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Foreword

Power systems are the direct reflection of their countries’ economy, security, and
advancement. They should be operated in safe and stable modes in order to avoid
negative consequences on their nation’s security and economy. For decades, the tra-
ditional power systems were operated safely and securely with no problems related
to its stability and security. This view of power systems has been changed during the
last decade due to environmental challenges and energy security risks which enabled
the movement toward the feasible implementation of smart grid concept. In the last
decade, the penetration level of renewable energy sources (RESs) has been highly
increased. Although RESs reduce the environmental concerns, but have negative
impacts on the stability and security of existing power systems. For instance, the high
share of renewables in modern power systems has reduced the total rotating inertia
and as consequences the frequency variable has been affected.

In conventional power systems, the frequency which is a global variable was
controlled by well-operating and managing primary and secondary reserves came
from generation side. However, this is not yet valid due to change in the power
system situation and high reduction of the rotating inertia, therefore the operators
need faster reserve that cannot be available from generation side. It has been found
that the best source of such reserves is the demand side. Later, new topics has been
initialized which are demand side management and demand response for controlling
the intelligent appliances that can provide some of their capacities as source for the
necessary reserves. As a consequence, it has been suggested to take advantages of
demand response for providing ancillary services in power systems.

There are specific types of loads and smart appliances that can provide ancil-
lary services to power systems. These loads should not affect the conformable of the
consumers and in the same time the management of these appliances should be done
based on reserve and energy markets. For instance, there are great research activities
these days on building a practical aggregators of electrical vehicles so that they can
participate in ancillary services market by well-controlling their charging and stage
of charge situation during a specific period of time. Likewise, researchers have sug-
gested models of air conditioners, refrigerators, water heaters and other thermostat
appliances for considering them as good storage aggregators that can provide some
services to power systems.

It is clear that there is a need for comprehensive book on demand response topic
that can cover the latest methods, best practices, case studies, and applications for
encouraging researchers and governments for supporting the movement toward smart
grid concept.
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It is obvious that the penetration level of renewable energy sources is highly
increasing over the world. Solar and wind energy are among the most percentage
shares of renewables in modern power systems. By nature of the photovoltaic cells,
they provide zero inertia to power systems. This means that increasing the power
generation from solar power plants would at least reduce the inertia with the same
percentage of their active power generation share increase. As aforementioned, this
high reduction in inertia would bring new challenges and technical issues to the
operators of modern power systems where the main problems related to stability
and security of energy systems. On the other hand, different types of wind turbines
provide neglectable inertia (almost zero) to modern power systems bringing the same
problems that would be arisen from solar energy systems. Therefore, there is a serious
need for new sources to keep the balance in power system operation especially in the
view of providing ancillary services. With the low inertia in future power systems, the
traditional and conventional reserve sources would not act accurately and properly in
the aim of maintaining the power system stability, therefore, it is highlighted that the
demand side can be considered as a good source of such services based on demand
response programs. The main advantage of demand response over energy and reserve
sources in the generation sides is its flexibility which is the most important feature
to the operators. Different types of demand side loads can provide demand response
services to power systems, where this book will focus on industrial demand response
and the types of demands that have the feasibility of implementation.



Introduction

The book is principally focused on industry demand responses (DRs) and their roles
in modern power systems. The book is sorted out and organized in 17 chapters.
Each chapter begins with the fundamental structure of the problem required for a
rudimentary understanding of the methods described. The book starts with chapters
that give comprehensive review and discussions on industry DR and their security.
The next set of chapters discusses the aggregation, optimization, and technical issues
related to industry DR. Finally, the last set of chapters presents best practices and case
studies. Brief descriptions of the book chapters are given below.

Chapter 1: One of the key points marking the transition from traditional toward
smart energy grids is the provision of flexibility services from the demand side.
Power flexibility facilitates the integration of renewable energy resources (RESs),
while the balance between the supply and the demand side is maintained. DR tech-
niques are providing the opportunity for high exploitation of the flexibility potential,
since they enable reducing, increasing or shifting a portion of the electrical demand,
for a specific time period. The industrial sector is expected to have a more significant
contribution compared to the residential and the commercial sector, mainly because
of the high-consuming equipment, the scheduled operations and the already installed
metering equipment on the facilities. The present work explores the state-of the-art
DR applications implemented in the industrial sector. The individual characteristics
of each type of industry are analyzed, as they play a major role in the identification
of DR potential, since industrial processes may involve critical loads, being highly
correlated, that must follow strict operational constraints. The current level of partic-
ipation in industrial DR programs is being assessed, identifying possible technical or
regulatory limitations that prevent further adoption.

Chapter 2: Cybersecurity in industry DR is crucial for modern power systems due
to their high digitization. The open information and communication technology, that
ICT is being used for the operation of such systems, is highly vulnerable to cyber
threats. The adopted smart grid concept around the globe enables the utilization of
demand-side for providing ancillary services based on well-known DR programs.
These programs aggregate smart appliances in homes and electric vehicles (EVs)
for providing vital services such as frequency regulation a voltage support. Since
the aggregation is based on cyber layer, any cyber threat could affect the ancillary
services that are being delivered from the aggregators, which might lead to stability
and security issues resulting in brownout or massive blackouts. This chapter discusses
the cybersecurity in DR program and shows its importance for modern and future
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smart power systems due to their stability and security margins. Furthermore, the
cyberattack case study is implemented in a power system with demand side program
responsible for providing primary frequency support ancillary service, where the
results confirm the high vulnerability of modern power systems to cyber threats on
DR-active power reserve providers. Moreover, technical suggestions are provided for
enhancing the cybersecurity in DR programs in power systems with high-power share
from renewable energy sources (RESs).

Chapter 3: Electric load forecasting is a fundamental technique to understand end-
user behavior and therefore a crucial factor in the design of DR programs. Load
forecasting will also identify the appropriate design of DR programs. In this chap-
ter, a range of different machine learning applications are covered to represent the
influential factors for electrical load demand forecast in a DR context, with a variety
of different data scenarios, temporal and technical scenario. This chapter explores
and compares the load prediction analysis through basic recurrent neural networks
(RNNs); vanilla RNN, gated recurrent units (GRU), and long short-term memory
(LSTM), using principal component analysis (PCA). It is found that PCA can be used
to reduce the number of principal components for vanilla RNN, GRU, and LSTM
networks. Reducing the number of principal components using PCA is one of the
techniques that are used in dimensionality reduction. Reduction in dimensionality
will relieve the computational burden. In this work, the dimensionality reduction
improves the predictive output. It is observed that for electric load demand fore-
casting, the preferred technique is GRUs, trained with principal components. The
performance is evaluated through mean absolute percentage error (MAPE), which is
relatively lower than other techniques.

