πD−πN

(7.10)

The number on the bottom is larger than the number on the top, and so for
a large enough r collusion is a Nash equilibrium of the infinitely repeated
oligopoly game.

7.5.2 Identifying Collusion

Identifying collusion for policy or academic purposes is quite different from
identifying collusion for criminal prosecution. A criminal case requires hard
evidence, not some cool econometric specification. The best evidence includes
credible witnesses, audio recordings, video recordings, and written documents.
You may be surprised to learn that there isn’t that much economics involved
prosecuting a criminal collusion case. There is undercover work, wire tapping,
etc, but no economics. Once the criminal case is proven, economists are called in
to estimate damages.2 Here again, identifying the collusion is not that difficult.
At least it is not that difficult given that the FBI has already completed the
task. The case record includes the dates when the collusion occurred and
(hopefully) dates when the collusion did not occur. The hard part for the
econometrician is working out which part of the difference in prices is due to
the collusion and which is due to other changes.

Identifying collusion without the assistance of the FBI is difficult. To observe
prices and quantities from a market, there is enough exogenous variation such
that we can estimate the elasticity of demand. If the products are differentiated,
we can use Bertrand Nash equilibrium to identify marginal costs and mark-ups.
While assuming a static equilibrium or a dynamic collusive equilibrium gives
different estimates of the mark ups and marginal cost, without some other
information we can’t tell the difference from the data. If we had data on
marginal costs, then suddenly things get a lot easier. We can match the implied
marginal costs from our proposed behavioral assumptions and see which ones
fits better. Alternatively, if the courts tell us that there was a period where the
static equilibrium determined prices, then we can use that period to identify
marginal costs. We can then compare the implied markups from the static
equilibrium to the observed markups to estimate the super markups associated
with collusion.3

2This is usually the amount equal to the consumer surplus lost from the collusion.
3These are markups that are larger than we would expect from firms choosing price

consistent with equilibrium of a static Bertrand game.
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7.5.3 Choosing Super Markups

Choosing the collusive price seems like a simple enough problem for the firms.
The collusive price should be equal to the price that a monopoly would charge.
Not so fast Sonny Jim! Sure, the monopoly price would be optimal if all the
firms behaved as one firm. They are not one firm and they do not behave as
such. In each period, each firm may prefer to renege on the deal and choose a
lower price, gaining share while everyone else is charging the collusive price.

The collusive price is the solution to the following maximization problem.
The super markup (smu) is the difference between the collusive price and the
static Nash equilibrium price where the marginal cost is normalized to zero.

maxpc πc(pc)

s.t. πd(pc) +
rπNE

1−r ≤ πc(pc)
1−r

(7.11)

where πc(pc) are the per-period profits that one firm makes when everyone
chargers pc, πd(pc) is the per-period profit when one firm is able to deviate and
charge a lower price knowing that everyone else is charging pc, and πNE is the
per-period profit in a static Bertrand Nash equilibrium. The firm’s preferences
over profits in future periods is determined by the parameter r.

The problem states that firms can charge any collusive price they like as
long as all the firms are unwilling to cheat on the agreement. In general, we find
that the higher the price, the greater the value in cheating on the agreement.

In general, the colluding firms cannot charge anything they want, in fact
they can’t even charge the monopoly price. They are constrained both by the
demand system and by the incentive of firms to cheat on the agreement.

7.5.4 Estimating Collusive Prices in R

The following functions are used to determine the collusive price when demand
is determined by the logit model. The collusive price is assumed to be equal to
the Nash equilibrium price plus a super markup. The function f_smu_share()

determines the vector shares at a particular smu. The function pi_d() de-
termines the optimal deviation profits given a particular smu. This places a
constraint on what smu can be chosen.

> f_smu_share = function(smu, xi, price, alpha) {

+ f_share(xi, price + smu, alpha)

+ }

> pi_d = function(p_d, i, smu, xi, price, alpha, cost) {

+ price = price + smu

+ price[i] = p_d

+ share = f_share(xi, price, alpha)

+ return(share[i]*(p_d - cost[i]))

+ }
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The function pi_smu() determines the vector of profits for a particular
smu and pi_smu_int() is an intermediate function for optim().

> pi_smu = function(smu, xi, price, alpha, cost,

+ r, lambda, pi_ne) {

+ N = length(xi)

+ pi_c = (price + smu - cost)*f_smu_share(smu, xi, price,

+ alpha)

+ PI_d = matrix(NA, N, 2)

+ for(i in 1:N) {

+ ai = optimize(f = pi_d,

+ interval = c(0,2000),

+ i = i,

+ smu = smu,

+ xi = xi,

+ price = price,

+ alpha = alpha,

+ cost = cost,

+ maximum = TRUE)

+ PI_d[i,1] = i

+ PI_d[i,2] = ai$objective

+ #print(i)

+ }

+ return(pi_c -

+ lambda*(((1 - r)*PI_d[,2] +

+ r*pi_ne - pi_c)^2))

+ }

> pi_smu_int = function(par, xi, price, alpha,

+ cost, r, pi_ne) {

+ smu = par[1]

+ lambda = 1

+ return(sum(pi_smu(smu, xi, price,

+ alpha, cost, r,

+ lambda, pi_ne)))

+ }

7.6 Empirical Analysis: Collusion in Perth Gas Stations using R

This section estimates the extent of collusion in the the Perth retail gasoline
market.
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7.6.1 Super Markups

With all the parameters of the model estimated from the data under the static
Bertrand Nash assumption, we use the parameters to determine the super
markup.

As above, to determine the super markup, we need to determine the static
Nash profits, the profits from cheating, and we need to make an assumption
about discounting. We assume r is equal to 0.9. What happens at different
values?

> margin_ne = (a_f$price - dt3$cost[-index_ind])

> share_ne = f_smu_share(0, dt3$xi[-index_ind],

+ a_f$price, dt3$alpha[-index_ind])

> pi_ne = margin_ne*share_ne

> a1 = optimize(pi_smu_int,

+ c(0,20),

+ xi = dt3$xi[-index_ind],

+ price = a_f$price,

+ alpha = dt3$alpha[-index_ind],

+ cost = dt3$cost[-index_ind],

+ r = 0.9,

+ pi_ne = pi_ne,

+ maximum = TRUE)

> a1$maximum

[1] 4.589335

> a1$maximum/mean(margin_ne)

[1] 0.7117553

In this set up, the super markup is 4.59 cents a liter or 71 percent of the
average static Nash margins. Not bad! If we look at Figure 7.1 we see that
margins increased about 4 cents a liter between 2008 and 2012. This suggests
that the collusive model is a more accurate representation of pricing behavior
than the static pricing model.

7.6.2 Analyzing Mergers with Collusion

Previously we have discussed the effect of mergers when firm competition and
pricing can be modeled as a static Bertrand Nash equilibrium. What if the
firms prices are really being determined as a collusive agreement? Will the
merger affect prices? You may think that the collusive price is as high as prices
could get. What impact could the merger have?

Mergers can cause prices to increase when firms are colluding. With collu-
sion, the merger leads to two changes in the market. First, it has an effect on
the static Bertrand Nash equilibrium price and thus the punishment that can
be imposed. Second, it changes the set of constraints that are placed on the
problem. Post merger, there is one less firm that is trying to cheat on the deal.



Empirical Analysis: Collusion in Perth Gas Stations using R 129

In theory, these two effects work in different directions. The merger increases
profits from the punishment phase, which makes incentivizing firms to collude
harder. On the other hand, the number of firms that must be kept in line has
been reduced.

Consider a merger between BP and Peak. Peak is very small and so is
unlikely to be of concern using standard static Bertrand Nash pricing. To
model the effect of the merger, we need to calculate the observed characteristics
of the merged firm.

> index_m = 9

> dt3$brand[index_m]

[1] "Peak"

> bp_s = dt3$share[2]/(dt3$share[2] + dt3$share[index_m])

The variable bp_s is the share of the merged firm that is BP. The following
code calculates the new characteristics of the merged firm. The new firm’s
costs are the weighted average of each firms average costs. Similarly, the new
firm’s price sensitivity parameter and unobserved characteristics are weighted
averages of the two firms. Do these assumptions make sense? What happens
under alternative assumptions?

> brand_m = dt3$brand[-c(index_ind, index_m)]

> brand_m[2] = paste0(dt3$brand[index_m], " and ", dt3$brand[2])

> xi_m = dt3$xi[-c(index_ind, index_m)]

> alpha_m = dt3$alpha[-c(index_ind, index_m)]

> alpha_m[2] = bp_s*dt3$alpha[2] + (1 - bp_s)*dt3$alpha[index_m]

> price_m = dt3$price[-c(index_ind, index_m)]

> price_m[2] = bp_s*dt3$price[2] + (1 - bp_s)*dt3$price[index_m]

> cost_m = dt3$cost[-c(index_ind, index_m)]

> cost_m[2] = bp_s*dt3$cost[2] + (1 - bp_s)*dt3$cost[index_m]

Given the change caused by the merger, we can calculate the new Bertrand
Nash equilibrium as well as the new equilibrium collusive price.

> a_f_m = ne_f(xi_m, price_m, alpha_m,

+ cost_m, maxiter=1000000)

> margin_m = (a_f_m$price - cost_m)

> share_m = f_smu_share(0, xi_m, a_f_m$price, alpha_m)

> pi_ne_m = margin_m*share_m

> a2 = optimize(pi_smu_int,

+ c(0,20),

+ xi = xi_m,

+ price = a_f_m$price,

+ alpha = alpha_m,

+ cost = cost_m,

+ r = 0.9,
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+ pi_ne = pi_ne_m,

+ maximum = TRUE)

If the firms are playing Bertrand static game, then merger has the following
impact on prices. Prices will increase 0.4 percent.

> (mean(a_f_m$price) - mean(a_f$price))/mean(a_f$price)

[1] 0.004122352

If the firms are playing a collusive game, then the merger has the following
impact on prices. Prices will increase 1.2 percent.

> (mean(a_f_m$price+a2$maximum) -

+ mean(a_f$price+a1$maximum))/mean(a_f$price+a1$maximum)

[1] 0.01238215

> sum_tab_m = cbind(

+ as.numeric(a_f$price),

+ as.numeric(c(a_f_m$price[1:7], NA, a_f_m$price[8:9])),

+ as.numeric(a_f$price) + a1$maximum,

+ as.numeric(c(a_f_m$price[1:7], NA, a_f_m$price[8:9]))

+ a2$maximum

+ )

> rownames(sum_tab_m) = dt3$brand[-index_ind]

> colnames(sum_tab_m) = c("Price", "Price Merge",

+ "Collusive", "Collusive Merge")

Table 7.3 presents the impact of the merger on prices under the two different
models. Note that while BP’s price goes down with the merger, the average
price of BP and Peak increases. Remember the new firm is a weighted average
of BP and Peak’s observed and unobserved characteristics.4 The impact of the
merger is quite different under the two models of pricing behavior. The average
price effect of the merger is small. It is 0.4% increase in prices in the static
Bertrand case and 1.2% increase in the collusive case. The difference between
the price increase assuming static Bertrand and collusion is over 100%. The
assumed method by which firm’s determine prices may have a large effect on
our prediction of the merger.

7.7 Discussion and Further Reading

In the 1990s, industrial organization economists made great gains in under-
standing markets and competition. But there was something missing. The

4What may be other assumptions that could be made about the new post-merger firm?
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TABLE 7.3
The table presents impact of the merger under the two pricing models. The
first and third column are the pre-merger prices for the two models. The second
and fourth columns are the new prices after the simulated merger between
BP and Peak. Note that the new prices are given for BP. The impact of the
merger is quite different under the two pricing models. For example, Shell’s
prices don’t really change with the merger in the Bertrand static pricing game,
while they increase substantially in the repeated game.

Price Price Merge Collusive Collusive Merge
Ampol 153.70 153.81 158.29 159.67

BP 148.53 145.77 153.12 151.62
Caltex 146.14 146.84 150.72 152.70

Coles Express 144.65 144.85 149.24 150.70
Eagle 152.32 152.33 156.91 158.18
Gull 144.00 144.27 148.59 150.13

Liberty 145.23 145.31 149.82 151.17
Peak 139.98 144.57
Shell 152.11 152.41 156.70 158.26

United 138.25 138.28 142.84 144.14

standard models didn’t always capture the pricing behavior. A number of
recent papers have shown that we need better models in order to capture the
possibility of collusion in markets. Repeated games allow us to use much richer
models of pricing behavior and show how collusion can be a more natural
feature of how firms determine prices.

The paper by David Byrne and Nic de Roos does not provide us with any
model techniques. Rather, the paper takes a very close look at an actual market
and shows how firms in that market actually behave (Byrne and de Roos,
2019). Nathan Miller and Matt Weinberg review the joint venture between
Miller and Coors. The authors use information on the premerger market to
estimate parameters of the model. They show that the observed price increase
post merger cannot be explained by our standard static Nash model (Miller
and Weinberg, 2017). Nathan Miller, Gloria Sheu, and Matt Weinberg argue
that a model that explicitly accounts for collusion is necessary to predict the
effect of mergers in some industries (Miller et al., 2021).

A number of papers formally compare the predictions of static pricing
models to observed pricing behavior. Miller and Weinberg (2017) use pre-
merger pricing to estimate the parameters, then compare simulated pricing to
actual pricing after the merger. Nevo (2001) and Backus et al (2021) compare
the predictions of collusive pricing models to actual pricing in the ready-to-eat
cereal market.

The pricing patterns seen in retail gasoline is very strange (Lewis, 2012).
In the Perth data, we see the firms move to a very ordered pattern of pricing
on a weekly basis. If you zoom in even closer you see that the brands are using
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one or two stations to signal which price they will move to for that week. Our
analysis in this chapter is based on the work of DOJ Economist, Zhongmin
Wang. Wang (2009) uses a mixed strategy dynamic model of to analyze pricing
patterns in the Perth data. Nobel prizing winning economists, Eric Maskin and
Jean Tirole, show that short term commitment to a price is necessary to get
the type of pricing dynamics we see in the data (Maskin and Tirole, 1988). The
West Australian state government introduced price regulation that allowed for
this type of equilibrium. We generally call it “post and hold” regulation. The
post means that the price is publicly displayed and the hold means that the
price cannot be changed for some period of time, say 24 hours. By making the
price publicly available, it allowed for strategies that are a function of each
other’s prices. Hold means that the firms can commit to the price which means
that the equilibrium cannot devolve into a competitive pricing process. That
is, each firm will choose a price to under cut its competitor, like in the original
Bertrand game presented in Chapter 3.
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Bargaining

8.1 Introduction

When you take your first economics class you learn about two price setting
mechanisms, perfect competition and monopoly. You learn about the case
where no seller in the market has any power to determine the price and the
case where the only seller has the power to determine the price. You may have
also been exposed to the idea that the buyer has the power to determine the
price, monopsony. What about the case when both the buyer and the seller
have the power to determine the price? What happens in that case?

In the case where both sides of the transaction have the ability to determine
the price, we need a bargaining model. We need a model that can help determine
what the outcome will be. This chapter considers three models of bargaining,
the ultimatum game, the alternating offer game and the Nash bargaining
model.

While the ultimatum game is very simple, our predictions of what will
happen in the game are both unsatisfactory and do not seem to agree with
what happens when actual people play the game. The chapter goes through
the various predictions for this game and then looks at what happens in
experiments where real people play the game. In order to develop a game
that predicts outcomes that seem more reasonable the chapter presents the
alternating offers game. The chapter shows that while this game is quite
complicated, its predictions are quite intuitive. The third model of bargaining
is not technically a game. That said, it can be shown that the Nash bargaining
model is equivalent to certain alternating offers games. So, although the model
itself is not game theoretic, it does have a game theoretic foundation. More
importantly, the Nash bargaining model is much simpler than the alternating
offers game. This simplicity has allowed the model to become an important
tool in empirical analysis of situations where bargaining is used to determine
prices.

The chapter uses the Nash bargaining model to understand competition
between hospitals in Florida. The empirical estimates are used to predict the
effect on hospital prices of a merger between hospitals located in Palm Beach
County, the home county for this book’s publisher.
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8.2 Ultimatum Game

The simplest way to model a bargaining game is with a “take-it-or-leave-it”
offer. A TIOLI offer if you will. The game has two periods. In the first period,
one player makes an offer on how to split the pie between the two players.1 In
the second period, the other player observes the offer and decides to accept
or reject. If the second player accepts, then the two players split the pie as
determined by the first player’s offer. If the second player rejects the offer,
then the pie vanishes and neither players gets anything.

What would you do if you are the first player? How much would you give
to the second player? How much would you keep for yourself? What if the pie
is $5.00? Would you give the other player $2.50? $2.00? $1.00? Whoa. $0.00?
How about if the pie is $5,000,000.00? What if you are the second player?
Would you reject an offer that you believe is unreasonably low? Would you
reject an offer of $2.00? What if the pie is $5,000,000.00, would you reject the
$2.00 offer in that case?

This section considers the prediction when we use Nash equilibrium and
when we use subgame perfect Nash equilibrium. It then brings in some data
from experiments where actual people play the game and compares the observed
outcomes to the predicted outcomes.

8.2.1 The Game

We can write down the ultimatum game using a formal representation. Odd’s
strategy is simple. She offers some number between zero and one, including
zero or one. This number represents the share of the pie that Odd keeps if the
offer is accepted. Even’s strategy is more complicated. Even will accept certain
offers and will reject other offers. The notation below is completely general.
It includes strategies like reject all offers and accept all offers and accept all
offers that are multiples of 0.1345888, etc.

• Players: Odd, Even

• Strategies:

– Odd: Offer x ∈ [0, 1]

– Even: If x ∈ R reject, otherwise accept, where R ⊂ [0, 1].

• Payoffs:

– Odd offers x, Even accepts: {x, 1− x}
– Odd offers x, Even rejects: {0, 0}
1The term “pie” is used to refer to some outcome that can be divided up between the

players. In many cases, this is some fixed amount of money.
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where Odd gets the payoff associated with the first element of the set. Odd’s
strategy is denoted as x, which is the share of the pie that Odd receives. The
remainder, 1 − x, is the share received by Even. Even rejects Odd’s offer if
x lies in a particular subset of the offers called R, which stands for reject.
To make things simpler, we will generally assume that Even plays a “cutoff”
strategy. That is R is equivalent to the set x where x ≥ y, where y ∈ [0, 1]. If
x is large, then Even’s share is small and he will reject the offer.

8.2.2 Game Tree

While this game is not that complicated, it turns out that presenting it in
extensive form is very useful.

?
�

�
�

�	

@
@

@
@R

ODD

x

EVEN

Accept Reject

{x, 1− x} {0, 0}

FIGURE 8.1
An extensive form representation of an ultimatum game. Odd makes an offer
x which is the share of the pie that they will keep. Even observes the offer and
decides whether or not to accept or reject the offer.

Figure 8.1 presents the extensive form representation of the ultimatum
game. In the first period, Odd makes an offer of x which is some value between
0 and 1. It is the share of the pie that Odd will keep if Even accepts the offer.
After observing Odd’s offer, Even decides whether to accept or reject the offer.
If Even accepts, then he gets 1− x. If he rejects, then no one gets nothing.

8.2.3 Normal Form

As mentioned above, while we generally use extensive form representations
for dynamic games, there is nothing to stop us from using a normal form
representation. In order to think about some of the predicted outcomes of this
game, it is useful to think about the normal form representation.
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We will simplify and just consider three strategies by Odd, x ∈ {0, 0.5, 1}.
We will also limit Even to three strategies. We will further limit Even to cutoff
strategies. That is, Even will choose some number such that he will accept any
offer less than or equal to that number and reject any offer above that number.
We will denote the cutoff value y. So y = 0 means that Even rejects any offer
that gives him less than the full share. While y = 0.5 means that Even will
accept an offer that gives him at least half. Lastly, y = 1 means that Even
accepts any offer that Odd makes.

TABLE 8.1
Normal form representation of simplified ultimatum game. Odd’s offer is x
which is the share Odd receives, with 1− x going to Even. Even’s strategy is
denoted y, and it gives the level of the offer that she will accept. The payoffs
are in the cells with Odd first.

Odd, Even y = 0 y = 0.5 y = 1
x = 0 0, 1 0, 1 0, 1
x = 0.5 0, 0 0.5, 0.5 0.5, 0.5
x = 1 0, 0 0, 0 1, 0

Table 8.1 presents a normal form representation of a simplified version of the
ultimatum game. What is the Nash equilibrium of the game? Is x = 0.5, y = 0.5
a Nash equilibrium? What about x = 0, y = 0 or x = 1, y = 1?

8.2.4 Nash Equilibrium

This is a pretty simple game. Odd makes an offer, Even observes the offer and
decides to reject or accept the offer. What do you think is the likely outcome
of the game? Do you think x = 0.5 in equilibrium? Do you think there will be
an even split? Do you think x = 1? Do you think Odd will make an offer where
she gets to keep the whole pie? What would Even do if he saw such an offer?

Is x = 0.5 a Nash equilibrium? It is if we are a bit more careful in what it is.
Remember Even’s strategy needs to state what will happen in every possible
case, that is, every possible offer Odd could make. Consider the following set of
strategies. Odd offers x = 0.5 and Even accepts any offer below 0.5 (or equal)
and rejects any offer above 0.5. This is a Nash equilibrium.

To see that it is a Nash equilibrium, let’s go back to our algorithm. In the
algorithm, we first assume Odd plays her strategy. We then determine if it is
optimal for Even to play the strategy stated in the proposed equilibrium. If it
is, we reverse things and assume Even plays the strategy stated in the proposed
equilibrium. Given that strategy, we determine if Odd’s optimal strategy is the
same as in the proposed equilibrium. If it is, then we have a Nash equilibrium!

The proposed equilibrium is {x = 0.5, y = 0.5}
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• Assume Odd offers x = 0.5, what is Even’s optimal response?

– Even’s Payoffs for his different strategies:

∗ y = 0.5: 0.5

∗ y < 0.5: 0

∗ y > 0.5: 0.5

– Even can’t be made better off with y ̸= 0.5, so y = 0.5 is optimal.

• Assume Even’s cutoff is y = 0.5, what is Odd’s optimal response?

– Odd’s Payoffs from her strategies:

∗ x = 0.5: 0.5

∗ x < 0.5: x (which is less than 0.5)

∗ x > 0.5: 0

– Odd is not better off choosing some other offer, so Odd’s strategy is
optimal and the proposed set of strategies is a Nash equilibrium.

The offer that splits the difference can be part of a Nash equilibrium. Can
any split be supported as part of a Nash equilibrium? Yes. All of them.

Any offer by Odd can be supported as a Nash equilibrium of the game.
Consider the case where Odd offers a where a is between 0 and 1. For this case
also assume that Even’s strategy is for y = a. That is, Even accepts any offer
less than a (or equal to) and rejects any offer above a.

• Assume Odd Offers x = a, what is Even’s optimal response?

– Even’s payoffs from his strategies:

∗ y = a: 1− a

∗ y < a: 0

∗ y > a: 1− a

– Even can’t be made better off with y ̸= a.

• Assume Even will accept any offer below a (y = a), what is Odd’s optimal
response?

– Odd’s payoffs from her strategies:

∗ x = a: a

∗ x < a: x

∗ x > a: 0

– Odd is not better off choosing some other offer.

There is a set of Nash equilibrium of the ultimatum game such that
{x = a, y = a}, where x represents Odd’s offer and y represents Even’s cutoff.
Even will accept any offer below y and reject any offer above y.

