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Preface

It is a matter of pleasure for us to put forth the book titled, Multi-Criteria Decision
Models in Software Reliability: Methods and Applications. In the present era, soft-
ware reliability plays a vital role in solving different kinds of problems and provid-
ing promising solutions in digital world. Because of the increase in digitalisation in
today’s lifestyle and each and every service to make the life easier, good software
interfaces are required. Due to the increase in the usability and dependency on soft-
ware, one important feature matters a lot, that is software reliability. The success of
incorporation of the heavy software in the system works only with reliability feature.
Such reliability depends upon different criteria and the deployed environment. It
does not always relate to one or two factors, but it depends upon various factors such
as physical or virtual.

This book explores various factors and criteria within different chapters related
to reliability and decision-making steps. These aspects make decision-making
approaches more powerful, reliable and efficient. The above-mentioned charac-
teristics make the software reliability approaches more suitable and competent for
decision-making systems. Nowadays, machine learning is incorporated in each and
every field of engineering to make the automated system for better decision-making
solutions. This kind of system provides the efficient decision in less time. Medical
science and engineering have been using various medical systems such as medical
imaging devices, medical testing devices and medical information systems. In order
to analyse such big data efficiency, image processing, signal processing and data
mining play important roles for computer-aided diagnosis and monitoring.

Decision-making in the medical field is a very important part because it is directly
related to human life, so monitoring and diagnosis software should be reliable enough
to provide the correct reports. This book will enable the reader to appreciate the
applications of multi-criteria decision models in software reliability and their differ-
ent methods used in various fields according the field criteria.

CHAPTER 1

This chapter focuses on building an item-item recommender system using collabora-
tive filtering. The proposed model uses the well-known MovieLens dataset and also
uses the concept of Bayesian average for evaluating movie popularity. In order to
deal with the problem of sparsity, our proposed model builds compressed sparse row
(CSR) matrix. This chapter uses machine learning approach using K-nearest neigh-
bours for recommending movies based on similarity.

CHAPTER 2

This chapter focuses on the examination of relevant literature and provides a concep-
tual framework that explains the role of machine learning and profound learning in
the development of intelligent (artificial) beings.

vii



viii Preface

CHAPTER 3

This chapter reviews the various classifications used to predict software defects using
software measurements in the literature. In this chapter, a detailed analysis of appli-
cation of data mining and machine learning approaches used for software quality,
defect and quality analysis is presented.

CHAPTER 4

This chapter analyses the types of ambiguities that arise due to poor management of
requirement engineering and how it affects software quality and customer satisfac-
tion. Moreover, it discusses the challenges an enterprise faces when, in prototype
model, new feature are added continuously based on business requirements.

CHAPTER 5

This chapter describes the integration of multi-criteria decision making (MCDM)-
based fuzzy analytic hierarchy process (FAHP) and fuzzy Technique for Order
Preference by Similarity to Ideal Solution (FTOPSIS) methods that are applied for
the formation or selection of best group of programmers.

CHAPTER 6

This chapter intends to use one of the unknown yet powerful machine learning algo-
rithms, MCDM, to foresee the presence of heart disease in a person more accurately
in order to save more lives by detecting and treating the patient before any major
issue.

CHAPTER 7

In this chapter, the classification of software reliability models (SRMs) is studied on
the basis of effective and efficient quality of SR models and obtains software faults
with categorisation of vast variety of available software.

CHAPTER 8

This chapter provides a detailed study of different types of reliability models, which
are responsible for the software reliability measurements. As every model has differ-
ent criteria, so no single model is perfect. It also provides information about software
quality improvement.

CHAPTER 9

This chapter shows the comparison of different techniques to resolve vulnerabilities
using different multi-criteria decision analysis (MCDA) methods. The MCDM saves
and sorts the list of criteria affecting the environments.
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CHAPTER 10

This chapter describes and gives possible approaches for the safety assessment of
Al systems. The Al system to integrate safety level needs and used for probabilistic
failure behaviour for the dangerous part of the random budget for failure relevant in
Al system.

CHAPTER 11

In this chapter, a step-by-step model for the FDP and FCP is proposed based on the
ANN. The test initiative is taken into account as it has a strong impact on the error
detection and correction process.

CHAPTER 12

In this chapter, various MCDM methodologies are studied with different perfor-
mance parameters along with the new methodology FMCDM and its applications.
The new methodology is compared with the traditional methodologies.

CHAPTER 13

In this chapter, to extend the capabilities of large-scale application and fix any faults
detected during operation, software systems with optimisation help in selecting new
techniques constantly for improving the next release sequence of plan, which is a
huge challenge for firms developing or managing such vast and sophisticated systems.

CHAPTER 14

In this chapter, modelling data are evaluated with a deep neural network algorithm
that is created expressly to predict the amount of faults, and the fault-free software
system is finalised.

CHAPTER 15

This chapter reviews the recent technologies and uses deep learning mechanisms to
detect vulnerabilities. It shows how they apply state-to-state neural techniques that are
helpful for capturing probable vulnerable codes and patterns. It also provides complete
reviews of the visions, concepts and ideas of the game modifiers for their field of interest.

We sincerely thank Ms. Erin Harris, Senior Editorial Assistant, CRC Press/Taylor
& Francis Group, for giving us an opportunity to convene this book in her esteemed
publishing house and for their kind cooperation in completion of this book, and Dr.
Vijender Kr. Solanki, Sandhya Makkar and Shivani Agarwal, Series Editors in IT,
Management and Operation Research. We thank our esteemed authors for having
shown confidence in this book and considering it as a platform to showcase and share
their original research work. We would also wish to thank the authors whose papers
were not published in this book, probably because of minor shortcomings.
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2 Multi-Criteria Decision Models in Software Reliability

1.1 INTRODUCTION

A vital factor affecting system reliability is software reliability. Alternatively, it is
described as the likelihood of software being successfully executed for a particular
instant of time. Several techniques were proposed for determining the software’s
reliability. A particular task is fulfilled by a software system in a particular environ-
ment for predefined number of input cases is termed as software reliability. A very
important connection to software reliability is software quality, comprising function-
ality, usability, performance, etc. Software quality hinders the growth of software
reliability. It is difficult to reach certain level of reliability with any system with a
complexity. The machine learning approach guarantees to predict accurate solution
to a given problem and therefore is a promising approach for ensuring software reli-
ability. Today, machine learning approaches are used in a number of applications;
one of the most used approaches is recommender systems where a user is being
recommended items on the basis of his/her purchasing history of buying habits. A
number of applications such as e-commerce, movies recommendation and social net-
working such as Facebook make use of recommender systems.

The entire chapter is divided into the following sections: Section 1.2 deals with
the background details. Section 1.3 presents the ML techniques and methodology
used for reliability assessment in our proposed work. The experimental set-up is dis-
cussed in Section 1.4. Results are represented in Section 1.5. Section 1.6 concludes
the chapter.

1.2 BACKGROUND DETAILS & RELATED WORK

1.2.1  SOFTWARE RELIABILITY

An important feature for enhancing software quality is ensuring software reliability
dealing with the bugs present in the system [1]. Fault in code is the major reason for
failure in the system. Analytical models are used to measure the reliability of soft-
ware termed as software reliability growth models (SRGMs) [2,3].

1.2.2 CRrITERION TO MEASURE PERFORMANCE OF SGRM

Past research presented several techniques to acquire software reliability, but to
access it and estimate mean time to failure (MTTF), we use a mathematical model
called SRGM. There are two categories of SGRMs on the basis of nature of process:

1. Times between failures models
2. Fault count models.

Some well-known SRGMs are Goel-Okumoto, Musa-Okumoto, Jelinski-Moranda,
etc. For deciding reliability level and to stop testing, we use these models [4].

For evaluating the performance of various models, we use several criteria such as
root-mean-square error (RMSE), mean absolute error (MAE), average error (AE),
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and normalised root-mean-square error (NRMSE). Our proposed model uses only
RMSE and MAE approach for evaluating the performance. The mathematical equa-
tions for the above-mentioned techniques are given below.

RMSE = (1.1)
where
i = Variable
N=Number of non-missing data points
x;=Actual rating
X;=Predicted rating.
N
D [e()=alr)
MAE = = (1.2)
N
k 2
\/Z _(phH=acn)
NRMSE = = (1.3)

> a0y

where
k=Number of failures
a/(f)=Number of actual failures
p(f)=Number of predicted failures.

1.3 MACHINE LEARNING: A BRIEF OVERVIEW

A technique that is capable of learning from training data and predicting results is
called machine learning. Broadly, we classify machine learning into four categories,
which are discussed in the next section. Further, subcategorisation of the different
types of ML is depicted in Figure 1.1 below. Under uncertainty, this technique plays
a vital role in prediction and decision-making. On the basis of type of data and ques-
tionnaire being asked, different taxonomies of ML are available, which classifies
machine learning. The classification of ML is given in Figure 1.1.

1.3.1  SuPERVISED LEARNING

In this method, we use labelled data with the help of which we train our model. In
other words, we can say the learning that takes place in the presence of a supervisor
is called supervised learning. The major part of this type of learning includes map-
ping function, which maps I/P variable (X) with the O/P variable (Y).

Y =f(X)
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[ Machine Learning ’

] ' ' }
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FIGURE 1.1 Categories of machine learning.

Supervision for model training is the main step involved in supervised learning. It
can be simulated with the fact that proper learning takes place in the presence of a
teacher or mentor in school. Two problems come in this category: classification and
regression.

1. Classification Models: The problems in which output variables can be clas-
sified as “Yes” or “No”, or “Pass” or “Fail” are categorised as classification
models. In order to predict data category, we use these models. These can be
binary classification or multiclass classification models. Some well-known
examples for classification models that are deployed are spam filtering in
emails, churn prediction, etc.

2. Regression Models: Whenever the output is predicted based on the previ-
ous data, we use the concept of regression models, for example house rent
prediction. Linear, polynomial, ridge and logistic regression are some of the
more familiar regression algorithms.

Regression problems are all about predicting f% for a quantitative response, such
as blood pressure and temperature. For prediction, many ML algorithms are avail-
able, ranging from simple linear regression (LR) [5] and polynomial response surface
(PRS) [6] to more complex support vector regression (SVR) [7], decision tree regres-
sion (DTR) [8], and random forest regression (RFR) [9]. By accurately quantifying
uncertainty in regression problems, we use some machine learning (ML) models
[10,11]. DNNs are more reliable than conventional ML equivalents and are effective
in controlling the overfitting issue [12] (Figure 1.2).

1.3.2  UNSUPERVISED LEARNING

The learning that takes place in the absence of a supervisor is called unsupervised
learning; in this type of learning, we do not have labelled data. This technique
does not provide any training data. A large volume of data is fed to the machine for
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FIGURE 1.3 Unsupervised learning.

developing model and patterns, and on the basis of this learning, the model is fed
with the testing data so as to provide efficient predictions. In unsupervised learn-
ing, there are no defined outcomes; moreover, it determines whatever different or
interesting patterns exist in a given data set. Recommender system is basically based
on the concept of unsupervised learning where we use several algorithms such as
k-means clustering and k-nearest neighbours (Figure 1.3).

1.3.2.1 Categorisation of Unsupervised Machine Learning

1. Of all the learning methods, clustering is an important unsupervised learn-
ing method. Organising unlabelled data into similar groups is the main task
of clustering technique. Therefore, collection of similar data items is called
clustering. Grouping of similar data points into cluster and finding similar
data points is the main goal of clustering.

2. The technique of identification of rare items or events differing from major-
ity of data is called anomaly detection. Since anomalies or outliers are sus-
picious, generally we look for them. Bank fraud and medical error detection
generally uses anomaly detection techniques.
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1.3.3  SEMI-SUPERVISED LEARNING

A technique comprising of mix up of labelled data and unlabelled data during the
phase of training is called semi-supervised learning. In this technique, first, the
model is trained with the training data and then it is fed with the testing data to get
the predictions.

To produce improvement and accuracy in learning, we use unlabelled data. A
skilled human agent is required for acquiring labelled data for a learning problem or
a physical experiment. It is relatively inexpensive to acquire unlabelled data.

A text document classifier is an example of this type of learning. It is so because
it is not time efficient to have a person read the entire document. So, with the help
of labelled text it becomes easy to classify labelled text with unlabelled (Figure 1.4).

1.3.4 REINFORCEMENT LEARNING

An interactive environment using hit and trial is learning which comes under the
category of reinforcement learning (RL) and is an ML technique. Mapping between
input and output is provided by both supervised and reinforcement learning where
we give feedback to the agent. These feedbacks are of two types: Whenever there is a

~

/
O
O
C
A

FIGURE 1.4 Semi-supervised learning.
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FIGURE 1.5 Reinforcement learning.

positive reward, then that type of performance is repeated, while if there is negative
impact of a work, then it is avoided (Figure 1.5).

1.3.4.1 Algorithms Used in Machine Learning
Some commonly used machine learning algorithms are discussed below:

1. Linear Regression
This technique estimates the exact values, for example total sales predic-
tion and cost of houses, on the basis of continuous variables. The best line
is fitted to depict the relationship between two variables. The line is also
called regression line shown by the linear equation

Z=m*X + ¢

where Z is dependent on the values of X and ¢, and m is the slope.

For example, if we give an assignment to a student studying in fifth class
to separate people according to their weight, then he on the basis of his
skills will arrange people and separate them on the basis of their height and
weight to classify them just by visualisation. This is a real-life application
seen for linear regression. Figure 1.6 given below depicts a simple linear
regression.

2. Logistic Regression

As many a time we get confused by the name regression, whereas in
real, it is a classification algorithm. Discrete values comprising values such
as 0/1, yes/no and true/false are estimated by logistic regression. The prob-
ability of occurrence of event is predicted by fitting data. As this method
is basically based on probability, its value generally lies between 0 and 1
(Figure 1.7).

3. Decision Tree

A well-known algorithm used for classification problems is decision tree.
Here, the entire population is split into two or more homogenous sets. In
the diagram depicted below, we can see how a decision tree works. For
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FIGURE 1.8 Decision tree.

example, if an employee is offered a salary between $50000 and $8000 and

if his office is near to his home and if office provides cab facility, then the

probability of that employee for taking offer letter is more, whereas if the

salary is not in that range, he would have not accepted the offer; moreover,

if his office was also far from his home, he would have declined the offer

and if cab was not provided, still he would have declined offer (Figure 1.8).
4. SVM (Support Vector Machine)

It divides two items on the basis of their best line or decision bound-
ary called hyperplane. In n-dimensional space, there can be several lines/
decision boundaries to separate the groups, but we need to find the best
decision boundary to help define the data points. The hyperplane of SVM
refers to the best boundary (Figure 1.9).

5. Naive Bayes

A method of classification based on Bayes’ theorem is called naive Bayes.
This technique assumes that a particular feature in a class is not related to
another. For calculating posterior probability, we use Bayes’ theorem. It is
given below in the form of equation:

Here, P(nlm)="Posterior probability

P(m)=Prior probability of class

P(nlm)=Likelihood which is probability of predictor
P(n)=Prior probability of predictor.
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6. kNN (k-Nearest Neighbours)

It is a classification problem using classification and regression problems.
k-Nearest neighbours algorithm involves finding the distance from the data
points, and for that, we use Euclidean, Manhattan and Hamming distances.
For the sake of convenience, we take an odd value of k such as 3 or 5 to
distinguish between two different types of items (Figure 1.10).

7. k-Means

For solving clustering problem, we use this type of unsupervised algo-
rithm. With the help of certain number of clusters, we can classify the data
set using this technique assuming k number of clusters; therefore, its name
became k-means algorithm. Figure 1.11 below depicts three prominent clus-
ters where each cluster is shown by same coloured data points.
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FIGURE 1.12 Random forest.

8. Random Forest
When we talk about ensembling, then random forest is the most widely
used algorithm in supervised machine learning. A collection of decision
trees is called a random forest. Classification is given in tree for classifying
new object, and we say tree “votes” for that class. These have much more
accuracy with respect to decision trees, but lower than gradient boosted
trees (Figure 1.12).

1.4 RELATED WORK

There are several works done by several researchers in the field of collaborative
filtering-based recommender system. Most of the work based on movie recommendation
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is based on the concept of personalisation, which suggests movies to users on the basis
of their interest and likings.

A k-means clustering-based hybrid recommender system was proposed by Katarya
Rahul [13] and was applied to the MovieLens data set with optimisation technique of
bio-inspired artificial bee colony.

Ponnam et al. [14] suggested a collective filtering technique based on an item that
examines the user’s item rating matrix and determines the relationship between dif-
ferent objects in order to calculate the user’s recommendations.

A content-based movie recommender framework was proposed by Bagher
Rahimpour Cami et al. [15] capturing user choices in temporary mode in user mod-
elling and predicting favourite movies.

Reddy et al. [16] used a genre correlation technique by using the method of
content-based filtering.

A weighted hybridisation-based hybrid recommender system was proposed by
Hong-Quan Do et al. [17], which didn’t use fixed weight and aimed to provide a
simple way to dynamically weight the combination of Collaborative Filtering and
Content Based Filtering.

An effective GCN (graph convolutional network) algorithm was suggested by Rex
Ying et al. [18]. The developed algorithm was effective for data that combine graph
convolutions and efficient random walks to produce embeddings incorporations.

A method for tweets recommendation was proposed by Arisara Pornwattanavichai
et al. [19], which was based on hybrid recommendation with LDA for unsupervised
topic modelling and GMF for supervised learning.

For gaining feedback on movies and movie genres in Rohan Nayak et al. [20]
hybrid’s framework, and based on their responses, the user will be classified and
given a collection of recommendations.

Collaborative filtering, as previously discussed, is a well-known technique for
making powerful recommendations based on ratings results. In order to enhance
the technique’s ability and achieve results by k-means clustering algorithm in movie
recommendation framework, we continue our research.

1.5 MACHINE LEARNING TECHNIQUES & METHODOLOGY
USED FOR RELIABILITY ASSESSMENT

The entire machine learning process is divided into several tasks. The first and fore-
most task is data set identification, and we have chosen MovielLens data set for our
experimentation. From the well-known GroupLens Research Project at the University
of Minnesota, we took MovieLens data [21]. Our goal with using this data set is to
generate recommendations of movies to users on the basis of their interest and lik-
ings. This data set comprises 264505 ratings (1-5 scale) from 862 users on 2500
movies, and age, occupation, zip code, gender, etc., act as important demographic
features taken from user data set. Next, data preprocessing is done to remove any sort
of noise from the data set.

For our experimentation work, we are splitting the data set into two parts by
80:20, where the training part (80%) is used to train our model and then 20% is used
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FIGURE 1.13 Machine learning process.

TABLE 1.1

Details of MovieLens Data set

Data set Name Number of Unique Data
Movies.CSV 2500 Movies
Ratings.CSV 264505 Ratings
Users.CSV 862 Users

for testing. Finally, we also evaluate our model by calculating RMSE and MAE of
our proposed model (Figure 1.13).

1.5.1 DATA Set

We have taken MovieLens data set for our experimental work. This data set has been
taken from (http:/www.movieLens.org) for evaluating our proposed recommender
system. Our experiments are performed on Google Colab where Google provides
with the support of hardware on cloud to do our machine learning task. Here ratings
by users are given on a scale from 1 to 5. Our data set is comprised of those users
who have given at least 20 ratings. Our data set comprises 1,000,209 ratings given by
users for different movies (Table 1.1).

1.5.2 CoLLABORATIVE FILTERING TECHNIQUE

This approach is based on a user’s suggestion of an object based on reactions from
similar users. This works by selecting a smaller collection of users from a wide
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FIGURE 1.14 Collaborative filtering technique.

community of individuals with tastes close to a single user. In this, the main recom-
mendation principle is that other users offer ratings to a specific object (Figure 1.14).
Measuring user similarity in collaborative filtering technique:

1. Pearson Correlation:
b Zpep (ra p—ra)(rb p— rb)
\/ZPEP rap—ra \/Zpep rb. p—rb)

where a and b are users, while r,, is rating and P is set of items read by

sin(a,b) (1.4)

both users.
ii. Cosine Similarity Measure: It is measured by the angle between the
vectors
.\ DG
sin(p,q) = = (1.5)
p*d]

U represents users having rated both items p and q.

1.6 EXPERIMENTAL SET-UP

The idea behind recommending movies to users based on item-item collaborative
filtering comprises the steps discussed below:
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Step 1. Create an adjusted rating for all movies by users. This adjusted rating
is calculated by subtracting the movie’s average rating from all users (for
movie j) from each rating for that movie.

Step 2. Calculate similarity scores between all movies based on their adjusted
movie ratings from each user (use cosine similarity). For recommendation
purpose, we will only consider top similar movies to a target movie (top n
nearest neighbours).

Step 3. For recommending a movie to a target user, we will score each movie,
using the top n nearest neighbours for that movie. The score is basically a
weighted rating based on the target user’s rating for all movies they have
rated and the similarity scores as the weight. Once we score all the movies,
pick the top scoring movies from this scoring as recommendations.

The adjusted rating is nothing but the average rating for the movie from all users ()
subtracted from all of the individual movie ratings (ru, j):

Ru, j=ru, j—uj

This adjusted rating is now comparable across all movies. This adjusted score basi-
cally compares the variation of ratings by a user from the movie’s mean rating
(Figures 1.15 and 1.16).

Now we create similarity score for each movie with every other movie; for this,
we use the concept of cosine similarity (Table 1.2).

For creating recommendation to the target user, we find a score for each movie
in the data set and movies with the highest score will be recommended to the user.

Steps involved in scoring are as follows:

1. Get the list of movies the target user has rated (seen movies). These seen
movies will be used to create the score for all other movies (unseen movies)
based on how the unseen movies are similar to these seen movies. These

0.8
0.6
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1.0 15 20 25 3.0 35 4.0 45
avg_rating

FIGURE 1.15 Potting average ratings across all users.
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FIGURE 1.16 Potting average-adjusted ratings across all users.

seen movies tell us about the taste of the target user. If they have rated some
movies high, we will try to find similar unseen movies to these high rated
seen movies and recommend them to the user and vice versa for low rated
movies.

2. For all the unseen movies in the data set, get the similarity scores between
them and the seen movies. Here we can use all the seen movies or the top N
neighbours out of the seen movies to get the similarity scores. We will use
N =230 for our calculation. In case the number of seen movies is less than 30,
we will use all the seen movies.

3. Using the similarity scores between each of the unseen movies and the seen
movies, calculate a score for the unseen movies. The formula for the score
is given below.

4. Once we get the score, sort the unseen movies based on the score and rec-
ommend the top n movies for the user.

We use the following formula to calculate score:
D costi, g~ m))
J

Z cos(i, j)

Su,i =m, +

where
S is the score for the unseen movie i
m, is the average rating for all seen movies by the target user U
cos(i, j) is the cosine similarity (based on adjusted rating) between the unseen
movie i and the seen movie j
r,; 1s the rating of the seen movie j by the target user U
m; is the average rating from all users for the seen movie j
r,;—m; is the same as the adjusted rating calculated above.
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TABLE 1.3
Recommendations for User 76630
Movield Title Genres Score
0 2906 Random Hearts (1999) DramalRomance 3.086117
1 1099 Christmas Carol, A (1938) ChildrenIDramalFantasy 3.060448
2 828 Adventures of Pinocchio, The (1996) AdventurelChildren 3.040377
3 611 Hellraiser, Bloodline (1996) ActionlHorrorlSci-Fi 3.018605
4 1015 Homeward Bound: The Incredible AdventurelChildren|Drama 3.005596
Journey (1993)
5 334 Vanya on 42nd Street (1994) Drama 2.985227
6 3684 Fabulous Baker Boys, The (1989) DramalRomance 2.978881
7 1014 Pollyanna (1960) ChildrenlComedyl/Drama 2.976269
8 1218 Killer, The (Die xue shuang xiong) ActionICrimelDramalThriller 2.974656
(1989)

9 2859 Stop Making Sense (1984) Documentary|Musical 2.970456

TABLE 1.4

Splitting Data set into Training and Testing

Number of Users, Ratings and Movies Training Data Testing Data

Number of unique users in RATINGS data 681 181

Number of ratings in RATINGS data 209235 55270

Number of movies 2500 2496

Both the test and training data sets show similar distribution for the number of
users per movie and average rating per movie (Tables 1.3 and 1.4). This shows that
the test and training data sets are not that different and should be good enough for our
evaluation. There is difference in the distribution of the average movie rating per user
in test and training data sets, but these should be OK as we will use adjusted movie
ratings for our recommendations (Figures 1.17-1.20).

1.6.1 Test Data Ser — QUERY vs PROBE

Even from the given test data set, while trying to get the prediction for one user, we
will only keep some movie ratings away from the model (QUERY movies), while we
will pass on the remaining movies from that user to the model to be used as history
(PROBE movies).

This division can be done randomly or on a temporal basis. We will do this based
on time (temporal) — keep most recent ratings from a user as query and the older ones
as probe. We can do this based on the timestamps available in the ratings data set.
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FIGURE 1.17 Movies rated by user in training data set.
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FIGURE 1.18 Movies rated by user in testing data set.

Algorithm 1. User-User Collaborative Filtering

The complete algorithm for user-user CBF will be explained in the following
defined function. The steps for this algorithm are the following:

1. Create adjusted user movie rating.
2. Create similarity score for each user with every other user.
3. Create recommendation for the target user based on the similarity score.
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FIGURE 1.20 Average movie rating in testing data set.
Algorithm 2: Item-Item Collaborative Filtering
The steps for the item-item CBF will be as follows:

1. Create adjusted rating for every movie.
2. Get similarity scores between every movie.
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3. Rank each movie for a given target user based on a score created using
similarity scores between the movie and the top neighbours of the movies
(which target user has rated).

1.7 RESULTS EVALUATION

1.7.1  EVALUATE THE RECOMMENDATION FROM BOTH
ALGORITHMS — RMSE AnD MAE

In our test query ratings data set, we loop through all the users and get the recom-
mendation from both the algorithms. We will then use the predicted ratings for their
movies and compare them with their actual rated movies to calculate the RMSE
(root-mean-square error) and MAE (mean absolute error) metrics. The algorithm
with the least RMSE or MAE will be considered better performing.

The graph below depicts a comparison between item-item CBF and user-user CBF
with the number of neighbours with respect to RMSE (Figure 1.21).

The graph below depicts a comparison between item-item CBF and user-user CBF
with the number of neighbours with respect to MAE (Figure 1.22).

From the above graph, it’s pretty clear that the user-user algorithm gives much
better prediction than the item-item algorithm. It also looks like that the neighbour-
hood size of ~20 is good enough in our case for user-user algorithm.

We are not choosing the neighbourhood size of 5 as it basically gives out very less
number of recommendations and is not good enough.

The table below depicts the RMSE and MAE comparison table the two algo-
rithms item-item CBF and user-user CBF (Table 1.5).

The graph given below depicts comparison between RMSE and MAE with respect
to the two algorithms item-item CBF and user-user CBF (Figure 1.23).
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FIGURE 1.21 RMSE plot for algorithms.
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TABLE 1.5
RMSE and MAE Comparison Table
Algorithm NBR Error_sq Movield Error_abs RMSE MAE
0 Item-item CBF 5 489.039404 543 386.951160 0.949013 0.712617
1 Item-item CBF 10 483.644746 543 380.510503 0.943764 0.700756
2 Item-item CBF 15 483.149094 543 380.910301 0.943280 0.701492
3 Item-item CBF 20 480.815570 543 378.782391 0.940999 0.697573
4 Item-item CBF 25 482.042223 543 378.205743 0.942199 0.696511
12 User-user CBF 5 81.272629 133 80.028456 0.781711 0.601718
13 User-user CBF 10 188.447988 277 172.318323 0.824814 0.622088
14 User-user CBF 15 235.440337 357 221.988758  0.812094  0.621817
15 User-user CBF 20 274.206791 404 249.881260 0.823851 0.618518
16 User-user CBF 25 340.749089 445 287.846705 0.875059 0.646847

1.8 CONCLUSIONS

In the present chapter, techniques for establishing software reliability using machine
learning have been used. On the basis of our experimental results, it is revealed
that machine learning approach proves to be a better approach for predicting accu-
rate software reliability. For analysing our model efficiency, we use the concept of
RMSE, NRMSE and MAE criteria. On the basis of the experiment conducted on
the well-known MovieLens data set, the ML approach gives better results and it is
revealed that our technique provides more accurate results. The results obtained from
our experimentation work reveals that the ML-based approach decreases testing cost
by estimating the reliability of software and is much more feasible.
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2.1 INTRODUCTION

Machine learning is a subtype of Al that allows a machine to study without explic-
itly programming concepts or facts. It starts with personal observations in order to
anticipate data features and trends and give superior results and judgements in the
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future. Deep learning is a set of machine learning techniques that utilise a large
number of nonlinear transformations to represent high-level abstractions in data [1].
ML is an artificial intelligence (AI) discipline. DL is not a new concept, and it has
been criticised as a rebranding of neural networks. Recent research in the use of DL
for Mobile Device Management, however, has proved promising, particularly in the
field of visual data mining [2].

Deep learning has been one of the most significant technological advancements in
the field of artificial intelligence during the last 10 years. Deep learning, in contrast
to shallow learning, often necessitates a high number of neuronal layers. Deep learn-
ing models are superficial learning methods in computer vision, speech recognition,
automated machine translation and financials [3-5]. Deep learning’s advantages in
other domains have led researchers to apply it to intrusion detection. Traditionally,
the entire data set is used to train a single deep learning model. Pre-trained deep
learning models are constructed models that help people learn about algorithms or
experiment with current frameworks for better outcomes without directly building
them [6-8].

Deep learning methods employ a sequential layer architecture to automatically
extract features from a data set. The introduction to the sequential layer structure
of nonlinear transformation functions is the basis of deep learning techniques. The
complexity of producing nonlinear transformations increases as the number of layers
increases. Deep learning methods employ abstract representations at several layers to
understand the hidden abstract features of the data collected from the final layer. This
results in the input being routed through a high-level nonlinear function to provide
abstract properties for the last output layer. The basis of SVM techniques is statisti-
cal and convex learning, which are founded on the concept of structural risk reduc-
tion. SVM was invented by Vapnik as a solution to a number of problems. It may be
used for learning, pattern recognition, regression, classification and analysis, among
other things [9]. Deep learning is an emerging approach of machine learning that can
handle enormous data sets and actual words. The basic conception of deep learning
is based on neural networks. The input and output levels are concealed over four lay-
ers (also known as nodes). In recent times, deep learning has become popular among
academics due to its capacity to deal with enormous volumes of data and difficult
issues such as voice, video, picture and audio. DL can also handle categorisation
problems such as time series and computer vision [10].

Big data is becoming more accessible in many aspects of production and opera-
tions. Data, in and of itself, have value in allowing a competitive data-driven econ-
omy, which is at the heart of the Internet of things and Industry 4.0. The increased
data availability allows for improved decision-making and strategy formulation, as
well as the introduction of the next generation of creative and disruptive technolo-
gies [11]. Computer learning is a discipline in which a computer recognises numer-
ous components or parts of the data supplied as input and then the system produces
output predictions. Machine learning is an area of research that combines artificial
intelligence with statistics to allow computers, depending on the input, to predict
and process output. Machine learning is now divided into three kinds: supervised,
unattended and individually characterised. The input is supplied in the form of
numerous examples in supervised machine learning, and the machine aims to get
the desired output by evaluating, measuring and calculating various parameters in
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the input. The type of data collection used for input, biasing and labelling, and the
algorithm employed to interfere with the input are all factors that impact the predic-
tion’s accuracy [12].

Deep learning (DL) is both a new academic buzzword and a machine learning dis-
cipline (ML). ML is connected with some of artificial intelligence’s (AI) basic ideas
and focuses on addressing real-world issues with neural networks to replicate our
own decision-making processes. The words “deep” and “learning” are combined.
Deep means that something goes deep below the surface; it usually refers to the num-
ber of layers, and learning refers to the acquisition by study and practice of informa-
tion or abilities. DL is a form of learning data representation based on more advanced
(hierarchical) knowledge. We may think of deep learning as learning hierarchical
representations. There are various types of learning, including supervised, unsuper-
vised, and partially supervised learning. DL, also known as hierarchical learning or
deep structured learning [13], is a subset of ML. Deep learning has shown a lot of
promise as a replacement for handcrafted features in computer vision jobs in recent
years [14].

Deep learning, a branch of artificial intelligence (Al), is currently a popular and
widely used method that has been used in fields such as biology, medicine, computer
vision and speech recognition. Deep learning is a relatively new Al technique that
provides a strong framework for supervised learning. Even with large data sets, it
can rapidly and efficiently convert an input vector to an output vector. Deep learn-
ing architectures such as the convolutional neural network (CNN) and deep belief
network (DBN) are available. Deep learning can extract more comprehensive infor-
mation than traditional machine learning algorithms [15]. This study also discusses
the key distinctions between deep learning and machine learning in terms of the
importance of developing an artificial intelligence-based picture classification and
recognition framework for large data. Deep learning and machine learning classifi-
cations are coupled to improve picture classification performance on huge data.

2.2 RELATED WORKS

Pournami S. Chandran et al. [16] presented a first-class approach to locating a kid
missing from the photographs of a vast number of children with facial recognition
a profound learning technique. The entire public may upload photographs of dubi-
ous youngsters, as well as landmarks and remarks, to a shared site. The photograph
will be promptly matched to the repository’s photographs of the missing kid. The
photograph of the missing child is classified, and a database of missing children
collects the best match. The missing child in the missing photograph database has
a deep learning model designed by the public to accurately identify the missing
child with a face photograph. A particularly successful deep learning approach for
image-based applications, the CNN, is used to identify face. Visual descriptors are
removed from pictures with the VGG-Face deep architecture, a pre-trained CNN
model. Unlike traditional deep education applications, our technique simply utilises
a convolution network as a high-level functional extractor, which handles child detec-
tion using a trained SVM classifier. The most efficient CNN model for face recogni-
tion, VGG-Face, has been picked and appropriately trained and has resulted in a deep
learning model, which is insensitive to noisy, lightning, contrast, occlusion, picture
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posture and childhood. The kid identification system’s classification performance is
99.41%. 1t was put to test on 43 kids.

Dong Yu-nan et al. [17] in their paper compared deep learning to traditional
machine learning methods, then described the deep learning development process,
investigated and analysed deep learning network structures such as DBN, CNN and
RNNE, elaborated on the use of deep learning in image recognition and classification,
and proposed deep learning. The problems of using recognition and classification are
addressed, as well as the answers to those problems. Finally, the present status of
research in deep learning for image identification and classification is presented, as
well as future prospects.

In the study of Sufri et al. [18], two studies were carried out on two sorts of pic-
tures from the banknote: different areas and guidance captured in a controlled envi-
ronment using a smartphone camera and separate regions and orientations recorded
in a controlled environment using a smartphone camera. Machine learning mod-
ules have been taught to recognise each banknote class by removing feature values
RB, RG and GB from banknote pictures using different methods such as k-nearest
neighbours (kNN), decision tree classifier (DTC), support vector machine (SVM)
and Bayesian classifier (BC). AlexNet is a prequalified model of the CNN, the most
common structure for image processing in deep learning NN.

Yanyan Dong et al.’s [19] approach focused on the stage of extracting features
from a retinal picture. To begin, the fundus pictures are pre-processed using the
maximum entropy approach. Then, using a Caffe-based deep learning network, we
extract more differentiating features from fundus images automatically. A range of
classification techniques are finally utilised to automatically identify derived char-
acteristics. Instead of deep learning characteristics and features derived from the
retinal vascular, SVM (support vector machine) and softmax are utilised for cataract
classification. Cataract pictures are finally categorised as normal, moderate or severe.
When compared to classification results, the feature retrieved through deep learning
and categorised using softmax has higher accuracy. The findings show that our deep
learning research is both successful and useful.

Jiang Huixian et al. [20] reported a comparison of 50 plant sheet data sets with
the KNN classification bases, the Kohonen network and the SVM based on a
self-organising approach for the mapping of features. The leaves were compared to
seven different plants at the same time, and the ginkgo leaves were found to be sim-
pler to recognise. A good recognition effect has been achieved for leaf pictures with
complicated backgrounds. Image samples from the test set are entered to retrieve
reconstruction faults in the learning model. The deep learning model with the lowest
error set is decided by the test set’s class label. This technique offers the fastest pos-
sible identification time and the highest correct identification rate based on the data.

Busra Rumeysa Mete et al. [21] using deep CNN and data augmentation proposed
a classification method for floral photographs. Deep CNN techniques have recently
emerged as the most advanced solution for dealing with such issues. However, gain-
ing improved performance for flower categorisation is hampered by a shortage of
labelled data.

Hossam M. Zawbaa et al. [22] aimed to build an efficient and effective classi-
fication approach based on the RF algorithm. Different traits have been identified
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based on the form, colour and scale invariant characteristics for classifying three
fruits: apples, strawberries and oranges. An image processing pretreatment phase is
presented to prepare the fruit pictures by decreasing their colour index. The visual
features of the fruit will then be found. Finally, random forest (RF), a freshly created
machine learning method, is used in the fruit categorisation process. The photo-
graphs were captured using a standard digital camera, and all changes were carried
out in a MATLAB® environment. Trials were performed and reviewed using 178
fruit photographs in a series of experiments. From the standpoint of accuracy, the
RF technique demonstrates that the methodology can also be used to improve other
famous algorithms such as kNN and SVM methods. In addition, the system is highly
accurate in the recognition of the fruit name automatically.

Mohit Sewak et al. [23] examined one of the deep learning architectures, the
deep neural network (DNN), and compared it with the conventional RF malware
classification learning technique. We tested traditional RF and DNN performance
with two-, four- and seven-layer architectures and four feature sets. The classical RF
exceeds DNN irrespective of the feature inputs.

Obesity is the major cause of stroke and death in many nations [24]. Data
pre-processing was used to enhance the image quality of CT scans by stretching pic-
ture quality for improving image results and reducing noise. It also utilised machine
learning algorithms for classifying images of patients into two categories of stroke
disease: ischaemic stroke and haemorrhagic stroke. The eight machine learning algo-
rithms employed in the trial to identify stroke illness were kNN, naive Bayes, logis-
tic regression, decision tree, random forest, multilayer perceptron (MLP-NN), deep
learning and SVM. Random forest, according to the results of the research, delivered
the highest level of accuracy.

Kyu Beom Lee et al. [25] developed an object detection and tracking system
(ODTS) with the well-known deep learning network faster region convolutional neu-
ral network (Faster R-CNN) and object detection and conventional object tracking.
They used the developed system to automatically detect, and monitor unexpected
events in tunnel CCTVs.

Kavitha et al. [26] presented a CNN architecture for separating various plant pic-
tures from collected sequences. In order to remove the features of the pictures in
the resultant data set, CNN architecture is employed after the pre-processing pro-
cedures, which may include removing bleakness or adding a lighting shift. Create a
data set, train CNN, validate, test CNN, and predict and categorise the photograph
are all phases in the process of image classification using CNN. In one case, the
whole classification report is anticipated with a precision of 43.98% by using Keras
software with the Theano and the TensorFlow backend implementations.

Qing Li et al. [27] developed a tailored CNN with a shallow convolution layer
to categorise pulmonary photographic patches with interstitial lung disease (ILD).
Although in recent years a host of feature descriptors have been suggested, they can
be rather complicated and domain specific. On the other hand, our proprietary CNN
framework can learn the intrinsic picture functions from lung image parts, which
are most suitable for classification, automatically and effectively. Different tasks in
the categorisation of medical images or texture may be performed using the same
framework [28-30].
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2.3 PROPOSED SYSTEM

In recent years, the quantity of data has quickly increased due to the increased usage
of social media and Internet of things (IoT) appliances that require sensors, networks
and communications technology. The documents are available in both structured
and unstructured formats and, without suitable techniques and tools, are difficult to
handle. Researchers have devised a number of techniques and technologies aimed at
coping with large amounts of data. For example, the Apache Software Foundation
built Hadoop and Spark in a parallel processing architecture to address massive
amounts of data. Other solutions being developed to address complex data issues are
Google Dremel and S4. To enhance decision-making, all of these technologies are
utilised to collect, analyse and interpret huge amounts of data [29,30]. New thoughts
and approaches for dealing with diverse big data challenges are offered on a regular
basis. Deep learning is a novel method to machine learning, which can handle huge
data and real-world scenarios. Deep learning’s underlying notion is derived from
neural networks. Deep learning and machine learning have recently gained interest
among researchers for addressing massive data and associated challenges, and they
are used in various applications such as acoustic modelling, adaptive testing, automo-
tive industry, big data, biological image classification, data flow graphs, deep vision
system, document analysis and recognition, healthcare, human activity recogni-
tion, image recognition and classification, medical applications, mobile multimedia,
object detection, parking system, plant classification, semantic image segmentation,
stock market analysis and structural health monitoring.

This section illustrates some of the machine learning and deep learning models
used on the images collected from the big data. The images are taken from the big
data for further development of an artificial intelligence method for image classi-
fication and recognition for further process. Figure 2.1 below shows the proposed
framework of this paper.

The input images are taken from the big data. And the images are further pro-
cessed by pre-processing, feature extraction and classification algorithms.

2.3.1 IMAGE PRre-PROCESSING

Because of the disparity in the quality of photographs, it is essential to perform
picture preparation. Picture enhancement is an important step in the fundus image
pre-processing. We utilise histogram equalisation before; however, this approach
loses a lot of visual information and does not accentuate the blood vessels in the
backdrop image. After several testing runs, we choose the biggest entropy transfor-
mation. In order to identify the correct grey level categoriser, threshold of the image
and transform feature will execute the local grey level transformation based on the
concept of maximum entropy.

Locate the optimum dividing point to acquire the grey image edge, and then
achieve the threshold value on each side and enhance the spatial nonlinear deforma-
tion function (2.1 and 2.2). Not only does this approach enhance the image quality,
but it also saves time and preserves as much of the information from the original
fundus picture as possible.



ML & DL in Development of Al 31

Input Image

A

Image Pre-
Processing

l

Feature Extraction

v

Machine Learning

and Deep Learning
Classifications

|

Performance
Evaluation

FIGURE 2.1 The block diagram of the proposed algorithm.

The following is the formula:

H(x) 2 p(x =xi)log—— (x i) 2.1

0 < H(x) < log|x| 2.2

2.3.2 FEATURE EXTRACTION

This stage is aimed towards extracting the characteristics or properties of an image.
The degree of extraction influences the categorisation accuracy.

In consequence, the research suggested examines two ways of obtaining picture
characteristics: form and colour properties and the scale invariant feature transform
(SIFT) [22].

Colour is regarded as an important characteristic for image representation as it is
invariant in the translation, scaling and rotation of images. As a result, for each fruit
image in the collection, the first feature extraction approach utilised its colour and
form properties. Colour variation, colour mean, colour kurtosis and colour skewness
are all colour moments used to characterise the photographs. The terms eccentricity,
centroid and Euler number are used to describe the form characteristics. Eccentricity
is computed by dividing the main axis distance by the minor axis distance. It’s cal-
culated using either the major axis technique or the minimum bounding rectangle
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technique. The centroid of the picture in respect of the shape is specified by the shape
centroid. The connection between the number of connecting parts and the number of
holes on an image form is established by the image Euler number. To get the Euler
number, subtract the number of form holes from the number of contiguous sections.

The SIFT technique is used in the second technique to build the feature vector.
It is a way to extract visual characteristics that are not sensitive to image rotation,
scaling and translation, as well as to sophisticated projection and lighting changes.

SIFT is broken down into four main phases: All examples of extreme scale space
detection are key point location, orientation assignment and descriptor key point.
The extreme discovery stage in scale space identifies possible locations of interest
utilising the gauze-like function. A model is designed for the position and scale of
each location at the key point location. The key points selected are based on their
stability criterion. Orientations are assigned to each key point location in the orienta-
tion assignment stage based on the local image gradient directions. The algorithm is
mentioned below.

Algorithm 1: SIFT Feature Extraction Algorithm

Step 1: Using equations 2.1-2.3, construct the picture Gaussian pyramid

L(x, y, 0).
{-r)
— 202
G(x, Y, O') Py exp 2.3)
L(x, y, 0') = G(x, v, O') * I(x, y) 2.4)
D(x, y, G) = L(x, v, ka) - L(x, v, 0') 2.5)

where ¢ is the scaling parameter and G(x, y) is the Gaussian distribution.
I(x, y) is a smoothing filter, while L(x, y) is a Gaussian filter.
D(x, y) is the Gaussian difference (DoG).
Step 2: Determine the Hessian matrix.
Step 3: Then, as described in equation 2.6, compute the determinant of the
Hessian matrix and delete the weak key points.

Det(H) = Imm(x, ¢)Inn(x, &) - (Imn(x, 5))’ (2.6)

Step 4: As in equations 2.7 and 2.8, calculate the gradient magnitude and
direction.

1/2

Mag(x, y) = ((I(x + 1, y) — I(x -1, y))2 +(I(x, y+ 1)—I(x, y - 1))2) .2

o(x. y)=tan"1(l(x’y )= Ixy - l)] 2.8)
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Step 5: As in equations 2.9 and 2.10, use the sparse coding feature based on
SIFT descriptors.

s Z

min Z Xi— Za,?f) o2+ L 2.9)

i=1 j-1

Z
11y
J=1

where x; is the SIFT descriptors feature, a; is mainly zero (sparse), ¢ is the
sparse coding basis, and Y is the weights vector.

The operations are then carried out on image data translated for each
feature according to the specified size, orientation and location to ensure
these modifications are invariant. The local picture gradients in a specified
quarter surrounding the recognised key point are calculated for the selected
scale in the key point descriptions step. These are translated into representa-
tion to allow significant amounts of deformation of local form and changes
in lighting. It follows Algorithm 1’s instructions.

a,(j)

(2.10)

2.3.3  CLASSIFICATIONS

2.3.3.1 Support Vector Machine
Support vector machine (SVM) is a simple and effective supervised learning technique
used in categorisation. However it is frequently utilized in categorisation process.

In SVM, the distribution of input data is not known or assumed in advance.
There are two possible methods for dividing the data: linear and nonlinear meth-
ods. Furthermore, using SVM, there is no overfitting. If cross-validation is not done,
overfitting may occur in artificial neural networks. Several kernel functions can
also be utilised in a more readable space to isolate indivisible issues and map data.
Kernel-based algorithms are highly flexible because the methods have no influence
on hyperspecific factors, including the learning rate and parameters. Another expla-
nation is that changing the kernel function is sufficient when the issue area changes.

The equations provided were the kernel functions most commonly employed,
such as polynomial (1), linear (2) and Gaussian (3) kernels.

K(u, v)=(uxv+1) (2.11)

K(u,v)=uxv (2.12)

K(u, v) = exp = lu =l 2.13)
’ 20?

The SVM classifier proved to be the most successful in this research. We found that
after testing with several kernels such as polynomial, linear and Gaussian/RBF, we
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achieved a maximum accuracy of 93.2% in 116 seconds on the Food-101 data set.
Using the sklearn LinearSVC module with default parameter values, we were able to
come up with these results.

2.3.3.2 Convolutional Neural Network

Convolutional neuron layers are frequently used by CNN. One or more 2D matrices
(or channels) in image classification tasks are entered into the convolutional layer,
producing numerous 2D matrices. The number of inputs and output matrices may
vary. The following is the process for calculating a single output matrix:

N
Aj=f ZII*K:‘, j+Bj (2.14)

i=1

Each input matrix /i is first twisted with a matching kernel matrix Ki, j. The total of
all convoluted matrices is then computed, and each member of the resultant matrix is
given a bias value Bj. Finally, each component of the previous matrix is subjected to
a nonlinear activation function fi, resulting in a single output matrix Aj (Figure 2.2).

CNN’s fundamental structure consists of two levels: The first is connected to the
local windows of the preceding layers to extract features and each neuron in one
layer. The second layer is the mapping layer of the feature. CNN is employed as it is
resistant to change in picture and distortion, takes less memory, is easier to use and
gives a more effective model of training. During the image processing and voice rec-
ognition, it has greater importance since it gives a unique structure through shared
local weights and is almost identical to that of a biological neural network.

The overlay layer consists of a series of filters, which are separately intertwined
with the picture input. All filters are set up randomly at the beginning, and then the
network screens their coefficients. The output of the neurons related to the local input
areas is calculated by calculating each dot between its weight and a tiny region with
which it is associated.

A local extractor feature is used for each kernel matrix set to extract regional
characteristics using the input matrices. The learning technique searches for sets of
k-kernel matrices, which extract good discriminatory image classification features.
In this case, the kernel matrices and biases may be trained with the backpropagation

ConV2 Pooling 2 Fully connected ~ Output

Input ConV1 Pooling 1

e — S

Subsample

[l :

Convolution Convolution
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FIGURE 2.2 Convolutional neural network.
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FIGURE 2.3 Illustration of RBM.

approach as shared connection weights, which optimises neural network connection
weights.

2.3.3.3 DBN

DBN has emerged as one of the most essential deep learning models. In the pre-
training step, it employs a generative model, and in the fine-tuning step, it employs
backpropagation. This is beneficial when there is a limited number of training spec-
imens, such as hyperspectral remote sensing. DBN is also an algorithm for rapid
learning, allowing it to quickly identify the best parameters. We study the efficacy of
DBN for hyperspectral data categorisation in this research.

Figure 2.3 shows the top layer with concealed units and the bottom layer with
visible units.

RBM is generally utilised in the building of a DBN as a layer-wise training model.
It is a network of two layers with “visible” units v = 0, 1D and “hidden” units 4 = 0,
1F that shows a certain type of Markov random field (see Figure 2.3). The energy of
a combined configuration of the units is given by

D F D F

Ei(v0,h0; 0) = —Zbivi - zajhj - ZZwivihj 2.15)
i=1 j=1 i=1 j=I

Pi(v0,h0; 0) = Lexp(—E(vo,ho; 9)) (2.16)

2(0)
Zi(6) = )Y E(v0,h0; ) 2.17)

where Zi(0) is the normalising constant. Each input vector is assigned the energy
function by the network. Changing the energy given in the training vector may
improve the likelihood (1).

The logistic function provides the conditional distributions of hidden unit 4 and
vector v0.

D
pi(h0j = 11v0) = gZWijvi +aj 2.18)

i=1

F
pi(vi = 11h0) = gZWijhj + bi (2.19)

J=1
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1
s(x) 1 + exp(—x) (220)
After determining the hidden unit states, each vi with a likelihood of 1 may be recon-
structed by the input data (5). The concealed unit status is then modified to reflect the
functionality of the reconstruction.
W is learned using a technique known as contrastive divergence (CD). The weight
change is provided by

Awij = E(Vihjdala - Vihjreconstruction) 2.21)

where ¢ denotes the learning rate. We may achieve the correct value of W through
the learning process. In reconstruction-oriented learning, the power of RBM may be
demonstrated. It employs only information that was learned during reconstruction in
hidden units such as input features. When the model is able to properly retrieve the
initial input, it implies that the hidden units maintain sufficient information about the
input and an effective assessment of the input data is possible.

For collecting data properties, the greatest choice is a single covered layer RBM.
The characteristics you have learned can be utilised after RBM training as input data
for a second RBM. This kind of technology might be used to construct DBN layer by
layer. DBN may therefore progressively remove deep features from incoming data. In
other words, DBN learns a profound function of the input through training in a hier-
archical way. A DBN example related to a future classification is shown in Figure 2.4.

The first RBM converts a first-layer characteristic from the zeroth layer. The
course is the same as the previously stated RBM. The follower layers of RBM are
learned utilising the output of the preceding layer; the first layer of RBM is com-
pleted after training. The learned characteristics of the entire training system are
the last characteristics of RBM. An LR layer is inserted at the end of the functional
learning system.

Logistic
regression
3 RBMs layer
A

A«A

V

Input J ‘ :’» Output
vectors "\ “\ /4‘ class labels
‘A V[‘\V '\
"/" A

- .
Layer 0 1 2 3 4

FIGURE 2.4 A DBN instance linked to an LR layer.
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This LR classification may be used to fine-tune the whole pre-trained network so
that neural network layers can be integrated and classified with learned features. In
the peripheral area of parameters, the finishing process, which begins with DBN and
seeks a minimum, uses backpropagation.

Algorithm 2: DBN Algorithm

1. Input: the original photograph training set D, prominent subregion size,
minimum range of circle and architecture of deep faith network P.

. The weight matrix W and the pre-trained profound belief network bios are
produced.

. Ddbn = ¢

. for each randomly chosen /0 DO

. BW IMAGEINBINARIZATION (/0)

. CO« CIRCLEINDECOMPOSITION (BOWO, rmin)

CO0 do for each randomly picked ci

. 10 «<~CROPINWINDOW(BOWO, ci, size)

. Ddbn = Ddbn 10

10. Ddbn = Ddbn /0

11. end for

12. end for

13. [WO0, BO] <~ CONTRASTIVEINDIVERGENCE (Ddbn, P0)

[\S]

[SEN-J- I e NV R N

2.3.3.4 Random Forest

This section defines our proposed method — the improved random forest algorithm. It
is used in big data for improving the artificial intelligence by calculating the resulted
image accuracy that is obtained from the above methods such as SVM, CNN and DBN.
This resulted calculated values are sorted in ascending or descending order of accuracy.

Random forest is a common model in machine learning since it can be used
to deal with both regression and classification issues. It also produces satisfactory
results without the need to estimate the hyperparameter. In classification process,
random forest tries to enhance the classification value with the use of multiple deci-
sion trees. Most important issues in decision-making areas are over-studies, often
known as memorisation or, more precisely, overfitting. The forest model chooses
and trains tens, if not hundreds, of various sets of data produced randomly from data
and characteristics sets, in order to address this challenge. This technology produces
hundreds of decision-making bodies, each assessed separately.

The main difficulty with the selection procedure for random forest is how to
assess the authenticity of each tree. To measure the importance of a random forest,
we used out-of-bag (OOB) accuracy. For the construction of series of training data
subsets, the bagging method for random forest model was used; they further create
trees. The in-bag (IOB) data are referred to in each tree training subset, whereas the
OOB data are the data subset produced from the remaining data. As OOB data do
not form trees, the OOB accuracy of each tree can be accessed with it, and also tree’s
relevance can be judged with this OOB correctness.
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In case of a tree classifier #k(IOBk), IOBk and n occurrences in the training data
set are formed on the kth training data subset; we define the tree’s OOB accuracy
hk(IOBk) for each diD as

Z ! (hk(di)= yisdi ] OOBk)
OOBAcck = i=1

> 1(difooBk)

In this case, I(f) is an indicator function. The greater the OOBAcck, the better the
tree, according to formula (2.21).

The trees are then sorted in order of their OOB accuracies in descending order,
with the top 80% trees picked to construct the random forest. A population of
“good” trees might arise from this sort of tree selection method. We demonstrate our
improved random forest method in this section, which incorporates feature weight-
ing and tree selection approaches. Algorithm 3 lays the groundwork for our methods.

.21)

Algorithm 3: High-Performance RF Algorithm

. Input.

. Da denotes the training data set.

. Ai: feature space Ail, Ai2,..., AiM; Y: feature space yil, yi2,..., yiq.

. Kt denotes the number of trees.

. mi: the dimension of subspaces.

. The result is a random forest.

. Procedure:

. Step 1: do fori =1 to Kt

. Step 2: From the training data set Da, create a bootstrap sample IOB data
subset IOBi and OOB data subset OOBi.

10. Step 3: createTree(IOBi) = hi (10Bi).

11. Step 4: Equation (2.14) is used to determine the out-of-bag accuracy OOB

Acci of the tree classifier 4i (IOBi) using the out-of-bag data subset OOB:.

12. Step 5: end for

13. Step 6: Sort all Kt trees classifiers in descending order by OOBAcc.

14. Step 7: Choose the top 80% of trees with strong OOBAcc values and merge

the top 80% of tree classifiers to form an enhanced random forest.

O 0 9O B W =

This approach includes training data, functional space, class, the number of trees in
the RF and subspace size. As a consequence, a random forest model is created. The
loop for building K decision trees is formed by Steps 1-5. Step 2 of the loop uses the
bootstrap approach to sample the training data, to create the IOB data subset for the
tree classifier construction and an OOB data subset for the assessment of the OOB
accuracy of the tree classifier. Step 3 invokes createTree to build a tree classification
recursive function (). Step 4 employs a data subset to compute the OOB accuracy of
the tree classifier. Stage 6 finishes the loop with a decreasing order of the OOB accu-
racies of all freshly produced tree classifiers. Step 7 chooses the top 80% trees with
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the largest OOB precision ratings and combines the random forest model with the
highest 80% tree classification. In fact, 80% is enough to get good outcomes.

Algorithm 4: Tree Creation Function

. making new node ni;

. if the halting requirements are fulfilled,

. return ni as a leaf node;

. otherwise

.fromj=1toj=M

. using equation (2.14), construct the informativeness measure corr(4j, Y).