Chapter 4: DR, which is an important feature of smart grid, can play avital role
by making the demand side more responsive to the varying gap between demand
and supply. DR is utilized by power utilities to maintain system reliability, security
and stability while customers utilize it to reduce the electricity cost by increasing or
decreasing the load during valley or peak demand periods. Industries consume huge
amount of electricity; therefore, DR strategies are required to be implemented by
industrial customers to enhance the saving. Further, industrial customers can provide
DR by employing many different technologies or strategies to achieve shifts in demand
in the following ways: (i) reducing or interrupting consumption temporarily with
no change in consumption in other periods, (ii) shifting consumption to other time
periods, and (iii) temporarily utilizing onsite generation in place of energy from the
grid.

Chapter 5: Smart grid enables active participation of consumers’ daily operation of
the grid through DR. DR refers to the actions initiated from contracted customers
by changing their demand in response to price signals, incentives, or directions
from grid operators. In this chapter, industrial DR suitable for frequency regulation
is discussed. For this, a mathematical model of price-based DR from thermostati-
cally controlled loads (TCL) for controlling the temperature of the chillers in large
academic complex environment is presented. A probabilistic model of the density
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function of aggregated TCL loads is discussed. The variation of the thermostat set
point demand temperature an increase in the price is presented. In order to match the
power demand and power supply, a new method for dynamic demand control (DDC)
with automatic generation control (AGC) in smart grid environment is proposed. A
load frequency control using DDC was modeled in this study. The load frequency
control model was simulated for a step load change of 0.01. The frequency devia-
tion was compared with the frequency deviation obtained when generation control,
using PI controller, alone was implemented for frequency control. Thus, DDC alone
is required to maintain the system frequency, during small load variations. DDC will
play a major role in reducing these losses caused to the GENCOs under a smart grid
environment.

Chapter 6: In 2020, the sales volume of EVs in China reached 1.367 million. A rapid
growth trend was witnessed by the huge increment of electric EVs in past several
years. By the end of 2020, China has nearly 5 million new energy vehicles. Mean-
while, China’s charging infrastructure has reached 1,681,000 units. It is expected
that the global penetration rate of new energy vehicles will exceed 30% in 2030. At
that time, the number of EVs in China is prospected to be 80–100 million. As the
largest EV market in the world, China has unique conditions to develop and study the
interactive application of EVs and power grid. The power system can have a chance
of promoting comprehensive innovation thanks to the booming of the EV industry.
A smart energy transportation network that can participate in the grid DR) timely,
would possibly consist of massive EVs, the power grid, renewable energy network
and transportation network. Because of the inherent mobile energy storage charac-
teristics of EVs, flexible large-scale EV clusters have great potential in power load
regulation, renewable energy consumption, power quality improvement, etc. Thus
EVs can be used to participate in auxiliary services such as peak shifting and valley
filling, frequency regulation, emergency support so as to interaction friendly with the
grid. In recent years, many cities in China have tried to include EVs in the pilot, and
made positive exploration in vehicle network interaction.

Chapter 7: DR programs are defined as the ability of customers to change their
consumption pattern in response to market/system signals. Nowadays, DR programs
are interested worldwide as an essential part of the future power system and also
considered as virtual generation resources. However, an accurate measurement and
verification (M&V) approach is needed to implement these programs successfully.
Indeed, the evaluation of the real potential of a DR program that is enabled during a
DR event is depended on an evaluation method that should be employed to estimate
the consumption behavior of the customers if they have not participated in DR. In this
regard, customer base-load (CBL) estimation is defined as the approach to estimate
the customers’ load levels if they have not received DR calls. Then, by computing the
difference among the estimated baseline and measured load data, the real potential
of DR would be calculated. So, the determination of the real potential of DR is
dependent on the difference between the estimated baseline and measured load data.
Since various factors (such as load type, weather condition, and day of a week) could
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affect the CBL, it is a challenging and complex task to provide an accurate estimation
of the CBLs.

Chapter 8: In a smart grid paradigm, the concepts of DR and transactive energy (TE)
are used to optimize the consumption and generation in the power networks. In this
chapter, two models for DR are analyzed based on the well-known Cobb–Douglas
utility function. Both models maximize their utility, subject to different constraints.
A time-of-use price-based DR program is employed. Restructuring in the electricity
sector, with an increase in RERs and distributed energy management technologies,
offers the potential for significant improvement in the efficiency of power systems
through the TE framework. In a TE framework, prosumers of all sizes can participate
in the double auction electricity markets via automated home energy management sys-
tems. Heating, ventilation, and air conditioning (HVAC) and energy storage devices
are the two important loads in residential buildings that account for a large proportion
of building energy consumption. A two-way exchange of energy and information is
possible with the current advent of communication systems and net metering. In this
work, we consider the case of solar photovoltaics (PV), HVAC, and energy storage
devices (EVs) and battery energy storage systems (ESSs) of prosumers participating
in the retail real-time double auction market. The problem is formulated as maximiza-
tion of social welfare subject to power balance and network constraints. Simulation
studies and results are presented for the modified IEEE 13 node distribution system.

Chapter 9: Supply demand balance is imperative for reliability of power system.
Inability to maintain this balance results in frequency deviation and system failure.
The recent integration of RESs such as wind and solar has reduced inertia and vari-
able output which leaves the power system at risk to disturbance while also reducing
controllability of generators. However, latter day DR is coming across as an eco-
nomical and effective way of adding to the reliability and security of power system
by managing electricity demand of customers at times of severe power imbalance.
This chapter carries out a detailed literature review of centralized and decentralized
demand control approaches. As well as presents a novel demand control approach for
providing frequency regulation by using domestic refrigerators as control loads. This
chapter also carries out a detailed study of large-scale appliance level interval meter
consumption data from Australia’s largest network provider Ausgrid. Appliance level
data is used in combination with household level data to study the contribution of air-
conditioners in summer peak demand. Clustering is performed on air-conditioner data
to identify various air-conditioner load profile patterns. These patterns are then used
with demand control strategies to study the possible load reductions from residential
air-conditioner control across the Australian State of New South Wales.