So Nash equilibrium predicts any outcome. That doesn’t seem particularly
useful nor does it seem intuitive. Do you think Even would really have a
strategy that says he will accept any offer below a 10 percent share of the pie?
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8.2.5 Subgame Perfection

So Nash equilibrium predicts any thing can happen. What about subgame
perfection? Remember the definition. An outcome is subgame perfect if it is a
Nash equilibrium of every subgame. Our ultimatum game has two (sort of)
subgames. There is a subgame after Odd makes the offer x and Even observes
the offer. This subgame has one player, Even, and the strategy is just the
action accept or reject. The other subgame is the whole game.

What is the Nash equilibrium of the first subgame? Let Odd offer x. Even
is best off accepting that offer. If Even accepts he gets 1− x, while if he rejects
he gets 0. Even is always at least weakly better off accepting Odd’s offer.

So going back to the whole game the only strategy of Even’s that is subgame
perfect is for y = 1. That is Even accepts any offer Odd makes. Given that
Even will accept any offer, Odd is best off offering x = 1.

So subgame perfection substantially reduces the number of outcomes that
are an equilibrium. Now we just have one. It is for Odd to get the whole pie!
Does that seem reasonable?

8.3 Empirical Analysis: Ultimatum Game in India
using R

The ultimatum game may be one of the most studied games in economic
experiments. How people play the ultimatum game give us an interesting view
into different cultures. What do people think is a fair split? Will people reject
splits that they do not think is fair even if it means giving up real money? Do
the stakes matter? In particular, do the so called “fair” offers go away when the
players are playing with real money? Is subgame perfection actually a better
prediction than you thought?

The section analyzes data from an experiment conducted in northern India
where the experimenters vary the stakes.

8.3.1 Data

These data are replication data for Andersen et al. (2011). The authors went
into a very poor northern Indian village and ran an experiment where villagers
played for real money. In terms of hours worked equivalent, the size of the pie
varied from $30 to $48,000 (assuming $20 per hour). So yes, real money.

Figure 8.2 presents the density of the offer percentages. These are the
amounts that Even receives if he accepts Odd’s offer. The modal offer is the
50-50 split and it is actually very rare to offer more than that! The proposer
seems to be unwilling to give the responder more than half the pie. That said,
there is quite a lot of density less than 50–50 and even some that is pretty low.
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> file = paste0(dir, "20100982_DATA.dta")

> read.dta(file) |>

+ ggplot(aes(x = percent_offer)) +

+ geom_density(fill = "gray", alpha = 0.5) +

+ geom_vline(xintercept = 0.5, col = "gray") +

+ labs(title = "Density of Offer Shares",

+ x = "Offer Share Responder Receives",

+ y = "") +

+ # remove y-axis

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

0.00 0.25 0.50 0.75
Offer Share Responder Receives

Density of Offer Shares

FIGURE 8.2
Density plot of share of the pie offered by the proposer (Odd) to the responder
(Even). The bulk of the offers are just below half of the pie going to the
responder.

Some responders make pretty lower offers.

8.3.2 Equilibrium Play or Fairness?

We see in Figure 8.2 that a large number of offers are around the 50% mark.
Is this just the proposers playing fair or is it part of the equilibrium behavior?
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That is, do the proposers believe that if they make an offer below the 50–50
split, it will be rejected?

While we observe the proposer’s strategy, we don’t observe the strategy for
the responder. We could estimate it. If we assume all responders are the same,
then we can estimate a model of their strategy.

Assume that we can represent the responder’s strategy using a logit. We
use glm() to estimate the logit. We can determine the probability of accepting
the offer as a function of the percent of the pie offered. In order to plot it
out, we can determine the predicted probability of accepting the offer for each
actual offer we observe in the data.

> file = paste0(dir, "20100982_DATA.dta")

> data = read.dta(file)

> glm1 = glm(accept ~ percent_offer,

+ data = data,

+ family = binomial(link = "logit"))

> data = data |>

+ mutate(

+ accept_pred = predict.glm(glm1, type = c("response"))

+ )

Figure 8.3 looks nothing like what we would expect an equilibrium strategy
to look like. If the strategy is Reject if x < 0.5 and Accept if x ≥ 0.5, then we
would expect an S-shape, going to 0 when offers are close to 0 and close to 1
when offers are close to 1, with a cross around 0.50. These players are accepting
offers that are much lower than the equilibrium predicts. Similarly, it is not
consistent with subgame perfection. In that case, we would expect something
like a straight horizontal line at 1.00. There are many more rejections than we
would expect if the strategies were part of a subgame perfect Nash equilibrium.

8.3.3 Do Stakes Matter?

What do things look like for a subset of the data where there are very large
stakes? Let’s restrict the data to when the stakes are 20,000 rupees. In this
case, the average offer is just 12 percent of the pie and for the average person
the pie is worth 24 days of work.

We can filter the data to only include the large stakes games and then
estimate the predicted acceptance rate for these games.

> data = data |>

+ filter(

+ stakes_4 == 1

+ )

> glm2 = glm(accept ~ percent_offer,

+ data = data,

+ family = binomial(link = "logit"))
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FIGURE 8.3
Plot of predicted acceptance rate as a function of the actual offer shares. The
predicted acceptance percentage grows to approach 100 as the offer gets closer
to 50 percent.

> data = data |>

+ mutate(

+ accept_pred = 7.5*predict.glm(glm2, type = c("response"))

+ )

Here is the code to create a ggplot() object that shows the density of
offers and the predicted acceptance rate for the subset of experiments with
large stakes.

> ggplot_pred_accept_hs = data |>

+ ggplot() +

+ geom_density(aes(x = percent_offer),

+ fill = "gray",

+ alpha = 0.5) +

+ geom_smooth(aes(x = percent_offer,

+ y = accept_pred),

+ se = FALSE) +

+ scale_y_continuous(breaks = seq(0, 7.5, by = 7.5/2),

+ labels = seq(0, 100, by = 50)) +

+ geom_text(aes(x = 0.2, y = 9,
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+ label = "Predicted Acceptance Rate (percent)"),

+ color = "gray") +

+ geom_text(aes(x = 0.4, y = 2,

+ label = "Density of Offer Shares"),

+ color = "gray") +

+ labs(title = "",

+ x = "Offer Share to Responder",

+ y = "")

> ggplot_pred_accept_hs

Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)Predicted Acceptance Rate (percent)
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FIGURE 8.4
Density plot of offer shares and predicted acceptance rate for the subset of
experiments with large stakes. The proposers makes offers that tend to be
close to zero. The receiver’s predicted acceptance rate is close to 100 percent.

Figure 8.4 presents the density of offers and the predicted acceptance rates.
This graph is consistent with the subgame perfect Nash equilibrium. The
weight of offers is 0, and the predicted acceptance rate is consistent with a
strategy of accepting any offer.

Do stakes matter? Yes. Apparently they do. When they do, subgame
perfection predicts the likely outcome of the game. Is that what you would
have thought?
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8.4 Two Period Alternating Offers Game

It is nice that the very strong prediction of subgame perfection in the ultimatum
game can be born out in some actual games. But it is not that satisfying.
Most of the results of the experiment are not consistent with either subgame
perfection or Nash equilibrium. Nor are the predictions of the game consistent
with our intuition. Why is the 50–50 split so dominant? It is only one of many
predictions of the game.

If the simple model is doing a poor job of predicting outcomes of interest,
then one solution is a more complicated slash realistic model. This section
considers what happens when the model is made more realistic slash more
complicated. An alternating offers game is one in which the two players take it
in turns to make the offer, where the game only ends if the offer is accepted.

The section presents the game, the extensive form representation and finds
the subgame perfect Nash equilibrium.

8.4.1 The Game

We formally represent the game with some compact notation. Compact is code
for confusing. As before xt refers to the share that Odd gets, while Even gets
1 − xt. The t ∈ {1, 2} refers to which period we are in, the first or second.
The yt refers to the cutoff strategy. It’s exact meaning depends on who the
responder is. If the responder is Even (y1) means that Even will accept any
offer where Odd gets less than y1.

In the second period, Odd and Even switch roles. The x2 is still the amount
that Odd gets, but it is Even that is making the proposal. This may be a
function of the offer made by Odd in the first period. It is also a function of
whether the offer was accepted or rejected but given that we only see this
strategy if it was rejected we can ignore that part of the history. The y2 refer
to Odd’s cutoff strategy. This means that Odd will REJECT any offer less
than y2. Remember we are always talking about the share that Odd gets. This
is also a function of Odd’s offer in period 1.

• Players: Odd, Even

• Strategies:

– Odd: {x1, y2(x1)}
– Even: {y1, x2(x1)}

• Payoffs

– x1 < y1: {x1, 1− x1}
– x1 > y1, x2 > y2: {rx2, r(1− x2)}
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– x1 > y1, x2 < y2: {0, 0}

where xt is the offer in period t and the amount received by Odd, yt is the
cutoff amount in period t.

The probability r is meant to capture the possibility that the parties risk
failure by extending the negotiations. We will see that the size of this risk
bears heavily on the negotiated outcome.

8.4.2 Game Tree
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FIGURE 8.5
Two period alternating offers game. Odd makes first offer of x1. If rejected,
Even makes an offer of x2. With probability r the game continues. Odd’s payoff
is listed first in brackets.

Figure 8.5 presents the extensive form representation of the two-period
alternating offers game. The size of the pie decreases from the first period to
the second period. The amount of the decrease is determined by r.

8.4.3 Subgame Perfection

The second period is an ultimatum game with Even as the proposer and Odd
as the responder. Given this, y2 = 0 and x2 = 0. That is, Odd will accept any
offer and Even will offer 0.

Moving back to the first period, we can take the second period equilibrium as
given. If Even accepts, then he gets 1−x1 and if he rejects he gets r(1−x2) = r,
where r is the probability that the second period occurs. Given this, Odd will
make an offer such that 1− x1 = r or x1 = 1− r.
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In this case, the subgame perfect equilibrium is

x1 = 1− r, y2 = 0, y1 = 1− r, x2 = 0 (8.1)

The outcome we actually see is an offer of x1 = 1−r. So having this probability
that the game ends prior to the second period changes the outcome of the
game. Instead of Odd getting the whole pie, they get the pie less a portion
equal to the probability that the game continues to the next period.

8.5 Infinite Alternating Offers Game

While we see some evidence that the subgame perfect Nash equilibrium does
occur when real people play the ultimatum game, it is not clear that real
people actually play the ultimatum game. Maybe there is some other game
that more accurately represents what is happening when people bargain.

We saw in the previous section that adding both a second period and
the probability that the game ends prior to the second period changes the
outcomes. What happens if we add even more periods? What happens if we
add an infinite number of periods?

In acknowledgement of the seminal contribution by Israeli economist, Ariel
Rubinstein, we generally refer to this as the Rubinstein bargaining model.

The section presents the game, the extensive form representation, finds the
subgame perfect Nash equilibrium and presents an algorithm for finding that
outcome.

8.5.1 The Game

The game is as before, but now with an infinite number of periods. In each
period, there is a proposer and a responder. If the period is odd, then the
proposer is Odd, while the proposer is Even if the period is even. As before,
the responder can either accept or reject the offer. If the responder accepts,
the game ends and the players get the payoffs {xt, 1− xt}. If the responder
rejects the offer, then the game goes to the next period and the proposer and
responder swap roles.

Similar to the previous game, the size of the pie changes over time. The
parameter r ∈ (0, 1) represents the change in the size of the pie from period to
period. We can think of it as standard financial discount rate. Alternatively,
we could think about it as representing the probability that the game will
continue.

• Players: Odd, Even

• Strategies:
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– Odd

∗ If the time period t is odd, then given the history of offers up to time
period t− 1, offer xt to Even.

∗ If the time period t is even, then accept or reject Even’s offer based on
xt and the history of offers up to t− 1.

– Even

∗ If the time period t is even, then given the history of offers up to time
period t− 1, offer xt to Odd.

∗ If the time period t is odd, then accept or reject Odd’s offer based on
xt and the history of offers up to t− 1.

• Payoffs

– If at time t the an offer xt is accepted:

∗ Odd: 0, 0, 0, ..., rtxt

∗ Even: 0, 0, 0, ..., rt(1− xt)

– If at time t the offer xt is rejected and the offer xs is accepted in periods
s > t.

∗ Odd: 0, 0, 0, ..., 0, ..., rsxs

∗ Even: 0, 0, 0, ..., 0, ..., rs(1− xs)

8.5.2 Game Tree
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FIGURE 8.6
The first two periods of an infinite period alternating offers game.

Figure 8.6 presents the first two periods of an infinite period alternating
offers game. In each period, the size of the pie decreases in proportion to the
discount rate r.
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8.5.3 Subgame Perfection

So we know how to solve for the subgame perfect Nash equilibrium. Simply go
to the last period, work out the equilibrium for that game and then work your
way backwards. OK, but what if there is no last period? What if the game has
an infinite number of periods?

The standard solution is to approximate our infinite period game with a
finite period game. Consider a game that ends at period T (assume odd).

The last period is an ultimatum game where Odd offers xT and Even
observes the offer and chooses whether to accept or reject. In the subgame
where Odd has made the offer of xT , Even’s payoffs are

• Accept: 1− xT

• Reject: 0

Even will accept any offer where 1−xT ≥ 0 (indifference assume Even accepts).
Working backwards, Odd will choose the xT that is as small as possible, Odd
offers xT = 1. If the game gets to period T the payoffs are {1, 0}.

Now let’s do T − 1. This is an ultimatum game where Even makes the offer
and Odd chooses whether or not to accept or reject. Even offers Odd xT−1.
Odd’s payoffs are:

• Accept: xT−1

• Reject: r × 1

where r is how much Odd discounts the future. If Odd rejects, she gets nothing
immediately, but in one period she knows that she will get the whole pie of 1.
But that pie gets discounted in proportion to r.

Odd’s best response is to accept any offer such that xT−1 ≥ r and reject
otherwise. Even knows this and wants to make xT−1 as small as possible but
still have Odd accept the offer. That is where xT−1 = r. If the game gets to
T − 1, then the payoffs are {r, 1− r}.

Now consider T − 2. This an ultimatum game where Odd makes an offer of
xT−2 to Even and Even decides to accept or reject. Even’s payoffs are

• Accept: 1− xT−2

• Reject: r × (1− r) = r − r2.

Therefore, Even will accept any offer 1− xT−2 ≥ r − r2. Odd wants to make
xT−2 as large as possible, so they will choose xT−2 = 1− r + r2. If the game
gets to T − 2 then the payoffs are {1− r + r2, r − r2}.

If we let r = 0.9, then the payoffs if the game gets to T are {1, 0}, if it gets
to T − 1 they are {0.9, 0.1} and if it gets to T − 2 the payoffs are {0.91, 0.09}

What happens in T − 3?
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8.5.4 Game Ends in Period 1

Working all the way back to Period 1, Odd makes an offer x1 and Even decides
to Accept or Reject. In the game with T periods, the offer of x1 will be the
amazingly complicated thing with lots of rs. However, as T gets very large x1

converges to 0.5. That is, the subgame perfect Nash equilibrium of the game
is a 50-50 split! It is a super complicated game that makes a very simple and
intuitive prediction.

8.5.5 Infinite Alternating Offers Game in R

We can use the computer to analyze more complicated games than what we
looked at above. We can allow the two players to have different beliefs about
when the game is going to end and different payoffs if the parties fail to reach
a bargain.

Odd makes an offer at time t, assume that the next period the game ends
in agreement and Even gets a payoff of (1− xt+1)VA, where VA is the size of
the pie if the offer is accepted. Also assume that Even discounts the future by
rE . In addition, assume that if there is no agreement, this period Even gets
vEN .

By having different discount rates and non-agreement values, we can get dif-
ferent bargaining outcomes. You can see that what looks to be small differences
lead to quite large differences in the bargaining outcomes.

What offer should Odd make?
Even will accept Odd’s offer if and only if

1− xt ≥ vEN + rE(1− xt+1)VA (8.2)

Assume that the offer is such that the payoff for the responder makes them
indifferent between accepting or rejecting the offer. In the function below x is
the proportion of the pie received by the responder, V_A is the size of the pie,
v_N is the period amount the responder gets if they do not accept the offer
and r is the discount rate.

> offer = function(x, V_A, v_N, r) {

+ v_N + r*x*V_A

+ }

> T = 250

> r_odd = 0.99

> r_even = 0.98

> V_A = 1

> v_EN = 0

> v_ON = 0.002

Given the parameter values above the following loop determines the equi-
librium of the game.
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> odd_offers = rep(NA, T)

> even_offers = rep(NA, T)

> odd_offer_old = 0

> for (i in 1:T) {

+ even_offer_old = offer(1 - odd_offer_old, V_A, v_ON, r_odd)

+ odd_offer_old = offer(1 - even_offer_old, V_A, v_EN, r_even)

+ odd_offers[i] = odd_offer_old

+ even_offers[i] = even_offer_old

+ #print(odd_offer_old)

+ }
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FIGURE 8.7
Line chart of offers to Even as the number of periods gets large. It shows that
in equilibrium the offer to Even approaches 27 percent.

Figure 8.7 shows that the equilibrium offer to Even converges to 0.27, with
Odd receiving 0.73 of the pie. Why is this split not even? Why is it in favor of
Odd? What change could you make to get it more of an even split?
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8.6 Nash Bargaining Model

John Nash developed one of the most important ideas in modern game theory -
every (finite) game has what we now call a Nash equilibrium. It has an outcome
which is “stable” in the sense that no player would want to deviate from that
strategy if they knew which strategies all the other players were playing.

Nash was interested in another problem, how to determine the outcome
when entities bargain. While the Nash equilibrium became the keystone concept
in non-cooperative game theory, Nash himself was not able to work out how
to model bargaining as a non-cooperative game. Instead he developed an
alternative framework for analyzing bargaining problems known as the Nash
bargaining model. The parameterization of the model presented below gives
same split of the pie as the infinite period alternating offers game above. This
suggests an equivalence between the two models.

The section presents the Nash bargaining model and shows how it is used
to analyze competition between hospitals.

8.6.1 The Model

Consider a game where we have two players, say a hospital and an insurance
company. The two firms are bargaining over how to pay the hospital for various
services that the hospital provides to the insurance companies beneficiaries.
The price that the hospital will receive depends on two sets of things. First,
it depends upon what both the hospital and the insurance company get if
negotiations break down. If there is only one hospital in an area, then the
insurance company is not going to be able offer its beneficiaries much of a
product if it can’t come to a deal with the hospital. If most of the people in
the area work for the same firm and are covered by the same insurance then
demand for the hospital will drop dramatically if the hospital can’t come to a
deal with the insurance company. Second, it depends on how good each side is
at bargaining, which we will conceptualize as the relative “bargaining weights.”
These are somewhat amorphous. Practically, these weights are often set to
be equal. Below we look at how these weights relate to the rs used in the
alternating offers game presented earlier.

maxx (x− a)λ(1− x− b)1−λ (8.3)

where a and b are the alternative outcomes (the outcome if bargaining fails)
for Odd and Even, respectively, x is the share of the pie that goes to Odd and
λ is the bargaining weight.

Taking first-order conditions and simplifying.

λ(x− a)λ−1(1− x− b)1−λ − (1− λ)(x− a)λ(1− x− b)−λ = 0
λ(1− x− b)− (x− a)(1− λ) = 0
x = λ(1− b) + (1− λ)a

(8.4)
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We see that Odd’s share is increasing in the size of the alternative and decreasing
in the size of Even’s alternative. The size of Odd’s share depends on how much
Odd has to lose. If Odd’s alternative is good, a is large, then Even will need to
offer Odd more to have her accept the bargain.

Definition 14. A Nash bargaining model is an algorithm for determining the
outcome from bargaining based on the player’s payoffs from agreement and
disagreement and from their relative bargaining weights.

8.6.2 Nash Solution using R

Let’s set up the problem so that it is equivalent to the infinite alternating offer
model analyzed above.

maxx (xVA − vON )λ((1− x)VA − vEN )(1−λ) (8.5)

where VA is the value of the agreement, vON is the value to Odd if there is no
agreement, and vEN is the same for Even, x is the proportion of the pie that
Odd receives and λ is Odd’s bargaining weight.

We can create a little numerical version of the model. You can see how
things change when you change various parameters.

> lambda = 0.74

> nash_value = function(x) {

+ ((x*V_A - v_ON)^lambda)*(((1 - x)*V_A - v_EN)^(1-lambda))

+ }

> optimize(nash_value, c(0, 1), maximum = TRUE)

$maximum

[1] 0.7405195

$objective

[1] 0.5626717

The resulting share is similar to the results of the alternating offers game
analyzed above. There is an equivalence between the bargaining weights in this
model and the relative difference in the rs in the infinite period alternating
offers model.

8.7 Modeling Hospital Competition and Pricing

How do we work out the effect of hospital mergers on prices when most of
the customers don’t pay anything or just a small fraction of the actual cost
of the services? Insurers pay numbers closers to the actual costs but insurers
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don’t really use the services. A solution is to use the Nash bargaining model to
estimate how much the insurer will pay given the choices made by the insurer’s
beneficiaries.

In the early 2000s, economists of the FTC and in academia began rethinking
how pricing worked in the hospital market. They realized that while hospitals
provided services to patients, patients were not the ones that determined prices.
Prices for hospital services are determined by the interaction of large hospitals
bargaining with large insurers.

The section shows how the Nash bargaining model can be used to analyze
hospital competition.

8.7.1 Bargaining Model

Consider a hospital and an insurer bargaining over the price of services (p). We
have simplified things by assuming that the hospital only has one price and the
insurer only has one set of beneficiaries. The insurer’s payoff from a successful
negotiation is just the value of the hospital to the insurer’s beneficiaries (v(h))
minus the price paid to the hospital (p). The hospital’s payoff is the price
paid by the insurer (p) times the number of beneficiaries (q). If the bargaining
fails, then the hospital gets no revenue from the insurer and the insurer gets
the value of the alternative hospital to insurer’s beneficiaries is v(h′) and the
insurer pays p′.

• Successful:

– Hospital: pq

– Insurer: (v(h)− p)q

• Failure:

– Hospital: 0

– Insurer: (v(h′)− p′)q

The solution to the Nash bargaining model is as follows.

maxp (pq)λ((v(h)− v(h′)− (p− p′))q)1−λ (8.6)

For the hospital, the value of agreement is seeing the insurer’s beneficiaries.
For the insurer, it is the value to their beneficiaries of going to that hospital
relative to the alternative less the relative price.

The first-order condition gives the following result. Let A = pq and B =
(v(h)− v(h′)− (p− p′))q.

λAλ−1qB1−λ − (1− λ)AλB−λq = 0
λA−1B − (1− λ) = 0
λB − (1− λ)A = 0

(8.7)
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Substituting in the definitions of A and B, we get the following.

λ(v(h)− v(h′)− (p− p′))q − (1− λ)pq = 0
p = λ(v(h)− v(h′) + p′)

(8.8)

The price depends on the incremental value of the hospital to the insurer’s
beneficiaries, (v(h)− v(h′)), the price of the alternative hospital (p′) and the
bargaining weight of the hospital (λ).

To determine the market price, we need to estimate the incremental value
of the hospital.

8.7.2 Demand for Hospitals

We don’t know a beneficiary’s value for a hospital but we can know their
revealed preference. We used the same idea in Chapter 4 when looking at the
choice of bookstores to enter a market.

A particular person will choose the hospital if the following inequality holds.

vi(h)− vi(h
′) > 0 (8.9)

Our standard demand model replaces the inequality with the following. Again,
this is what we did in Chapter 4. The hospital and the alternative hospital
have observed characteristics Xh and Xh′ respectively. The individual values
characteristics according to weighting vector β. The unobserved characteristics
are ξh and ξh′ respectively.