. end for

. use equation (2.14) to compute feature weights wl, w2,..., wM;

. apply the feature weighting approach to choose m features at random;

. to create an optimum split for the partitioned node, utilise these m charac-
teristics as candidates;

11. for each split, call createTree();

12. end if

13. return ni;

SO 09Uk~ WN —

—_—

CreateNode() is the method to create a new node. The stop criterion is then used
to determine whether the node should be divided or returned to the upper node.
The feature weighting technique is used to pick m features at random as a subspace
for node splitting while splitting this node. These properties are used to determine
the best split for segmenting the node. For each subset of the partition, createTree
is called again to create a new node under the existing node. The parent node is
returned when a leaf node is generated. This recursive method is carried out until the
tree is complete.

This strategy differs from the way of Breiman to generate a random forest model.
The first distinction is how every node chooses the subspace of the feature. The fun-
damental random technique is used by Breiman. In order to incorporate information
features in very high-dimensional picture data, the subspace needs to be expanded.
As a result, the computing strain is raised. We may still utilise Breiman formula
2 Log () 1 M + for defining the subspace size using the feature weighting technology.
The second change is the addition of a mechanism for tree selection. The random
forest model enhances that strategy.

2.3.4 EVALUATION

The true-positive rate, false-positive rate and accuracy are used for evaluating the
performance of the intrusion detection system. The following equation shows the
TPR (2.23):

TPR = TP (2.23)
TP+ FN
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where true positive (TP) denotes the number of invasive samples successfully identi-
fied and false negative (FN) denotes the number of invasive samples wrongly identi-
fied as benign samples. The detection rate is another name for TPR. The formula for
FPR is given in equation (2.24).

FP

FPR=——
FP+ TN

(2.24)
In cases where FP refers to the number of benign samples that have incorrectly been
categorised as invasive, true negative (TN) refers to the accurate number of benign
samples.

The false alarm rate is another name for FPR. Equation (2.25) defines the accuracy:

Accuracy = N + TP (2.25)
Y= TP+ FN+ FP+ TN ’

Table 2.1 and Figure 2.5 shows the accuracy of the Deep Learning classification
models such as CNN and DBN.

TABLE 2.1
Accuracy of Deep Learning Classification Models
DATA CNN DBN
Data 1 83.2% 79.4%
Data 2 80.1% 82.3%
Data 3 78.8% 74.5%
Data 4 82.3% 77.6%
ACCURACY
84.00%
82.00%
o 80.00%
oo
2 78.00%
c
()
2 76.00%
()
o
74.00%
72.00%
70.00%
Data 1 Data 2 Data 3 Data 4
BCNN HDBN

FIGURE 2.5 Accuracy of deep learning classification models.
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TABLE 2.2
Accuracy of Machine Learning SVM Classification Model
DATA SVM
Data 1 88.5%
Data 2 80.6%
Data 3 77.8%
Data 4 87.2%
SVM
90.00%
88.00%
86.00%
& 84.00%
©
§ 82.00%
& 80.00%
a.
78.00%
76.00%
74.00%
72.00%
Datal Data 2 Data 3 Data 4
DATA

FIGURE 2.6 Accuracy of machine learning SVM classification model.

Table 2.2 and Figure 2.6 show the accuracy of the machine learning classification
model SVM.

Table 2.3 illustrates the improved random forest algorithm we proposed in this
chapter. This improved random forest classifier is used as an artificial intelligence
software in big data for sorting and determining the highest accuracy methods for
better and faster image classification and recognition.

2.4 CONCLUSIONS

Deep learning is a rapidly expanding machine learning application. The increas-
ing application of deep learning and machine learning algorithms in several fields
demonstrates their success and adaptability. Deep learning’s accomplishments and
increasing accuracy rates clearly illustrate the technology’s use; both deep learning
and machine education are emerging well. In this study, we showed the relevance of
deep learning in several fields, with picture classification and recognition being one
of them. The SVM, DBN and CNN are illustrated for classification of images for
better accuracy. The improved random forest algorithm we presented in this chapter
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TABLE 2.3

Improved Random Forest Algorithm Classification
DATA High Accuracy Classifier
Data 1 SVM 88.5%

Data 2 DBN 82.3%

Data 3 CNN 78.8%

Data 4 SVM 87.2%

is depicted in Table 2.3. This improved random forest classifier is utilised in big data
as artificial intelligence software for sorting and determining the highest accuracy
approaches for better and quicker picture categorisation and recognition.
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3.1 INTRODUCTION: OVERVIEW OF THE STUDY

In terms of software engineering, software quality refers to the performance quality
of the program and the quality of the program structure. The quality of the program
reflects the working conditions, while the quality of the structure emphasises the
non-functional requirements. Software estimates focus on production, process and
project quality aspects. In this chapter, the most important focus is on the software
invention. The reason of software excellence work is to realise the requisite structure
excellence by defining and implementing quality requirements, measuring proper
eminence attribute and evaluating the resulting quality of the software quality. The
measured changes done in software defects have certain standard feature and com-
ponents (appropriate). This can be done in the form of quality or quantity, or a com-
bination of both. In both cases, each desired feature has measurable features, such
as application design standards, coding methods, complexity, documentation, por-
tability and technical and performance capabilities. The existence of these features
as part of a software or system seems to be related to or associated with this feature
(Sinha et al., 2020).

Software defects recognition plays a significant function in vigorous research in
software engineering. Software bugs are software defects; errors in program code;
and mistakes or blunders that result in off-base or surprising outcomes. The iden-
tification of significant danger factors related to programming disappointments,
which were not recognised in the beginning phases of programming improvement,
is tedious. Mistakes can happen at any phase of programming improvement. Rising
programming organisations are zeroing in on programming quality, particularly in
the beginning phases of programming advancement. In this manner, the fundamen-
tal objective of every association is to distinguish and dispense with defects in the
early life cycle development program (SDLC). Information mining methods are uti-
lised to work on the nature of the program and to make forecasts about program-
ming devices utilising verifiable information and bugs. This chapter furnishes the
reader with transient information mining methods, taking gander at the most recent
improvements in determining in the defected portion of code block.

Programming techniques give various devices to programming improvement and
quality control of program creation. It is important to decide the assets required,
which are significant source of dynamic data. Various advances have been proposed
in the writing. Its done on the estimation construction to help artistic expressions
against quality previously during the improvement interaction. Plan quality evalua-
tion is level headed, and estimations can be programmed. Yet, how would we know
which exercises are truly in the vital quality perspectives? The ISO/IEC standard
(14598) states that inward markers are especially valuable with regard to outside
quality attributes, such as consistency and reuse. Various methodologies have been
proposed to foster more refined assessment models; for instance, they can be numeri-
cal models (on account of measurable strategies direct and calculated returns) or
man-made consciousness models (on account of AI procedures). So our work is
identified with the improvement of compelling and/or reasonable component assess-
ment models, particularly manageability and reuse. We utilised distinctive Machine
Learning calculations to make these models. In this review, we are keen on computing
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their presentation and assessing their comprehension of computer programming
information. Execution alludes to quantitative estimation, which is regularly com-
municated in the exactness of the model, while appreciation calls for explanation and
comprehension of the model. In this way, in Section 3.2, we first present the distinc-
tive Machine Learning calculations we use. In Section 3.3, we depict the authentic
cycle we follow, and then, at that point, introduce and examine the created models
as far as execution and comprehension. At long last, Section 3.4 sets out the ends.
Lately, software engineers (SEs) have zeroed in on information mining (DM) and Al
(Machine Learning) in light of examination, as SE information assortment can assist
with discovering new data. Computer programming offers a wide scope of explora-
tion subjects, and information investigation can give extra bits of knowledge to help
dynamic subject area. Figure 3.1 shows the crossing points of the three fundamental
parts: information mining, programming improvement and measurements. A ton of
information is gathered from associations during programming improvement and

Data preprocessing

Statistics/math Data mining

Data science

Traditional research DHDETRRES

Software engineering

FIGURE 3.1 The connection of data mining with software engineering including Machine
Learning.
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support exercises, such as portrayal definitions, plan charts, source numbers, blunder
reports and program types. Information assortment gives valuable information and
concealed techniques from SE information. Maths gives essential capacities, and
insights decide the likelihood, relationship and connection of accumulated informa-
tion. Information science at the core of the graph covers an assortment of disciplines,
such as DM, SE and insights. The review gives an outline of how to manage SE issues
utilising diverse extraction techniques. Thus, multi-criterion based software system
utilised the ANN configuration arranging arrangement depict the instruments and
procedures regularly utilised by specialists checked learning issues. In initial stage
team of software engineers validated the Machine Learning model for software
defect prediction.

3.2 BACKGROUND: MACHINE LEARNING
FOR DEVELOPING MODELS

Artificial intelligence (AI) manages the issue of building PC programs that work on
their exhibition at some undertaking through experience. Al has been used in differ-
ent issue spaces. Some runs of the mill utilisations of Al are the following:

e Optical person acknowledgment
e Face recognition

e Spam separating

¢ Fraud recognition

e Medical conclusion

*  Weather expectation.

Significant classes of Al procedures are as follows:

e (Case-based calculation

¢ Rule initiation

¢ Neural networks

e Genetic algorithm (Tejaswini et al., 2019).

Machine Learning is a site based on Al that includes a variety of achievements
(meetings, magazines, techniques and tools). Much of the work done on Machine
Learning focused on computation, which led to the development of various systems.
By drawing fictional models, these predictions define the meaning of each class.
The choice of study size that we should not use is a necessary development. It’s
certainly worth the effort to develop and integrate innumerable systems. Decision
trees and rules and regulations key strengths of methods such as Bayesian networks
(BNs) are case-based learning (CBL), to develop models that we can involve in
decision-making. It is a system based on fair classification of data between explicit
data (examples, rules, trees and strategies that validate these points). Methods such as
astronomical networks (ANNs and manipulators (SVM)) are considered “concepts”.
As part of the initial disclosure statement (organisation, design, fractions), we have
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no other job to handle them and expect production once they have been prepared.
Understanding balance is one of the most likely uses of ANN design to solve project
problems in control learning. Here are some suggestions on how to look or get an
appointment for acne treatment in one of the following ways: Acute back pain (RBP)
is one (Challagulla et al., 2005). Finally, SVM often conducts introductory train-
ing to address two design validation issues. SVM provides training and inspection;
efforts have been made to accumulate efforts such as quality control and other things.
The only philosophy/strategy is to find a compromise between the features, and we
need to complete all the information. The participating states will present purchase
forms using data related to certain product quality criteria. They will discuss their
abilities and prosperity (Wahono, 2007).

Evaluating the forecast execution of a classifier is in view of the disarray lattice
(see Table 3.1, where the cells include frequencies for every blend of the two paired
dichotomous factors). Overall, the implications of the upsides of the double factors
need not be characterised; be that as it may, for evaluating grouping performance,
we are more explicit. The class names are named positive and negative. It is standard
to utilise the positive name to allude to the result of interest, so in our circumstance,
the positive mark eludes to the product part being inadequate. Subsequently, we have
several performance metrics to evaluate our model are those examples that the classi-
fier mistakenly doles out to the imperfection inclined class, etc. Deciding characteri-
sation execution is more unpretentious than it may initially show up since we need to
take into account both possibility parts of a classifier (in any event, speculating can
prompt some right arrangements) and furthermore what are named lopsided infor-
mational collections where the dissemination of classes is a long way from 50:50. As
examined beforehand, this is an ordinary circumstance for deformity informational
collections since most programming units don’t contain known imperfections. Many
regularly utilised measures, for example the F-measure, are unacceptable because
they are not based on the total disarray lattice. A generally utilised alternative is
the area under the curve (AUC) of the ROC graph; not withstanding this, since this
is an action on a family of classifiers, it can’t be deciphered except if one classifier
stringently overwhelms since we’re not given the general expenses of FP and FN. As
such, for two classifiers A and B,

AUCA >AUCB=6=A-B 3.1

TABLE 3.1

Precision Measurements

Term Formula Definition

True-positive pace Tpl(tp+fn) Amount of defective units perfectly classified
Precision Tpl(tp+fp) Part of unit precisely predicted as imperfect
F-measure 2% Recall precision/tp+fp Common factor for recall and precision

Accuracy t+tpltn+fn+tp+fp Amount of acutely classified part
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For this explanation, we advocate a paired connection coefficient differently known
as the Matthews connection coefficient (MCC). Unlike the F-measure, MCC is based
on each of the four quadrants of the disarray grid. MCC is indistinguishable from
the parallel relationship coefficient ¢ initially because of Yule and Pearson in the
mid-20th century. In any case, we will allude to the action as MCC instead of ¢
since we are managing the specific parallel factors and implications of anticipated
the more, genuine class though the ¢ coefficient is a more general proportion of
affiliation, where the translation of a negative connection is harder to determine. It
is a fair measure and handles circumstances where the proportion of class sizes are
profoundly imbalanced, which is ordinary of programming imperfection informa-
tion (classes containing absconds are frequently generally uncommon). A zero worth
demonstrates the two factors are autonomous: Tending towards solidarity demon-
strates a positive connection among anticipated and real classes and tending towards
less solidarity a negative relationship. Strangely one could change over an extremely
poor or, on the other hand, unreasonable classifier into an awesome one by nullifying
the forecast (turning a positive to negative or bad habit, vice versa). At long last, MCC
can be effectively registered from the disarray lattice.

3.3 RELATED STUDY

There are incredible assortments of studies which have applied factual and Al-based
models for imperfection forecast in programming frameworks have utilised calcu-
lated relapse to analyse what the impact of the set-up of article situated plan measure-
ments is on the forecast of issue inclined classes have utilised the neural organisation
to characterise the modules of huge media transmission frameworks as shortcoming
inclined or not furthermore, contrasted it and a non-parametric discriminate model
(Tantithamthavorn et al., 2016). The results of their examination have exposed that
in contrast to the non-parametric discriminate model, the prescient exactness of
the neural organisation model had a superior outcome. Then, at that point, Laradji
et al. (2015) presented a defence concentrate by utilising relapse trees to arrange
deficiency inclined modules of huge telecom frameworks. They utilised Bayesian
Belief Organization to distinguish programming surrenders. Nonetheless, this Al
calculation has heaps of limits, which have applied random timberland calculation on
programming deformity dataset presented by NASA to anticipate deficiency inclined
modules of programming frameworks. Pelayo and Dick (2007) also contrasted their
model and some measurable and Machine Learning models. The results of this cor-
relation showed that in contrast to different strategies, the calculation gave better pre-
cision for the proposed a model, which utilises three Al calculations: decision tree,
multilayer perceptron and outspread basis functions, to recognise the effect of this
model to foresee on various programming metric datasets obtained from the real-life
tasks of three major size programming organisations in Turkey. The outcomes
showed that limitations apply to the entirety of the Al calculations had comparable
outcomes which have empowered to anticipate possibly damaged programming fur-
thermore, make moves to address them have researched the effect of support vector
machines (SVMs) on four NASA datasets to foresee imperfection inclination of pro-
gramming frameworks and looked at the expectation execution of SVM against eight
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measurable and Al models. The results demonstrated that the expectation execution
of SVM was far superior to other people have explored the effect of the commotion
on imperfection expectation to adapt to the commotion in imperfection information
by utilising a clamour identification and disposal calculation (He et al., 2015). The
results of the investigation introduced that boisterous cases could be anticipated with
sensible exactness, and applying disposal improved the deformity expectation exact-
ness. They researched re-inspecting methods, outfit calculations and limit moving
as class lopsidedness learning techniques for programming imperfection forecast.
They have utilised various strategies; among them, AdaBoost.NC would do well to
evaluate expectation execution. They additionally worked on the viability and effec-
tiveness of AdaBoost.NC by utilising a unique adaptation of it and proposed a model
to settle the class irregularity issue, which causes a decrease in the execution of
deformity forecast. The Gaussian capacity has been utilised as bit work for both the
asymmetric kernel incomplete least squares classifier (AKPLSC) and asymmetric
portion principal component analysis classifier (AKPCAC); what’s more, NASA and
SOFTLAB datasets were utilised in testing. The outcomes showed that the AKPLSC
had better effects on recovering the misfortune brought about by class awkwardness;
what’s more, the AKPCAC would be used to foresee abandonment on imbalanced
datasets (Nam, 2014).

3.4 LITERATURE REVIEW

There are various evaluations about programming bug doubt using Al strate-
gies. For example, the evaluation using the proposed straight regression approach
expected broken modules. The evaluation predicts future deficiencies depending on
the chronicled data of the thing amassed issues. The assessment, moreover, looked
into and isolated the AR model and the known power model of Machine Learning
used for root-mean-square error assessment. In any case, the appraisal used three
datasets for assessment and the results were promising. The assessments reviewed
the relevance of various Machine Learning systems for deficiency doubt. Rawat and
Dubey (2012) added to their appraisal the most fundamental past explorations about
each Machine Learning procedure and the most recent things in programming bug
assumption using Al. This appraisal can be used as the ground or a step to anticipate
future work in programming bug assumption. Rodriguez et al. (2014) presented a
decent cognisant review for programming bug assumption, taking a look at strate-
gies using Machine Learning. The paper interweaved a layout of the gigantic num-
ber of studies between the years 1991 and 2013, destroyed the Machine Learning
techniques for programming bug speculation models, reviewed their show, checked
out among Machine Learning and appraisal methodologies, pondered between dif-
ferent Machine Learning procedures and summarised the strength and insufficiency
of the Machine Learning systems. Li et al.’s (2012) paper gave a benchmark to allow
a typical and obliging assessment between different bug assumptions moves close.
The evaluation presented a total association between a striking bug assumption
moves close and additionally introduced a new strategy and surveyed it by building
a good examination with various procedures using the presented benchmark. Dam
et al. (2018) enabled a model for object-facilitated software bug prediction system
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(SBPS). The evaluation merged identical sorts of blemish datasets that are open at
software engineering repository. The evaluation concentrated on the proposed model
by using the measure (precision). Finally, the examination results showed that the
ordinary proposed model exactness is 78.2%. The application gets its characteris-
tics, for instance, the thing arranged evaluations and count appraisals regards from
an open-source programming project. The innate evaluation uses the application’s
ascribes as liabilities to pass on rules which used to sort the thing modules to harmed
and non-imperfect modules. Finally, imagine the yields using genetic evaluation
applet. The evaluation in Sun et al. (2012) reviewed by used Al procedures (decision
tree and neural affiliations) and certifiable methodology (reliable and organise lose
the confidence). The coupling between object (CBO) metric is the best to evaluate
the bugs in the class and the line of code is all over well, yet the depth of inheritance
tree and number of children are unreliable estimates. Zheng (2010) researched five
standard Machine Learning estimations used for programming mutilation doubt,
which are fake neural networks, particle swarm optimisation, decision tree, naive
Bayes and linear classifiers. The assessment presented fundamental results, including
that the ANN has the least screw up rate followed by DT, but the straight classifier is
better than various computations in terms of blemish actually look at accuracy. The
most standard methods used in programming event speculation are DT, BL, ANN,
SVM, RBL and EA, and the normal evaluations used in programming imperfection
assumption contemplates are line of code (LOC) appraisals and object coordinated
appraisals such as connection, coupling and heritage. Similarly, various appraisals
called cross-breed appraisals used both article facilitated and procedural apprais-
als. In the same manner, the results showed that most programming deformation
doubt considered used NASA dataset and promise dataset. Moreover, the evalua-
tions in Arora et al. (2015) took apart indisputable Machine Learning approach and
gave as far as possible in programming distortion doubt. The evaluations helped the
fashioner with using tremendous programming appraisals and fitting data mining
system to update the thing quality. The examination picked the best appraisals that
are useful in disfigurement doubt, such as response for class, line of code and lack
of coding quality. Faint et al. (2011) presented the most exceptional data mining sys-
tem. The appraisal inspected and thought about four estimations and took apart the
advantages and impedances of each evaluation. The conceded results of the exami-
nation showed that there were different parts impacting the exactness of each tech-
nique, such as the shot at the issue, the used dataset and its affiliation. Amershi et al.
(2019) presented the connection between object-arranged appraisals and deficiency
tendency of a class. They showed that the algorithms are useful in expecting gives
up; in the same way, they showed that the AUC is a reasonable estimate and can be
used to predict the damaged modules in the early phases of programming progress
and to deal with the precision of Machine Learning methodology. The paper neatly
surveys the Machine Learning classifiers using specific execution examinations (for
instance, exactness, accuracy, audit, F-measure and ROC wind). Three public data-
sets are used to outline the three Machine Learning classifiers. Of course, a huge
amount of the implied related works analysed more Machine Learning frameworks
and evident datasets. A piece of the past appraisals incredibly loped around the
appraisals that make the system as capable as could really be anticipated, while other
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past assessments proposed different methodologies to expect programming bugs as
opposed to Machine Learning frameworks (Rahman et al., 2019).

3.5 METHODICAL REVIEW: SOFTWARE DEFECT
PREDICTION USING MACHINE LEARNING

A software bug is a bug or imperfection. There may not be any program or PC system
that produces wrong or amazing results, nor may it appear suddenly. Most bugs affect
the structure of the program; its structure; or because of errors and factors in the
structures and operating systems used in this job, and the coordinators who created
the wrong code. The plane error prediction model can attract these models and try
to anticipate programs that include experiences like a desert. There is a correlation
between object rating and object orientation. Types of software incapacity metrics
include independent components (software metrics) that include lifecycle develop-
ment programs and component assessments (inadequate or non-invasive). There are
different ways to find great systems. Data mining is a testament to man-made mental
capacity. This is the assessment process of the “databases” cycle, which aims to col-
laborate on a variety of educational programs, including certain knowledge and data
collection. The overall goal of data mining is to extract data from a study file and
turn it into a logical diagram for further investigation. Mining information can be
divided into two types: forecasting activities and modelling efforts. The current task
is to estimate the exact value of the quality (target/variable) according to the value of
the different titles (legitimacy). The drawing effort involves determining blueprints
(organisations, examples, and perspectives) that summarise the secret relationship
between the data. There are in-depth knowledge-based techniques for the following
explored programming hypotheses (Zanutto et al., 2012).

1. Regression Model: It is a measurable cycle to assess the connection between
factors. It monitors the relationship between the variable or component vari-
able and self-owned or indicator factors. The relationship is conveyed as
a condition that predicts the response variable as an immediate limit of
pointer variable.

2. Association Rule Mining: It is a strategy for finding intriguing connections
between factors with regard to huge information bases. It is tied in with dis-
covering affiliations or connections among sets of things or items in a data
set. It essentially manages discovering decisions that will foresee the event
of thing dependent on the event of different things.

3. Clustering: Clustering is an approach to order an assortment of things into
gatherings or groups whose individuals are comparable here and there. It is
assignment of collection a bunch of things so that things in a similar group
are like one another and unlike those in different bunches.

4. Classification: It comprises foreseeing a specific result dependent on given
information. The order method utilises input information, also called pre-
paring set where all articles have as of now been labelled with realised class
marks. The intended inference result is to break down and gains from the
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preparation informational collection and fosters a model. This model is then
used to order test information for which the class names are not known. The
different characterisation strategies are given underneath.

5. Neural Networks: These are simple models that can be achieved through
the preparation and reception of natural nervous systems in the structure. A
nervous system is made up of interconnected nerves that work on the inside
as well.

6. Decision Trees: A decision tree is a very smart design that can be used
to design both a game plan and a step back in tree design. It points to the
reformists’ decisions and their results. It is a tree with decision centres and
leaf centres. A decision-making body has two divisions. Leaf centres pro-
cess a request or a decision.

7. Naive Bayes: It depends on Bayes hypothesis with freedom suspicion
between indicators. The innocent Bayes classifier depends on the under-
standing that the presence or non-appearance of a specific component of
a class is not identified with the presence or non-attendance of some other
elements.

8. Support Vector Machines: A SVM depends on the probability that the
decision plane expresses decision constraints. The decision maker is one
of the few disconnected items in the classroom. It is essentially a classi-
fier procedure that creates a multidimensional space that differentiates the
symbols of each class and performs the query task. It maintains both regres-
sion and aggregation. Case-based reasoning: Case-based reasoning uses old
problems to deal with new problems and explain new situations. It works by
distinguishing between new unclassified records and popular models and
models. The direct conclusion of a case-based learning estimate is the com-
putation of the nearest neighbour of k. It directly calculates the storage of
each available case and the collection of new subjects for an equivalence
measure for distance examples (Ahmed et al., 2020).

3.5.1 APPROACH OF SOFTWARE DEFeCT PREDICTION

For the most part, three methodologies are performed to assess forecast mod-
els. Cross-marking projection for mixed data collection.

One form of prediction of defects within the project can be created with data events
that can be verified by a draft article and is called IPDP, which predicts deficiencies
in a comparison effort. The program has access to properly documented informa-
tion. The points of the model are that faulty measurement areas are usually exist-
ing neighbourhood data (for example, in the concept of project distortion) that an
organisation needs to focus on data planning; pay attention to project estimates and
related information from previous projects. The work best in projects as long as there
is some interesting information to design the layout. This means that we have to start
with the obvious facts to improve the distorted brand. If you lose data, you can use a
different one. The in-in project’s distortion gauge loads make it impossible to purge
these chronic data 100% accurately using IPDP. Yes, recorded data are usually not
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shown for retry and some correlation. This hampers the idea of a strong loophole in
the current situation. To solve this problem, we used the software Error Prediction
Framework (Feldt et al., 2018).

IPDP attempts to establish a uniform standard for all IPDP data to be used in one
form or another without objective data. Therefore, an estimate was made for one
attempt and then it was applied to another attempt or project. For example, start with
an effort and watch measurement patterns in motion, and then move on to the next
task. The disadvantages of applying the IPDP include the need for estimates from
similar projects; overall estimates are the results that should be compared to projects.
Therefore, the current IPDP systems are confusing to link to different datasets and
projects (Pradhan et al. 2020).

Differentiated estimates are used to manage the insufficient use of comparable
data for IPDP for different data sets; in project defect prediction, it is possible to
predict errors in a similar process by collecting data that can be verified from a
construction model. Project defect estimation works best if there is enough authentic
information available to modify project defect estimation forms. 45. Product anoma-
lies exist in the form of incomplete estimates, and an organisation must have a data-
base to implement information nearby (for example, during project failure estimates);
protests related to the measures and weaknesses of the project were eliminated. As
long as there is satisfactory information to change the design, skewed predictions
indicate that it works best on the project. This means that we have to accept the
recorded information in order to improve the distorted index. If data are missing,
cross-company defect prediction (CCDP) can cause project imperfections. It is not
possible for all companies to continuously collect such verifiable information. For
new businesses and some organisations, information that is not disclosed often is not
often introduced. An effective failure prediction for this situation is confusing. To
overcome this problem, go beyond distorted vision (Washizaki et al., 2019).

Software Defect Prediction Techniques: To chip away at the suitability and nature
of programming improvement and to expect gives up in programming, distinctive
data mining strategies can be applied to different software engineering areas. The
thoroughly used SDP techniques are data mining methodologies and AI methodol-
ogy and are depicted in Figure 3.2.

From Figure 3.2,

Supervised Learning: One categorical group proposes to address the prob-
lem of inconsistent programmatic imperfections. This model depends on
the appropriateness integration (APE) approach. Collective learning is a
way to collect patterns from grassroots groups. Such models are typically
used to demonstrate information drawbacks and antitrust rules that prevent
the programmer from collecting imperfect data. This strength is confirmed
by performing the characterisation of many classifiers. This average result
eliminates unrelated errors and subsequently improves the performance of
the group in general. Unlike the voting methods, the probability results are
the same as the AUC scale, which assesses the level of certainty associ-
ated with the selected class. In addition, a selection of classes requires a
restriction on the choice of classes. This constraint can be checked as a
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FIGURE 3.3 Forward and backward selection.

quantisation step to signal errors in options. In this way, our determination
of a normal probable team meets two requirements. (i) Consistency with the
AUC scale and (ii) the narrow selection requirement is measured on definite
point (Rana and Staron, n.d.) (Figure 3.3).

Random Forests: These comprise of a few unprimed order or relapse trees.
Utilising irregular element determination, these trees are initiated from
bootstrap tests of the preparation information [20]. In grouping issues, every
information test is taken care of down every one of the trees in the arbitrary
backwoods. Then, at that point, the last yields as its choice class the class
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that got the majority of the votes made by the singular trees. It is shown that
blunder rates in irregular backwoods rely upon the strength of every indi-
vidual tree and the relationship between any two trees in the woodland. Be
that as it may, results separated from arbitrary backwoods are hard to deci-
pher. A run of the mill irregular woods is displayed in Figure 3.4. In such
settings, every individual tree handles a little subset of elements chosen
arbitrarily. Then, at that point, each tree is advanced utilising this subset.

Gradient Boosting: Boosting takes care of relapse issues utilising an expec-
tation model comprising a group of frail indicators [49]. These indicators
are normally choice trees. Given a bunch of choice trees 71, 72, T3...TN,
the angle boosting calculation creates a weighted summation of the yield
choices of every individual tree as follows (Xing et al., n.d.):

f(x) = w0 + wlhl(x) + w2h2(x) + ...+ wnhn(x) (3.2

Stochastic Gradient Descent: Arrangement and relapse issues including huge
datasets are effectively addressed utilising second request stochastic slope
and found the middle value of stochastic inclination procedures [S0]. In the
stochastic angle plunge, cost capacities are limited utilising the stochastic
model (SGD):

wk+1 = wk — {u Ww Q(xk, wk)} (3.3)

Calculated Regression: The calculated relapse gives an exceptionally incred-
ible discriminative model dependent on the notable strategic (sigmoid)
work. The calculated capacity, displayed in Figure 3.5, has extremely allur-
ing properties, including ceaseless differentiability and direct connection
between the capacity and its subordinates (of any request) [22]. The strategic
relapse has effectively been applied in characterisation issues. Given two
classes, named Y=0 and Y=1, and n-dimensional components {xI, x2, ...,
Xi,..., xN} where each element test is treated as an irregular vector com-
prising discrete arbitrary variable, the strategic relapse yields a generative
model that learns p(Ylx) utilising an immediate utilisation of Bayes rule as
follows:

A normal flow of defect prediction using Machine Learning algorithm is as follows:

Marking: Defect information ought to be accumulated for preparing a forecast
model. In this cycle normally extricating of occasions for example informa-
tion things from programming chronicles and marking (TRUE or FALSE)
is finished.

Removing Highlights and Making Preparing Sets: This development involves
the development of provisions for predicting used brands. To predict deforma-
tion, it is generally confusing: screams and shouts. It measures changes and
background conditions. By combining symbols and objects, we can provide a
preparation for a mechanical student to build a prediction model.
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Building Prediction Models: For example, part of general machines can use
SVMs or the Bayesian Network to create a vision model using a set of con-
figurations. The model can take another example and predict its brand, for
example Valid or false.

Appraisal: The evaluation of an estimate requires an experimental informa-
tion index, except for a preparation. Signs that occur early in the experience



Soft Computing and ML for Software Quality Prediction

1 .

0.9F 4

0.8 1

0.7f 5

0.6 §

0.5F i

04} 1

0.3f 1

0.2} 1

0.1F 1

0 L
-5 0 5

FIGURE 3.5 Sigmoid function graph of regression.

are anticipated and evaluated by comparing expectations with actual names.
Full ten-layer approval is fully used to separate prep and test package
(Rashid, 2012) (Figure 3.6).

3.5.2 Derect PrepicTiON BY SOFT COMPUTING METHOD
The Probabilistic Model for Defect Prediction Utilising Bayesian Belief

Network: Probabilistic model for deformity expectation. They suggested a com-
prehensive model instead of a solitary issue (for example size, or intricacy, or
testing measurements, or interaction quality information) model, by consolidat-
ing the various elements of easy-going proof to effective imperfection forecast.
The model uses Bayesian belief network (BBN) as the reasonable practice for
portrayal of this proof. The Bayesian methodology makes measurable end be
improved by master judgment in those pieces of an issue circle where exact
information is dissipated. Also, the causal or impact association of the model
better mirrors the series of true occasions and relations than some other practice.
BBN can be taken advantage of to help powerful dynamic for SPI (Software
Process Improvement), by executing the accompanying advances (Figure 3.7).

Fuzzy Logic Approach: The fuzzy logic model depends on the idea or think-
ing and deals with a worth that is inexact in nature. It is a move forward from
regular Boolean logic where the value must be TRUE or FALSE. If there
should arise an occurrence of fuzzy rationale, the reality of any assertion is
degree and not an outright number. Displayed on human instinct and con-
duct, the greatest in addition to point of fuzzy rationale is that instead of the
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FIGURE 3.7 Bayesian approach for defect prediction.

customary yes—no replies, this model components in the level of truth and
subsequently makes portion for the more human-like replies. This model
uses data sources and places them in a reach framework. After this, a bunch
of decisions are characterised, which direct and impact how sources of info
will be used in getting the yield just as tracking down the authoritative worth
in the fluffy set. The model has a bunch of measurements or unwavering
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quality applicable measurement (Machine Learning) list, which is produced
using the accessible programming measurements. The measurements are
appropriate to their separate stages in the product advancement life cycle
(Tejaswini et al., 2019).

Necessity Phase Metrics: As you can see, the model has utilised three pre-
requisite measurements (RMs), which are prerequisites Change Request;
Review, Inspection and Walk Through; and Process Maturity (PM) as con-
tribution to the necessities stage.

Configuration Phase Metrics: Like the above stage, three plan measure-
ments, for example configuration imperfection thickness, shortcoming days
number, and information stream intricacy, are taken as info.

Coding Phase Metrics: In this stage, two coding measurements, for example
code deformity thickness and cyclamate intricacy, are taken as contribu-
tion at coding stage. The yields of the model will be the quantity of issues
towards the finish of requirements phase; the number of faults towards the
finish of design phase; and the number of faults towards the finish of coding
phase (Figure 3.8).

Defect Prediction Models Based on Genetic Algorithms: Hereditary algo-
rithms are a way to deal with AI, which acts also to the human quality and
the Darwinian hypothesis of regular determination. They are part of the evo-
lutionary algorithms that create arrangements dependent on the strategies
all the more normally found in nature, such as change, determination and
hybrid. Hereditary algorithms are executed starting with a singular populace
that is normally addressed as trees. A potential arrangement is addressed by
each tree, or say chromosome, for this situation. Hubs on the tree imply spe-
cific qualities that identify with the issue for which the arrangement is being
looked. All things considered, the arrangement of possible answers for the
issue is (addressed by the chromosomes) known as the populace.
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FIGURE 3.8 Fuzzy logic approach.
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In the first place, genetic algorithms start with a huge populace. In that populace,
every individual addresses a conceivable answer for the issue. These people in the
populace are then encoded in a double string that is known as a chromosome. From
that point forward, the gathering of the people will contend so they can imitate and
afterwards define the future. Nonetheless, there is a capacity called the wellness
work that figures out which of the contending people will acquire the option to imi-
tate. Having the wellness work set up ensures that hands down the best people of the
populace will actually want to extend their posterity into the future. The cutting edge
is shaped by the accompanying exercises occurring.

a. Reproduction: The proliferation measure happens when two chromosomes
trade a piece of their code to shape the new people. The hybrid focuses
(where the pieces of the code will trade) are chosen by irregular (for a basic
rendition of the calculation). At the hybrid point, the chromosomes trade the
information keeping the first information up to that point.

b. Mutation: This comes in to present variety in the cutting edge which fore-
stalls the coming to of neighbourhood minima. While the hybrid adjusts
the qualities after a haphazardly chosen hybrid point between two chromo-
somes, transformation chooses a hub in the tree of one chromosome and
changes the hereditary material.

This cycle rehashes the same thing until there is an ideal arrangement set came to
(ideal wellness level). Be that as it may, there are events when this doesn’t occur. In
such cases, the program ends after a bunch of emphases. The emphases of the returns
are otherwise called ages (Azar and Vybihal, 2011) (Figure 3.9).

3.5.3 DATA MINING IN IMPERFECTION EXPECTATION

An error is an error in a system that causes fundamental or miraculous results. It
means an imperfection or a defect. Because the quality of the programmer goes
down to the defect of the object, an object should not be distorted. However, proj-
ects require a lot of time or people planning to get rid of them before they throw
something away. In this case, bug fixes can help recognise and eliminate execu-
tions in the early days of SDLC and create surprisingly responsive programming
structures. Therefore, the Programming switch predicts programming fault allows
all progressive programming structures to be reduced. Various examinations have
been driven on blemish estimate using different estimations, for instance, code mul-
tifaceted design estimations, object-arranged estimations and connection estimations
to assemble figure models. These models can be considered within a cross-project or
project premise. In estimating project defects, a model is constructed and used in a
comparison. A lot of misinformation is needed for the project procedures. Therefore,
the inter-project technique can be supported in a new research that requires more
information for the programs. The inter-project disfiguration gauge (IPDP) is a way
to implement one of the following assumptions by modifying models using innu-
merable data of a function: Studies in the field of IPDP have late. However, there
are two shortcomings in the evaluation of pre-tests that cannot be emulated by the
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FIGURE 3.9 Genetic algorithm approach.

qualifications when applying the evaluation predictions or game planning strategies.
Try to duplicate the IPDP procedures as suggested lately, and find the best way to do
it based on the estimates. For example, for the F score, AUC and MCC results, a 7- or
8-year approach might be better. The approval of the request is reissued before it can
be determined that it is too large. Riot and clean data were used, and comparative
results were obtained from two sets of data. However, some aggregation estimates
gave better results. The manufacturers later decided that the decision of the collec-
tion method had an effect on the presentation of the design. Different default assump-
tions are incorporated into DM techniques. When you go with the branches, we will
explain these tests in the context where they practise learning the costume. The ES
examines some of the flawed assumptions. Weaknesses using systematic learning
methods combine group learning with two basic learning styles to achieve model-
ling rather than isolation. Different learning calculations; the differences of each
comparison; available in a variety of configurations. In general, accumulation and
promotion are explained in this section. Clicking (which solves the bootstrap assem-
bly) is a form of equalisation. In this procedure, each form is created indefinitely and
the data are sent to different subdivisions with different pre-delivery guarantees. It
is therefore intended to reduce leisure. As a rule, it strengthens the majority of each
social component. Promotion can be described as a progressive social event. First,
the comparative loads are passed to the data events. In terms of preparation, the prev-
alence of misconceptions has increased and this association has on several occasions
been the size of a meeting. Finally, this uses the popular weight loss program which
means reducing the need. Stacking is a strategy that uses various concepts via a met
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classifier. Some of the distorting numbers are choosing the best course of action for a
business: diffusion, promotion and abnormal trees. As you can imagine, groups such
as forest choose the best driving experience (Rahman et al., 2019).

3.6 MACHINE LEARNING APPROACH FOR QUALITY
ASSESSMENT AND PREDICTION IN LARGE
SOFTWARE ORGANISATIONS REFERENCES

ISO defines quality as “the quality and characteristics of a product which affect
its ability to meet communication or requirements”. Requirements for use under
“necessary conditions” evaluating the quality of programs that are consistent across
the development cycle is the key to recognising and allocating the resources they
need. Software forecasts provide a quantitative means of controlling programming
objects and quality.

e Software quality assessment forms define the relationship between the
required programming quality characteristics and quantitative skills.

e These models can be built with real strategies, for example backlit models
or smart models.

e For example, because they are logical forms, neighbourhoods on deci-
sion trees or terms are white box models and prioritise their interpretation
(Serban et al., 2020).

Programming Quality

* Software measurements have for some time been utilised for observing and
controlling programming cycle, asses or potentially further develop pro-
gramming quality.

e Metrics assortment and investigation is important for every day work exer-
cises in huge programming improvement associations.

e Mature programming advancement associations likewise broadly utilise the
data model of ISO/IEC standard 15939 as the method for distinguishing the
data needs and executing estimation frameworks.

In this paper, we propose how Machine Learning-based methodologies can be uti-
lised inside the ISO/IEC 15939 data model structure for successful appraisal and
expectation of programming quality. The structure that utilises Al approaches inside
the ISO/IEC 15939 data model will improve the reception of these strategies in enor-
mous scope programming associations previously utilising the norm for their data
needs (Harman, 2007).

3.6.1  AsSesSING SOFTWARE QUALITY ATTRIBUTES

3.6.1.1 Software Quality

With expanding significance of programming in our regular routines, the parts of
value as for programming have additionally acquired high significance. Similar to
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TABLE 3.2
Software Quality

Characteristics
Functionality
Reliability
Usability
Efficiency
Maintainability
Portability

Subcharacteristics
Appropriateness
Correctness
Interoperability

Safety

Functionality observance
Development

Mistake easiness
Recoverability
Dependability observance
Understandability
Learnability

Operability

Magnetism

Usability compliance
Time performance
Reserve competence utilisation
Effectiveness compliance
Analysability
Unpredictability
Permanence

Testability
Maintainability compliance
Flexibility

Installability

Coexistence
Replaceability

Portability

many aspects, the quality can be improved adequately in the event that we character-
ise it appropriately and measure it ceaselessly (Table 3.2). While quality is one of the
extremely normal and notable terms, yet it is equivocal and furthermore usually mis-
judged. To many individuals, quality is like what a government judge once said about
indecency “I know it when I see it”. The primary explanations behind vagueness and
disarray can be credited to the way that quality is anything but a solitary thought,
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yet a multidimensional idea, where measurements incorporate the element of pre-
mium, the perspective and the properties of that element. Along these lines, to com-
pletely see the value in the intricacies identified with quality the shift has been from
characterising quality according to a solitary point of view towards characterising
and working with quality models. Quality model as indicated by ISO/IEC 25000is:
“characterized set of characteristics, and of connections between them, which gives a
system to determining quality necessities and assessing quality” (Kim, 2020).

For definite portrayal of estimation data model and carrying out an estimation
interaction, perusers are eluded to standard ISO. Two critical parts of the data model
we would underline in this paper are furnished here with proper definition:

Estimation Parameter: The capacity is a calculation or calculation per-
formed to join at least two base measures. It comprises balance- and
scale-determined measure relying upon the scales and units of the base
measures from which it is created just as how they are consolidated by the
capacity.

(Investigation) Model: A calculation or computation consolidating at least
one base and additionally inferred measures with related choice rules. It
depends on a comprehension of, or suspicions about, the normal connec-
tion between the part measures as well as their conduct over the long run.
Models produce estimates or assessments pertinent to characterised data
needs. The scale and estimation strategy influence the decision of investiga-
tion methods or models used to create markers (Figure 3.10).

As clarified before, enormous mature programming advancement associations typi-
cally gather and screen different programming measurements considered significant
with the end goal of screening and controlling programming improvement measure
and delicate product/item quality. Given the accessibility of this enormous arrange-
ment of information for current just as recorded undertakings and the unclarity of what
low-level programming measurements mean for high request quality attributes (or gen-
erally speaking quality), we battle that for powerful appraisal and expectation of by
and large programming quality in huge associations, Al strategies, for example, design
acknowledgment and characterisation, can be utilised proficiently. In the structure, we
first adopt a bottom-up strategy, considering that we have some quantitative evaluation
of high request quality attributes (according to programming quality models, we can
utilise machine understanding procedures for design acknowledgment such as CNN to
perceive/anticipate under which quality class a given programming module/item falls
at a given reason behind time during its turn of events). The model for such appraisal/
expectation can be addressed as in Figure 3.10 (Rana and Staron, n.d.).

The model to assess the singular quality attributes can be acquired utilising hierar-
chical methodology as in ISO norms estimation data model. The following advances
would be involved: first, relying upon the qualities of given delicate product project/
item and requirements of various stake. Next, for distinguished data need (quality
characteristics), subcharacteristics (comparing to inferred measures regarding 1SO/
IEC 15939) and various characteristics/programming measurements that might
conceivably influence the given subcharacteristics are recognised. The subsequent
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stage is information assortment, which incorporates a collection of characteristics
and utilises estimation hypothesis to allocate them esteems to acquire the applicable
base measures. This progression likewise stays unaltered in our system regarding
ISO/IEC 15939 measurement data model. Distinctive base measure(s) would now
be able to be joined to frame inferred measures utilising design acknowledgment
techniques (for example, fake neural networks) from the mama chine learning tool
compartment. The fundamental benefit of utilising Machine Learning procedures
in this progression is that utilising chronicled information, we can without much of
a stretch and successfully utilise the example acknowledgment capacity of Machine
Learning draws near, while discovering formal numerical relations for the equivalent
is perplexing and troublesome. Subsequent to getting the quality subcharacteristics
(inferred measures), we can again utilise the Al strategies, for example order models
(for example, support vector machine) which can utilise the verifiable information to
group given programming project/item/module to a class of value attributes. Again,
Machine Learning apparatuses are profoundly helpful in this progression as tracking
down the right examination model is troublesome and complex. The acquired qual-
ity attributes for current delicate product project/item/module would then be able
to be deciphered. While AI approaches have been applied to numerous computer
programming issues and furthermore to numerous singular programming quality
attributes/subcharacteristics, generally their utilisation for quality appraisal and fore-
cast is uncommon. The system introduced in this paper should be approved in an
enormous programming association setting which we see as our future work bearing.
We likewise accept that more examination is required around here to set up models
for assessing and anticipating higher request quality attributes and in general qual-
ity utilising broadly accessible programming measurements information utilising Al
procedures (Nascimento et al., 2020) (Figure 3.11).

3.6.2 Quaurty PrebicTioN UsING THREsHOLD EucLIDEAN DISTANCE MODEL

The boundaries picked for the model depended on after suppositions.

e The mental separation needed to plan and execute a program relies on the
quantities of strategies and number of variable names.

e The last lines of code created influence the advancement time.

e The sequence of strategies is an indicator of how much exertion is needed
to foster a program.

e The programming language openness/experience of a software engineer
influences the improvement time.

e The innate program trouble level (as experienced by the software engineers)
additionally influences the advancement time (Rashid, 2012).

Metric Thresholds: In this review, the data gathered from understudies incorpo-
rated the following:

¢ No. of lines in code
¢ No. of functions used
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FIGURE 3.11 Framework for quality assessment using Machine Learning.
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e Level of difficulty
¢ Knowledge scale metrics of programmers.

Comparability Function Used

Euclidean distance: This comparison is probably the most commonly used dis-
tance between highlight vectors. The distance is given by the client by taking the
weight for each autonomous variable. Suppose that the journal S1 of n blocks con-
tains the following attributes for each of the boxes wl, w2.... and n. Field # 1, x2. A
similar log was recorded with xn. In this model, the Central Commission of Inquiry
is another means by which the provisions relating to minorities to some extent affect
the proximity of the project. Different approaches are proposed:

e Compose all undertaking highlight weight to indistinguishable qualities: w
o0..w=1.
e Arrange each undertaking highlight weight to a worth controlled by human
judgment.
e Arrange each task highlight weight to a worth got by factual examination.
e Accumulate each value weight is divided by O or 1. Improve the measure
of evaluation quality. This powerful approach seeks to distinguish between
separate provisions. When these parts are separated, they all give the same
weight. Based on the information, the best competition is found based on the
information and the product development time is expected. We have shown
a comparison of the product quality with the value sample is extracted from
the knowledge base (gl); assuming the error is less than 10%, the dataset
is automatically saved to the information base. By noting incorrectly, the
probability of a point is further investigated. The graphic of the proposed
framework is shown in Figure 3.12. This creates an ace information base
from a set of records (records).
e The given values of various boundaries of the record set are acknowledged.
e The difference of the info set is determined from each record set in informa-
tion base.
e The difference is determined utilising few similitude parameters. For this
situation, two similitude measures for given method are utilised.
e The ledger set(s) with least distance are the coordinating case(s).
¢ The anticipated improvement scale is advancement season of the coordinat-
ing with case. The framework predicts the nature of the product subsequent
to tolerating the upsides of specific boundaries of the product. The boundar-
ies include the following (Xing et al., n.d.):
e Proportion of factors.
* No. of lines in code.
e Various types of method; complexity level.
» Calibre of developers.
* Expectation depends on relationship and condition thinking that utilisa-
tion different comparability measures.
e If any instrument to refresh the information base (information base of
cases) as new cases are created.
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FIGURE 3.12 Framework of simulating software defect.
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* The framework acknowledges new cases straightforwardly. Change of a
specific record is likewise done.

e A director plays out the undertakings of refreshing and altering the
data set.

Based on both the Manhattan distance and the Euclidean distance, the distance
of each model is considered individually from the threshold vector. The real-time
progress and prudence/proximity to negotiate with the case are extracted from the
information base. Determine the meaning of these qualities and display them on
the screen using the Yield Estimate Error (MRE). We have shown a comparison of
the product quality with the LOC extracted from the knowledge base (g1). For this
situation, we used 70% of the information as change data and 90% as test data. The
estimate was 95.4% of the 10% error in the correction, and the prediction was 94%
of the error for the test, which was 76%. The results are generally very good when
practising case-based thinking (Figure 3.13).

3.7 MODEL SELECTION USING MACHINE LEARNING

An item cycle oversees various parts and stages from needing to testing and passing
on programming. This heap of activities is finished startlingly, as per the necessi-
ties. Each way is known as a Software Development LifeCycle (SDLC) model. An
item life cycle model is either an illustrative or prescriptive depiction of how writing
computer programs are or should be made. Coming up next are some well-known
fundamental models that are embraced by various item headway firms.

Waterfall approach: When essentials are obvious and stable, the course model also
called the conventional life cycle, with its productive and progressive procedure, can
be utilised. The gathering begins with correspondence from the customer concerning
specific and advances through orchestrating, showing, improvement and association.
If the essentials are fixed and expecting work proceeds in an immediate style to com-
plete the endeavour, the course model is fitting (Technology and Road, 2016).

Prototyping approach: When clear essentials for lackness and features can’t be
perceived, and when the creator isn’t sure of the capability of a computation, the flex-
ibility of a functioning system, and the kind of human-machine affiliation, a model
thought is utilised. “Used as a procedure” can be executed inside the setting of any
of the cycle models. The model is made in the wake of fixing the overall objectives
and essentials. The accompanying quick arrangement tops in the improvement of
a model. The model is checked and refined with the analysis from the end clients
(Hanselmann and Sarishvili, 2007).

The RAD approach is a slow programming headway measure model those anxi-
eties an astoundingly short improvement cycle. The RAD model is a fast variety of
the course model. The quick headway is refined through part-based turn of events. It
achieves a totally utilitarian structure inside an outstandingly short period of time if
the necessities are doubtlessly known and project expansion is constrained.

Component-based model: The part-based progression model solidifies a critical
number of the characteristics of the winding model. It is formative in nature. It uses
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FIGURE 3.13 Framework for quality assessment.

existing reusable portions. The accentuation is on consolidating the parts as opposed
to making them from the start. The endeavour cost and progression measure span
can be diminished by joining section reuse as a component of the definitive culture.
The portion-based model has various advances going from necessities assurance,
part examination, essential change, structure plan with reuse, improvement and coor-
dination and system endorsement (Wang et al., 2007).

3.7.1 CHoosING A SDLC MobEL

Choosing the SDLC approach can be a daunting task for some relationships. Unique
programming development lifecycle models are intertwined; conditions force



74 Multi-Criteria Decision Models in Software Reliability

dangers expense plan; suitable for work that sums up service life, etc. However, to
meet the requirements, you must determine which model to compromise on. There
are many ways to make a successful business venture. Some of them are inexpe-
rienced and depends on performance and customer needs. Approach the scores of
efforts to recognise the qualities of each cycle model that can help us in adopting the
article development model, which is a rough number approach. The winning method
with the highest score here is a suitable plan of characteristics (Kapur and Sodhi,
2019):

e Are the prerequisites grounded, oral-characterised? Interface?

e Are the necessities determined or liable to change as the undertaking advances?

¢ Is the undertaking little to medium-evaluated (up to four individuals for a
very long time) or large?

¢ Is the application like undertakings that the engineers have insight into, or
is it another region?

¢ Is the product liable to be is it direct or complex (for example, does it utilise
new equipment)?

* Does the product have a little simple UI or a huge complex client?

e Must all the usefulness be conveyed without a moment’s delay or would it
be able to be conveyed as incomplete items?

¢ Is the item security basic or not?

¢ Are the engineers generally unpractised or chiefly experienced?

¢ Does the hierarchical culture advance individual imagination and duty or
does it depend on clear standards and methodology (Bhavsar et al., 2020)?

3.8 RESULTS AND DISCUSSION

For three types of data: 1; the accuracy of classifications 2 and 3 is shown in Table 3.3.
As shown in Table 3.4, all three Machine Learning estimates achieved high precision.

TABLE 3.3

Model Accuracy and Score

Trend Score Model and Algo. Used
Requirements clarity 99% SVM
Requirements change 67% Random forest
Project size 75% Gradient boost
Application 87% TDF

Software 65% IDF

User interface 87% SVM
Functionality 89% SVM

Safety critical 91% Regression
Developer expertise 89% Neural network
User involvement 93% Decision tree

Total Score 88.8%
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TABLE 3.4

Accuracy Analysis

Dataset NB DT ANNs
Sample 1 0.669 0.877 0.654
Sample 2 0.887 0.865 0.876
Sample 3 0.778 0.888 0.876
Average 0.887 0.897 0.985

For all three classifiers, the normal motivation for the accuracy rate takes every-
thing into account. However, the lower value for the NB estimate appears in the DS1
dataset. We recognise that this dataset contains nothing and that the NB calculation
requires a more memorisable dataset to obtain more precise data (Table 3.5). In this
way, the NB achieved higher accuracy rates in the DS2 and DS3 datasets, which were
significantly more pronounced than the DSI datasets (Pradhan et al., 2020).

TABLE 3.5

Characterising Features of Project

Project Feature Commentary as per Behaviour Scaling
Supplies clearness Settled 10
Necessities modified Permanent 9
Venture dimension Medium to average 8
Submission Known 7
Application Uncomplicated 7
Ul Undemanding 8
Toggle feature Only once 5
Safety critical No 3
Developer knowledge Simple 8
Workforce Independence of module 7
Consumer participation Simple 6
Project attribute Score is 1 5
Requirements clearness Completed 5
Requirements contrast Permanent 6
Scheme measurement Small to medium 7
Submission Wellknown 9
Software Simple 6
Background Simple 9
Uses One time 6
Critical phase No 9
Skill set measure Principallyinexperienced 6
Backend Autonomy 8
User contribution Smallest Broad
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Table 3.4 provides specific measures for the classification of NB, DT and ANN
in DS1, DS2 and the data. As a result, three Machine Learning calculations can be
used for satisfactory assumptions at a fair rate. The overall accuracy of the three
data classes is greater than 97%. The third measure is the audit measure. Table 3.4
shows the survey for three subtypes in three data sets. Also, this Machine Learning
estimate is passed in terms of fair audit. The best survey is compiled by the DT
classifier, which is 100% accurate in all data. On the other hand, the regular surveys
for the ANN and NB calculations are almost completely independent by 96%. The
F-measure is used to balance the three classifiers according to audit and specific pro-
cedures. The F-measure is respected for Machine Learning calculations used in three
datasets. As Figure 3.14 shows, DT is an ANN; next to the NB classifiers is the most
distinctive F-measure of all the data. Finally, the RMSE issue is not really posed to
evaluate the Machine Learning estimate. A simple automatic regression (AR) model
is provided to predict the total number of program problems using chronic evaluation
errors. In the RMSE measurement, the POWM model area and their system were
studied. Evaluation collaborative work is being done on the comparative data that we
use in this evaluation (Chigurupati et al., 2020).