Chapter 10: Current environmental trends such as the rapid penetration of RES and
decommissioning of controllable but polluting generators are putting stress on the
reliable operation of electricity systems. This reduction of flexibility and increase in
volatility in the supply side calls for compensation from other sources in the grid.
Although the development of ESSs is creating an opportunity to relax the energy
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balance constraints in the grid, it is currently not sufficient to solve the constantly
growing need for flexibility.

Chapter 11: DR is one of the pillars of the modern distribution system, where con-
sumers would voluntarily reduce consumption in response to financial incentives.
While for residential consumers, demand curtailment is mainly a matter of incon-
venience, for industrial customers, reduction in electric demand can lead to severe
operational ramifications such as halt in production, pile-up of inventory, or wasted
labor. These challenges have caused industrial DR to remain less explored compared
to residential demand side management. Although the industrial sector may be small
by numbers, its energy consumption is the dominant load on most distribution sys-
tems. This further underlines the potential benefits gained by involving industrial
loads in DR events. One way to motivate industrial DR is to improve opportunities
for indirect cost savings as a result of participation in a DR event. For instance, it has
been shown in the literature that demand curtailment can be performed in conjunction
with inventory management in order to help the plant operate at or near just-in-time.
Another option can be to coordinate DR with asset management, i.e., by shutting
down lines and workstations under stress or those that are due for maintenance. This
way, the direct financial incentives from participating in DR can be augmented with
long-term benefits of optimal asset utilization. Providing one such solution is the
goal of the current chapter. A multi-objective optimization framework is proposed
here that allows plant operators to balance and optimize different financial, opera-
tional, and resource objectives while taking advantage of DR to alleviate operational
stress on assets. The approach can further incentivize plant managers to participate
in DR events, while allowing electric utilities to employ this significant untapped
potential.

Chapter 12: Considerable interest is now being vested in low-carbon energy sources
in other to meet the world’s ever-growing energy demand without causing damage
to the environment, which has given rise to the increasing contributions of RESs to
the energy grid. This development is not without its challenges to modern electric
power systems. Due to the intermittent nature of RERs, its increase has resulted in
energy demand-supply mismatch, grid imbalance, or grid instability. A reliable and
cost-effective approach is required to address this energy trade imbalance caused
by the influx of RESs. DR is a concept that aims at achieving energy balance in
the grid by controlling and adjusting flexible loads. Industrial DR has the potential
for a significant contribution to the operational flexibility of power systems. Since
the industrial sector is one of the major electricity consumers in the world, as many
industrial loads consume much electrical energy, therefore, a proper industrial DR
regime will help in ensuring a safe and secured grid, improve energy balance, promote
decarbonization, more grid reliability and cost reduction for customers.

Chapter 13: Industrial DR (IDR) has been used for regulation and balance purposes
for many years. Large energy intensity manufactures have responded to external
signals, generally from system operator (SO) to shift or shutdown loads according
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with emergence or unexpected situations in power system. Historically, such ancil-
lary services were very constrained and only remunerated by means of payments
according with an individual contract agreement between SO and industrial customer.
Nowadays, new IDR programs have been investigated, which have received a great
impulse because of the development of new control and communication systems, dis-
tributed energy resources (DER) based on RES, energy storage capacity, alongside
market liberalization and pricing diversification. Such new IDR programs tend to
focus on controllable, deferrable and interruptible loads aggregation, as well as on
DER and ESS aggregation through virtual power plants (VPP) or the energy market
participation of an aggregator on behalf of the prosumers.

Chapter 14: DR is a basic tool to achieve power systems flexibility in the short and
medium terms. The effective deployment of DR and the engagement of new resources
need both knowledge about how DR performs and how to evaluate their flexibility
to give a correct economic feedback to customers and aggregators. DR verification
requires a reference in absence of control: the customer baseline load (CBL). The
aim of this chapter is to describe several baselines that provide an acceptable evalu-
ation of load response as well as the use of different adjustment methods to improve
the CBL. Some of these adjustment factors can be justified through the simulation
of physical-based load models (PBLM), which are also used in DR for planning
and operational tasks. The chapter discusses some issues reported by grid operators:
detection of abnormal responses (before and after DR) that can be due to gaming or
are reactions to maintain load service such as preheating, precooling or the change
of tasks timeline. All these approaches have been illustrated using real data of an
industrial customer. Results show that the adjustment of CBLs can improve several
conventional approaches described in the literature.

Chapter 15: Despite its comparative advantages with respect to residential and com-
mercial DR, industrial DR (IDR) in general, and modeling of different types of flexible
industrial processes in particular, has received relatively limited research attention,
with previous work having only explored limited and industry-sector-specific sub-
sets of such processes. This chapter adopts an alternative, sector-agnostic modeling
approach and develops generic models of all conceivable types of flexible industrial
processes, with the aim to shed light on their key operating differences and assist
industrial consumers interested in IDR schemes to identify and assess the types that
are more relevant to their systems. In this context, this chapter identifies and discusses
seven different types: (1) uninterruptible processes with fixed power, (2) interruptible
processes with fixed power, (3) uninterruptible processes with discretely adjustable
power, (4) interruptible processes with discretely adjustable power, (5) uninterrupt-
ible processes with continuously adjustable power, (6) interruptible processes with
continuously adjustable power, and (7) material storage buffers.

Chapter 16: DR has proven to be a crucial mechanism in the process of flexi-
bility exploitation on the demand side. Throughout the years, it has evolved and
expanded, reaching more and more previously untapped potential sources. In that
process, residential users have provided a significant buffering capacity for balancing
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energy production and demand, but this came with a few challenges. With more and
more households transitioning from being purely energy users to smart homes and
energy prosumers with distributed renewable energy generation, new possibilities
have opened up for integrated optimization approaches that make the best use of both
locally generated and grid-supplied energy as well as energy storage systems.