(Xh −Xh′)′β + ξh − ξh′ > 0 (8.10)

Under certain assumptions on ξ, we get the logit form for the probability that
an individual will choose hospital h.

sh =
exp(δh)

1 + exp(δh)
(8.11)

where δh = (Xh −Xh′)β + ξh − ξh′ .
The beneficiary often pays close to nothing for hospital services, so we

generally ignore the beneficiaries out of pocket expenses to simplify the problem.

8.7.3 Willingness-to-Pay

From our demand set up and what we know from the bargaining model, we
can calculate what an insurance company would be willing to pay to keep a
hospital in network. That is, keep the hospital available to its beneficiaries at
the discount prices. A common measure is called willingness-to-pay (WTP),
equal to − log(1− sh). That is, an insurance company is willing to pay a lot
more for the hospital when its beneficiaries are not willing to go to any other
hospital.
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Why such a weird formula? Remember above we have Equation (8.7), which
states the price should be equal to the difference in the relative value of the
hospital and the next best alternative plus the price of the next best alternative.
Let’s not worry about the last part. What is v(h)− v(h′)? Let’s make things
simpler and assume that v(h′) is just the outside option.

The first thing to note is in our logit world with our assumptions on the
distribution of the unobserved values, v(h) = log(exp(δh) + 1). Why? Another
excellent question. This formula is the expected value of optimal choice.2 As
h′ is the outside option, v(h′) = log(1) = 0. It is the expected value when
hospital h is removed as an option. So v(h)− v(h′) = log(exp(δh) + 1).

Now, Equation (8.11) tells us what exp(δh) is. Rearranging that equation,
we have the following relationship between it and the diversion ratio to the
hospital.3

sh(1 + exp(δh)) = exp(δh)
exp(δh)(1− sh) = sh
exp(δh) =

sh
1−sh

(8.12)

Plugging this back in we get our WTP formula.

v(h)− v(h′) = log( sh
1−sh

+ 1) = log( sh+1−sh
1−sh

) = log( 1
1−sh

)

= − log(1− sh)
(8.13)

Now we have a measure of how much the insurer is willing to pay for the
hospital as a function of stuff that we observe in the data.

This simple measure has turned out to be an extremely good predictor
of what actually happens in hospital markets. We generally find that a 10%
increase in WTP is associated with a 2% increase in hospital prices.4 Below
we will estimate this relationship on data from Florida hospitals.

8.8 Empirical Analysis: Hospital Competition with R

By the early 2000s, the two federal antitrust agencies, the FTC and DOJ,
had an impressive string of losses in hospital merger enforcement. The FTC’s
Republican Chairman, Tim Muris, decided to put a large amount of the
commission’s resources in turning the record around. While most of this work
was legal analysis, the FTC’s Bureau of Economics became heavily involved
in the effort. A lot of the important work in modeling hospital mergers and
measuring their potential impact has been done by economists who have been
in the Bureau.

2See Capps et al. (2003).
3The diversion ratio is the share of people who go to the hospital over the share of people

who go to all the other options in the market.
4See Bob Town’s expert report in a Virginia hospital merger case, https://www.vdh.

virginia.gov/content/uploads/sites/96/2017/10/Expert-Report-of-Robert-Town.pdf.

https://www.vdh.virginia.gov/content/uploads/sites/96/2017/10/Expert-Report-of-Robert-Town.pdf
https://www.vdh.virginia.gov/content/uploads/sites/96/2017/10/Expert-Report-of-Robert-Town.pdf
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The section uses publicly available data from Florida, the US Census Bureau
and the Centers for Medicaid and Medicare Services (CMS) to analyze demand
for hospitals and uses the parameter estimates to simulate a merger in Palm
Beach County.

8.8.1 Data

The section uses publicly available discharge from Florida for 2018. These data
provide detailed information on discharges from Florida’s hospitals at various
demographics and conditions. The analysis uses the demographic data and
assume demand is the same across conditions. A more standard analysis would
group by condition (“DRG”) as well. In addition to this, it is usual in hospital
merger cases to have zip code level data. Here we only know the county where
the hospital is. We assume that everyone discharged from the hospital lives in
the same county and people in the county only choose between hospitals in
the county.

Added to this information, we will use the American Community Survey
data to determine counts of people in the various demographic groups at the
county level. We assume that people who do not visit one of the county’s
hospitals in a particular year choose the outside option.

WTP is calculated using the observed shares at the demographic levels by
county.

To construct these measures, we use weights. These weights are the im-
portance of the group to the hospital. That is if a hospital specializes in a
particular disease then that will be captured by the weighting and may lead to
a high price even if the hospital doesn’t have a large share of the market more
generally. For example, the hospital may have a low market share overall but
high market share for child birth. In that case, the market share for women
aged 25 to 54 will be a lot more important than the same hospital’s market
share for men 55 or older. In the data we have 6 demographic groups. We label
things _fw for firm weight and _cw for county weight. As we go through each
case we find the importance of that demographic to the hospital then we find
the share of that demographic in the market for the hospital. Last we calculate
the WTP and the hospital share where the weights are the importance of the
demographic to the hospital.

> ages = c("0_24", "25_54", "55")

> genders = c("female", "male")

> file = paste0(dir, "hospitals.csv")

> df = read.csv(file)[,-1]

> df$WTP = 0

> df$share = 0

> for(i in 1:length(ages)) {

+ for(j in 1:length(genders)) {

+ col = colnames(df)==paste("Discharges_",
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+ ages[i],"_",

+ genders[j],"_fw",sep="")

+ weight = df[,col]

+ col = colnames(df)==paste0("Discharges_",

+ ages[i],"_",

+ genders[j],"_cw")

+ share = df[,col]

+ df$WTP = ifelse(share==1, df$WTP, df$WTP -

+ weight*log(1 - share))

+ df$share = df$share + weight*share

+ }

+ }

Lastly, we match the data above to hospital cost and pricing reports from
the Centers for Medicare and Medicaid (CMS). Not all the hospitals match
and so the analysis is limited to the cases where we have matches across the
discharge data and the cost reporting data.

8.8.2 Pricing and WTP

Our analysis is limited to estimating the effect of mergers on WTP. The
measure could be used in its own right for merger review, similar to the way
Herfindahl-Hirschman Index (HHI) or Upward Pricing Pressure (UPP) is used.5

Usually in merger cases some sort of relationship between prices and WTP
is presented. We combine estimates of WTP and share above with information
about prices and costs from CMS for Florida hospitals in 2018. The code
brings in the data which combines information on Florida hospitals with prices,
demographic and competition measures. It then runs two linear regressions,
price on WTP and price on share of market.

> require(data.table)

> file = paste0(dir, "hospital3.csv")

> dt = fread(file)

> lm1 = lm(Price ~ Wages + Beds + WTP, data = dt)

> lm2 = lm(Price ~ Wages + Beds + share, data = dt)

Table 8.2 presents the linear regressions of price on measures of competition,
WTP and share. Both regressions show that there is a positive relationship,
although there is a lot of uncertainty. The estimated elasticity of 0.2 between
WTP and price seems to be consistent with other estimates.

5See the 2010 Horizontal Merger Guidelines, https://www.justice.gov/atr/

horizontal-merger-guidelines-08192010 accessed August 5 2023.

https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
https://www.justice.gov/atr/horizontal-merger-guidelines-08192010
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TABLE 8.2
Linear regression estimates of the relationship of price on WTP and share
using data from Florida hospitals for 2018.

Dependent variable:

Price

(1) (2)

Wages 0.048 0.047
(0.058) (0.058)

Beds 0.010 0.007
(0.067) (0.067)

WTP 0.223
(0.141)

share 0.357
(0.221)

Constant 11.288∗∗∗ 11.301∗∗∗

(0.468) (0.468)

Observations 106 106
R2 0.034 0.035

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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8.8.3 Mergers and Willingness To Pay

Consider a hospital merger in the home county for this publisher, Palm Beach
County. The hospitals are Bethesda East, Bethesda West, and Boca Raton
Regional. To estimate the effect of the merger, we recalculate the WTP for
the combined hospital. The code is the same as above but recalculated just for
the new merged firm.

> df2 = df

> merger = c("BETHESDA HOSPITAL EAST", "BETHESDA HOSPITAL WEST",

+ "BOCA RATON REGIONAL HOSPITAL")

> df$merge = ifelse(df$Hospital.Name %in% merger, 1, 0)

> df2$merge = ifelse(df2$Hospital.Name %in% merger, 1, 0)

> df2[df2$merge==1,]$Discharges =

+ sum(df2[df2$merge==1,]$Discharges)

> for(i in 1:length(ages)) {

+ for(j in 1:length(genders)) {

+ col = which(colnames(df)==paste0("Discharges_",

+ ages[i],"_",

+ genders[j],"_fw"))

+ df2[df2$merge==1,col] = sum(df2[df2$merge==1,col])

+ col = which(colnames(df)==paste0("Discharges_",

+ ages[i],"_",

+ genders[j],"_cw"))

+ df2[df2$merge==1,col] = sum(df2[df2$merge==1,col])

+ }

+ }

It then creates a new data where the shares are passed from the merging
hospitals to the new hospital. We drop the merged hospitals from the data.

> df3 = df2[-which(df2$Hospital.Name %in%

+ c("BETHESDA HOSPITAL EAST",

+ "BETHESDA HOSPITAL WEST")), ]

Given the post-merger data, the WTP and share can be recalculated.

> df3$WTP = 0

> df3$share = 0

> l = 1

> for(i in 1:length(ages)) {

+ for(j in 1:length(genders)) {

+ col = which(colnames(df3)==paste0("Discharges_",

+ ages[i],"_",

+ genders[j],"_fw"))

+ weight = df3[,col]

+ col = which(colnames(df3)==paste0("Discharges_",
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+ ages[i],"_",

+ genders[j],"_cw"))

+ share = df3[,col]

+ df3$WTP = ifelse(share==1, df3$WTP,

+ df3$WTP - weight*log(1 - share))

+ df3$share = df3$share + weight*share

+ l = l + 1

+ }

+ }

Now we can determine the impact of the merger on prices using the WTP
change caused by the merger on the price in Palm Beach County.

> index_merge = which(df$merge==1)

> index3_merge = which(df3$merge==1)

> a = sum(df$WTP[index_merge], na.rm = TRUE)

> b = sum(df3$WTP[index3_merge], na.rm = TRUE)

> c = (b - a)/a

> lm1$coefficients[4]*c*

+ mean(exp(dt$Price[dt$county.x == "palm beach"]),

+ na.rm = TRUE)

WTP

53583.48

> lm1$coefficients[4]*c

WTP

0.4429545

This analysis suggests that a merger between these hospitals in Palm
Beach County will have a substantive effect on price, a 44 percent increase
or $53,583.48 per discharge.6 Across the Florida hospitals in the sample, the
price goes up $333 per discharge or 0.3 of a percent.

8.9 Discussion and Further Reading

The ultimatum game is one of the most common games used in experiments.
The results used here suggest that very high stakes games do provide support
for subgame perfection as a predictor of the outcome. However, Cameron (2007)
suggests that may not always occur.

Bargaining models have become very important in industrial organization,
particularly analysis of mergers. They form the heart of antitrust analysis

6This should not be consider a legal analysis, but rather an illustration of how these
methods are used in legal analysis.
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of hospital mergers but have also been used in other mergers where similar
dynamics is at play.

Capps et al. (2003) came along at just the right time for US antitrust
authorities. The agencies had been on an impressive losing streak with trying
to prevent hospital mergers. To the credit of the antitrust agencies, the learnings
presented there, in Gaynor and Vogt (2003), Gowrisankaran and Town (2003)
and others, were incorporated into antitrust enforcement. The FTC brought a
retrospective case against a hospital merger in Chicago and used these methods
to prove that the merger was anticompetitive. That is, the FTC showed that
the observed post-merger price increases were caused by the merger.7

Economists at Federal Trade Commission have made major contributions
to this literature. The analysis presented in this chapter is heavily influenced
by Raval et al. (2017). Raval et al. (2022) provide a very interesting test of the
modeling approach. Garmon (2017) and Balan and Brand (2018) are among
other great papers testing and using these methods to analyze the effects of
hospital mergers.

7https://www.ftc.gov/sites/default/files/documents/cases/2005/10/

051020initialdecision.pdf.

https://www.ftc.gov/sites/default/files/documents/cases/2005/10/051020initialdecision.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2005/10/051020initialdecision.pdf
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Bayes Nash Equilibrium

9.1 Introduction

In the first two parts of the book, the games involved cases where all the
players knew everything about what had happened or what was happening.
We say that the players have complete information. In Parts III and IV of the
book, we drop this assumption. The next two parts of the book consider games
where players don’t necessarily know who they are playing against, what their
opponents payoffs are or what actions other players have played. In the first
half the book, we could model chess. In this half of the book, we can model
Stratego! If you don’t know it, Stratego is a board game with pieces that have
different attributes and abilities just like chess. The difference is that the pieces
are all the exact same shape and the picture denoting the piece is only printed
on one side. This means your opponent knows only that you have a piece in a
particular square. They don’t observe which piece. Stratego can be modeled as
a dynamic game of incomplete information.

The problem with modeling games of incomplete information is that it
is not clear how to do it. That we can model these situations is really due
to some amazing work by an Hungarian mathematician, John Harsayni, who
immigrated to Australia to escape the communists and then immigrated to
the United States to escape the Australians.

Harsayni’s insight was to think of games of incomplete information as games
of complete information. Brilliant! What? Harsanyi realized that we could
think of the problem of not knowing the other player’s payoffs as a problem of
not knowing the other player.

This chapter introduces the idea of beliefs. If something is unknown by the
players, we need a way to quantify what is unknown. The assumption is that
each player of the game places probability weights on the unknown events of
the game. It is assumed that these probability weights (beliefs) are known to
everyone in the game.

This chapter introduces the idea of a Bayesian game and the Nash equi-
librium for such a game. It illustrates the idea using entry games. We saw
entry games in Chapters 4, 5, and 6. This time it is assumed that the firms
contemplating entering a market do not know about the characteristics of the
other firms contemplating entering the market. Interestingly, when players

DOI: 10.1201/9781003351603-9 163

https://doi.org/10.1201/9781003351603-9


164 Bayes Nash Equilibrium

know about the characteristics of the other firms, the equilibrium is a lot more
complicated than when players don’t know about the characteristics of the
other firms. Making the game more complicated makes the game easier to use
for empirical analysis. Yale economist, Katja Seim makes this point in her 2006
RAND Journal of Economics paper on the video retail industry (Seim, 2006).

9.2 A Bayesian Game

We call a game with uncertainty over the types, a Bayesian game because
we require players to use Bayes rule to update their beliefs (the probability
weights). Although we are restricting the information available to players, we
still require the players to process a lot of information. Newer game theory
models relax some of these assumptions and explore the implications.

The section introduces a game based on an actual situation than can
happen in undergraduate courses, it then formally defines the game and the
equilibrium concept, Bayes Nash equilibrium.

9.2.1 A Grading Game

Let’s analyze a game in which the players are students in a game theory class.
Grading is done on a curve. Everyone who gets below the mean score for the
class gets a B and everyone above the class mean gets an A. Assume that the
students in the class are grade focused. They would prefer to only get As in
their courses if they can help it. Also, students can drop the class at any time
without penalty. This last bit is unrealistic, but it makes the analysis simpler.

For each student the problem is to determine whether or not to drop the
class. Assume that each student observes their own raw score in the class. For
example they may know that their grades add up to a grand total of 33 out of
100. While they don’t know raw scores of the other students, they have been
told the distribution of raw scores. They can see that the mean is around 50
and scores range from close to 0 up to close to 90.

Assume that each student will stay in the class if they believe that they
will get an A but will drop the class if they believe that they will get a B. To
simplify the problem, we can assume that each student plays a cutoff strategy.
A strategy here is a mapping from the player’s raw score, to either stay or
drop. A cutoff strategy states that the player will stay in the course if their
score is above some cutoff level and will drop the class if it is below.

9.2.2 Grading Game Simulation using R

It is easier to look at a simulation. Assume we have 100 students in the class
and their raw scores are determined by a normal distribution with a mean of
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50 and a standard deviation of 20.

> set.seed(123456789)

> N = 100

> score = rnorm(N, mean=50, sd=20)

> summary(score)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.41 36.61 52.73 50.50 64.98 89.80

What will happen in this game? Let’s assume that everyone plays a strategy
where they never drop. In this case a student in the top half will get an A and
a student in the bottom half will get a B.

> # Initial grades

> grade = ifelse(score > mean(score), "A", "B")

> table(grade)

grade

A B

54 46

Assume that students play the strategy that if their scores is above 50
they will stay and students will drop if their score is below 50. That is, if the
student thinks they will get an A, they stay in the class. If the student thinks
that they will get a B, they will drop the class.

Now, if this is the strategy played by all the players, the grades will be
different. Remember the grades are curved based on students who are in the
class. The score distribution for those students will be a truncated normal
distribution (the top half).

> s = score > 50

> score_1 = score[s]

> summary(score_1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

50.18 56.89 64.37 64.95 73.29 89.80

> length(score_1)

[1] 55

If students play this strategy, then the mean jumps from 50 to 65 and 45
students drop the class. Given the new reality, the grades will be adjusted.

> # New grades

> grade_1 = ifelse(score_1 > mean(score_1), "A", "B")

> table(grade_1)

grade_1

A B

25 30
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> mean(score_1)

[1] 64.9546

The number of students who get an A drops to 25 and they have to have a
grade above 65.

Assume that the students adjust to this new reality, so their strategy
changes. They will stay if their grade is above 65 as this guarantees them an
A for the class.

> s_1 = score > 65

> score_2 = score[s_1]

> summary(score_2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

65.36 71.05 73.49 74.06 78.25 89.80

Now the remaining students need to update their beliefs about their grade
given the strategies of the other students. Given this update, another 30
students drop the class and the mean increases to 74.

> grade_2 = ifelse(score_2 > mean(score_2), "A", "B")

> table(grade_2)

grade_2

A B

10 15

> s_2 = score > 74

> score_3 = score[s_2]

> summary(score_3)

Min. 1st Qu. Median Mean 3rd Qu. Max.

74.39 76.74 78.58 79.56 79.56 89.80

Updating again, another 15 students drop the class and the average grade
increases to 80.

Will the class have any students in it?
Dartmouth College has a provision to stop this unraveling. While Dart-

mouth’s econ department uses a curve, professors are allowed to include
students who dropped the class in calculating the grade distribution, where
such students are given the lowest score for the purposes of doing the calcula-
tion. A policy like this may still lead students to drop based on beliefs of their
grade in the class, but it doesn’t lead to the unraveling. What is the outcome
of the game used by Dartmouth?

9.2.3 Definitions

Now we have a taste for how these games work, let’s get more formal. What
do we mean by a game of incomplete information?



A Bayesian Game 167

Definition 15. In a game of incomplete information, players don’t necessarily
observe the actions of other players or know the payoffs of the other players.

In Parts I and II of the book, players know exactly what is happening or
has happened at every moment. In Parts III and IV of the book, they don’t.

Assumption 2. There are a set of player types determining the payoffs the
player will get in each outcome. This set of types are known to all the players.

While players don’t know exactly what is going on, we will make the
assumption that they do know player types. Assumption 2 is a super important
idea, it allows us use all the machinery we have developed for analyzing
complete information games to analyze incomplete information games. The
player’s type captures all the information relevant to the game. If each player’s
type is observed by every other player of the game, then the game is one of
complete information.

Assumption 3. Each player knows their own type and the distribution of types
(the probability that the other player is a particular type).

What makes games of incomplete information hard to think about is the
implications of Assumption 3. When analyzing the game, we must be careful
to remember what exactly the players know and what they do not know.

9.2.4 The Game

A Bayesian game has the following form.

• Players: Set of players and a set of types.

• Strategies: A function mapping from type to actions.

• Payoffs: For each type and each outcome a payoff.

• Beliefs: A probability distribution over types that is known by each player.

Our strategies are more complicated than for static games of complete
information. Again, a strategy is complete plan. In this case, the complete
plan is determined prior to the player knowing their type. That is, the plan
states what the player will do for each possible type that they could be.

We have added one more piece to the basic game description. We generally
refer to this known probability distribution over types as beliefs. Players do not
know the types of the other players in the game, but they do know probability
that another player is a particular type.

9.2.5 Course Grading Game

For the game introduced above, we have the following formal description. In
this game, the player’s type is the raw score of the player in the class which is
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denoted θi. The raw score is between 0 and 100. The player’s strategy states
whether the player will stay or leave based on the raw score they observe.

• Players: N = 100 students where each observes their score in the class,
θi ∈ [0, 100].

• Strategies: Each player i ∈ N chooses s(θi) ∈ {0, 1}, where 1 means stay.

• Payoffs:

– Stay and θi > m: A

– Stay and θi ≤ m: B

Leave: 0, where B < 0 < A

where m is the mean grade of the students remaining in the class.

• Beliefs: θi ∼ F

When we write down the game we don’t worry about whether there exists
an equilibrium of the game. It is also going to turn out that the initial beliefs
don’t matter that much, so let’s just call it F .

9.2.6 Equilibrium

Given our new set up, we need a new equilibrium concept.

Definition 16. A Bayes Nash equilibrium is an outcome where for each type,
the outcome cannot be improved upon given the strategies of the other players
and beliefs about the distribution of types. Where beliefs are consistent with
equilibrium strategies.

First, we are still assuming Nash equilibrium. Strategies must be optimal
given the strategies of the other players. What is new is this idea of beliefs.

Definition 17. A player’s belief is what the player knows about the distribution
of types playing each strategy.

The equilibrium concept requires that the beliefs of the players be consistent
with the equilibrium strategies. We are assuming that players are choosing
their optimal strategies given expected payoffs. The players may not know
exactly what payoff will occur because they don’t know exactly which type of
player they are playing against.

Here it is important to point out the difference between assumptions about
the game and assumptions about the predictions of the game (the equilibrium
concept). In the game, the players only know their own type and the distribution
of types for the other players. In a Bayes Nash equilibrium, it may be that
players know exactly the type of the other players because their beliefs must
be updated to be consistent with the equilibrium strategies. Hopefully, this
distinction will become clearer as we work through examples.
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9.2.7 Equilibrium of Course Grade Game

Is there an equilibrium where each student only stays in the class if their grade
is an A? No.

We are going to show this using a proof by contradiction. Let c be the
cutoff such that if θi > c, then student i stays; otherwise, they drop. If c is
the same for every student in the class then c is the minimum grade for the
students that stay in the class. Given the letter grades are determined by the
mean grade of students that stay in the class, then m = E(θi|θi > c). The
curve requires that A is given if θi > m and B is given otherwise.

The proposed equilibrium requires that m ≤ c. If c and m exists, then
m = E(θi|θi > c) > c, a contradiction.

9.3 Empirical Entry Game

We first looked at entry games in Chapter 4. Those were static games of
complete information. We revisited entry games in Chapter 5 and again in
Chapter 6. The last time we modeled them as dynamic games of complete
information. Now we are going to revisit them again. This section models
entry games as static games of incomplete information. Comparing our analysis
in this chapter to the analysis in Chapters 4 and 5, the assumptions in this
chapter make the game itself more complicated, but the equilibrium easier to
analyze.

It is worth contemplating the difference between the assumption made here
and in Chapter 5. In both cases in equilibrium the firms don’t know exactly if
the other firm will enter the market. In both cases, they know the probability
that the other firm will enter. These models are different. In the model used in
Chapter 5, each firm knows the value of the unobserved entry costs, ξ. The
econometrician does not know this value, but the firms playing the game do.
Here, the value of ξ is unknown to both the econometrician and some of the
players of the game. This is a subtle distinction but it substantially changes
how we estimate the model.

9.3.1 The Game

• Players: Barnes & Noble (and ξ1i), Borders (and ξ2i)

• Strategies:

– Given ξ1i (and Xi) Barnes & Noble chooses enter or not enter.