3.9 CONCLUSIONS

The main purpose of this work is to present assessment forms based on Machine
Learning strategies. The submissions of these models vary depending on the quality
given. In any case, it is essential that the data from programming projects and the
integrated black box techniques used by SVM, in particular, provide consistent and
unbelievably high accuracy (Laradji et al., 2015). Their ability to obtain high-speed
data can be used to coordinate future glassware designs and future program devel-
opments. An essential advantage of these Machine Learning styles is that they are
equal. We can combine them in a changing cycle like a robot. In any case, these
forms can be used to access data from additional programs; it should be downloaded
from a variety of applications. It is critical. This is an experiment to create reusable
models (Nam, 2014).
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Programming quality is the level at which communication or compliance with
certain requirements and concerns is met (Wang and Yao, 2013). An item metric is
a measure of an asset that does not degenerate into a system or a combination of
items. Components are deformed by software during the early detection of faults
using a subsequent identification method (Lincke et al., 2010). In this chapter, we
have discussed different application methods used on a variety of datasets, based
on the existing programming estimates. Going forward, we will look at the results
of different methods of data collection and management game plans. Good quality
programming will be supported. Quality is the key to writing computer programs.
It is a term that is not yet available (Guo and Lyu, 2000). Understanding the factors
that can affect quality and general standards helped us; the relevance and size of
the impact of written components/subtypes on general attributes are grim. Features
externally and later, it can be damaged by a large number of unnecessary compo-
nents (Harman, 2007). We provide a framework that uses ISO/IEC 15939 assess-
ment information and standardised Al strategies to effectively implement internal
data to demonstrate program quality by using standards to fully demonstrate this
information (Harman, 2007). The use of Machine Learning methods does not moti-
vate the identification of specific groups in atmospheric measurements and requires
careful consideration. Special sub-credits are defined as higher quality of demand
or discipline. With the use of chronic data, Machine Learning techniques can help
assess regulatory quality and high-demand quality registrations based on assess-
ment criteria (Wang et al., 2007). Another essential advantage of using Machine
Learning techniques is that they are used in these giant relationships. Their power
of precision and fairness accumulates over time. This makes them incredibly cute
for such an assessment. Standard programmer development models through SDLC
can support the current situation (Bhavsar et al., 2020). Some models having influ-
ence and demand are guaranteed by engineers for their warranty. The SDLC is
difficult to select if it is demonstrated that the effort illustrates the features of the
programming development model (Pradhan et al., 2020). Conceptual application
diagram confirms the authenticity of the chosen programming development model.
In integration, the survey involves a simple framework and scores of semantic and
material engineers, according to the scores, according to the programming charac-
teristics (Sinha et al., 2020).
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4.1 INTRODUCTION

Requirements engineering (RE) is a pattern of creation and refinement of a software
requirements specification (SRS). It executes a huge occupation in programming
improvement life cycle since SRS-made artefacts, for instance structure arrange-
ment, coding and testing for the item headway and the achievement of program-
ming project, are basically established on the idea of SRS documents. Consequently,
SRS is basic in programming projects. SRS helps as a bond in the beginning of
the improvement until the focal matter of significant worth control. Thus, at this
stage the usage of SRS is applied with certain requirement engineering is generally
written in ordinary language. Regardless, ordinary language is basically uncertain.
Ambiguity infers a word can be unravelled in more than one significance. The four
most ordinary sorts of ambiguity in SRS are (i) lexical, (ii) syntactic, (iii) semantic
and (iv) lazy leaning. Lexical ambiguity exists when a word has somewhere around
two likely ramifications. Syntactic vulnerability is generally called structure dubi-
ousness and appears when a progression of words can be changed over into more
than one unique way in light of uncertain etymological development. On the other
hand, semantic ambiguity is a sentence, which can be changed over into more than
one way inside its exceptional circumstance. Besides, rational vulnerability arises
when a sentence doesn’t express and the given setting is absent or missing the neces-
sary information to clarify its importance (Gupta et al., 2019).

RE measure is a basic advance, since SRS superiority issues are essentially sig-
nificant for various programming project spaces. Once in a while, SRS quality is
straightforwardly appraised as the primary driver of calamities in programming
improvement projects. IEEE standards give the characteristics of a decent SRS. The
qualities comprise unambiguity, accuracy, modifiability, culmination, recognisa-
bility and positioning for significance, consistency, dependability and evidence. In
any case, a complete, exact and consistent SRS requires a detailed examination to
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accomplish the precision level. An obvious examination issue in RE is settling uncer-
tainty, where equivocalness can be characterised as “an assertion having more than
one significance”. Apparently no single wide, comprehensive and accurate meaning
of equivocalness is written in the programming work. Each definition gives just a
few sections and bits of the total definition by ignoring the remainder of the def-
inition. In every way, it frames a total comprehension of the current meaning of
uncertainty in software engineering. The IEEE-suggested preparation for software
requirements stipulation says, “A SRS is unambiguous if, and just if, each necessity
expressed in that has just a single translation”. The issue with the IEEE descrip-
tion is that there is no unambiguous determination essentially on the grounds that
for any particular, there is consistently somebody who comprehends it uniquely in
contrast to another person, similarly as there are no sans bug programs. There are
two significant wellsprings of equivocalness: correspondence blunders and missing
data. Correspondence blunders happen because of articulation inadequacies and the
absence of logical data between the writer and the peruser. Missing information can
be a direct result of various reasons, for example human factor, nonappearance of
insight and summarise module. Till date a huge part of the investigation work on SRS
vulnerability has not been accustomed in a planned manner, consequently making
researchers and experts put a solid effort to oblige and evaluate. To give a planned
and coordinated point of view on the investigation into SRS obscurity, this outline
depicts the current status of the strength of assessment work open in the field of SRS
unclearness. The outline fuses logical arrangement of the middle thoughts and asso-
ciations that together epitomise the SRS ambiguity field. This logical order is facili-
tated around two fundamental estimations, particulars and gadgets with which we
endeavour to portray SRS ambiguity. While these huge estimations are by and large
suitable for the fundamental spaces of programming improvement, we are enlivened
by the composing of particular sub-estimations that are fundamental for the work in
the field of SRS vulnerability. This material might pave the way for the usage of the
SRS vulnerability technique in projects. Furthermore, it gives an aide as a plan that
helps researchers focus on the most proper courses of action open for a particular
dubiousness (Hayman Oo et al., 2018).

English language subtleties disguise their real significance behind obscure or
ambiguous language. It was accepted that quite a bit of this was because of messi-
ness and that essayists could really take care of business; however, for peruses of
vague language, changing isn’t an alternative. All the more significantly, uncertainty
in some cases precisely passes a creator’s expectation. Lawful writings are in some
cases purposefully vague. Necessities engineers have since quite a while ago per-
ceived that normal language is regularly vague. Settling ambiguities in source records
for prerequisites stays a space of dynamic examination. Specifically, scientists have
not zeroed in on distinguishing ambiguities in lawful writings that administer pro-
gramming frameworks, which is basic since ambiguities in legitimate writings can
neither be disregarded nor be handily eliminated. Numerous ways to deal with settling
vagueness in programming necessities depend on disambiguation or expulsion of the
equivocalness. These may essentially not be a possibility for programmers tending
to vagueness in a lawful content. This chapter investigates the vagueness in a lawful
content from the US medical services space regardless of whether programmers can
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really take care of business. The initial step for engineers building HITECH-managed
frameworks is inspecting the content of the guideline and concentrate in prerequi-
sites from it. Sadly, extricating programming prerequisites from guidelines is incred-
ibly difficult. In any event, perusing and understanding these reports might be past
the capacity of expert specialists. Recognising vague explanations and understand-
ing why those assertions are questionable are basic abilities for necessities engineers
perusing lawful writings. Indeed, even outside of the lawful area, a lot of undetected
uncertainty is viewed as one of the five most significant explanations behind disap-
pointment in prerequisites examination. As far as anyone is concerned, this chapter
is quick to look at distinguishing proof and grouping of ambiguities in a legitimate
content with the end goal of programming necessities examination (Mazza, 1989).

4.2 BACKGROUND

4.2.1 CuUSTOMER RELATIONSHIP MANAGEMENT SOFTWARE

Dealing with the full degree of the client fuses two related destinations: one, to give
the connection and the total of its client confronting workers with a solitary, complete
perspective on each client at each touch point and across all channels, and two, to
equip the client with a solitary, complete perspective on the affiliation and its broadly
comprehensive channels. CRM is often insinuated as a facilitated exhibit. The CRM
structure has been developed, especially after headway in network establishment,
client/specialist enlisting and business information applications. This improvement
drives associations to depend upon CRM systems for offering more inventive sorts
of CRM is everything except another thought, yet it relies upon the latest headway in
enormous business programming development. Similarly, associations use this plan
to win the trust and the steadfastness of their customers. This works with usefulness
in business. To achieve this, the CRM system needs to interface front and regula-
tory focus applications to stay aware of associations and build customer dedication.
Moreover, CRM utilises ERP structures to achieve its goals. Upgrades in ICT and
the web system (WW W) suggest that CRM structures could take advantage of these
progressions with their ability to accumulate and look at the data on customer plans
and translate customer direct. Additionally, associations can make a 360-degree
viewpoint on customers to acquire from past associations with advance future ones
(Eckerson and Watson, 2000). This advancement has conveyed one more importance
to develop customer associations and proposes the new suggestion of “‘e-customers”.
The impact of ICT has been so remarkable that it effortlessly influences the over-
all advancing. Thusly, all affiliations have modified the business community. It is
prominent that holding customers is more gainful than building new associations.
Also, the progressions in CRM thoughts expect a critical part in additional fostering
all items used in various associations, for instance, financial and movement business,
and adaptable and vital associations. Furthermore, CRM techniques focus on the
customers and compose requirements of the relationship around the customer rather
than the thing. As shown by the above discussion, “Managing a viable CRM execu-
tion requires an organized and changed approach to manage advancement, connec-
tion, and people” (Alferoff and Knights, 2008).
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FIGURE 4.1 CRM life cycle.

In Figure 4.1, an example study characterises CRM investigation into four pri-
mary classes: data frameworks and data innovation, advertising, deals, administra-
tion and backing. The greater part of the past distributions was unified on information
frameworks (IS) and data innovation (IT). Along these lines, unmistakably IS and I'T
assume an extraordinary part in creating CRM. In any case, some open actions take
various bearings, such as administration and client security.

The example study centres on CRM research from 2000 to 2005 and groups
another plan of CRM into the accompanying fundamental classes: reception, obtain-
ing, execution, use and support, development and retirement. It is qualified to specify
that these stages were at that point used to portray the picture of big business asset
arranging (ERP) framework. The disadvantage of examination is that it centres just
around the diaries and gatherings for IS and promoting in Figure 4.2. Different trains
such as administration, innovation, authoritative conduct and client conduct have
been prohibited (Massey et al., 2014).

As the subjects of CRM research are hard to decide, the pertinent points through
diaries and worldwide gatherings in IC and PC sciences or financial business sci-
ences must be determined. The viewpoints of CRM are resolved in the accompany-
ing subsection as per these two significant fields of CRM research (Figure 4.3).

Data Systems (IS) and Computer Science (CS) — Through the perception of CRM
distributions, IS and its applications seem, by all accounts, to be a significant appa-
ratus and significant point of view of CRM. In IS, CRM is the hidden foundation for
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FIGURE 4.2 The life cycle of CRM.
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FIGURE 4.3 Viewpoint of CRM.

comprehension and connecting with clients effectively. The CRM points of view in
IS and CS research are as follows:

Data System (IS): IS assumes a critical part in the advancement of CRM
(Kincaid, 2003; Ling and Yen, 2001). The accentuation on IS discipline fea-
tures on the significance of mechanical parts of CRM, a mix of programming,
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equipment and cycles and all applications lined up with client technique are
clarified.

Innovation: The primary classes that portray this point of view are the mod-
ules of CRM, for example power computerisation, showcasing mechanisa-
tion, client care and backing. In addition, CRM as programming is given by
numerous sellers in the business market.

E-Business: According to this point of view, CRM is a use of e-business and
computerised exercises just as client assortment information.

The Business and Economic Science (EBS) — CRM is an “endeavour way to deal
with comprehension and affecting client conduct through significant correspon-
dences to further develop client obtaining, client maintenance, client dedication, and
client productivity”. From this perspective, CRM can be depicted by utilising the
monetary and business points of view with their classes as follows:

The Board: It is the capacity frequently connected with CRM. CRM is estab-
lished on showcasing and relationship advertising. Here, CRM frameworks
are depicted as a business technique in excess of an innovation. The points
of this viewpoint can be summed up in dealing with the client life cycle,
expanding the devotion to the client, benefit and maintenance, which are the
goals of the CRM framework.

Promoting: Most destinations that can be accomplished through this view-
point can be exhibited in the accompanying focuses (Alferoff and Knights,
2008):

* Emphasis on long-term relationships and one-to-one cooperation
through correspondence channels.

e Strong association among CRM and administration.

e Data gathered which are significant for special techniques.

e All types of administrative promotions.

*  Some types of client administrations.

e Definition of CRM as utilisation of the CRM idea using ICT in both
customary and electronic conditions.

Information Management (KM): In the information board, CRM implies
learning the clients better to accomplish their destinations.

Human Resource Management (HRM): This point of view proposes the
selection of a client situated culture by both top administration and repre-
sentatives inside an association (Alokla et al., 2019).

4.2.1.1 Major Applications of CRM

Phone and Financial Credit Management: CRM programming helps bar-
gains, displaying, and organisation specialists catch and track pertinent data
about each past and orchestrated contact with conceivable outcomes and
customers similarly as other business and life cycle events of customers.
Information is obtained from all customer contact centres such as telephone,
fax, email, the association’s website, retail stores, stands and individual con-
tact. CRM systems store the data in an ordinary customer informational index
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FIGURE 4.4 Application of CRM.

that arranges all customer account information and makes it available all
through the organisation through Internet, interface or other association joins
for bargains, displaying, organisation and other CRM applications as shown
in Figure 4.4 (Alokla et al., 2019).

Deals: A CRM system gives sales representatives the item gadgets and com-
panion’s data sources they need to help and manage their arrangements
and actuates and smooths out deliberate pitching and upselling. Deliberate
pitching is a technique where a customer of one thing or organisation, say
mishap inclusion, may similarly be keen on purchasing an associated thing
or organisation, say contract holder’s insurance. By using a deliberate pitch-
ing technique, specialists can all the more promptly serve their customers
while simultaneously further fostering their deals. Up-offering suggests the
way towards finding ways to deal with selling another or existing customer
an ideal thing over they are correct now chasing. Extra models fuse bargain
prospects and thing information, thing plan, and arrangements quote age
capabilities. CRM in like manner gives steady across to a lone ordinary
point of view on the customer, enabling sales representatives to watch out
for all pieces of a customer’s record status and history before arranging their
business calls. For example, a CRM structure would alert bank specialists
to call customers who set to the side enormous portions to sell them boss
credit or theory organisations (Alokla et al., 2019).

Promoting and Fulfilment: CRM systems help advancing specialists accomplish
direct publicising endeavours through automating such tasks as qualifying
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leads for assigned exhibiting, and booking and following direct mailings.
Then, at that point, the CRM programming helps exhibiting specialists get
and direct possibility and customer response data in the CRM informational
collection, and separates the customer and business worth of an association’s
prompt publicising endeavours. CRM, moreover, helps in the fulfilment of
prospect and customer responses and requests by quickly arranging bargain
contacts and giving fitting information on things and organisations, while get-
ting critical information for the CRM information collection.

Customer Care and Support: A CRM system offers support representatives
with programming gadgets and progressing induction to the typical cus-
tomer database shared by bargains and exhibiting specialists. CRM helps
customer with changing bosses make, designate and administer requests
for organisation by customers. Call centre programming reiteration calls
to customer help experts subject to their capacities and ability to manage
express kinds of organisation requests. In spite of the fact that language
specialists see dubiousness or consensus as having a solitary, though wide,
which means that is some of the time used to drive peruses to go to their own
agreement or translation, unequivocally express that deficiency is a type of
designing equivocalness that should be tended to for plan helps customer
with changing representatives help customers who are having issues with
a thing or organisation by offering material help data and thoughts for set-
tling issues. Electronic self-organisation engages customers to get to altered
help information adequately at the association website, while it’s everything
except a decision to get further assistance on the web or by phone from
customer support workforce.

Retention and Loyalty Program: Improving and enhancing client maintenance
and devotion is a significant business procedure and essential goal of client rela-
tionship the board. CRM frameworks attempt to assist an organisation with dis-
tinguishing, prize and market to their generally steadfast and beneficial clients.
CRM scientific programming incorporates information mining apparatuses
and other logical promoting programming, while CRM data sets may encom-
pass of consumer information distribution centre and CRM information shops.
These instruments are utilised to distinguish beneficial and steadfast clients and
to coordinate and, what’s more, assess an organisation’s designated advertising
and relationship showcasing programs towards them (Alokla et al., 2019).

4.2.2 OverviEw ofF SDLC AND PrROTOTYPE MODEL

Coordinated endeavour the leader’s procedures (such as a SDLC) redesign the
board’s order over projects by parcelling complex tasks into sensible sections. An
item life cycle model is either a realistic or prescriptive depiction of how writing
computer programs is or should be made. Regardless, none of the SDLC models talk
about the main issues of interest such as change the load up and incident organisation
and release the leaders’ measures inside the SDLC collaboration; simultaneously, it
is tended to in the overall endeavour the chiefs. In the proposed theoretical model,
the possibility of customer engineer association in the standard SDLC model has
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been changed over into a three-dimensional model that includes the customer, the
owner and the architect. In the proposed hypothetical model, the possibility of cus-
tomer creator correspondence in the customary SDLC model has been changed over
into a three-dimensional model that incorporates the customer, the owner and the
designer. The one-size-fits-all approach to manage applying SDLC systems is now
not appropriate. We have made an undertaking to address the recently referenced
acquiescence by using one more theoretical model for the SDLC depicted elsewhere.
The disadvantage of watching out for these organisation measures under the overall
endeavour the board is missing of key particular issues identifying with program-
ming progression measure that is, these issues are talked in the undertaking the lead-
ers at the surface level anyway not at the ground level (Baars, 2006).

Associations may utilise a SDLC model or elective system while dealing with
any venture, including programming advancement, or equipment, programming,
or administration obtaining projects. Despite the technique utilised, it ought to be
custom-made to coordinate with an undertaking’s qualities and dangers. Sheets, or
board-assigned advisory groups, ought to officially endorse project strategies, and the
executives ought to endorse and record critical deviations from supported techniques.
Organised undertaking of the executives methods (such as a SDLC) upgrades the
board’s authority over projects by partitioning complex errands into reasonable seg-
ments. Sectioning projects into coherent control focuses (stages) permits chiefs to sur-
vey project stages for fruitful finishing prior to designating assets to resulting stages.
The main stage in project management is where client require basic understanding of
system being developed. A sequential process may simply join thoroughly portrayed
stages, for instance prepare, acquire, test, do and stay aware of. Typical programming
improvement projects consolidate beginning, organising, plan, progression, testing,
execution and backing stages. A couple of affiliations consolidate a last, expulsion
stage in their endeavour life cycles. The activities completed inside each adventure
stage are similarly established on the board framework. All assignments should fol-
low a lot of coordinated plans that clearly portray the essentials of each project stage.
Accentuation further develops a project’s ability to gainfully address the essentials
of each get-together (end customers, security heads, originators, engineers, structure
trained professionals, etc.) all through a project life cycle. Accentuation furthermore
allows project bosses to complete, review and change stage practices until they pro-
duce adequate results (stage expectations) (Kamsties et al., 2001).

A project cycle oversees various parts and stages from expecting to testing and
sending programming. This heap of activities is done surprisingly, as per the necessi-
ties. Each way is known as a SDLC model. A programming life cycle model is either
a connection with or a prescriptive depiction of how writing computer programs is
or should be made. An explaining model depicts the verifiable setting of how a par-
ticular programming structure is made. Clear models may be used as the justification
behind understanding and further creating programming improvement measures or
for building observationally grounded prescriptive models (Ezzini et al., 2021).

4.2.2.1 Prototyping Approach

The prototyping approach is a famous type of iterative SDLC that delivers a little
model or form of the framework that the client can work with to give ideas. The
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methodology isn’t an independent technique, but a way to deal with taking care of
bits of the bigger entirety. The ideas are then joined to make the framework com-
pletely functional. The prototyping approach is outlined in Figure 4.5. The figure
shows a circle through fast plan, constructing the model, client assessment and refin-
ing the model. This circle proceeds until the client is happy with the model, and
refinements have been carried out. By then, the model would then turn into the item.
The prototyping approach endeavours to decrease the danger by having the venture
in more modest pieces to ease changes required during the improvement stage. The
approach considers different emphases; be that as it may, the impediment happens
with numerous cycles. It is expected that the models will be disposed of and fruit-
less. This supposition that is incompletely because of knowing the prerequisites can
change definitely in the following cycle. For instance, the client could require another
element after a few models. The new element can change the extent of the issue
prompting degree creep. This prompts an exercise in futility and cash. Because of the
exercise in futility and cash, this methodology isn’t reasonable for enormous scope
projects. Different models are additionally an administration calamity. The different
changes to fulfil the client not exclusively are hard to oversee yet additionally upset
the advancement group. The prototyping approach is best utilised for brief exhibits
or frameworks that have not been created. These sorts of frameworks can start the
establishment because of unsteadiness in another framework (Nacheva, 2017).

4.3 RELATED STUDY: PROTOTYPING MODEL
BASED ON PROCEDURE METHOD

The proposed model in Figure 4.6 is viewed as an iterative developmental prototyp-
ing measure that gets certain information sources, plays out a couple of steps and
conveys yield antiques. The current investigation offers the accompanying phases of
prototyping dependent on summed up strides of issues tackled in the writing audit:
framework prerequisites examination (compares with dissecting the issue), portray-
ing (relates to fostering an arrangement), model turn of events (compares with carry-
ing out the arrangement), investigating ease of use (relates to assessing results) and
refinement (Bano, 2016).

Information measure boundaries are the framework necessities and the picked
advances and instruments for programming improvement. They give the essential
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premise to play out the interaction. As a yield antique of the prototyping cycle is
made, a checked model that in the advancement interaction ought to be addition-
ally improved with a view that the proposed approach depends on developmental
prototyping, the prohibitive conditions for leading the cycle are related to the stage
“Investigating Usability”. Specifically, these are the capabilities of clients who will
partake in the prototyping interaction and the climate where it will be led. The pri-
mary phase of the cycle is system requirements analysis. Its motivation is to attempt
an appraisal of the principle communication situations with the framework according
to the client’s point of view. This needs to show the principle route streams, which
requires recognisable proof of the fundamental entertainers in cooperation situations
with the framework; the principle elements of the branch of knowledge and their
various levelled association, assuming any, to make the underlying data model; the
model is needed the basic difficult situations of algorithmic propagation, which are
introduced according to the viewpoint of clients, as far as carrying out the interface
associations. As a reason for defining the present data model, information design of
the application or these are navigational components through which the client deals
with the application (not really consolidated in a standard client menu); user interface
components are engaged with the data stream, so their number could be somewhere
in the range between 5 and 9; for example, these will be planned by the “7 +2” rule,
giving some certainty that clients of the framework won’t place pointless intellectual
assets in working with interface (Bano, 2016).

4.4 LITERATURE REVIEW

Most programming prerequisites particulars are written in regular language, which
is intrinsically questionable and uncertain. Be that as it may, programming design-
ers don’t yet have a solitary extensive and for the most part acknowledged meaning
of ambiguity (Ferrari et al., 2014). Uncertainty is characterised as an expression that
has more than one understanding (Dalpiaz et al., 2019). The training suggested by the
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IEEE for programming prerequisites details expresses that explanation of necessities
is unambiguous just when every prerequisite has a solitary understanding (Fantechi
et al., 2018). Etymologists have adulated the meaning of equivocalness. In this part,
we present the business related to the necessary arrangement and improvement. The
presence of mind directs that an unambiguous assertion can just have one clear under-
standing. However, how would we characterise explanations that have no understand-
ing? Ambiguous or fragmented articulations might not have legitimate understanding.
To a necessities engineer, an assertion dependent on area information might appear
to be befuddling from the beginning. Here, we believe dubious or deficient proclama-
tions to be questionable on the grounds that they are not unambiguous. That is, we
consider them questionable, on the grounds that they don’t have a solitary and clear
translation. Prerequisites specialists can permit numerous understandings of neces-
sities right off the bat in the advancement of another arrangement of programming
necessities (Gervasi et al., 2019). Moreover, a few assertions might be harmless on the
grounds that only one potential change would be sensible, and such proclamations are
probably not going to prompt misconceptions (Ganpatrao Sabale, 2012). Prerequisites
for explanations with a few sensible understandings are unsafe and can prompt false
impressions if not clarified (Yang et al., 2010). Rauterberg et al. (1995) spread the
word about a further differentiation between perceived ambiguities for engineers and
unnoticed ambiguities obscure to engineers. Many ways to deal with equivocalness
in programming include the advancement of instruments or techniques to perceive
or dispose of vagueness in programming prerequisites. For instance, Gordon and
Bro use explanations to determine possible struggles between guidelines in various
locales (Hammer and Vogel, 2013). The analysts utilised normal language handling to
distinguish and kill equivocalness in programming necessities Abduljalil and Kang
(2011) developed a way to deal with Al to recognise ambiguities in prerequisites. Chen
and Popovich (2003) fostered a self-loader cycle to decrease the vagueness of pro-
gramming prerequisites through object-arranged modelling. According to Grieskamp
et al. (1998), ambiguities can be settled on the off chance that we know the setting of
PE. Moreover, the creator considered the setting of not set in stone that an equivocal
necessity is a prerequisite that has various implications. He depicted the significance
of the ER setting, as practically all normal language prerequisites are probably going
to be vague. Perusing the necessities, the greater part of the prerequisites can be dis-
pensed with by the peruser who comprehends the setting of PE, and the remainder of
the prerequisites we consider is vague. Phonetic vagueness (syntactic, lexical, seman-
tic, over-simplification, vulnerability, and so on) doesn’t rely upon any unique circum-
stance. The equivocalness explicit to RE relies upon the framework area, the program
space, the advancement space, and the vagueness of the RE setting (Nacheva, 2017).

4.5 METHODICAL REVIEW: TYPES OF REQUIREMENT
AMBIGUITIES AND THEIR DETECTION

4.5.1 AMBIGUITY IN REQUIREMENTS ENGINEERING

The presence of mind proposes that an unambiguous assertion would have just a soli-
tary, clear understanding. In any case, how could we order proclamations that have
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no understandings? Ambiguous or deficient articulations might not have a substantial
translation. For a prerequisites engineer, an explanation that relies vigorously upon
space information may likewise, from the outset, seem uninterruptable. In this, we
believe dubious or fragmented proclamations to be vague since they are not unam-
biguous. That is, we believe them to be questionable in light of the fact that they
don’t have a solitary, clear understanding. Necessities architects may endure prereq-
uisites with numerous understandings right off the bat in the advancement of another
arrangement of programming necessities. What’s more, a few assertions might be
harmless in light of the fact that only one potential translation would be sensible, and
these assertions are probably not going to prompt mistaken assumptions. Necessities
with proclamations having more than one sensible understanding are toxic and liable
to prompt misconceptions if not explained. Lawful area information would be needed
to separate among harmless and poisonous necessities in this examination. Since we
don’t accept our contextual analysis members have the essential foundation, we don’t
consider the distinction among toxic and harmless to be significant. It makes an extra
qualification between recognised, which are known to engineers, and unacknowl-
edged ambiguities, which are obscure to engineers. Numerous programming ways
to deal with uncertainty include the improvement of devices or methods for per-
ceiving or disposing of equivocalness in programming prerequisites. For instance,
analysts have utilised regular language handling to identify and resolve vagueness
in programming prerequisites. In spite of the fact that contentions between strategy
records, legitimate writings and programming prerequisites may not really be a type
of uncertainty, these struggles enlivened our work in two essential manners. To begin
with, it expresses that arrangement among strategies and programming necessities
must be impeccable to keep away from clashes. Indeed, even potential struggle ought
to be tended to. These statements support the utilisation of a wide meaning of equivo-
calness (Pittke et al., 2016).

4.5.2 TyPEs OF AMBIGUITY

Lexical Ambiguity: This happens when an expression or articulation has vari-
ous genuine ramifications. Consider § 170.302(d): “Enable a customer to
electronically record, change, and recuperate a patient’s powerful medica-
tion list similarly as medication history for longitudinal thought”. A rem-
edy history for longitudinal thought could mean either an absolute solution
history in a particular strategy or a compressed medication history used
extraordinarily for a particular explanation. A necessities specialist ought to
disambiguate this before execution. Another model: “Melissa walked around
the bank™. This could infer that Melissa walked around a financial founda-
tion or she walked around the edge of a stream as shown in Figure 4.7.

Syntactic Ambiguity: This happens at what time a progression of words has
various genuine phonetic parsings. Consider “Engage a customer to elec-
tronically record, adjust, and recuperate a patient’s fundamental signs...”.
Here, “electronically” may imply all of the activity words “record, change,
and recuperate” or just to “record”. It seems, by all accounts, to be incon-
ceivable that the US government needs EHR shippers to “electronically
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FIGURE 4.7 Ambiguity type.

change a patient’s basic signs”. But, electronic record or recuperating seems
like reasonable prerequisites. Again, a necessities specialist ought to dis-
ambiguate this before execution. As well: “Quickly examine and talk about
this entry” (Bdumer and Geierhos, 2018).

Semantic Ambiguity: A sentence occurs when there is more than one mean-
ing, depending on the envelope specification. Each word in a sentence has
an unmistakable meaning, and the sentence has a separate tree; however,
the correct understanding of the sentence should be emphasised. Consider
170.302 (j). If a parameter is defined for communication, it is reasonable to
compare the two records. This is the only time. Cost quantities can be calcu-
lated for drug-related or multiple components. Likewise, these summaries
may have room for different or different patients depending on the stimulus
of the relationship.

Unclearness: This happens while a phrase or proclamation concedes marginal
belongings or comparative understanding. Consider “Electronically qual-
ity, partner, or connection a research facility test result to a lab request or
patient record”. What establishes ascribing, partner or connecting? Must
these records consistently be shown together or would essentially having
an identifier and permitting a doctor to discover one given the other do the
trick? Additionally, consider: “Fred is tall”. If Fred was a North American
male and 5°2” tall, then at that point the case isn’t correct. In the event that
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Fred was 7°0” tall, the case is upheld. Some place in the middle of falsehood
statures that sensible individuals may differ as to comprising “tall” (Pittke
et al., 2016).

Deficiency: This happens when an assertion neglects to give sufficient data to

have a solitary, clear understanding. Consider § 170.302(a)(2): “Give certain
clients the capacity to change warnings accommodated drug-medication
and medication sensitivity cooperation checks”. This sentence precludes
data that would permit prerequisites specialists to distinguish which clients
ought to have this capacity for sure alternatives they would need to change
notices. Deficiency should be settled for the necessities to be executed.
Likewise, “Join flour, eggs, and salt to make new pasta”. This precludes
some important data, for example amount of materials and procedures to be
utilised (Yang et al., 2010).

Reference Ambiguity: This happens while an expression in a judgement can’t

be said to encompass an instantly recognisable reference (Table 4.1). “For
each significant utilise objective with a rate based measure, electronically
record the numerator and denominator”. Significant usage goals that use
baseline metrics are not directly referenced. The requirements to calcu-
late which sites should comply with these legal commitments are omit-
ted. Different forms include pronouns and their prepositions. “Taught
the child to his father about the vulnerability can be referred to. He (the
father). In addition, the” legal counsel to lie for many reasons. Some are
better than others in the administration. “Depending on the types of uncer-
tainties relating to the stability of our countless scientific classifications
of people. Being fairly broad and will be thorough about the unexpected.

TABLE 4.1
Ambiguity Description
Ambiguity type

Definition Example

Lexical A sound or expression with numerous Melissa amble to the depository.
convincing meanings

Syntactic A succession of words with several applicable Quickly interpret and talk about
grammatical explanation in spite of context this tutorial.

Semantic A verdict with more than one elucidation inits A and B are married.
provided circumstance

Vagueness An account that acknowledges norm cases or Fred is big.
comparative explanation

Incompleteness A grammatically accurate judgement to Merge flour, eggs, and brackish to
facilitate provides moreover modest element to  construct fresh pasta.
suggest a detailed or needed significance

Referential A grammatically truthful judgement with a The schoolboy told his minister on

location that confuse the person who reads the subject of the smash-up. He
based on the framework was awfully saddened.




Ambiguity in Prototype SDLC Model Scenario 97

35
3 I I |
l I I I
0

Project 1 Project 2 Project 3 Project 4 Project 5

~
[

w0

o
wn

W Volatility ®Uncertainity ® Complexity Ambiguity

FIGURE 4.8 Ambiguity measurement per project.

Wording, meaning more than one word, a sentence or a paragraph is not
compatible with our scientific classifications. This related content for the
analysis, such as other members of uncertainty. Note command. HITECH
Act as it has been sentenced to content O in the progression of the program
because it was a part of our collection. For its obvious consequences, this
investigation is not intended to ensure that suspicion arises on a large scale.
It can also be assumed that a paragraph in the text contains only one transla-
tion that has a clear meaning. In our scientific category, these explanations
are called unambiguous articulations (Dalpiaz et al., 2019; Figure 4.8).

4.5.3 APPROACH OF LITERATURE SEGMENTATION FOR
ResoLUTION OF AMBIGUITY DETECTION

Based on removed writing, we determined the classification to get the essential
thoughts and connections free from SRS equivocalness. This scientific categorisa-
tion is ready around two key measurements — specialised measurement and devices
measurement, as displayed in Figure 4.9. With them, we portrayed the insights into
SRS equivocalness. We utilised an appropriate determination technique for each
key measurement, as a predefined objective to get significant papers from the huge
arrangement of writing. Nonetheless, the required specialised instruments and mea-
surements are not restrictive, these measurements are connected to the different
issues of SRS, and here we will zero in just on one issue for example equivocalness.
We discovered writing explicit to sub-measurements that are critical and of good
importance in setting to determine the equivocalness (Mich and Garigliano, 2000).
Here, we are clarifying momentarily the two measurements and their connected
significant targets. The significant point of the specialised measurement is in the
direction of portraying the kinds of uncertainty, strategies, procedures and repre-
sentation to determine the vagueness. On the way to accomplish this, every advance
should be portrayed with precondition life cycle including various stages and now
and again it very well may be a mind-boggling measure. The idea of the interaction
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relies upon the representation to decide for your software advancements such as V,
Double V, Waterfall and Incremental. This studied the writing and discovered differ-
ent issues in picking the prerequisite model. There are reasons that can uncommonly
impact the ambiguities, the assorted gathering occupations (bunch occupations, size
of the attempt and assurance) and the methodology applied to recognise and take out
obscurity in SRS reports. Finally, the device estimation portrays how instruments
can support to perceive and dispose of SRS issues. For this estimation, we portrayed
the work of the various gadgets (reason) and investigated what system is used by the
different gadgets as there are a great deal of contraptions that work on different sorts
of ambiguities. More than two estimations may not be absolutely specific as a piece
of the limits may be covered, concerning now, this is unavoidable. For example,
strategies discussed in the development might be used as a base for the gadget in the
other estimation (Figure 4.10). Here, instruments are simply inferred for the modified
distinguishing proof and departure of the ambiguities so we can reduce the overall
expense and can save important period of the gathering. However, we put forth a legit
attempt to all the more probable clarify these estimations from the end customer per-
spective. By and by, we will pursue our discussion on the two estimations and their
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sub-estimations with the help of appropriate material which we removed from the
databases by using related expressions (Bdumer and Geierhos, 2018).

Here, our principle centre is to recognise existing arrangements which can work on
the nature of the SRS as far as equivocalness and location decrease. We explored and
examined 54 writings and found the greater part of the arrangements can be isolated
into six principle classifications dependent on the method utilised by specialists to deter-
mine vagueness. In the overview, we found that answers for SRS vagueness can be
extensively arranged into six classifications (Chen and Popovich, 2003; Figure 4.11):

a. Ontology-oriented answer

b. OOPs-based foundation objective

c. Natural language understanding-formed answer
d. Examination support result

e. Algorithmic explanation

f. Unusual idiom support explanation.

4.6 METHODOLOGY

4.6.1 DATA COLLECTION AND SURVEY

We have done a methodical survey to gather responses of industrialist for preference
and having flexible documentation of SRS and in working functionality of software.

4.6.2 Prorosep MODEL

4.6.2.1 Enhanced Prototype Model

We recommend an adjusted prototyping model, which is a changed rendition of
the past work. In contrast to the past work, it has not been misused and tended to
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clients’ input seriously similar to our projected model. The disadvantage of the past
work may for the most part postpone the engineers at certain means of the plan
because of the absence of clients’ inputs. Some of computer programmers may ask
why we need to remember the client criticism for each phase of the product plan.
It is basically on the grounds that clients need a framework that is liberated from
blunder and simple to cooperate. To do so, we need a client to take care of us with
assessments and remarks to stay away from any undesirable and bothersome high-
lights. The accompanying advances clarify the design of our model in Figure 4.12
(Nacheva, 2017; Table 4.2).

In order to fully capture an individual’s emotional behaviour when interacting
with apps, we need things and regulations that allow us to collaborate on what our
customers expect from apps, to find a way to inspire us with skills from different
perspectives and clients. Understanding and discriminating against the psychologi-
cal and discriminatory people of the participants makes it easier to design apps that
will motivate people in different fields. Later, we came up with testing methods that
would help break down and identify human variables (Ragunath et al., 2010).

1. User Input: Including the clients in the beginning phase of any application
or programming configuration assists with revealing a portion of the disad-
vantages and undesirable highlights that people experience while associat-
ing with any applications.

2. Automated Application Specialist: Giving a robotised specialist in any
application assists with finding the intellectual conduct and the effect of
clients’ route. This specialist ought to have the option to separate a portion
of the obstructions that humans face during the association. Additionally,
the specialist should have the option to relate to the people’s response and
involvement with the application.

3. Task Investigation: Breaking down the assignment that is given in the
application which clients seem, by all accounts, to be drenched. It very well
may be controlled by the occasion’s client’s taps on specific undertakings.

4. User Activity: By dissecting the clients’ activity, we can find the client
conduct or inclinations. Client activity can help upgrade the application
plan. Client activity can be controlled by the quantity of snaps and recur-
rence of visits by distinguishing the clients’ IP addresses (Osama and Aref,
2018).

5. User Preference: This strategy can examine customers’ premium by
enrolling in the application and endorsing it to others. Joining the applica-
tion can tell that a particular customer has been attracted to the applica-
tion. Regardless, leaving the application without leaving any information
or joining is an awful attitude towards the application as indicated from the
customer perspective. Thusly, we can say that the customers are manag-
ing issues or are redirected either by finding the application isn’t charming,
or by finding the application’s substance isn’t comprehensible and has no
strong turn of events (Kim et al., 2003).

6. Online Review: The motivation behind the online review is to collect
a lot through web to help reveal the human capacities and ability in the
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TABLE 4.2

Responses by Majority of the Respondents

Survey Questions of Respondents

Question

What kind of ambiguity did you
experience in past months in technical
or in operational way on working with
your CRM?

What are all confusions you experienced
while operating this CRM on which you
are operating now?

Was proper documentation available for
this CRM?

This CRM is based on a prototype
model. In this, the prototype is given to
clients, and as per requirements of
business, they add more new features
and deploy final software. As a
non-technical or end-user you think this
model is fruitful?

What kind of challenges did you face in
this kind of model-driven CRM?

What suggestions will you give as an
end-user to software industry that is
deploying this kind of CRM?

‘What suggestions will you give to make
this kind of CRM more user-friendly
and visually rich?

Was proper technical training provided
from the client side at prior stage?

What challenges did you face when new
features are added continuously to
CRM?

From a non-technical user perspective,
what kind of model-driven CRM will
you prefer? Please elaborate.

Answer

A lot of ambiguities that motivated me in performing a lot
better in my job.

Lack of direction, inability to recognise different customer
needs, whether the customers are satisfied with our services
or not.

Yes, it is available for almost all the customers who are
suffering issues related to the CRM.

Yes, this model is fruitful because it gives a proper idea about
the kind of software that is required by the organisation for
its smooth functioning and for establishing a better
relationship between the customer and the organisation.

Differences in customer needs.

Lack of initiative from the customer side to establish a
positive relationship.

Corruption and politics in the organisation that prevents the
organisation from maintaining a smooth functioning and
good relationship with the customers.

Issues of the customers with each other.

Make the CRM flexible and dynamic.

Inform the customers about your new software.

Give more preference to the emotional aspect of the software
compared to the technical part.

Always try to update your CRM with new and innovative
strategies of CRM in order to keep the process interesting
and appealing for a longer time.

Make it more people-friendly and less strict and rigid.

I have no idea about that.

I was not able to quickly adapt according to the new and
innovative features being added in it.

The new features were not that much appealing for me as I
preferred the old and basic ones, which were more
understandable and easy to learn.

I will prefer a user-friendly CRM, which is less technical and
more inclined towards establishing emotional and human
relations with people.
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human-PC connection. It significantly assists with finding the human fac-
tors around the world, and locally that furnishes the planner with the outline
of the human discernment (Mich and Garigliano, 2000)

4.6.2.2 DANS Software Development Method

One regularly referenced disservice of repetitive working techniques is that they
expect groups to begin working right away. Too little thought is given to what in par-
ticular precisely is wanted. The assumptions for potential clients or customers are not
overseen well. Arrangements concerning the ideal outcomes are insufficient. In this
regard, repetitive strategies are less profitable than is the cascade approach, in which
these issue are captured comfortably at the start. With an end goal to stay away from
this difficulty, DANS applies the better of the two techniques for its product advance-
ment work in Figure 4.13. Tasks start with the cascade technique, so sufficient thought

Initiation phase

Y

Definition phase: global

v

Design phase: global

¢ Planning
Research
Design i
Implementation}
% (esting ;

Y, Release

Cyclical phase

Follow-up phase

FIGURE 4.13 DANS software development method.
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is given to necessities, demands and plan. After the plan stage, there is a shift to the
repetitive strategy, subsequently permitting felicity for taking care of these compo-
nents. The recurrent part of the DANS technique utilises extreme programming (XP).
Further definition, plan, execution and testing happen inside the cycles. When the
product is adequately evolved, the subsequent stage starts. Each progression in this
functioning strategy is depicted underneath (Book_project_management, n.d.).

4.6.2.3 Inception Stage

The inception stage starts with a thought for an undertaking. No financial plan is yet
accessible for the undertaking. The objective of this stage is to compose an undertak-
ing plan according to which inside or outer financing can be mentioned.

Exercises in the Inception Stage (Book_project_management, n.d.):

e Elaborate the idea.

¢ Examine the foundation of help.

* Contact potential accomplices.

¢ Investigate financing openings.

e Make an underlying worldwide gauge of the manipulated reason for the
venture.

e Make a substantial gauge of the reason for the first stage.

e Set project limits.

e Make a venture detail.

e Apply in financing else setting up agreement concurrences with potential
clients.

Final Product of the Inception Stage:
e Approved and subsidised undertaking plan.
¢ Possible understanding with client.

Activities/Decisions:

e Prospective detailed pioneer.
¢ Client.

¢ Probable end-user.

4.6.2.4 Definition Stage

Once a partnership has been sponsored, acceptance is the next step. At this stage, the
requirements for the consequences of the activity are as clear and predictable as pos-
sible. It is about recognising the results of all gatherings. This article or section needs
sources or references that appear in credible third-party publications (Book_proj-
ect_management, n.d.):

e Terms of use.

e Working requirements.

¢ Operational requirements.
e Design barriers.
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4.6.2.5 Configuration Stage

The team can make decisions on the distinctive features of the product by fully defin-
ing the requirements in the definition. Program logging is the effect behind the plan-
ning phase of IT projects. The program document contains a detailed description of
an idea and a general outline of a particular program. The objective product in actual
practice and how to explore the same program (e.g. utility level is low). Such a pro-
gram may be found useful for working with counterfeiters. The forger is not collected
immediately; the program is essential for evaluating the program may work only a
few or more the construction industry benefits from their completion. In principle,
the report supports the plan of measures without hope of any project to modify any
selection of the field of fantasy indicates that beyond the first level of producers.
Despite the requirements of the archives, these reforms should be able to provide a
complete understanding (Book_project_management, n.d.).
Exercises in the plan stage:

e Prepare the plan archive.

¢ Create and assess models (for example, fakers) with the client.

e Report on the chosen plan.

* Report on the reason that has really been carried out hitherto.

* Make another worldwide gauge of the control factors for the remainder of
the task.

* Prepare a substantial gauge of the reason for the iterative stage.

4.6.2.6 Repetitive Stage

The functioning strategies in the repetitive stage are acquired from XP. In this stage,
various cycles are acted in progression. A cycle endures from nearly 1 to about 14 days.
The accompanying exercises happen inside each cycle (Mazza, 1989; Figure 4.14):

e Deciding.

e Performance test.
e Capacity design.

: Customer requests : ——p- —> | Task list

S irecsaeesusesiaasen 1.Conceive XML

5 table: 2 hours
story card

2.Data entry:

3 hours —» These first in

the next cycle
3.Uploading:
1 hour

4, Testing: 2 hours

Total: 8 hours

FIGURE 4.14 DANS cyclic story card.
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e Implement activities.
e Performance test.
* Sending capacities.

4.7 RESULTS AND DISCUSSION

4.7.1 TooLs FOrR DETECTING AMBIGUITY

Dowser apparatus is an instrument intended to distinguish ambiguities in
SRS record utilising parsing method. At first, Dowser parses the necessi-
ties utilising compelling syntax. Moreover, an object-situated investigation
model of the framework will be created by making classes, techniques, fac-
tors and affiliations. Finally, the model will be introduced for the analysts to
recognise the equivocalness. Notwithstanding, this procedure doesn’t con-
sider recognising vagueness; consequently, the human settles on an ultimate
choice of the equivocalness (Matsumoto et al., 2017).

Qualicen is a business apparatus that identifies the conceivable quality defor-
mities such as slice, vague verb modifiers and descriptors, negative words,
non-undeniable term, abstract language, imprecise expression, necessi-
ties, relative prerequisites, vague pronouns, loopholes, Ul detail and long
sentence. System distinguishes programming necessities jumble certain
prerequisites designing standards utilising POS labelling, morphological
investigation and word references. This device displays cautioning mes-
sages that contain depiction of the identified smell to the client (Husain and
Beg, 2015).

RESI is a tool designed to help programmers. Of course, the archiving time
is questionable; the fault provides a framework of exchange that warns of
inaccuracies. It provides a potential understanding of every word in the
SRS record; therefore, the product expert can change the word. The RESI
mechanism identifies functional names that are included in the SRS report
and suggests functional terms rather than names. In addition, RESI ensures
an adequate dialogue; comparable effects and misrepresentation are widely
misused. This is how a RESI instrument works: First, RESI submits the
SRS record as a table; second, it checks each word in the SRS report for
grammatical meaning (POS). The action word after POS labelling is done
consequently, and the framework client can change the labels physically
whenever needed. At long last, RESI applies the ontologies WordNet,
ResearchCyc, ConceptNet and YAGO to recognise equivocal, flawed and
erroneous terms (Alshazly et al., 2014).

SR-Elicitor is a device to computerise the prerequisites elicitation measure,
tackle questionable issue in SRS record and produce a controlled portrayal.
The specialists of SR-Elicitor utilised Semantics of Business Vocabulary and
Business Rules (SBVR) to catch NL SRS report. Figure 4.15 shows the meth-
odology used to make an interpretation of NL programming prerequisites into
SBR necessities. Following the interpretation from NL to SBR, SR-Elicitor
analyses the NL SRS report. The analysis includes tokenisation, sentence
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FIGURE 4.15 Process of conversion SRS to tool environment.

breaks, fragmentation and speaking parts (Osman and Zaharin, 2018). The
following period of SR-Elicitor instruments is a way to remove SBVR dialect
components from data. Since then, the SBVR rules have been created from
the SBVR dialects. This step is important to eliminate SBVR requirements
and define semantic definitions. The last step for SR-Elicitor is to request a
document written in English. In this development, the types of objects are
underlined; action word ideas will be in italics; the characters of the SBVR
watch will be in bold; and it will divide the ideas of individuals. Figure 4.15
illustrates the requirements of the SBVR (Osama and Aref, 2018).

4.7.1.1 DARA Architecture

This segment gives a compositional portrayal of the DARA framework. It was cre-
ated to be secluded, extensible and easy to use. We foster a robotised framework to
distinguish and resolve ambiguities from full content reports. The DARA engineer-
ing is displayed in Figure 4.16. The underlying info is a finished prerequisite book.
The yield is unambiguous necessity messages (Sabriye and Wan Zainon, 2018).

4.7.1.2 The Ambiguity-Resolving Module

At long last, this module centres in eliminating and settling the vagueness. For each
vague sentence, resolve the uncertainty in the sentence consequently as the last
advance utilising settling rules, and along these lines, further develop the normal lan-
guage prerequisite specification document. Figure 4.4 shows the ambiguity-resolving
module engineering (Osama and Aref, 2018).

The settling uncertainty approach utilises the accompanying normal guidelines to
check if a sentence contains vagueness (Sabriye and Wan Zainon, 2018).

Rule 1: In any case, between the two at the same time, outside in addition, while
participating, however I repeat it in two sentences (Sabriye and Zainon, 2017).
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Text Ambiguity Ambiguity I
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FIGURE 4.16 Detection module architecture.

Rule 2: At the point when sentence containing aside from if, override with if
not (Matsumoto, et al., 2017).

Rule 3: At the point when sentence containing a, an, all, any, a couple, every,
couple of replace with each.

Rule 4: When sentence containing ought to, will, would, may, might, should
supplant with will.

Rule 5: At the point when sentence containing there is X in Y, X exists in Y
override with Y has X.

Rule 6: At the point when sentence containing anaphora or pronoun, for
instance, they or them replaces with the farthest thing.

Rule 7: When phrase assume that connection with each one of which.

Rule 8: When sentence containing just, additionally, nearly, even, barely, just,
simply, almost, and truly put first action word (Alshazly et al., 2014).

Rule 9: When sentence containing until, up to, at, during, span and including,
through, by, or after add just before it (Haron and Ghani, 2015).

Rule 10: Phrase comprise and, or in same sentence add parentheses.

Rule 11: Phase comprises many supplant with every one of many.

Rule 12: Phrase comprise not many supplant with every one of few.

Rule 13: Phrase carries for up to supplant with for up to and including.

Rule 14: Phrase carries plural things add each before it (Osman and Zaharin,

2018).

Figure 4.17 depicts that some prominent ambiguities are more often recognised
than others by particularly lexical, extension and obscure vagueness is by means
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FIGURE 4.17 No. of frequencies detected in ambiguity.

the ambiguity is predicted. Figure 4.6 shows that record 3 exhibits a decline in rate
dissemination of all equivocalness types distinguished in light of the report domain
(Document 3 about satellite) and it shows that archive 26 shows an expansion in rate
conveyance of all vagueness types identified due to the report area canvassed in word
references (Haron and Ghani, 2015).

4.7.2 Risk ANALYsIS DUE ToO AMBIGUITY IN REQUIREMENTS

The likelihood of a risk happening can be assessed dependent on a few components
as dictated by the extraordinary idea of each task. For instance, factors assessed for
potential H/W or S/W innovation dangers could incorporate the innovation not being
adult, the innovation being excessively unpredictable and a deficient help base for
fostering the innovation (Nigam et al., 2012). The effect of a danger happening could
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incorporate factors such as accessibility of fallback arrangements or the outcomes
of not gathering execution, cost and timetable evaluations (Husain and Beg, 2015).

The above figure 4.18 gives an illustration of how the danger factors were utilised
to chart the likelihood of disappointment and result of disappointment for the pro-
posed advances. The figure groups potential innovations (dabs on the outlines) as
high, medium, or generally safe dependent on the likelihood of disappointment and
outcome of disappointment. The analysts for this investigation strongly suggested
that the US Air Force put resources into the low- to medium-danger advances and
proposed that it does not seek after the high-danger innovations. It tends to be seen
that the meticulousness behind utilising probability/impact matrix and hazard factors
gives a lot more grounded contention than just expressing the danger probabilities, or
results are high, medium or low (Sabriye and Zainon, 2017).

4.8 CONCLUSIONS

This chapter makes two commitments to lessen the degree of uncertainty in modern
necessities reports. To start with, it offers to a prerequisites engineer a productive
assessment procedure for distinguishing questionable necessities that are material
in mechanical RE. Second, it offers a way to deal with distinguishing equivocalness
types that can happen in a specific RE setting (Baars, 2006). All things considered,
one can’t anticipate recognising kinds of vagueness that the individual never under
any circumstance has pondered or run over (Sabriye and Wan Zainon, 2018). Maybe,
the commitment lies in the methodical method to investigate this verifiably exist-
ing information by utilising the heuristics and in expanding the necessities design-
er’s attention to the issue. Our future work targets examining how much gatherings
increase the quantity of recognised ambiguities. In gatherings, maybe ambiguities
that have fallen through singular readiness can be identified (Abduljalil and Kang,
2011). We should figure out which meeting designs permit commentators to best
trade their understandings of prerequisites (Gupta et al., 2019).
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5.1 INTRODUCTION

In the software engineering area, effort estimation is undefined and it’s based on
different external elements while producing a certain type of software. Software
development companies must choose an ideal and experienced group of developers
for organisational benefits. Because the success or failure of software is primarily
dependent on knowledgeable persons, this is required.

To get the best effort from programmers in any software concern, this is the objec-
tive and is obtained by this study where the ranking of programmers among groups
of programmers is carried out. The appraisal of programmer’s ranking is one of
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the most crucial tasks, having complex and conjugate outcomes of human nature
such as experience, knowledge and skills. To get programmers’ rank, I tried to adopt
some features of the programmers, viz. basic skills, communication between col-
leagues, logic analysis capability and, most crucially, how much experience they
hold. These are the parameters that I get from experts and renowned personalities
who hold extensive evaluation knowledge in relevant fields. In this chapter, efforts
have been made to reach such conclusions where this gives the best decision which is
acceptable with simple and most acceptable methodology; further, more discussions
are also there, where it covers this topic in an elaborate manner.

This chapter describes the integration of MCDM-based FAHP and FTOPSIS
methods that are used in the creation or selection of software development team.
Section 5.2 shows the review of ranking-based optimisation techniques, and Section
5.3 describes the criteria and alternatives of the programmer. Section 5.4 shows
fuzzy MCDM techniques, Section 5.5 the evaluation of programmers’ rank using
FAHP, Section 5.6 the appraisal of programmers’ rank using integrated FAHP and
FTOPSIS, and Section 5.7 comparative analysis. This chapter concludes in Section
5.8 with some details concerning the evaluation of these two methods.

5.2 REVIEW OF RANKING-BASED OPTIMISATION TECHNIQUES

A number of researchers have worked in this field. A short resume of activities and
developments in the field is been given below.

Some researchers have focused on MCDM-based AHP techniques for ranking-
based estimation. In this context, Pogarcic [1] looked into the possibility of using
AHP to make decisions on traffic planning and implementation, as well as ensuring
high-quality business logistics. Mishra [3] also built a selection algorithm based on
expert evaluations that combines AHP and Bayesian networks to choose the most
efficient developers. It also determines the best order for developers based on their
capabilities, as well as the number of developers to choose from based on sensitivity
values.

There are many situations when numeric data will not be available and the data
are fuzzy in nature. In this case, we can use the FAHP as ranking-based estimation.
Many authors have used FAHP technique instead of AHP technique to incorporate
the fuzzy nature of variables.

Yuen [4] suggested a fuzzy AHP model for estimating software quality and choos-
ing software vendors in the face of uncertainty. The model employs a fuzzy logarith-
mic least squares method that has been updated. This model’s usability and validity
are defined by an arithmetic example. Gungor et al. [5] identified the best appropri-
ate person and established the MCDM model. They also proposed Yager’s weighted
technique, which they compared to the FAHP method’s results. Finally, based on
these findings, the FAHP technique and Yager’s weighted method both recommend
the same option as the optimal option.

Buyukozkan et al. [7] gave an approach for evaluating the performance of opera-
tors. Buyukozkan [8] established a model for evaluating service quality in the health-
care sector, as well as the performance of select pioneer Turkish hospitals, using the
quality factors. The FAHP was used, and the results revealed that hospitals should
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place a greater emphasis on empathy, professionalism and dependability in order to
provide satisfying and quality service.

Catak [9] created a novel fuzzy AHP-based decision model that may be used to
quickly select a database management system. This study demonstrates that choosing
a database management system does not have to be difficult and is one of the most
critical operations in a company’s IT project.

Javanbarg et al. [10] presented a basic fuzzy optimisation model for FAHP-based
MCDM system. They suggested fuzzy prioritising approach can generate crisp pri-
orities from both consistent and inconsistent pair-wise assessments using nonlinear
optimisation model. The judgments are represented as triangular fuzzy numbers
in the proposed nonlinear optimisation approach, which eliminates the need for an
additional aggregation procedure.

FAHP is an extension of AHP; a comparative study is also needed to check the
performance of one over the other. In this context, Kabir [12] offered a relative analy-
sis of AHP and FAHP for multi-criteria inventory classification model. Sehra et al.
[13] examined the application of the FAHP method of MCDM for selecting the best
model based on the company atmosphere and type of the project, and it gave better
results compared to AHP.

Another MCDM technique that is popularly used for ranking is TOPSIS. Very
few studies are available on this technique. Bondor and Muresan [14] discussed the
problem of decision-making. The proposed method can tackle the problem of mul-
ticollinearity between criteria. The goal of their technique was to use the TOPSIS
method repeatedly until the correlations between components were minimised to a
certain level.

Wimatsari et al. [16] using the fuzzy MCDM technique for TOPSIS were able to
achieve scholarship recipient selection results. Based on value choices, the selection
recommends an alternative with the highest level of eligibility to the least eligible for
a scholarship.