Chapter 17: Despite all achievements, and advances in energy markets, microgrids,
and smart grids within the world, issues such as power distribution, consumption,
or optimization are among the important and significant areas within the industry
and technology. As industrialization and technology improve, these subjects become
more important. Most of the experts attempt to have far better control on power con-
sumption/distribution, and technologies like combined heat, and power (CHP), or
gas-electricity, or demand forecasting, especially in smart sustainable cities (SSCs).
Using artificial intelligence (AI) and neural networks (NNs) can have an important
role in performing, and optimization that will lead to lowering the issues in future
power systems. An NN-LSTM-based model can help the experts to control, pre-
dict, and optimize the facility consumption, and power distribution. Conceptually, in
industrial and smart sustainable cities, more they develop, more the quantity of data
is going to be generated that a simple and practical tool to research about and analyze
these big data is AI. Regarding an outsized amount of data, the training and predicting
process of AI is going to be far more accurate, due to the low root mean square error
(RMSE). Accordingly, the result is going to be near the actual and help the SSCs to
possess controlled power consumption, distribution, and CHPs. Also, the combina-
tion of quantum technology with smart grids, and NNs are analyzed. Accordingly,
the mentioned technologies cause preventing power loss and promoting a way to a
smarter, technology-based, and sustainable world with high ability of DR.

The editors
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Chapter 1

A comprehensive review on industrial demand
response strategies and applications

Christos Timplalexis,1 Georgios-Fotios Angelis,1

Stylianos Zikos,1 Stelios Krinidis,1,2

Dimosthenis Ioannidis1 and Dimitrios Tzovaras1

One of the key points marking the transition from traditional toward smart energy
grids is the provision of flexibility services from the demand side. Power flexibility
facilitates the integration of Renewable Energy Resources (RESs), while the balance
between the supply and the demand side is maintained. Demand Response (DR) tech-
niques are providing the opportunity for high exploitation of the flexibility potential,
since they enable reducing, increasing or shifting a portion of the electrical demand,
for a specific time period. The industrial sector is expected to have a more significant
contribution compared to the residential and the commercial sector, mainly because
of the high-consuming equipment, the scheduled operations and the already installed
metering equipment on the facilities. The present work explores the state-of-the-art
DR applications implemented in the industrial sector. The individual characteristics
of each type of industry are analyzed, as they play a major role in the identification
of DR potential, since industrial processes may involve critical loads, being highly
correlated, that must follow strict operational constraints. The current level of partic-
ipation in industrial DR programs is being assessed, identifying possible technical or
regulatory limitations that prevent further adoption.

1.1 Introduction

As the energy landscape is rapidly evolving into a digital and more dynamic era,
future power systems are also changing, trying to adapt to this challenging transition.
At the same time, governments and other public stakeholders have also provided for

1Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
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extremely ambitious future plans regarding significant reduction targets in green-
house gas (GHG) emissions. In European Union (EU), for example, the most recent
Climate Target Plan [1] commits for a reduction of GHG emissions by at least 55%
by 2030 and aims toward achieving climate neutrality by 2050. The energy sector is
making an effort to contribute to those targets by introducing the Smart Grid (SG)
paradigm. SGs are based on the widespread implementation of Advanced Metering
Infrastructure (AMI) and on the huge capabilities that derive from the development of
Artificial Intelligence (AI) solutions in the field of electrical energy monitoring and
control.

The operational model on which traditional power systems were built considers
the demand side as non-flexible. The supply side is therefore responsible for making
all the necessary adaptations in order to provide power to the grid in a reliable man-
ner. This model mainly depends on fossil fuel-based power stations, whose output is
determined by the amount of fuel that they are supplied, consequently they can be
considered controllable to some extent. However, the high penetration of Renewable
Energy Resources (RES) has introduced a level of uncertainty on the supply side, since
solar or wind power output for example depends on stochastic complex natural phe-
nomena. The concept of Demand Side Management (DSM) was first introduced by
the Electric Power Research Institute (EPRI) in the 1980s as a series of activities that
utilities undertake to change their load shape and/or energy consumption pattern for
benefit maximization, investment delay, and reliability enhancement [2]. DSM activ-
ities can be classified either as “Energy Efficiency (EE)” or as “Demand Response
(DR).” DR denotes a power consumption shift made by a utility customer (residential,
commercial or industrial), as a response to a price signal or an incentive-based reward.
It inherently tries to mitigate some of the challenges that are deriving from the SG
transition, such as the intermittent and stochastic nature of RESs and Electric Vehi-
cles (EVs) or the high cost and flexibility of the Electrical Storage Systems (ESS).
DR consists of a highly dynamic interaction between demand and supply, capable
of efficiently handling energy equilibrium toward several goals such as greater RES
penetration, adjusting the demand according to the generation available, increasing
the overall reliability and stability of the power grid.

According to the US Energy Information Administration [3], the industrial sector
uses more delivered energy than any other end-use sector, consuming about 54% of
the world’s total delivered energy. However, research interest and the provision of SG
services are mainly focused on the residential and commercial sector, even though
they have a much smaller consumption footprint and environmental impact. Optimal
energy management in the industrial sector could provide the necessary flexibility,
avoiding the use of expensive storage units and peaking power plants [4]. In order
to unlock the full flexibility potential of industrial applications, operation scheduling
needs to be done considering the complicated processes taking place in each type
of industry, which may set some limitations to the extent that their loads can be
automatically controlled.

More specifically, industrial DR can help industries gain significant economic
benefits without compromising the smooth progress of the production process, while
giving the aggregators a large margin of flexibility that can help them manage the
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grid in a more efficient way, minimizing the inconsistencies between generation and
consumption.