– Given ξ2i (and Xi) Borders chooses to enter or not enter.

• Payoffs:
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– Barnes & Noble

∗ Enter: X′
iβ1 − α1 Pr(D2i = 1|ξ1i) + ξ1i

∗ Not Enter: 0

– Borders

∗ Enter: X′
iβ2 − α2 Pr(D1i = 1|ξ2i) + ξ2i

∗ Not Enter: 0

– Beliefs: {ξ1i, ξ2i} ∼ Φ2(0,Σ), where Σ =

[
1 ρ
ρ 1

]
.

whereD1i indicates whether or not Barnes & Noble enters, whileD2i indicates
Borders entry.

This game is similar to the one we used in Chapter 4. There are unobserved
characteristics of the firms and the market, ξ, that are now unobserved by
the other player. These are the player types. Entry is determined by observed
characteristics Xi of the market i and the parameter β which is the same
across markets. The parameter α determines the extent to which competition
from the other firm reduces the benefits of entry into a particular market.

9.3.2 Equilibrium

The difference between this game and what we saw in Chapter 4 is the
assumption about what Barnes & Noble knows about D2 in equilibrium. In
Chapter 4 we assumed that in equilibrium, Barnes & Noble knew the exact
value of D2. They knew whether or not Borders was also entering the market.
In this chapter we assume that in equilibrium Barnes & Noble only knows
the probability that D2 = 1. More precisely, in equilibrium Barnes & Noble
accounts for Border’s equilibrium strategy in Barnes & Noble’s beliefs about
D2. It’s value D2 is determined by the following inequality.

X′
iβ2 − α2D1i + ξ2i > 0 (9.1)

Assume that there exists an equilibrium in cutoff strategies, where the cutoff
values are {c1i, c2i}, respectively. Barnes & Noble’s expectation about Border’s
entry into market i is as follows.

E(D2i|Xi, ξ1i) = Pr(ξ2i > c2i|Xi, ξ1i)
= Pr(ξ2i > −X′

iβ2 + αPr(ξ1i > c1i)|ξ1i)
(9.2)

In determining the probability that Borders will enter, Barnes & Noble must
account for Border’s beliefs that Barnes & Noble will enter. Things are a lot
simpler if we assume that the unobserved term, the ξ’s are independent of each
other. That seems pretty unrealistic. We would expect a lot of things about the
market to be correlated. While Barnes & Noble doesn’t know Border’s costs
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of entering exactly, it does observe its own costs and can make an inference
about Border’s costs.1

Even still, there is a distinct advantage of using games of incomplete
information to model entry. In Chapter 4, there were multiple equilibria at
certain values of the ξs. That is not the case here. The equilibrium is unique
in the cutoff strategies of the firms. The only issue is determining what that
equilibrium is!

9.3.3 Estimating Entry Games

Can we back out the distribution of entry costs by looking at the distribution
firms in different markets? We can. However, we must solve for the equilibrium
in order to do so. It is assumed that the entry costs are distributed bivariate
normal. The question is whether we can estimate the correlation coefficient
(ρ). In a standard bivariate probit model, it is assumed that the actions are
correlated but the optimality of the actions only depend on each other through
the correlation. Here the actions themselves are interdependent.

The seminal work of Guerre et al. (2000) suggests that it is not necessary
to actually solve for the equilibrium. Instead it is simpler to do a “two-step”
procedure and the correlation parameter.

In the first step, we use maximum likelihood to estimate the cutoff value.
In this step, we are not making any claims about the parameter values we
are estimating. We are assuming that the observed data is being generated
by some sort of stationary process. As with any discrete choice type data,
our identification is heavily reliant on parametric assumptions. The likelihood
function is determined by the standard bivariate normal. The probabilities of
the four states are as follows. Note the notation. There is a squiggly line over
all the parameters to remind us that these are not the structural parameters
but the parameter values coming from the reduced form estimation in the first
step.2

Maximizing the log-likelihood function provides estimates of β̃1, β̃2, and ρ̃.
The model for estimating these parameters is presented in Chapter 4.

With this information, we can determine probability of entry for each firm.
These probabilities are estimated because they are based on the parameters
estimates in the first step.

Pr(D1i = 1|Xi, ξ2i) = 1− Φ

(
−Xi

ˆ̃
β1− ˆ̃ρξ2i√
(1− ˆ̃ρ2)

)
Pr(D2i = 1|Xi, ξ1i) = 1− Φ

(
−Xi

ˆ̃
β2− ˆ̃ρξ1i√
(1− ˆ̃ρ2)

) (9.3)

Given the estimated probabilities of entry, we can estimate our structural

1To be clear, we assume that the firms each know all the observed characteristics, Xi as
well as all the parameter values.

2We use the term reduced form to refer to standard empirical estimation techniques
where we are not relying on assumptions about actors generating the data are behaving.
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parameters.
The probabilities are now without the squiggly lines. This is a reminder

that these probabilities are structural estimates. They come from the game
theory model. The probabilities with the squiggly lines are observed in the data
and don’t depend upon any assumptions about how the data are generated.

We also have two extra parameters, α1 and α2. Both firms will enter if
the following inequality holds. The ξs appears in two different places in the
inequalities.

Xiβ1 − α1P̂r(D2i = 1|Xi, ξ1i) + ξ1i > 0

Xiβ2 − α2P̂r(D1i = 1|Xi, ξ2i) + ξ2i > 0
(9.4)

where {ξ1i, ξ2i} ∼ N2(0,Σ) and Σ =

[
1 ρ
ρ 1

]
.

9.3.4 Estimating Entry Games in R

Similarly, we can write out a function to represent the entry inequalities for
the second stage of the estimation (Equation (9.4)). In the code, the extra t

denotes the parameters estimated from the reduced form model (the squiggly
line parameters). Chapter 4 estimates these parameters using f_entry2().

> f_biprobit = function(X, beta_1, beta_2,

+ alpha_1, alpha_2, rho,

+ beta_1t, beta_2t, rhot) {

+ N = dim(X)[1]

+ xi_1 = Z_1

+ xi_2 = Z_2*sqrt(1 - rho^2) + rho*Z_1

+ Xb_1 = X%*%beta_1

+ Xb_2 = X%*%beta_2

+ Xb_1t = X%*%beta_1t

+ Xb_2t = X%*%beta_2t

+ p_00 = p_01 = p_11 = rep(0, N)

+ for(k in 1:K) {

+ D_1k = 1 -

+ pnorm(0, Xb_1t + rhot*xi_1[k], sqrt(1 - rhot^2))

+ D_2k = 1 -

+ pnorm(0, Xb_2t + rhot*xi_2[k], sqrt(1 - rhot^2))

+ pi_1k = Xb_1 - alpha_1*D_2k + xi_1[k]

+ pi_2k = Xb_2 - alpha_2*D_1k + xi_2[k]

+ p_00 = p_00 + (pi_1k < 0 & pi_2k < 0)

+ p_01 = p_01 + (pi_1k < 0 & pi_2k > 0)

+ p_11 = p_11 + (pi_1k > 0 & pi_2k > 0)

+ }

+ return(list(p_00 = p_00/K,

+ p_01 = p_01/K,
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+ p_11 = p_11/K))

+ }

The second step estimator, f_biprobit, uses simulation to calculate the
probabilities. The code uses pnorm() to calculate the probability of entry given
the estimated parameters from the first step.

9.4 Empirical Analysis: Mega Bookstore Entry (Again) using R

This section re-estimates the entry of Barnes & Noble and Borders under the
assumption that each bookstore chain does not know the exact costs of entry
of their competitor. This assumption seems more realistic than the assumption
made in Chapter 4. While the assumption makes the estimator somewhat more
complicated, it has the nice property that there aren’t multiple equilibria.

9.4.1 Estimates

Table 9.1 presents the mean and standard deviation of the coefficient estimates
from the first and second stages of the two-step estimator. The estimates show
that population, college education and the number of bookstores in 1990 are
all important determinants of entry into a county by these two mega bookstore
chains. It also shows that Barnes & Noble is much less likely to enter than
Borders and that the two firms do not like to compete. It is interesting to
compare these results to the results presented in Chapter 4, 5 and 6.

Table ?? presents the model fit excercise comparing the two models with the
actual data. The Bayes Nash equilibrium model does a better job of predicting
the case where there is only one firm in the market, but does a worse job of
predicting the case where there are two firms in the market.

9.4.2 Policy

Given our new estimates, we can reconsider the policy question analyzed in
Chapter 4. In that analysis, the merger resolved a coordination problem for
the firms. In general, the two firms prefer to have only one of them in the
market, but when the firms are independent they cannot coordinate on which
one. In Chapter 4, the firms knew whether or not the other firm was going to
enter, under these model assumptions they do not. The merger resolves the
information problem inherent in the modeling assumptions.

Table 9.2 presents the results of simulating the merger. We see fewer cases
where the two firms compete as well as fewer markets with entry. Theoretically
this model can have ambiguous predictions about the impact of the merger on
consumer welfare, but the empirical estimates suggest that the merger would
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TABLE 9.1
Results from estimates of the first and second stage of the estimates assuming
a Bayes Nash equilibrium. The first set of columns labeled “First Stage” are
estimates assuming that the two firms are making entry decisions that are
strategically independent but statistically independent. These are the same as
the results presented in Chapter 4 for the same model. The second set of columns
labeled “Second Stage” assumes the firm entry decisions are strategically
dependent, but each firm does not know exactly if the other firm will enter,
but assumes their strategy is consistent with observed entry decisions.

First Stage SD BNE SD
const 1 −15.03 0.09 −15.03 0.23
Pop 1 1.09 0.01 1.06 0.02

Income 1 −1.04 0.25 −0.75 0.36
College 1 5.51 0.34 5.85 0.40

Stores 1990 1 0.28 0.07 0.44 0.09
const 2 −11.54 0.11 −11.39 0.17
Pop 2 0.66 0.01 0.63 0.02

Income 2 1.74 0.25 1.80 0.39
College 2 2.59 0.33 2.75 0.54

Stores 1990 2 0.49 0.06 0.70 0.10
alpha 1 0.87 0.22
alpha 2 0.64 0.17

rho −0.08 0.10 −0.01 0.11

TABLE 9.2
Comparison of actual entry in 2000 compared to simulated entry and simulated
entry under a merger assuming a Bayes Nash equilibrium of the entry game.

Actual Sim Merger
none 2919 2643 2857
BN 155 284 222

Borders 15 148 71
both 128 104 29

have lowered consumer welfare.
Compare these predictions to the predictions in Chapter 4. It is the same

policy analysis. What is different is the assumption about the information that
the competitors have.
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9.5 Discussion and Further Reading

Modeling entry games as games of complete information leads to all sorts of
weirdness (Bresnahan and Reiss, 1990; Tamer, 2003). However, when the game
is more realistic by reducing the information available to the players, the game
gets a whole lot simpler to analyze. Seim (2006) uses these ideas to analyze
entry of retail video stores.

The estimator here is based on Guerre et al. (2000). The argument is that
we can assume that the observed data are the result of equilibrium behavior. We
can estimate a reduced form model in the first step and then impose equilibrium
behavioral assumptions to back out the parameters of the underlying game
theory model. We come back to this idea in Chapter 10.

This chapter uses data from Adams and Basker (2025) and their analysis
of entry of the mega bookstores.
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Auctions

10.1 Introduction

According to the travel presenter, Rick Steves, the Aalsmeer auction house is
one the largest commercial buildings in the world. Royal Flora Holland, the
owner of Aalsmeer, sold 12.5 billion plants and flowers in 2016 through its
auction houses. But with $5.2 billion in auction sales, Royal Flora Holland is
nowhere near the biggest auction house in the world.1 That honor may go to
Google. Google sold $47.6 billion in search ads using what the economist, Hal
Varian, called the biggest auction in the world (Varian, 2007).2 While that
is impressive, a single auction in 2015 almost beat Google’s annual number.
The US Federal Communication Commission’s auction number 97 (AWS-3)
raised $44.9 billion dollars for US taxpayers.3 That pails in comparison to the
fact that every week the US Federal government offers billions of dollars in
securities auctions. A single 4-week T-bill auction for July 6 2023 was for $70
billion.

Auctions are used to sell and buy a large number of products. Governments
use auctions to purchase everything from paper to police body cameras. The
US Federal government uses auctions to sell oil drilling rights, FCC spectrum,
10 year bonds and timber access. You can sell and buy items from eBay.com
using auctions.

The auctions at Aalsmeer are unique. The auction runs for a short amount
of time with a “clock” clicking the price down as the auction continues. As the
price falls, the first bidder to hit the button, wins, at whatever price the clock
is at. A spokesperson for Aalsmeer stated that because the price falls, it is
called a Dutch auction. Actually they got the causality backwards. Because
the Dutch popularized these types of auctions for selling flowers, we call them
Dutch auctions.

The auction style you may be most familiar with is called an English
auction. In this auction, there is an auctioneer who often speaks very very
fast and does a lot of pointing while bidders hold up paddles or make hand
gestures. In English auctions, the last bidder wins and pays the price at which
the bidding stops.

1https://www.royalfloraholland.com
2eMarketer.com, 7/26/16
3https://www.fcc.gov/auction/97/factsheet
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Economic analysis of auctions began with William Vickrey’s seminal 1961
paper, Counterspeculation, Auctions, and Competitive Sealed Bid Tenders.
Vickrey pointed out that Dutch auctions and sealed bid auctions are strategi-
cally equivalent. In a standard sealed bid auction each bidder submits a secret
written bid. The auctioneer chooses the highest bid, and the bidder pays the
number written down in her bid.

Vickrey characterized what a bidder should optimally bid in such an auction.
He then showed that the same bidder should bid exactly the same amount in
a Dutch auction. That is, in a Dutch auction, the bidder should wait until
the price falls to the number written down, and then hit the button. Vickrey
showed that while these two auctions formats are strategically equivalent, they
are not strategically equivalent to an English auction.

Vickrey wondered if there was a sealed bid auction that is strategically
equivalent to an English auction. Vickrey invented a new auction. In a Vickrey
auction, each bidder writes down a bid like in a standard sealed bid auction
and the winner is the person who writes down the highest bid. However, the
winner pays the amount written down by the second highest bidder. Vickrey
showed that his auction is strategically equivalent to an English auction.

This chapter discusses two of the most important auction formats, sealed
bid auctions and English auctions. It presents estimators for both. The sealed
bid auction estimation is based on Guerre et al. (2000). The English auction
analysis uses the order statistic approach of Athey and Haile (2002). In both
cases, it presents analysis of timber auctions. The chapter tests whether loggers
are bidding rationally in sealed bid auctions and whether loggers colluded in
English auctions.

10.2 Sealed Bid Auctions

Sealed bid auctions are one of the most commonly used auction formats. These
auctions are very prominent in procurement, both in government and in the
private sector. In a sealed bid auction, each bidder writes down her bid and
secretly submits it to the auctioneer. The auctioneer sorts the bids from highest
to lowest (or lowest to highest if they are buying instead of selling). The winner
is the highest bidder and she pays the amount she wrote down. This is called
a first price auction because the price is determined by the highest bid or first
price.

Vickrey pointed out that sealed bid auctions are strategically complicated.
To see this, assume that a bidder’s utility for an item is equal to their intrinsic
value for the item less the price they pay for the item. For example, a logger
bidding in a timber auction will earn profits from the logs less the price paid
to the US Forestry service for access to the trees. If a logger bids an amount
equal to her expected profits, then if she wins she will earn nothing from the
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logging. It is optimal for the logger to shade her bid down. The problem is
that the more she shades down, the lower her chance of winning the auction.
The bidder must calculate the trade off between the probability of winning
the auction and the value of winning the auction.

The section presents the model of a sealed bid auction, it then simulates
data from such an auction. The section develops an estimator for determining
each bidder’s type, or valuation for the item.

10.2.1 Sealed Bid Model

The sealed bid game has N bidders and each bidder i knows their own type vi.

• Players: N bidders each with valuation vi (type)

• Strategies: For each valuation (type) vi, for bidder i, she chooses a bid
bi(vi).

• Payoffs:

– bi > bj∀j ̸= i: vi − bi

– bi < bj∀j ̸= i: 0

• Beliefs: vi ∼ F

We will ignore ties.4

If the bidder has the highest bid she wins and has a payoff vi − bi, which is
her intrinsic value less the amount of the bid. If she loses she gets nothing.

Assumption 4. Independent Private Values (IPV). Let vi
iid∼ F , where vi is the

value of bidder i and F is the distribution function.

Assumption 4 makes the exposition a lot simpler. It also seems to be a
reasonable approximation for the problems considered in the chapter. It states
that a bidder’s value for the item is unrelated to the values of the other bidders
in the auction, except that they draw their valuation from the same distribution.
The next chapter considers an alternative assumption where valuations are
associated with each other.

10.2.2 Bayes Nash Equilibrium

In equilibrium, the bidder is assumed to maximize her expected returns from
the auction. Assume that the bidder gets 0 if she loses. If she wins, assume she
gets her intrinsic value (vi) for the item less her bid (bi).

maxbi Pr(win|bi)(vi − bi) (10.1)

4If the bid increments are small and the valuations are continuously distributed, then the
probability of a tie is small.
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If we take first-order conditions of Equation (10.1), then we get the following
expression.

g(bi|N)(vi − bi)−G(bi|N) = 0 (10.2)

Let G(bi|N) denote the probability that bidder i is the highest bidder with a
bid of bi, conditional on there being N bidders in the auction, and g(bi|N) is
the derivative. G(bi|N) is the probability that she wins the auction.

We can rearrange this formula to show how much the bidder should shade
her bid.

bi = vi −
G(bi|N)

g(bi|N)
(10.3)

The formula states that the bidder should bid her value, less a shading factor
which is determined by how much a decrease in her bid reduces her probability
of winning the auction.

It will be useful for our code to write the probability of winning the auction
as a function of the bid distribution as this distribution is observed in the data.
Let H(b) denote the distribution of bids in the auctions. Given Assumption
4, the probability of a particular bidder winning the auction is given by the
following equation.

G(bi|N) = H(bi)
N−1 (10.4)

If there are two bidders in the auction, then the probability of winning is
simply the probability that her bid is higher than the other bidder. If there
are more than two bidders, it is the probability that her bid is higher than all
the other bidders. The independent private values assumption, Assumption 4,
implies that this is the probability that each of the other bidders makes a bid
less than hers, all multiplied together.

We can also determine the derivative of this function in terms of the bid
distribution observed in the data.

g(bi|N) = (N − 1)h(bi)H(bi)
N−2 (10.5)

where h is the derivative of the bid distribution H.

10.2.3 Sealed Bid Simulation in R

In the simulated data, each bidder draws their value from a uniform distribution.
Vickrey shows that the optimal bid in this auction is calculated using the
following formula.

bi =
(N − 1)vi

N
(10.6)

In Vickrey’s version of the game, bidders know the function represented by
Equation (10.6). The uniform distribution simplifies the problem, which is why
it is used. In each simulated auction, there are different numbers of simulated
bidders.
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> set.seed(123456789)

> M = 1000 # number of simulated auctions.

> data1 = matrix(NA,M,12)

> for (i in 1:M) {

+ N = round(runif(1, min=2,max=10)) # number of bidders.

+ v = runif(N) # valuations, uniform distribution.

+ b = (N - 1)*v/N # bid function

+ p = max(b) # auction price

+ x = rep(NA,10)

+ x[1:N] = b # bid data

+ data1[i,1] = N

+ data1[i,2] = p

+ data1[i,3:12] = x

+ }

> colnames(data1) = c("Num","Price","Bid1",

+ "Bid2","Bid3","Bid4",

+ "Bid5","Bid6","Bid7",

+ "Bid8","Bid9","Bid10")

> data1 = as.data.frame(data1)

The simulation creates a data set with 1,000 auctions. In each auction,
there is between 2 and 10 bidders. The bidders are not listed in order.

10.2.4 Sealed Bid Estimator

The estimator uses Equation (10.3) to back out values from observed bids. To
do this, we calculate the probability of winning the auction conditional on the
number of bidders. It should be straightforward to determine this from the
data. Once we have this function, we use the formula to determine the bidder’s
valuation from their bid.

The first step is to estimate the bid distribution.

Ĥ(b) =
1

N

N∑
i=1

1(bi < b) (10.7)

The non-parametric estimate of the distribution function, H(b), is the fraction
of bids that are below some value b.5

5A non-parametric estimator makes no parametric assumptions about how the bids are
distributed in the data.
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The second step is to estimate the derivative of the bid distribution. This
can be calculated numerically for some given “small” number, ϵ.6

ĥ(b) =
Ĥ(b+ ϵ)− Ĥ(b− ϵ)

2ϵ
(10.8)

If there are two bidders, Equation (10.3) determines the valuation for each
bidder.

v̂i = bi +
Ĥ(bi)

ĥ(bi)
(10.9)

where i ∈ {1, 2}.

10.2.5 Sealed Bid Estimator in R

The estimator limits the data to only those auctions with two bidders. In this
special case, the probability of winning is just given by the distribution of
bids.7 In the code, the epsilon stands for the Greek letter, ϵ, and refers to a
“small” number. See Equation (10.8).

> f_sealed_2bid = function(bids, epsilon=0.5) {

+ # epsilon for "small" number for finite difference method

+ # of taking numerical derivatives.

+ values = rep(NA,length(bids))

+ for (i in 1:length(bids)) {

+ H_hat = mean(bids < bids[i])

+ # bid probability distribution

+ h_hat = (mean(bids < bids[i] + epsilon) -

+ mean(bids < bids[i] - epsilon))/(2*epsilon)

+ # bid density

+ values[i] = bids[i] + H_hat/h_hat

+ }

+ return(values)

+ }

It is straightforward to calculate the probability of winning, as this is the
probability the other bidder bids less. Given IPV (Assumption 4), this is the
cumulative probability for a particular bid. Calculating the density is slightly
more complicated. We can approximate this derivative numerically by looking
at the change in the probability for a “small” change in the bids.8 The value is
calculated using Equation (10.3).

6This is a finite difference estimator.
7The probability of winning is the probability that your bid is higher than the other

bidders in the auction.
8This is an example of using finite differences to calculate numerical derivatives. What

happens with different values of epsilon?
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The code creates a ggplot() object that shows the density of bids and the
derived valuations from the two-person auctions.

> data2 = data1 |>

+ filter(

+ Num == 2

+ )

> ggplot_sealed = data.frame(

+ "bids" = c(data2$Bid1, data2$Bid2),

+ "values" = f_sealed_2bid(c(data2$Bid1, data2$Bid2))

+ ) |>

+ ggplot() +

+ geom_density(aes(values),

+ fill = "gray",

+ alpha = 0.5) +

+ geom_density(aes(bids),

+ fill="black",

+ alpha = 0.5) +

+ scale_x_continuous(limits = c(-0.5,1.5)) +

+ labs(

+ x = "value",

+ y = "",

+ title = "Density of Bids and Values"

+ ) +

+ geom_text(aes(x = 1.2, y = 0.8, label = "Bids"),

+ color = "gray") +

+ geom_text(aes(x = -0.2, y = 1.2, label = "Values"),

+ color = "gray") +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_sealed

Figure 10.1 shows that the bids are significantly shaded from the true
values, particularly for very high valuations. The figure presents the density
functions for bids and derived valuations from the two-person auctions. The
true density of valuations lies at 0.5 and goes from 0 to 1. Here the estimated
density is a little higher and goes over its bounds. However, part of the reason
may be the method we are using to represent the density in the figure.9 You
should try different values of epsilon to see how that changes things.

9The kernel density method assumes the distribution can be approximated as a mixture
of normal distributions.
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FIGURE 10.1
Plot of the density function for bids and values from 2 person auctions. The
true distribution of valuations has a density of 0.5 from 0 to 1.