Fuzzy AHP and fuzzy TOPSIS are the most popular MCDM methods. The tech-
nique of blending these two techniques is very crucial for ranking-based estimation.
The proposed optimisation process needs no exhaustive computation; it doesn’t mat-
ter whether it is computation of m-dimensional eigenvector or it is calculation of
m by n manipulated fuzzy ratings. This process of fuzzy ranking type of decision-
making justifies with a note that the methodology works fine for the variety of criteria
expressed either in mathematically crisp form or in linguistic form. In the proposed
methodology, the computation cost is minimum and there is no use of weight, which
is a lengthy process to find out.

5.3 EFFORT MULTIPLIERS AS CRITERIA AND ALTERNATIVE
IN SOFTWARE ENGINEERING SCENARIO

In an instant work, selected alternatives and criteria of programmer are the two fac-
tors importantly applied in the MCDM method. First, we select alternative and cri-
teria because both the factors are initially very important for this method. In this
method, AHP and TOPSIS techniques are the greatest suited methods for obtaining
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and selecting the best alternatives; for instance, programmers are alternatives and
skill, knowledge, experience, etc., are criteria.

In this research work, the selection of criteria plays the crucial role; it is the cri-
terion on which end results depend. An efficient and experienced group of software
programmers may highly influence the accuracy of effort estimation; for this, a suit-
able and reliable technique is required, which will select the best group of program-
mers based on some criteria. The constructive cost model (COCOMO) [13] is one of
the popular and reliable methods of software effort estimation created on 17 effort
multipliers; these are fuzzy in nature. This research work utilises these 17 effort
multipliers as criteria to be applied with FAHP and FTOPSIS methods to select the
finest group of programmers. These multipliers as shown in Table 5.1 are rated on a
scale — very low to extra high. We can observe that all multipliers are not only quan-
titative, but also qualitative quantifiers. We cannot assign a precise value for them;
hence, fuzzy-based ranking method is needed to assign and evaluate imprecise value
for each multiplier.

At first, three multipliers out of 17 [14]: APEX — application experience, PLEX —
platform experience and LTEX — language and tool experience, are considered as
a criteria for the FAHP method [18]. As discussed, FAHP techniques are applied
in three initial multipliers; it is also possible to apply in a larger no. of criteria and
alternatives. After that, I considered all 17 effort multipliers as criteria for the FAHP
and FTOPSIS methods. A sample data of ten software programmers are considered
in fuzzy terms and applied on two MCDM methods. Ranks obtained through FAHP
and FTOPSIS are compared and found to be satisfactory.

TABLE 5.1

COCOMO’81 Dataset Statistics

S. No. Variable Type Description

1 Acap Numeric Analysts capability

2 Pcap Numeric Programmers capability

3 Apex Numeric Application experiences

4 Modp Numeric Modern programming practices
5 tool Numeric Use of software tools

6 vexp Numeric Virtual machine experience
7 lexp Numeric Language experience

8 sced Numeric Schedule constraint

9 stor Numeric Main memory constraint

10 data Numeric Database size

11 time Numeric Time constraint for CPU

12 turn Numeric Turnaround time

13 virt Numeric Machine volatility

14 cplx Numeric Process complexity

15 rely Numeric Required software reliability
16 loc Numeric Line of code

17 effort Numeric Overall effect
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5.4 FUZZY MCDM

The theory of decision-making established a foundation for better ordered and rea-
sonable decision-making, particularly in situations when numerous factors must
be considered MCDM. In many ways, the decision-making problems are identi-
cal and ambiguous. Zadeh’s introduction to the uncertainty theory of fuzzy set has
been received by MCDM enthusiasts. The merging of MCDM and fuzzy set theory
strengthens the fuzzy MCDM, a new decision theory. The fuzzy MCDM approaches
have been used in a variety of real-world situations.

5.4.1 FAHP

The FAHP method [19], which is derived from the AHP, is a more advanced analytical
method. Despite its widespread use, the AHP has been chastised for failing to address
the inherent ambiguity and imprecision that come with mapping a decision-perspective
makers to precise numbers. In order to allow ambiguity, the FAHP technique uses
fuzzy comparisons ratios [9]. Chen and Hwang (1992) devised a system that turns lin-
guistic terms into fuzzy numbers before converting them back to linguistic terms.

i. Demonstration of the Method: Now, the five-point scale is considered to
demonstrate the conversion of fuzzy number into crisp scores. To demonstrate
the method, a five-point scale having the linguistic terms such as low, below
average, average, above average and high as shown in Figure 5.1 is considered.

The main procedure of AHP is as follows [14].
Step 1: Determine the attributes and objective.

Step 2: Assess the relative significance of various features in relation to the aim
or objective and the rating based on Saaty’s nine-point scale.

Low Below average Average Above Average High

0.3 0.5 0.7 1

FIGURE 5.1 Conversion of fuzzy numbers to fuzzy terms fuzzification of linguistic terms.
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* Find the relative normalised weight (w)) of each attribute by
ii) Normalizing the geo metric means of rows in the comparison matrix.

M yM
i=1 2i=1GMj

e (Calculate matrices A3 and A4 such that

A3 = Alx A2 (5.2)
and Ad = A3/ A2, (5.3)

where A2=[w,, w,..., w]".
e Determine the maximum eigenvalue A, that is the average of matrix A4.

. . (Anx = M)
Calculate the consistency index CI= @ ~1y

e Obtain the random index (RI) for the number of attributes used in
decision-making. Calculate the consistency ratio CR =CI/RI. Usually,
a CR of 0.1 or less is considered acceptable and it reflects an informed
judgement attributable to the knowledge of the analyst regarding the
problem under study.
Step 3: The next stage is to pair-wise compare the alternatives to see how much
better they are at meeting each of the criteria.
Step 4: The last step is to acquire the overall scores for the alternatives.

5.4.2 Fuzzy TecHNIQUE FOR ORDER PREFERENCE BY
SimiLARITY TO IDEAL SoLuTioN (FTOPSIS)

TOPSIS can identify solutions from a finite set of alternatives [22]. The logic of fuzzy
TOPSIS according to Hwang and Yoon (1981) is to define the positive ideal solution
and negative ideal solution. The positive ideal solution is the solution that maximises
the benefit metrics and minimises the cost metrics, whereas the negative ideal solu-
tion is the solution that maximises the cost metrics and minimises the benefit met-
rics. The best alternative is the one which has the shortest distance from the positive
ideal solution and the farthest distance from the negative ideal solution. But it is often
difficult for a decision-maker to assign a precise performance rating to an alterna-
tive for the attributes under consideration. Then the merit of using a fuzzy TOPSIS
approach is to assign different metric values using fuzzy numbers. In this study, the
AHP is used to analyse the structure selection problem and to determine weights of
the criteria, and fuzzy TOPSIS method is used to obtain final ranking.

The general implementing steps from fuzzy TOPSIS procedure for multi-criteria
group decision-making to make some modified calculations are as follows:

Step 1: More importantly, first, the Board (including the members who make
decisions) is formed and the evaluation criteria are identified.
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Step 2: Declare the appropriate variable in specific language for different cri-
teria to make weight important and also provide rating for alternative in
respect of criteria.

Step 3: To get the cumulative fuzzy or as an aggregate weight, aggregate the
weight criteria.

Step 4: Construct the fuzzy matrix in a normalised form.

= (54)

fori=1,...,m;j=1,..., n.
Step 5: Construct the weighted fuzzy decision matrix v; in a normalised form.
This is done by the multiplication of each element of the column of the
matrix Rij with its associated weight W, Hence, normalised matrix Vi is
expressed as:

Step 6: Obtain the ideal (best) and negative ideal (worst) solutions in this step:
Ideal solution:
A*={v* ..., v,*}, where

v; :{max(v,-j)ifjeJ;mjn(vij)ifjel’} (5.6)

Negative ideal solution:
A'={v/, ...,v,/}, where

}={m_in(v,-j)ifjeJ;max(vij)ifjeJ’} 5.7)

Step 7: It is needed in this point to calculate the fuzzy parameters.
Step 8: Calculate each alternative’s coefficients and its closeness.
The separation from the ideal alternative is:

L
5= 2 () [iim e 68

Similarly, the separation from the negative ideal alternative is:

L
si=| X (5= w) [i=tem 59
J

Step 9: As per closeness co-efficiency, order the rank of all alternatives.
The relative closeness to the ideal solution C;* is
« S/

Cl' = — 510
S +.87 (10
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These are the overall steps of TOPSIS through which we can decide the
rank.

5.4.3 INTEGRATED FAHP anD FTOPSIS METHOD

We use two-step methods consisting of FAHP and FTOPSIS; in the first step, the

FAHP is used for calculating the weights of the attributes or criteria as well as the

overall weights of the candidates in each attribute. In the second step, these weights

are considered and used in the FTOPSIS process. Then FTOPSIS is applied for the

evaluation problem, and the result shows the preference order of the programmer.

These methodology levels can be discussed clearly, and their steps are shown in below.
FAHP:

Step 1: Determine the objective.

Step 2: Select experts and attributes/criteria and identify the alternatives.

Step 3: Establish the pair-wise comparison matrix of the criteria.

Step 4: Derive the eigenvalue and eigenvector.

Step 5: Perform the consistency test.

Step 6: Compute the weights of the criteria.

Step 7: Establish the pair-wise comparison of the alternatives with respect to
each criterion.

Step 8: Perform the consistency test.

Step 9: Compute the weights of the alternatives for each criterion.

Step 10: Calculate the geometric mean of the weights calculated by experts.

Step 11: Calculate the eigenvalue and eigenvector.

Step 12: Perform the consistency test.

Step 13: Compute the overall weights of the alternative.

FTOPSIS:

Step 14: Start TOPSIS procedure using the weights calculated using the AHP.
Step 15: Calculate negative and positive ideal solutions and separation measures.
Step 16: Rank the preference candidate in descending order.

5.5 EVALUATION OF PROGRAMMERS’ RANK USING FAHP

The traditional AHP method is problematic, because this method shows exact values to
express the decision-makers’ opinion in a comparison of alternatives. In spite of the tradi-
tional AHP method, the study of fuzzy AHP is used to compare fuzzy ratios described by
triangular fuzzy numbers. Chang (1991) introduced a new approach for handling fuzzy
AHP, here the use of triangular fuzzy numbers for pairing comparison scale of fuzzy
AHP in pair-wise system. Figure 5.2 shows the hierarchy of programmer selection (Prog
1, Prog 2, Prog 3) [14]. In order to apply the FAHP method, the steps below are followed:

Step 1: Constructed a DMM based on the above attribute with three fuzzy
linguistic terms.
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FIGURE 5.2 Hierarchical threshold levels.

From the Chen and Hwang (1992) method, the fuzzy linguistic term is
converted into crisp data using three-point scale.
Step 2: Now in this step, we compare criteria with criteria by assigning com-
parative weights

APEX APEX PLEX LTEX

1 5 3
PLEX
LTEX 1/5 1 1/2
1/3 2 1

Now calculating geometric mean (GM) for ith row: GM, = (1 x5x3)3=
2.4659, GM,=(1/5x1x1/2)"*=0.4641, and GM,=(1/3x2x1)"3=0.873.

The total geometric mean GM =3.79.

Hence, the normalised weights are: W,=2.46/3.79=0.649, W,=0.46/
3.79=0.121, and W;=0.87/3.79=0.229.

Now consistency checking

1 5 3 0.649 1.914
As=| 1/5 1 1/2 |x| o121 |=| 036
173 2 1 0.229 0.678
1.914 0.649 2.949
A=| 036 |+| o121 |=| 2975
0.678 0.229 3.081

And the maximum value A, that is the average of matrix A, will be

_2.949+2.975+3.0818
3

=3.001

Ainax


https://0.87/3.79
https://2.46/3.79
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(Amax —1) _3.001-3

Then the consistency index (CI)= I =0.0005.
n—
And the consistency ratio (CR) = cr = 0.0005 =0.00096 <0.1.
RI 052

Hence, the weights are consistent.
Step 3: Now alternatives will be compared with alternatives known as pair-
wise comparison matrix.
1. For criteria APEX

Progl Prog2 Prog3

Progl

Prog2 1 0.495 0.895
1/0.495 1 0.895

Prog3

1/0.895 1/0.895 1

Now calculating geometric mean (GM) for ith row: GM,=(1x
0.495x0.895)"3=0.7623, GM,=(1/0.495x1x0.895)"3=1.2182, and
GM,=(1/0.895x1/0.895 x 1)'3 =1.0767.

By equations (5.2) and (5.3) as below:

1 0.495 0.895 0.249 0.7614
A; = 1/0.495 1 0.895 |x| 0.398 = 1.2167
1/0.895 1/0.895 1 0.352 1.0752
0.7614 0.249 3.074
AndA,=| 12167 [+ 0398 |=| 3.005
1.0752 0.352 3.053

And the maximum value A, that is the average of matrix A,:

_3.074 +3.005 +3.053

A = 3 =3.044

A — 1) 3.044 -3
n-1 2
And CR=L 29022 _ 04 <011,
RI  0.52

Hence, the weights are consistent.
ii. For criteria PLEX

Then CI= =0.022.

Progl Prog2 Prog3

Progl

Prog2 1 0.895 0.115
1/0.895 1 0.115

Prog3

1/0.115 1/0.115 1
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Now calculating geometric mean (GM) for ith row: GM, = (1 X0.895 x
0.115)1/3 =0.4686, GM, =(1/0.895x 1x0.115)1/3 =0.50464, and GM, =
(1/0.115x 1/0.115x 1)1/3 =4.2280.

Total GM =5.2012.

Hence, the normalised weights are: W, =0.4686/5.2012 =0.090, W, =
0.50464/5.2012=0.0970, and W,;=4.2280/5.2012=0.81288.

Now consistency checking

1 0.895 0.115 0.090 0.2701
A;=| 1/0.895 1 0.115 |x| 0.0970 |= 0.2908
1/0.115 1/0.115 1 0.812 2.438
0.2701 0.090 3.001
AndA,=| 02908 |+| 0.0970 |=| 2.997
2.438 0.812 3.002

And the maximum value A, that is the average of matrix A,:

A = 3.001+ 2.9397 +3.002 -3

(lmax - l’l) 3-3

Then Cl= =——=0.

n—1
And CR=9=L=O<O.1.
RI 0.52

Hence, the weights are consistent.
iii. For criteria LTEX

Progl Prog2 Prog3

Progl

Prog? 1 0.495 1

proag | 170495 1 0.895
rog 1 1/0.895 1

Now calculating geometric mean (GM) for ith row: GM,=(1x
0.495x 1)1/3=0.7910, GM, =(1/0.495x1x0.895)1/3=1.2182, and GM;=
(1x1/0.895x 1)1/3 =1.0376.

Total geometric mean=3.0468.

The normalised weights are: W, =0.7910/3.0468 =0.2596, W,=1.2182/
3.0468=0.3998, and W,=1.0376/3.0468 =0.3406.

Now consistency checking

1 0.495 1 0.2596 0.7981
Sothe A;=| 1/0.495 1 0.895 |x| 03998 [=| 1.229
1 1/0.895 1 0.3406 1.0469
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0.7981 0.2596 3.0743
AndA,=| 1229 |+| 03998 |=| 3.0740
1.0469 0.3406 3.0736

And the maximum value A, that is the average of matrix A,:

_3.0743+3.0740 + 3.0736

A = =3.073
3
Then C1= o =M _3073=3_ ) \oc
n-—1 2
And CR=SL 200364 70 <011,
RI 052

Hence, the weights are consistent.
Step 4: A matrix is formed with the help of the obtained weights:

0.2493 0.090  0.2596
0.3984  0.0970  0.3998
0.3521  0.8128  0.3406

So we can obtain the final rank:

0.2493 0.090  0.2596 0.649 0.2319
0.3984 0.0970 0.3998 |x| 0.121 = 0.3617
0.3521  0.8128  0.3406 0.229 0.4047

According to the higher value of the above matrix, we can decide the rank; hence,
ranking is Prog 3, Prog 2 and Prog 1.

The FAHP is a useful methodology. Similarly, the above technique is applied
in a more generalised manner by using all 17 effort multipliers of the COCOMO
model considering ten hypothetical programmers as alternatives. The hierarchy of
programmer ranking process based on COCOMO’s effort multiplier is depicted in
Figure 5.3 as there are also three layers where the upper layer represents goal and the
second layer represents COCOMO’s effort multipliers as 17 criteria. The last layer
(leaf) represents alternatives available, i.e., the group of programmer to be ranked.

The FAHP as explained above is applied to find out the rank of the programmer.
Initially, as shown in Table 5.9, we have constructed COCOMO’s 17 effort multipli-
ers as criteria and ten programmers as alternatives. After fuzzification of 17 effort
multipliers, we assigned fuzzy linguistic term in each cell, with the help of human
expert in this domain. The linguistic value assigned to each programmer for various
criteria are conflicting in nature.

In order to apply the FAHP method, fuzzified data must be converted into precise
data by applying the three-point scale of Chen and Hung (Rao, 2007) method. The
fuzzy linguistic term shown in Table 5.2 is converted into numeric data as shown in
Table 5.3. In the next step, we compare criteria with criteria by assigning comparative
weights from Saaty’s nine-point scale as shown in Table 5.4.
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FIGURE 5.3 Hierarchy of programmer ranking.
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In step 2, geometric mean (GM = 17.2844), consistency index (CI=0.11318456)
and consistency ratio (CR=0.072554), respectively, for checking consistency of
weights are calculated. The calculated CR is less than 0.10, which shows that the
weights are consistent.

In the next step, alternatives are compared with alternatives as we have done
above for three criteria; we have applied the same for all the 17 criteria and pre-
sented them as pair-wise comparison matrix, and CI and CR are calculated for all
matrices as above. Expert selects the shortlisted ten programmers among a group
of programmers and each programmer is compared with remaining programmers
based on their individual weighted values and the final ranking for best programmer
is derived. In all cases, CR is in the acceptable range, which shows that our weights
for all the matrices are consistent. The last step is to obtain the overall scores for the
alternatives by multiplying the relative normalised weight of each attributes with nor-
malised values for alternative, and finally, the corresponding rank of the program-
mers as shown in Table 5.5 are obtained. Table shows the highest value of weight for
programmer P2; hence, P2 is designated as the first rank.

5.6 APPRAISAL OF PROGRAMMERS’ RANK USING
INTEGRATED FAHP AND FTOPSIS

TOPSIS gives a solution that is not only closest to the hypothetically best, but also
the farthest from the hypothetically worst. The TOPSIS method is extended simi-
lar to FAHP with fuzzy theory and known as fuzzy TOPSIS (FTOPSIS) method.
After applying fuzzy TOPSIS method using overall weights of programmers, a nor-
malised decision matrix and a weighted normalised matrix are constructed as shown
in Tables 5.6-5.8 and with the help of Excel sheet and obtained normalised values for
alternatives by each criterion.

Positive ideal and negative ideal solutions with equations 5.6 and 5.7 are calcu-
lated as shown in Tables 5.9 and 5.10; also, separation measures for each alternative
from positive ideal and negative ideal alternatives through equations 5.8 and 5.9 are
calculated as shown in Tables 5.11 and 5.12.

TABLE 5.5

Calculated Weights and Ranks of Programmers using FAHP
Programmer ID Weight Rank
P2 0.1276 1
P10 0.1148 2
P8 0.1084 3
P9 0.1083 4
P4 0.1017 5
P6 0.1008 6
pPs 0.1003 7
p7 0.0978 8
PI 0.0900 9

pP3 0.0850

—_
=]
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TABLE 5.11

Positive Ideal Values for Alternatives

Programmer C1 C2 Cc3 C4 C5 Cé c7 Cc8
P1 8.13074E-06  5.131E-05 0.0001 0.000116669 6.5E-05 2.19822E-05 0 0.0001
P2 8.7915E-05 1.397E-05 0.0001 4.23513E-05 6.5E-05 0.00015591  0.0002244 0.0001
P3 1.71041E-05 3.521E-05 0.0007 9.14583E-05 6.5E-05 2.79653E-06 2.48E-05 0.0001
P4 8.13074E-06  1.397E-05 0.0002 2.145E-05 3.3E-05 2.79653E-06 0 0.0001
Ps 4.16271E-05 2.044E-05 0.0001 4.23513E-05 3.3E-05 2.79653E-06 6.037E-05 7.2401E-06
P6 2.84496E-05 2.044E-05 0.0001 4.23513E-05 3.3E-05 9.21634E-05 6.037E-05 1.9372E-06
P7 0 8.397E-06 0.0002 2.145E-05 0 9.21634E-05 6.037E-05 5.0027E-05
P8 0 0 0.0002 4.23513E-05 0O 0 6.037E-05 0
P9 1.71041E-05  1.068E-06 0.0002 4.23513E-05 0 2.19822E-05 6.037E-05 0
P10 1.71041E-05 1.068E-06 0 0 0 9.21634E-05 0.0001759 0
TABLE 5.12
Negatives Ideal Values for Alternatives
Programmer C1 C2 c3 C4 C5 Ce c7 c8
P1 4.25737E- 0 0.00032947 0 0 6.0807E-  0.0002244 0
05 05
P2 0 1.174E- 0.00032947 1.84342E-05 0 0 0 0
05
P3 2.74638E- 1.513E- 0 1.53244E-06 0 0.0001 0.0001 0
05 06
P4 4.25737E- 1.174E- 0.00018093 3.80675E-05 5.4E- 0.0001 0.0002244 0
05 05 06
P5 8.55207E- 6.984E- 0.00024457 1.84342E-05 5.4E- 0.0001 5.2E-05 5.934E-05
06 06 06
P6 1.63417E- 6.984E- 0.00024457 1.84342E-05 5.4E- 8.33029E- 5.2E-05 8.1039E-05
05 06 06 06
P7 8.7915E-  1.82E-  0.00018093 3.80675E-05 6.5E- 8.33029E- 5.2E-05 1.1029E-05
05 05 05 06
P8 8.7915E-  5.131E- 0.00018093 1.84342E-05 6.5E- 0.0001 5.2E-05 0.00010804
05 05 05
P9 2.74638E- 3.757E- 0.00013333 1.84342E-05 6.5E- 6.0807E-  5.2E-05 0.00010804
05 05 05 05
P10 2.74638E- 3.757E- 0.00079311 0.000116668 6.5E- 8.33029E- 2.95E-06  0.00010804
05 05 05 06
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sQ.
ROOT
C9 c10 c11 c12 c13 c14 C15 C16  C17 SUM (S
0.000171 0.0001 4.85E-05 0 4.159E-05 0.0020 5.523E-05 0.00039 0.0008 0.00421 0.0648
8.97E-06 0.0001 9.5E-05 0 5.612B-05 0 9.937E-05 0.00039 0.0008 0.00245 0.0494
0 7.1286E-05 7.59E-05 2.122E-05 5.612E-05 0.0020 9.937E-05 0.00039 0.0008 0.00484 0.0695
3.14B-05 7.1286B-05 7.59E-05 6.065E-06 2.842E-05 0.0020 9.695E-06 7E-06  0.0008 0.00362 0.0601
3.14B-05 3.6105B-05 4.85E-05 4.189E-05 2.842E-05 0.0019 0 9.1E-05 0.0008 0.00353 0.0594
3.14B-05 3.6105E-05 4.85E-05 0 2.174E-06 0.0020 0 9.1E-05 0.0008 0.00363 0.0602
3.14B-05 9.0999E-05 7.59E-05 0 8.124E-06 0.00217 4.17SE-05 9.1E-05 0.0008 0.00386 0.0620
0 9.0999E-05 7.59E-05 6.065E-06 8.124E-06 0.0018 2.136E-07 0.00023 0.0008 0.00346 0.0587
6.2E-05 0 0 6.065E-06 0 0.0018  9.695E-06 0 0.0008 0.00322 0.0567
3.14E05 0 0 2.122B-05 0 0.0019  1.856E-05 0 0.0008 0.00324 0.0569
sQ.
ROOT
c9 c10 c11 C12  C13  C14 c15  Cl6  C17 SUM  (S')  S*i+S'i
0 0 7.76E- 4.188E- 1.087E- 2.51E-06 6.437E- 0 0.0008  0.0016 0.0400 0.1049
06 05 06 06
0.0001 0 0 4.188E- 0 0.0021766 0 0 0.0008  0.0035 0.0597 0.1092
05
0.000171 4.4914E-06 1.08E- 3.48E- 0 7.814E-07 0 0 0.0008  0.0013 0.0363 0.1058
06 06
5.57B-05 4.4914E-06 1.0SE- 1.607E- 4.666E- 7.814E-07 4.699E- 0.00029 0.0008  0.0019 0.0439 0.1041
06 05 06 05
5.57B-05 2.0736E-05 7.76E- 0 4.666E- 3.891E-06 9.937E- 0.0001 0.0008  0.0017 0.0412 0.1006
06 06 05
S5.57B-05 2.0736E-05 7.76E- 4.188E- 3.62E- 7.814E-07 9.937E- 0.0001 0.0008  0.0016 0.0411 0.1013
06 05 05 05
5.57B-05 1.0466E-06 1.0SE- 4.188E- 2.154E- 0 1.23E- 0.0001 0.0008  0.0015 0.0398 0.1019
06 05 05 05
0.000171 1.0466E-06 1.08E- 1.607E- 2.154E- 1463E-05 9.037E- 2.1E-05 0.0008  0.0019 0.0441 0.1028
06 05 05 05
2.7E-05 0.00011156 9.5B- 1.607E- 5.612B- 1463E-05 4.699E- 0.00039 0.0008  0.0021 0.0463 0.1031
05 05 05 05
5.57B-05 0.00011156 9.5B- 3.48E- 5.612B- 3.891E-06 3.204E- 0.00039 0.000891 0.0028 0.0528 0.1098
05 06 05 05
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At last, we have calculated the relative closeness to the ideal solution C;* using
equation 5.10 and the corresponding ranks of the programmers as shown below in
Table 5.13 are found.

5.7 COMPARATIVE ANALYSIS

To find out the rank of programmers, two MCDM methods are applied. Figure 5.4
shows the comparative results of two MCDM methods; the ranks obtained through
these techniques are, however, different in case of fuzzy AHP and fuzzy TOPSIS
methods, but both the techniques have designated P2 as the first rank. Ranks of other
programmers are also very close to each other.

TABLE 5.13
Calculated Weights and Ranks of Programmers Using FTOPSIS
Programmer ID Weight Rank
P, 0.54700 1
P, 0.48143 2
P, 0.44959 3
P, 0.42874 4
P, 0.42220 5
P, 0.40958 6
P, 0.40554 7
P, 0.39098 8
P, 0.38193 9
P, 0.34304 10
10 W Rank of FAHP

£ 3 B Rank of FTOPSIS
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FIGURE 5.4 Comparative graph of ranking using FAHP and FTOPSIS.



Selection of Software Programmer Using Fuzzy MCDM Technique 139

5.8 CONCLUSIONS

Software effort estimation is highly uncertain and ambiguous; therefore, fuzzy logic-
based MCDM methods may be well suited. COCOMO?’s effort estimation method is
reliable and widely used, which is based on 17 effort multipliers. In order to select a
group of programmers for better software effort estimation, fuzzy versions of AHP
and TOPSIS are utilised and ranks of programmers based on sample data collected
are evaluated. Ranks found in case of these techniques are different, but both the tech-
niques have produced the same rank (Rank 1) to programmer P2. Further, this process
can be repeated for larger group of programmers using other MCDM methods.
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6.1 INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death, killing an estimated
17.9 million people each year [1]. CVDs are a group of heart and vascular diseases,
including coronary artery disease, rheumatic heart disease and cerebrovascular dis-
ease. Heart attacks and strokes account for more than four from every five CVD
deaths, and one-third of these deaths occur in people under the age of 70. Heart
disease is the main cause of death in India. The absolute estimated prevalence of
CVD in India is 54.6 million. The deaths because of suffering from heart disease
have decreased by approx. 39% from 2001 to 2011. In fact, many concerns about
the nutrition of our teenagers seem to be related to the early phase of cardiovascular
disease in the arteries or the thickening of the coronary arterial walls [2]. This is
a steady, silent disease that typically progresses for decades before anyone shows
symptoms. So, the need to go to the doctor often is observed after the sixth or sev-
enth decade. This is why there is a need to screen patients who may develop CVD
in the near future based on their present lifestyle, and they should know they must
take care of their health to prevent them from ending up in a hospitalisation. Several
risk factors are relevant to decide whether you are likely to develop cardiovascular
disease. Few parameters such as age and inheritance are not in the control of the
individual, and few activities such as eating habits, fitness, exercise and lifestyle can
be changeable or controllable. The risk of suffering from heart disease increases
at the age of 55 years in women and 45 years in men [3]. If you have close relatives
with a history of heart disease, your risk may be higher. Many risk factors include
obesity, insulin or diabetes, elevated cholesterol and blood pressure, a family history
of heart failure/diseases, inactivity, a poor diet, smoking and clinical depression.
There are other risk factors for heart disease, but genetic factors can increase the
risk of developing heart disease, and unhealthy lifestyle and personal choices also
play an important role. Several unhealthy habits that may lead to heart disease
include unhealthy lifestyles with not enough physical activity, a poor nutrition diet.
Life’s Simple 7s to lead a healthy lifestyle include not smoking, physical activity, a
balanced diet, maintaining body weight, and controlling cholesterol, blood pressure
and blood sugar. Hence, a stress-free and diabetes-free atmosphere is necessary. So,
it is extremely important to recognise the odds of an individual having heart disease
or not. According to the WHO [4], 17.9 million deaths from CVD are expected to
occur annually, approximately 32% of all fatalities worldwide. The estimate is based
on the most recent analysis and results of CVD deaths. Deaths by heart attacks and
strokes account for more than 85% of all deaths. Heart attacks and strokes account
for more than four out of every five CVD deaths, with premature deaths accounting
for one-third of these deaths in those under the age of 70.

In recent years, many authors have done a significant amount of research on
predicting heart attacks using a variety of techniques and algorithms. Researchers
have explored the techniques based on various fields such as deep learning, machine
learning and data mining. Everyone aims at improving accuracy, getting more and
more accurate results. MCDM techniques have effectively been applied to predic-
tion in numerous fields, including supportable vitality management, energy plan-
ning, transportation, geographical data systems, budgeting and asset designation.
The objective of this chapter is to propose an accurate predictive model using the
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multi-criteria decision-making (MCDM) algorithm for the Heart Disease UCI data-
set. This chapter proposes a prediction model for the risk of heart disease based
on various factors and features for the Heart Disease UCI dataset by utilising the
MCDM. The MCDM-based heart disease prediction model predicts if a person is at
risk of developing cardiac disease in a much easier way. The model employs the data-
set that constitutes 1000 individuals with a history of heart disease, and it predicts
the probability of an individual to suffer from heart disease by employing MCDM
and normalisation techniques. This chapter is divided into various sections as fol-
lows: Section 6.2 details the various studies and research work that has already been
undertaken and related to the prediction of heart disease. Section 6.3 describes the
methodology and Section 6.4 discusses the results and analyses, followed by the
Conclusion section of the research.

6.2 LITERATURE REVIEW

Nason et al. [5] elaborated on cardiovascular disease prediction techniques
employed in recent research and summarised their strengths and weaknesses. The
paper highlights the key background issues that need to be involved in the research
study. The authors presented a research study focusing on four countries: Australia,
the United Kingdom, Canada, and New Zealand. The research elucidates the cur-
rent state of CVD, CVD research, and the context for case studies of specific
CVD research studies. The Payback Framework, which has been utilised by the
UK study team in prior health research investigations, was discussed in the case
studies. The medical industry is a massive reserve of relevant information. Hence,
the availability of such data becomes of key importance so that valid information
relevant to us can be extracted. This huge amount of data is critical for retrieving
meaningful information and generating correlations among features. Chadha et al.
[6] published in-depth analyses of cardiac disease prediction using data mining
techniques. The primary aim of the research is to consolidate, summarise and
assess various data mining strategies for heart disease prediction, which have been
proposed and deployed in recent years. The neural network (NN) has been found to
be more powerful and better than the other methods such as the naive Bayes (NB)
model and decision tree (DT) model.

Abdul-Aziz et al. in 2019 [7] highlighted that heart disease strikes with much
ferocity and medical data are still statistics and knowledge deficient. As a conse-
quence, an essential task for medical support is appropriately diagnosing patients
in a timely manner. A hospital’s incorrect diagnosis results in a loss of reputation.
The most important biomedical issue is the correct diagnosis of heart disease. The
primary objective of the research was to use data mining techniques to provide an
effective remedy for restorative circumstances. Later, Salman et al. [8] suggested that
some particular medical rules revolving around chronic heart disease must be fol-
lowed in cases of triage, and their urgency should be ranked based on an individual’s
vital signs and their attributes. The purpose of the study was to measure and evaluate
vast amounts of data from patients suffering with chronic heart disease and those
who require immediate intervention. A practical learning study was conducted on
500 patients with chronic heart disease who had varying symptoms and were in vari-
ous stages of emergency. The paper concluded that multi-attribute and multi-criteria
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decision-making can assist researchers studying patients with heart problems in deal-
ing with the challenge of storing and using vast volumes of data. New methodologies
born from the study lay the foundation and improve the decision-making process in
triage and effective assessment of these patient types. Raju et al. [9] analysed data
mining classification techniques such as DTs, NNs, Bayesian classifiers, support vec-
tor machines (SVMs), association rule and k-nearest neighbour (k-NN) classification
and employed them to diagnose cardiac diseases. The SVM is the most accurate of
these techniques.

Marimuthu et al. [10] proposed a machine learning-based prediction model for
heart disease by considering blood pressure, hypertension, diabetes, the numbers
of cigarettes smoked each day and medical input information as input. The experi-
ments have been performed on k-NN, NB, SVM and DT prediction models. The
results demonstrated that all the proposed models appreciably accurately predict the
overall risk of heart disease. Singh et al. [11] proposed that the advanced data min-
ing techniques are effective to provide relevant results to make smart data decisions
to overcome the issue of extraction of hidden information from massive volumes
of data. It can help decision-makers to make better decisions. In the study, a NN is
used to develop an effective heart disease prediction system (EHDPS) for detecting
the risk level of heart disease. Age, gender, blood pressure, cholesterol and obesity
were among the 15 medical parameters employed in the system to make accurate
predictions. The EHDPS allows for the establishment of substantial knowledge, such
as correlations between medical parameters linked to heart disease prediction and
heart disease patterns. A multilayer perceptron neural network with backpropagation
was utilised for training, yielding efficient outcomes. A fuzzy rule-based technique
was proposed in [12] with a DT for predicting heart disease diagnosis. The results
obtained concluded the proposed technique has an accuracy of 88%, which is statis-
tically remarkable for diagnosing patients with cardiac disease and surpasses some
existing techniques. It is unfortunate that the ever-increasing sources of information
generated by hospital patient records, including records of valuable medical research
resources, are not properly mined. Currently, these data are primarily used for thera-
peutic purposes only. These data are often used to better understand the hidden pat-
terns and associations that can lead to better diagnosis, medicine and treatment, as
well as a platform for better understanding the mechanisms driving practically every
aspect of the medical realm. However, the finding of these hidden correlations is
usually ignored.

Mehmood et al. [13] proposed CardioHelp, which employs convolutional neural
network (CNN) deep learning method to predict the risk of a patient having heart
disease. The methodology is concerned with temporal data modelling and employs
CNN for early heart function prediction. The heart disease dataset was created,
and the results were compared to existing methodologies, yielding positive results.
Experimental results show that the CardioHelp obtains 97% accuracy and is supe-
rior to existing methods in terms of performance evaluation tools. Isola et al. [14]
proposed that the massive data store can be used to make a better diagnosis based
on historical data. The medical data can be efficiently mined by combining neural
networks, k-NN, storage and acquisition of large-capacity memory to improve the
accuracy of diagnosis
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The main points of differential diagnosis are the probability of occurrence of
a specific disease, which can be obtained from medical data. The system is based
on a service-oriented architecture that includes diagnostics, information portals
and other services. This algorithm can be used to solve some of the more common
auto-discovery problems these days: diagnosis of multiple illnesses with multiple
symptoms. Ayon et al. [15] presented a comparative analysis performed using seven
computational intelligence techniques: logistic regression (LR), SVM, deep neural
network (DNN), DT, NB, random forest (RF) and &-NN. Statlog and Cleveland heart
disease datasets downloaded from the UCI machine learning database were used to
measure the performance of each technique using multiple scoring techniques. In the
study, a DNN achieved an accuracy of over 98.15%. Hassani et al. [16] presented a
novel approach with the goal of discovering a significant method for predicting heart
disease. The Cleveland dataset and the Statlog heart disease datasets from the UCI
ML repository were employed to generate a unique dataset for the research. The new
data include 568 cases and 14 medical parameters such as age, gender and blood
pressure for heart disease training and prediction. The paper proposed a novel neural
network and decision tree approach for improved cardiac disease prediction, which
utilises a NN for training and a DT for testing classification. The proposed approach
was compared to the NB, SVM, NN, voted perceptron and DT algorithms in terms
of performance. The findings revealed that the accuracy and precision were both
improved. Devansh Shah et al. [17] presented various attributes related to heart dis-
ease and proposed a model for the heart disease patients dataset from the Cleveland
database of the UCI repository using supervised learning algorithms such as NB, DT,
k-NN and random forest (RF) algorithms to predict the likelihood of patients having
heart disease. Only 14 features are tested out of 76 attributes in the dataset; however,
they are critical in establishing the performance of different algorithms. The k-NN
has the highest accuracy score, according to the data.

Nagaprasad et al. [18] proposed a hybrid method by exploiting the backpropaga-
tion method in combination with the k-means clustering method, to cluster knowl-
edge to make an improved prediction performance for the cardiac disease data
sample collected from the UCI repository comprising the output of the implemented
algorithm. There are 66 attributes in the sample. Every research, however, requires
a subgroup of 14 criteria. Machine learning research uses the Cleveland platform.
The study was designed according to current methods, accuracy, error detection and
deployment time (using numerical averaging). Gavhane et al. [19] emphasised the
need for effective mechanisms to recognise the symptoms of a heart attack early and
avoid the development of heart attacks in children and adolescents. It isn’t practical
for the average person to undergo expensive tests such as ECG on a routine basis,
so a convenient and reliable system must be in place to predict the risk of cardiac
disease. The authors of the research developed an app that can predict one’s suscep-
tibility to heart disease based on basic indicators such as age, gender and heart rate.
Neural network machine learning algorithm was adopted because it has been proven
to be the most accurate and reliable algorithm. Farzana Tasnim et al. [20] analysed
various data mining classification techniques, including NB, SVM, k-NN, DT, NN,
LR, RF and gradient boosting for predicting the probability of heart disease using
the cardiac disease dataset from the UCI machine learning repository. Traditional
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machine learning algorithms perform better with the feature selection strategy. The
RF method with PCA has the best accuracy of 92.85% among the other algorithms.
Islam et al. [21] proposed a PCA-based hybrid heuristic model to detect CHD by
employing the hybrid genetic algorithm (HGA) with k-means used for final cluster-
ing. Early heart disease can be predicted with an accuracy of 94.06%.

Vafaei et al. [22] evaluated MCDM and normalisation techniques. They focused
on six well-known normalisation techniques for usage in the TOPSIS method. Ma
et al. [23] studied MCDM problems that can help solve and handle the cognitive limi-
tations that can occur in many problems in real world. Lepri et al. [24] presented an
overview of available technical methods to refine algorithmic decision-making fair-
ness, accountability and transparency in the work. They also stressed the importance
of bringing together multidisciplinary teams of researchers, practitioners, policy
makers and citizens to jointly develop, deploy and evaluate algorithmic decision-
making procedures that optimise fairness and transparency in real-world settings.
Vafaei et al. [25] discussed that normalisation plays an essential role in any decision-
making algorithm. The purpose of the article was to find a suitable normalisation
technique that enables data fusion, which has become difficult with the advent of
cyber-physical systems. The purpose of this paper is to examine metrics to determine
which normalisation procedures are most appropriate for decision problems, espe-
cially the multi-criteria analytic hierarchy process (AHP) method. The researchers
illustrated the relation among cyber systems. The researchers’ goal was to find the
best normalisation method for the AHP method.

Lakshmi et al. [26] studied TOPSIS and applied various normalisation techniques
to achieve the optimal solution. The researchers concluded that linear sum-based
normalisation is the best method for both time and space. Chowdhury et al. [27]
observed that both single and integrated MCDM methods could be used in this area.
The authors proposed future research directions, including reviewing and formulat-
ing strategies for specific CS initiatives. Asadabadi et al. [28] applied foundational
MCDM methods proposed by Saaty, in particular AHP and analytic network pro-
cess (ANP). The paper validates the application of MCDM instead of traditional
approaches when ranking individuals for CVD prediction. The study accepted a
generic company’s point of view that they might not find it different or useful, but
still hold their ground in the benefits of their methods. It accepts that individuals may
be ranked using AHP, which a rational person might not even consider.

Adunlin et al. [29] discussed the systematic review trend analysis when MCDA is
applied in the sector of health care. A total of 66 citations met the selection criteria.
The increase in publishing trend occurred in the years 1990, 1997, 1999, 2005, 2008
and 2012. This trend indicated that the number of releases peaked in 2012. Frazao
et al. [30] were to frame and recreate articles found in the literature, clubbing MCDA
and health care together, and to evaluate common and methodological issues, com-
piling them into a single framework. It may include studies aimed at methodological
applications of MCDA without using mathematical methods. The studies included
in the paper only focused on descriptive research with no mathematical formulae
derived from the texts. This pointed the paper only in the direction of MCDA’s meth-
odological application. The TOPSIS method’s two major deficiencies are the non-
meaningfulness of the resulting rankings in mixed data contexts and rank reversals or
ranking irregularities. A meaningful mixed data TOPSIS method (TOPSIS-MMD)
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was proposed in [31]. The TOPSIS method was enhanced by extending the mixed
data in a comparatively defensible manner.

6.3 METHODOLOGY

The key approach adopted in this paper was by analysis of medicine, machine learn-
ing, computer science and engineering journals and publications. This paper attempts
to foresee the danger of coronary illness in an individual relying upon the features
provided in the dataset on applying MCDM. The study is quantitative since it deals
with the statistics of the various features of a person to recognise the risk probabil-
ity of the person to have cardiovascular disease. The dataset used is a secondary
dataset taken up from Kaggle titled “Heart Disease UCI” provided by Ronit on the
platform, which provides the experiments with the Cleveland database, which simply
attempt to differentiate between the existence and lack of cardiac conditions. The
MCDM is a decision-making analysis that uses scores and weights as a reference to
evaluate multiple criteria as part of the decision-making process and is an open and
explicit cost-benefit analysis. It provides insight into different judgements of value
when compared to other methods.

6.3.1 Mutti-CriTeriA DecisioN-MAKING (MCDM) ALGORITHM

The MCDM is a method used for making decisions, while more than one criterion
need to be taken into consideration collectively to rank or select from the evalu-
ated choices. The MCDM involves a number of things, including choosing the attri-
butes to be taken into consideration and then evaluating and comparing them. It also
involves assigning weights representing the importance of the attributes and, in the
end, making effective decisions. The MCDM is designed to reduce the occurrence
and impact of “intuitive” decision-maker bias and group decision-making errors that
almost inevitably undermine intuitive choices. The MCDM leads to more transpar-
ent and consistent decisions by expressing weights and associated switching between
standards in a structured way. It gives us the result more sensible and with the extra
real facts that pop out of it.

All the steps involved in the MCDM algorithm are mentioned in Figure 6.1. Each
step is discussed in the coming sections.

6.3.1.1 Categorisation of Features

The features are categorised as beneficial and non-beneficial features, where the benefi-
cial features are the ones whose higher values are desired, such as efficiency or profit,
while non-beneficial features are the features whose lower values are required, such as
cost. For instance, a better television would be the one with low cost and high picture
quality. Hence, cost is a non-beneficial feature and picture quality is a beneficial feature.

6.3.1.2 Normalisation of Data

Each criterion can be calculated at different units, such as degrees, kilograms or
meters. However, all these must be standardised to achieve dimensional classifica-
tions, namely a common numerical range/scale, so that the aggregation is made pos-
sible for the final score. The first step is normalisation in the decision-making process
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to convert data into nearly equivalent units on a common scale. Normalisation is an
important step that helps improve model stability, boosts up the training procedure,
and also helps in giving “equal” considerations for each feature of the data. Data
standardisation is also a key aspect of the decision-making process because it makes
input data quantified and compared. The data are normalised so that all the data can
be compared to each other.

Normalisation intends to scale a variable somewhere in the range of 0 and 1.
There are five common normalisation techniques [32] such as vector normalisation,
linear min-max normalisation, linear sum-based normalisation, linear max normali-
sation and Gaussian normalisation. The min-max normalisation is one of the most
frequent methods of data normalisation. One of the important disadvantages of the
min-max standardisation is that the outliers are not well treated in this normalisation.
If 99 values range from O to 40 and one value is 100, then the 99 values are all con-
verted to values ranging from O to 0.4. The linear sum normalisation method sums
the scores for each criterion and divides the score for each feature.

6.3.1.3 Vector Normalisation

We apply vector normalisation for beneficial and non-beneficial features separately.
The reason why vector normalisation was chosen was that there were many 0 values
in our data.

For non-beneficial features, we calculate the new value of each data item by equa-
tion 6.1.

P ©.1)

y [le?

where x; denotes the current data value and Zx,% denotes the square root of the sum
of the squares of all data values of the particular column.
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For beneficial features, we have equation 6.2, where each data value is changed
according to the equation.

_ x“
x-1- il

ij [zxg

where x; denotes the current data value and ¥, x; denotes the square root of the sum
of the squares of all data values of the particular column.

6.2)

6.3.1.4 Enhanced Accuracy Normalisation

The second normalisation method applied on the data was enhanced accuracy nor-
malisation of data. For beneficial features, we calculate the new value for each data item
by equation 6.3.

J
Xmax — Xjj
y m .
E S
Xmax — Xij
i=1

For non-beneficial features, we calculate the new value for each data item by equa-
tion 6.4.

6.3)

)
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E . I'xij ~ Xmin
i=

6.3.1.5 Entropy Method to Assign Weightage

After the normalisation is done successfully, the features in the normalised decision
matrix are given weightage, which implies the importance of every feature. Now for
the determination of weights of the features, the entropy method was used, which can
be done using the following steps and equations shown below.

The entropy of each feature individually is calculated with the help of equation
6.5 mentioned below:

6.4)

Ei = —h x,'j 10g(x,—,—) (65)

i=1

where E; denotes the entropy of the current feature and x;; denotes the current data
value in the normalised data matrix. m denotes the total number of data points. And
h is given by equation 6.6.

h= L (6.6)

(log(m))

After the calculation of entropy of each feature, the weight vector is calculated for
each feature, which is taken as the objective weightage of the feature. Then, the
weight vector is calculated using equation 6.7.
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1-E;
Wi=—— 6.7
X(1-E; ) ©D

where W, denotes the weight vector of the particular feature, E denotes the entropy of
a particular feature, and 1 — E denotes the degree of diversification.

The entropy method has extensively been practised as a significant model for
weight determination. It is always accurate and useful, but the results are prone to
distortion when too many zero values are encountered. On calculating the weight
vector for each feature, the next step that comes into the picture is the multiplication
of each data value of a feature with the weightage vector of that particular feature.
And as a result, a weightage normalised decision matrix is obtained.

6.3.1.6 Getting the Final Score

Finally, all the weightage normalised data values for each row are added to get the
overall performance score, and according to the performance scope value, which
is more or less, we conclude. For instance, for the best television, the performance
scope must be high. The more the value of the score, the better the television.

6.3.2 DATASET

The Heart Disease UCI dataset [33] provided on Kaggle by Ronit has been con-
sidered for the MCDM-based heart disease prediction model implementations, and
the features and their descriptions are mentioned in Table 6.1. The dataset contains
14 attributes and 303 patient details. In addition, there are eight categorical and six
numeric characteristics.

TABLE 6.1

Description of All the Features for the Heart Disease UCI Dataset
S. No. Feature Description

1. Age Age of the patient

2. Sex 1 =Male and 0 =female

3. C, Chest pain type

4. trestbps Resting blood pressure

5. Chol Serum cholesterol

6. fbs Fasting blood sugar larger than 120 mg/dL (1 =true and 0= false)
7. restecg Resting electrocardiographic result (1 anomaly)

8. thalach Maximum heart rate received

9. exang Exercise-induced angina (1 =yes)

10. oldpeak ST depression induced by exercise

11. slope Slope of peak exercise ST

12. ca Number of major vessels

13. thal Thalassemia (3 =normal, 6 =fixed defects, 7 =reversible defect)
14. target lor0
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This dataset contains patients whose age lies between 29 and 79 years. The gender
value for male patients is 1, and that for female patients is 0. The dataset considered
the following four types of chest pains:

Category 1: angina due to stenosis of coronary arteries due to a decreased
blood flow through the heart muscle.

Category 2: angina chest pain due to emotional or mental stress.

Category 3: non-angina chest pain, which may be due to different reasons and
often may not be caused by actual cardiac disease.

Category 4: asymptomatic chest pain, which may not be a heart attack indication.

The fourth attribute trestbps is the measure of the resting blood pressure. The Chol is
the level of cholesterol. The fbs implies fasting blood sugar, which is 1 where blood
sugar seems to be under 120 mg/dL and O if it is higher. The restecg is the resting
electrocardiographic result, and the thalach is the highest heart rate. The exang is
the exercise-induced angina, identified as 1 in pain and O in painless. The oldpeak
is ST depression induced by exercise. The slope is ST segment’s slope peak value.
The ca is the handful of major fluoroscopically coloured vessels, and the thal is the
minutes of the exercise in the test period. The last attribute target is the attribute of
class. The class attribute is 1 for patients diagnosed with heart disease and is O for
normal. Table 6.2 shows which features were used as Beneficial and which were used
as non-beneficial.

TABLE 6.2

Beneficial and Non-Beneficial Features Categorisation
S. No. Feature Beneficial/Non-Beneficial/Not Required
1 Age Beneficial

2 Sex Not required

3 C, Non-beneficial

4 trestbps Beneficial

5 Chol Beneficial

6 fbs Beneficial

7 restecg Beneficial

8 thalach Non-beneficial

9 exang Beneficial

10 oldpeak Beneficial

11 slope Non-beneficial

12 ca Beneficial

13 thal Non-beneficial

14 target Not required
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6.4 RESULTS AND ANALYSIS

This task helps identify potential patients who may face the adverse effects of coro-
nary artery disease during the associated decade. This may help to take precautions
and then try to avoid the patient’s risk of coronary artery disease. Table 6.3 demon-
strates the first ten rows of the original data provided after removing unnecessary
columns such as sex, as having heart disease does not depend on that much on sex
compared to other factors. We also quantified the data to avoid values of NaN (not a
number) and to make the best use of the information.

6.4.1 ApPLYING VECTOR NORMALISATION

Table 6.4 shows the vector normalised decision matrix after executing vector nor-
malisation on the data. To make further processing of the data easier, the entire data
are transformed into values between 0 and 1.

The weight vector for each feature calculated using the entropy method is as in
Table 6.5. The total of all the weightage vectors is a perfect 1, which implies the
weightage is divided properly.

Table 6.6 shows the weightage normalised decision matrix after having the data
multiplied by the corresponding weightage.

After the calculation of the weightage normalised matrix, the performance score
is calculated for each patient and the result is stored into a list containing the patient
number and the score, i.e. chances of having a heart disease. The top 10 patients at
risk are as in Table 6.7.

TABLE 6.3
First Five Rows of the Original Data After Cleaning

Age C, trestbps Chol fbs restecg thalach exang oldpeak slope ca thal

0 63 3 145 233 1 0 150 0 2.3 0 0 1
1 37 2 130 20 0 1 187 0 3.5 0 0 2
2 41 1 130 204 0 0 172 0 1.4 2 0 2
3 56 1 120 236 0 1 178 0 0.8 2 0 2
4 57 0 120 354 0 1 163 1 0.6 2 0 2
5 57 0 140 192 0 1 148 0 0.4 1 0 1
6 56 1 140 294 0 0 153 0 1.3 1 0 2
7 44 1 120 263 0 1 173 0 0.0 2 0 3
8§ 52 2 172 199 1 1 162 0 0.5 2 0 3
9 57 2 150 168 0 1 174 0 1.6 2 0 2
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6.4.2 APPLYING ENHANCED ACCURACY NORMALISATION

Table 6.8 shows the result of applying the enhanced accuracy normalisation, i.e.
enhanced normalised decision matrix.

The weight vector for each feature was calculated using the entropy method.

Table 6.9 shows the weightage normalised decision matrix after having the data
multiplied by the corresponding weightage. After the calculation of the weight-
age normalised matrix, the performance score is calculated for each patient. The
result is stored in a list containing the patient number and the score, i.e. chances
of having a heart disease. The top 10 patients at risk of heart disease are as in
Table 6.10.

Both the results achieved in Tables 6.7 and 6.10 were compared to see how
many patients match in a certain range. When first 250 patients were checked,
an accuracy of 83.2% and 80% of the data is compared an accuracy of
82.23140495867769%, which implies that the overall accuracy of the results is
around 80% is quite decent.

6.5 CONCLUSION AND FUTURE SCOPE

The risk of developing cardiac problems can be significantly decreased by leading
a healthy lifestyle, although diet and genetic predisposition can increase the risk.
Obesity, high blood pressure, uncontrolled diabetes, and a diet rich in saturated fats
are characteristics of food-related risk factors. The likelihood of living a relatively
normal life in the future can be considerably increased by receiving a quick diagnosis
of heart disease or prompt treatment after an attack. The problem of heart disease
prediction using an MCDM approach is addressed in this research. It’s helpful to
identify and help patients or citizens having a chance of having a heart disease within
them and to take preventive measures against the health issues to keep the person
healthy. There can be more features that can affect the chances for one to have a
heart disease. Family ancestry of coronary illness can likewise be an explanation for
building up a coronary illness as referenced before. Along these lines, this informa-
tion of the patient can likewise be incorporated for further expanding the precision of
the 7 model. The review also shows that the MCDM can be applied to a wide range
of areas in health care, using a variety of methodological approaches. The CVD ill-
ness expectation can be possible utilising other machine learning and deep learning
calculations. Further research is needed to develop clinical practice guidelines for the
proper use and reporting of MCDM methods, and the results can be compared and
improvised. It can also be concluded that there is immense scope for machine learn-
ing in estimating the risks of heart-related conditions. There are many more algo-
rithms that work exceptionally well in some cases, but fail to give accurate results
in others. In addition, the experimental results show that the algorithm predicts the
probability of cardiac diseases with about 80% accuracy. Additionally, there are a
number of potential enhancements in MCDM that might be addressed to increase
accuracy.
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TABLE 6.10

Top 10 Patients with Their Scores
Patient Number Score of the Patient

195 1.0058538964039174
204 1.0057191856440346
193 1.0056566450800815
166 1.0056485342307022
256 1.0056218294994457
191 1.0056214466015871
246 1.0056036393091996
165 1.0055978855247527
174 1.0055794449188837
233 1.005559331112576
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7.1 INTRODUCTION

In the last few decades, almost all organisations have totally been dependent on
software systems. The fast growth of the competitive world requires more effective
software systems that have more influence on our daily life. Such importance of soft-
ware insists that developers develop fault-free software. It is expected to design more
reliable software and predict their high level of accuracy. The failure of software
has given more impact as consequences of enterprises growth in terms of revenue.
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The fault rate of the software can be reduced in a systematic way by incorporating
various steps such as prevention of errors, fault detection/identification, removal and
operational environment. Simultaneously, hardware components are continuously
monitored and change from time to time and when required for maintaining the reli-
ability of the system. Nowadays, various software metrics are available to identify
the reliability of the software; however, software reliability prediction models are not
enough to provide/judge the effective prediction. Software products are used in their
high-quality demand with more accuracy and zero tolerance of fault in space sci-
ence, aviation, defence, high-level data warehouses, etc. In the present scenario, the
responsibility of developers is more challenging to provide quality software, which
requires to improve software quality, such software quality provides the assurance of
software in sequence of reliability. Again, it is a question of common objective how
to prophesy and estimate the software reliability. The requirement study of the soft-
ware reliability with the consideration for improving the quality of software which is
challenging for researchers in reliability literature. A general software development
process is depicted in Figure 7.1, which describes the user’s requirements as well as
specifications, design and testing for quality checking. Thereafter, it comes into the
operational mode, which explains the predicted rendering and function of the system.

In case the performance of the software deviates from its specification, this indi-
cates that failure of the software occurs; the failure of the software is known as soft-
ware fault. This fault is called a software failure in the program. Generally, software
error is known as software bug also. In general, the life cycle of software consid-
ers productivity, quality, cost and delivery. The reliability of the software is totally
dependent on the input, conditional logics and coding of the program. The software
quality elements are shown in Figure 7.2.

The key concern of software reliability is to describe the quality, measurement
and assessment. There are set of questions that arise during the development of
software. Consequently, such questions give/provide quality software where failure
occurrence has zero tolerance. In Figure 7.3, we demonstrate the process of software
assessment/operation.