Implementation of DR programs can be more challenging for industrial facilities
compared to residential customers, as reliability issues are usually vital for industries
[5]. The violation of the operational constraints could lead to the interruption or even
the stoppage of production. Moreover, two-way communication between the system
operator and the participating industry is required. Most industrial sites already have
metering infrastructure installed, so their participation is facilitated. However, a low
participation rate is observed, mainly due to lack of knowledge, technical constraints,
and complexity issues [6]. Review of the literature implementations suggests that
cement, steel, and aluminum plants (which mainly belong to the construction industry)
have a large flexibility potential which has been extensively studied over the years.
Electrochemical manufacturing is also a sector in which multiple DR applications
have been developed. Food industry participates with refrigerator warehouses, which
are excellent candidates for DR implementations due to their thermal inertia. Finally,
the IT industry and more specifically data centers are continuously growing in size and
in energy needs, so an increasing number of studies have been studying their flexibility
potential. The rest of this paper is organized as follows. Section 1.2 analyzes DSM
techniques and ancillary services in the context of smart grid. In Section 1.3, state-
of-the-art implementations are presented, elaborating on the special characteristics of
industrial sectors with higher participation in DR programs. Section 1.4 investigates
the barriers and the limitations identified, preventing the wider adoption of industrial
DR solutions. Finally, conclusions are drawn in Section 1.5.

1.2 Demand side management and ancillary services
in smart grid

1.2.1 Smart grid

Three main categories at the top level for the customer section of smart grids are
commonly recognized: residential, commercial, and industrial. Even though public
attention on smart grids had been focused mostly on the residential sector during the
previous decade, commercial and industrial sectors have larger consumption footprint
and peak load contribution [7]. In particular for the industrial sector, it has several
common individual facilities to represent large loads, due to high use of electricity.
Therefore, there is potential to achieve economic, environmental, and other benefits.
A short overview of main smart grid technologies with link to the industrial sector is
presented next.

Energy efficiency: It is a main objective for energy management, especially in
places where energy costs play a crucial role and need to be reduced. Applying con-
trol actions and utilizing intelligent systems for energy conservation in recent years
have been made possible due to the advances in Internet-of-Things (e.g. low-cost
wireless sensors, interconnected networks) and asset management software. Mod-
ern automation systems that are used in industry provide meaningful information
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to facility managers via dashboards, allowing them to assess the status on the
facility operations. These tools provide to facility managers all needed informa-
tion to respond to signals that are received from the electricity grid in case of grid
problems.

Direct load control: It refers to the case when a utility or service provider directly
controls the loads by sending control signals to assets at a facility. Direct load control
is more common in the residential section, where incentives are offered to the owners
to install the necessary equipment for controlling HVAC units and electric water
heaters. On the contrary, direct load control in industry is more complex, especially
in production environments, as further context is required on the type of the load and
its role in the production process. This is because it must be ensured that in all cases,
any safety rules are not violated and the operation of affected production lines is not
at risk.

Storage: The use of storage allows to decouple to an extent the purchase of
electricity with the operation of the facility. This is especially useful in cases of low
availability, fluctuating quality, or high price of electricity supply. The two main types
of storage are the “Electrical storage” and the “Thermal storage.” The former usually
relies on batteries, and the common scenario is to apply it when electricity is offered
at low price in order to consume the stored energy later when needed. Stationary
batteries come in various capacities and may be of different technologies. For example,
the capacity of utility-scale storage batteries ranges from several megawatt-hours to
hundreds, and lithium-ion batteries are the most prevalent type [8]. Moreover, using
the batteries of electric vehicles by applying smart charging, V2H, and V2G modes,
has attracted much attention due to the increasing availability of such vehicles and
related EV charging equipment.

Power generation: Industrial facilities may generate power to cover part of their
electricity needs or even to provide to the grid. Biomass and fossil fuels were
the main source of cogenerated power in the past, however, distributed generation
using renewable energy sources (e.g. PVs and wind turbines) is the current trend.
Cost is an important factor, and given the variability of production from renew-
able energy sources, high level of automation and efficient control strategies are
needed. Therefore, the facility managers will be able to plan the production process
accordingly based on information about electricity cost and predicted onsite power
generation.

Microgrids: A microgrid is defined as a group of distributed energy resources,
including renewable energy sources and energy storage systems, plus loads that
operate locally as a single controllable entity [9], having monitoring, control, and opti-
mization functionalities. Facilities with these characteristics that can form a microgrid
can operate off the grid completely or partially, allowing them to enable uninterrupted
operation in cases where grid supply is not reliable. According to [10], industrial
microgrids consist of factories with distributed energy resources that rely on combined
heat and power (CHP) systems for energy generation, while renewables and plug-in
electric vehicles may also be included. Moreover, as indicated in [11] the industrial
microgrid can be optimized, by managing the storage and generation resources and
implementing appropriate control actions for load curtailment.
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1.2.2 Demand response automation schemes

Demand side activities that are coordinated directly with supply system operators’
requirements and utility communications, mainly related to grid power quality, avail-
ability, and price, are referred to as Demand Response. For example, such demand
side activities include daily peak load reduction during high price time intervals and
participation in electricity transactions with various response times.

The term “Demand Response” encompasses electric load-reduction strategies
that are both manually initiated and automatically initiated. There are three main
approaches to demand response, which are the following [12]:

● Manual—A person performs operation (e.g. turns off) on the equipment. Human
intervention does not guarantee persistent and low response times, making the
manual approach not suitable for participation in all markets.

● Semi-automated—A person launches an energy management system (EMS),
which determines and performs all the necessary actions on the equipment.
Therefore, the reliability of the response depends on the availability of the initiator.

● Automated—The EMS in this case automatically initiates the execution of the
control strategy, upon request from the grid operator without any human inter-
vention. This is achieved through communication signals that are received by
the automation systems from the grid. The advantages of the automated Demand
Response are high speed and reliability, provided that the automated control
actions have been properly designated.

Automated demand response can be implemented at several levels with regard
to where the logic resides. In large-scale facilities or buildings that are equipped with
EMS, it is common to have the EMS handle the Demand Response logic. Alterna-
tively, some local energy resources may directly implement the Demand Response
logic rules. A third option that is common for small-scale facilities is to allow the
Demand Response logic to be handled by a service provider or the utility. As far as
the implementation of demand response is concerned, the Open Automated Demand
Response (OpenADR) standard [13] has been adopted and widely used. OpenADR
enables the exchange of various related information, such as measurement reports,
forecasts, schedules, baselines, price data, and other. It has been identified as a key
standard for demand response. The current version of the standard, OpenADR 2.0b,
has received full approval as International Electrotechnical Commission (IEC) Stan-
dard IEC 62746-10-1. The main advantages of OpenADR 2.0b are the following:
(1) open architecture and publicly available; (2) support of hierarchical architecture;
(3) dynamically configurable message exchange intervals, and transmission of past
and future flexibility data [14]. OpenADR is already in use at several installations to
provide demand response, as well as ancillary services and DER management.