10.3 English Auctions

The auction format that people are most familiar with is the English auction.
These auctions are used to sell cattle, antiques, collector stamps, and houses
(in Australia). In the 1970s, they were also the standard format used by the
US Forestry Service to sell timber access (Aryal et al., 2018).

Because bidders can observe each other’s bid as the auction progresses, it
is a dynamic game. To make our life a lot simpler, we will lean heavily on
Vickrey’s analysis and model these auctions as second price sealed bid auctions.

The section presents the game under the assumption of a second price
sealed bid auction and determines the Bayes Nash equilibrium. It then switches
focus to estimating valuations from English auctions. Often in these auctions,
we only observe the winning bid, or the price, and possibly the number of
bidders. Because of this limitation on the data we will use an idea of an order
statistic and a result from Athey and Haile (2002).
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10.3.1 Second Price Auction Game

The game is a second price sealed bid auction with N bidders and valuations
vi.

• Players: N bidders with valuation vi

• Strategies: Each bidder i chooses a bid given their valuation for the item,
bi(vi).

• Payoffs:

– bi > bj∀j ̸= i: vi − b2, where b2 is the bid of the second highest bidder.

– bi < bj∀j ̸= i: 0

• Beliefs: vi ∼ F

In addition to assuming away the dynamics, we assume away bid increments
that may make our life complicated.

10.3.2 Bayes Nash Equilibrium

Vickrey showed that English auctions are strategically very simple. Imagine
a bidder hires an expert auction consultant to help them bid in an English
auction.

• Expert: “What is your value for the item?”

• Bidder: “$2,300”

• Expert: “Bid up to $2,300 and then stop.”

In sealed bid auctions, there is an optimal trade-off between winning and
profiting from the auction. In second price auctions, there is no such trade-off.

The optimal bid for bidder i is to bid her value.

bi = vi (10.10)

Equation (10.10) suggests that empirical analysis of English auctions is a lot
simpler than for sealed bid auctions. If only that were so! To be clear, the “bid”
in Equation (10.10) means the strategy described by the expert. In the data,
we do not necessarily observe this strategy.

If we could observe all the bid strategies in the auction, then we would
have an estimate of the value distribution. But that tends to be the problem.
Depending on the context, not all active bidders in the auction may actually
be observed making a bid. In addition, if the price jumps during the auction
we may not have a good idea when bidders stopped bidding (Haile and Tamer,
2003).
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Athey and Haile (2002) provide a solution. They point out that the price
in an English auction has a straightforward interpretation. When valuations
follow Assumption 4, the price is the second highest valuation of the people
who bid in the auction. Consider the case when the price is lower than the
second highest valuation. How could that be? Why did one of the bidders exit
the auction at a price lower than her valuation? What if the price is higher
than the second highest valuation? How could that be? Why would a bidder
bid more than her valuation?

If the price is equal to the second highest valuation, then it is a particular
order statistic of the value distribution. Athey and Haile (2002) show how
the observed distributions of an order statistic uniquely determine the value
distribution.

10.3.3 Order Statistics

To understand how order statistics work, consider the problem of determining
the distribution of heights of players in the WNBA. The obvious way to do it
is to take a data set on player heights and calculate the distribution. A less
obvious way is to use order statistics.

In this method, data are taken from a random sample of teams, where for
each team, the height of the tallest player is measured. Assume each team
has 10 players on the roster and you know the height of the tallest, say the
center. This is enough information to estimate the distribution of heights in
the WBNA. We can use the math of order statistics and the fact that we know
both the height of the tallest and we know that 9 other players are shorter. In
this case we are using the tallest, but you can do the same method with the
shortest or the second tallest, etc.

The price is more or less equal to the second highest valuation of the bidders
in the auction.10 The probability of the second highest of N valuations is equal
to some value b which is given by the following formula:

Pr(b(N−1):N = b) = N(N − 1)F (b)N−2f(b)(1− F (b)) (10.11)

The order statistic notation for the second highest bid of N is b(N−1):N . We
can parse this equation from right to left. It states that the probability of
seeing a price equal to b is the probability that one bidder has a value greater
than b. This is the winner of the auction and this probability is given by
1− F (b), where F (b) is the cumulative probability of a bidder’s valuation less
than b. This probability is multiplied by the probability that there is exactly
one bidder with a valuation of b. This is the second highest bidder who is
assumed to bid her value. This is represented by the density function f(b).11

These two values are multiplied by the probability that the remaining bidders

10Officially, the price may be a small increment above the bid of the second highest bidder.
We will ignore this possibility.

11This is the derivative of F (b).
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have valuations less than b. If there are N bidders in the auction then N − 2
of them have valuations less than the price. The probability of this occurring
given Assumption 4 is F (b)N−2. Lastly, the labeling of the bidders is irrelevant
so there are N !

1!(N−2)! = N(N − 1) possible combinations. If the auction has

two bidders, then the probability of observing a price p is 2f(p)(1− F (p)).
The question raised by Athey and Haile (2002) is whether we can use

this formula to determine F . Can we use the order statistic formula of the
distribution of prices to uncover the underlying distribution of valuations? Yes.

10.3.4 Identifying the Value Distribution

Let’s say we observe a two bidder auction with a price equal to the lowest
possible valuation for the item; call that v0. Actually, it is a lot easier to think
about the case where the price is slightly above the lowest possible value. Say
that the price is less than v1 = v0 + ϵ, where ϵ is a “small” number. What
do we know? We know that one bidder has that very low valuation, which
occurs with probability equal to F (v1). What about the other bidder? The
other bidder may also have a value equal to the lowest valuation or they may
have a higher valuation. That is, their value for the item could be anything.
The probability of value lying between the highest and lowest possible value is
1. So Pr(p ≤ v1) = 2× 1× F (v1) and either bidder could be the high bidder.
There are 2 possibilities, so we must multiply by 2. As the probability of a
price less than v1 is observed in the data, we can rearrange things to get the
initial probability, F (v1) = Pr(p ≤ v1)/2.

Now take another value, v2 = v1 + ϵ. The probability of observing a price
between v1 and v2 is as follows.

Pr(p ∈ (v1, v2]) = 2(F (v2)− F (v1))(1− F (v1)) (10.12)

It is the probability of seeing one bidder with a value between v2 and v1 and
the second bidder with a value greater than v1. Again, the two bidders can be
ordered in two ways.

We can solve F (v2) using Equation (10.12). We observe the quantity on
the left-hand side and we previously calculated F (v1).

For a finite subset of the valuations, we can use this iterative method to
calculate the whole distribution. More generally, we would use differential
equations. For this to work, each bidder’s valuation is assumed to be indepen-
dent of the other bidders and comes from the same distribution of valuations
(Assumption 4).

10.3.5 English Auction Estimator

The non-parametric estimator of the distribution follows the logic above.
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The initial step determines the probability at the minimum value,

F̂ (v1) =

∑M
j=1 1(pj ≤ v1)

2M
(10.13)

where there are M auctions and pj is the price in auction j.
To this initial condition, we can add an iteration equation.

F̂ (vk) =

∑M
j=1 1(vk < pj ≤ vk+1)

2M(1− F̂ (vk−1))
+ F̂ (vk−1) (10.14)

These equations are then used to determine the distribution of the valuations.

10.3.6 English Auction Estimator in R

We can estimate the distribution function non-parametrically by approximating
it at K = 100 points evenly distributed across the range of observed values.
The estimator is based on Equations (10.13) and (10.14).

> f_English_2bid = function(price, K=100, epsilon=1e-8) {

+ # K number of finite values.

+ # epsilon small number for getting the probabilities

+ # calculated correctly.

+ min1 = min(price)

+ max1 = max(price)

+ diff1 = (max1 - min1)/K

+ Fv = matrix(NA,K,2)

+ min_temp = min1 - epsilon

+ max_temp = min_temp + diff1

+ # determines the boundaries of the cell.

+ Fv[1,1] = (min_temp + max_temp)/2

+ gp = mean(price > min_temp & price < max_temp)

+ # price probability

+ Fv[1,2] = gp/2 # initial probability

+ for (k in 2:K) {

+ min_temp = max_temp - epsilon

+ max_temp = min_temp + diff1

+ Fv[k,1] = (min_temp + max_temp)/2

+ gp = mean(price > min_temp & price < max_temp)

+ Fv[k,2] = gp/(2*(1 - Fv[k-1,2])) + Fv[k-1,2]

+ # cumulative probability

+ }

+ return(Fv)

+ }
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10.4 Empirical Analysis: Testing the Rationality of
Loggers using R

In the 1970s, the US Forest Service conducted an interesting experiment. It
introduced sealed bid auctions in 1977. Previous to that, most US Forest
Service auctions had been English auctions.12 In 1977, the service mixed
between auction formats. As discussed above, bidding in sealed bid auctions
is strategically a lot more complicated than bidding in English auctions. In
the latter, the bidder simply bids her value. In the former, she must trade off
between bidding higher and increasing the likelihood of winning against paying
more if she does win.

Because of the experiment, we can test whether the loggers in the sealed
bid auctions bid consistently with their actions in the English auctions. Our
test involves estimating the underlying value distribution using bid data from
sealed bid auctions and comparing that to an estimate of the underlying
value distribution using price data from English auctions. These two value
distributions are the same under the assumptions of the game theory model.

10.4.1 Timber Data

The data used here are from the US Forest Service downloaded from Phil
Haile’s website.13

In order to estimate the distributions of bids and valuations it is helpful
to “normalize” them so that we are comparing apples to apples. The standard
method is to use a log function of the bid amount and run a linear regression
on various characteristics of the auction including the number of acres bid on,
the estimated value of the timber, access costs and characteristics of the forest
and species (Haile et al., 2006).14

The code brings in the data and uses lm() to create the object lm1. The
regression creates dummy variables for the different tree species, regions, forests
and districts using as.factor(). It then creates a normalized bid using the
residuals from the linear regression.

> file = paste0(dir, "auctions.csv")

> df = read.csv(file)

> lm1 = lm(log_amount ~ as.factor(Salvage) + Acres +

12You may think of this as just some academic question. But the US Senator for Idaho,
Senator Church, was not happy with the decision. “In fact, there is a growing body of
evidence that shows that serious economic dislocations may already be occurring as a result
of the sealed bid requirement.” See Congressional Record September 14 1977, p. 29223.

13http://www.econ.yale.edu/~pah29/timber/timber.htm. The version used here
is available from here: https://sites.google.com/view/microeconometricswithr/

table-of-contents.
14Baldwin et al. (1997) discuss the importance of various observable characteristics of

timber auctions.

http://www.econ.yale.edu/~pah29/timber/timber.htm
https://sites.google.com/view/microeconometricswithr/table-of-contents
https://sites.google.com/view/microeconometricswithr/table-of-contents
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+ Sale.Size + log_value + Haul +

+ Road.Construction + as.factor(Species) +

+ as.factor(Region) + as.factor(Forest) +

+ as.factor(District), data=df)

> # as.factor creates a dummy variable for each entry under the

> # variable name. For example, it will have a dummy for each

> # species in the data.

> df$norm_bid = NA

> df$norm_bid[-lm1$na.action] = lm1$residuals

> # lm object includes "residuals" term which is the difference

> # between the model estimate and the observed outcome.

> # na.action accounts for the fact that lm drops

> # missing variables (NAs)

In general, we are looking for a normal-like distribution. Figure 10.2 presents
the histogram of the normalized log bids. It is not required that the distribution
be normal, but if the distribution is quite different from normal, you should
think about why that may be. Does this distribution look normal?15

10.4.2 Sealed Bid Auctions

In order to simplify things, we will limit the analysis to two-bidder auctions.
In the data, sealed bid auctions are denoted “S”.

> df1 = df |>

+ filter(

+ num_bidders == 2 &

+ Method.of.Sale == "S"

+ ) |>

+ mutate(

+ bids = as.vector(norm_bid),

+ values = f_sealed_2bid(norm_bid)

+ )

> summary(df1$bids)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.0262 -0.7987 -0.1918 -0.2419 0.3437 5.0647

> summary(df1$values)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.0262 -0.0218 0.9185 4.8704 2.3108 860.0647

Using the same method that we used above, it is possible to back out
an estimate of the value distribution from the bids in the data. We see that

15It is approximately normal, but it is skewed somewhat to lower values. This may be due
to low bids in the English auction. How does the distribution look if only sealed bids are
graphed?
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> df |>

+ ggplot() +

+ geom_histogram(aes(x = norm_bid),

+ fill = "gray",

+ alpha = 0.5) +

+ scale_x_continuous(limits = c(-3,2.5)) +

+ labs(

+ x = "bid",

+ y = "",

+ title = "Histogram of Bids"

+ ) +

+ theme(axis.text.y = element_blank(),

+ axis.ticks.y = element_blank())

−3 −2 −1 0 1 2
bid

Histogram of Bids

FIGURE 10.2
Histogram of normalized bid residual for US Forest Service auctions from 1977.

comparing the valuations to the bids, the bids are significantly shaded particu-
larly for higher valuations. The negative numbers may seem odd but remember
we have normalized the bids in the auction.

10.4.3 Comparing English Auctions to Sealed Bid Auctions

We can back out the value distribution from the English auctions by assuming
that the price is the second highest bid, the second highest order statistic. The
English auctions are denoted “A”.
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The function f_English_2bid estimates the cumulative probability func-
tion for the value distribution.

> df2 = df |>

+ filter(

+ num_bidders == 2 &

+ Method.of.Sale == "A" &

+ Rank == 2

+ )

> Fv_english = f_English_2bid(df2$norm_bid)

To calculate the equivalent for the sealed bid auctions, we can use the
ecdf() function.

> Fv_sealed = ecdf(df1$values)

Cumulative percentage of valuations

Normalized values
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FIGURE 10.3
Comparison of estimated distributions from two bidder English and sealed bid
auctions. The estimate from the English auction and the sealed bid auction
are similar to about 0, then estimate from English auctions places more weight
on lower valuations than the estimate from the sealed bid auctions.

Figure 10.3 shows that there is not a whole lot of difference between the
estimate of the distribution of valuations from sealed bid auctions and English
auctions. The two distributions of valuations from the sealed bid auctions and
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English auctions lie fairly close to each other, particularly for lower values.
This suggests loggers are bidding rationally. That said, at higher values, the
two distributions diverge. The value distribution from the sealed bid auctions
suggests that valuations are higher than the estimate from the English auctions.
What else may explain this divergence?

10.5 Empirical Analysis: Testing for Collusion using R

Is there evidence that bidders in English auctions are colluding? This section
presents a test of collusion based on using auction theory to back out the
implied value distribution of the bidders in the larger English auctions. We can
compare the implied distribution to the distribution we have estimated above.

10.5.1 A Test of Collusion

Consider the following test of collusion. Using large English auctions, we can
estimate the distribution of valuations. Under the prevailing assumptions of
the game theory model, this estimate should be the same as for two-bidder
auctions. If the estimate from the large auctions suggests valuations are much
lower than for two-bidder auctions, this suggests collusion.

Specifically, if the inferred valuations in these larger auctions look much
like auctions with fewer bidders. That is, bidders may behave “as if” there are
actually fewer bidders in the auction. For example, if there is an active bid ring,
bidders may have a mechanism for determining who will win the auction and
how the losers may be compensated for not bidding.16 In an English auction,
it is simple to enforce a collusive agreement because members of the bid ring
can bid in the auction where their bids are observed.

Can we determine the size of the bid ring? How many people are bidding
collusively? What if we have an auction with six bidders? If three of them are
members of a bid ring, then those three will agree on who should bid from
the ring. Only one of the members of the bid ring will bid their value. If we
estimate the model under the assumption that there are four independent
bidders, it will match the value distribution we estimated from the two bidder
auction.17

16Asker (2010) presents a detailed account of a bid ring in stamp auctions.
17In the bid ring mechanism discussed in Asker (2010), the collusion actually leads to

higher prices in the main auction.
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10.5.2 “Large” English Auctions

Assume there are six bidders in the auction. From above, the order statistic
formula for this case is as follows.

Pr(b5:6 = b) = 30F (b)4f(b)(1− F (b)) (10.15)

As above, order statistics are used to determine the underlying value distribu-
tion (F ); however, in this case, it is a little more complicated to determine the
starting value.

Think about the situation where the price in a 6 bidder auction is observed
at the minimum valuation. What do we know? As before, one bidder may
have a value equal to the minimum or a value above the minimum. That is,
their value could be anything. The probability of a valuation lying between the
minimum and maximum value is 1. We also know that the five other bidders
had valuations at the minimum. If not, one of them would have bid more
and the price would have been higher. As there are six bidders, there are six
different bidders that could have had the highest valuation. This reasoning
gives the following formula for the starting value.

Pr(b5:6 < v1) = 6F (v1)
5 (10.16)

Rearranging, we have F (v1) =
(

Pr(p<v1)
6

) 1
5

.

Given this formula we can use the same iterative method as for two-bidder
auctions to solve for the distribution of valuations.

10.5.3 Large English Auction Estimator

Again we can estimate the value distribution by using an iterative process. In
this case, we have the following estimators.

F̂ (v1) =

(∑M
j=1 1(pj < v1)

6M

) 1
5

(10.17)

and

F̂ (vk) =

∑M
j=1 1(vk < pj < vk+1)

30MF̂ (vk−1)4(1− F̂ (vk−1))
+ F̂ (vk−1) (10.18)

The other functions are as defined in the previous section.
We can also solve for the implied distribution under the assumption that

there are three bidders and under the assumption that there are two bidders.18

Note in each auction there are at least six bidders.19

18See Equation (10.11) for the other cases.
19For simplicity, it is assumed that all of these auctions have six bidders. Once there are

a large enough number of bidders in the auction, prices do not really change with more
bidders. In fact, these methods may not work as the number of bidders gets large (Deltas,
2004).
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10.5.4 Large English Auction Estimator in R

We can adjust the estimator above to allow any number of bidders, N .

> f_English_Nbid = function(price, N, K=100, epsilon=1e-8) {

+ min1 = min(price)

+ max1 = max(price)

+ diff1 = (max1 - min1)/K

+ Fv = matrix(NA,K,2)

+ min_temp = min1 - epsilon

+ max_temp = min_temp + diff1

+ Fv[1,1] = (min_temp + max_temp)/2

+ gp = mean(price > min_temp & price < max_temp)

+ Fv[1,2] = (gp/N)^(1/(N-1))

+ for (k in 2:K) {

+ min_temp = max_temp - epsilon

+ max_temp = min_temp + diff1

+ Fv[k,1] = (min_temp + max_temp)/2

+ gp = mean(price > min_temp & price < max_temp)

+ Fv[k,2] =

+ gp/(N*(N-1)*(Fv[k-1,2]^(N-2))*(1 - Fv[k-1,2])) +

+ Fv[k-1,2]

+ }

+ return(Fv)

+ }

10.5.5 Evidence of Collusion

We limit the auctions to ones with more than five bidders.

> df3 = df |>

+ filter(

+ num_bidders > 5 &

+ Method.of.Sale == "A" &

+ Rank == 2

+ )

We can estimate the value distribution under the assumption that there are
six bidders in the auction. We can also estimate the value distribution under
the assumption that there are three bidders and two bidders. The results are
presented in Figure 10.4.

> Fv_6 = f_English_Nbid(df3$norm_bid, N = 6)

> Fv_3 = f_English_Nbid(df3$norm_bid, N = 3)

> Fv_2 = f_English_2bid(df3$norm_bid)
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FIGURE 10.4
Comparison of estimated distribution of valuations from English auctions with
at least 6 bidders. These estimates are compared to the estimate from 2 bidder
auctions which is labeled “true.”The estimate of the 6-bidder auctions suggests
valuations are much lower than for the 2-bidder auctions.

Figure 10.4 suggests that there is in fact collusion in these auctions! As-
suming there are 6 bidders in the auction implies that valuations are much
lower than we estimated for 2 bidder auctions from both English auctions and
sealed bid auctions. In the chart, the distribution function is shifted to the left,
meaning there is greater probability of lower valuations.

In theory, these two estimates should be the same or very close. Remember
we are estimating the underlying value distribution which is unrelated to the
number of bidders in the auction. The estimate with 6 bidders suggests that
bidders value the timber much lower than when there are 2 bidders. If we
don’t think there is any collusion in 2 bidder auctions, then these estimates
provide the ground truth. These estimates tell us how the timber is valued.
This implies that the reason the value distribution is lower is not that the
values are lower, but that the bids are lower.

If there are 5 bidders in the ring, then bidders will bid as if they are in a 2
bidder auction. We can estimate the value distribution assuming that there are
2 bidders in the auction. The result is that the estimated value distribution is
higher than the ground truth. Either the 2 bidders are bidding too much or
there are more than 2 independent bidders in the auction.
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If there are 4 bidders in the ring, then bidders will bid as if they are in a 3
bidder auction. Estimates assuming there are three bidders and two bidders
lie above and below the true value, respectively. This suggests that bidders are
behaving as if there are between two and three bidders in the auction. This
implies that the bid ring has between four and five bidders in each auction.

These results are suggestive of an active bid ring in these auctions in 1977.
It turns out that this was of real concern. In 1977, the United States Senate
conducted hearings into collusion in these auctions. In fact, this may be why
the US Forestry Service looked into changing to sealed bid auctions. The US
Department of Justice also brought cases against loggers and millers (Baldwin
et al., 1997). Alternative empirical approaches have also found evidence of
collusion in these auctions, including Baldwin et al. (1997) and Athey et al.
(2011).

10.6 Discussion and Further Reading

Economic analysis of auctions began with Vickrey’s 1961 paper. Vickrey used
game theory to analyze sealed bid auctions, Dutch auctions and English
auctions. Vickrey also derived a new auction, the sealed bid second price
auction.

The chapter considers two of the most important auction mechanisms,
sealed bid auctions and English auctions. The sealed bid auctions are analyzed
using the two-step procedure of Guerre et al. (2000). The first step uses non-
parametric methods to estimate the bid distribution. The second step uses the
Nash equilibrium to back out the value distribution.

While we observe all the bids in the sealed bid auctions, we generally only
observe the high bids in English auctions. The chapter uses the order statistic
approach of Athey and Haile (2002) to estimate the value distribution from
these auctions.

Baldwin et al. (1997) and Athey et al. (2011) analyze collusion in US timber
auctions. Aryal et al. (2018) uses US timber auctions to measure how decision
makers account for risk and uncertainty.
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Auctions with Affiliated
Valuations

11.1 Introduction

The previous chapter assumed that bidder’s valuations are independent of each
other. This substantially simplified both the game theory and the econometrics.
In this chapter we are going to relax this assumption. Now we will allow for
bidder valuations to be dependent. These types of auctions are called affiliated
private values auctions.

The conical example is bidding on the right to drill for oil in the US’s
outer continental shelf (OCS). The amount of oil that can be pulled out of the
ground has nothing to do with the bidder. Similarly, the price of that oil has
little or nothing to do with the identity of the bidder.1

The chapter analyzes common value auctions and takes the game theory
model to OCS auctions. The chapters asks whether bid rings should be allowed
in these auctions.

11.2 Auctions with Common Values

Here we consider auctions where the bidder’s valuations are interdependent.
The simplest case of such interdependence is the pure common value auction.
In this auction, bidder’s don’t know the exact value of the item they are
bidding on. Each bidder draws a signal about the true value of the item such
that if all the signals were aggregated, then that would provide a pretty close
approximation of the true value of the item.

The classic example is bidders considering how much to bid for the rights
to drill for oil in a particular area. The oil field has a particular amount of oil
worth a particular value. While unknown, it has nothing to do with who is
bidding. The value of the oil field is the same to all bidders. They just don’t

1Of course, some bidders may have market power in the oil market.
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know what it is. Oil companies, the bidders, will hire different geologists with
different models, equipment, and expertise to estimate the value of the oil field.
These geologists will come up with different guesses. We call these guesses,
signals of the oil field’s value.