In Figure 7.4, we describe the software behaviour, which is based on input—
programme—output (I-P—0). The depicted mapping considers everything from input
data to output data.

7.1.1 Basic TERMINOLOGY

We highlight few important terminologies that are used throughout the chapter. Such
terminology is also discussed by various researchers, including Lyu (1994), Pham
(2006), Singpurwalla and Wilson (1999), and Hanagal and Bhalerao (2021).

Software failure describes the incapability of performing the proposed task in a
specified framework.

Failure means the condition of the program which does not fulfil the desirable
objective/ prescribed requirement.

Bug is a mistake in a program that generates the fault in software under the condi-
tion in which the program runs. If such an error cannot be removed immediately, the
same fault occurs successively.
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Debugging is the identification and modification of bug or error in software.
There are two kinds of debugging.

Faultless debugging gives an assurance if the software fails, immediately the
fault is removed.

Imperfect debugging means there is no guarantee that the error that appeared
can be removed from the software. In the process of fault removal, the number of
faults may increase or decrease.

Error generation is a testing evolution. Under the removal of original fault,
immediately new faults come into existence.

Failure rate describes the period in which failure occurs in a non-uniform manner.

Constant failure rate is the period in which failure occurs in a uniform rate.

Failure density expresses the life of component at any point wherein the number
of faults gradually improves with respect to time.

Fault rate function explains the likelihood that a failure unit of time (¢, t++A7)
occurs in the interval.



Literature Review on Classification of SRMs 165

S8 Software Life Cycle 38

- Developer Queries:

Fault-Detection e to develop the highly reliable
e 7 s software system
Correction e to estimate how much reliable in

the early stage of development!

Operation Maintenance

FIGURE 7.3 Software life cycle.

Fault intensity function provides the pace of transformation in the accumulative
fault function. This can be evaluated by several faults unit of time because the fault
intensity changes over time.

Mean value function represents the average collective failure connected with
every point of time.

7.2 SOFTWARE RELIABILITY MODELS

The aim of a software reliability model (SRM) is to estimate real-time problem on
a large scale, which assists the management to take appropriate decisions. So, the
human life can be squared as well as farad in finance can be controlled and there
are endless applications serve by such models. Actually, the testing of software in
different phases is very important. Critically, developers have to identify the failure
occurrence during the testing. There are so many ways through which software is
tested stepwise, such as proper identification of the problem, coding, fault deduction
and removal of fault. Altogether, the aim is to develop fault-free or zero tolerance
software. Today, many organisations are dependent on software; therefore, software
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reliability plays an important role. Actually, SRMs assess the present condition and
predict the future condition of software system. Statistically, it is explained in terms
of probability of failure and fault forecasting. Quality of any software is working
efficiently for a specific period of time after that failure occurs this shows that the
particular software has contributed its 100% output but it is not necessary however
during this period. During the testing of software, run-time errors occur, which have
to be addressed by the developers, and their successive failure/passing rate must be
examined for future improvement. SRMs are of service in daily life, for example
air traffic control system, space programme, military operations, bank services and
human life at very high cost. Generally, SRGMs are classified into two sections:
dynamic and static. In Figure 7.5, we focus on the categorisation of these models.
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7.2.1 SoME MORE APPLICABLE SOFTWARE RELIABILITY MODELS

Some important SRMs are studied in different frameworks, which are discussed
below.

7.2.1.1 Non-Homogeneous Poisson Process (NHPP)

Non-homogeneous Poisson process models use analytical approach, which describes
the software failure phenomenon during the testing. The focus of NHPP model is to
obtain the mean value function to represent the predicted several faults skilled up to
a definite time {N(r): t >0}, where N(¢) is the collective number of faults identified in
time t. NHPP models are classified into two: finite and infinite. In NHPP models,
the predicted number of faults detected given an incalculable of testing time, will be
finite failure, while the incalculable fault models assume incalculable faults would
be examined in incalculable testing. Various models listed under NHPP are used to
evaluate the reliability; some of them are as follows:

e Generalised Goel

* Goel-Okumoto

e Musa-Okumoto

* Modified Duane

e Logistic growth

e Gompertz

e Delayed S-shaped
 Infection S-shaped

¢ Yamada exponential
¢ Yamada Raleigh

¢ Yamada imperfect debugging model 1
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¢ Yamada imperfect debugging model 2
e PNZ model

e Pham Zhang IFD

e Zhang-Teng Pham

e P-Z model.

7.2.1.2  S-Shaped Software Reliability Growth Model

The failure observation phenomenon is described by S-shaped curves and mixed
exponential curves. It is considered the defects identified throughout the checking
and operating phases are evaluated correctly and eliminated completely. This pro-
cess is known as perfect debugging. However, debugging process is not always accu-
rate and it depends on developer skill, expertise, data set, real testing and operation
environment. Sometimes, testing team is not able to detect and remove the fault;
such phenomenon is known as imperfect debugging. There is a chance that while
correcting the error/fault another fault/error may occur in the software, this situation
is known as error generation and such model is known as error generation model.
Herein, all failure content augments checking headways because new faults are
inducted into the system while eliminating the actual fault. So, many times the fault
removal process is not countered precisely, which creates the imperfect debugging
environment. The imperfect debugging should be taken care of perfectly to estimate
reliability assessment measures more accurately (Figure 7.6).

S-Shaped

Exponential \

Number of Detected Faults

Testing Time

FIGURE 7.6 Graphs of exponent and S-shaped functions.
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7.2.1.3 Imperfect Debugging

Indeed, this is the fact that no software can run without having any bug (fault); during
the testing of software, it goes through various steps of testing where the process of
debugging is performed. There is certain possibility during the debugging opera-
tion that a new error will appear while removing an extant fault. More faults may be
detected during the execution of software because of imperfect debugging. The situ-
ation of perfect debugging is ideal under so many considerations. Testing and process
of debugging is a very necessary step in the fruitful enhancement of software systems.
Under the process of debugging, some records of execution have been analysed, such
as resource consumption, raw data faults and time needed to fix fault. These records
create the important information that can help the developers. On this basis, the proj-
ect manager estimates the improvement of the checking stage, evaluates whether the
allocated checking sources are enough, investigates the fault method and determines
the optimal time to stop checking and discharge the software. Along with this data
collection, failures of software are responsible for providing the quality software.
Several researchers used parametric and non-parametric techniques to carry out the
effective forecasting of software failure process. In recent years, the most important
technique has been the knowledge-dependent system, which can be estimated by any
non-linear continuous function dependent on the provided data design. Moreover,
the process of debugging is classified into three stages: error detection, fault isolation
and fault removal/correction.

Actually, the debugging process includes analysing and extending the given
program that does not meet the specifications, in order to develop new programs
that satisfy the specifications. This process identifies the accurate nature of the
error and thereafter makes it correct. During the development of software, the
errors are identified in two ways, namely program proving and program testing.
Program proving is based on mathematical logics, and program testing is more
realistic and heuristic. However, no one gives complete guarantee to provide an
accuracy of the program. The experimental metric of quality is widely used in
software testing.

Some authors use Bayesian theory to identify several faults in software. For the
removal of faults, Bayesian approach has been utilised. Traditional forecast estima-
tion models offer tools for risk estimation and allow decision-makers to include his-
torical data with subjective estimation.

7.2.1.4 Soft Computing

An important factor, reliability is for obtaining software quality as well as soft-
ware developers and software users. It concerns fault-free software operation for
a certain period of time in a certain environment. In this sequence, the problem is
based on two major factors. One is finding a mathematical model to explain the soft-
ware faults, and the other is assuming the parameters of the model that has depicted
the foremost fitting with software fault. Various algorithms are very effective and
capable optimisation methods with non-linear, multi-objective, non-differentiable
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functions. By these algorithms are to obtain the maximum likelihood estimation for
the NHPP software reliability, etc., it is the most significant non-functional needs for
software reliability. Precisely, evaluating the reliability for amenity-oriented system
is impossible.

Software reliability estimation is applicable in many areas such as maintenance
and production purposes, failures examination and requirements of manufacturing
process in software reliability. It is so difficult/hard to explain the software reli-
ability system dependent on principle-based techniques. The main challenge of such
methods is to determine the reliability of complex system by conventional methods.
In this way, the authenticity of software reliability computationally highly depends
on the software computing as well as prior hypothesis, but this hypothesis may not
always be capable in the realistic environment of the systems which go in front of
incorrect reliability hypothesis. So the traditional methods are used by adopting soft
computing methods. Consequently, soft computing methods permit to assume the
reliability by failure behaviour tendencies.

7.3 CLASSIFICATION OF SOFTWARE RELIABILITY MODELS

The classification of SRMs is dependent on software development life cycle (SDLC).
This classification of models helps us to select the appropriate category as per the
requirement. After studying various models, we shall have to choose a more suitable
and realistic model than the existing ones by identifying the unrealistic assumptions
made for these existing models; such selection of model gives more exposure to help
the management take right decision. On the other hand, the wrong selection of model
provides unrealistic and faulty results.

7.3.1  ANALYTICAL MODEL

The analytical modelling of software reliability is developed in two ways:
dynamic and static models. The following steps pertain to developing the ana-
lytical model.

e Properly define the problem along with conditions.
e Write the analytical model and test procedure.

¢ Data collection for tuning the parameters.

e Performance analysis.

7.3.2 DyNAMIC OR ProBABILISTIC MODEL

The time-dependent behaviour of the software failure is considered under dynamic
model. Probabilistic models express the failure occurrence and fault deduction and
removal just because of the involvement of randomness events. Such a model can be
divided into different categories as follows:
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e Error seeding

e Failure rate

e Curve fitting

e Reliability growth

e Program structure

e Input domain

* Execution path

* Non-homogeneous Poisson process
e Markov

e Unified and Bayesian.

Dynamic models are divided in two categories, namely discrete time model and con-
tinuous time model, which are as follows.

7.3.2.1 Discrete Time Models

Discrete time model represent the failure of software in discrete time, and time
interval may be definite or arbitrary, so discrete time models are further split in two:
definite time interval model and arbitrary time interval model. Here, the list of few
models is given.

¢ Shooman model

¢ LaPadula model

e Moranda-geometric-Poisson model
¢ Schneidewind model.

7.3.2.2 Continuous Time Models

Continuous time models describe the failure of software in continuous time.
Further, such kind of model is bifurcated in two categories: independently distrib-
uted inter-failure time models and independent and identical error behaviour models.
Few models under this category are mentioned below:

e Jelinski-Moranda model

e Schick-Wolverton model

e Littlewood-Verrall model

*  Wagoner model

e Lipow model

e Moranda-geometric model

¢ Goel-Okumoto model (NHPP)

* Goel-Okumoto model (imperfect debugging)

¢ Shantikumar model (Non-homogenous Markov process model).

Here we focus on some frequently used models triggered by the researchers that
dominate the leading contribution in increasing the quality of software reliability.
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7.3.3  StATIC OR DETERMINISTIC MODEL

These models have time-dependent behaviour in which software development
considers the following steps such as observing different sets of error and software
failure data including input data.

Generally, the static type of model is applied to study the following:

e Program count by the various operators, operands and instructions.

* Flow chart of a program through which execution of path for branches can
be counted.

e The data passing and sharing in a program by flow of data.

* No randomness is involved in deterministic model.

* Performance indices can be determined by analysing the program consistency.

Two models are defined in this category: Halstead’s software science model and
McCabe’s cyclomatic complexity model. Halstead’s software science model is applied
to obtain several faults in the program; however, McCabe’s cyclomatic complexity
model is used/applied to obtain upper bound on the number of tests in a program. We
list few static models here:

e Mills model

e Lipow model
¢ Basin model

¢ Nelson model.

Various kinds of models are developed as per the requirement of organisations/-
industries/individual customers; these models are divided step-wise according to
which category they fall in fact each model has to follow a phase wise development
life cycle of software reliability (Figure 7.7).

7.4 PROCEDURES AND TOOLS

The assessment procedure of software reliability data analysis is depicted in
Figure 7.8. Yamada et al. (1989) proposed a software reliability evaluation tool
wherein analysis and assessment procedures are mentioned. The flow chart of the
process includes the program package using the comfortable language of devel-
oper. SRET involves three SRGMs based on NHPP, such as exponential, delayed
S-shaped and inflection S-shaped models, along with two deterministic models
such as the logistic and Gompertz growth curve models. Soft reliability evaluation
tool is helpful and useful for software engineers/software developers to perform the
software reliability assessment/evaluation in a systematic and interactive manner
without knowing the details of data analysis. The flow chart of the procedures is
depicted.
A list of the tools of the SRM is discussed in Table 7.1.
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Software Development Life Cycle (sDLC)

FIGURE 7.7 Life cycle of software reliability development models.
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TABLE 7.1

Software Reliability Assessment Tools

Tool Integrated SRGM Developer Reference
SORPS e Delayed S-shaped SRGM IBM Obha (1984)

Inflection S-shaped SRGM
Exponential SRGM

SPARC e Logistic growth curve model Toshiba Nakamura et al.
¢ Gompertz growth curve model (1985)
e Delayed S-shaped SRGM
Software Reliability e Exponential SRGM Toshiba Komuro (1987)
Evaluation Program ¢ Delayed S-shaped SRGM Engineering
e Logistic growth curve model
¢ Gompertz growth curve model
SOREM * Exponential SRGM NEC Uemura et al.

¢ Delayed S-shaped SRGM (1990)
¢ Logistic growth curve model
¢ Gompertz growth curve model
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7.5 LITERATURE REVIEW

For more than last four decades, researchers have thoroughly analysed and examined
various techniques to get best service, which is fault-free or zero error tolerance soft-
ware. The related literature is analysed by the researchers considering different frame-
works such as SRM, software release time, imperfect debugging, application of soft
computing in the development of reliability models and availability of software and
hardware. Thoroughly, we review so many articles. Schick and Wolverton (1978)
introduced an SRM that is divided in two categories: data domain and time domain.
The detailed characterisation of advantages and disadvantages of models is also
emphasised. Goel and Okumoto’s (1979a,b) Markovian model is described with
debugging, and all the faults cannot be removed with assurance as and when they are
detected. Obha (1984) explained the enhancement of traditional software reliability
interpretation models by manufacturing estimates based on more practical. Yamada
(1984) described an S-shaped SRM and its application. Defective amending and soft-
ware availability models are also mentioned. Goel (1985) focused on main modelling
methods and gave a vital analysis of the restraints and usability of the models during
the software enhancement. Goel (1985) and Hsu and Huang (2011) analysed an SRM
for complex system under certain assumptions and limitations. Software reliability is
varied on operational environment; proper metric is required to analyse the degree of
correctness and quality of software, which definitely enhance the testing efforts.
Bittanti et al. (1988) expressed a model of software reliability that is sufficiently fea-
sible to explain a variety of reliability trends. Obha and Chou (1989) explained the
enhancement of traditional SRGM by eradication of the arbitrary presumption that
faults in a program can be completely doffed. Kapur and Garg (1990) explained a
SRGM under defective amending on the basis of non-homogeneous Poisson process,
and the parameters of the models are evaluated. Yamada (1991) explained the statisti-
cal extent and judgment of software reliability. The methods are dependent on SRGMs
introduced in Japan. Kapur and Garg (1992) explained an optimal joint plan explained
for such a SRGM depending on the cost-reliability criterion. Van Pul (1992) proposed
the utilisation of software reliability theory, which is important for asymptotic condi-
tions of the model. Sahinoglu (1992) suggested the random variable X/sub rem/, which
is the residual number of software failures. Yamada et al. (1992, 1993) suggested two
software reliability judgment models with defective amending by presuming that new
errors are occasionally proposed when the errors initially hidden in a software system
are emendated and doffed during the checking stage. Kuo and Yang (1995) examined
the prediction of future failure time and future reliability. Wood (1996) depicted that
predictions from simple models of fault occurrence times correspond sanely well with
the field data to evaluate across multiple software releases to find the suitable models
and obtain belief in the results. Pham and Zhang (1997) encapsulated SRMs which are
dependent on a non-uniform Poisson method. Chen and Singpurwalla (1997) sug-
gested the unite the various different approaches to growth of reliability models and
gives customary design under the software reliability. Gokhale et al. (1998) gave an
analytical approach to architecture-based software reliability. The heterogeneous
software system based on architecture is used. Pham and Pham (2000) proposed two
models prophesy average time when later fiasco depended on Bayesian strategy.
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Tokuno and Yamada (2000) provided an SRM to explain the imperfect debugging
atmosphere; in this way, the fault correction activity corresponding to failure of each
software package is not accomplished completely. Popstajanova and Trivedi (2001)
evaluated the software behaviour from the initial stage to the design stage to imple-
mentation and final deployment. Classification and identification is proposed for
architecture-based models. Chang (2001) investigated an SRGM under non-
homogeneous Poisson process to estimate the unknown parameters by least squares
method for change point model; such a new approach has more applicability in reli-
ability engineering. Pham and Zhang (2003) introduced a SRM that includes the con-
ceal information, and this information very significant for both software developers
and software products. Shyur (2003) utilised the failure data set of different projects
to examine software reliability growth model (SRGM) and error analysis with the
consideration of defective amending and change point problem to estimate the param-
eters. The error detection is challenging because it is dependent on testing environ-
ment, resource allocation and strategy. The classical maximum likelihood method is
used. Zhang et al.’s (2003) defective amending is speculated in the view that new
errors can be acquainted into the software during amending and the discovered errors
may not be doffed totally. Huang et al. (2003) discussed various SRGMs based on
NHPP, which are extensively expressed by using arithmetic, geometric and harmonic
mean with this general transformation is formulated. Gokhale et al. (2004) deter-
mined analytical results for architecture-based SRM forecasting and its performance
evaluation. Kapur et al. (2004) SRGM are carried out for distributed development
environment. NHPP models consider the software system that includes a finite num-
ber of reused subsystems, which has adverse impacts on the system; however, the new
subsystem provides the growth uniformly. Jeske and Zhang’s (2005) SRGM with vari-
ous frameworks is examined by using architecture-based SRM in different test envi-
ronments along with practical problems wherein the diversified behaviour of test and
operational profiles is discussed. Huang (2005) proposed new theorems and data col-
lection for software testing in real-time applications, and logistic testing effort func-
tion and change point parameter are applied. Actually, fault detection is a change
between the processes of software development. Teng and Pham (2006) produced a
new technique for estimating software reliability in the meadow surrounding, which
gives a workable means to model consumer environments and moreover generates
alterations to the reliability prophecy for alike software goods. Zhang and Pham’s
(2006) methodology of field failure rate prediction is explained, and the test data and
filed data are explored, which has more concern of SRGMs. Particularly, the mis-
match of operational profile of the test and filed environments is discussed. Predicting
field failure rates include that fault removals in the field are usually non-instantaneous
and fixes of certain faults reported in the field can be delayed. Wang et al. (2006)
explained the architecture-based approach for modelling the software reliability, and
the different characteristics of architectural styles are used to incorporate the non-
uniform behaviour of software embodying heterogeneous architecture. Singh et al.
(2007) retrospect in what way distinct SRGMs have been grown where error recogni-
tion method is based not only on the several remaining error content but also on the
time of trials, and observe in what way these models can be explained as the post-
poned error recognition model by applying a prolong aftermath aspect. Su and Huang
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(2007) introduced an artificial neural network-dependent method for software reli-
ability evaluation and modelling. Pham’s (2007) imperfect debugging of the software
should be identified, and the parameters on which it depends are examined/tuned.
Fault detection is critical exercise during the development of software. Kapur et al.
(2008) evaluated the fault detection of the software at the time of release. Ramasamy
and Gopal (2008) proposed Goel-Okumoto SRGMs to examine the failure intensity
function by using shifted Weibull function. Yang (2010) studied data-driven SRMs
with multiple-delayed-input single-output architecture with the consideration of recent
failure. Hsu and Huang’s (2011) adaptive approach of path testing is used for modular
software system, which indeed is helpful and useful to estimate the studied software
reliability. Hsu and Huang (2010) suggested a modified genetic algorithm to obtain the
parameters of SRGMs. Trials dependent on real software fiasco data are accom-
plished, and outcomes depict that the propounded genetic algorithm is highly efficient
and quicker than conventional genetic algorithms. Huang and Lyu (2011) proposed a
powerful technique to use under testing and operational phases for software reliability
assessment and forecasting. NHPP-based SRGMs are derived using unified theory
with the idea of multiple change points is also demonstrated. Rahamneh et al.’s (2011)
genetic programming is applied to obtain the best performance of SRGM in an auto-
mated way. The proposed model is compared with Yamada S-shaped model and few
NHPP models, which validate that the obtained results are superior. Ahmad et al.
(2011) presented a software enhancement of expense curve and to compare the effi-
cacy for the suggested model and another extant model. Mahapatra and Roy (2012)
deployed the modified J-M model which explained the flawed debugging method with
usability of the model has been depicted on the failure data set of Musa. Subburaj
et al. (2012) described NHPP and SRGM to analyse the failure data adequately for
improving the quality of debugging such as imperfect debugging, perfect debugging
and efficient debugging. Lai and Garg (2012) studied extant SRMs dependent on
NHPP, which allege to enhance software quality by efficient recognition of software
faults. Okamura et al. (2013) suggested SRGMs, which are mathematically manage-
able and have enough capability of appropriate to the software failure data with the
given parameter estimation algorithm for the SRGM with normal distribution. Peng
et al. (2014) developed a testing method for analysing the imperfect debugging with
the consideration of detection and correction. Kaur and Sharma (2015) discussed the
comparative study between failures and accuracy estimation. Li et al. (2015) estab-
lished the idea to incorporate the S-shaped function into non-homogenous Poisson
process software reliability model for imperfect software debugging. Wang et al.
(2015) studied log logistic distribution for evaluating the imperfect software debug-
ging. Kim et al. (2015) propounded an efficient method to obtain the parameters of
SRGM applying a real-valued genetic algorithm (RGA). Present SRGMs crave the
appraisement of the parameters like as total number of unsuccessful or the unsuccess
detection rate applying numerical methods or least square estimation. Jin and Jin
(2016) examined the enhancement and utilisation of a swarm intelligent optimisation
algorithm, specifically/as a quantum particle swarm optimisation (QPSO) algorithm,
to improve these parameters of SRGMTEEF as well as comparative relation with other
existing models. Li and Yi (2016) introduced an improved SRGM to reconsider the
reliability of open-source software (OSS) systems to certify the model’s portrayal
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applying various real-world data. Hanagal and Bhalerao (2016a, b) discussed the con-
cepts of SRGMs, which have been a moderately fruitful tool in technology. Wang
et al. (2016) discussed the novel idea to enhance the optimised SRM wherein function
implement successively with exponential distribution to best fit a logarithmic devia-
tion between observed value and estimated value from fault data set. Optimised mod-
els fit the fault data set accurately in a better way than traditional models based in
software testing. Chatterjee and Shukla (2016) considered two kinds of software
faults, such as independent and dependent. Also, the fault reduction rate is treated as
a proportionality function. The performance of the model is much better on failure
data set, which is evaluated on the bases of predicted and estimated number of faults.
Li and Pham (2017) considered fault detection based on testing coverage under the
uncertainty of operating condition. Li and Pham (2017) suggested a new model with
the deliberation of the faulty recognition rate dependent on the inspecting coverage
and pondered on cover ID subject to the ambiguity of operating environments. Erto
et al.’s (2018) generalised inflection S-shaped SRGM is discussed with its properties.
Maximum likelihood estimators are used to formulate the model parameters. Optimal
release time of the software is also emphasised. Hanagal and Bhalerao (2018) consid-
ered an S-shaped SRGM with the concept of error generation based on NHPP.
Estimate whether the data is performed using a maximum likelihood technique.
Choudhary et al. (2018) propounded an efficient parameter appraisement method for
SRGMs applying firefly algorithm. Software unsuccessful rate with respect to time
has been a leading apprehension in the software industry. Li and Pham (2019) applied
to elicit models that include the ambiguity of operating environments, which gives the
pliability in considering a distinct faulty recognition rate and random environmental
element and so on. Hanagal and Bhalerao (2019) suggested a model for comparison
with standard models on the basis of different data sets. Kaliraj et al. (2020) exposed
SRMs in different frameworks for their utility and applicability. Tahere and Yaghoobi
(2020) propounded a modified differential evolution (MDE) algorithm for resolving a
exalt amplitude non-linear optimisation task. The topic obtained maximum likelihood
estimation (MLE) for the parameters of a NHPP software reliability model. Amar
et al. (2021) described the hybrid reliability-based design optimisation (RBDO) tech-
niques used in HEMT method to enhance its performance and reliability are described.
The use of RBDO methods needs the enhancement and coupling of two models. Lin
and Chen (2021) propounded two new models including time-varying unsuccessful
intensity in each stage. These models receive the plan from the accelerated failure-
time models. And modification component is brought in to develop the relationship
between two consecutive position parameters. Nor et al. (2021) suggested the direc-
tion of the similarities between the included domains and the difficulties in reliability
science carrying out are unveiled. The techniques deployed in respective industry are
described, with each stamina and frailty investigated, together with useful examples.
Shorthill et al. (2021) suggested a new and collective reach to the reliability analysis
case study of BAHAMAS, which is depicted to be a pliable tool whose usability is
constructed to handily include traditional probability hazard evaluation. Robinson
et al. (2021) discussed a software construction design, which gives a viable system for
building self-steady models and coercing feedback to limit analyst fault. The data of
various SRMs are expressed by a pie chart in Figure 7.9.
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FIGURE 7.9 Classification of software reliability models.

7.6 CONCLUSIONS

Software reliability models have been developed in the last four decades. The devel-
opment of these models is under different assumptions, conditions and environment.
It is generally observed that these models may be in conflict with one another/each
other. There should be an effective and efficient procedure to recognise/identify the
most suitable/appropriate model for specific kind of problem along with the condition
under which it performs. The performance of the software is a big concern because
it immediately reflects the quality; such quality assures the customer satisfaction
and further revenue generation for company. There is a need to develop such tech-
nique which supports evaluating many errors that remain in the application of soft-
ware at the release time. At that point if the reliability is below the acceptable level,
then it refers to re-testing until the desired level of reliability is achieved definitely
increase the test expenditure amount for debugging process. Kubat and Koche (1983)
proposed at the release time various test assay manners to identify many errors in
the software. Singpurwalla (1991) investigated a model to predict the reliability of a
software program, which really helps to determine the attempt needed before stop-
ping, checking and amending of the software. Acton et al. (2014) developers of the
software products are keenly interested to provide the best quality of software by
defining the problem and evaluate metrics concern to quality and again use such
metrics to enhance the quality of software products. Various matrices and models
were proposed to measure the quality of the software. During the development phase
of software the fault detection can be emphasised so that the failure occurrence has
been removed. Software reliability is a very important measure in planning as well as
controlling the sources through the development; therefore, high quality of software
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can be developed. The best quality of the software is required by the society because
it is widely used in finance, health, aviation, defence and many more areas.

In sequencing to achieve the best reliability of the system, a broad test plan is
essential, which ensures us that all the necessary components have been incorporated
and tested. The main issues has to comprise how to quantify reliability, how to design
test, cost and resource constraints, what are the inference of test failures and which
type of the test should be re-run so by adopting the following correction the fault may
be removed or rectified. These all concern issues of uncertainties in the quality of
software and testing efforts have been focused by Yamada (1993).
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8.1 INTRODUCTION

Desktop computers and the software that runs on them have a tremendous impact
in the society [1]. Digital instrumentation has replaced analogue and mechanical
components in electronic devices such as autos, washers, TV, gasoline pumps and
microwave ovens. The software industry and its related enterprises are growing at a
breakneck speed.

Processors and development tools systems are prepared to offer minimalistic
design, adaptable handling, a richness of capabilities and a competitive price as the
cost of processing continues to decline and the amount of influence rises. Computers
and smart materials are fast displacing their mechanical counterparts from the mar-
ketplace, just as machinery supplanted handcraft during the Industrial Revolution.
Almost all software systems have a high level of dependability as their fundamental
dynamic attribute. End-users bear the burden of increased costs as a result of unre-
liable software [2]. In computing, reliability is a measure of how well customers
believe a software application or software system performs in providing the services
they require.

Programming is becoming increasingly important in the design of complex
frameworks nowadays, as seen by the increasing importance placed on it. Because
the product is a scholarly item, it is not constrained by the requirements of the real
world, as it would be in a comparable equipment framework, and this is the primary
reason for this distinction [3]. Because programming is always performed in the con-
text of a larger framework, the reliability requirements for the framework are sent
down to the product component(s) and become the ideal programming reliability
requirements.

In terms of programming dependability, it is one of the most fundamental barri-
ers between high-quality programming and high-reliability frameworks. It is defined
as the possibility of disappointment-free programming activity occurring in a set
climate for a predefined period of time under certain conditions [4]. A product dis-
appointment occurs when the programming’s execution deviates from its specifica-
tions. It is the result of a product deficiency, also known as a plan deformity, which
is performed by a specific contribution to the code during its execution, resulting in
a plan deformity.

Programming dependability testing is performed at various points during the pro-
cess of designing programming for a framework in an effort to determine whether
or not the product’s steadfast quality requirements have been (or can be) met [5]. The
findings of the inquiry serve as input to the architects and as a measure of the overall
quality of the programming. The evaluation and expectation activities are the two
exercises that are associated with the programming dependability examination. At
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some point in the course of action, quantifiable anticipating techniques and steadfast
quality models are applied to disappointment information gathered from testing or
during activity to assess the dependability of software development projects in one
way or another [6]. In any situation, evaluation is typically undertaken to determine
the level of dependability that has been achieved from a previous point in time to the
current point in time. The expectation action, on the other hand, sets the dependabil-
ity models that will be used for assessment and then uses the available information
to predict future reliability. Program dependability models can be assigned in two
ways: as dark box models or as white box models, as a general rule. The fundamental
distinction between the two is that white box modelling considers the item’s frame-
work when determining supportability, whereas black box models do not [7]. The
dependability of an assessment or programming architecture is proportional to how
well clients believe it provides the forms of assistance that they require. This chapter
seeks to provide a study of coding dependability, which has been divided into three
sections: demonstrating, estimating or measurement, and upgrades.

Programming is defined as the prospect of long-term programming activity in a
preset environment that is devoid of disappointment; reliability of the programming
is described in [2]. While electronic and mechanical hardware can age and degrade
with time and use, the software that runs on it will remain the same. After a period
of time, programming will not change unless it is altered or redesigned with the
intention to do so. When it comes to programming quality, reliability is one of the
most important characteristics to consider. Other important characteristics to con-
sider include utility, convenience, execution time, workability, capacity, installability,
viability and documentation [8].

8.2 RELIABILITY CURVE

Program or application dependability is part of the amount of disappointments faced
by an individual consumer of that program or application. When a product is being
implemented, it’s easy to become disappointed. Programming failure occurs when a
customer or client requests or expects a service lives.

A malfunctioning ATM machine, which frequently occurs when the machine
does not remember your last withdrawal, will likely make you happy. However, in
planes, heart pacemakers and radiation treatment machines, a product error can lit-
erally save people’s lives by saving them from certain death or serious injury [9].
Figure 8.1 depicts the disappointed characteristics caused by long-term usage of the
equipment, also known as the bath that isn’t provided by the program. Programming
errors have saved a great many people’s bend. Section consumption, indeterminate
life, and end-of-life or wear out are represented by A, B and C, respectively.

The natural factors that make equipment to wear out do not have any impact on
programming unwavering quality. A superior bend is displayed in Figure 8.2 when
programming unwavering quality is projected on similar tomahawks. As per depend-
ability assessment focus, 1996, there are two essential varieties between equipment
and programming bends. One change is that in the last segment, programming
doesn’t have a developing disappointment rate as equipment does. Currently, soft-
ware is becoming dated, and no new ideas for upgrades or modifications exist. That’s
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why disappointment won’t take the place of it. The second contrast is that at the
critical life stage, software may see an unusual increase in the rate of disappointment
each time an improvement is achieved. It’s normal for the disappointment rate to go
down after a while due to any defects that were discovered and repaired during the
process of improvement.

8.3 REVIEW OF SOFTWARE RELIABILITY MODEL

Various programming dependability models have arisen as individuals attempt to
comprehend the characteristics of how and why programming falls flat, and try to
evaluate programming dependability. Something like 200 models have been pro-
posed by programming specialists, yet how to gauge programming dependability
still remains inexplicable.

In the product improvement measure, it is extremely average to wind up with an
item that has numerous configuration absconds, for example deficiencies, or preva-
lently known as bugs [10]. For a specific contribution to the product, these short-
comings are enacted, bringing about a deviation of the product conduct from its
predefined conduct, for example a disappointment. Once disappointments are rec-
ognised through the testing interaction and the comparing fault(s) are found, then, at
that point expecting that these issues are consummately fixed, for example the way
towards fixing a shortcoming, didn’t present another shortcoming, programming
unwavering quality increments. In the event that the disappointment information is
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recorded by the same token as far as number of disappointments noticed per given
time frame or as far as the time between disappointments, measurable models can be
utilised to recognise the pattern in the recorded information, mirroring the develop-
ment in unwavering quality. Such models are known as programming unwavering
quality development models (SRGMs) or development models overall [11]. They are
utilised to both anticipate and gauge programming unwavering quality.

All SRGMs are of the discovery type since they just think about disappointment
information, or measurements that are accumulated if testing information is not
accessible. Black box models don’t think about the interior design of the product in
unwavering quality assessment and are called as such in light of the fact that they
consider programming as a solid element, a black box [12].

In the ensuing bits of this segment, five SRGMs are introduced. These are to
be specific the Jelinski-Moranda de-eutrophication model, Nelson model, the Musa
essential execution time model, the upgraded NHPP (ENHPP) model and the
Littlewood-Verrall Bayesian model [13].

8.3.1 MobEL OF J-M DEe-EUTROPHICATION

There will be N programming issues at the beginning of testing, each one distinct
from the others and causing disappointment during testing, according to this model.
No new allegations are levelled throughout the troubleshooting stage because a pre-
viously discovered problem is fixed with confidence in a short amount of time. The
rate of product disappointments or hazard work is stated as a percentage of total time
between the 1st and ith disappointments (t;).

Z(t;)=0[N-(I1-1)].

A proportionality @ stable state is where there is a constant value. Remember that
this risky work is constant between disappointments, but it lessens in steps after the
erasure of each flaw.

8.3.2 MobEL oF ENHANCED NHPP

NHPP (ENHPP) is a system for limiting disappointment that has been enhanced. A
special case of the ENHPP model is an NHPP model that has restricted mean esteem
capacity. The model’s in-depth details explicitly links time-varying test inclusion and
blemish defect location.

This model’s test inclusion is defined as the ratio of the number of potential defect
localities honed by a test to the total number of potential shortcoming destinations
[14]. There are “the programme substances addressing either primary or utilitarian
programme components whose sharpening is deemed important towards putting up
the functional trustworthiness of the product item” as potential defect destinations.

The model makes the accompanying suspicions:

1. “Shortcomings are consistently appropriated over all potential flaw locales”.
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2. “The likelihood of identifying a shortcoming when an issue site is sharpened
at time t is cd(t) =K, (a steady), the shortcoming discovery inclusion”.
3. “Deficiencies are fixed consummately”.

8.3.3 MobDEL oF Musa ExecutioN TiME

In this model, the assumptions are the same as in the J-M model; however, the cycle
shown is the number of disappointments during predefined execution time periods
instead of the J-M model. It receives funding for its high-risk work from

Z(r)=0f (N — nc).

In this equation, r represents how long it’s been since the program was last ran, F
represents how often it’s run, which indicates a generally constant state, and nc rep-
resents how many times it’s been modified while it was running (0, r). This model
demonstrates how much the risk work is dependent on the execution time.

8.3.4 MoDEL OF NELSON

The dependability of the programming is estimated, according to Nelson [15], by
running the product for a test with n inputs and seeing how it performs. A random
selection of n inputs is made from the information space set E=(E;: i=1,..., N),
where each E, represents the arrangement of information esteems intended to be used
to complete a run [16]. If ne is the number of information sources that resulted in
execution failures, then an unbiased gauge of programming unwavering quality may
be calculated from that number

Rlis {1-(ne/n)} and so on.

There isn’t a single life-sized replica that may be used throughout the entire festival.
No model is complete; one life-sized model may be ideal for a certain program-
ming set-up, but it may also be completely off-screen for a variety of other concerns,
depending on the situation. The Markovian model is the foundation for the majority
of present insightful approaches to dealing with gain dependability measures for
application programs, and they are predicated on the chance of superb disappoint-
ment time conveyance as their primary premise [17]. The Markovian models are
reliant on the fundamental problem of an insurmountably large state space as their
starting point.

Although strategies have been provided to improve the dependability of life-sized
models of segments that can’t be represented by utilising the conventional insight-
ful methods, they are also confronting the state space blast difficulty. An engaging
substitute to an insightful model, however, is a recreation life-sized model or model
that depicts a technique being described in expressions of its curios, schedule, inter-
relationships and cooperative efforts in such a methodology that one may simply
perform probes on the model, rather than on the actual framework, preferably with
an undefined result.
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8.3.5 MoDEL OF LITTLEWOOD-VERRALL BAYESIAN

All of the previous models assume that information on disappointment is readily
available. They, too, use tried-and-true quantifiable approaches such as the maxi-
mum likelihood estimation (MLE), in which model bounds, no matter how hazy, are
defined and graded based on the available data. The drawback of this approach is that
when disappointment information is unavailable, model bounds cannot be examined.

However, MLE techniques are unreliable if there is a lack of available informa-
tion, as this could lead to faulty or inaccurate assessments. The Bayesian SRGM
analyses constant quality development in terms of both the number of issues that
have been identified and the absence of disappointment [18]. Bayesian models also
assume that the model borders had a previous appropriation without disappointment
information, reflecting judgement on obscure historical knowledge, such as a former
form and perhaps a well-qualified assessment of the product Bayesian models.

8.3.6 MobEL oF WHITE Box SOFTWARE RELIABILITY

White box programming dependability models think about the inward design of the
product in the unwavering quality assessment rather than discovery models, which
just model the associations of programming with the framework inside which it
works. The dispute is that discovery models are lacking to be applied to program-
ming frameworks with regard to segment-based programming, expanding reuse of
segments and complex communications between these parts in a huge programming
framework. Besides, defenders of white box models advocate that dependability
models that consider part reliabilities, in the calculation of by and large program-
ming dependability, would give more practical gauges.

The inspiration to create the supposed “engineering”-based models incorporates
advancement of methods to dissect performability of programming worked from
reused and business off-the rack (COTS) parts, performing affectability examina-
tions, for example contemplating the variety of use unwavering quality with variety
in part and interface dependability, and for the ID of basic parts and interfaces [19].

In these white box models, parts and modules are recognised, with the suspicion
that modules are, or can be, planned, carried out and tried autonomously. The engi-
neering of the programming is then distinguished, not in the feeling of the custom-
ary computer programming engineering, but instead in the feeling of cooperations
between parts. The cooperations are characterised as control moves, basically sug-
gesting that the engineering is a control stream chart where the hubs of the diagram
address modules and its advances address move of control between the modules [20].
The disappointment conduct for these modules (and the related interfaces) is then
indicated as disappointment rates or reliabilities (which are thought to be known
or are processed independently from SRGMs). The disappointment conduct is then
joined with the engineering to appraise generally programming dependability as an
element of segment reliabilities. The manner by which the disappointment conduct
is joined with the engineering recommends that three conventional classes of white
box programming unwavering quality models exist: way-based models, state-based
models and added substance models.
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8.4 METRICS OF SOFTWARE RELIABILITY

Estimation is indicated and careful in other designing region and it isn’t deter-
mined in programming. Albeit bothering, the chase of evaluating programming
dependability has not ever stopped. Except if presently, we actually don’t have
any magnificent method for estimating application dependability. Estimating pro-
gramming dependability stays a troublesome concern since we don’t have a decent
method to comprehend the idea of programming. There isn’t any clear definition
to what aspects are including program unwavering quality. We can’t find a suit-
able answer for measure programming unwavering quality, and the majority of the
highlights including programming unwavering quality. It is enticing to quantify
whatever disturbing unwavering quality to mirror the highlights, on the off chance
that we can’t measure unwavering quality right away [21]. The present practices of
programming unwavering quality estimation can likewise be separated into four
classes [13].

8.4.1 Probuct METRICS

Many variables are mentioned in terms of programming complexity, effort to advance
and consistency. A programming project’s source code is measured in “lines of code”,
which is also referred to as “kilo lines of code” (KLOC). It’s probable, in any event,
that there isn’t a standard tally mechanism at the present time. Commentary and
other non-executable explanations are typically excluded from source code calcula-
tions. Programs written in a different language than the one being analysed cannot
be accurately analysed using this methodology. Lines of code for Java and C sharp
programming will be distinct from one other. This direct approach to code develop-
ment and maintenance is also being questioned in light of ongoing breakthroughs in
code reuse and code cycle technique.

This statistic is used to measure how far a suggested programming effort has
progressed based on information sources, yields, ace archival requests, and inter-
faces reviewed in detail. It’s used to gauge how far along a piece of suggested
programming is in execution. Once the product’s capabilities are known, the tech-
nique may be used to estimate the size of the framework. To put it another way, it
measures how difficult the application is to use. It is unaffected by the program-
ming language used and makes an informed guess about the presentation that was
dropped at the client. There are many corporate applications that use it; however,
it is not designed to operate in a logic or real-time setting. Because dependabil-
ity in programming is closely linked to complexity, the first step in dealing with
complexity is to recognise it. To select the amount of product control structure
complexity, complexity-oriented measurements use a graphical representation of
the code. When it comes to delegating authority, McCabe’s intricacy metric is a
good one to use.

Test inclusion measurements are a method of assessing deficiency what’s more,
dependability with the guide of performing tests on program items, in light of the
supposition that programming dependability is an element of the segment of applica-
tion that has been successfully confirmed or set up.
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8.4.2 Project MANAGEMENT METRICS

Analysts have understood that on the money organisation can bring about a superior
item. Examination has affirmed that a relationship exists between the improvement
strategy and the potential to finish items on schedule and inside the liked accept-
able targets. The cost increases when designers utilise deficient strategies. Higher
dependability may likewise be realised through using higher progress approach, haz-
ard organisation strategy, design organisation approach, etc.

8.4.3 Process METRICS

Focused with the understanding that the nature of the item is a momentary pre-
sentation of the measure, measure measurements can be used to appraise, uncover
and improve the dependability and top calibre of programming. In International
Organization for Standardization ISO-9000 certification is the accepted standard for
a family of norms produced by ISO (ISO).

8.4.4 MEeTrICS OF FAULT AND FAILURE

Determining whether the product is getting close to giving a disappointment-free
experience will need gathering deficiency and dissatisfaction measures. Customers’
screw-ups (or other issues) after delivery are tallied up and assessed in a small method
to attain this purpose, as are the number of inadequacies detected during the course
of checking out (i.e. before conveyance). As with fault measures, the test technique is
very similar in that it can complete all assessments yet lead to disappointment if the
looking at condition does not match the total program utility. Buyer feedback on mis-
takes that occurred after the application’s release is most commonly used to calculate
customer dissatisfaction levels. Using the disappointment data gathered, it is possible
to compute disappointment thickness, mean time between failures (MTBF), or, on
the other hand, screw-ups or various boundaries to evaluate or anticipate program
unshakable quality. In order to select the most appropriate metric, it is necessary to
consider the type of system to which it will be applied, as well as the requirements of
the machine area. It is possible that specific dependability measurements for one-of-
a-kind sub-programs may be required for specific projects and will be appropriate in
some cases. Table 8.1 contains a list of some of the essential measurements that were
used to determine the dependability of a program or a programming environment.

In certain situations, framework clients are normally informed about how the
framework will fall short in the long run, most likely due to the fact that restarting
the framework would be a significant expenditure. During these instances, a mea-
surement based on the cost of disappointment event (ROCOF) or the inference time
to disappointment should be employed.

Because there may be a cost associated with failing to provide assistance in some
cases, it is imperative that an organisation’s framework consistently meets a request
on a number of occasions. The number of disappointments experienced over a period
of time is less relevant. The probability of disappointment on request (POFOD) mea-
surement must be applied in these situations. It is possible that clients or framework
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TABLE 8.1

Software Reliability Metrics

Metrics Content Example

MTTF This is a proportion of the time between noticed ~ Frameworks with long exchanges
framework disappointments. For instance, a such as CAD frameworks. The
MTTF of 500 methods that one disappointment ~ MTTF should be more prominent
can be anticipated each 500 time units. In the than the exchange time.

event that the framework isn’t being
transformed, it is the proportional of the

ROCOF.
ROCOF This is a proportion of the recurrence of event Exchange handling frameworks,
with which unforeseen conduct is probably operating system.

going to happen. For model, a ROCOF of
2/100 implies that two disappointments are
prone to happen in every 100 functional time
units.

This measurement is at some point called
disappointment power.

POFOD This is a proportion of the probability that the Security basic and constant
framework will bomb when a help demand is frameworks, for example
made. For instance, a POFOD of 0.0001 equipment control frameworks.

implies that one out of 1000 help solicitations
might bring about mistake.

AVAIL This is a proportion of how possible the Ceaselessly running frameworks,
accessibility framework is to be accessible for use. For for example phone exchanging
instance, an accessibility of 0.998 implies that in frameworks.
each 1000 time units, the framework is probably

going to be accessible for 998 of these.

administrators will be reminded on a regular basis that the cycle is imminent when a
request for administration is submitted. If the methodology is unavailable, they will
bring about some tragedy for themselves. Accessibility (AVAIL) considers the time it
takes to re-establish or restart a service.

8.5 IMPROVEMENT TECHNIQUES OF SOFTWARE RELIABILITY

The improvement of programming frameworks includes a grouping of routines for
creating new things, which provides numerous alternatives for infusing human falli-
bilities. Bumbles may first appear during the actual implementation of the approach,
when the objectives may be misunderstood or incompletely considered. Because
people can’t participate in and preserve a communication with perfection, a qual-
ity assurance project is used in conjunction with programming enhancement. Spot
on developing strategies, such as programming testing or looking at, programming
approval and programming check, can help to improve the dependability of pro-
gramming in general.
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8.5.1 SOFTWARE TESTING

Examining or testing a program produced with the assistance of programmers is an
exciting stage in the investigation of the program under consideration. During the
course of the previous stage of use designing endeavours, the professional makes an
attempt to construct programming from a theoretical concept to an evident finished
product. To “wreck” the application, the expert assembles a series of tests that are all
run at the same time. App development’s only destructive stage is testing, or rather
the test planning stage of developing applications. Programmers are often optimistic
individuals, regardless of their mode of operation.

Testing implies that the engineer discards assumptions about the “correctness”
of the programming that has just been written and avoids a conflict of interest that
might arise when mistakes are discovered throughout the process. If the examination
is conducted in a practical manner, it will be possible to identify a flaw in the applica-
tion. Giving it a shot demonstrates that product administrations give the impression
of being trustworthy when dealing with specific customers, and that social and pro-
ficiency criteria appear to have been followed.

8.5.1.1 Principles of Software Testing

Before employing strategies to construct viable programming tests, a programmer must
first understand the following fundamental concepts that underlie programming testing:

1. There should be a clear distinction between the tests and the client’s require-
ments in all cases: Code testing’s goal is to find and fix mistakes, as we’ve
seen. As a result, the most critical flaws are those that cause the program to
fall short of meeting the needs of the customer.

2. Tests should be planned far in advance of the start of testing: When the
requirements model is completed, the test planning phase can begin. When
the configuration model has been established, the tests can begin in their
nitty-gritty detail. All tests can be planned and organised in this manner
prior to any code being written in the first place.

3. When it comes to software testing, the Pareto rule is applicable: 80% of all
defects found during testing will most likely be visible to 20% of all soft-
ware segments, according to the Pareto rule. Of course, the real test is to
separate these said parts and put them to the test.

4. Testing should begin “in the little” and advance to testing “in the large”
as the following: The first tests that are planned and completed are mostly
focused on single parts of information. Test centres alter as testing pro-
gresses, with the goal of identifying problems in groups of segments and
finally in the entire framework being discovered.

5. It is impossible to imagine an exhaustive testing procedure: Even a very
well-estimated program will have a large number of way changes, which is
particularly significant. As a result, it is difficult to test each of the possible
combinations of approaches. You can cover program logic sufficiently and
make sure that all conditions are worked out in part level plan before the
program begins despite this.
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6. To be effective, attempting should be guided by a free outsider: Tests that
are performed to their highest potential for uncovering errors, which is the
primary goal of testing, are considered to be at their highest potential. The
product engineer who created the framework isn’t the most qualified person
to oversee all of the product’s quality assurance tests.

8.5.1.2 Reliability Testing Importance

The device of PC programming has spread into a wide range of extraordinary indus-
tries, with its application forming a critical component of mechanical, commer-
cial and military frameworks, among others. Because of its multiple capabilities in
defending head programs, programming unshakable quality is currently a study topic
of interest in the field of head programming. Regardless of the manner that application
design is fitting the fastest construction innovation of the previous century, there isn’t
a full, rational, quantitative measure that can be used to evaluate their effectiveness.
Programming unwavering quality testing is being used as a tool to assist in the exami-
nation of these application design advancements.

A thorough evaluation of unshakable quality is essential in order to increase the
productivity of application items and the programming progress approach over time.
The importance of evaluating programming dependability can’t be overstated due to
the fact that it is quite useful for application directors and specialists.

Testing is used to ensure that the product’s uncompromising quality is maintained:

1. In order to establish an economically sound estimate of how long the appli-
cation will run without disappointing, a sufficient number of test conditions
must be completed for a suitable period of time. We need long-term experi-
ments in order to detect abandons that require some effort in the reasoning
process to develop.

2. The dissemination of test occurrences should match the arranged functional
profile of the program. The more likely a capacity or subset of the applica-
tion is executed, the better the level of sweep cases that should be assigned
to that capacity or subset.

8.5.2 Type OF ReuIABILITY TESTING

Programming unwavering quality testing incorporates highlight testing, load testing
and relapse testing.

Highlight test: Feature testing surveys the highlights outfitted through the prod-
uct and is completed in the following advances:

e Each activity inside the application is performed once.
e Transaction between the two activities is diminished.
* And every single activity is checked for its appropriate execution.

Burden testing: This study is done in order to determine the success of the program
when it is subjected to the greatest amount of responsibility. Any software performs
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better up to a certain point in terms of measure of responsibility, after which the
program’s reaction time begins to degrade significantly.

Consider the following example: A website online can be certified to look at
the amount of concurrent clients it can possibly support without compromising its
effectiveness. This testing is usually beneficial for database administrators and appli-
cation workers, among other things. Burden examining also necessitates application
execution testing, which determines how well a particular program executes when
placed under a lot of obligation.

Regression testing: Regression testing is used to determine whether or not any
new defects were introduced as a result of previous nasty software fixes. After each
trade or replacement in the program’s components, a relapse attempt is carried out.
These shots are given on an irregular basis based on the size and components of the
program in question.

8.5.3  VERIFICATION AND VALIDATION OF SOFTWARE

In the context of application execution, confirmation refers to the arrangement of
events that ensures that an application properly executes a specific activity. Approval
relates to an additional schedule arrangement that ensures that the application that
has been produced is observable in relation to the client’s expectations. This is how
Boehm expresses it in more detail: “Would we claim that we are constructing the
object that is appropriate?” “Would we claim that we are building the correct item?”’
the group asks.

8.5.3.1 Validation Testing

Once integration testing is complete, the programming has been completely col-
lected together as a group, any interface flaws have been identified and corrected,
and a final grouping of utilisation examinations — approval testing — may be initiated.

Approval is successful when the application incorporates features in its design
that are reasonable to expect from the client in question. One factor on which an
experienced program engineer may disagree is: Who is the mediator of moderate
assumptions with absolute certainty?

In the application requirements, simple assumptions are demonstrated by way of
example.

8.5.3.1.1 Specification

A document that depicts all of the distinct and distinguishable characteristics of the
programming.

8.5.3.2 Criteria of Validation Testing

Programming approval is done through a progression of dark field watches that show
congruity with necessities. A test plan traces the classes of checks to be directed, and
a test interaction characterises one of a kind test examples to be utilised to represent
congruity with necessities. Both the arrangement and the measure are intended to
guarantee that each utilitarian prerequisite is fulfilled, all effectiveness necessities
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are executed, documentation is appropriate and human engineered, and also, dif-
ferent determinations are met (e.g. movability, similarity, mistake recuperation and
viability).

After each approval try case has been done, presumably the most two doable
specifications exist:

1. The proficiency qualities adjust to determination and are acknowledged, or
2. A deviation from determination is revealed furthermore, and an inadequacy
record is made.

8.6 CONCLUSIONS

As for utilising SRGMs for unwavering quality assessment, thought of the model
suppositions is significant before a SRGM is applied to disappointment information
to guarantee consistency between the model suspicions and relating information. For
instance, if a Weibull or a Gamma dissemination fits the recorded disappointment
times well, forecasts acquired from a model that accepts a comparative disappoint-
ment time conveyance are bound to be nearer to genuine qualities than an expecta-
tion from a model that accepts a dramatic disappointment time dispersion.
Further, citing a perception made by Brocklehurst and Littlewood,

There is no all around worthy model that can be trusted to give exact outcomes in all
conditions; clients ought generally doubt claims actually. More awful, we can’t distin-
guish deduced for a specific information source the model of models, assuming any,
that will give exact outcomes; we just don’t comprehend which components impact
model exactness

It is the normal situation that a gathering of development models having compara-
tive suspicions differ in their expectations for similar arrangement of disappointment
information and it is likewise the case that every one of the models makes a similar
wrong expectation. In such a situation, the expectations from the models are disput-
able and may just be best utilised for current dependability assessment as opposed
to for forecast.

With respect to white box models, most models make the suspicion that segment
reliabilities are accessible and disregard the issue of how they can be resolved. This
is as yet an open research issue. With shortage of disappointment information in seg-
ments, it isn’t generally conceivable to utilise SRGMs to assess part reliabilities, for
example in Gokhale et al.’s state-based model.

In addition, the presumption of autonomy between disappointments in segments
can be disregarded during unit testing, which infers that at this point an unwaver-
ing quality development model cannot be utilised to decide segment reliabilities.
Between-segment reliance is thought to be non-existent in engineering-based mod-
els, which doesn’t appear to be an extremely sensible presumption.

The issue emerges when an interface causes blunder engendering between two
segments and causes disappointments in the two segments. This negates the presump-
tion of freedom in segment what’s more, interface disappointments, and the models
are presently not material. The value of engineering-based models, particularly of
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state-based models, is principally that the system for unwavering quality forecast can
likewise be utilised for execution investigation, just as for affectability examinations
and in the ID of basic segments.

At last, most models depend on the presence of disappointment information
except for Bayesian development models that accept an earlier conveyance for the
SRGM boundaries. In any case, these models experience the ill-effects of their unim-
portance if programming unwavering quality is an element of the reliabilities of its
segments and interfaces. This seems, by all accounts, to be the situation with the
expanding utilisation of COTS in building programming. The forecast of unwavering
quality at the testing stage considers little criticism to the plan measure since testing
is excessively far down the computer programming cycle.

In my view, a binding together system that uses programming measurements ahead
of schedule during the product designing cycle, disappointment information, when
accessible, measure measurements and interaction history to iteratively appraise or
anticipate unwavering quality would be of worth in the feeling of early approval
of dependability prerequisites, for plan trade-offs and for assessing programming
designs. Further, no structure exists, yet that delivers a sensible expectation of pro-
gramming dependability when information is careless and refines the forecast when
information opens up. These are regions that legitimize further examination.
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9.1 INTRODUCTION

E-platform generates mountains of information. This large information requires
attention for security. People and technology both play an equally important role
in information security (9). Software vulnerability is a serious problem. Software
vulnerability is defined as a flaw within a software system that could cause violation
of its own security policies (2). It works as loopholes to steal sensitive data from the
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system (3). Vulnerabilities can give access to attackers. They can control the system
and execute illegal actions (1). Vulnerability response depends on time, roles, impact
on production process, functionalities and operations. Qualitative measurement
approach for handling risks gives a brief of the severity, while quantitative approach
gives it a score to quantify the severity (24).

9.2 CAUSES OF VULNERABILITIES

Software error is a reproducible defect. Vulnerability density is measured as the
number of vulnerabilities per unit size of code (11). Quantitative characterisation
requires the use of models to measure the density. This model captures the repeatable
behaviour causing the defect and its frequency which are measurable. Major causes
of software vulnerabilities are identified as follows:

e Insecure interaction between components. This is a problem due to
improper neutralisation of special elements used in any software applica-
tion. Improper alignments or the miscommunication protocol can be a cause
for this. Understanding sequential and proper flow among the components
may help to solve this problem.

e Risky analysis. Improper access to the input memory or functionality,
excessive buffer size or data type overflow or wraparound creates the inac-
cessible or full accessible data. Security should be considered for different
data types in the risk analysis. Data type along with data flow among all the
modules are needed to be understood and analysed properly to solve this
problem.