1.2.3 Ancillary services in the industrial sector

Ancillary services programs are of major importance, as they have the potential to
increase the amount of flexibility that is provided to the smart grid and improve power
quality and grid resilience. The increasing share of renewable power generation is
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having an impact on the grid that could be balanced through the provision of ancillary
services by DR programs. The involvement of industrial consumers could bring profit
to the industries and at the same time increase the overall power system efficiency.

Ancillary services include all services and actions that are needed in order to
support a power system, which must be secure and reliable [4]. The advancements
that have been made in real-time communication technologies and automated control
especially during the last 15 years have allowed the engagement of small loads that are
suitable for fast DR [15]. Two main differences of DR for ancillary services compared
to typical DR applications are the reduced notification time and more advanced tech-
nical requirements related to measurements (speed and accuracy). Moreover, ancillary
services may be needed and requested any time during the day and not just during
peak hours. There are special types of loads with characteristics, such as the ability
to be shortly interrupted without negative impact, that allow them to provide ancil-
lary services. These loads include refrigerated warehouses, electric water heaters,
dual-fuel boilers, water pumping, etc. [4].

According to the report presented in [16], ancillary services are classified as
(a) frequency ancillary services (mainly for balancing); (b) services for congestion
management; and (c) non-frequency ancillary services, such as voltage control and
grid restoration. A high-level description of the most common types of ancillary
services provided by conventional units in EU is provided below [17].

● Frequency control: This service restores the frequency in the nominal operating
value after possible deviation due to imbalance between generation and demand.
The main ancillary services for frequency restoration are frequency containment
reserves (FCR), frequency restoration reserves (FRRs), and replacement reserves
(RRs).

● Voltage control and reactive power supply: This service controls the voltage to
maintain it to the desired acceptable limits. To this end, reactive power is required
to be injected at specific locations of the grid network, close to the voltage devia-
tion point, using controllable devices. According to the activation time, there are
three voltage control types: primary voltage control, secondary voltage control,
and tertiary voltage control.

● Black-start capability: This service is provided by generating units that can inject
energy into the system for restoring it after a general or partial interruption of its
operation.

1.3 Industrial DR case study implementations

The energy requirements the equipment and the special characteristics of each industry
will be analyzed in this section. Case studies of DR implementations found in the
literature for each industry will also be investigated.

1.3.1 Manufacturing processes

The largest part of the industrial sector is consisted of procedures that are related to
manufacturing. The term manufacturing implies the processing of raw materials, in
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order to physically, mechanically or chemically transform them into finished goods
or more complex items. DR scheduling in this case may face some severe limitations,
since there are multiple machines and complex processes involved in the produc-
tion procedure. Furthermore, some of those processes are executed in parallel, so
the implementation of DSM actions may interrupt the production procedure. Thus,
the available DR potential should be studied separately at each case, taking into
consideration the level of criticality of the performed operations.

1.3.1.1 Iron and steel
The iron and steel industry is the second largest energy user in the global industrial
sector [18], being responsible for a large percentage of carbon dioxide emissions
[19] (up to 1.6 billion tons of CO2 annually). There are two methods that are used
predominantly in the steel production process [20]: (1) Blast Furnace—Basic Oxygen
Furnace (BF-BOF) is the most widely used method at a percentage of 75% of the
global production. The main steps followed in this process include coking, sintering,
pelletizing, ironmaking, primary and secondary steelmaking, casting and hot rolling
[21]. The final product can be delivered in various forms, such as coils, plates, sections
or bars. (2) Electric arc furnace (EAF) is an alternative steel production method used
in 25% of global production. In this case, the main raw material is recycled steel
scrap and electricity is the main source of energy. EAF route is considered to be
more environmentally friendly, since it has lower CO2 intensity. However, the global
percentage of EAF steelmaking is smaller compared to BF-BOF, mainly because of
shortness of raw materials and scrap resources [22,23]. A graphical explanation of
the two methods can be seen in Figure 1.1.
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The authors of [24] are considering the steel production process, utilizing
weighted directed acyclic graphs. They define representations corresponding to
events, procedures and time spent on procedures, while a notional process is sim-
ulated using MATLAB software. Certain processes of the graph are considered as
critical, which means that time adjustment is not possible at these routes. Other pro-
cesses, such as steel rolling, are found to have a considerable DR participation time,
improving the adjustment ability of the steelmaking process to DR programs. The
work presented in [25] highlights the complexity of the processes taking place in the
steel industry, focusing on reducing the computational cost of load scheduling on
DR events. The production process requires fine grained computations, in terms of
time resolution, but that results into long computation time which is not acceptable in
the dynamic environment of this specific industry. This issue is addressed by apply-
ing two different techniques, whose effectiveness is numerically validated. At first,
additional constraints are added, in an effort to reduce the search space of the MIP
problem. Then, the commercial solvers which are typically used for the solution of
optimization problems are substituted by a tailored method which utilizes the special
characteristics of the steel manufacturing industry. EAF steel production method is
considered in [26], where the optimal day-ahead scheduling is attempted, for partici-
pation in the electricity market. Similar to [27], the steel plant is modeled as a RTN,
so the whole production process is described by interactions between the resources
(e.g. equipment) and operational or transfer tasks. Optimal scheduling is based on
the study analyzed in [27], however, it has been extended to include spinning reserve
provision. Four different scheduling scenarios are simulated with results indicating
that at all cases spinning reserve provision slightly increases electric energy cost, but
significantly reduces the overall operational cost of the steel plant. A larger optimiza-
tion horizon is implemented in [28], where load scheduling is running within a 5-day
rolling window and maintenance planning is considered for 30-days ahead. Actual
data from a steel plant in Taiwan are used for the current study. The schedulable parts
of the equipment include two hot strip mills (HSM) and picking and cold reduction
(PCR). Results indicate that the maintenance planning maximizes the DR potential,
while energy scheduling with DR minimizes the operational cost of the plant.