The section presents the game and the Bayes Nash equilibrium of the
auction. It discusses an idea called the winner’s curse, which leads bidders to
shade their bid down in equilibrium. The section presents an estimator for
common value auctions and illustrates the estimator using simulated data.

11.2.1 Simple Model

The auction game has N bidders with signals si. The signals are drawn from a
normal distribution with mean v and variance σ2. The true value of the item
is v. Each bidder’s bid is a function of their signal, bi(si). The bidder with the
highest bid wins the auction and pays their bid. If the bidder wins, they get
the true value of the item, v. If the bidder loses, they get nothing.

• Players: N bidders and signals (types) si ∈ ℜ.

• Strategies: Each bidder i observes a signal (si) and chooses a bid bi(si).

• Payoffs:

– bi > bj∀j ̸= i: v − bi(si)

– If ∃j s.t. bi < bj : 0

• Beliefs: si ∼ N (v, σ2), where v is the true value of the item.

If the player i wins, they get v which doesn’t have a subscript. This is because
it is the same for every bidder. What varies is between bidders, is their signal
si. Bidders know that their signal is drawn from a normal distribution with
mean v but they do not know v.

11.2.2 Winner’s Curse

The winner is the bidder with the highest bid. Consider what happens if all
bidders bid their valuations. In that case, the winner bids sN :N (using order
statistic notation) which is going to be substantially higher than v.

> set.seed(123456789)

> N = 10

> v = 5

> s = rnorm(N, v)

> max(s)

[1] 6.415538
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In the example with 10 bidders, the winner bids 6.42, which much higher
than the true value 5. The winner really loses. The bidders should adjust their
strategy by shading their bid down in order to account for the winner’s curse.

11.2.3 Bayes Nash Equilibrium

We often see common value auctions that are also first price auctions. Bidders
are shading their bids for two different reasons. First, as in the previous chapter,
they are shading their bid because it is a first price auction and they need to
account for winning and paying what they bid. Second, these bidders have to
account for the fact that if they win the auction it is because their signal is
higher than everyone else’s and thus higher than the true value of the item.

To make things simpler, let’s assume that bidders bid their expected value
for the item. Assume that bidders use Bayes rule and their expected value is
conditional on both the signal that they observe and on the fact that they
won the auction. Of course, they don’t actually know whether they win the
auction or not, but their bid is of no importance if they lose. The bidder is
thinking through the cases. The only case of interest is the case where the
bidder won the auction. They realize that if they won the auction, their bid
must, by definition, have been the highest bid.

Again, trading off winning and the amount paid is left out for the moment.
So how much information does the bidder have? You may think that they
don’t have much because all they have is one signal, but it turns out that they
know a lot more than that. Because they won the auction, they know that
their signal must be higher than everyone else’s. So that tells them quite a lot
about every body else’s signal.

Chapter 10 illustrates how order statistics work. The probability that a
particular signal s is the highest order statistic (sN :N ) is given by the following
equation assuming that all the signals are drawn independently from the
distribution F (s|µ, σ). The probability that a particular s is higher than all
the other signals is then G(s|N,µ, σ) = F (s|µ, σ)N−1 where µ represents the
different possible values of the true value v and there are N − 1 other signals.
The derivative is then g(s|N,µ, σ) = (N − 1)f(s|µ, σ)F (s|µ, σ)N−2.

We can use this likelihood to determine the bidder’s expected value for the
item conditional on submitting the winning bid. We just need to use Bayes rule.
To determine the expected value, we need the probability that a particular
distribution is generating the signals we observe.

γ(µ, σ|s = sN :N ) =
g(s|N,µ, σ)∑

µ′,σ′ g(s|N,µ′, σ′)
(11.1)

If we know all the possible µs and σs and assume a normal distribution and
assume that the prior over µs and σs is uniform, then Equation (11.1) gives
the probability that the observed signals are generated by a particular µ and
σ.
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Consider a simple version where µ = v, the true value and σ = 1. In this
case g(s|N, v) = (N − 1)ϕ(s − v)Φ(s − v)N−2 and ϕ() and Φ represent the
standard normal’s density and probability function, respectively.

The expected value of the item given that the bidder has the highest signal,
s = sN :N , is then given by following function.

E(v|N, s) =

∫
v′
v′γ(v′|s = sN :N )d(v′) (11.2)

where γ() is defined in Equation (11.1). Given N bidders and a signal s the
expected value of the true bid is the integral over the possible true values
weighted by the γ() function assuming that s is the highest signal. Remember
σ = 1.

Now we have how much the bidder values the item, the next question is
how much to bid. Remember this is a sealed bid auction, so it is still the case
that the bidder is trading off the value of winning against the probability of
winning.

bi(si) = E(v|N, si)−
G(bi|N, si)

g(bi|N, si)
(11.3)

So we need to determine the probability of winning conditional on the bid-
der’s signal. The simplest assumption to make is that equilibrium bids are
monotonically increasing in the signal. This doesn’t seem unreasonable.

Given our monotonicity assumption, the probability of winning is just the
probability of having the highest signal. We have that G(bi|N, si) = F (si|v)N−1

and g(bi|N, si) = (N − 1)f(si|v)F (si|v)N−2, which not coincidentally is similar
function that we defined previously.

11.2.4 Common Value Auction in R

Below we create all the probability functions that we need for bidding in first
price auctions with common values. It is a little confusing because we are using
order statistics for two different things. First, there is the standard method
discussed in the previous chapter where the bidder is determining the optimal
bid for a first price auction. Second, the bidder is using order statistics to back
out their expectation of the value for the item given the signal they observed
and conditional upon winning the auction.

The signal distribution is a normal distribution denoted F , where f is the
density. We use log_F() and log_f(). Given N bidders, the distribution of
the highest signal is denoted by G and we use log_G() and log_g() for the
density. The function dnorm() calculates the density of the normal distribution
and pnorm() calculates the probability of the normal distribution.

> log_f = function(s, v, sigma = 1)

+ log(dnorm(s, v, sigma))

> log_F = function(s, v, sigma = 1)

+ log(pnorm(s, v, sigma))
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> log_G = function(s, v, sigma = 1, N) (N-1)*log_F(s, v, sigma)

> log_g = function(s, v, sigma=1, N) log(N-1) +

+ log_f(s, v, sigma) +

+ (N-2)*log_F(s, v, sigma)

Given these probabilities, we can determine the bidder’s expected value
for the item and their bid. The expectation function E_fun() takes in two
global variables u and sig. These are the possible parameters of the normal
distribution determining the signals observed by the bidders. Lastly, there is
the bid function b_fun() based on Equation (11.3).

> E_fun = function(s, N) {

+ g_u = matrix(NA,length(u),length(sig))

+ u_mat = matrix(NA, length(u), length(sig))

+ for(j in 1:length(sig)) {

+ g_u[,j] = exp(log_g(s, u, sig[j], N))

+ u_mat[,j] = u

+ }

+ sum_g_u = sum(g_u)

+ gamma_u = g_u/sum_g_u

+ mu = sum(u_mat*gamma_u)

+ sigma = sqrt(sum(u_mat^2*gamma_u) - mu^2)

+ return(list(mu=mu, sigma=sigma))

+ }

> b_fun = function(s, N) {

+ v_bar = E_fun(s, N)

+ G = exp(log_G(s, v_bar$mu, v_bar$sigma, N))

+ g = exp(log_g(s, v_bar$mu, v_bar$sigma, N))

+ return(v_bar$mu - G/g)

+ }

11.2.5 Simulation of Common Value Auction using R

It helps to work through a simulation. There are 100 auctions and the number
of bidders varies. The true value is 0 for each auction, and the signal is
distributed standard normal. The function seq() calculates a sequence of
numbers between the first and second values with the third value as the step.
The function rnorm() generates random numbers from a normal distribution.
The function sample() randomly samples from a set of numbers. The function
rep() repeats a number a certain number of times.

The code uses sapply() to loop through the signals and calculate the
expected value and bid for each signal.

> set.seed(123456789)

> M = 100
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> N = NULL

> bids = NULL

> ids = NULL

> values = NULL

> u = seq(-10, 10, 0.15)

> sig = seq(0.1, 3, 0.15)

> Ns = sample(3:4, M, replace=TRUE)

> v = rep(0, M)

> sigma = 1

> for(i in 1:M) {

+ ids = c(ids, rep(i, Ns[i]))

+ N = c(N, rep(Ns[i], Ns[i]))

+ s_i = rnorm(Ns[i], v[i], sigma)

+ values = c(values,

+ sapply(1:length(s_i),

+ function(j) E_fun(s_i[j],

+ Ns[i])$mu))

+ bids = c(bids,

+ sapply(1:length(s_i),

+ function(j) b_fun(s_i[j],

+ Ns[i])))

+ }

The code below creates a density plot of the bids and the expected values.
The bids are shifted down from the expected values. The expected values are
shifted down from the signal distribution in equilibrium.

> ggplot_sim_cv_bids = data.frame(

+ bids = bids,

+ values = values

+ ) |>

+ ggplot(aes(bids)) +

+ geom_density(alpha = 0.5) +

+ geom_density(aes(values), linetype = 2, alpha = 0.5) +

+ labs(

+ x = "values/bids",

+ y = "",

+ title = "Density of bids and values"

+ ) +

+ geom_vline(xintercept = 0, linetype = 2,

+ color = "gray") +

+ geom_text(aes(x = -5, y = 0.2, label = "bids"),

+ color = "gray") +

+ geom_text(aes(x = 2, y = 0.2, label = "values"),

+ color = "gray") +
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+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())
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FIGURE 11.1
Plot of the density of the bids and expected values in a first price common
values auction. Bids are shifted down from valuations because it is a first price
auction.

Figure 11.1 presents the observed bids and the estimated values. As we saw
in the IPV case, bids are significantly shaded down from values for first price
auctions. Expected values are also significantly shaded down from the original
signal observed by the bidder. These expected values are conditional on the
signal assuming that signal is highest signal in the Bayes Nash equilibrium.
The actual signal is distributed around zero.

11.2.6 Estimator for Common Values Auctions

The estimator reverse engineers the signal distribution from the bid distribution.
We know from Equation (11.3) and the discussion in Chapter 10 that we can
identify the distribution of the expected values conditional on the signal.
Unfortunately, it not generally possible to uniquely determine the signal
distribution from the expected value distribution. We will need to rely on
parametric restrictions.
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11.2.7 Common Values Estimator in R

To estimate the underlying signal distribution from the observed bids, we will
combine maximum likelihood with simulation. The estimator chooses the µ
and σ of the signal distribution that maximizes the likelihood of the observed
bids given the game theory assumption that bidders bid their expected value
conditional on their signal being the highest.

The estimator works by taking a set of parameter values for the distri-
bution of signals, mu and sigma, and simulating the resulting bids, b_sim. It
simulates the signals, then loops through the simulated signals and creates the
corresponding simulated bids. It then calculates the log likelihood of observing
the observed bids (bids_temp) given the derived parameters from the bid
distribution. It does this for each size of auction in the data.

> f_bid_ml = function(mu, sigma, bids_temp, N_temp, s) {

+ Ns = unique(N_temp)

+ log_lik = rep(NA, length(bids_temp))

+ for(i in 1:length(Ns)) {

+ N_i = Ns[i]

+ index = which(N_temp==Ns[i])

+ b_sim = sapply(1:length(s), function(i) b_fun(s[i], N_i))

+ mu_i = mean(b_sim, na.rm = TRUE)

+ sigma_i = sd(b_sim, na.rm = TRUE)

+ z_i = (bids_temp[index] - mu_i)/sigma_i

+ log_lik[index] = log(dnorm(z_i)) - log(sigma_i)

+ }

+ return(log_lik)

+ }

> f_bid_ml_int = function(par, bids_temp, N_temp) {

+ set.seed(123456789)

+ mu = par[1]

+ sigma = exp(par[2])

+ s = U*sigma + mu

+ return(-sum(f_bid_ml(mu, sigma, bids_temp, N_temp, s)))

+ }

This estimator requires three global variables U, u, and sig.

> U = rnorm(1000)

> a = optim(par = c(0, log(sigma)), f_bid_ml_int,

+ bids_temp = bids, N_temp = N,

+ control = list(trace=0, maxit=100000))

The code below estimates the signal distribution from the observed bids.

> ggplot_sim_cv_signals =

+ data.frame(
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+ signals = rnorm(length(values),

+ a$par[1],

+ exp(a$par[2])),

+ values = values

+ ) |>

+ ggplot(aes(values)) +

+ geom_density(alpha = 0.5) +

+ geom_density(aes(signals), linetype = 2, alpha = 0.5) +

+ labs(

+ x = "values/signals",

+ y = "",

+ title = "Density of signals and values"

+ ) +

+ geom_vline(xintercept = 0, linetype = 2, color = "gray") +

+ geom_text(aes(x = -3.5, y = 0.2, label = "values"),

+ color = "gray") +

+ geom_text(aes(x = 2.5, y = 0.2, label = "signals (est.)"),

+ color = "gray") +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_sim_cv_signals

Figure 11.2 presents the density of the expected values and the estimated
signals in the simulated data. The estimated signals are pretty close to the
true distribution, which is a standard normal distribution. The figure shows
that the bidders substantially discount their bids from the observed signals.
We see that this occurs for two reasons. First, their expected value (conditional
on winning) is discounted from their signal. Second, because it is a first price
auction, bidders discount their bid from the expected value of the item (see
Figure 11.1).

11.3 Empirical Analysis: Signal Distribution from OCS
Auctions using R

This section uses data on outer continental shelf (OCS) oil and gas tracts off
Texas and Louisiana from 1954 to 1979.2

2These data are available from Penn State https://capcp.la.psu.edu/

data-and-software/outer-continental-shelf-ocs-auction-data/.

https://capcp.la.psu.edu/data-and-software/outer-continental-shelf-ocs-auction-data
https://capcp.la.psu.edu/data-and-software/outer-continental-shelf-ocs-auction-data
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FIGURE 11.2
Plot of the density of expected values and signals (estimated) in a first price
common values auction. The bidder’s valuations are shifted down from the
estimated signal distribution.

11.3.1 Data

The code brings in the data set, book_ocs_ch11.csv. Next we do the trick of
creating a residual auction value by regressing bids on observed characteristics
of the auctions. The function as.factor() is used to create dummy variables
for the block code and date of the auction. The function lm() is used to
estimate the linear regression. The residuals are then calculated, and the data
set is converted to a data frame.

> file = paste0(dir, "book_ocs_ch11.csv")

> df = read.csv(file) |>

+ select(

+ lbid,

+ lvalue,

+ lcost,

+ BlockCode,

+ Date,

+ TractNumber,

+ nCompany

+ ) |>
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+ na.omit()

> lm1 = lm(lbid ~ lvalue + as.factor(BlockCode) +

+ as.factor(Date) + lcost, data = df)

> df$res = lm1$residuals

> dt = setDT(df)

> ggplot_ocs_bids =

+ df |>

+ ggplot(aes(res)) +

+ geom_density(alpha = 0.5) +

+ geom_density(aes(rnorm(length(res),

+ mean(res),

+ sd(res))),

+ linetype = 2, alpha = 0.5) +

+ scale_x_continuous(limits = c(-4,4)) +

+ labs(

+ x = "residuals",

+ y = "",

+ title = "Density of residuals"

+ ) +

+ geom_vline(xintercept = 0, linetype = 2, color = "gray") +

+ geom_text(aes(x = 2, y = 0.2, label = "residuals"),

+ color = "gray") +

+ geom_text(aes(x = -3, y = 0.2, label = "normal"),

+ color = "gray") +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_ocs_bids

Figure 11.5 presents the normalized bids for the OCS auctions. The figure
also shows simulated bids from a normal distribution to suggest that a normal
distribution is a reasonable approximation.

11.3.2 Estimating the Signal Distribution

We restrict the sample to just those auctions without coalitions in them.3

We can use the estimator above to estimate the signal distribution for these
auctions. In addition, the code creates an index of observations that have less
than 3 bidders, more than 10 bidders and missing residuals. The code then
calculates the initial values for the optimization routine and runs the routine.
The code creates an object index that determines the auctions with less than 3
bidders and more than 10 bidders. It then uses -index to drop those auctions.

3Coalitions are discussed in detail in the next section. They are legal bid rings.
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FIGURE 11.3
Plot of the density of the residual bids against a simulated data set drawn
from a normal distribution with the mean and variance equal to the mean and
variance for the normalized bids. This indicates that the normal distribution is
a reasonable approximation of the bids.

> dt2 = dt[num_coy == N]

> index = c(which(dt2$num_coy < 3 | dt2$num_coy > 10),

+ which(is.na(dt2$res)))

> init = c(mean(dt2$res[-index]), sd(dt2$res[-index]))

> b1 = optim(par = init,

+ f_bid_ml_int,

+ bids_temp = dt2$res[-index],

+ N_temp = dt2$num_coy[-index],

+ control = list(trace = FALSE,

+ maxit = 1000000))

The code then creates a plot of the estimated signal distribution and the
observed bids.

> ggplot_est_cv_signals =

+ data.frame(

+ bids = dt$res,

+ signals = rnorm(length(dt$res),

+ b1$par[1],
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+ exp(b1$par[2]))

+ ) |>

+ ggplot(aes(bids)) +

+ geom_density(alpha = 0.5) +

+ geom_density(aes(signals), linetype = 2, alpha = 0.5) +

+ scale_x_continuous(limits = c(-5,8)) +

+ labs(

+ x = "bids/signals",

+ y = "",

+ title = "Density of signals and bids"

+ ) +

+ geom_vline(xintercept = 0, linetype = 2,

+ color = "gray") +

+ geom_text(aes(x = -3.5, y = 0.2, label = "bids"),

+ color = "gray") +

+ geom_text(aes(x = 6.5, y = 0.2, label = "signals (est.)"),

+ color = "gray") +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_est_cv_signals

Figure 11.4 presents the density of the normalized bids and the estimated
signals in the OCS auctions. The figure shows that the bidders substantially
discount their bids from the observed signals. We see that this occurs for two
reasons. First, their expected value (conditional on winning) is discounted
from their signal because of winner’s curse. Second, because it is a first price
auction, bidders discount their bid from the expected value of the item.

11.4 Auctions with Coalitions

The classic data set for considering common values auctions is the US federal
government’s off-shore drilling auctions. One surprising fact is that the auctions
include “coalitions” of bidders. Basically, legal bid rings. Given the discussion
about bid rings in the Chapter 10, it seems very odd that the government
would allow collusion in these auctions.

An obvious policy question is whether the government should in fact allow
bid rings in OCS auctions. You are probably thinking that the answer is
obviously no. Actually it is not that obvious in the case of common value
auctions.

The section works through how bidding in coalitions can be estimated. It
then uses the estimated parameters from above and some characteristics of
OCS auctions to simulate the policy.
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FIGURE 11.4
Plot of the density of normalized bids from all auctions and signals (estimated)
in OCS auctions without coalitions that have between 3 and 10 bidders. The
bidder’s valuations are shifted down from the estimated signal distribution.

11.4.1 The Benefit of Coalitions

The reason for allowing coalitions is that coalitions allow bidders to pool their
information about the item’s value. By increasing the amount of information
available to the bidders, the coalitions may lead to higher bids!

Remember we said that there are two reasons for bidders shading their
bids. The first, discussed in Chapter 10, states that bidders shade in order to
account for the probability of winning and trade off the probability of winning
against how much they pay if they win. As the number of bidders increases,
the probability of any particular bidder winning decreases, and so the smaller
trade off leads to higher bids. As we said previously, a bid ring allows bidders
to reduce their bids because their probability of winning is higher. The second
reason for shading the bids is because of the information problem. Here the bid
ring works in the opposite direction, by pooling information the bidders have
a more precise signal of the value of the item which allows them to bid more.

How does a bidder’s valuation change with more signals? Assume that the
expected valuation for the ring will be the mean of the signals, conditional upon
that mean being greater than all the other signals. From statistics, we know
that we can approximate the distribution of this sample mean as a normal
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distribution with a mean equal to the true mean and the variance equal to
true variance divided by the sample size.

For the J members of the coalition, the probability of winning the auction
with a particular average of signals (s̄) is as follows.

Φ

(
s̄− µ

σ

)N−J−1

(11.4)

where this gives the probability that the J members of the coalition will observe
a particular average of their signals multiplied by the probability that the
other bidders outside the coalition will have signals below coalition’s average.

What about for the bidders outside the coalition?

Φ

(
s− µ

σ

)N−J−1

Φ

(
s− µ

σ
J

)
(11.5)

The probability is the probability that a signal s is observed and is greater
than all the other bidders outside the coalition and greater than average of
the signals that are in the coalition.

11.4.2 Estimating Coalitions in R

The probabilities with coalitions allowed are the following. For bidders in the
coalition, their signal has less noise than for bidders outside the coalition. For
all bidders, the number of independent bidders is lower. The code uses _in
to refer to the bidders in the coalition and _out for the bidders outside the
coalition.

> log_G_in = function(s, v, sigma=1, N, J)

+ (N-J-1)*log_F(s, v, sigma/sqrt(J))

> log_g_in = function(s, v, sigma=1, N, J) log(N-J-1) +

+ log_f(s, v, sigma/sqrt(J)) +

+ (N-J-2)*log_F(s, v, sigma/sqrt(J))

> log_G_out = function(s, v, sigma=1, N, J)

+ (N-J-1)*log_F(s, v, sigma)

> log_g_out = function(s, v, sigma=1, N, J) log(N-J-1) +

+ log_f(s, v, sigma) + (N-J-2)*log_F(s, v, sigma)

The expected values and bids for bidders in and out of the coalition are as
you would expect.

> E_in = function(s, N_i, J_i) {

+ g_u = matrix(NA,length(u),length(sig))

+ u_mat = matrix(NA, length(u), length(sig))

+ for(j in 1:length(sig)) {

+ g_u[,j] = exp(log_g_in(s, u, sig[j], N_i, J_i))

+ u_mat[,j] = u
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+ }

+ sum_g_u = sum(g_u)

+ gamma_u = g_u/sum_g_u

+ mu = sum(u_mat*gamma_u)

+ sigma = sqrt(sum(u_mat^2*gamma_u) - mu^2)

+ return(list(mu=mu, sigma=sigma))

+ }

> E_out = function(s, N_i, J_i) {

+ g_u = matrix(NA,length(u),length(sig))

+ u_mat = matrix(NA, length(u), length(sig))

+ for(j in 1:length(sig)) {

+ g_u[,j] = exp(log_g_out(s, u, sig[j], N_i, J_i))

+ u_mat[,j] = u

+ }

+ sum_g_u = sum(g_u)

+ gamma_u = g_u/sum_g_u

+ mu = sum(u_mat*gamma_u)

+ sigma = sqrt(sum(u_mat^2*gamma_u) - mu^2)

+ return(list(mu=mu, sigma=sigma))

+ }

> b_in = function(s, N, J) {

+ v_bar = E_in(s, N, J)

+ G = exp(log_G(s, v_bar$mu, v_bar$sigma, N-J+1))

+ g = exp(log_g(s, v_bar$mu, v_bar$sigma, N-J+1))

+ return(v_bar$mu - G/g)

+ }

> b_out = function(s, N, J) {

+ v_bar = E_out(s, N, J)

+ G = exp(log_G(s, v_bar$mu, v_bar$sigma, N-J+1))

+ g = exp(log_g(s, v_bar$mu, v_bar$sigma, N-J+1))

+ return(v_bar$mu - G/g)

+ }

11.4.3 Policy Simulation

In the mid-1970s, the Department changed the policy to make illegal for larger
bidders to join forces, but that still allowed small bidders to join with big
bidders or with other small bidders.