* Missing/broken access. User restrictions are important. Missing authenti-
cation for critical function, missing encryption of sensitive data and incor-
rect permission assignment for critical resource are some of the major
examples. This enables untrustworthy agents to perform replay, injection
and privilege escalation attacks. Missing communication protocol with
standard communication policy will help to manage the complete activity
flow with roles assigned will help to solve this problem.

* Known vulnerable component. Application components running on open
libraries can be exploited by an untrustworthy agent. This can cause access
to the serious data or server. Version change or the use of open libraries may
directly or indirectly affect the flow of the applications. The use of valid and
authenticated libraries will help to solve this problem.

e Cross-site scripting. These flaws execute unauthorised scripts on differ-
ent pages. It may lead to cross-site scripting. This gives access to illegal
data. Data across different pages may create invalid accessibility. The use
of authenticated scripting with validation will help to solve this problem.

e Design vulnerabilities. Development needs to be done as per the require-
ment specification. If security requirements are not properly handled as
per specification, it may impact the execution. When threats are not prop-
erly identified at design level, the impact may affect the application mod-
ule. Architectural usage with the understanding of design of data will help
to solve this problem.
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¢ Implementation vulnerabilities. If the implementation deviates from the
design to solve technical discrepancies, errors are generated besides known
errors. If the specified standards for design do not match, then it will impact
the implementation of the module. Infrastructure dependencies are needed
to be identified and implemented to solve this problem.

e Operational vulnerabilities. Software and hardware interactions works
are of the operational environment. Physical operating environment can
generate vulnerabilities. Even though there are no major issues with overall
working of the system, surrounding environmental accessibility may create
errors. Proper security constraints may be of help to solve this problem.

9.3 VULNERABILITY DETECTION METHODS

Software vulnerability is both traceable and non-traceable error. The first step in
handling error is to detect it before it creates any problems. Detection methods help
us identify tools and techniques suitable for analysing functionality, weakness and
strength (2). There are two ways for detection. The first is static detection method.
It will check type inference, data flow analysis and constraint analysis. The static
method works for compila tion phase. The second is dynamic detection method. This
method handles running status and monitoring interface. It checks the program’s
weaknesses without changing the source code (18). Qualitative detection method
measures quality parameter affecting the system. It considers the impact of vulner-
ability on the system seriously. Quantitative detection method measures the accuracy
of impact on the module as per its level of impact.

9.3.1 List OF SOFTWARE VULNERABILITY METHODS

Different detection methods used for detecting systems gaps are listed below (2).

e Fuzzing. It is a security detection method. This quantifies the impact of vul-
nera bility. Fuzzing requires a standard data generation and target monitoring
system. It validates the output as per expectation, based on the invalid or ran-
dom in put. It performs pertinent test. It focuses only on the executable codes.
Life cycle of fuzzing includes first identifying the target output and inputs.
They generate fuzzed data, execute fuzzed data, monitor for exceptions and
then determine exploitability w.r.t. the target. There are two types of fuzzing.

* Black box fuzzing. Here, the output is evaluated for the target output.
Data are randomly generated by modifying the correct data. It fails to
understand the actual requirement of the application. New inputs are
generated to meet structural specification without any prior knowledge
of the program. It modifies well-formed inputs and tests the resulting
variants without the conversion of information.

*  White box fuzzing. It generates target output based on complete knowl-
edge and behaviour of the application. It repeats process of generating
output as follows:

* Mutational black box fuzzing. It generates the target output based on
one or more seed inputs. It generates new inputs after random mutations
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to ran dom locations (8). It is the extension to black box where random
numbers are generated, but using random method.

* Grey box fuzzing. It generates target output based on minimal knowl-
edge of the application (17). When specifications are very complex and
sample data are easy to collect, data mutation is more appropriate than
data generation. It gives lightweight feedback.

* Web application scanners. This is a quantitative way of doing software
vulnerability analysis. This method is specifically used for finding the web
applications vulnerabilities. It checks the volatility of the input for its cor-
rectness. Further, this can be analysed for white box or black box method-
ologies. White box testing analyses the source code manually. Black box
testing checks the scanner fuzzing approach. This method is mainly applied
in the testing stage of the system development. It comes out with a low false-
positive ratio (10).

e Static analysis techniques. This is a stepwise execution method using
quantitative way. It performs the activities to assess the input code,
applies algorithms and generates output with expected vulnerabilities.
It checks information flow’s integrity and confidentiality (17). This can
be further identified as false negative and false positive. False negative
checks errors which are not yet being written, whereas false positive
accesses only a subset of the required information. The scan ner can
access only a subset of the required information. It determines whether a
vulnerability exists or not.

e Binary run-time integer-based vulnerability checker. This is a quanti-
tative method. It detects run-time data type-based vulnerability. It gives
false-positive and false-negative results. It first converts the binary code to
intermediate representa tion. It can be classified into categories as follows
as per different data types (9).

* Integer overflow. This may be due to overflow or underflow of data.
Due to the limited range of integer variable with certain type, results
may be of a larger or smaller value than expected. This vulnerability
may affect the memory attachment.

* Signedness issues. This issue may arise due to mathematical operation.
Mathematical operation will be performed to get the overflow as per the
different data type. They are likely to trigger integer wrapping. The sign
may impact further steps of execution.

e String expansion. Strings accessibility when working on characters
can be problematic. Some characters are treated differently. These
changes may create an impact on the workflow of the module. It may
lead to changes in the targeted output.

e Format strings. It handles changes in the string specifiers. They check
the working of function w.r.t. the input. Depending upon format, differ-
ent data types vulnerabilities can be added.

e Heap corruption. Memory can generate vulnerabilities. Heap over-
flows can be triggered by memory allocation errors. It determines
required buffer lengths to calculate the impact of overflow.
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¢ C Range Error Detector (CRED) approach. It is a quantified method for
the detection of software vulnerabilities. It handles the buffer overflow. It
lacks the power to protect against all buffer overrun attacks. It breaks exist-
ing code and also produces too high overhead. CRED proved to be effective
in detecting buffer overrun.

* Module impact factor. It checks the quality measurement of the modules
w.r.t. the expected outcome. Higher module impact factor indicates an error
with a high probability of causing damage. Wrong data from this module
will cause more harm to the system. It is easier to generate abnormal data
points. This impact factor will help find the quality parameter for the per-
formance improvement w.r.t. complete application.

e Buffer overflow rate. This is a qualitative detection method. If the input
data exceed the maximum amount of buffer overflow, it will overwrite and
modify the value in the adjacent memory area. This rate is used to check the
memory storage.

* Module error tolerance rate. It is a qualitative detection method to check
the tolerance of accuracy. This is fault tolerant. This will give the tendency
that the module will control the impact on other modules. This will generate
the module-wise checking.

9.3.2 SorTWARE VULNERABILITIES DETECTION TOOL

Figure 9.1 shows different detection tools used currently for the detection of
software vul nerabilities. This figure shows the name of the tools used in the
society.

<>
SOAPscope
ONI=
=)
s Crome > Csme-ron
=

Web Service Tools @
SOFTWARE VULNERABILITY @
DETECTION TOOLS

@ Disassembler, Debugger,
De-compiler tools @

Boomera @ Static Analysis Tools
=
il FindBugs

FIGURE 9.1 Software vulnerability detection tools.
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9.4 MULTI-CRITERIA DECISION-MAKING (MCDM)

The decision of any problem can be taken based on the detailed analysis of the problem.
Here, different parameters affecting the problem are analysed. These parameters can
be classified as different criteria or alternatives to get the solution. The MCDM concept
handles the process of making decision in the presence of multiple criteria or alterna-
tives. It is an evaluation approach designed to deal with complexity. Here, alternative
choices are analysed by considering a set of multiple and frequently conflicting criteria.

It solves the best alternative for the problem based on given set of selection cri-
teria. It ranks the alternatives based on the mapping among the criteria to criteria.
The highest ranked one is recommended as the best alternative to the decision-maker
(19). MCDM techniques are commonly assessed qualitatively. MCDM entails uncer-
tainty when the weighting process occurs subjectively based on the analyst experi-
ence (12). MCDM solution focuses on the constraints and preference on the priorities
for the selection. It normalises the values assigned based on the comparison among
the alternatives w.r.t. criteria. It takes normalisation w.r.t. expert knowledge.

9.4.1 List of MCDM TECHNIQUES

The following are the MCDM methods studied that can be used for finding the soft-
ware vulnerability analysis (21):

e Multi-attribute utility theory. It takes changes as per the uncertainty into
account. This measures accuracy in quantitative manner. Criteria are noth-
ing but working on the utility assigned to it. This utility is not a quality. Here,
the calculated accuracy is convenient to measure. This method is extremely
data intensive. Precise preferences need to be given to the criteria.

Applications: Economic, financial, actuarial, water management, energy
manage ment, agriculture.

e Analytic hierarchy process (AHP). It uses pairwise comparisons among
alternatives carefully in a hierarchical manner. It compares alternatives with
respect to various criteria and estimates about criteria weights. It assesses
various non-monetary criteria. Experts derive results based on priority
scales. The AHP is designed for subjective judgements (13). A set of alter-
natives integrates hierarchical division by weighting the aspects considered
in the analysis. It may empower the decision. The disadvantage of AHP is
self-assessment bias affecting internal validity.

Applications: Resource management, public policy, political strategy
and planning.

e Fuzzy set theory. It focuses on use of cost-benefit analysis. It solves lots of
problems related to imprecise and uncertain data. It handles rule-based analy
sis. It tries to solve the problems with great complexity. The disadvantages of
fuzzy set theory can sometimes be difficult to develop. It embraces vagueness.

Applications: Engineering, economic, environmental, social, medical
and man agement.

e Case-based reasoning. This requires extra knowledge of understanding. It
improves the results over time when more cases are added to the database.
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It is not good for its sensitivity to inconsistency in data. CBR is used in
industries where previous cases are used as an experience.
Applications: Businesses, insurance, medicine and engineering designs.

e Data envelopment analysis. It uses a linear programming technique. It
counts the relative effectiveness among alternatives. It gives the priorities to
it. It checks for the most efficient alternative having a good rating. The effi-
ciency can be analysed and quantified. It can uncover relationships that may
be hidden. The disadvantage is that it does not deal with imprecise data. It
assumes that all input and output data are known.

Applications: Economic, medical, utilities, road safety, agriculture, retail
and business problems.

e Simple multi-attribute rating technique. It handles multiple attributes
for decision-makers. It requires two assumptions, i.e. utility independence
and preferential independence. It converts weights into actual numbers. It
requires less effort. It checks data with respect to each criterion. It is a com-
plicated framework.

Applications: Environmental, construction, transportation and logistics,
military, manufacturing and assembly problems.

* Goal programming. It targets goals for set of data. As per the goal, the
decision varies. It is able to choose the best from an infinite number of alter-
natives. It is not able to handle weight coefficients.

Applications: Production planning, scheduling, healthcare, portfolio selec-
tion, distribution system design, energy planning and wildlife management.

¢ ELECTRE (ELimination Et Choix Traduisant la REalit’e). This method
is based on concordance analysis. It considers uncertainty and vagueness of
data. Its pro cess and outcomes can be hard to explain. As preferences are
incorporated, it will ignore the lowest performances under certain criteria.
It cares for strengths and weaknesses of the alternatives. It is not directly
identified. Results and im pacts need to be verified.

Applications: Energy, economic, environmental, water management and
trans portation problems.

¢ VIKOR (from Serbian: VIseKriterijumskaOptimizacija I Kompromisno
Resenje). In this method, the best alternative is selected by minimising regret
group. It works on utility group theory. It compromises solution with an advan-
tage rate. It is used in a highly complex environment. The performance rating is
quantified as crisp values. It doesn’t consider imprecise or ambiguous data (23).

« PROMETHEE. It performs several iterations to get the best results. It is an
outranking method. It does not require the assumption about the criterion’s pro-
portionate. It does not provide a clear method to assign weights to each criterion.

Applications: Environmental management, hydrology and water manage-
ment, business and financial management, chemistry, logistics and transporta-
tion, man ufacturing and assembly, energy management and agriculture.

e Simple additive weighting (SAW). It is a value function established based
on a simple addition of scores. It represents the goal achievement under
each criterion, which is multiplied by the particular weights. It has the abil-
ity to compensate for solution among set of criteria. The calculation is sim-
ple and can be performed without the help of complex computer programs.
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The estimates by SAW do not always reflect the real situation. The result
obtained may not be logical. The values of one particular criterion largely
differ from those of other criteria.

Applications: Water management, business and financial management.

¢ Technique for Order of Preference by Similarity to Ideal Solution. It is
an approach to identify an alternative that is closest to the ideal solution. It
is farthest to the negative ideal solution. It gives multi-dimensional comput-
ing space. The number of steps of iteration remains the same irrespective
of the number of attributes used in decision-making. The disadvantage of
this method is that it uses Euclidean distance for calculations. It does not
consider the correlation among the attributes.

Applications: Supply chain management and logistics, design, engineer-
ing and manufacturing systems and business and marketing.

e Analytic network process (ANP). It handles hierarchical alternatives at
the lower levels. It checks linear log with the goal at the top. The depen-
dency among the criteria is not required. Prediction is accurate based on the
priorities given by the feedback. This MCDM method is similar to AHP.
The elements of the same cluster are compared among themselves without
checking the hierarchy. The level of each element may dominate and may
get dominated in pairwise comparisons.

e The weighted sum model (WSM). It is simple mathematical calculation.
It work on single dimension. It varies across the range across criteria (7).
It is useful for evaluating several alternatives in accordance with differ-
ent criteria. They are expressed in the same units of measurement. It gives
relative order of magnitude for standardised scores. It is uncomfortable on
multi-dimensional problems.

e The weighted product model (WPM). Similar to WSM, it performs easy cal-
culation. It uses relative values instead of actual ones. It compares criteria with
others by the weights. It also checks ratio for each criterion. If the number of
alternatives is large, then it’s lengthier. It will be more difficult to solve. No
solution will be available if equal weights are assigned to decision matrices (22).

Figure 9.2 shows the hierarchical structure of different MCDM techniques used.
This tree structure shows the inheritance of properties from top level to down level.

Multi-Criteria Decision Making
MCDM)
|
I |
Multi-Attribute Decision Making Multi-Objective Decision Making

(MADM) (MODM)
I
| | | ] |

Multi-Attribute Utility || Analytical Hierarchy
Theory (MAUT) Process (AHP)

ELECTRE || PROMTHEE OMDM

FIGURE 9.2 List of Multi-Criteria Decision Making Methods.
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9.4.2 Nortations Usep IN MCDM

e Alternatives. Alternatives are the different choices of action available.
Usually, alternatives are finite in number. They are supposed to be evalu-
ated for its importance and then eventually ranked.

e Multiple attributes. Attributes can be considered as goals or decision cri-
teria. Attributes with alternatives represent different dimensions. Attributes
may have major attributes and then hierarchy of set of attributes. Depending
on the analysis of problem, hierarchy can be further enhanced. This set of
attributes helps to get the accurate results.

¢ Conflict among attributes. As different attributes represent different
dimensions of the alternatives, they may conflict with each other. This con-
flict may help to decide priority among the attributes. This also helps to
decide the relationship among the attributes.

¢ Incommensurable units. Attributes may be with different units of mea-
sure. This differentiation may be difficult to solve. Data standardisation is
required to solve this problem. As per the problem statements, set of rules
can be applied for measurement.

e Decision weights. Weights are normalised before assigning to the alterna-
tives. This set of matrix helps to calculate performance index.

¢ Decision matrix. An MADM problem can be easily expressed in matrix
format. A decision matrix A is an (MXN) matrix, in which element a;; indi-
cates the performance of alternative and A, indicates evaluation in terms of
decision criterion C; (for i=1,2,3,..., M and j=1,2,3,..., N). Experts deter-
mine the weights of relative performance of the decision criteria denoted as
w, for j=1,2,3,..., N using the formula:

©.1)

Therefore, the normalised matrix X is defined as follows:

— B

X11 X12 XiN
X721 X2 XoN
_-le Xym2 .?CMN4

where M is the number of alternatives, N is the number of criteria, and X; is the
preference measure of the ith alternative with respect to j-th criterion.
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9.4.3 IMPORTANT STEPS UseD IN MCDM MODELS TO
OBTAIN THE RANKING OF ALTERNATIVES

* Determine criteria and alternatives. Understand the problem. The decision-
maker lists the different criteria and lists the best alternatives as per criteria.
The rela tion between the criteria and alternatives is developed. It builds the
relevancy among them (20).

* Develop decision criteria. Based on the understanding of the problem,
experts will develop the important criteria for the final solution. This gives
the priorities among the criteria. Complex criterion can be further subdi-
vided into simpler criteria for analysis.

e Allocate the weight to the criteria. Based on the expert knowledge,
weights are assigned to the criteria. Weights are also evaluated for each cri-
terion w.r.t. alternatives. Depending on the MCDM techniques, weighting
criteria are different.

* Develop and analyse the alternatives: Using any MCDM techniques, find
the highest possible alternative as the solution. Analyse the solution w.r.t.
the specified problem. The relative importance of the criteria is calculated
based on the expert knowledge. Impacts of the alternatives in relation to the
criteria are evaluated.

¢ Select and implement alternatives. Process the numerical values to deter-
mine each criterion with respect to the alternatives. Alternatives are ranked
based on MCDM techniques. It relates the relation between the criteria to
available alternatives and finds the priority-based selection for combination.

* Evaluate the result. Highest or lowest ranked alternatives are selected as
final alternatives. This selection is totally based on the techniques that are
used in relation to criteria. Results are evaluated for the selection of best
alternatives.

Figure 9.3 shows the general flow chart of multi criteria based decision making con-
cepts. These general steps are further varied as per different techniques.

9.5 ANALYSIS OF SOFTWARE VULNERABILITIES USING MCDM

To make decision using MCDM, the following mathematical model can be used.
Let m of vulnerabilities to be assessed and prioritised a n numbers of decision crite-
ria as vulnerability detection techniques. The vulnerabilities are denoted as V; (for
i=1,23,..., m) and the criteria as C; (for j=1,2,3,..., n). Each criterion is associated
with a weight, denoted as W; (for j=1,2,3,..., n). The higher the weight is, the more
important the criterion is assumed to be. The final performance index is calculated

n

based on the sum of the weights w.r.t. input [ E W; =1]. The final weights are best
j=l

summarised in a decision matrix. The corresponding quantitative score Py, of each

Vi is given by the equation: [Py; = Hn (a,«j)Wj ].
j=1
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Identify Problem with criteria and alternatives

Develop Decision Criteria
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Allocate Weights to Criteria
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Develop Alternatives

A 4

Analyze Alternatives

Select Alternative

Implement Alternative

A 4

Evaluate Results

FIGURE 9.3 Flow chart of the general MCDM method.

This section focuses on finding the best alternatives as a solution using the AHP,
SAW, WPM and WSM. Abbreviation used in the mathematical descriptions are
Insecure interaction between components (II), Risky analysis (RA), Missing/ bro-
ken access (MA), Cross-Site Scripting (CS), known vulnerable component (KN) and
Design vulnerabilities (DV) as shown in the Figure 9.4.

9.5.1 SorutioN UsING ANALYTIC HIERARCHY PrOCESS (AHP)

The analytic hierarchy process (AHP) is a MCDM system. It is used to solve com-
plex decision-making problems. The AHP is implemented in the software of experts’
choice. The steps of execution are as follows (27):

¢ Under problem situation. Define the problem, determine the criteria, and
identify the alternatives. Software vulnerabilities are listed as criteria. Here,
different detection methods are identified as alternatives.
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Goal
Important software vulnerability detection method

blensecure interaction Risky analysis Missing/ Cross-Site known vulnerable Design
tween components broken access Scripting component vulnerabilities
Fuzzing Design Design
vulnerabilities vulnerabilities

FIGURE 9.4 Problem statement.

e Hierarchical structure of problem characteristics. Structure a hierarchy
of alternatives. Make pairwise comparisons among criteria w.r.t. alterna-
tives. Rate the relative importance between each pair of decision. Here, a
detailed analysis of the problem statements is done. After doing the priori-
tisation of these vulnerabilities as criterion, modelling can also be done on
these critical vulnerabilities. As shown in Table 9.1, AHP uses 1-9 scale for
the prioritisation process.

Intermediate numerical ratings of 2, 4, 6 and 8 can be assigned, someone could not
decide whether one criterion (or alternative) is moderately more important than the
other one.
* Synthesise the results to determine the best alternative. The output of AHP
is the set of priorities of the alternatives (Table 9.2).
e The second step for a detailed comparison about the criteria with respect
to the selec tion of the method of MCDM is given by the following things.
(Table 9.3)
e Check the impact of software venerability w. r. t. selection of MCDM
techniques. Synthesis the results by doing composition of the impacts.

(Table 9.4)
TABLE 9.1
AHP Scale
Numerical Ratings Verbal Judgements
1 Equally important (preferred)
3 Moderately more important
5 Strongly more important
7 Very strongly more important
9 Extremely more important
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TABLE 9.2
Pairwise Comparisons for Software Vulnerabilities
Il RA MA  CS KN DV  Weight
Fuzzing 1 4 3 1 3 4 0.32
Design vulnerabilities 1/4 1 7 3 1/5 1 0.14
Binary run-time integer-based 1/3 177 1 1/5 1/5 1/6 0.03
vulnerability checker
TABLE 9.3
Comparison of Vulnerabilities w.r.t. Techniques
I RA MB
F W B wt F W B wt F W B wt
F 113 12 016 F 1 1 1 033 F 1 5 5 045
W 3 1 3 05 W 1 1 1 033 W o5 1 15 009
B 2 13 1 025 c 1 1 1 033 B 1 5 1 046
cs KN DV
F W B wt F W B wt F W B wt
F 19 7 077 F 1 12 1 025 F 1 6 4 069
w19 1 1/5 005 W 2 1 2 050 W 16 1 13 009
B 17 5 1 017 cC 1 12 1 025 B 14 3 1 022
TABLE 9.4
Comparisons and Synthesis of Software Vulnerabilities
0.32 0.14 0.03 0.13 0.24 0.14 Composite
I RA MA cs KN DV Impact
F 0.16 0.33 0.45 0.77 0.25 0.69 0.32
A 0.59 0.33 0.09 0.05 0.5 0.09 0.38
B 0.25 0.33 0.46 0.17 0.25 0.22 0.25

9.5.2 SimpLE ADDITIVE WEIGHTING METHOD

This method is simple to implement. It follows the general flow of MCDM concepts.
It calculates the performance index based on the additive weighting calculations. For
simplicity, calculated weights from the previous method are used to find best alterna-
tives in this method as well. Following are the steps of executions.

e Each alternative is assessed w.r.t. each criterion. Overall performance score

M
is evaluated using p; = ZW, * M

Jj=1

M,;=The measure of performance of alternative i w.r.t. attribute j
w,;=The weights of alternatives.
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TABLE 9.5

SAW/WSM Method

Criteria ] RA MA CS KN DV
F 0.16 0.33 0.45 0.77 0.25 0.69
w 0.59 0.33 0.09 0.05 0.5 0.09
B 0.25 0.33 0.46 0.17 0.25 0.22
Weights 0.32 0.1 0.09 0.27 0.15 0.07
Beneficial (+) (+) (+) (=) (+) (+) (=)
Non-beneficial (—)

Calculated value 0.59 0.33 0.09 0.77 0.5 0.09

e The ratio is evaluated for beneficial and non-beneficial values. Beneficial
values indicate the high impact value, whereas it is vice versa for non-
beneficial values.

e Itis a proportional linear transformation of raw data, which means the rela-
tive order of magnitude of standard, and the score remains equal (Table 9.5).

* For beneficial attributes, its higher values are calculated using the formula:

w,-j=w,-j/wmax.

¢ For non-beneficial attributes (Table 9.6), its lower values are calculated
using the formula:

Wij = Wmin/Wij‘

* The performance index for each criterion is calculated using the formula:

M M
Puj = I:ZFIW}- *MUnomal]/[zj=le].

For F=P(F/W)=(0.16/0.59)0.32 4 (0.33/0.33)0.1 + (0.45/0.09)0.09 +
(0.77/0.05)0.27 + (0.25/0.5)0.15= 6.96.
P(W/B) =6.45 P(F/B)=5.94.

Above calculation for the same problem, shows that fuzzing is the best alternativeto
solve the six software vulnerabilities as compared to other alternatives.

TABLE 9.6

SAW/WSM Method

Criteria 1 RA MA CS KN DV
F 0.271 1 0.2 1 0.5 0.13
w 0.423 1 1 0.064 1 1

B 0.423 1 0.195 0.22 0.5 0.4
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TABLE 9.7

WPM Method
Criteria 1
F 0.16
w 0.59
B 0.25
Weights 0.32
Beneficial (+) (+)
Non-beneficial (—)
Calculated value 0.59

RA
0.33
0.33
0.33
0.1
(+)

0.33

MA
0.45
0.09
0.46
0.09

0.09

CS
0.77
0.05
0.17
0.27
(+

0.77

KN
0.25
0.5
0.25
0.15
(+

0.5

DV
0.69
0.09
0.22
0.07

0.09
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This method follows the same execution steps as that of AHP specified above. It
checks the performance index based on the product of weights assigned. For simplic-
ity, calculated weights from AHP techniques are used. Following are the steps of

execution.

e Each alternative is assessed w.r.t. to each criterion. The overall performance
score is evaluated using the performance index formula:

At Ay =] Jeawran”
i=1

9.2)

e Calculation considering the beneficial and non-beneficial parameters needs
to be performed. Considering the previous example final table for evalua-
tion will be as follows (Table 9.7).

P(FIW)=(0.16/0.59)3 + (0.33/0.33)! + (0.45/0.09)%% + (0.77/0.05)°27 +
(0.25/0.5)%15 + (0.69/0.09)°7 = 6.96 P(W/B) = 6.45.

P(F/B)=5.94.

e The WPM is used in the similar track as that of simple additive method. The
first criterion is the best criterion.

9.6 OUTCOME FROM THE MATHEMATICAL MODEL

It is observed from the mathematical model that the best alternatives are selected
based on the comparative analysis. The relation between criteria and alternatives is
analysed. It is observed that fuzzing is the best method to detect the vulnerability.
Further, if the mathematical model is normalised with a detailed structure of vulner-
abilities, we can find mapping w.r.t. fuzzing techniques as well. Hence, more accu-

rate methods can be analysed.
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9.7 CONCLUSIONS

Automated vulnerability discovery is a game between adversaries. Understanding the
working and impact of different vulnerabilities helps to learn more software issues. To
understand the nature and distribution of security vulnerabilities in source code, the
type of information is usually not available in an executable format. Detection meth-
ods help to understand software vulnerability. MCDM techniques allow to understand
the problem in detail. It understands the hierarchical representation of the problem.
It calculates the relation between criteria and solution. It builds the relation between
them. Based on the criteria index important criteria can be calculated. Hence based
on this performance index of the overall alternatives are calculated. Finding the best
alternatives is the objective of this chapter. To achieve the goal, a detailed analysis of
the problems in terms of vulnerabilities with their impact was performed. In the same
manner, different detection methods are analysed w.r.t. vulnerabilities evaluated as
alternatives. MCDM techniques allow to find the best alternatives.
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10.1 INTRODUCTION

In the past years, the popularity of artificial intelligence (AI) system has become
more than increasing application number reported. Examples are given below.

¢ Process of data
e Assistant systems
* Voice, face, speech recognition.

‘The application of Al relevant most safety’. It requires safety assessment, ‘apply
consequence for functional safety assessment’. In this book chapter, we have consid-
ered the safety assessment of Al systems.

In the second part, the definition of Al system is given. In the third part, how to show
and obtain safety integrity level in Al systems is explained. In the fourth part, deeper
knowledge and view about Al systems is presented. It is so necessary for Al systems
to understand about an approach in terms of safety functions. In the fifth part, software
reliability and safety of Al systems is described. In the last part, conclusions are drawn.

10.2 WHAT IS ARTIFICIAL INTELLIGENCE?

Dartmouth College used artificial intelligence in 1956. Many concepts were proposed
by researchers. Al is defined as intelligence demonstration by machine. Through this
type of technique, cognitive problem solving, learning and functions can be done.
‘There are some criteria follow point for AI or not’.

Using speech system.

* Consciousness system.
e System of self-awareness.

However, the outcomes are genuinely remarkable. Many articles concerning deep
learning have been presented, for example Héttasch and Geisler (2019). ‘In Al applica-
tions, there are complete ... as we know’. Some approaches have recently been made in
terms of safety; take a look at the proposed UL 4600 standard (2019). It necessitates a
safety strategy, with Al algorithms being used in some circumstances for autonomous
vehicles. UL 4600 additionally explains not just what is being argued, but also how it
is not being argued. “Conformance with this standard is not a guarantee of a safe auto-
mated vehicle”, as written in the preamble. Rather than “repeatable assessment of the
thoroughness of a safety case”, its importance is on “repeatable assessment of the thor-
oughness of a safety case”. UL 4600 is a safety standard used to intend the extension
of IEC 61508. Some standard committees, for example German DKE, processed and
focused on lifecycle-oriented approaches. A 1 Al measure Putzer (2019) propagates
similar to give a succinct definition of danger rate in functional safety.

10.3 DOES ARTIFICIAL INTELLIGENT REQUIRE A SIL?

In this section, we’ll have a look at the level of safety integrity of Al system; if yes,
then how to determine. The preface of SIL system is used for standardisation of the
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Situation with other E/E/PE systems

E/EPE system Actors
— oo

FIGURE 10.1 The E/E/PE controlling system.

FIGURE 10.2 Controlling system with an arbitrary black box.

safety function. The mother standardisation is also known as IEC 61508. ‘The deter-
mination about SIL system ... reader’.

Figure 10.1 shows a normal situation about electronic, electric, programmable
electronic system (E/E/PE system). ‘It has under equipment control system...oper-
ate actor systems’.It depends on consequences failure behaviour of this controlling
system to get level of safety integrity (SIL).

It is no longer the case that we have a controlling system by analysing hazards and
determining the SIL system. In any case, it considers black box; Figure 10.2 depicts it.

Nowadays, the Al system also is a black box system. ‘It is also safety integrity
level ... by the E/E/PE methods’.

‘SILs assessment rule only different types ... implement black box system’.

What so Al applications expect from different SILs? The failure consequence
mainly depends on possibility risk as follows:

e Process of data — it depends on the result.

e System assistance — ‘SIL system normally ... this type of system’ is OK.

e Speech, face, voice recognition — it depends on the result, whether safe
backup or activated result.

‘In this hazard cases risk analysed ... relevant safety apply for this’.It is not deter-
mine and compulsory for one. Standard function relevant safety apply for this.

10.4 LOOKING INSIDE Al

Architecture of AI: A simple architecture of Al is shown in Figure 10.3. This type
of architecture is inspired by Wand (2017), although it does not favour it.
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FIGURE 10.3 An Al architecture system.

Inside this Al system’s models, many key features are present. This is a very flex-
ible model.

‘It needs to teach ... for circumstances in the future’.

It is a very compulsory situation to avoid. It is mentioned as an example by Corni
(2019).

Racism was detected in an Al system learning for imported collection of data via
non-representation. Parameters are set after learning in this model.

‘Requesting data and activation actor control ... is used later’.

‘The possibility to continue teaches ... into exploitation’. It has some importance as:

e Model checking.
¢ Representativeness data checking.
e Verification of data.

In the following, we have a deeper look into many parts of Al system. Figure 10.3
shows a refined architecture of an Al system.

10.5 SOFTWARE RELIABILITY

“To improve the reliability.. .to target the range of services’.
‘If software is in form of mission-critical...for market-ready’.

Failure of the Software:
‘The use of software reliability ... due to software failure’.

‘It is not failure behaviour ... the hardware’.

‘Computer present the software function ... the computer statements’.

If software is a failure, it is because of either implementation or design errors.
Design errors show wrong assumptions about computer system operation.
Implementation errors show confusion symbols.
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Software Reliability: ‘In the instance of hardware...failure model for future’.
Many organisations are no longer testing the software.
‘Management always surprise cost ... in the favour of designing activity’.
‘A new feature adding ... for testing features exist’. A good quality of software
introduces developing cycle.
e ‘Advance preparation and management program’.More effort for testing
program.
e To allow scheduling and budget, it covers testing requirements.

Software reliability engineers have extensive knowledge of all stages
and duties associated with a comprehensive software reliability pro-
gramme. Leading and supporting reliabilities of program as:

— Reliability of the program
— Allocation of the program
— Define operational profile
— Analysis of program

— Testing of the program

— Planning of the program

Allocation of Software Reliability:
‘It is used for define task ... software items’.

It may be a hardware/software system. It may be related to the independent appli-
cation of the software. It is a stand-alone relay of the program.

‘In this case, our goal is to bring reliability system ... cost constraints’.

i. It follows some tasks to assist with our organisation:
e Requirement of software reliability is derived.
* Optimisation of reliability.
* Scheduling of software reliability.
* Cost based on our constraints.
* Costs depend on our goal of software reliability.

ii. Defining and Analysing Operational Profiles: Software liableness is
inextricably linked to how an application is used in the field, far more so
than hardware reliability. Only if a software flaw occurs while the system
is in use may it result in a system failure. An issue that is not addressed in a
certain operational mode will not result in any failures. If it’s in code that’s
part of a commonly used “operation”, it’ll fail more frequently. As a result,
in software reliability engineering (SRE), we concentrate on the software’s
operational profile, which weighs the likelihood of each operation occur-
ring. Unless safety constraints necessitate a change, we shall prioritise our
testing in accordance with this profile.

iii. Software Reliability Models: Reliability models, particularly reliability
growth models, are frequently associated with SRE. When used correctly, these
models are effective in providing assistance for management decisions such as:

* Scheduling for testing
* Allocation of resources
e Marketing time
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* Resource maintenance allocation

e ‘Toadjust the growthrate ... to enable rate of failure’. The term “software
reliability” specifies the ability of software to meet the requirement of
its users. It is described as the likelihood that software will operate
without error over a given amount of time. The term “failure” refers
to a situation in which the program did not perform as expected by the
customer. This broad delineation of failure ensures that the concept of
dependability embraces the majority of quality qualities such as accu-
racy, performance adequacy and usability. The term “reliability” refers
to a user-centred approach to software quality that emphasises how well
the product really performs. Alternative perspectives on software qual-
ity are introspective, developer-oriented viewpoints that link product
quality to its “complexity” or “structure”. Fortunately, software liable-
ness is not only one of the paramount and instant criteria of software
quality, but also one of the most straightforward to define and assess.
Software liableness is a scientific field that necessitates the use of exact
language. The two most significant words are “failure” and “fault”.
When the program’s outer behaviour departs from the user’s expecta-
tions, this is referred to as a software failure. A software defect is a flaw
in a program that causes it to fail when run under certain conditions.
It is sometimes referred to as a “bug”. Two major factors influence the
likelihood of failure:

e The amount of faults in the programme being used; the higher the num-
ber of bugs, the higher the number of failures;

e The conditions in which it is being executed (also known as the
“operational profile”). Some conditions may be more difficult than oth-
ers, resulting in a higher number of failures.

The possibility of a computer program’s failure-free operation over a certain amount
of time under specified conditions is known as software reliability. A secretary’s text-
editor, for example, may have a reliability of 0.97 for 8 hours; a hacker’s text editor,
on the other hand, may only have an 8-hour reliability of 0.83. Consider the following
scenarios to obtain a better grasp of the flight-critical aircraft systems’ dependability
needs.

i. Reliability: R(?) stands for reliability, which is the chance of failure-free
operation for an extended period of time 7.

ii. Probability of Failure: The probability that the software will fail before
time t is represented by F(¢). There is a link between reliability and the like-
lihood of failure.

iii. Failure Density: The probability density for failure at time # is given by f(?).
It has something to do with the likelihood of failure f(¢) = d / diF (t).
In the half-open interval (¢, 1+ 1], the likelikood of failure is f{f)-ot.
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iv. Hazard Percentage: The conditional failure density at time #, indicated by
7(1), is the failure density if there had been no failures up to that moment. In
other words,

()= f() I R(1).
The hazard rate and reliability are linked by

R(t) = e 0.

When the hazard rate is constant, there is a significant exception ¢. The
failure density follows an exponential curve in this scenario.
S =¢e?. The likelihood of failure is given by F(f)=1—e"%, and the
dependability is provided by R(f) =e¢'.
v. The Mean Value Function: (x7) denotes the average. By time 7, the number
of failures has increased.
vi. Failure Intensity: (17) denotes the number of failures per unit of time at time
t. This is related to the mean value function via analogy A(f) =d/dtu(?). The
estimated number of failures in the half-open interval (¢, £+ 7] is A()-ot.

The most popular metric for measuring software reliability is failure intensity. The
numbers connected with reliability are random variables, and the reliability models
are based on the mathematics of random or stochastic processes, due to the complex-
ity of the elements causing the incidence of a failure. Because failure is typically
followed by another failure, the number of mistakes in a program, as well as the
probability distributions of the dependability model’s components, change with time.
Reliability models, to put it another way, are based on non-homogeneous random
processes. A variety of software dependability models have been developed. The
“Basic Execution Time Model” is the most accurate and commonly recommended
model. This model’s development is detailed below.

i. Execution of the Basic Modelling: In this derivation, the software failure
process is represented as a non-homogeneous Poisson process (NHPP), a
type of Markov model (and that of most other reliability models). The total
number of failures at time t is represented by M(f). Assumptions are made
as follows:

1. By time 0, M(0)=0; there have been no failures.

2. The process has independent increments, which means that the value
of M(t+ of) is determined only by the current value of M(¢) and is unaf-
fected by the process’s past.

10.6 SOFTWARE RELIABILITY DISCUSSION

Software dependability modelling is a significant scientific endeavour. Many busi-
nesses have a vested interest in the long-term viability of their software products
such as embedded system makers (where maintenance can be difficult), and those
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with highly stringent dependability requirements have pursued it with passion. The
“Basic Execution Time Model” presented here has been certified across a number
of significant projects and has the advantage of being simple to use. ‘Being quite
simple when compared to many other models’The “logarithmic Poisson concept”, a
comparable model, has received less attention, yet may be preferable in some cases.
The time base for each of these models is execution time. One of the key points for
their better accuracy over prior models that depended on man-hours or other human-
oriented time is that they don’t use man-hours or other human-oriented time. ‘They
don’t use man-hours or other human-oriented time’. Metrics is because of this. It’s
hardly unexpected that execution time should improve: The frequency of failures
should, after all, be largely influenced by the amount of exercise the software has got.
Musa et al. illustrated how to transform from a machine-oriented time perspective
to a human-oriented time perspective, which is generally required for the model’s
results to be applied. A number of problems may make the application of dependabil-
ity models more difficult. The basis for prediction is the collection of accurate failure
data early in the project’s life cycle, whereas reliability is concerned with counting
failures. If any of the following criteria exist, the data may be untrustworthy, and
forecasts based on it may be incorrect:

e There is a lack of clarity or understanding about what defines a setback.

e There is a significant change in the operational profile between the data col-
lection (e.g. testing) phase and the working phase, or

e The software is up to date always changing and evolving.

We highlight that many Al software development situations are similar to the ones
that make reliability modelling difficult to apply. In the second section of the report,
we will return to this topic.

10.7 CHARACTERISTICS OF Al SOFTWARE

The application of the quality management system will be discussed in this section
of the report.

In Part I, quality assurance procedures and metrics were applied to Al software,
and now, we’ll move on to Part II to have a look at a couple of solutions designed
specifically for this purpose. ‘This kind of computer software’. We are currently
confronted with a problem in that the definition of Al software is unclear; in fact,
Al practitioners disagree on what constitutes Al. Parnas distinguishes between two
modern Al concepts, Al-1 and AI-2: Al-1 is a problem-solving paradigm in which
computers are used to answer that could previously only be addressed by human
intelligence. ‘Al-2 is a problem-solving paradigm ... by human intelligence’. AI-2
is a technique-oriented notion that links artificial intelligence to the use of specific
programming approaches, particularly heuristic-based ones, as well as the explicit
representation of “knowledge”. These concepts aren’t mutually exclusive; in fact,
most Al software incorporates Al-1 and AI-2 components, making Al software
SQA more difficult. The issues that AI-1 attempts to solve are frequently ill-defined,
and the job that the programme is supposed to do is rarely specified in detail. As a



Safety Evaluation of Al-Based Systems to Software Reliability 227

result, the labels “success” and “failure” are vague, making evaluation challenging.
Furthermore, AI-2 is sensitive and unstable because of the heuristic processes used:
Using very similar inputs, you could get very different results.

This makes extrapolating from test case behaviour extremely dangerous. For the
purposes of this report, we’ll focus on Al applications and methodologies. This could
be applied to the development of civil aviation’s “intelligent cockpit assistance”.
BBN examines the prospect of such uses in a NASA Contractor Report. In general,
they believe that “expert systems” for monitoring and diagnosing faults, as well as
“planning assistants” for assistance with planning, topics such as fuel and thrust
control, would be the most effective aids. (Reiter provides a basic explanation of
defect detection, but Georgeff provides a good overview of planning.) Natural lan-
guage voice recognition and creation, and the human aspects of integrating such aids
into the cockpit are other significant Al technologies for this application. As our Al
software paradigms, expert systems and, to a lesser extent, planning systems will
be chosen because they have been identified as being of particular importance as
intelligent cockpit aids, as well as their important place in current Al applications
in general. Since there are currently no intelligent cockpit aids, we’ll look at expert
and planning systems in general, but we’ll pay specific attention to concerns such
as fault monitoring and diagnostics where applicable. The NASA Langley Research
Center prototype defect monitoring system is an excellent one. This is a sample of
the type of technology that could be one of the first Al systems placed on commercial
planes. We're looking at “knowledge-based” Al, which means it has an explicit evi-
dent of knowledge about some aspects of the outside world. Knowledge is implicitly
incorporated in traditional software in the form of algorithms or procedures. The
programmer knows how the computer will handle payrolls or radar photographs,
and he or she saves this information as processes (pre-planned sequences of activi-
ties), thus the phrase “procedural knowledge”. In traditional software, knowledge
is implicitly represented, whereas information-based software incorporates both a
reasoning component that may use such knowledge to solve problems and an explicit
declarative representation of information. For example, a knowledge-based system
that transforms temperatures between Celsius and Fahrenheit could store informa-
tion about the situation in the declaration.

C=(F-32)x5/9.

This single declaration, when combined with a constraint-fulfilling reasoning com-
ponent, would allow the system to convert Fahrenheit to Celsius and vice versa. In
contrast, a traditional system would encode these data in the following procedural
form:

if (direction=f to_c) then c:=(f-32)%5/9
‘elseif’ .:=c*9/5+32
endif

“Expert systems” are knowledge-based systems that automate tasks that would nor-
mally need human expertise in a certain sector. Expert systems can be divided into
two types: those that rely on “deep knowledge” and those that rely solely on “surface
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knowledge”. Humans adhere to all of the established rules of thumb. Professionals
are thought to have only a rudimentary understanding of the subject. Typically, such
rules are given as “if-then” production rules, and they are highly specific to their
particular domains (e.g. diagnosis of a certain group of disorders). Surface informa-
tion is given in this manner by the “rule-based expert systems” that are growing
popular. Deep knowledge, on the other hand, contains a model of a specific universe
as well as axioms and laws that can be brought into play

‘construct inferences ... what rules can do’.

In areas where even human experts’ competence is fairly superficial, there
appears to be little possibility of constructing anything more than rule-based expert
systems (e.g. medical diagnosis). The Al challenge with such deep expert systems is
determining which knowledge and models are relevant to a given situation. Because
of the properties of knowledge-based systems, their evaluation differs from that of
traditional algorithmic software. In one of the few papers that address the problem
of quality assurance for Al software (especially expert systems), Green and Keyes
discussed the issues as follows: “Expert system software requirements are sometimes
nonexistent, erroneous, or rapidly changing.” When a user does not fully know his
or her own requirements, expert systems are frequently purchased. Some procure-
ments do not include requirements specifications because they are too restrictive or
cost-prohibitive. Refinement and consumer contact are used to create expert systems.

‘May change quickly or go unnoticed’.

“For verification to succeed, the superior specification’s needs must be at least
recognised in the sub-species”. Ordinate specification: If this isn’t the case, tracing
requirements is pointless. Expert systems are often created by prototyping and refin-
ing a system specification or an informal specification. Intermediate specifications
either are not created, are insufficiently precise, or are too changeable to be effec-
tive in verification. “Even if comprehensive requirements tracing specifications were
available, conventional verification is unlikely to give satisfactory results”. There
were numerous responses as to whether the implemented system met the require-
ments. “Traditional validation necessitates meticulous testing methodologies.” As
long as sufficiently clear requirements and design criteria can be met, the test method
preparation should be prioritised. There is no greater difficulty than with traditional
software. The test process design becomes a guessing game when requirements and
design information are absent, inaccurate or changeable.

“For evaluating the results of expert system tests, there is no commonly accepted,
reliable procedure.”

‘The method of having human experts ... a number of problems’.

When independent review is required, there may be no expert accessible or the
expert may not be independent.

“Human experts can be biased or narrow-minded. It’s possible that the expert sys-
tem be built to address an issue that no person can solve consistently or efficiently.”
Issues in evaluating Al software’s behaviour all methodologies for estimating soft-
ware dependability and Part I’s the availability of testing on the fly (and, for that
matter, mathematical verification) is a document including requirements and specifi-
cations, at least to the extent those documents are

‘Issues in evaluating Al software’s behaviour ... those documents are available’.
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They may be used to decide whether a program has failed. The problem with Al
software requirements and specifications is that there aren’t enough of them; there-
fore, faults in deployed Al systems may go undiscovered since users aren’t sure what
“proper” behaviour is. Almost any output can appear logical at the time of produc-
tion, yet subsequently be revealed to be incorrect (for example, during an autopsy or
the dismantling of an engine). Dynamic testing for Al software has the same issues:
It’s not always clear whether the results of a test are sufficient. As a result, before we
can apply software dependability, we must handle the challenges of getting software
requirements and specifications, as well as dynamic testing, for Al software, as well
as evaluating the system against these needs and specifications.

i. Specifications and Requirements: The lack of precise needs and specifi-
cation documents for much Al software reflects the challenge of creating a
priori expectations and needs for a system whose capabilities would expand
with time. If any of the existing SQA procedures and techniques are to be
used in Al software, certain criteria and needs are required. To break free
from this deadlock, we recommend separating Al software’s “inherently
AT” (AI-1) components from the more traditional parts that should be sub-
ject to standard SQA.

ii. Evaluating Desired Competency Requirements: We’ve seen how distin-
guishing the concepts of service needs and minimal competency standards
can help to alleviate some of the issues in analysing the behaviour of Al
software. For some types of demands, formal or at least detailed, state-
ments of needs and specifications should be achievable and system behav-
iour may be assessed in respect of these assertions. However, the intended
competency criterion could not allow for a precise description, and the
only way to assess it might be to compare it to the performance of human
specialists.

Al Systems’ Acceptance: Even if an Al system outperforms human experts in for-
mal examinations, it’s possible that its users will reject it. The previous history of R1,
a system that configures the components of VAX machines, is discussed by Gaschnig
etal. R1 was expected to generate 50 test orders for a panel of 12 human specialists to
review, as part of the acceptance approach. Deficiencies would be corrected, and the
cycle would be repeated every 3 weeks with new sets of 50 orders until a satisfactory
result. It was possible to reach a high level of precision and dependability. In practice,
each review cycle’s number of test cases was reduced from 50 to 10, with those ten
test cases containing only the most recent ten orders received.

R1 was assessed to be sufficiently skilled to be employed routinely in the con-
jurations task after five iterations of evaluation (for a total of 50 test cases). Despite
the fact that R1 was apparently in use, a human expert was discovered a year later,
inspecting and amending 40%-50% of R1’s set-ups. It was uncertain whether the
VAX computer systems were installed according to R1’s precise designs. When ques-
tioned, they provided “quite important feedback, albeit a minor one”. Little late, on
what’s important and what’s not when it comes to completing the setup work. The
following are some of the lessons to be grasped from this experience:
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1. The test selection criteria were naive: Only the ten most recent orders were
considered. Several test cases were simple, and no effort was made to look
for difficult set-up chores that would cause the system to fail. As a result,
McDermott admits:

In retrospect, it’s evident that R1 was still a relatively unskilled configure at the
end of the validation step. It had only seen a small portion of the set of possible
orders, and as a result, its knowledge was still relatively limited.

2. There was no one-size-fits-all “gold standard”. It was discovered that the
human evaluators couldn’t agree on how to correctly do the set-ups.
. Testing for development purposes was mixed up with acceptability testing.
4. The eventual users were not sufficiently involved in the system’s testing and
exercise.

(98]

10.8 SOFTWARE SAFETY

Product and system become dependent on software components. ‘To create a sys-
tem ... any software components’.
Is It Possible to Fail?: If well-tested software and well-written software can’t fail,
‘we have believe on this’.

‘Experienced based software ... to fail actually’.

Hardware does fail, but software does not fail at the same time.

‘Hardware failure behaviour ... from the world’.

‘If software can fail...failure of hardware’.

Software that Is Based on Critical Safety: It’s not the same as safety-critical
hardware or non-critical software.

Software Failure Modes: Software is a critical application system to tend the fail,

‘where expect least’.

Although software does not break, it must be dealt with ‘when it does i/p condition’
It causes software failures.

Dealing of the task ... through the program’.

iii. Anomalous condition I/P is due to the following:
e Failure of the hardware.
e Problem of the timing.
* Unexpected environment condition.
e Bad user input (I/P).
e In condition multiple changing.

10.9 CHALLENGES OF THE RESEARCH

‘A quite example to admit academic ... first high dimension-based problem’.
It will take a small example for practice.
‘We considered some problems ... a given value’.
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‘We can control ... point extent’. We don’t know anything about decision prob-
lem for safety relation with SILs. It may choose your favourite classification method
as ANN. We assume and provide safety argument acknowledgement according to
safety, for example IEC61508. We can also guide and give reason for validating how
assumptions may be checked in practice. It has a simple problem and high leverage.
‘It does not provide safety parameter ... for Al system’ If we check certain problem-
based condition, it will generalise the same approach for higher dimensions.

10.10 CONCLUSIONS

In this book chapter, we described and gave possible approaches for safety assess-
ment of Al systems. Several questions remain open and are solved as separate appli-
cations. A SIL system determines E/E/PE system as normal.

“This hazard is substantiated and risk analysed based’.

It is very compulsory if the requirement of the system is not a SIL system. But in
this case, Al can easily be used for this type of situation

‘if it has no occurred ... a risk analysis’.

It is not compulsory to implement a SIL level system for safety assessment. We
have proposed and analysed an approach of this model. It depends on the type of
model, which carry more analyses. The assessment of AI model requires an in-depth
analysis model for analysis. It means Al can’t be analysed and covers lots of differ-
ent approaches. ‘In this case...complicate analysis’. Used in critical systems, it has a
restricted approach and types of models to design and simplify artificial intelligence
systems. Mackenzie and Pearl (2018) introduced an approach

‘the similar angle types of problem ... before it’s rely’.

The main conclusion is to “formulate a model of the data-generating process, or at
least some parts of that process”, to show how to provide academic examples in order
to proceed the specific types of models.

‘We introduce in this book chapter...for safety relation with applications’.

‘The formulation of a model of data ... for generation process’.

‘Without the use of Al system ... the possibility is’. There are two possibilities: (i)
One is the Al system relevant safety and (ii) the other important safety feature for the
E/E/PE system is that it assumes full responsibility for safety.
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11.1  INTRODUCTION

Techniques for analysing the properties of a software design or system are useful for
both functional and quality properties (e.g. accuracy, reliability, performance and
security).

Predicting the quality properties of a software system using design models can
help not only to make the system more trustworthy, but also to save large amounts
of money, time and effort by avoiding the implementation of software architectures
that do not fulfil the quality criteria. One of the most essential qualities of a software
system is reliability, which is defined as the chance of failure-free operation over a
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specified time period. A software system’s failure tolerance mechanisms (FTMs) are
frequently incorporated. They are a key tool for increasing system reliability.

FTMs can be used to mask errors in systems and prevent them from causing
failures at various abstraction levels (e.g. source code level with exception handling;
architecture level with replication) [2]. Analysing the impact of architectural-level
FTMs on component-based software system stability is difficult because:

e FTMs can be used in several aspects of a system’s architecture.

Multiple points in the system architecture can usually be altered to gen-
erate architecture variants, such as replacing components with more reliable
variants and running components concurrently to increase speed.

e The system’s dependability is determined by its design and usage pro-
file (i.e. component services, control flow transitions between them, and
sequences of component service calls) [3], in addition to the component’s
reliability. For example, if faulty code is never executed under a specific
usage profile, no errors occur, and users believe the system to be depend-
able. Existing reliability prediction methodologies for component-based
systems do not frequently allow for FTM modelling (e.g. [4—6]) or have
limited FTM expressiveness (e.g. [7,8]). These systems lack the flexibility
and explicit expression of how FTM error detection and handling affect
component control and data flow. An undetected error from a component’s
provided service, for example, results in no error handling, affecting control
and data flow within component services that use this provided service.
As a result, when it comes to merging FTMs with the system design and
consumption profile, these approaches are constrained. Other approaches
(e.g. [9-11]) provide a more extensive study of individual FTMs. These ““-
non-architectural” models, on the other hand, do not represent the system
architecture or usage profile. As a result, they are ineffective for determin-
ing how individual FTMs used in various portions of a system design affect
overall system reliability, particularly when testing for architecture variants
under changing usage profiles.

Contribution: This paper offers an explicit and flexible definition of reliability-
relevant behavioural aspects (i.e. error detection and error handling) of software
FTMs, as well as an efficient evaluation of their reliability impact in the context of
the whole system architecture and usage profile, based on the core model (i.e. funda-
mental modelling steps and basic modelling elements) of our previous work [12]. Our
method provides a dependability modelling schema with developer-friendly model-
ling features (for example, provided/required services, components and connections).
For reliability predictions and sensitivity studies, we provide a reliability prediction
tool that automates the transformation of models based on the schema into Markov
models. In two case studies, we validate our technique and show how it may be used
to support design decisions.

The remainder of this chapter is structured as follows: Section 11.2 examines
the related work. The phases in our approach are described in Section 11.3. Our
dependability modelling schema is detailed in Section 11.4. The transformation used
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to generate Markov models for dependability predictions is described in Section 11.5.
Case studies are used in Section 11.6 to exemplify our methodology. Our assump-
tions and constraints are discussed in Section 11.7, and the study is concluded in
Section 11.8.

11.2 RELATED WORK

Our approach belongs to architecture-based software reliability. Software systems
are treated as a collection of software components in modelling and prediction. It
has to do with architectural-level fault tolerance modelling and individual FTM reli-
ability modelling.

Several writers have reviewed the area of architecture-based software dependabil-
ity modelling and prediction [13-15]. Cheung’s [3] technique, which uses Markov
chains, is one of the first.

Recent work builds on Cheung’s work by combining reliability and performance
analysis [16] and supporting compositionality [6]; however, it ignores FTMs. Other
approaches, such as Cheung et al. [17], which focuses on individual component reli-
ability, Zheng et al. [18], which aims at service-oriented systems, Cortellessa et al. [4]
and Goseva et al. [5], which use the UML modelling language, do not address FTMs.

Several approaches in the field explicitly examine error propagation to relax the
assumption that a component failure causes a system failure instantly [19-22]. They
use error propagation probabilities to simulate the risk of component failures spread-
ing. The sum of these probabilities can be used to describe the chance of component
failures being hidden. FTMs, with their error detection and handling, cannot, how-
ever, be explicitly considered by these approaches.

Some approaches take a step forward in addressing the issue of including
architectural-level FTMs in architecture-based reliability prediction models. Sharma
et al. [7] accounted for component restarts and retries in modelling. Different archi-
tectural styles, including fault tolerance architectural style, are supported by Wang
et al. [8]. These approaches, on the other hand, ignore the effects of FTM error detec-
tion and treatment on component control and data flow. Brosch et al. [23] provided
a flexible technique to add FTMs; however, they ignored the effects of FTM fault
detection on component control and data flow. When the behaviour of FTMs devi-
ates from the precise instances stated by the authors, ignoring the influences of either
error detection or error treatment on the control and data flow within components
might lead to inaccurate prediction results.