1.3.1.2 Aluminum
Aluminum production is a less complex and less energy intensive procedure, com-
pared to steelmaking. Yet, it constitutes a large share of the total global energy usage,
reaching up to 1.53% [29]. The dominant electricity consumption process occurring
at an aluminum plant is smelting, which utilizes energy for an electrolysis process
that involves the chemical reduction of aluminum oxide into aluminum. Smelters are
estimated to account for 85% of the total energy needs of an aluminum plant [29].
Moreover, these systems have been designed for a stable operation at constant power
levels, as their energy consumption is directly related to the production of the plant.
Hence, maintaining a stable load profile with minimum variations ensures the seam-
less operation of the production process. Minor rapid variations may be implemented
for the provision of regulation services to the power system, without significantly
reducing the quantity of the aluminum produced [30]. It becomes clear that the DR
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potential is restricted due to the plant operational constraints, however a strong advan-
tage compared to other industries is that the smelting process is able to change its power
consumption very quickly and with high accuracy, controlling the DC voltage of the
smelting pots. The industrial aluminum production process can be seen in Figure 1.2.

A DR strategy candidate for implementation on aluminum smelters is the partic-
ipation to the day-ahead energy and spinning reserve bidding markets. This case is
presented in [32], where the optimal bidding strategy is investigated. Flexibility pro-
vision is considered only by controlling rectifiers, while it is assumed that the smelter
can inject energy back to the grid. A stochastic optimization approach is followed,
taking into consideration all the possible scenarios for the day-ahead electricity price
forecast. All of the price scenarios are modeled with the same probability. The solution
of the MILP problem suggests that energy bidding is higher when electricity prices are
high. As a result, it is preferable to sell energy during those hours, so there is less space
for providing spinning reserve. An approach trying to maximize the aluminum plant
profits is presented in [33], where the optimal combination of aluminum production
and regulation of the electric power grid is investigated. The automatic generation
control (AGC) signal, which is used for the balancing between supply and demand,
is linearly simplified. Then, various scenarios are created and given as an input to
a stochastic optimization problem. Various simulations are conducted utilizing dif-
ferent price and cost parameters, as both hourly and multi-hour regulation provision
are examined. According to the results, when the profit price is higher, the electric-
ity consumption as well as the aluminum production are higher, while the regulation
participation is lower. The authors of [34] follow a slightly different approach, formu-
lating the problem as a mixed integer quadratic programming problem. A two-level
optimization strategy is implemented, where the system operational cost is minimized
and the profit of the aluminum plant is maximized, taking into account the profit from
the DR participation. The maximization of profit is a convex and continuous prob-
lem, so it is replaced by the Karush–Kuhn–Tucker (KKT) optimality conditions. The
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IEEE-39 bus system is used as a case study, at a time resolution of 15 minutes. Results
indicate that implementing DR is a great solution for electrolytic aluminum plants,
since it can be a source of profit even at periods when raw material prices fluctuations
reduce product sales profits. In [35], electrolytic aluminum advantages for DR par-
ticipation are analyzed. The large the installed capacity, the large thermal inertia and
the small peak valley difference between day and night make aluminum plants ideal
candidates for DR participation. A separation is made between aluminum enterprises
with and without their own power plants, since in the first case, there seems to be a
large potential in peak shaving, while in the latter, time shift DR is more suitable. At
any case, most of the applications on the field use price-based methods for DR par-
ticipation. The authors support that future research should move toward the direction
of combining price-based and incentive-based schemes for optimal results.

1.3.1.3 Cement
One of the most energy intensive industries in the world, being responsible for more
than 8% of China’s total industrial energy consumption, is the cement industry. The
largest part of the energy used comes from fossil fuel, while electrical energy con-
sumption in cement power plants is broken down as follows: 35% at the cement
mill, 30% in clinker production, 25% in kiln preparation, and 10% to other desti-
nations [36]. The energy consumption breakdown of a cement plant can be seen in
Figure 1.3. The cement mill, which is the machine with the highest electrical con-
sumption, is preparing the raw materials for the kiln by utilizing wet or dry grinding.
From the power consumption perspective, the wet grinding process was widely used
due to lower energy requirements, but advances in technology have now made dry
grinding the most efficient method [37]. Energy savings actions in cement plants are
usually focused on upgrades of the existing equipment or savings in fuel. DR potential
exists in those processes of the production process that are not continuous. For exam-
ple, since the kiln is operating continuously, its interruption would cause stoppage of
production or other damages. On the contrary, raw mix grinding, fuel grinding, and
clinker grinding are the processes on which DR implementations are mostly built on.
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One of the first studies that considered DR implementation in industrial cement
plants is presented in [39]. The production process was modeled by using start prob-
abilities and constraints for all of the sub-processes, the objective function was set to
minimize electricity tariff and finally the optimization problem was solved by using
particle swarm optimization (PSO) technique. The simulated case study involved a
dry process cement plant and a ToU DR scheme was considered. It is concluded that
raw materials storage gives a larger flexibility potential to the plant. Optimal schedul-
ing was achieved by mostly modifying the grinding operations, while crushing and
homogenization were also shifted. The work presented in [40] investigates the poten-
tial for ancillary services provision through continuous power changes. This scenario
is not easily implemented in cement plants, since only discrete power changes are
made. A model predictive control (MPC) framework is deployed with hourly reg-
ulation signal forecasts given by an ARMA model. Cement plant parameters are
considered and MILP optimization is solved, estimating the benefit from the instal-
lation of an ESS system. Three scheduling options are compared, namely real-time
MPC coordination, hourly regulation cost and day-ahead optimal scheduling. Results
indicate that loads are able to support the power system operation by providing reg-
ulation, while the authors suggest that the proposed framework to be extended to
include more system components such as commercial building and electric vehicles.
A data-driven approach for flexibility estimation is presented in [41]. Data from two
Korean factories were used for the evaluation of the proposed solution. Load curves
were decomposed to three components: seasonal, trend and residual. DR events were
implemented and the level of demand reduction was analyzed from the collected data.
According to the results, the usual power consumption could be cut down to its half, if
the potential score on ramping down the demand for cement loads is 0.27. The score
scale varies from 0 to 1, with 1 being the highest possibility. An interesting imple-
mentation, aiming toward the provision of aggregated DR flexibility from cement
plants is introduced in [42]. The aggregator controls the operation of 8 plants, sepa-
rating their production line into 4 discrete sub-processes and making day-ahead (24 h)
planning, by taking into consideration the constraints set by the industries. Numerical
results simulate the coordinated operation of the plants for a hot summer day, with the
network experiencing serious power shortage. The problem is mathematically formu-
lated as a dual robust mixed-integer linear programming (R-MIQP) problem. Results
suggest that the storage capacity of the siloes is the key to unlock the maximum
flexibility potential. The authors argue that the aggregator could possibly integrate
various diverse heavy industries, optimally coordinating their operation. As indicated
in [38], energy saving actions in energy intensive industries can be achieved not only
with DSM techniques but also by performing energy assessment and maintenance
on the existing facilities. In the presented case study of an Iranian cement plant, the
electrical cost was reduced by 10% by implementing the following actions: reducing
moisture on the raw materials, replacing typical fans with variable speed fans on the
kiln air flow system, leveling the rotational speed of the kilns, insulating parts of the
high temperature area after visual inspection. This indicates the importance of imple-
menting simple maintenance solutions for electrical cost reduction, before resorting
to more complex DSM solutions.
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1.3.1.4 Other manufacturing sectors
Within the industrial sector, there are multiple other energy intensive industries, such
as chemicals, textile, automotive, aerospace, wood, plastics and rubber, which have
manufacturing processes as their main activity. However, DR implementations are
found in the literature only for those industries that are considered appropriate from
an operational point of view. For example, safety critical operations may not be
interrupted for the provision of flexibility services, as a production failure could have
more significant effects, compared to the benefits obtained from DR implementation.