Assume that auctions with coalitions have the same signal distribution
as auctions without coalitions. This allows us to use the estimates from the
previous section above in the policy simulations.

This analysis is restricted to cases where there is just one coalition and
there are more than two bidders. When the number of bids is smaller than the
number of bidders, we have coalitions in the auction. This information is then
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merged back into the main data set. The code uses the estimates of mu and
sigma from the previous section to simulate bids in and outside of the coalition.
The number of bidders in the auction is from the data. It simulates the auctions
allowing for a coalition of bidders and if the coalition is not allowed.

> dt1 = dt[, .(num = .N,

+ num_coy = sum(as.numeric(nCompany))),

+ by = TractNumber]

> dt = merge(dt, dt1, by="TractNumber")

> dt2 = dt[num_coy - num == 1 & num > 2]

> M = length(unique(dt2$TractNumber))

> N = dt2$num_coy

> mu = rep(b1$par[1], M)

> sigma = exp(b1$par[2])

> bids_sim = NULL

> bids_cf = NULL

> set.seed(123456789)

> for(i in 1:M) {

+ N_i = N[i]

+ s_i = rnorm(N_i, mu, sigma)

+ bids_i = sapply(1:N_i, function(j) b_fun(s_i[j], N_i))

+ bids_i_in = b_in(mean(s_i[1:2]), N_i, 2)

+ bids_i_out = sapply(1:(N_i-1), function(j)

+ b_out(s_i[j], N_i, 2))

+ bids_sim = c(bids_sim, bids_i_in, bids_i_out)

+ bids_cf = c(bids_cf, bids_i)

+ # print(i)

+ }

The code then creates a plot of the density of the bids in auctions with
and without coalitions.

> ggplot_ocs_bids =

+ data.frame(

+ rings = bids_sim,

+ no_rings = bids_cf

+ ) |>

+ filter(

+ is.finite(rings) & is.finite(no_rings)

+ ) |>

+ ggplot(aes(rings)) +

+ geom_density(alpha = 0.5) +

+ geom_density(aes(no_rings), linetype = 2, alpha = 0.5) +

+ labs(
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+ x = "Normalized bids",

+ y = "",

+ title = "Density of bids"

+ ) +

+ geom_text(aes(x = 3, y = 0.2, label = "rings"),

+ color = "gray") +

+ geom_text(aes(x = -3, y = 0.2, label = "no rings"),

+ color = "gray") +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_ocs_bids
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FIGURE 11.5
Plot of the density of the amount bid where coalitions are not allowed (“no
rings”) and coalitions are allowed (“rings”). The value of the bids have been
normalized. The bids are higher when coalitions are allowed in these OCS
auctions

Figure 11.5 shows that allowing bid rings (coalitions) tends to lead to higher
bids! This analysis accounts for the fact that bidders will bid lower because
the number of independent bidders is lower. Despite that, the bids are higher
showing the advantage of aggregating signals in common values auctions.
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11.5 Discussion and Further Reading

Chapter 10 made a simplifying assumption called independent private values
(IPV). This assumption rules out the common values model. Laffont and Vuong
(1996) present the main negative result of the common values literature. It
states that without strong parametric assumptions it is not possible to identify
the exact model generating the data in this setting. Despite this negative result,
we could test for whether the auction is a common values auction (Haile et al.,
2006).

The analysis in this chapter uses a parametric model. The chapter suggests
that allowing cooperation among competitors may lead to better outcomes for
the government in the sale of oil drilling rights. See Paarsch and Hong (2006)
for more detailed analysis of the econometrics of auctions, including common
value auctions. The OCS data used here have been analyzed in a number of
papers, for example, Hendricks et al. (2003).
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12

Moral Hazard

12.1 Introduction

The book has four parts covering complete information static games, com-
plete information dynamic games, incomplete information static games, and
incomplete information dynamic games. This part is the last.

This part considers two types of dynamic games of incomplete information.
The first are games in which one player does not observe the other player’s
action before making their choice. What makes these games dynamic is that
the first player’s action is associated with a signal that is observed by the
second player before making his choice. The second set of games are ones where
the action of the first player is observed by the second player, but the second
player does not know the first player’s payoffs. The second set of games are
discussed in the next chapter.

The first set of games are often given the moniker, moral hazard or principal-
agent games. Consider a game between an employer and employee, where the
principal is the employer and the agent is the employee. The employee takes
actions like working hard and thinking carefully, but the employer doesn’t
get to observe this. The employer may observe signals of these things like the
number of hours worked or profits of the firm. In these games, we are generally
interested how the employer can get the employee to take actions that the
employer prefers even when those actions are not directly observed.

This chapter presents the principal-agent game and applies it to the problem
faced by financiers of whaling expeditions in New England in the 1830s. A new,
at the time, form of company organization, the corporation, allowed many
more people to invest in whaling. Ventures funded through corporations tended
to give managers less of a stake in the outcome of the venture and tended to
have worse outcomes.
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12.2 Principal-Agent Game

In the 1830s, whaling was an important industry in the United States, partic-
ularly in communities in New England. The industry developed to hunt and
kill sperm whales for oil and other products. The ships sailed literally around
the world and the voyages would last years. To hunt and kill whales, you
need a ship with the necessary equipment, supplies, a captain, and a crew
of around 30. Obviously you need money for all of this. The investment will
payoff when you sell the oil and other products rendered from the whales.

How do investors insure that they get a good return on their investment?
How do they know that they have a good captain and crew? How do they
know that the captain and crew are doing a good job when they are literally
on the other side of the world and it is the 1830s?

These operations generally relied on a number of incentive mechanisms.
The captain and crew were paid a small share of the profits. The investors hired
an agent who was responsible for hiring the captain and crew, determining the
voyage’s route and communicating with the captain during the voyage. Under
the law, the owner of the vessel controlled everything on the vessel including
any equipment used. Because of this, investors generally bought an ownership
share of the vessel itself.

Two organizational structures were used to finance these hunts. In one case
a small number of investors hired an agent. The agent was generally given
a large share of the ownership of the vessel and the investors may include
family members or members of the local community. An alternative method for
raising funds from investors was to create a corporation. These organizations
provided some legal recourse for investors and made it clearer who owned
what. Corporate whaling enterprises had a much larger set of owners investing
smaller amounts of money. Like unincorporated ventures, they still hired an
agent who was responsible for overseeing the operation. One big difference
between the two organizations seems to be share of ownership given to the
agent. For the corporations the evidence suggests that the agent earned a small
fraction of the profits.

This section works through a formal game of the investor–agent relationship
in 1830s whaling. It then goes through an example with simulated data.

12.2.1 Simple No Contract Game

Consider a simplified version of the game faced by whaling ventures. In this
game, the agent chooses her effort level and the investor pays her based on
what the outcome they observe.

• Players: Investor, Agent

• Strategies:
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– Agent: e ∈ {eL, eH}
– Nature: y ∈ {yL, yH}, where yH > yL, as a function of e, Pr(yH |eH) =
pH > Pr(yH |eL) = pL

– Investor: w(y) ∈ {wL, wH}

• Payoffs:

– Agent: w(y)− c(e), where c(eH) = c and c(eL) = 0

– Investor: y − w(y)

• Beliefs: p = Pr(e = eH)

In this game, the agent moves first and chooses how much “effort” to put
into the venture. If they choose the high effort level eH , then it costs them c,
while the low effort level cost them nothing. Nature observes the effort level
and chooses the outcome of the venture. The higher effort level increases the
probability of the better outcome yH . Lastly, the Investor observes the choice
of Nature and pays the Agent w. The more she pays the agent, the worse off
the investor is.

What is the Bayes Nash equilibrium of the game? Is there an equilibrium
where the Agent chooses eH? What is the subgame Perfect Nash equilibrium?

The last is a trick question. There is only one subgame, the whole game.1

The Agent’s strategy is to choose an effort level eL or eH . The Investor’s
strategy is to choose a payment level given the observed outcome y, w(y) and
the Investor’s beliefs about the choice of the Agent.

12.2.2 Bayes Nash Equilibrium

One proposed equilibrium is for the Agent to choose the high effort level eH
and for the Investor choose a payment that pays more if the outcome is yH
than if the outcome is yL. Such payments could make it worthwhile for the
Agent to choose the higher cost effort level because that effort level increases
the probability of getting a higher payment.

This is not an equilibrium. It is not optimal for the Investor to pay the
Agent anything. What ever effort level the Agent chooses, the Investor prefer
not to pay the Agent anything.

Assume the equilibrium is for the Agent to choose eH and the Investor
pays the Agent w(yH) = wH and w(yL) = wL where the following inequality
holds.

pHwH + (1− pH)wL − c ≥ pLwH + (1− pL)wL (12.1)

1A perfect Bayesian Nash equilibrium has a similar flavor to a subgame perfect Nash
equilibrium. In a perfect Bayesian Nash equilibrium, the players’ strategies must be optimal
given their beliefs and the beliefs must be consistent with Bayes’ rule at each information
set along each equilibrium path that can be reached with positive probability.
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The expected payoff from choosing the high effort level is higher than the
expected payoff from choose the low effort level. We call this the incentive
compatibility (IC) constraint.

If in the proposed equilibrium the payment w(y) is such that the IC holds,
then the Agent will choose the high effort level. What if Agent chooses eH .
What contract should the Investor offer? Let w∗ denote the Investor’s payment
if they observe yH . In equilibrium, the Investor’s expected profits are as follows.

pH(yH − w∗) + (1− pH)(yL − wL) (12.2)

The Investor should offer w∗ = 0.
In the proposed equilibrium, the Agent chooses eH and the Investor must

believe that is true. Given all of that, why should the Investor pay the Agent
anything?

12.2.3 Simple Contract Game

The problem in the previous game is that the Investor cannot commit to paying
the Agent for their high effort level. The result is that the Agent is not willing
to put in the effort. We need a contract. In general, we assume that such a
contract can be enforced, for example in a court of law. Alternatively, it could
be enforced in the court of public opinion or the court of the back alleys of
the New England port town. If the Investor doesn’t pay the Agent what is
stated in the contract then the Investor gets punished. Making the contract
enforceable limits what is contractable. We cannot contract on the effort level
of the Agent because that is not observed by anyone but the Agent, certainly
not in a court of law. Potentially, we can contract on the outcome (y) as that
is observed. We will assume that the y is both observable and verifiable by a
court of law.

• Players: Investor, Agent

• Strategies:

– Investor: Offer contract w(y)

– Agent: Accept or Reject given offer w(y)

– Agent: Given Accept of w(y) choose e ∈ {eL, eH}
– Nature: Choose y ∈ {yL, yH} given e, Pr(yH |eH) = pH > Pr(yH |eL) = pL

• Payoffs: If the contract is accepted:

– Investor: E(y(e)− w(y(e)))

– Agent E(w(y(e)))− c(e)

Assume that both get 0 if rejected.

• Beliefs: p = Pr(e = eH)
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In the Bayes Nash equilibrium, the Investor offers a contract such that the
following equality holds.

pHwH + (1− pH)wH − c = 0 (12.3)

The Agent is indifferent between their expected wage if they choose the high
effort level and their outside option (which is assumed to be 0). We call this
the individual rationality (IR) constraint. In this set up, wL will be negative,
but you should just think of this as a value lower than Agent’s outside option
or alternative if they reject the contract.

Also, the Agent prefers the high effort level to the low effort level. The IC
is as follows.

pHwH + (1− pH)wL − c ≥ pLwH + (1− pL)wL (12.4)

The difference between pay given the good outcome wH and pay given the bad
outcome wL is large enough to induce the Agent to choose the high effort level
despite the higher cost c.

The Investor then chooses wH and wL such that both the IR and IC
constraints hold. Moreover, for it to be an equilibrium, it must be that pH(yH−
wH) + (1− pH)(yL − wL) ≥ 0. We know from the IR constraint that it must
be that the following in equality holds for the contract to be profitable.

pHyH + (1− pH)yL − c ≥ 0 (12.5)

So the contract is profitable if the expected output from the project is greater
than the cost to the Agent of completing the project.

12.2.4 More Complicated Contract Game

Let’s model the principal-agent problem associated with investors contracting
with an agent to run the whaling venture.

• Players: Investor, Agent

• Strategies:

– Investor: Offer w(y)

– Agent: Accept or Reject offer

– Agent: Choose e ≥ 0.

– Nature: Choose y given e, y ∼ F (e)

• Payoffs

– Agent: E(u(w(y))|e)− c(e)

– Investor: E(y(e)− w(y(e)))

• Beliefs: e ∼ P .
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The Agent chooses an effort level, e, which incurs some cost c(e). The
contract is based on the outcome, y, where this is a random number drawn
from a distribution that is determined by Agent’s effort choice F (e). Based on
this outcome, the Agent is paid w(y). One difference between this model and
what we have seen previously is that the Agent’s payoff is determined by their
utility function u(y). Here we are going to assume that the agent is risk-averse
while the principal is risk-neutral. The principal would like to incentivize the
agent by giving them a large share of the outcome. This implies that the agent
is taking on a lot of risk. The principle will need to compensate the agent by
paying them a very large amount that does not vary with the outcome of the
venture. We will talk more about this in a bit.

12.2.5 Bayes Nash Equilibrium

One of the issues highlighted in this book is the difference between assumptions
about the game and assumptions about equilibrium. This issue comes up
again here. Look at the payoffs for the Investor. Her expected payoff is not
conditional on the effort level of the Agent. In a Bayes Nash equilibrium, we
assume that the Investor’s beliefs are consistent with equilibrium behavior. In
equilibrium, the Agent will choose a particular effort level e∗, so in equilibrium
the Investor’s expected payoff will be E(y(e)− w(y(e))|e = e∗).

The Agent will choose this effort level to optimize his expected payoff.

maxe E(u(w(y(e))))− c(e) (12.6)

The Agent knows e and so the cost function is not inside the expectation.
The Investor will choose w(y) so as to maximize her profits.

maxw(y) E(y(e)− w(y(e))|e = e∗)
s.t. E(u(w(e∗)))− c(e∗) ≥ 0

e∗ = argmaxe E(u(w(y(e)))|e)− c(e)
(12.7)

In words, the Investor will choose a payment as a function of the outcome
w(y), that maximizes her expected return subject to the Agent choosing to
accept the contract and choosing their optimal effort level conditional on the
payment offer.

12.2.6 Parameterized Model

Assume that the Agent’s expected utility is a mean-variance utility. That is,
the Agent’s utility is increasing in the mean of his payoffs and decreasing in
the variance of his payoffs. The agent’s dislike of risk is represented by the
parameter r.

E(u(x)) = µx − r
σ2
x

2
(12.8)
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where x ∼ N (µx, σ
2
x). This utility function is a substantial simplification. It is

often justified using a particular utility function and assuming the outcome is
normally distributed.

The Agent doesn’t like producing effort and the cost of the effort is governed
by the parameter k and the cost is increasing in effort at a geometric rate,

c(e) = −k e2

2 . For a particular incentive rate, b, the Agent’s expected utility is
as follows.

b(µx + e)− r
b2σ2

x

2
− k

e2

2
(12.9)

The variance of bx is b2σ2
x. Also the dividing by 2 thing is useful once we get

to the first-order condition.
b− ke = 0
e = b

k

(12.10)

The agent’s optimal effort level is increasing in the power of the incentives and
decreasing in the cost.

The production function is simply that y(e) ∼ N (µ+ e, σ). The mean of
output is increasing 1 to 1 with the effort level e.

The incentive contract used by the Investor is a linear function of output,
w(y) = a+ by, where a is a constant and b is the fraction of the output received
by the Agent. When you look below you see there is no a. This is because we
have implicitly solve the individual rationality constraint by choosing a such
that the Agent is indifferent between accepting the contract and rejecting the
contract. We can also substitute in the Agent’s optimal effort level.

πI(b) = µ+
b

k
− rb2(σ2)

2
− b2

2k
(12.11)

The first-order condition is then given by the following equation.

1
k − rbσ2 − b

k = 0
1− krbσ2 − b = 0
b = 1

1+krσ2

(12.12)

The power of the incentive contract is decreasing in the effort cost of the Agent,
the risk aversion of the Agent and the variance in the output.

12.2.7 Simulation with R

In the code, the function in Equation (12.11) is as follows. The parameters mu
and sigma are global variables determined below.

> Pi_I = function(b, r, k) {

+ mu + b/k - r*(b^2)*(sigma^2)/2 - (b^2)/(2*k)

+ }

The parameters of the simulation have been calibrated such that the
incentive contract is similar to the average for unincorporated ventures in the
data.
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> mu = 90000

> sigma = 40000

> k = 0.000005

> r = 0.0002

Given the set up we can solve for the optimal share of the output given to
the agent and the optimal effort level.

> b1 = optimize(Pi_I, c(0, 1), maximum = TRUE, r=r, k=k)

> b1$maximum

[1] 0.3846154

> b1$maximum/k

[1] 76923.08

> Pi_I(b1$maximum, r, k)

[1] 128461.5

The firm makes $128,000 from the venture with the agent taking 39%. The
agent’s effort cost is $77,000.

Now consider what happens if the power of the incentive contract is signifi-
cantly reduced. Let b = 0.05, rather than the optimal level.

> 0.05/b1$maximum

[1] 0.13

> Pi_I(0.05, r, k)/Pi_I(b1$maximum, r, k)

[1] 0.7733832

The new level of optimal effort for the Agent is 13% of the optimal contract
and the Investor’s profits also falls but to just 77% of what they would be with
the optimal contract.

12.3 Empirical Analysis: Whaling Corporations in the 19th Cen-
tury using R

Wellsley College professor, Eric Hilt, documents the surprising failure of the
corporate structure in whaling. In the first half of the 19th century, corporations
were a relatively new type of institution in the United States. They provided a
legal structure for people to raise money from investors where it was clear what
rights investors did and did not have. Whaling in New England was generally
financed by small groups of investors, many of whom knew each other or were
from the same family. Corporations opened up whaling to a much broader
range of investors. Given these advantages it is surprising that the corporate
structure performed so poorly.



Empirical Analysis: Whaling Corporations in the 19th Century using R 227

This section using data from whaling venture financial records to understand
the contracts with agents used by whaling corporations. Were the contracts
responsible for the poor performance of corporations?

12.3.1 Whaling Data

Bringing in the data called whaling.csv.
The code below reads in the data and plots average output by year and by

how the venture was financed.

> file = paste0(dir, "whaling.csv")

> dt = fread(file)

> dt1 = dt[, .(lprod_wb = mean(lprod_wb,

+ na.rm = TRUE)),

+ by = .(ayear, corp)]

> ggplot_log_output = setDF(dt1) |>

+ mutate(

+ corp = as.factor(corp)

+ ) |>

+ ggplot(aes(ayear, lprod_wb, corp,

+ linetype = corp)) +

+ geom_line() +

+ labs(

+ x = "Year",

+ y = "",

+ title = "Average log output by year"

+ ) +

+ theme(axis.text.y=element_blank(),

+ axis.ticks.y=element_blank())

> ggplot_log_output

Figure 12.1 presents a plot of the productivity of the whaling ventures. It
is the ratio of the output of the venture in terms of the value of the oil and
other products rendered from the whale to the size of the ship multiplied by
the length of the journey.

The figure shows two things. First, productivity is falling dramatically over
time. It is becoming harder and harder to find whales to kill. Second, the
corporate ventures tend be less productive than closely held ventures.

Why are corporations doing so poorly?

12.3.2 Regressions

Does the pattern from Figure 12.1 hold when we are more careful about
accounting for various factors determining the outcome. One of the big variables
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FIGURE 12.1
Line chart of average log of output by year and corporation. It shows output
decreasing from 1835 to 1850, but corporate (corp = 1) output is generally
lower.

is the agent themselves. The data include cases where the same agent is used
by a closely held firm and by a corporation. Using fixed effects, we can account
for differences across agents. We can hold the “agent-effect” fixed.

Table 12.1 presents the results from the fixed effects analysis. The empirical
model is generally called two-way fixed effects. We have fixed effects for the
agent (the first way) and fixed effects for the year (the second way) which
are not presented in the table. The idea is that we can account for the agent
and the year to isolate the effect of the financial structure. It shows that
corporations have lower productivity even accounting for individual agent
effects. Specifications (3) and (4) suggest that it may not be the corporate
entity itself but due to the larger number of owners associated with the
corporate structure. It also shows that having the captain die, is not good for
the success of the hunt.

Why may this be happening? Corporations provided agents with a share of
the output, but shares were substantially lower than what we see for the closely
held ventures. What are the implications of this difference in compensation to
the agent’s effort level and profitability of the venture?
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TABLE 12.1
OLS regressions of output on corporate form with agent and year fixed effects.
Ownership structure is accounted for either through the dummy variable for
corporation or by the number of investors.

Dependent variable:

lprod wb

(1) (2) (3) (4)

corp −0.455∗∗ −0.411∗∗ −0.279
(0.178) (0.179) (0.442)

I(owners/10) −0.126∗ −0.126∗

(0.065) (0.065)

I((owners/10)̂ 2) 0.014 0.014
(0.012) (0.012)

atlantic 0.048 0.074 0.074
(0.053) (0.060) (0.060)

pacific −0.107∗∗ −0.102∗∗ −0.102∗∗

(0.044) (0.049) (0.049)

tons −0.001∗∗∗ −0.001∗∗ −0.001∗∗

(0.0003) (0.0003) (0.0003)

vesselage −0.003 −0.004 −0.004
(0.002) (0.002) (0.002)

capexp 0.006 0.008 0.008
(0.008) (0.010) (0.010)

capdied −0.338∗∗∗ −0.407∗∗∗ −0.407∗∗∗

(0.100) (0.121) (0.121)

Observations 831 809 671 671
R2 0.300 0.339 0.343 0.343

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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12.3.3 Calibrating the Model

In order to get some sense of what happens when incentives of the agent are
changed, we can use the observed data to calibrate the game presented above.

In order to get apples to apples, we can use the same trick that we used in
Chapter 10. Regress the output measure on various observed characteristics
and then use the residual as the normalized output.

> df1 = setDF(dt) |>

+ filter(

+ corp == 0

+ ) |>

+ na.omit()

> lm5 = lm(output_wb ~ atlantic + pacific + tons +

+ vesselage + dyear, data = df1)

> df1$res = lm5$residuals + lm5$coefficients[1]

> mu = mean(df1$res, na.rm = TRUE)

> sigma = sd(df1$res, na.rm = TRUE)

Given the normalized output, we can use the observed contracts from
the closely held firms to back out the parameters on agent’s costs (k) and
risk-preferences (r).

> e_1 = mean(df1$res, na.rm = TRUE)

> sigma_1 = sd(df1$res, na.rm=TRUE)

> b_1 = mean(df1$agt_shr, na.rm = TRUE)

> k_1 = b_1/e_1

> r_1 = e_1*(1 - b_1)/((b_1^2)*sigma_1^2)

> Pi_I(b_1, r_1, k_1)

[1] 269567.9

> e_1*(1 - b_1)

[1] 73007.96

The closely held firm makes $270,000, and the agent’s effort costs are
$73,000. Looking at the corporations, we can again normalize output and
estimate the effort level of the agent given the share received by the agent.

> df2 = setDF(dt) |>

+ filter(

+ corp == 1

+ ) |>

+ select(

+ output_wb,

+ atlantic,

+ pacific,
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+ tons,

+ vesselage,

+ dyear,

+ agt_shr

+ ) |>

+ na.omit()

> df2$res = df2$output_wb -

+ predict.lm(lm5, df2) + lm5$coefficients[1]

> e_2 = mean(df2$res, na.rm = TRUE)

> b_2 = mean(df2$agt_shr, na.rm = TRUE)

> e_2_pred = b_2/k_1

> Pi_I(b_2, r_1, k_1)

[1] 183437.4

> e_2_pred*(1 - b_2)

[1] 3718.121

In the case of the profit sharing under the corporate form, the venture’s
profits fall to $183,000 and the agent’s effort would be only $3,700.