The dependability modelling of individual FTMs has received a lot of attention
in the past. Dugan et al. [9] used fault tree approaches and Markov processes to
analyse both hardware and software failures for distributed recovery blocks (DRBs),
N-version programming (NVP) and N self-checking programming (NSCP). Kanoun
et al. [11] used generalised stochastic Petri nets to evaluate recovery blocks and NVP.
To evaluate DRB, NVP and NSCP, Gokhale et al. [10] employed simulation rather
than analysis. Their so-called non-architectural models aren’t accurate representa-
tions of the system architecture and usage profile. As a result, while these methods
provide a more detailed analysis of individual FTMs, they are limited in their appli-
cation scope to system fragments rather than the entire system architecture (which is
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typically made up of multiple structures) and are not suitable for evaluating architec-
ture variants under varying usage profiles.

11.2.1  PreLIMINARY WORK

We published a reliability prediction approach for component-based software systems
in [12], which takes into account error propagation for various execution models,
such as sequential, parallel and primary-backup fault tolerance executions. However,
our fault tolerance modelling support was previously confined to primary backup
FTMs, whereas in this work, we can model vast classes of existent FTMs (e.g. excep-
tion handling, restart-retry, primary-backup and recovery blocks).

Furthermore, this paper extends the fault tolerance modelling support for multi-
version programming FTM supports for modelling composite components and loop-
ing structures with discrete probability distributions of loop counts, a more thorough
validation and a far more detailed description and discussion of the approach than
our previous work [1].

11.3 COMPONENT-BASED RELIABILITY PREDICTION

Component developers and software architects are kept separate in component-based
software engineering (CBSE). Component developers create and implement compo-
nents, as well as give component functional and quality specifications (i.e. models).
Software architects can assemble components and test their compatibility using com-
ponent functional requirements alone. However, component quality requirements
must be used by software architects to reason about quality aspects such as depend-
ability, performance and security in component-based software architecture.

Component developers must produce component reliability requirements in our
method by detailing how a component’s given services are referred to as necessary
services in terms of probabilities, frequencies and parameter values. By simply com-
bining these specifications without referring to component internals, software archi-
tects can develop a flow and data control model throughout the entire architecture for
reliability forecasts.

Our method is depicted in Figure 11.1 as six steps. Component developers build
component dependability specifications in the first step. Component developers pro-
vide models for components, services and service implementations, as well as failure
models for internal operations in service implementations (i.e. distinct failure kinds
and their occurrence probability). Different fault tolerance structures (FTSs), such as
RetryStructures, MultiTryCatchStructures or MVPStructures (see Section 11.4.2.3),
can be incorporated directly into service implementations previously modelled
components or as extra components by component developers/software architects.
Different configurations are supported by FTSs, such as the number of retries in a
RetryStructure, the number of replicated instances in a MultiTryCatchStructure for
managing specific failure scenarios and the number of versions executed in parallel
in an MVPStructure.

Step 2 involves the creation of a system dependability model by software archi-
tects. The system architecture is modelled first, followed by the usage profile. Section
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FIGURE 11.1 Component-based software engineering.

11.4 introduces our reliability modelling schema, which aids in the creation of com-
ponent and system reliability models.

Step 3 involves automatically converting the system reliability model and compo-
nent reliability specifications into Markov models. By studying the Markov models
in Step 4, a reliability prediction and sensitivity analysis may be derived. We provide
a reliability prediction tool to help Steps 3 and 4, and the transformation for reli-
ability prediction is discussed in Section 11.5. Sensitivity assessments can also be
performed with the tool support, for example, by modifying the reliability-related
probability of components within the system architecture to obtain appropriate reli-
ability forecasts. Step 5 is executed if the expected dependability does not meet the
reliability criterion. Step 6 is carried out if this is not the case. Step 5 offers several
options: component developers can revise components, such as changing FTS con-
figurations; software architects can revise the system architecture and usage profile,
such as experimenting with different system architecture configurations, replacing
some key components with more reliable variants or appropriately adjusting the
usage profile. Sensitivity assessments can be used as a guide for these possibilities,
such as identifying the most crucial aspects of the system architecture that need
extra attention during revision. Step 6: The modelled system satisfies the dependabil-
ity requirement, and software architects create the real component implementations
using the system architecture model as a guide.
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11.4 RELIABILITY MODELLING

11.4.1 Basic CONCEPTS

An error, according to Avizienis et al. [24], is a portion of the system state that can
cause a failure. A defect is the source of the error. When an error causes the delivered
service to diverge from the right service, it is called a failure. The deviation might
appear in a variety of ways, depending on the sort of malfunction in the system.

The authors outline the principle of FTMs in the same paper. Error detection
and system recovery are used to carry out an FTM. Error detection is the process of
determining whether or not an error has occurred.

From system recovery, error handling is followed by fault handling. Error man-
agement removes errors from the system state, for example, by restoring the system
to a previously saved state. Fault handling prevents failures from re-occurring, for
example, by replacing failed components with spares or reassigning jobs to non-
failed components. Error detection has two main sorts of failures: (i) signalling the
presence of an error when none exists, i.e. false alarm; (ii) not signalling the presence
of an error, i.e. undetected error

To better model and predict the reliability of component-based systems using
architectural-level FTMs, it is necessary to support multiple failure types of a com-
ponent service and different failure types of different component services, as well as
take into account both the influences of error detection and error handling of FTMs
on control and data flow within components.

We introduce our reliability modelling schema for characterising reliability-
relevant properties of component-based systems in the following section. It would
have been possible for us to use UML to structure our approach. However, by incor-
porating our dependability modelling schema, we avoid the UML’s complexity
and semantic ambiguities, which make an automated transformation from UML to
analysis models difficult. Because our schema is restricted to concepts essential for
dependability prediction, it is better suited to our needs than UML enhanced with
MARTE-DAM profile [25]. As a result, in the general scenario, our approach can
provide an automated transformation for dependability prediction.

11.4.2 CoOMPONENT RELIABILITY SPECIFICATIONS

11.4.2.1 Components, Services and Service Implementations

Component developers are obliged to give component reliability specifications in
our approach. Figure 11.2 depicts an excerpt from our reliability modelling schema,
which includes modelling features that assist component developers in developing
component reliability specifications. Modelling elements: Component and Service,
respectively, are used by component developers to model components and services.
A component can be either a primitive component (PrimitiveComponent) or a com-
posite component (CompositeComponent), both of which have nested inner compo-
nents and are hierarchically constructed. RequiredService and ProvidedService are
used to link components to services.
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FIGURE 11.2 Modelling elements in our reliability modelling schema.

(i) Exercising: Seven services (from SO to S6), one composite component (C8),
which incorporates three nested primitive components (C5, C6 and C7), and four sep-
arated primitive components (from Cl1 to C4) are shown in Figure 11.3. Component
developers must explain the behaviour of each service supplied by a component, i.e.
the activities to be performed when a service (Service) in the component’s provided
services is called, in order to examine reliability. As a result, a component can have
several service implementations. Activities (Activity) and structures (Structure) can
be part of a service implementation (Servicelmplementation) (Structure). Internal
activities (InternalActivity) and calling activities (CallingActivity) are the two cat-
egories of activities. The internal calculation of a component is represented by an
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FIGURE 11.3 Example of components and services.

internal activity. A calling activity is an asynchronous call to other components in
which the caller waits for a response before continuing. A calling activity’s called
service is a service in the current component’s required services. When the composi-
tion of the current component to other components is fixed, this referenced required
service can only be replaced by the given service of another component. Sequential
structures (SequentialStructure), branching structures (BranchingStructure), looping
structures (LoopingStructure) and parallel structures (ParallelStructure) are the four
standard types of control flow structures. Branching conditions are Boolean expres-
sions for branching structures. Multiple loops are always limited in looping struc-
tures, which is 2; limitless loops are not allowed. Others may be included in looping
structures, but they cannot have numerous entry points or be connected. Parallel
branches are designed to be executed independently in parallel structures.

11.4.2.2 Failure Models

Component developers use an association between Internal Activity and FailureType
to represent failure models (i.e. distinct failure types and their occurrence probabili-
ties) for internal activities of service implementations. These probabilities can be
determined using several strategies such as fault injection, statistic testing or growth
reliability modelling [13,17].

(i1) Visualisation: Figure 11.4 depicts a service implementation. The service
implementation Svcl includes one internal activity. During the execution of the inter-
nal activity, failure type F2 can occur with a probability of 0.001617, according to the
internal activity failure model.

The service implementation Svc2 has two internal activities (with failure models),
four calling activities (to call required services: Svc3, Sve4 and Svc5), one branch-
ing structure (with branching conditions: [Y=true] and [Y=false]) and one looping
structure (with loop count: Z).

11.4.2.3 Structures with Fault Tolerance

Detecting errors: To aid in the modelling of FTMs, we have included fault tolerance
elements in our FTM modelling schema (FTSs). In FTMs, proper error detection is
necessary for proper error handling.
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(iii) Case in point: Figure 11.5 shows an activity with three forms of failure: F1,
F2 and F3 (a third failure type, FO0, is introduced, which corresponds to proper ser-
vice delivery). Certain failure types, such as 2 and F3, must be precisely identified
in order to provide error handling. For each Fi with i 0, 1, 2, 3, the proportion ci j of
being recognised as Fj with j 2, 3 must be specified.

As aresult, c0 j is used to symbolise false alarms. False failure signalling is rep-
resented by the elements ci j and i 6=}. In the case of complete error detection, the
error detection matrix has ¢j j=1 and c¢i j=0 for i 6=j.

RetryStructure: When coping with temporary failures, service re-execution is
a good option. A RetryStructure has been created based on this method. There is
only one RetryPart in the structure, which contains a variety of activity types, struc-
ture types and even nested RetryStructures. The initial execution of the RetryPart
simulates regular service execution, whereas subsequent executions simulate service
re-execution.

(iv) Visualisation: Figure 11.6 depicts a single RetryPart. During the execution
of the RetryPart, failure categories F'1, F2 and F3 may occur (the field possible fail-
ure types). According to the field handledFailureTypes of this structure, only failure
types F'1 and F2 cause the RetryPart to be retried. As many times as the retryCount
variable says, the process is repeated (two times in this example).

The concept of a MultiTryCatchStructure stems from the exception han-
dling in object-oriented programming. The structure is made up of two or more
MultiTryCatchParts. A single MultiTryCatchPart can contain several activity types,
structure types and even nested MultiTryCatchStructures. The first MultiTryCatchPart
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replicates regular service execution, whereas succeeding MultiTryCatchParts handle
specific failure types and do alternate activities, comparable to exception handling
catching blocks.

(v) Visualisation: It shows a MultiTryCatchStructure with three MultiTryCatchParts.
During the execution of MultiTryCatchPart 1, failure types F1, F2, F3 and F4 may
occur. Because the field handledFailureTypes of MultiTryCatchPart 2 includes 2 and
F3, and that of MultiTryCatchPart 3 includes 3 and F4, only failure types identified
as F2, F3 and F4 lead to identifying MultiTryCatchParts to handle detected failure
types. 2 and F3 failure types in MultiTryCatchPart 1 lead to MultiTryCatchPart 2,
but F4 failure type leads to MultiTryCatchPart 3.

During MultiTryCatchPart 2, failure types F2 and F3 are also available.
Furthermore, because the field handledFailureTypes in MultiTryCatchPart 3
includes F3 and F4, only failure types recognised as 3 in MultiTryCatchPart 2 lead
to MultiTryCatchPart 3. There is no requirement for an error detection matrix for
MultiTryCatchPart 3 because there is no MultiTryCatchPart to manage failures of
MultiTryCatchPart 3.
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MVPStructure: With a majority voting decision, we designed our MVPStructure
utilising the N-version programming (NVP) technique. An MVPStructure contains
three or more MVPParts. A single MVPPart can contain many activity types, struc-
ture types and even nested MVPStructures. These MVPParts run in parallel in the
same environment, similar to how NVP variants (or versions) do: Each accepts the
same inputs and produces its own version of the output. The majority voter of the
structure then collects the outputs. The system’s proper output is assumed to be the
majority of the results.

To determine the decision output, the voter must use a collection of results. If the
majority of the votes are in disagreement, the voter declares a failure. Otherwise,
the agreement creates a result for the voter (i.e. the consensus). The voter’s output
is right if the majority of the correct outcomes are agreed upon; else, it is errone-
ous. We assume that the MVPStructure isn’t utilised in the same way that NVP
isn’t used when several separate accurate outputs are possible. The operation of an
MVPStructure is depicted.

11.4.2.3.1 Limitations and Assumptions

We presume that components fail independently, as in several similar approaches
(e.g. [3,6,16,18]). Without FTMs, a component failure leads to a system failure. This
means that the impact of component-to-component error propagation is not taken into
account. We refer to our prior work [12] to study the impact of error propagation on
reliability prediction of component-based software systems with various execution
models, such as sequential, parallel and primary-backup fault tolerance executions.

In our approach, the Markov property of control transitions between components
is assumed. This means that the operational and failure behaviours of a component
are unaffected by its execution history. Our approach’s applicability in many applica-
tion domains is limited by this Markovian assumption. Many real-world applications,
on the other hand, have been proven to satisfy this Markovian assumption at the
component level [3]. Our approach can be used to any higher-order Markov model,
extending its utility. Because Goseva et al. [14] addressed the issue of Markovian
assumption in dependability modelling and prediction in depth, we can validate this.
The authors state that a higher-order Markov chain can be mapped into a first-order
Markov chain in their paper (i.e. the next execution step depends not only on the
previous step, but also on the prior n steps).

Assumptions are made in the evaluation of failure probabilities for internal pro-
cesses, error detection matrices for FTSs and consumption profiles. There is no such
thing as a one-size-fits-all solution to a problem. The bulk of approaches focus on
setting up tests to obtain a statistically meaningful amount of data on which to make
estimations [26], with component reuse potentially allowing estimations to be based
on earlier data. The estimation could be based on the specification and design papers
for the system [17]. Estimation could be based on execution traces acquired with
profilers and test coverage tools [14] in the last stages of software development, when
testing or field data are available.

Our method’s argument values are currently fixed constants. They can’t be
changed in the middle of the game to take into account things such as component
condition or system state. Future research will be focused on such considerations.
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11.4.2.3.2 Conclusions

In this research, we presented an extended approach for defining reliability-relevant
behavioural elements (i.e. error detection and error treatment) of software FTMs and
evaluating their reliability impact in the context of the entire system architecture and
usage profile.

Software architects use our reliability model to construct a system reliability
model, and component developers create component reliability specifications. Then
there’s a method for forecasting the artefacts’ trustworthiness. Two case studies were
used to demonstrate the applicability of our technique, emphasising its ability to sup-
port design decisions and reuse modelling components for evaluating architecture
options under the consumption profile. This form of help can lead to more reliable
software systems at a cheaper cost by avoiding potentially considerable expenses for
late life cycle upgrades for reliability enhancements.

We plan to combine all of our past work [12], add more intricate error propaga-
tion for concurrent executions, add more software FTSs and test our technique more
thoroughly. These additions will increase the applicability of our method.

For reliability prediction and sensitivity evaluations, our system automatically
converts them to Markov models.
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12.1  INTRODUCTION

Because so many decisions in our modern lives are based on several factors, it is pos-
sible to weigh the numerous criteria and receive all of the weights from expert groups
[1]. The structure of the problem and the evaluation of multiple criteria are essential.
Certain decisions, such as those pertaining to the construction of a nuclear power
plant, were made based on several factors.

Some criteria may have an effect on a particular problem, but in order to arrive at
the best solution, all the alternatives must share criteria that obviously lead to greater
information and better judgements [2]. It’s all about figuring out how to structure and
solve multi-criteria problems in order to make better decisions and plans. It is the pri-
mary goal of this survey to assist decision-makers when faced with a large number of
options for resolving a particular issue [3]. There are several situations in which the
decision-maker’s desire to distinguish between alternatives is necessary.

There are several ways to look at finding a solution. It may be compared to select-
ing the “most favoured alternative” of a decision-maker from a list of possible choices
[4]. Another way to look at the “solution” is to narrow down the options to a few good
ones, or to classify them into different preference groups. All “efficient” or “non-
dominant” solutions can be found using an extreme interpretation of the problem.

When there are a lot of factors to choose from, the situation becomes more dif-
ficult [5]. Without the addition of the relevant information, a unique optimal solution
for an MCDM issue can be found. It is common for an optimal solution’s notion to
be stifled by the non-dominant options. The property of a non-dominant solution is
that no alternative solution can be reached without surrendering at least one criterion
[6]. Because of this, the decision-maker can readily select a non-dominant answer.

As a matter of fact, the decision-maker could not have done any worse or better
in any of the criteria. While there are many non-dominant answers, the decision-
maker’s final choice is difficult to make because the set is so large. There have been
numerous studies on how to find the optimum answer to a problem using a variety of
various ways, and each of the MCDM methods has its own uniqueness, as this one on
multi-criteria decision-making (MCDM) shows [7]. An acceptable technique of deal-
ing with a problem can be determined by employing MCDM in many applications.

The goal of decision-making (DM) is to find the best possible solution to a prob-
lem [8]. Ultimately, it is up to the decision-maker to research the options and choose
from a variety of choices in order to get the desired result.

A statistical, quantitative or survey study could be used to find a solution that
meets all the requirements while also minimising any potential controversy over the
characterisation of the problem. MCDM focuses mostly on decision-making in order
to achieve the best possible outcome when there are numerous preferences [9]. The
proliferation of options necessitates a reassessment of prioritisation strategies.

The system’s complexity rises as more stakeholders are involved in the design
process. Multi-attribute decision-making (MADM) and multi-objective decision-
making (MODM) are the two basic types of MCDM [10]. The selection of alterna-
tives is made easier by MADM.

It’s up to the individual to decide which option is best. To better understand DM’s
preferences, economists employ the multi-attribute utility theory (MAUT), a branch
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of the utility theory that focuses on numerous attributes at once. As part of its utility
adaptive approach (UTA), regression analysis and linear programming are used [11].
MAUT uses the principle of attribute independence, while UAT uses the principle of
variable independence. When two or more criteria are provided, MODM is utilised
to generate a continuous set of solutions.

Constraints placed at various intervals define the bulk of MCDM'’s work. Either
manually or mathematically, constraint values can be retrieved [12]. Depending on
the intervals, the information retrieved could be either actual or hazy. Data can be
retrieved using a modern MCDM approach, which offers the framework for this [13].

In the MCDM process, selecting an aggregate technique is a critical step in reach-
ing a final conclusion. However, recent developments in MCDM have provided a
wide range of evaluation theories and assessment methods [14]. There are no set pro-
cedures for making decisions. Aggregation methods are used to determine priorities
and rank alternatives depending on the desired and the target of comparison.

12.2 PREVIOUS WORK

Fuzzy logic allows decisions to be made with approximated values despite the lack
of complete information. Even if a decision turns out to be bad, it can be changed if
further information comes to light later on [15]. There is no way to make a judgement
based on logic when there is no information at all. Typical non-fuzzy approaches (e.g.
linearisation of nonlinear situations) typically rely on mathematical approximations,
which results in poor performance and high costs [16].

Fuzzy systems often outperform traditional MCDM methods in certain situa-
tions. A great deal of work has been done in a wide range of areas such as banking
and general purpose, student and teacher performances, water resource location and
many more of these sectors [17]. A study of the available options has been carried
out in order to determine which alternatives are optimal. The explicit consideration
of multiple criteria in MCDM structures difficult issues, allowing for better and more
well-informed decisions.

12.2.1 DirrereNT APPROACHES OF MCDM

To select the optimal alternative, MCDM approaches have been used in a variety of
contexts. The method of MCDM and its various forms are shown in a hierarchical
structure in Figure 12.1. The following sections provide an overview of the most
common MCDM approaches.

12.2.1.1 Analytic Hierarchy Process

AHP is based on the premise that experts’ knowledge in a subject may be gathered.
An alternate selection and justification problem is approached using the principles
of fuzzy set theory and hierarchical structure analysis [18]. Interval judgements are
more reliable than fixed value assessments for decision-makers. This strategy can be
used when a user choice isn’t clearly specified because of its fuzzy nature.
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FIGURE 12.1 Basic block diagram of MCDM methods.

It is impossible for AHP to portray human imprecise thoughts because it includes
expert judgements and multi-criteria evaluation [19]. The fuzzy set theory makes the
comparison process more flexible and capable of explaining the preferences of experts
than the standard AHP, which emphasises the clear judgements of decision-makers.
Using the AHP, an MCDM problem is broken down into a systematic hierarchy proce-
dure [20]. The structure of an m*n matrix (where m is the number of alternatives and
n is the number of criteria) is the focus of the AHP method’s last phase.

A matrix is generated based on the relative relevance of each condition. On the
basis of priority theory, AHP constructs its hierarchies. Problems involving the simul-
taneous consideration of multiple criteria or alternatives are dealt with in this book.

12.2.1.2 Fuzzy Analytic Hierarchy Process

It is used in conventional market surveys, etc., to fuzzify analytic hierarchy process
(fuzzy AHP). Pairwise comparisons are used to determine the weights of each item’s
evaluation in AHP, as well as its value in relation to other products and alternatives;
however, the results of these comparisons are not 0, 1, but rather a numerical number.
If a weight is expressed in fuzzy AHP, then the traditional constraint that the sum of
several weights 1 can be loosened is also relaxed [21].

12.2.1.3 TOPSIS

It is assumed by the TOPSIS technique that each criterion has a tendency to mono-
tonically increase or decrease utility, leading to the easy definition of the positive and
negative ideal solutions [22].

In order to determine how close, the alternatives are in comparison with the per-
fect solution and a strategy based on Euclidean distances is put forth. When com-
paring the relative distances of the alternatives, this will determine which one is
preferred.

ELECTRE’s non-dimensional criterion is first converted into a non-dimensional
criterion through the TOPSIS approach [23]. As outlined in TOPSIS, the chosen
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alternative should be the lowest distance from PIS (positive) and the greatest distance
from NIS (negative). The MCDM is made easier by using this approach of ranking.
The criteria in each region are evaluated using the fuzzy TOPSIS approach, and then
the criteria are sorted according to the region [24].

12.2.1.4 ELECTRE

Elimination Et Choix Traduisant la REalite is one of the MCDM approaches, and
this method allows decision-makers to select the best choice with the greatest advan-
tage and the least conflict in the function of several criteria.

To distinguish between a given set of options, an individual can utilise the
ELECTRE method, which was originally known as ELECTRE 1. ELECTRE I, 1II,
IIL, IV and TRI are only some of the variants of ELECTRE that exist. Fundamentally,
each approach is founded on the same ideas, but they differ in terms of how they are
used and the type of choice problem they are meant to solve [25].

ELECTRE[; ELECTRE TRI; and ELECTREIL Il and IV are all geared towards
solving selection; assignment; and ranking problems, respectively. “Outranking rela-
tions” are an important concept to remember. Coordination indices can be used to
model a decision-making process in ELECTRE.

The concordance and discordance matrices are used to calculate these indices [26].
A concordance and discordance index is used to assess outranking relations among
distinct alternatives and to determine the best option based on the clear data [27].

12.2.1.5 Grey Theory

The terms “insufficient data” and “poor knowledge” are both used to describe grey
theory, which is a rigorous mathematical examination of systems that are both known
and unknown.

There are a large number of input facts that are separate and insufficient when
grey theory studies the interactional analysis since the decision-making process
is not evident [28]. In recent years, a number of decision-making issues have been
solved using the grey theory technique.

It has been commonly used to discover the optimum solution when the number
of options and criteria are considerable [29]. The decision-making process dictated
the selection of these techniques. It was decided that ELECTRE would be used to
choose the best candidates, that TOPSIS would be used to rank them, and that the
grey hypothesis would be used to select the best candidate when complete data were
not available. Fuzzy MCDM approaches are put to use in the following section [30].
Other MCDM approaches are available, and we’ve listed some of them below, along
with their intended use, pros and cons and other relevant information.

12.2.1.6 ANP

Since its inception in 1996, the ANP technique has allowed the criteria to be inter-
dependent. Most problems cannot be arranged in a hierarchical way because of the
contributions from several levels [31]. With the cycles intertwined within the system,
ANP is depicted as a network.

Because of the inherent ambiguity in human judgement, ANP is unable to ade-
quately assess essential criteria. Fuzzy ANP uses the fuzzy preference programming
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method to derive local weights [32]. Weights based on local factors are combined to
construct a supermatrix to rank alternatives.

12.2.1.7 VIKOR

To resolve choice difficulties involving several criteria, Serafim Opricovic created
VIKOR in 1979 and published an application under the name VIKOR in 1980. A
similar ideal solution to TOPSIS is used in the method’s aggregation and decision
representation [33].

The linear normalising method is employed in the VIKOR software. For the
majority, it provides the most usefulness, while allowing each individual to have a
small amount of preference over the rest of the population.

12.2.1.8 PROMETHEE

The compound PROMETHEE and its antonym is presenting the correct answer.
Rather than presenting the correct answer, geometric analysis for interactive aid
(GAIA) established in the 1980s is used to conquer alternative optimal solutions to
achieve goals [34]. These techniques aid programmers in the creation of a process
structure, analysis of the problem and prioritisation of potential solutions.

12.2.1.9 SMARTER

MAUT-based SMARTER (simple multi-attribute rating technique exploiting ranks)
method is mostly used for preference analysis.

SMART (simple multi-attribute rating technique) is a family of compensation
approaches established by Edwards and Barron. Ranking criteria are numerically
weighted by using the rank order centroid (ROC) in SMARTER [35]. Goal and
decision-makers, criterion setting, defining goal alternative and competitors, prob-
lem recognition, investigation of noteworthy alternatives and the calculation of the
one-dimensional value function are all part of SMARTER (Table 12.1).

12.2.1.10 Wiegers

In a recent work, requirement prioritisation was accomplished using Wiegers method
of fuzzy logic. Benefits, penalties, risks and costs all play a role in determining the
best strategy [36].

Using the membership function, weights are rated out of five. In order to imple-
ment the fuzzy logic, MATLAB® membership functions and designer inference rules
are used [37]. Real-time implementation makes it a better fit because of the high
priority placed on requirements during the development stage.

Since stakeholders’ decisions and the requirement are both unclear and ambigu-
ous, advancement in MCDM approaches suggests that a fuzzy version of the methods
is more suited. Research suggests that fuzzy concepts can better handle ambiguity in
complex decision-making [38].

12.2.1.11 Previous Research Work

Based on stakeholder-defined independent criteria, Jusoh et al. [39] implemented
the AHP for the selection of open-source software (OSS). It is not uncommon for
the contributors of different organisations to use different methods of selecting new
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TABLE 12.1
Advantage and Disadvantage of MCDM Methods
S.No MCDM Methods Description Disadvantage Advantage
1. Weighted product  Products are 1. For equal weight of 1. Remove any unit of
model compared with each DM’s no solution measurement
other in reference of
weight.
2. Analytic hierarchy ~ Pairwise comparisons 1. More comparisons . Non-biased
process with different are required decision-making
criteria pairwise . Each element
2. Ranking importance becomes
irregularities clear
3. Weighted sum Same unit alternatives 1. Multi-dimensional . Strong in single-
model are evaluating evaluation is dimensional
difficult problems
4. ELECTRE Best choice with 1. Consumption of . Used outranking
maximum advantage time is more
5. Grey analysis Deal with incomplete 1. No optimal solution 1. Unique solution for
data information perfect
6. Analytic network ANP use different 1. Uncertain . No independency
process (ANP) alternatives for best 2. Time-consuming required
solution . Accurate prediction
7. Data envelopment  Used to find the 1. No absolute 1. Handles multiple

analysis (DEA)

combined efforts
efficiency

efficiency

2. Demanding large

problems

input output

. Comparisons are

directly against
peers

members. Choosing the right software to address a certain problem is a personal
choice for each operator.

Data and service quality are also examined as part of this investigation. The author
listed 12 criteria for selection, such as reliability, usability, performance efficiency,
functionality and competence. In order to meet the specifications of OSS, the system
defined the features. In order to select the OSS, the AHP was used to determine the
best option.

Fuzzy theory may be used in the future to express the weights associated with
needs in a hierarchical structure. In the future, decision-making by consensus could
be utilised to include all relevant parties. AHP and TOPSIS were also mentioned by
Vinay Selat [40]. AHP and TOPSIS were used to make decisions based on the out-
comes of the integration of goals after prioritisation and evaluation.

Requirements engineering used this proposed methodology to validate various
judgements when several stakeholders were engaged. The most important part of
the project was the development of frameworks for decision support systems. An e-
commerce application was used to demonstrate the proposed method. Future study
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should take into account various stakeholders, prioritise requirements or hard goals
and investigate game theoretic approaches in the decision support system.

In their work on software quality model selection, Sumeet Kaur Sehra et al. [41]
highlighted some of the applicability of FAHP. Finding a web development platform,
evaluating the quality of a website and determining the success factors of an online
store may all be accomplished using the FAHP in this study.

The study evaluated the McCall, Boehm and ISO9126 quality management
models using three separate criteria: dependability, efficiency and maintainability.
Normalised weights are used to narrow down the pool of potential candidates for the
model. Using both the FAHP and AHP, the weights of the criteria are calculated and
compared to each other.

For ISO9126, the best software model has a normalised weight of 0.38 for FAHP
and a weight factor of 1.39 for AHP, indicating Boehm’s model selection. In value
assignment, the outcomes are influenced by both the specific application and the
decision-maker’s point of view. The FAHP approach can be considered one of the
greatest solutions for ranking and assessment concerns in software engineering
because the decision-making is unclear.

For prioritising requirements, Sahaaya et al. [42] used the ELECTRE approach. It
is common practice to use ELECTRE to determine the relative importance of several
projects. The 100-point technique and ELECTRE were used to rank the contribu-
tions from various stakeholders in this system.

Because of its lower implementation costs and man-hour requirements, the result-
ing system was found to have an advantage over more traditional systems. The
system’s flaw is the 100-point technique, which is limited when dealing with huge
amounts of criteria. Stakeholders should be taken into consideration when utilising
fuzzy approaches in future research.

For the assessment of agile methodologies for small and medium organisations to
fulfil the need for software development, Silva et al. [43] introduced a multi-criteria
method called SMARTER. In the selection process, DSDM (dynamic systems devel-
opment method), SCRUM, XP2 and Crystal were considered among the most promi-
nent agile models.

These approaches are the only options available. After defining a set of criteria, a
survey was carried out. The final results were obtained by converting the language
values into numerical indexes. The multi-attribute values were used to rank the meth-
odology. There is a lack of complete information for the robust selection of the pro-
cess through this method, which is more time-consuming and expensive.

This is one of the most current studies in the field of software engineering using
the SMARTER program. The study has come to an end, and the researcher has
made some observations that merit further investigation. For more exact criteria,
further research suggests numerical scaling may yield better results than survey
techniques.

Future studies should focus on a more efficient quantitative analysis of linguis-
tic scales to evaluate the alternatives. There are significant differences between
FTOPSIS and TOPSIS, as described by Elissa Nadia Madi et al. [44] in their discus-
sion of these two approaches. The FTOPSIS method’s difficulties and challenges are
also discussed in this paper.
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As a result of spotting these flaws, a workaround has been proposed that could be
implemented in the future to make the interesting fuzzy TOPSIS approaches more
reliable. Prioritising interdependent requirements using ANP was proposed by Javed
Ali Khan and colleagues [45]. The consistent results that ANP provides, which are
proportion scale dependent, lead the researchers to believe that ANP is an excellent
tool for determining the priority of a set of requirements.

According to the study, ANP prioritises better than AHP. MATLAB® was used
to run the simulation. In the future, it is proposed that ANP be used in the software
business to prioritise requirements.

Using a questionnaire method to gather data, Romulo Santos et al. [46] applied
the hybrid cumulative voting (HCV) prioritisation strategy. It was decided to focus
on a case study of COTS software requirements prioritising. Some of the potential
software user’s responses were recorded online. Ratio scale weights are calculated
from the database using the HCV approach.

MACBETH (measuring attractiveness by the categorical-based evaluation tech-
nique) was used to consolidate the results. The method is determined to be able to
meet the features of market-driven software development. A case study favouring a
worldwide perspective, with the culture and economic weight of the region as addi-
tional aspects, is being considered for future work.

Integer linear programming with extra selection criteria such as cost and require-
ment interdependency is another upgrade that has been presented. Statistics was uti-
lised by Hadeel E. Elsherbeiny et al. [47] to prioritise the needs of a system with
many stakeholders. Because the respondents gave it the highest rating of the three
techniques of eliciting requirements, the researcher decided to employ Rate P as a
means of gathering the information from them.

When using Rate P, the rating scale ranges from O to 5, with —1 denoting the
absence of a requirement. Group brainstorming and brainstorming sessions are
among the methods for obtaining the necessary information. There are 76 partici-
pants in the study, 10 project goals, 48 requirements and 104 requirements in detail.
There is an input of non-prioritised requirements to the system, and the output is a
recommendation for prioritised ones. SPSS is used by the researcher to prioritise and
identify correlations to predict the needs of the stakeholders.

Game-based needs prioritisation techniques in software engineering are discussed
by Kifetew Meshesha Fitsum et al. Requirements engineers can benefit from the use
of the decision-making game (DMGame). It uses gamification and automated rea-
soning to prioritise requirements and engage stakeholders in the process of making
decisions. Automated prediction algorithms are used to make decisions in DMGame,
which relies on an online role-playing game (ORPG).

When taking into account the contributions of various stakeholders and automat-
ing the prioritisation of tasks, the process was shown to be more efficient. Pairwise
comparison is used to rank alternatives in the AHP method for automated reasoning.
It’s built to manage a variety of people and groups.

An alternative to AHP for many requirements may be a non-pairwise technique
using multi-objective optimisation in future work. Various strategies for determining
the priority of requirements have been examined by Raneem Qaddoura et al. [48] in
depth. Methods are chosen based on the nature of the project and the requirements that
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must be met. Some of the factors used in the comparison of these methods include the
difficulty of use, reliability of outcomes and fault tolerance. The interesting technology
will be compared to other data mining and machine learning methods in the future.

Researchers such as Hassan Abeer and Ramadan Nagy [49] described the various
ways they’ve used to rank the importance of system needs. Fuzzy Wiegers’ method
is used in this study to develop a framework for ranking needs by weighting benefits,
penalties, costs and risks. The classical Wiegers’ method is compared to a numerical
example utilising MATLAB® and a spreadsheet in this study.

Hassan Abeer and Ramadan Nagy [50] proposed a hybrid model for demand pri-
oritising employing three different strategies such as QFD (quality function deploy-
ment), CV (cumulative voting) and AHP using fuzzy technique. Due to stakeholder
decisions being ambiguous, the concept of employing a fuzzy method was born.
Given the ambiguity of decision-making in fuzzy, the real world appears to be a
closed-off environment.

For prioritisation purposes, requirements are categorised as large, medium and
tiny. When it comes to making complex decisions, this strategy is able to handle
group decision-making, as well as the uncertainty that can arise during group
decision-making. To ensure that this method can be easily implemented, and effi-
ciently and effectively manage uncertainty in decision-making, author compares the
proposed fuzzy version of this method to the classical form.

12.2.2 FMCDM APPLICATION

It is utilised in a wide range of industries, including banking, performance improve-
ment, decision-making in diverse organisations, safety evaluation and multi-choice
general-purpose problems. A variety of FMCDM approaches and applications are
explored in this section.

12.2.2.1 Fuzzy MCDM Applications

It’s common for businesses to become hazy when there are a lot of options accessible
to make the greatest decision. When it comes to an organisation’s supplier selection,
for example, MCDM involves both numerical and qualitative elements.

To find the finest supplier, you must first determine your needs and trade-offs
between these observable and ethereal elements, some of which may be in opposition
to one another.

An effective supply chain relies heavily on the selection of suppliers who are
capable of delivering the proper quality product or service at an appropriate price,
at the right time and in an appropriate quantity to consumers. FMCDM approaches
such as TOPSIS, ELECTRE and AHP have been used to overcome this problem.

ELECTRE is a tool for moving away from bad points and getting closer to the
positive. Marine engineering is fundamentally concerned with safety issues. When it
comes to safety in maritime engineering, crew members’ understanding of risk and
their ability to handle it is critical. Fuzzy approaches such as TOPSIS, ELECTRE
and AHP have been used to discover the optimal safety measures. Location plan-
ning, resolving issues with OWA operators and other topics covered in Table 12.2
have all been tackled using fuzzy MCDM approaches.
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TABLE 12.3
Performance Evaluation of Fuzzy MCDM
Best

Application Criteria Problem Techniques Alternatives Alternative
Training 1. Level of Find out the FMCDM 11,12,13, 14 11

performance knowledge best trainee

evaluation of 2. Way of teaching

administration 3. Individual features

science

instructors by

fuzzy MCDM

approach
Profitability and Power quality, To find out the ~ AHP Al, A2, A3, A2

customer reliability, cost, best tool A4

satisfaction using  availability (MCDM) for

MCDM investigation

for achieving
the post

Teachers 1. Analysis of growth Find out the CPRAS-G TI1,T2,T3, T3

performance 2. Impact of best company T4

evaluation and environment for investment

appraisal using 3. Analysis of risk
MCDM

12.2.2.2 Fuzzy MCDM in Performance Evaluation

Although the methodologies are widely used in a wide range of fields, they can also
be employed to analyse organisational effectiveness. As shown in Table 12.3, the
effectiveness of organisations can be assessed using FMCDM methodologies. The
effectiveness of a teacher can be measured using the COPRAS-G approach. It uses a
numerical scoring system in the form of interval marking.

Quantitative numerical scores can be handled by common approaches docu-
mented in previous research. The COPRAS-G technique, on the other hand, is able
to account for interval making given to a specific item.

Fuzzy set theory is used to measure the performance of administrative instructors
in the evaluation of their training performance. AHP is used to calculate the weight
of the criteria, while TOPSIS is used to rank the results. The fuzzy MCDM approach
is used to analyse choice alternatives, including subjective judgements by a group
of decision-makers. Individual decision-makers can utilise a pairwise comparison
process or a linguistic grading system to help them form comparable judgements.

A performance evaluation is a tool used to gauge an employee’s overall contri-
bution to the company. If an employee does or does not satisfy particular criteria,
an evaluation might be used to make recommendations for next steps. Uncertainty
arises when evaluating performance; hence, the MCDM technique is used to gauge
any performance problems. COPRAS-G is used to identify the top teachers in the
evolution of teacher performance utilising a variety of criteria and alternatives.
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Such factors as knowledge level, problem-solving capabilities and cognitive
capacities have been used to evaluate the performance of the training administrative
teacher.

Electrical energy is in high demand from consumers due to its ubiquitous pres-
ence in human endeavour. Technical and organisational metrics are typically used in
the planning and operation phases of electrical power systems to examine appropri-
ate tools (MCDM methods) that enable decision-makers in achieving the goals such
as customer satisfaction and profit making. Using interval-valued intuitionist fuzzy
sets, a MCDM strategy is utilised to determine the best company to invest money in
order to earn greater profit.

12.3 SURVEY RESEARCH OUTPUTS
12.3.1 ComparisoN oF AHP anp Fuzzy AHP

12.3.1.1 Analytic Hierarchy

Using AHP, a decision-maker can use many criteria to rank options and select
the best one. Using this strategy, decision-makers can narrow their options down
to a single, better choice by comparing how well each one fits a minimum set of
criteria. Humans aren’t very good at making quantitative predictions, but they are
equally good at creating quantitative forecasts, thanks to fuzzy AHP. During the
process of making decisions, there is a rise in inconsistency between the possible
outcomes.

If any of the criteria has a lower importance than the rest, it can be weighed as
zero in a fuzzy pairwise comparison, unlike other techniques. The decision-making
process does consider that criterion, but it isn’t given much weight because there are
so many others. To be sure, the classic AHP technique does not allow for the “zero-
weighed” condition, but the numerical weight of a criterion will be close to zero if it
is judged as being smaller than all the others.

Fuzzy AHP can simply overlook the less important criteria, whereas classic AHP
places so much emphasis on them. Fuzzy ARP displaying additional information
may benefit from this as well because there is no difference between a criterion’s
presence and nonexistence in the minds of the decision-makers.

As a result, the decision-maker will be able to focus on more critical factors.
Fuzzy approaches and classical algorithms aren’t rivals when used under the same
conditions. As a general rule, the classical technique should be used if information
or evaluations are known to be accurate; if the information or evaluations are not
known, the fuzzy method should be used.

In recent years, because of the uniqueness of information and decision-makers, it
has been necessary to incorporate the possibility of deviation into decision-making
procedures, and as a result, a fuzzy version has been produced for each decision-
making approach. This necessity led to the development of the fuzzy AHP approach.

A questionnaire is used to assess a subject’s linguistic and affective abilities.
Scaled numerical values for each language feature are predetermined. Although
these numbers are exact numbers in classical AHP, the fuzzy AHP method uses
intervals between two numbers to represent them.
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12.4 RESEARCH DIRECTIONS IN MCDM

The actual purpose of an integrated decision-making system is to enable the decision-
maker to look into the future and make the best possible decision based on previous
and current facts and future projections. Predicting the risk and vulnerability of indi-
viduals and infrastructure to both natural and man-induced hazards is an important
part of sustainable development.

This necessitates the transformation of data into knowledge and a thorough exam-
ination of the outcomes of information consumption, decision-making and participa-
tory procedures. Using fuzzy logic will only provide an approximation of a solution,
according to the findings of the research.

Data can be analysed using fuzzy logic for any application, whether it’s quantita-
tive or qualitative data. It is possible to carry out a large number of smaller activities
by utilising the various FMCDM approaches.

The originality of each strategy is evident. Analysing a software application can
be somewhat nebulous in this manner. There have been past attempts to map out
what information is needed by different groups of people, such as government agen-
cies needing a lot more data than, say, a customer service department or a corporate
management team.

Customers, government and management all have different needs for informa-
tion, so it’s critical that the right information is delivered to them in the format they
prefer. Each of these groups may have their own ideas about how information should
be delivered; banks can gather the data they need by interviewing a wide range of
customers and having them complete various applications and questionnaires.

Uncertainty in user information distribution is now in place. Each user’s informa-
tion is unique, and the information’s substance is unique as well. It is imperative that
the right information be sent to the right person at the right time via a channel they
choose. The level of information and the level of security also change depending on
the needs of different users. FMCDM approaches, which are used to deliver the cor-
rect information to the right person at the right time, can be utilised to overcome this
uncertainty problem.

12.5 CONCLUSIONS

This study identifies potential in MCDM, where numerous choices are involved.
Many applications, such as financial, summative assessment, prevention of injury
and other multi-criteria domains, make use of fuzzy MCDM. Using FMCDM, we
can assess a large number of options using a variety of criteria before settling on
the optimal one. For each problem, the MCDM approaches were chosen in accor-
dance. The use of MCDM has only been implemented in a few cases. This survey
is focused on the banking industry because of the high level of ambiguity in the
decision-making process. MCDM on a fuzzy basis is well suited to problems with
approximate solution spaces. A solution can be found by analysing both quantitative
and qualitative data in any application using FMCDM. Many methods under MCDM
exist, each of which has a distinct set of capabilities, and the method must thus be
selected for each specific task.
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Due to the progressive development stage of large systems, there are schedule con-
straints and the number of features requested typically exceeds the available resources.
Software evolution [1] is the demand of today’s environment; software systems must be
continually adapted. It is the demand of present tendency to evolve because of the need

DOI: 10.1201/9780367816414-13

267


https://doi.org/10.1201/9780367816414-13

268 Multi-Criteria Decision Models in Software Reliability

to extend the functionality of the system by adding new features (or requirements) could
represent customer wishes derived from perceived market need, or product require-
ments that the company developing the product consider worthwhile to pursue or cor-
recting errors that are discovered during operation of the software. Most of the features
originate from diverse stakeholders. If we opt old methods of software, then we will
lack irrespective of the degree of success of an operational system, it has stakeholders
that who require their needs to be met despite resource and risk constraints [23].

Incremental software development approach allows customers to receive parts
of a system early — a situation that allows for creating early value; addressing this
problem by allowing compromises of providing different features at different release
points offers sequential releases of software systems with additive functionalities in
each increment. Thus, each increment is a collection of features that form a complete
system that would be of value to the customer. A major problem faced by companies
to detected and to fix defects in developing or maintaining large and complex sys-
tems is deciding the features should be used releases of the software [4], considering
all features of the next step of release [3].

It’s critical to debunk the myth that release planning is a magic pill that guarantees
“everything” will be done on time. In reality, release planning isn’t about making sure
that all of the work that has been scoped is performed. Rather, it’s about ensuring that
work is effectively prioritised, with the most important items (as determined by the PM
or PO) at the very top of the backlog, and that each release achieves the required results.

Release planning is simply the practice of connecting the product’s strategy —
determining what desired outcomes we want to drive through one or more releases —
with tactics — balancing the work to be done with constraints such as capacity,
deadlines and budget while enabling progress-monitoring practices — to ensure that
the product being built is evolving in the right direction. This allows you to make
well-informed product decisions, optimise validated learning [5], organise how to
give the most value and set realistic product expectations.

Release planning is a task that frequently brings agile teams, stakeholders and
subject-matter experts together, and everyone involved should work closely together.
The effectiveness and results of release planning are usually ensured by a Product
Manager or a Scrum Product Owner. We’ve come up with a few critical criteria to
bear in mind to support the PM/journey POs for effective release planning and help
teams navigate their difficulties.

Release plans sit in the project management hierarchy, product roadmaps. The
planning onion is a term used in agile methods to describe a framework that moves
down a succession of layers, from strategic to tactical. Agile practitioners may use
somewhat different terminology. The product vision, roadmap, release plan, sprint
plan and daily stand-up are all part of the fundamental framework [6].

A typical scenario is when a team has a defined delivery date for a big release in
a month that includes a number of items that have been meticulously recorded in the
backlog. What if the PM or PO insists on including ALL of those features in the next
release? Is the team capable of delivering on that promise? We don’t know at this stage,
but it’s a high-risk strategy to try to fix both a deadline and the scope at the same time.
It makes far more sense either to set a definite deadline and see how many features can
be done within that time frame, or to set a fixed scope and estimate a delivery date for
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everything. In any event, there are a slew of interfering circumstances. Agile teams
can use a collection of strategies and tools based on empirical data to make reasonably
accurate predictions within their specific restrictions and conditions.

Roadmaps show a longer-term perspective, including multiple releases and some-
times even multiple projects.

Being strategic tools, they aim to capture the product vision. They communicate
product and release goals and present high-level features and product capabilities [7].

Release plans are shorter-term and decidedly more granular. They’re more
tactical than roadmaps focusing on specific work to be done and showing details
down to the level of individual backlog items (Figure 13.1).

At the iteration level, this is because there is more certainty and clarity about what
features will be completed and potentially released at this point. Even though Scrum
pushes for delivering potentially releasable increments by the conclusion of each sprint,
it is ultimately up to the Product Owner to decide whether to release the increment.

It’s also worth mentioning that Scrum prefers smaller batch sizes and more regu-
lar releases than large and infrequent releases. The reason for this is that as the num-
ber of features in a release grows, the complexity of the release grows as well, and the
learning process slows dramatically because of the longer feedback cycle. Release
burndown charts are a great method to keep track of your progress. Then, as time
goes on, you can use that information to feed and enhance your product roadmap.

13.2  START WITH THE PRODUCT VISION AND HOW
IT CAN BE REPRESENTED IN A ROADMAP

Establishing clear, defined and, most importantly, quantifiable goals is the first big
step towards effective release planning. All these specific strategic objectives can be
written out on a product roadmap to guide your efforts.

We favour the goal-oriented (GO) product roadmap built, despite the fact that
there are other good tools for developing effective product roadmaps.

You’ve created a strategic product roadmap by now. You’ve already figured out
what your goals are for one or many more releases, and you have a rough notion
of which features will help you get there. But, to take it a step further, prioritizing
goals and features in a rational manner will be beneficial. Identified which ones are
the most important for your product’s success, for example, and ensuring that your
efforts are always focused on delivering the next most value thing.

Estimations can start by bringing together the relevant group of individuals —
subject matter experts, architects, product specialists, business analysts and the
actual product development team — to try to draw on previous experiences with simi-
lar projects and map out high-level estimates.

Estimation approaches strengthen the overall learning cycle for product teams by
allowing them to compare their initial perceptions of the amount of work needed to
complete a feature to the actual effort required.[8].

e Are you falling short of the proposed goal(s)?
*  Why isn’t your movie coming out when you want it to?
e Are you going over your budget for the release?
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Both the product roadmap and the release strategy are important to a project’s
success.

It’s critical to keep the two perspectives aligned as time passes and the inevitable
changes occur. A shift in a product’s general strategy, as reflected in the product
roadmap, usually always means a shift in the priorities for the features scheduled for
delivery.

Simultaneously, issues at the release level, such as delays in working through the
backlog, would reverberate through the planning process, eventually affecting the
product roadmap.

The reason for this is simple: Even while a team should ideally be able to complete
all the work stated within the requisite schedule and budget, this is not always the case.
Developing a valuable product isn’t a straight line, and things go wrong along the way.
Market conditions or priorities may change, causing our assumptions to change.

13.3 WHAT IS INVOLVED IN RELEASE PLANNING?

Release planning will assist us in comprehending a clear product vision and a set of
measurable goals defined and generally prioritised. The next important step is to get
a ballpark estimate of the cost — actual budget or raw resource allocation — connected
with each planned task. It might provide a fresh perspective on where priorities
should be set depending on our wishes, making it easier to plan and implement.

Successful teams figure out how to reuse verified learning from prior releases
to restructure the horizon of their release plan accordingly and guarantee that all
aspects are [9] convergent toward achieving long-term customer pleasure.

13.4 ENHANCE COLLABORATION AND COORDINATION
13.4.1 Rebuce Dev/Test CycLe TIME

A faster access to test environments by the QA team reduces cycle time. Plutora noti-
fies test teams when a new build is available from development, improving test team
responsiveness and reducing time spent waiting for new code to be ready for testing

(Figure 13.2).
7

FIGURE 13.2 Reduce/test cycle time.
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13.4.2 MonNIToR QUALITY OF RELEASE PIPELINES

With Plutora, release managers can quickly view test status and results in real time
to continually monitor product quality and evaluate schedule risk at each phase of
the CD pipeline [10] (Figure 13.3).

13.4.3 ENSURE AccURATE Test COVERAGE

As dev team velocity increases, test teams struggle to track change requests associ-
ated with new builds. Plutora automatically links change IDs with each new build, so
test teams can quickly identify and assign test cases (Figure 13.4).

13.4.4 GeT INSIGHTS AND REPORTING

Centralized dashboards provide visibility of multiple release trains across the port-
folio drill-down to gain deeper insights into automated and manual test results and
defect rates.

Easily Release Planning isn’t a one-time process that you perform once and then
forget about. For it to be effective, you need to commit to an iterative and incremental

FIGURE 13.3 Monitoring quality pipeline.

FIGURE 13.4 Accuracy testing device.
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FIGURE 13.5 Reporting/output device.

approach [11]. Teams enforcing good release practices should be aware that Release
Planning unfolds on two different levels (Figure 13.5).

13.5 APPLICATION OF RELEASE PLAN

¢ Defining the High-Level Scope — Ensure that all team members, at the
very least, have a clear understanding of the scope.

¢ Defining and Clarifying Goals — Assist in aligning product goals with the
needs of both the company and the target audience.

¢ Making Rough Estimates — The development team evaluates the expected
workload during release planning.

* Managing the Implementation Scope — It’s easy to keep track of the over-
all list of features and when each one must be published when we view the
whole list.

¢ Identifying the Constraints of the Project Triangle — The time and
budget constraints of the product development process must be factored into
your strategy.

This is more strategic in nature at the Roadmap level. You're usually thinking about
the outcomes of previous releases and the lessons learned from them, as well as
coordinating what future releases might look like and if one or several iterations are
required. Road mapping sessions that include all interested stakeholders, as well as
subject-matter experts, are strongly recommended, as previously noted.

Hopefully, these principles will assist you with a foundation for determining the
most successful way to organise releases for your teams. Disciplined practice that
adheres to the underlying beliefs can help you achieve better results [12]. You may
ensure that you're tackling it in the safest possible way by implementing only a few
modifications at a time, allowing your employees to integrate them as good and long-
lasting changes in their micro-culture.

13.6 WORKING PLAN RELEASES MORE EFFECTIVELY

The fundamental goal of release planning is to determine the next set of essential
market features and set a release date for them.
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Release planning should be a collaborative effort involving the entire development
team, using members’ experience and gaining buy-in for the strategy [12].

13.6.1 EXAMINE YOUR CURRENT RELEASE MANAGEMENT PROCEDURE

Begin by analysing your present release management process’s personnel, processes,
and tools. Capable personnel, a well-defined and regular process and a toolset that
supports all participants in the process are all characteristics of a good release man-
agement role.

13.6.2 CREATE A CORPORATE RELEASE PLAN

Establishing an enterprise release plan that clearly articulates regular release cycles

is also critical. It’s vital to establish your release management objectives and goals

early on. This can be accomplished by informal policies or a more formal way.
Goals can be defined as measures that focus on one or more of the following [12]:

e The number of releases that have been successful.

¢ Reduced release-related outages and downtime.

e Tracking and increasing the top line by a certain amount.

e The number of releases that were implemented late.

¢ The quantity of major and minor releases.

e The number of occurrences resulting from releases.

e The number of releases that have failed.

¢ The number of releases that were put into place, but never tested.
* By release type, the best and worst times to implement.

13.6.3 DEerINE THE OPTIMAL RELEASE MANAGEMENT PROCESS

To begin, identify the inputs to the release management process, such as portfolio
and program management systems, service management systems, quality manage-
ment systems, configuration management systems and deployment solutions.

Second, identify essential tasks, including release planning, coordination, design,
build, and configuration of releases, release acceptance coordination, rollout plan-
ning, coordination of deployment to production and performance assessment against
key criteria [13].

Third, determine the outputs of release management, such as incident manage-
ment, change management, service level management and service monitoring.

13.6.4 Put MONEY INTO THE APPROPRIATE INDIVIDUALS

In a good release management process, the release manager, environment managers,
test managers and implementation managers all play important roles. Program and
project managers, on the other hand, oversee a wide range of workflows and opera-
tions to meet crucial deadlines. Developers are managed by development managers,
who create work packages for deployment [14].
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Leadership, organisation and planning, as well as technical depth, project man-
agement, communication and teamwork, are all necessary in these roles.

13.6.5 MAkKE Use oF THE APPROPRIATE TOOLS

You’re presumably utilising a mix of tools for development, testing and operations.
You’ll also need a powerful release management solution that can aid with stake-
holder management, communication, a master release schedule, automated workflow
features, dashboards with reports and the ability to interact with your existing toolset.

13.6.6 MAKE THE MOST OF THE TESTING ENVIRONMENT

IT environments must be set up for test execution and validation at all phases of
the release process. Hardware, storage, network connections, bandwidth, software
licencing, user profiles and access rights are all part of the release infrastructure. To
minimise any environment bottlenecks, it is vital to understand dependencies and
reduce contention.

13.6.7 DEFRINE STAGES AND ACTIVITIES TO GOVERN

At a physical level, work packages are promoted via numerous environments for vari-
ous forms of testing and validation as releases progress through their major phases,
integrated gates and milestones. As a result, significant rework is avoided by having
a transparent baseline of the environments and a clear understanding of the composi-
tion of work packages.

13.6.8 ENSURE STAKEHOLDER ENGAGEMENT 1S TRANSPARENT

Set release dates and encourage your team to strive towards not only the ultimate
release, but also interim goals such as integrated testing completion. Engage stake-
holders to prioritise unresolved feature requests and allocate them to future releases
once the release dates have been determined and agreed. Customers gain delivery
trust from regular, controlled releases.

13.6.9 MAake ONGOING COMMUNICATION POsSIBLE

As far as feasible, make sure that information on the release’s progress is available in
a frictionless manner. To put it another way, all parties should have a system of record
that allows them to obtain the data they require in real time.

13.6.10 Keep AN EYE ON THE NUMBERS

Monitor end-to-end release health by tracking key indicators on a regular basis. To
drive your team to meet and exceed objectives, it’s critical that they understand the
business value of your release management role.
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13.7 CONCLUSION

You must increase testing predictability and prediction accuracy if you are to satisfy
your business commitments. Implement watertight releases and achieve your goals,
starting with a status quo evaluation and ending with metric measurement.

The ideal approach, however, is to use a planning tool such as Plutora, which
allows you to document and validate deployment plans, staging and rollout — reducing
risk and increasing ROI.
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14.1 INTRODUCTION

Several transportation infrastructure failures have been blamed for extreme climate-
related events (such as floods and storms) in recent decades. Several studies, including
Muis et al. (2015), Winsemius et al. (2016) and Wang et al. (2018a), predict a signifi-
cant rise in future flood dangers, which they ascribe to climate change. Changes in
temperature profiles, precipitation patterns, sea level and the frequency of coastal
storms are only a few of the consequences (Neumann et al. 2015).

Climate change, according to Arnell and Gosling (2016), might result in a more
than 180% increase in global flood risk by 2050. As a result, unless new infrastruc-
ture management methodologies capable of accounting for this change are adopted,
transportation structures’ susceptibility and failure risk may grow significantly.