> e_2_pred/e_1

[1] 0.02094994

> Pi_I(b_2, r_1, k_1)/Pi_I(b_1, r_1, k_1)

[1] 0.680487

Given the share offered to agents working for corporations, the predicted
effort level falls to just 2% of the unincorporated effort level. That said, the
predicted profits only fall to 68% of the unincorporated profits. The reason
is that while the output falls, the share of output received by the investors is
higher. In addition, the investors don’t have to compensate the agent for risk.

> e_2/e_1

[1] 0.6883835

While our model predicts that the Agent’s effort level will drop precipitously.
The effort level does fall by a large amount to 69% of the unincorporated level.
The predicted output is much lower than what we actually observe in the
corporate ventures. This discrepancy suggests that corporations are providing
incentives. They are just not providing incentives in the form of share of output.
They must be using other mechanisms like direct supervision and the threat
of firing, rather than giving high powered incentives. Those incentives may
leading to significantly lower effort levels by the Agent, but the returns to the
Investors are not necessarily that bad.
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12.4 Discussion and Further Reading

Wellsley College professor, Eric Hilt, has created an amazing data set on how
whaling firms actually worked. It is very cool to bring modern economic theory
to bear on why closely held firms worked so well in the 1830s (Hilt, 2006).

Theoretical work on incentives and the principal-agent problem substantially
improved our understanding of contracts and performance pay systems (Lazear
and Oyer, 2013). The classic paper on the principal-agent problem is Holmström
(1979).
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Adverse Selection

13.1 Introduction

This chapter considers adverse selection problems. These games are generally
split between signalling and screening games. In a signalling game, the player
with an unknown type chooses an action and that action choice may provide
information to the other player. In a screening game, the uninformed player
goes first and offers some choices to the player whose type is not known. The
observed choice may provide information to the uninformed player.

In either case, the question is whether the observed action provides infor-
mation about the player’s type. We may have equilibria in which the action
provides information about the player’s type, we call these separating equilibria.
We also may have equilibria where the action does not provide information
about the player’s type. We call these pooling equilibria.

The chapter presents the most famous game of unknown types, George
Akerlof’s model a used car market and the lemons problem. It then uses these
ideas to think about the market for health insurance. It considers whether
government subsidies or taxes can be used to solve the lemons problem in
health insurance. The chapter analyzes these policies with a model calibrated
using data from the Medical Expenditure Panel Survey (MEPS).

13.2 Akerlof ’s Lemons

Outside economics, there is a perception that economists are gungho believers
in free market capitalism. For economists that study markets and how markets
work or don’t work, it is odd to be called “believers.” George Ackerlof is an
economist through and through, he even won the Nobel prize in economics. He
is also married to one of the most influential economists in the world, former
Treasury Secretary Janet Yellen. Akerlof showed how a simple misallocation of
information in a market, would cause that market to fail.

This section introduces Akerlof’s lemons market and provides a formal
game-theoretic version of the problem.
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13.2.1 The Lemons Market

Consider a car market. In this market, there are two types of cars, good cars
and lemons (bad cars). Unfortunately, consumers cannot observe the type of
car prior to purchase. They can, however, resell the car on the used car market
after observing the car’s type.

Now consider a bunch of new cars become available. The key thing about
new cars is that the seller of the cars will sell the car no matter if it is good or
a lemon. Consumers buy the car and learn the car’s type. After the consumers
learn the car’s type they can sell the car on the used market or keep it. If prices
in the used car market are roughly similar to prices in the new car market,
then those customers who purchased lemons will dump them on the used car
market and go back to the new car market hoping to get a good car.

Customers on the used car market are going to notice that the proportion
of lemons just got a lot higher and so the price in the used car market will fall.
Where previously, people that owned good cars may have been willing to sell
their car on the used car market, the price dropped because of all the lemons
entering the market. So these sellers are going to keep their good cars. With
owners of lemons dumping them and owners of good cars keeping them, the
used car market becomes increasingly filled with lemons. In response, the price
in the used car markets drops. This only exacerbates things. As the price falls
more, the only cars that are profitable sell in the used car market are lemons.
Finally, the used car market is just lemons.

The market fails.

13.2.2 Lemons Game

Akerlof’s original argument was not game theory. We can reorient it as a game.

• Players: Seller of car type Bad (b) or Good (g), Buyer

• Strategies:

– Buyer: Offer price, p.

– Nature: Determine car type, {b, g}
– Seller: Observe car type and offered price, then Sell or Keep car.

• Payoffs:

– Seller: Sell: E(p|Sell), Keep: V

– Buyer: E(V |Sell, p)− p

– V ∈ {b, g}

• Beliefs: Pr(V = g) = π
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The Buyer offers a price for the used car. The Seller observe her type,
actually the car’s type. Given that observation and the observed price offered
by the Buyer, the seller chooses to sell or keep the car. Again it is important
to separate out what happens in the game and what happens in equilibrium.
In equilibrium, the Buyer’s price needs to adjust for the strategy of the Seller.

13.2.3 Bayes Nash Equilibrium

There is no Bayes Nash equilibrium in which there is a transaction of good
cars.

Remember when determining a Bayes Nash equilibrium, we need to update
the player’s beliefs about the other player’s type. Another way to say it, is
that beliefs have to be consistent with player strategies in equilibrium.

Consider the case where only b type sellers sell. In this case, the Buyer
updates his beliefs on the type of Seller that sells a car on the used car market.
Given these updated beliefs, the Buyer will offer a price of b. Bad car sellers
will sell, but good car sellers won’t. This is an equilibrium. A Seller with car of
type b is willing to sell at price b. A Seller of car type g, is not willing to sell
at price b. The Buyer believes that all cars being sold are type b. The buyer
offers b. We have a separating equilibrium.

What if both types of Sellers sell on the market. Both types sell, so the
Buyer does not update their beliefs. In this case, the price offered by the buyer
will be πg + (1− π)b where π is the probability that the Seller is has a good
car. As this price is greater than b, sellers of cars of type b will also sell. The
price offered is πg + (1− π)b < g. Because this low price is below the value of
the good car, the good-type seller will not want to sell. That is to say, this is
not an equilibrium. There is no pooling equilibrium.

In the Bayes Nash equilibrium of the lemon’s market, all cars sold in the
used car market are lemons. Is this an accurate representation of the actual
used car market? What mechanisms exist that encourage sellers of good cars
to sell in the used car market?

13.3 Insurance

The most well-known example of adverse selection is in the context of insurance.
Insurance is the idea that two agents can trade because they have different risk
preferences. In actual fact, the insurance company is able to be less risk-averse
because it is able to diversify across a large number of bets.

This section presents a model of insurance where buyers of insurance are risk-
averse. It then considers what happens when buyers are of different unobserved
types. Some buyers tend to be sicker. These buyers will value insurance more.
There will be a tendency for the market to behave like Akerlof’s lemons market.
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The sicker types buying insurance and the healthy types not buying insurance.
The question is what types of policies could we implement to encourage
healthier people to buy insurance.

13.3.1 Model

Assume there are two possible states of the world, sick and healthy. In the
healthy state, an individual earns a certain income y, but in the sick state, the
individual earns y and pays h in costs. These may be medical expenses or loss
of income, etc. The individual’s utility in the two states are u(y) and u(y − h).
Importantly, the individual is better off receiving the expected outcome rather
than expected utility over the two outcomes. That is the following inequality
holds.

u(πy + (1− π)(y − h)) = u(y − (1− π)h)
> πu(y) + (1− π)u(y − h)

(13.1)

where (1− π) is the probability that the sick state occurs for this individual.
If the inequality holds, we say that the individual is risk-averse. Mathemat-

ically, their utility function is concave.
Because of the higher utility of the expected value than the separate states,

the individual is willing to buy a product that pays less in the healthy state
but more in the sick state.

Consider a product that pays h in the sick state at a cost (premium) of p
that is paid in every state.

πu(y − p) + (1− π)u(y − h+ h− p) = u(y − p) (13.2)

If the premium is low enough, then the individual will prefer to be insured.
If p = (1−π)h+ ϵ, then the individual strictly prefers insurance from Equation
(13.1) (if ϵ is small enough).

For the insurance company, they would like to offer the product if p −
(1− π)h ≥ 0. So there exists a positive ϵ where the insurance company finds
it profitable to offer insurance and the individual is willing to purchase the
insurance.

13.3.2 Game with Unknown Types

So in a world with perfect information (albeit with uncertainty), it is profitable
for insurance companies to offer insurance. What if the riskiness of the person
is not observed by the insurer? We have two types π ∈ {πl, πh}, where πl has
a much higher probability of being in the sick state. The individual gets to
observe their type prior to buying insurance, while the insurance company
does not get to observe the individual’s type.

In this situation, while both types may like to buy insurance, it is difficult to
offer insurance to people with a low probability of being sick. This is basically
the same problem as Akerlof’s lemons market.
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• Players: Buyer of type (Low (πl), High (πh)), Insurer

• Strategies:

– Insurer: Offer a contract that pays h in the sick state at a premium p
(which paid in all states).

– Nature: Choose Buyer type {πl, πh}.
– Buyer: Buy (or not) insurance at the offered premium after observing
their type.

• Payoffs:

– Buyer: Buy: u(y − p), Don’t Buy: πu(y) + (1− π)u(y − h)

– Insurer: Buy: p− (1− π)h, Don’t Buy: 0

– where π ∈ {πl, πh}

• Beliefs: Pr(π = πl) = q

13.3.3 Bayes Nash Equilibrium

Consider the case where both types are willing to buy insurance and let q
be the proportion of “sick” individuals. In this case, the insurer will want the
premium to be such that p−(1−qπl−(1−q)πh)h ≥ 0. For the “sick” individual,
they will purchase if the following inequality holds.

u(y − p) ≥ πlu(y) + (1− πl)u(y − h) (13.3)

Similarly, for the healthy individual.
Is there a Bayes Nash equilibrium of this game? Let use simulation to see

what happens.

13.3.4 Simulation using R

Consider the following simulated game. The buyers are risk averse, with a con-
stant absolute risk-aversion utility function, with the parameter r determining
the extent of their aversion.

u(C) =
C1−r

1− r
(13.4)

This is a relatively simple utility function that is used a lot in the literature.
Healthy individuals only get sick 1% of the time, while sick individuals

get sick 10% of the time. The economy has a population where 90% are the
healthy type. If an individual gets sick, they lose half of their income.

One difference between the simulation and the set up of the game above
is that premiums are assumed to be set at the actuarially fair rate. This is
equivalent to saying that the Insurer makes zero profits which is equivalent to
saying that there is perfect competition in the insurance market.
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> u_f = function(C, r) {(C^(1 - r))/(1 - r)}

> Eu_f = function(r, x, p) sum(p*u_f(x, r))

> prem_f = function(pi, h) (1 - pi)*h

The function u_f() is the utility function with constant absolute risk
aversion. The function Eu_f() is the Agent’s expected utility and prem_f()

calculates the actuarially fair premium.
The parameters for the simulation are as follows. There is no particular

rhyme or reason for the choice. The sick type has a 10 percent probability of
being in the sick state, while the health type has a 0.1 percent probability of
being in the sick state.

> r = 0.7

> pi_l = 0.9

> pi_h = 0.999

> q = 0.9

> y = 1

> h = 0.5

Utility for the uninsured for each type of individual.

> Eu_f(r, c(y, y-h), c(pi_l, 1 - pi_l))

[1] 3.270751

> Eu_f(r, c(y, y-h), c(pi_h, 1 - pi_h))

[1] 3.332708

Assume we have a pooling equilibrium. That is, both types purchase
insurance.

> prem = prem_f(q*pi_l + (1 - q)*pi_h, h)

Given this premium of half of one percent of income, would both types
purchase insurance?

> Eu_f(r, c(y - prem, y - prem),

+ c(pi_l, 1 - pi_l)) >

+ Eu_f(r, c(y, y-h), c(pi_l, 1 - pi_l))

[1] TRUE

> Eu_f(r, c(y - prem, y - prem),

+ c(pi_h, 1 - pi_h)) >

+ Eu_f(r, c(y, y-h), c(pi_h, 1 - pi_h))

[1] FALSE

No. The healthy type is not willing to purchase insurance at that premium.
Is there an equilibrium where only the sick types are insured? Is there a

separating equilibrium?
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> prem = prem_f(pi_l, h)

> Eu_f(r, c(y - prem, y - prem),

+ c(pi_l, 1 - pi_l)) >

+ Eu_f(r, c(y, y-h), c(pi_l, 1 - pi_l))

[1] TRUE

> prem

[1] 0.05

Yes. The sick individual is willing to pay a premium of 5% of her income.
But 90% of the population is uninsured.

13.3.5 Mandatory Insurance

In the simulation above, only 10% of the population purchases insurance and
the premiums are very high.

One solution to this problem is to make insurance mandatory. Or more
accurately have some sort of fine or tax for those that don’t take up insurance.
That is, the payoff to the individual is decreased by the amount of the tax
when the individual chooses not to purchase health insurance.

> tax = 0.05

> prem = prem_f(q*pi_l + (1 - q)*pi_h, h)

> Eu_f(r, c(y - prem, y - prem),

+ c(pi_l, 1 - pi_l)) >

+ Eu_f(r, c(y - tax, y-h - tax),

+ c(pi_l, 1 - pi_l))

[1] TRUE

> Eu_f(r, c(y - prem, y - prem),

+ c(pi_h, 1 - pi_h)) >

+ Eu_f(r, c(y - tax, y-h - tax),

+ c(pi_h, 1 - pi_h))

[1] TRUE

> prem

[1] 0.04505

By adding a tax of 5%, we make the non-insurance expected utility lower,
so the high type is willing to pay a higher premium to be insured. This allows
risks to be pooled and makes it profitable for the insurance company to offer
insurance that the healthy individuals are willing to accept.

Under this policy, the sick types do very well. Their premiums drop from
5% of income to 4.5% of income.



240 Adverse Selection

13.4 Empirical Analysis: Health Insurance using R

One of the concerns policy makers have with the health insurance market is
that many people do not carry insurance. People who are generally healthy
don’t carry insurance. This tendency means that Akerlof’s lemons problem
leads to a market failure. People who tend to be sicker will have insurance,
while healthier people will not have insurance.

This section looks at the actual health insurance market in the United
States using the Medical Expenditure Panel Survey (MEPS). This data set
provides information on how much health costs people actually have, how
much income they have, and whether or not the people actually buy insurance.

13.4.1 Willingness to Pay

For each subgroup, we can calculate the expected utility in the case where
they are uninsured, the case where they are insured in separating equilibrium
(the baseline case), and for the case when they are insured under a pooling
equilibrium (counterfactual case). To be clear, the analysis assumes that the
current observed data are from a separating equilibrium. In each subgroup,
there are healthy types that are choosing not to get insurance. The insurance
company is assumed to offer a premium that is actuarially fair given the types
that purchases insurance.

The utility is a constant absolute risk aversion (CARA) function with
risk-parameter r. To derive expected utility, we take the average income for
the subgroup, the probability of having medical expenditure, the average
expenditure, and the standard deviation of expenditure. In the code, the
expected utility is calculated numerically. The code uses a trick of creating
a global variable and using transformations of the uniform and the standard
normal distributions.

> set.seed(123456789)

> K = 1000

> U = runif(K) #uniform distribution

> Z = qnorm(U) #transform to standard normal

> EU_exp = function(r, income, exp_pos, exp_mean, exp_sd) {

+ exp = income - (U < exp_pos)*(Z*exp_sd + exp_mean)

+ return(Eu_f(r, ifelse(exp > 0, exp, 0), rep(1/K,K)))

+ }

13.4.2 Premiums

There are three premiums we can calculate in the data. First, there are the
actual premiums paid by beneficiaries in the data. These are called “out of
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pocket” premiums. Many Americans have their premiums subsidized. For many
working Americans, the premiums are paid in part or full by the firm that they
work for. These workers are accepting at least some amount of lower salary in
order to get the subsidy on the insurance premium from their employer. There
is also a substantial tax benefit to workers who get health insurance, which is
paid for by the American tax payer. Second, we can calculate the actuarial
fair premium for each subgroup that has insurance. Lastly, we can calculate
what the actuarial fair premium would be if the uninsured became insured for
each subgroup.

The actuarial fair premium is calculated as the expected expenditure for
the subgroup conditioning on having insurance (UNISURD == 2). The out of
pocket premium is read from the data.

> file = paste0(dir, "meps_full.csv")

> dt1 = fread(file)

> dt_ins = dt1[UNINSURD == 2,.(premium = premium,

+ premium_alt = exp_pos*exp_mean),

+ by = c("age_group", "SEX", "edu_group")]

MEPS data are used to calculate average out of pocket premiums and
health expenditures for each subgroup.

The pooled premium is calculated as the average expected expenditure for
each subgroup where both insured and unsured individuals are included in the
average.

> dt_pool = dt1[, .(premium_pool = mean(exp_pos*exp_mean)),

+ by = c("age_group", "SEX", "edu_group")]

The two data sets are merged back into the original data.

> dt2 = merge(dt1, dt_ins,

+ by = c("age_group", "SEX", "edu_group"))

> dt2 = merge(dt2, dt_pool,

+ by = c("age_group", "SEX", "edu_group"))

> dt2$premium = dt2$premium.y

The code below calculates the premiums by age group and plots the results.

> ins = dt2[,.(premium = mean(premium),

+ premium_alt = mean(premium_alt),

+ premium_pool = mean(premium_pool)),

+ by = age_group]

> ins = ins[order(age_group)]

> line_prems = setDF(ins) |>

+ ggplot(aes(x = age_group)) +

+ geom_line(aes(y = premium_alt), linetype = 2) +

+ geom_line(aes(y = premium)) +
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+ geom_line(aes(y = premium_pool), linetype = 3) +

+ labs(x = "Age",

+ y = "",

+ title = "Premium ($)") +

+ scale_y_continuous(limits = c(0,5000)) +

+ annotate("text", x = 50, y = 4000, label = "Seperating") +

+ annotate("text", x = 62, y = 3000, label = "Pooling") +

+ annotate("text", x = 60, y = 500, label = "Actual")

> line_prems
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FIGURE 13.1
Line graph of average premiums for different age groups in the MEPS data.
The lines show that premiums are increasing with age. The actual out of
pocket premiums is substantially lower than the actuarial fair premiums for the
insured population. The actual premiums increase from about $200 to $1,000
from 25 to 65. The actuarial fair premiums increase from $1,000 to $4,500 over
the age-range. Pooled premiums increase from about $750 to $3,000.

Figure 13.1 presents line charts for average premiums across the different
age groups. It presents the actual out of pocket premiums paid by insured
beneficiaries, as well as the actuarially fair premium for the observed case and
for the case where everyone is insured. It shows that the actual premium paid
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is substantially lower than the actuarially fair premium, particularly for the
older beneficiaries. It also shows that premiums would come down in a pooling
equilibrium.

13.4.3 Tax Policy

We may have too many people who are choosing to not have health insurance.
The uninsured can be a burden on society because when they get sick they may
not be able to cover the medical expenses, which moves those expenses to the
hospitals or the government. There are a couple of policies that we could use to
encourage a higher uptake of health insurance. We could either make choosing
to have health insurance cheaper or we can make choosing not to have health
insurance more expensive. The US uses the former. Taxes are not paid on the
health insurance portion of income, giving a tax subsidy to employed people for
purchasing insurance. An alternative policy of taxing those that don’t choose
to get insurance was originally planned for the insurance exchanges created as
part of the Affordable Care Act.

The tax policy charges a tax on people who choose not to buy health
insurance. If the tax is high enough, then most people will choose to have
health insurance and the insurance premiums will fall.

To determine how behavior changes, calculate the expected value for being
insured and being uninsured for the people in the data who are currently
insured and for people who are currently uninsured. Below these are denoted
dt2_in and dt2_un, respectively.

> r = 0.7

> dt2_in = dt2[UNINSURD == 2,

+ .(EU_uns = EU_exp(r,

+ income + premium_alt - premium,

+ exp_pos,

+ exp_mean,

+ exp_sd),

+ EU_ins = EU_exp(r,

+ income - premium,

+ 0,

+ 0,

+ 0)),

+ by = "id"]

> dt2_un = dt2[UNINSURD == 1, .(EU_uns = EU_exp(r,

+ income,

+ exp_pos,

+ exp_mean,

+ exp_sd),

+ EU_ins_sep = EU_exp(r,

+ income - premium_alt,
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+ 0,

+ 0,

+ 0),

+ EU_ins_pool = EU_exp(r,

+ income - premium_pool,

+ 0,

+ 0,

+ 0)),

+ by="id"]

The function tax_policy() calculates the percentage of the population
that is insured given a tax rate. The code is a bit ugly. It calculates the
expected utility if the uninsured individual remains uninsured with the new
tax. It then mergers, the results back into the original data. The function
reports the percent of the population that choose to be insured under the
policy. It sums the proportion of the population already insured and then for
the population that is uninsured it determines whether the expected utility
under a pooling equilibrium is greater then the tax.

> r = 0.7

> tax_policy = function(tax) {

+ dt21 = dt2[UNINSURD == 1,

+ .(EU_tax = EU_exp(r,

+ (1 - tax)*income,

+ exp_pos,

+ exp_mean,

+ exp_sd)),

+ by = "id"]

+ dt2_un1 = merge(dt2_un, dt21, by = "id")

+ dt2_un2 = merge(dt2_un1, dt2, by = "id")

+ return((sum(dt2$count[dt2$UNINSURD==2], na.rm = TRUE) +

+ sum((dt2_un2$EU_tax < dt2_un2$EU_ins_pool)*

+ dt2_un2$count, na.rm = TRUE))/

+ sum(dt2$count, na.rm = TRUE))

+ }

The code below calculates the percentage of the population that is insured
under different tax rates and plots the results.

> line_ins_prop = data.frame(tax = seq(0, 1, 0.01),

+ ins_prop = sapply(1:101, function(i)

+ tax_policy(i/100))) |>

+ ggplot(aes(x = tax, y = ins_prop)) +

+ geom_line() +

+ labs(x = "Tax rate",

+ y = "",
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+ title = "Percent insured") +

+ scale_x_continuous(limits = c(0, 0.4)) +

+ scale_y_continuous(limits = c(0.75, 1)) +

+ geom_hline(yintercept = 1, linetype = 2)

> line_ins_prop
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FIGURE 13.2
Line graph of the percentage of the population insured against the tax rate.
Around 85% are insured without any tax, the proportion reaches 100% with a
tax rate over 30%.

Figure 13.2 suggests that it is not that easy to encourage people to purchase
insurance by imposing a tax penalty on the uninsured. The relationship is
non-linear meaning that a small tax can get a large proportion of people onto
insurance, but the relative effectiveness falls the higher the tax. The analysis
suggests taxes 30 percent rage are needed to get everyone insured.

13.5 Discussion and Further Reading

Adverse selection is most famously illustrated by Akerlof (1970) and the idea
of a lemons market. Adverse selection and moral hazard have become key
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to understanding health insurance markets. These ideas formed the basis for
policies introduced in the Affordable Care Act that aimed to reduce the number
of uninsured. See Pauly (1974). The tax on the uninsured, called the“individual
mandate” was subject to lawsuits and was eventually repealed. So did it work?
A recent survey by Brookings economist, Matt Fiedler finds that the tax may
have reduced the uninsured rate. It turns out to be very tricky to determine
what happened given all the changes that occurred with the introduction of
the ACA and the complexity of the policy (Fiedler, 2020).
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