Bridges should be a key focus of these management strategies due to the poten-
tially devastating and debilitating repercussions of their failure.
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Accelerated scour, erosion of bridge approaches and high loads due to direct
water pressure and debris impact are just a few of the variables that might cause a
bridge to collapse partially or completely during floods (Ettouney and Alampalli
2011). By lowering the buckling resistance and lateral capacity of pile foundations,
scour can jeopardise the stability of a shallow foundation. Bridges will be more
vulnerable to future floods or other catastrophic events such as seismic excitations
or traffic overloads as a result of these effects (Hung and Yau 2014; Banerjee and
Ganesh Prasad 2013; Ganesh Prasad and Banerjee 2013). To effectively assess bridge
dependability during severe occurrences, a comprehensive technique capable of
assessing bridge performance under projected hazard intensities should be applied.
In recent decades, fragility models have gained significant acceptance among infra-
structure managers as a useful tool for analysing the operation of facilities exposed
to natural disasters (e.g. earthquakes and hurricanes). Given a set degree of danger,
a fragility model calculates the risk that a structure will achieve or surpass a defined
damage condition (Gidaris et al. 2017). Many types of vital infrastructure, such as
nuclear power plants and dams, are subjected to these models in order to assess
their seismic risk. They’re also utilised to assess bridge performance in the face of
earthquakes (Wang et al. 2014a), tsunamis (Akiyama et al. 2012), hurricane-induced
surge and wave hazard (Ataei and Padgett 2012) or the combined impact of many
hazards (Ataei and Padgett 2012; Wang et al. 2014b; Banerjee and Ganesh Prasad
2013). Despite the fact that river flooding is responsible for 28% of bridge collapses
in the USA (Cook et al. 2013), river flood bridge fragility models are sparse (Gidaris
et al. 2017).

The Hazus (2018) approach uses data from the National Bridge Inventory data-
base (FHWA 2016) to calculate empirical failure probability as a function of flood
return duration and scour vulnerability rating, making it one of the few flood fragil-
ity models available in the literature. Failure is defined as the presence of damage
that costs 25% of the bridge’s replacement cost since there aren’t enough data to cali-
brate the model (Hazus 2018). However, such qualitative models may not be accurate
enough to be employed in infrastructure management because no substantial struc-
tural analysis is generally conducted. Turner (2016) used hydrodynamic uplift forces
as the primary failure criterion to develop fragility curves for a number of Colorado
bridges. The results were used to determine how much elevation adjustment was
required to increase the bridge’s resistance to hydrodynamic uplift forces.

Other flood-related failures, such as pier failure due to scour or horizontal water
pressure, were left out. A probabilistic examination of gauge station records in the
research region was also used to calculate flood frequency. However, true danger
occurrence probability may fluctuate dramatically as a result of climate change
(Arnell and Gosling 2016; Khandel and Soliman 2019). When assessing failure prob-
ability, Kim et al. (2017) developed a flood fragility model for bridges that takes
into consideration bridge scour, structural degradation and debris build-up. In their
study, they employed finite element (FE) analysis and reliability estimates. Due to
the computational costs associated with probabilistic analysis involving FE model-
ling and Monte Carlo simulation, a simplified FE model was incorporated into their
computational approach, and the first-order reliability method (FORM) was used to
compute the failure probability under a limited number of random parameters.
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To facilitate the application of FE analysis in probabilistic simulations while
keeping an acceptable processing cost, some researchers employ approximation
approaches such as response surface analysis to build an analytical link between the
structural response and the underlying variables (e.g. Buratti et al. 2010; Park and
Towashiraporn 2014). The link may then be tested using Monte Carlo simulation
or other standard dependability methodologies such as FORM. Response surface
and FORM techniques, on the other hand, might suffer from a lack of accuracy
when dealing with highly nonlinear problems or when several failure modes must
be addressed (Kroetz et al. 2017; Song et al. 2018; Wang et al. 2018b). As a result,
sophisticated surrogate modelling approaches, including polynomial chaos expan-
sion (PCE), kriging models and artificial neural networks (ANNS), can help in mim-
icking the behaviour of complex and nonlinear structural systems with many failure
modes. Approaches based on ANNs have been shown to converge quicker and yield
a shorter computation time for difficult functions when compared to PCE and kriging
models (Kroetz et al. 2017).

ANNSs are sometimes referred to as “black-box™ systems, suggesting that the
majority of their parameters are unknown (Zhang et al. 2002). Surrogate model-
ling approaches, on the other hand, such as local Gaussian processes, polynomial
response surfaces, support vector machines and kriging models, approximate the
response function without requiring a physical understanding of the system processes
(Ferrario et al. 2017). Given the complexity of the functions that ANNs are supposed
to mimic, completely training these models may need a large number of data. ANNS,
on the other hand, can be used in conjunction with adaptive experimental design
techniques to minimise the number of training samples required (de Santana Gomes
2019). The use of contemporary and effective optimisation algorithms, as well as the
availability of a large number of cloud computing resources for machine learning
applications, can aid in the management of the computational costs associated with
these models.

Computationally efficient approaches are necessary to appropriately integrate
extensive FE modelling in the fragility study of bridges under flood hazard. This
technique should also analyse the entire collection of random variables linked to
bridge resistance, load effects and hazard occurrence likelihood in light of changes
expected to occur as a result of long-term variability in climatic trends. This study
fills that need by proposing a probabilistic technique based on deep learning neural
networks for analysing the time-variant fragility of bridges under floods and flood-
induced scour while taking into consideration future climatic unpredictability. The
proposed technique uses downscaled global climate modelling data to predict future
time-dependent scour patterns under various climatic scenarios. A deep learning
(DL) algorithm (DN 1) is utilised throughout the basin to estimate streamflow using
anticipated precipitation and temperature profiles. The expected streamflow profiles
are then used in a probabilistic simulation to calculate the long-term scour depth and
flood threat. A FE model is used to create the data set needed to train a second DL
network (DN 2) capable of predicting the behaviour of the bridge foundation during
flood and flood-induced scour. The effects of long-term material deterioration (i.e.
corrosion) are taken into account. After that, a Monte Carlo simulation is utilised to
evaluate failure probability and generate a fragility surface using the second trained



280 Multi-Criteria Decision Models in Software Reliability

DL network (DN 2). River discharge is the hazard intensity metric, and the fragility
surface depicts the risk of bridge collapse over a certain service life.

14.1.1 ANALYSING CLIMATE DATA

Over the last few decades, a lot of scientific work has gone into investigating cli-
mate behaviour and anticipating future climate patterns (e.g. Sheffield et al. 2013).
Now in its fifth phase, the Coupled Model Intercomparison Project (CMIPS5) is a
cutting-edge tool for acquiring a complete picture of past and future climate patterns
(Taylor et al. 2012). More than 50 different models capable of assessing past and
future climate are included in the CMIP5 data collection. The models differ in terms
of model formulations, experiment conditions, climate noise and model resolutions.
Multi-model ensembles are also employed to mitigate the effects of model uncer-
tainty (Taylor et al. 2012). Due to the considerable processing costs associated with
dependability analysis under climate change, using all available climate models may
not be feasible. Furthermore, because not all climate models can generate correct
results in every location, global climate models (GCMs) should be carefully selected.

Climate data from GCMs may be compared to historical records to determine
whether GCMs are appropriate for a certain location (Samadi et al. 2010).

Future greenhouse gas (GHG) emission scenarios are another key source of
uncertainty in climate prediction. Radiative forcing patterns characterise emission
scenarios in modern climate modelling practice (Moss et al. 2010). Representative
concentrative pathways characterise radiative forcing, which is defined as the differ-
ence between absorbed insolation energy and radiation energy reflected by the Earth
(RCPs). RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 are the four most common RCP
instances. Several RCPs may be used to account for variations in GHG emissions and
concentration paths, as well as land use and future land cover (Shrestha et al. 2016).

GCM outputs are frequently constructed at high spatial resolutions (125-500km
grids). Because hydrological impact studies require fine-resolution data (typically
10-30km grids), the GCMs’ coarse resolution will not be suitable for regional-scale
estimates (Frost et al. 2011). Coarse-resolution data can be transformed to fine-
resolution data using dynamic or statistical downscaling methods. The daily bias
correction constructed analogues (BCCA) downscaling approach is used in this work
(Maurer et al. 2010). This approach is a hybrid statistical strategy that uses both
quantile mapping bias correction and daily downscaling processes to conduct down-
scaling. The hybrid performance of this model, according to Maurer et al. (2010),
results in exceptionally accurate climate forecasts at regional scales. Multiple down-
scaling procedures should be investigated, with the most relevant ones for the area of
interest being integrated into climate projections to account for downscaling uncer-
tainty (McPherson 2016). With the addition of different climate modelling variables,
each with its own GCM, downscaling procedures and RCP values, multiple climatic
scenarios may be created. In this analysis, 18 climatic data sets were used, including
3 different GCMs, 3 RCP scenarios and 2 ensemble runs of each model. For each
combination of climate model and emission scenario, there are several ensemble runs
with different initial condition assumptions. The model’s predictions differ somewhat
based on the starting conditions. The influence of the models’ internal variability (i.e.
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under various beginning circumstances) fades considerably in the long run. This is
especially true when contrasted to other forms of uncertainty, such as model uncer-
tainty (multiple models) and scenario uncertainty (different future emissions path-
ways). Several studies (e.g. Hawkins and Sutton 2009; Yip et al. 2011) have delved
deeper into assessing the impact of various uncertainties on climate forecasting.

14.1.2 PrebicTioN OF LONG-TERM PIER SCOUR

Flood-induced scour can have a significant influence on flood-prone bridges’ time-
variant strength and stability. In the literature, there are numerous scour depth pre-
diction techniques (e.g. Breusers et al. 1977; Briaud et al. 2001). These formulas,
which are mostly based on flume test tests, can account for the impacts of pier size,
shape and alignment on the maximum estimated scour depth. Erosion occurs on a
particle-by-particle basis in cohesionless soils (Arneson et al. 2012).

The pace of scour initiation is increased to the point that the maximum scour
depth is attained in a couple of hours or a few flood events. Cohesive soils, on the
other hand, rely heavily on electromagnetic and electrostatic interparticle interac-
tions, resulting in a slower rate of scour (Arneson et al. 2012).

To evaluate the rate of scour in various soil types, an erosion function apparatus
(EFA) test can be utilised (Briaud et al. 2001). This test determines the equivalent
time (f) necessary to erode 1 mm of soil at various flow velocities (v). The erosion rate
[Z 14 1 =t in mm=h] and the hydraulic shear stress acting on the soil () are computed
based on the results of the EFA test.

The maximum pier scour depth (Z,,,) is calculated by (Arneson et al. 2012)

max.

0.65
Z.. = 2.011y1K1K2K3(“) Frd® (14.1)

N

where 1 is the modelling uncertainty factor, y, is the flow depth upstream of the pier,
K, is the pier nose shape correction factor, K, is the angle of attack correction factor,
Kj is the bed condition correction factor, a = pier width, and Fr, is the Froude number
given by

14

J(gy)

Fr =

where V is the mean velocity of the river directly upstream of the pier and g is grav-
ity’s acceleration (9.81 m=s,). The scour depth (Z) is calculated as a function of time
(Briaud et al. 2001).

14.1.3 PREDICTION OF STREAMFLOW AND FLOODS

In this work, the results of global climate modelling are utilised to estimate future
flood threats. GCMs give climate-related metrics such as anticipated precipitation
and temperature profiles, but flood prediction using these elements is problematic.
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Estimating river discharge using precipitation and temperature profiles involves
detailed hydrologic modelling of the basin. Such a thorough hydrological examina-
tion may need a substantial amount of resources or instruments, which infrastructure
managers may lack. This process may be sped up by employing cutting-edge com-
puting techniques such as machine learning, resulting in computationally efficient,
but highly accurate streamflow forecasts. In this work, downscaled temperature and
precipitation data from multiple climate scenarios are utilised to anticipate future
river flow patterns using TensorFlow.

It’s worth noting that many statistical or hydrological streamflow forecasting
methods assume stationary circumstances (Humphrey et al. 2016).

Changes in channel flow morphology and precipitation patterns compared to
previous data can all produce nonstationarity (Westra et al. 2014). The streamflow
modelling method used in this article, which employs DL neural networks, assumes
stationary parameters. The DL network that was utilised to estimate future river dis-
charge, designated as DN 1, will be addressed in greater depth later in this chapter.

14.1.4 Froobp AND FLooD-INDUCED ScOoUR BEHAVIOUR
OF BRIDGE FOUNDATIONS

This study looks on the stability of bridges with deep foundations. Several strength
and serviceability limit states are examined to evaluate the time-variant dependabil-
ity of a foundation under horizontal and vertical loads, and OpenSees FE software
(Mazzoni et al. 2006) is used to model the piling group’s reaction under applied
stresses. Nonlinear springs and displacement-based beam-column components are
used to represent the piles. In addition to the aforementioned elements, pile nodes,
fixed spring nodes and slave spring nodes are given. The pile elements are replicated
by the beam-column elements, while the springs, which are made up of zero-length
elements in both horizontal and vertical orientations, approximate soil behaviour.

P-y springs (API 1987) are used to mimic lateral soil behaviour, whereas t-z springs
(Mosher 1984) and q-z springs (Vijayvergiya 1977) are used to model shaft and tip
behaviour, respectively. The internal friction angle (), unit weight () and soil shear
modulus () are all used to define the springs (G). Every node is three-dimensional,
with six degrees of freedom for rotation and transition. The pile components, fixed
springs and slave nodes are distributed vertically along the length of the embedded
pile. The embedded length of the piles is adjusted in response to the scour depth fore-
casts (i.e. pile embedded length L2 =total pile length—scour depth Z). A schematic of
the FE model that was employed is shown in Figure 14.1.

When analysing the behaviour of closely spaced pile groups under lateral and
axial pressures, the effects of pile—soil—pile interactions must be taken into account.
These impacts typically result in a decline in soil resistance, which may be allevi-
ated by altering the reaction of particular heaps in the right way (Brown and Reese
1988). Updated p-y curves accounting for group effects may be generated for later-
ally loaded piles by applying the reduction factors to the p-values (Dunnavant and
O’Neill 1986). Furthermore, efficiency factors can be exploited to alter pile group
behaviour under axial stresses (O’Neill 1983). Based on Dunnavant and O’Neill’s
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FIGURE 14.1 Schematic layout of a simulated pile in OpenSees.
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experimental work, resistance reduction factors accounting for group effects in the
lateral direction are developed in this study (1986). The training data set for a second
TensorFlow DL neural network, DN 2, is provided by the constructed FE model.
A complete factorial experimental design (Dieter 2000) is used to create an inclu-
sive training data set that encompasses the conceivable range of input parameters
encountered in the subsequent analytic processes. After that, a probabilistic analysis
is conducted to assess bridge fragility under flood loads using the trained DL net-
work (DN 2).

14.1.5 Errects OF LONG-TERM CORROSION

Under lateral and axial stress conditions, steel pile corrosion can result in a loss
in capacity. A typical source of this decline is the loss of section thickness due
to severe environmental conditions or repeated dry-wet cycles (ElGawady et al.
2019). Corrosion losses are influenced by moisture, sulphate, chloride and micro-
bial concentration. The resistivity, chemical composition and pH of the soil, as
well as the location of the water table and oxidation potential, all impact corrosion
propagation in steel piles (Ding 2019). The rate of corrosion in soil decreases over
time, according to the literature (e.g. Schlosser and Bastick 1991). This is due to the
depletion of oxygen and the formation of a protective layer from corrosion products
(Ohsaki 1982).

As a result, the corrosion rate may be expressed as the following time-dependent
relationship (Kucera and Mattsson 1987).

14.1.6 CONCLUSIONS

A probabilistic framework for assessing bridge fragility under flood and flood-
induced scour in the context of climate change is presented in this study. Climate
data sets for the location, downscaled precipitation and temperature were extracted
from the CMIPS5 archive.

These variables are used to forecast river discharge and scour depth.

A deep feedforward neural network (DN 1) was utilised to predict discharge, and
it was trained using historical data at the bridge site.

An OpenSees FE model generated the necessary training data for a model.

A second deep neural network (DN 2) is employed to compute the internal state.

Given the foundations’ service life, pressures and displacements and river dis-
charge, the yearly failure probability of the bridge was calculated and utilised in
flood-prone areas. The time-varying fragility of the bridge’s surfaces. The proposed
approach may be utilised to produce a bridge flood, according to the findings.

Fragility rises as a function of service life and river discharge. Officials at the
bridge can make educated judgments based on the fragility of the surface. Decisions
on management activities (e.g. retrofit) are taken with the goal of reducing the
chance of failure in the case of future floods. It also provides a quantitative metric
that might help in the decision-making process when it comes to bridge closures
during floods.
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Given the temperature and precipitation patterns, the utilised neural network
(DN 1) is capable of forecasting streamflow with adequate precision. This was verified
by a daily coefficient of determination (R2) of 0.9116 during the calibration phase.

The results of the streamflow prediction were also presented. Based on a detailed
hydrological investigation, there is a high degree of consistency with those reported
in the literature.
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15.1 INTRODUCTION

Software security system is a main concern in every government and non-government
organisation. Nowadays, the issue is enhancing in every fields, so are the responsi-
bilities of the of the development organisations to improve software programs that
are going to detect software-related vulnerabilities very efficiently [1]. According to
the vulnerabilities are increments same as the different aspects of software program
improvement security ideas should also be likewise be examination and it should
be demonstrated and best practices to improve the assurance of software program
structures. However, the software vulnerabilities increase day by day; according to
this, our main concern is to enhance information security system. Software security
devices include a massive range of complex issues that are going to be a trouble in the
security system [2]. Many software program improvement corporations are working
ahead and collect various software programs also developing and improving protec-
tion ideas and high-quality practices on the application program that enhance the
protection of software program systems. However, the increasing software program
system vulnerabilities has turned out to be one of the essential threats to the protection
of data systems [3].

Machine learning is the latest technology that is used to limit various security
faults in software application system; software program vulnerability evaluation is
turning into the focus of records system protection technological know-how research.
Machine learning concepts automatically generate expertise via massive quantities
of data and by the use of the expertise for calculation. It is utilised in the discipline of
textual content classification and various malicious code recognition programs. With
the growing records of software program vulnerability, it has become essential to use
computing devices gaining knowledge of software program vulnerability analysis or
detection techniques.

15.1.1 THe FRAME OF SOFTWARE VULNERABILITY EVALUATION
BAsED ON MACHINE LEARNING TECHNIQUE

Machine learning strategies can substantially enhance the detection accuracy.
Machine learning techniques are the way to applied on various text contents accord-
ing to the categories also applied to detect various malicious code that resides on
software contents. In the manner of textual content classification, it used Salton vec-
tor area model that effectively specific files with the series of words, and after then
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embed them into vector space, the machine learning techniques are very used that
extract points that is specifically generate classification model. In the detection of
malicious code, unique detection signatures need to be written, which can healthily
detect infected vulnerabilities on host’s network.

The applications containing vulnerabilities consist of a big vocabulary block
of code, which has a complicated relationship. Therefore, software evaluation and
function extraction are used first and then machine learning strategies are used to
acquire vulnerability evaluation and localisation. According this process, software
program vulnerability evaluation framework-based totally on machine learning can
be divided into four steps as follows:

i. Application analysis
ii. Function extraction
iii. Computer learning
iv. Vulnerability location.

as nicely as training and evaluation stages, as proven below.

At the duration of training stage, it focused on program analysis, feature extrac-
tion it processes the greater security application code and the vulnerable software
code are in the training set, after the application evaluation and function extraction,
the end result of these two steps have been enter into computing device learning
algorithms and acquired the classifier of software program vulnerability analysis,
shown in Figure 15.1a. In the evaluation stage, the software code was once analysed
and characteristic extraction first, thru the classifier to determine if it consists of the
vulnerability, and come across the vulnerability role in accordance with the features
of vulnerability that has been proven in Figure 15.1b.

This framework is based on the current vulnerability evaluation techniques that
are used with the machine learning techniques that can be categorised by using three
approaches as shown in the diagram below.

Software vulnerabilities can be explained as weaknesses or faults present in any
kind of software or application. Inappropriate testing and manual code reviews are
not at all a good option, and they cannot always find each and every vulnerability.
Basically, vulnerabilities can decrease the performance and security of the applica-
tion software. They will also allow unauthenticated attackers or unauthorised users
to exploit or gain access to particular products and data. So it is mandatory to be
aware all the top 10 most common vulnerabilities for detecting software vulner-
abilities. There are various techniques to detect software vulnerabilities, and by
using them, in-built software vulnerabilities can be easily identified and prevented.
A very important thing is that we should be aware of or have knowledge of several
vulnerabilities. Here, we go through definitions of vulnerabilities and deliver a list
of the top 10 software vulnerabilities and guidelines on how to prevent software
vulnerabilities.

15.2 TOP 10 MOST COMMON SOFTWARE VULNERABILITIES

According to the OWASP, there are ten most important vulnerabilities (Figure 15.2).
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15.2.1 BROKEN Access CONTROL

User limitations must be suitably enforced. At some situations, if it is broken, in that
particular case, it can generate a software vulnerability. Unauthorised attackers can
exploit or gain that vulnerability.

15.2.2 CRYPTOGRAPHIC FAILURES

Users are having lots of sensitive data or information such as addresses, passwords
and bank account details. All these things should be properly protected. If it is not, in
that case unauthorised attackers can take benefit of the vulnerabilities to gain access
to the personal credentials of the users.

15.2.3 INJECTION

Injection attacks occur when untrusted data or some kind of Trojan program is sent
as portion of a command or sub-query language. Then this attack is executed into the
targeted system, and abnormal activities are activated. An attack can also provide
unauthorised attackers admittance to protected data.

15.2.4 INSECURE DESIGN

Insecure design refers to risks related to design flaws, which often include the lack of
at least one of the following:

e Threat modelling

e Secure design patterns

e Secure design principles
* Reference architecture.

15.2.5 SECURITY MISCONFIGURATION

Security misconfigurations commonly give the following results:

* Insecure or unconfident default configurations

e Imperfect or impromptu configurations

e Access to open cloud storage

* Misconfigured HTTP headers

e Wordy error messages that comprise sensitive information.

15.2.6 VULNERABLE AND OUTDATED COMPONENTS

Components are the groupings of libraries, outlines and other software modules.
Regularly, the components run on the same rights as per the application. In case if
a component originates as a vulnerability, it can be exploited by an unauthorised
attacker. This leads to serious data loss or will result in the server being hacked.



296 Multi-Criteria Decision Models in Software Reliability

15.2.7 IDENTIFICATION AND AUTHENTICATION FAILURES

In software security authentication and session management programs, applications
and their credentials have to be applied correctly. If there is any lack or mistakes in
the functionalities, it generates a software vulnerability that can be oppressed by
unauthorised attackers to gain admittance to individuals’ data.

15.2.8 SoOFTWARE AND DATA INTEGRITY FAILURES

Software and records integrity screw-ups refer to assumptions made about software
program updates, imperative data and CI/CD pipelines barring verifying integrity.
In addition, deserialisation flaws regularly result in remote code execution (RCE is a
type of software vulnerability). This allows untrustworthy sellers to execute restore,
injection and privilege growth attacks.

15.2.9 SecuURrITY LOGGING AND MONITORING FAILURES

Sometimes, the lack of logging and monitoring processes are very unsafe, which
leaves users’ data vulnerable to interference, removal or even demolition.

15.2.10 ON THE SERVER-SIDE REQUEST/RESPONSE FORGERY ATTACK

Server-side request/response forgery attacks are a most common hacking strategy
that provides access to the server and wanted to do some unauthorised work on that it
also refers to information or any useful data that recommends a noticeably very lower
occurrence rate that is showing some common testing coverage, and several ranking
for elaborate various kinds of impact potential.

15.3 STEPS TO PREVENT SOFTWARE VULNERABILITIES

There are basically three most advantageous software programs to prevent software
program weaknesses.

15.3.1 CREATE SOFTWARE DESIGN REQUIREMENTS

Software program design requirements that define and implement invulnerable cod-
ing principles have been established. This has to comprise the use of a secure coding
standard.

15.3.2 Use A CODING STANDARD

Coding necessities are, for example, OWASP, CWE and CERT, which are going
to prevent, detect and remove vulnerabilities. That is going to enforcing a coding
general is effortless when user or candidate use a SAST device such as Klocwork.
Basically, Klocwork classifies safety defects and vulnerabilities although the code is
going to be written.



Software Vulnerability Analysis 297

15.3.3  Test YOUR SOFTWARE

It is important that that the user check the software program in a very early and
regular basis. These assistances make sure that vulnerabilities are experiential and
removed as quickly as possible depending on the situation. A most common approach
used by the programmer is called static code analyser, such as Clockwork. The clock-
work is a phase of the software program that checks out process execution.

15.3.4 VULNERABILITY ASSESSMENT ToOLS

Vulnerability assessments are frequently carried out to assist guarantee groups are
included from normal vulnerabilities (low placing fruit). Vulnerability scanning,
evaluation and administration all share an integral cybersecurity principle: The hor-
rific guys can’t get in if they don’t have a way. To that end, an imperative IT safety
exercise is to scan for vulnerabilities and then patch them, usually by means of a
patch administration system.

Vulnerability scanning equipment can make that technique less complicated with
the aid of discovering and even patching vulnerabilities for you, decreasing the bur-
den on protection group of workers and operations centres. Vulnerability scanners
notice and classify device weaknesses to prioritise fixes and so often predict the
effectiveness of countermeasures. Scans can be carried out by way of the IT branch
or by a provider. Typically, the scan compares the important points of the target
attack surface to a database of data about recognised safety holes in offerings and
ports, as properly as anomalies in packet construction, and paths that may addition-
ally exist to exploitable applications or scripts.

Some scans are carried out by means of logging in as an approved person, while
others are carried out externally and strive to find holes that can also be exploitable
via these running outside the network. Vulnerability scanning must no longer be bur-
dened with penetration testing, which is about exploiting vulnerabilities alternatively
than indicating the place conceivable vulnerabilities may lie. Vulnerability admin-
istration is a broader product that contains vulnerability scanning capabilities, and
a complementary technological know-how is breach and attack simulation, which
permits for non-stop automatic vulnerability assessment.

Depending on the areas of the infrastructure under assessment, a vulnerability
evaluation can be categorised into three wide types.

External Scans: Scanning these factors of the I'T ecosystem that without delay
face the web and are reachable to exterior users, for instance, ports, net-
works, websites, apps and different structures used through exterior cus-
tomers or customers.

Internal Scans: Finding loopholes in the interior community of a business
enterprise (do not cover exterior scans) that might also harm the enterprise
network.

Environmental Scans: Environmental vulnerability scans focus on precise
operational science of an organisation, such as cloud services, IoT and cell
devices.
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15.4 TOP 10 VULNERABILITY EVALUATION TOOLS

Nikto2: It is an open-source vulnerability scanning evaluation software pro-
gram pivoting on net utility security. Nikto2 can notice around 6700 mali-
cious archives inflicting a risk to net servers disclosing out-of-date servers
[4-5]. Nikto2 watches on server configuration problems by means of per-
forming net server scans within a quick time. Nikto2 does now not have any
expedients to vulnerabilities detected and additionally does now not supply
chance evaluation features. Nikto2 is up to date now and then for overlaying
broader vulnerabilities [6-7].

Netsparker: A device with Internet software vulnerability embedded with an
automatic characteristic for detecting vulnerabilities. This device is expert
in assessing vulnerabilities in a number of net purposes within a particular
time [8-9].

OpenVAS: A sturdy vulnerability scanning device aiding large-scale scans
for organisations. This device is really useful in detecting vulnerabilities
in the net utility or net servers and databases, running systems, networks
and digital machines [10-11]. OpenVAS gets day-by-day updates widening
the vulnerability detection coverage. It is beneficial in chance evaluation
recommending expedients for detecting vulnerabilities [12-13].

W3AF: This is an untethered and open-source device additionally acknowl-
edged as web-application-attack and framework. It is an open-source eval-
uation device for Internet applications. It types a framework for securing
Internet purposes by using detecting and making use of the vulnerabilities.
An undemanding device with points of vulnerability scanning, W3AF has
extra amenities for penetration checking. Furthermore, W3AF has a dif-
ferent collection of vulnerabilities. This device is especially really helpful
for domains that are at stake often with vulnerabilities that are currently
identified.

Arachni: This is an unwavering vulnerability device for Internet purposes and
is many times updated. This has a broader insurance of vulnerabilities and
has selections for threat evaluation recommending hints and counter ele-
ment for the vulnerabilities detected.

Acunetix: This is a paid Internet evaluation software safety device that is open
source with many purposes. This device has a broader vulnerability scan-
ning range, with over 6500 vulnerabilities. It can notice community vulner-
abilities along net applications. It is a device that permits automating our
assessment. This is excellent for large-scale companies as it can manoeuvre
various devices.

Nmap: It is a famous and free open-source community evaluation device
among many protection professionals. Nmap maps with the aid of inspect-
ing hosts in the community for figuring out the working systems. This char-
acteristic is beneficial in discovering vulnerabilities in single or more than
one network.

OpenSCAP: It is a structured equipment that helps in vulnerability scan-
ning, assessment and measurement, forming a safety measure. It is a
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neighbourhood-developed device assisting Linux platforms. OpenSCAP
framework presents power to the vulnerability evaluation on net applica-
tions, servers, databases, working systems, networks and digital machines.
They additionally investigate danger and counteract threats.

GoLismero: It is an unpaid open-source device for assessing vulnerability. It
is a device specialised in detecting vulnerabilities on net functions and net-
works [14-15]. Itis a device of comfort performing with the output furnished
through different vulnerability equipment such as OpenVAS that combines
output with the feedback. It additionally covers database and community
vulnerabilities [16-17].

Intruder: It is a paid device for vulnerability evaluation designed to determine
cloud-based storage. Intruder software program assesses the vulnerability
immediately after its release [18-19]. It has computerised scanning points
that consistently video display units for vulnerability, with the aid of pre-
senting high-quality reports [20-21].

15.5 VULNERABILITY ASSESSMENT AND PENETRATION TESTING

Vulnerability evaluation is a technique in which the IT structures such as computer
systems and networks and software programs such as operating systems and utility
software program are scanned in order to discover the presence of regarded and
unknown vulnerabilities.

As many as 80% of Internet websites have vulnerabilities that may lead to the
theft of sensitive company records such as savings card data and purchaser lists.

Hackers are concentrating their efforts on web-based purposes — buying carts,
forms, login pages, dynamic content, etc. Accessible throughout the world, insecure
Internet functions grant easy get right of entry to backend company databases.

VAPT can be carried out in the following nine-step process.

15.5.1 Score

While performing assessments and tests, the scope of the task desires to be abso-
lutely defined. The scope is based totally on the belongings to be tested. The follow-
ing are the three viable scopes that exist.

15.5.2 Biack Box TesTING

Testing from an exterior community with no prior information of the inner networks
and systems.

15.5.3 GRrey Box TESTING

Testing from an exterior or interior network, with the know-how of the interior net-
works and systems. This is commonly a mixture of black container checking out and
white container testing.
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15.5.4 WHITe Box TEsTING

Performing the check from within the community with the understanding of the com-
munity structure and the systems. This is additionally referred to as inside testing.

15.5.5 INFORMATION GATHERING

The procedure of records gathering is to attain as plenty records as viable about the
IT surroundings such as networks, IP addresses, and running gadget version. This is
relevant to all the three sorts of scope as mentioned earlier.

15.5.6  VULNERABILITY DETECTION

In this process, equipment such as vulnerability scanners is used, and vulnerabilities
are recognised in the IT surroundings through way of scanning.

15.5.7 INFORMATION ANALYSIS AND PLANNING

This procedure is used to analyse the recognised vulnerabilities, mixed with the
facts gathered about the I'T environment, to devise a diagram for penetrating into the
community and system.

15.5.8 PENETRATION TESTING

In this process, the goal structures are attacked and penetrated through the usage of
the diagram devised in the process before.

15.5.9 PriviLEGE ESCALATION

After profitable penetration into the system, this procedure is used to perceive and
improve getting admission to attain greater privileges, such as root get entry or
administrative get entry to the system.

15.6 RESULTS ANALYSIS

This procedure is beneficial for performing a root reason evaluation as an end result
of a profitable compromise to the gadget main to penetration and devise appropriate
hints in order to make the machine invulnerable via plugging the holes in the system.

15.7 REPORTING

Every one of the discoveries not entirely set in stone in that frame of mind of the
weakness assessment and infiltration evaluating technique need to be reported, close
by with the proposals, to create the evaluating report to the organization for proper
activities.
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15.7.1 CiLean-Upr AcCTIVITY OF VULNERABILITY

Vulnerability evaluation and penetration testing includes compromising the system,
and at some point, of the process, some of the documents may additionally be altered.
This method ensures that the machine is delivered returned to the unique state, before
the testing, with the aid of cleansing up (restoring) the facts and documents used in
the goal machines.

15.8 CONCLUSIONS

Nowadays, software vulnerabilities strategies are improving day by day. Whenever it
founds new vulnerabilities according to that the research work is going on to analysis
and detect it. If we talk about traditional strategies that are truly based on observed
vulnerabilities or the history of vulnerabilities and that are going to confined various
guidelines of previous vulnerability results or detections scenarios. When the new
software program structures occur again and again, the current strategies conduct the
report, such as false positives and false negatives accordingly. Recently, the machine
learning technologies have been utilised to analyse software program vulnerability.
They are a very popular evaluation approach and have lots of dynamic fundamentals
and mechanisms that effectively finds out new and upcoming software vulnerabili-
ties. Also, they are able to enhance the effectivity of software program vulnerability
evaluation significantly.

In this book chapter, an overview of familiar works that use computing devices to
analyse the software program vulnerabilities has been provided. It proposed a soft-
ware program vulnerability evaluation framework that is totally based on machine
learning techniques and vulnerabilities analysis tools. These tools are categorised
and are very helpful for detecting numerous vulnerabilities that tools are applied
with machine learning technologies.

REFERENCES

[1] Wu, S,, et al. Software vulnerability analysis technology progress. Journal of Tsinghua
University (Natural Science) 10 (2012): 1309-1319.

[2] Balzarotti, D., et al. Saner: Composing static and dynamic analysis to validate sanitiza-
tion in web applications. Security and Privacy, 2008. SP 2008. IEEE Symposium on
IEEE, 2008.

[3] Sebastiani, F. Machine learning in automated text categorization. ACM Computing
Surveys (CSUR) 34.1 (2002): 1-47.

[4] Shabtai, A., et al. Detection of malicious code by applying machine learning classifiers
on static features: A state-of-the-art survey. Information Security Technical Report 14.1
(2009): 16-29.

[5] Yamaguchi, F., L. Felix, and K. Rieck. Vulnerability extrapolation: Assisted discovery
of vulnerabilities using machine learning. Proceedings of the 5th USENIX Conference
on Offensive Technologies. USENIX Association, 2011.

[6] Yamaguchi, F., M. Lottmann, and K. Rieck. Generalized vulnerability extrapola-
tion using abstract syntax trees. Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012.



302 Multi-Criteria Decision Models in Software Reliability

[7] Yamaguchi, F., et al. Chucky: Exposing missing checks in source code for vulnera-
bility discovery. Proceedings of the 2013 ACM SIGSAC conference on Computer &
Communications Security. ACM, 2013.

[8] Yamaguchi, F., et al. Modeling and discovering vulnerabilities with code property
graphs. Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014.

[9] Yamaguchi, F., et al. Automatic Inference of Search Patterns for Taint-Style
Vulnerabilities, IEEE Symposium on Security and Privacy, 797-812. IEEE, 2015.

[10] Zhang, S., D. Caragea, and X. Ou. An empirical study on using the national vulner-
ability database to predict software vulnerabilities. Database and Expert Systems
Applications. Springer, Berlin Heidelberg, 2011.

[11] Grieco, G., et al. Toward Large-Scale Vulnerability Discovery Using Machine Learning.
Proceedings of the Sixth ACM on Conference on Data and Application Security and
Privacy, CODASPY 2016. ACM, New Orleans, LA, USA, March 9-11, 2016 : 85-96.

[12] Wang, Y., Y. Wang, and J. Ren. Software vulnerabilities detection using rapid density-
based clustering. Journal of Computational Information Systems 8.14(2011): 3295-3302.

[13] Cheng, H., et al. Identifying bug signatures using discriminative graph mining.
Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis. ACM, 20009.

[14] Wijayasekara, D., et al. Mining bug databases for unidentified software vulnerabilities.
Human System Interactions (HSI), 2012 5th International Conference on. IEEE, 2012.

[15] Neuhaus, S., et al. Predicting vulnerable software components. Proceedings of the 14th
ACM Conference on Computer and Communications Security. ACM, 2007.

[16] Mokhov, S., J. Paquet, and M. Debbabi. MARFCAT: Fast code analysis for defects and
vulnerabilities. Software Analytics (SWAN), 2015 IEEE Ist International Workshop on.
IEEE, 2015.

[17] Almorsy, M., J. Grundy, and A. S. Ibrahim. Supporting automated vulnerability anal-
ysis using formalized vulnerability signatures. Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM, 2012.

[18] Medeiros, 1., N. F. Neves, and M. Correia. Automatic detection and correction of web
application vulnerabilities using data mining to predict false positives. Proceedings of
the 23rd International Conference on World Wide Web. ACM, 2014.

[19] Shar, L. K., and H. B. Kuan Tan. Predicting SQL injection and cross site scripting
vulnerabilities through mining input sanitization patterns. Information and Software
Technology 55.10(2013): 1767-1780.

[20] Liu, H., et al. PF-miner: A new paired functions mining method for Android kernel in
error paths. Computer Software and Applications Conference (COMPSAC), 2014 IEEE
38th Annual. IEEE, 2014.

[21] Liu, H.-Q., et al. BP-Miner: mining paired functions from the binary code of drivers
for error handling. 2014 21st Asia-Pacific Software Engineering Conference 58(2014):
5A4-5A0.



Index

agile 78, 112, 256, 165, 268-269, 276

AHP (Analytic Hierarchy Process) 116—-119, 122,
138-139, 146, 206, 211-212, 251-254,
257-258, 261264

Al models 53

Al systems 220, 227, 229, 231

ambiguity detection 81, 97, 100, 113

analytic hierarchy process (AHP) 146, 158, 201,
206, 211

analytic network process (ANP) 146, 158,
208, 265

analytical 2, 119, 140, 158, 159, 161, 167, 170,
175-176, 180, 265, 279

application experience (APEX) 118, 124, 128-130

application software 293

artificial intelligence 27-29, 30, 37, 41-43, 48,
78-179, 113, 219-220, 226, 231-233

assistant systems 220

association rule mining 53

C Range Error Detector (CRED) Approach 205

CBO metric 54

CNN framework 27-29, 34, 37, 40-43, 66, 144

CNN model 27

cognitive problem 220

collaborative filtering 1, 12-14, 19, 20, 24

comparative analysis 42, 115-116, 138-139, 145,
215, 217,247,263

comparison matrix 120, 122, 124, 131

component-based reliability prediction 235, 238

consistency index (CI) 124

consistency ratio (CR) 124

constructive cost model (COCOMO) 118

cosine similarity 15

cross project defect prediction 33, 54, 79,
202, 211

culture 73-74, 89, 257

customer relationship management 81, 84,
112-113

DANS model 82

DBN 24, 27-28, 35-37, 40-42

debugging 161, 164, 167-169, 171-172, 175-177,
180-184

decision making matrix (DMM) 122

decision tree 4, 7, 9, 11, 28-29, 37-38, 44, 50, 54,
56, 64,79, 143, 145, 158

decision tree classificator (DTC) 28

decision weights 209

decision-making game 257

deeper system 220, 222, 272, 281

developer expertise 79

DM (Decision Making) 46, 48, 63

DSDM (Dynamic Systems Development
Method) 255

dynamic 11, 24, 46, 61, 80, 83, 102, 161, 166, 169,
171, 186, 200, 203

efficiency 22, 65, 121, 147, 184, 207, 255-256,
264,282

error detection 5, 147, 169, 176, 236237, 240,
242-246, 277

error handling 236, 240, 242-243, 302

failure rate 164, 170, 176, 184

feature extraction 24, 30-32, 43, 233, 293

FMCDM (fuzzy based multi criteria decision
making) 249, 258, 260, 262

functionality 2, 36, 65, 79, 81, 100, 202, 203,
255,268

functions 28, 29, 33, 50, 68, 182, 184-185, 220,
232,254,279, 289, 302

fuzzification 119, 138

fuzzing 203-204, 214-216

fuzzy AHP, 252

fuzzy analytic hierarchy process (FAHP) 114,
116-119, 122, 131, 138, 256

fuzzy linguistic 122—123

Fuzzy Technique for Order Preference by
Similarity to Ideal Solution
(FTOPSIS) 115-116, 118, 120, 122,
131, 138, 256

geometric mean (GM) 123-125

heart disease 147, 150-152, 155, 158—159
heart disease prediction 142-144, 150, 158—159
hybrid cumulative voting 257

imperfection expectation 45, 53, 62
increasing application 41, 220

k-kernel matrices 34
k-means 5, 10-12, 145-146, 158

language and tool experience multipliers (LTEX)
119, 123, 125, 128-130

linear regression 4, 7, 8

logistic regression, 29, 287

maintainability 65, 78, 183, 216, 256

303



304

MATLAB® tool 29, 254, 257-258

MCDM (multi criteria decision making) 115-123,
138-139, 146-148, 149, 150, 158, 201,
206-213

mean absolute error 2, 21

naive Bayes 9, 29, 52, 54, 143
non homogeneous Poisson process 184

online role-playing game 257

open source software 78, 180, 265

optimization 44, 78, 139, 180-183, 217, 247, 267,
276, 286287

Pearson correlation 14

PLEX- platform experience (PLEX) 118

popularity 220

portability 46, 65

possible approaches 231

prediction model 42, 53, 57, 58, 61, 78, 79, 142,
144, 150, 162, 237

prediction's accuracy 1, 276

probabilistic failure 61, 161, 170, 233, 278, 279,
284, 285, 286, 288-289

product roadmap 268-269, 271

programming quality 46, 64, 66, 68, 77, 187

project size 79

prototype model 81-82, 89, 91, 100, 103, 113

random index (RI) 120

RBM 35-36

recommender system 2, 5, 11-12, 24
reinforcement learning 1, 6, 7, 233
release planning 267-276
requirements change 79
requirements clarity 79

root mean square error 2, 3, 21, 53

safety assessment 220, 231, 234, 263
safety critical 79
safety evaluation 219, 258

Index

scale invariant feature transform (SIFT) 31-33

SDLC 44, 46, 62, 72-73, 77-78, 81, 89, 90,
114, 170

SIL system 220-221, 231

SMART (simple multi-attribute rating
technique) 254

SMARTER (SMART exploiting ranks) 249,
254,256

soft computing 45, 61, 139, 161, 169, 170, 181

software defect 44, 46, 48, 53-55, 71, 77-79, 80

software metrics 53, 162

software model 79, 180, 256

software releases 175

software reliability growth models 2, 181-182,
184, 199, 200, 247

software vulnerabilities 201-203, 205, 210, 211,
214, 216, 291-293, 296, 301, 302

software vulnerability analysis 204, 206, 216,
294, 301

statistical models 23, 183, 232

supervised learning 1, 3, 4, 12, 27, 33,
79, 145

SVM (support vector machine) 9, 10, 25, 28-29,
33,37, 41-43, 48-54, 58, 79, 80,
144, 145

system of self-awareness 220

type of reliability testing 196

un-supervised learning 1, 4-5

usability 2, 65, 92, 116, 174, 177, 178, 224,
247,255

user interface 79, 92, 114

user involvement 79

using speech system 220

VIKOR 207, 217, 249, 254
web application scanners 204

weighted product model (WPM) 208
weighted sum model (WSM) / SAW 208



	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Editors
	Contributors
	Chapter 1 Enhancing Software Reliability by Evaluating Prediction Accuracy of CBF Algorithm Using Machine Learning
	1.1 Introduction
	1.2 Background Details & Related Work
	1.2.1 Software Reliability
	1.2.2 Criterion to Measure Performance of SGRM

	1.3 Machine Learning: A Brief Overview
	1.3.1 Supervised Learning
	1.3.2 Unsupervised Learning
	1.3.2.1 Categorisation of Unsupervised Machine Learning

	1.3.3 Semi-Supervised Learning
	1.3.4 Reinforcement Learning
	1.3.4.1 Algorithms Used in Machine Learning


	1.4 Related Work
	1.5 Machine Learning Techniques & Methodology Used for Reliability Assessment
	1.5.1 Data Set
	1.5.2 Collaborative Filtering Technique

	1.6 Experimental Set-up
	1.6.1 Test Data Set – QUERY vs PROBE

	1.7 Results Evaluation
	1.7.1 Evaluate the Recommendation from Both Algorithms – RMSE and MAE

	1.8 Conclusions
	References

	Chapter 2 Significance of Machine Learning and Deep Learning in Development of Artificial Intelligence
	2.1 Introduction
	2.2 Related Works
	2.3 Proposed System
	2.3.1 Image Pre-Processing
	2.3.2 Feature Extraction
	2.3.3 Classifications
	2.3.3.1 Support Vector Machine
	2.3.3.2 Convolutional Neural Network
	2.3.3.3 DBN
	2.3.3.4 Random Forest

	2.3.4 Evaluation

	2.4 Conclusions
	References

	Chapter 3 Implication of Soft Computing and Machine Learning Method for Software Quality, Defect and Model Prediction
	3.1 Introduction: Overview of the Study
	3.2 Background: Machine Learning for Developing Models
	3.3 Related Study
	3.4 Literature Review
	3.5 Methodical Review: Software Defect Prediction Using Machine Learning
	3.5.1 Approach of Software Defect Prediction
	3.5.2 Defect Prediction by Soft Computing Method
	3.5.3 Data Mining in Imperfection Expectation

	3.6 Machine Learning Approach for Quality Assessment and Prediction in Large Software Organisations References
	3.6.1 Assessing Software Quality Attributes
	3.6.1.1 Software Quality

	3.6.2 Quality Prediction Using Threshold Euclidean Distance Model

	3.7 Model Selection Using Machine Learning
	3.7.1 Choosing a SDLC Model

	3.8 Results and Discussion
	3.9 Conclusions
	References

	Chapter 4 Ambiguity Based on Working and Functionality in Deployed Software from Client Side in Prototype SDLC Model Scenario
	4.1 Introduction
	4.2 Background
	4.2.1 Customer Relationship Management Software
	4.2.1.1 Major Applications of CRM

	4.2.2 Overview of SDLC and Prototype Model
	4.2.2.1 Prototyping Approach


	4.3 Related Study: Prototyping Model Based on Procedure Method
	4.4 Literature Review
	4.5 Methodical Review: Types of Requirement Ambiguities and Their Detection
	4.5.1 Ambiguity in Requirements Engineering
	4.5.2 Types of Ambiguity
	4.5.3 Approach of Literature Segmentation for Resolution of Ambiguity Detection

	4.6 Methodology
	4.6.1 Data Collection and Survey
	4.6.2 Proposed Model
	4.6.2.1 Enhanced Prototype Model
	4.6.2.2 DANS Software Development Method
	4.6.2.3 Inception Stage
	4.6.2.4 Definition Stage
	4.6.2.5 Configuration Stage
	4.6.2.6 Repetitive Stage


	4.7 Results and Discussion
	4.7.1 Tools for Detecting Ambiguity
	4.7.1.1 DARA Architecture
	4.7.1.2 The Ambiguity-Resolving Module

	4.7.2 Risk Analysis Due to Ambiguity in Requirements

	4.8 Conclusions
	References

	Chapter 5 Selection of Software Programmer Using Fuzzy MCDM Technique in Software Engineering Scenario
	5.1 Introduction
	5.2 Review of Ranking-Based Optimisation Techniques
	5.3 Effort Multipliers as Criteria and Alternative in Software Engineering Scenario
	5.4 Fuzzy MCDM
	5.4.1 FAHP
	5.4.2 Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS)
	5.4.3 Integrated FAHP and FTOPSIS Method

	5.5 Evaluation of Programmers' Rank Using FAHP
	5.6 Appraisal of Programmers' Rank Using Integrated FAHP and FTOPSIS
	5.7 Comparative Analysis
	5.8 Conclusions
	References

	Chapter 6 Implementing Multi-Criteria Decision-Making to Detect Potential Onset of Heart Disease
	6.1 Introduction
	6.2 Literature Review
	6.3 Methodology
	6.3.1 Multi-Criteria Decision-Making (MCDM) Algorithm
	6.3.1.1 Categorisation of Features
	6.3.1.2 Normalisation of Data
	6.3.1.3 Vector Normalisation
	6.3.1.4 Enhanced Accuracy Normalisation
	6.3.1.5 Entropy Method to Assign Weightage
	6.3.1.6 Getting the Final Score

	6.3.2 Dataset

	6.4 Results and Analysis
	6.4.1 Applying Vector Normalisation
	6.4.2 Applying Enhanced Accuracy Normalisation

	6.5 Conclusion and Future Scope
	References

	Chapter 7 State-of-the-Art Literature Review on Classification of Software Reliability Models
	7.1 Introduction
	7.1.1 Basic Terminology

	7.2 Software Reliability Models
	7.2.1 Some More Applicable Software Reliability Models
	7.2.1.1 Non-Homogeneous Poisson Process (NHPP)
	7.2.1.2 S-Shaped Software Reliability Growth Model
	7.2.1.3 Imperfect Debugging
	7.2.1.4 Soft Computing


	7.3 Classification of Software Reliability Models
	7.3.1 Analytical Model
	7.3.2 Dynamic or Probabilistic Model
	7.3.2.1 Discrete Time Models
	7.3.2.2 Continuous Time Models

	7.3.3 Static or Deterministic Model

	7.4 Procedures and Tools
	7.5 Literature Review
	7.6 Conclusions
	References

	Chapter 8 Survey on Software Reliability Modelling and Quality Improvement Techniques
	8.1 Introduction
	8.2 Reliability Curve
	8.3 Review of Software Reliability Model
	8.3.1 Model of J-M De-Eutrophication
	8.3.2 Model of Enhanced NHPP
	8.3.3 Model of Musa Execution Time
	8.3.4 Model of Nelson
	8.3.5 Model of Littlewood-Verrall Bayesian
	8.3.6 Model of White Box Software Reliability

	8.4 Metrics of Software Reliability
	8.4.1 Product Metrics
	8.4.2 Project Management Metrics
	8.4.3 Process Metrics
	8.4.4 Metrics of Fault and Failure

	8.5 Improvement Techniques of Software Reliability
	8.5.1 Software Testing
	8.5.1.1 Principles of Software Testing
	8.5.1.2 Reliability Testing Importance

	8.5.2 Type of Reliability Testing
	8.5.3 Verification and Validation of Software
	8.5.3.1 Validation Testing
	8.5.3.2 Criteria of Validation Testing


	8.6 Conclusions
	References

	Chapter 9 Multi-Criteria Decision Making for Software Vulnerabilities Analysis
	9.1 Introduction
	9.2 Causes of Vulnerabilities
	9.3 Vulnerability Detection Methods
	9.3.1 List of Software Vulnerability Methods
	9.3.2 Software Vulnerabilities Detection Tool

	9.4 Multi-Criteria Decision-Making (MCDM)
	9.4.1 List of MCDM Techniques
	9.4.2 Notations Used in MCDM
	9.4.3 Important Steps Used in MCDM Models to Obtain the Ranking of Alternatives

	9.5 Analysis of Software Vulnerabilities Using MCDM
	9.5.1 Solution Using Analytic Hierarchy Process (AHP)
	9.5.2 Simple Additive Weighting Method
	9.5.3 Weighted Product Model

	9.6 Outcome from the Mathematical Model
	9.7 Conclusions
	References

	Chapter 10 On a Safety Evaluation of Artificial Intelligence-Based Systems to Software Reliability
	10.1 Introduction
	10.2 What Is Artificial Intelligence?
	10.3 Does Artificial Intelligent Require a SIL?
	10.4 Looking Inside AI
	10.5 Software Reliability
	10.6 Software Reliability Discussion
	10.7 Characteristics of AI Software
	10.8 Software Safety
	10.9 Challenges of the Research
	10.10 Conclusions
	References

	Chapter 11 Study and Estimation of Existing Software Quality Models to Predict the Reliability of Component-Based Software
	11.1 Introduction
	11.2 Related Work
	11.2.1 Preliminary Work

	11.3 Component-Based Reliability Prediction
	11.4 Reliability Modelling
	11.4.1 Basic Concepts
	11.4.2 Component Reliability Specifications
	11.4.2.1 Components, Services and Service Implementations
	11.4.2.2 Failure Models
	11.4.2.3 Structures with Fault Tolerance


	References

	Chapter 12 Performance of Multi-Criteria Decision-Making Model in Software Engineering – A Survey
	12.1 Introduction
	12.2 Previous Work
	12.2.1 Different Approaches of MCDM
	12.2.1.1 Analytic Hierarchy Process
	12.2.1.2 Fuzzy Analytic Hierarchy Process
	12.2.1.3 TOPSIS
	12.2.1.4 ELECTRE
	12.2.1.5 Grey Theory
	12.2.1.6 ANP
	12.2.1.7 VIKOR
	12.2.1.8 PROMETHEE
	12.2.1.9 SMARTER
	12.2.1.10 Wiegers
	12.2.1.11 Previous Research Work

	12.2.2 FMCDM Application
	12.2.2.1 Fuzzy MCDM Applications
	12.2.2.2 Fuzzy MCDM in Performance Evaluation


	12.3 Survey Research Outputs
	12.3.1 Comparison of AHP and Fuzzy AHP
	12.3.1.1 Analytic Hierarchy


	12.4 Research Directions in MCDM
	12.5 Conclusions
	References

	Chapter 13 Optimization Software Development Plan
	13.1 Introduction
	13.2 Start with the Product Vision and How It Can Be Represented in a Roadmap
	13.3 What Is Involved in Release Planning?
	13.4 Enhance Collaboration and Coordination
	13.4.1 Reduce Dev/Test Cycle Time
	13.4.2 Monitor Quality of Release Pipelines
	13.4.3 Ensure Accurate Test Coverage
	13.4.4 Get Insights and Reporting

	13.5 Application of Release Plan
	13.6 Working Plan Releases More Effectively
	13.6.1 Examine Your Current Release Management Procedure
	13.6.2 Create a Corporate Release Plan
	13.6.3 Define the Optimal Release Management Process
	13.6.4 Put Money into the Appropriate Individuals
	13.6.5 Make Use of the Appropriate Tools
	13.6.6 Make the Most of the Testing Environment
	13.6.7 Define Stages and Activities to Govern
	13.6.8 Ensure Stakeholder Engagement Is Transparent
	13.6.9 Make Ongoing Communication Possible
	13.6.10 Keep an Eye on the Numbers

	13.7 Conclusion
	References

	Chapter 14 A Time-Variant Software Stability Model for Error Detection
	14.1 Introduction
	14.1.1 Analysing Climate Data
	14.1.2 Prediction of Long-Term Pier Scour
	14.1.3 Prediction of Streamflow and Floods
	14.1.4 Flood and Flood-Induced Scour Behaviour of Bridge Foundations
	14.1.5 Effects of Long-Term Corrosion
	14.1.6 Conclusions

	References

	Chapter 15 Software Vulnerability Analysis
	15.1 Introduction
	15.1.1 The Frame of Software Vulnerability Evaluation Based on Machine Learning Technique

	15.2 Top 10 Most Common Software Vulnerabilities
	15.2.1 Broken Access Control
	15.2.2 Cryptographic Failures
	15.2.3 Injection
	15.2.4 Insecure Design
	15.2.5 Security Misconfiguration
	15.2.6 Vulnerable and Outdated Components
	15.2.7 Identification and Authentication Failures
	15.2.8 Software and Data Integrity Failures
	15.2.9 Security Logging and Monitoring Failures
	15.2.10 On the Server-Side Request/Response Forgery Attack

	15.3 Steps to Prevent Software Vulnerabilities
	15.3.1 Create Software Design Requirements
	15.3.2 Use a Coding Standard
	15.3.3 Test Your Software
	15.3.4 Vulnerability Assessment Tools

	15.4 Top 10 Vulnerability Evaluation Tools
	15.5 Vulnerability Assessment and Penetration Testing
	15.5.1 Scope
	15.5.2 Black Box Testing
	15.5.3 Grey Box Testing
	15.5.4 White Box Testing
	15.5.5 Information Gathering
	15.5.6 Vulnerability Detection
	15.5.7 Information Analysis and Planning
	15.5.8 Penetration Testing
	15.5.9 Privilege Escalation

	15.6 Results Analysis
	15.7 Reporting
	15.7.1 Clean-Up Activity of Vulnerability

	15.8 Conclusions
	References

	Index