According to [43], the average electricity consumption for the vehicle assembly
process is 80 kWh/vehicle. Thus, several studies have implemented DR schemes to
the automobile manufacturing industry. In [44], a MILP approach attempts to opti-
mize the metal stamping process, which is the mechanism that creates consistently
sized and shaped car body parts, by pressing sheets of metal. The objective function
minimizes the total manufacturing cost, while the constraints are customized for the
processes taking place in car manufacturing. Simulation results indicate significant
cost reduction because of the use of DR, which is further cut down when DR is com-
bined with ESS interaction. A similar case, where an automotive assembly line is
simulated, considering as equipment seven machines and five buffers, is presented
in [45]. Real-time DR scenarios are considered, since non-real time strategies fail to
satisfy the requested DR events, without compromising system throughput. Real-time
control manages to maintain the production target unaffected, while it is highlighted
that more sophisticated solutions are required for long lasting DR events. The work
presented in [46], also focuses on real-time, event-driven DR requests. The power
control model is built utilizing a Markov decision process (MDP) framework, captur-
ing both deterministic and stochastic properties of the model. Dynamic programming
is used as a tool for the solution of the formulated MDP problem, while forward recur-
sion is preferred over backward recursion, due to the curse of dimensionality. A five
machine and four buffer manufacturing line is considered as a case study, utilizing
real data from an actual automotive industrial facility. According to the results, during
the DR event, electrical power consumption can be reduced by up to 22%, while the
system throughput remains unchanged.

The chemical industry is another energy-intensive sector which is responsible
for a significant amount of industrial carbon emissions [47]. The work presented
in [48] investigates the DR potential in a chemical manufacturing facility. Real-time
optimization (RTO) and economic model predictive control (EMPC) are compared
on different optimization horizons. It is observed that EMPC profit is depending on
the horizon size, while computational concerns are raised for realistic examples that
could create substantially larger models. Operating profits are achieved, however it is
highlighted that the cost of the installation of new equipment needs to be taken into
account in the profits calculation. Electrolysis-based chlor-alkali manufacturing is
an energy-intensive technology that can be optimized to provide significant demand
response services. In [49], the operation schedule of the plant is modified every 15
min, following the fluctuations of the electricity prices. Significant reduction of 29%
in power demand was achieved, exploiting the inherent inertia of the process, which
allows short-term scheduling. The authors highlight that operation constraints, such
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as the cell temperature, should be constantly monitored during DR events. In the
current work, electricity prices were considered to be accurate, however in real-life
scenarios, they derive from a forecasting process that may introduce errors that will
affect the method efficiency. Chlor-alkali manufacturing DR is also studied in [50],
where day-ahead and real-time optimization scenarios are implemented. In this case
study, the plant is powered by a grid-connected hybrid renewable energy system,
while energy forecasts are used for the prediction of the output from the generation
units. The optimization problem determines the optimal dispatch of the available
resources for a specific time horizon. Various DR schemes were considered, with
the results suggesting that the electricity contract and incentive based scheme are the
most beneficial both for the industrial customer and the operator.

The case study presented in [51] is simulating processes of the ceramic manufac-
turing industry. A data-driven approach is selected, although the cost of implementing
a real-time data collecting and monitoring framework is highlighted. DR implemen-
tation is focused on the ball mill machine, which is a type of grinder that blends
materials of ceramics. The suggested solution is described in three different layers,
namely data capturing, monitoring and energy efficiency optimization. Data anal-
ysis reveals the most efficient ball mill of the plant, while the authors suggest that
energy and cost savings can be achieved by extending this behavior to the rest of the
equipment. Pulp and paper production also require a significant amount of energy for
the execution of the related manufacturing processes. Wood chips can produce pulp
with chemical or mechanical pulping. The latter process, which consumes the most
electric power, is examined in [52]. The problem constraints are defined, including
steam demand, capacity and cost of alternative steam sources, future production plan,
maximum production of each line and minimum feasible production of each line. The
production plan is used to generate forecasts for the entire process. Those forecasted
data are used for the optimal scheduling of the operations avoiding peak price hours.

1.3.2 Refrigerator warehouses

According to [53], refrigerator warehouses are responsible for approximately 16% of
the total energy use of the food industry. Taking into consideration that their peak
demand coincides with extreme hot ambient temperatures, when the grid is stressed
the most, the significance of implementing DSM techniques is highlighted. Their
high DR potential is also underlined by the fact that they can show high tolerance to
brief interruptions of their power supply. Since they are closed spaces, well insulated
and usually full of stored products, they are able to maintain high thermal inertia. A
key advantage compared to other industrial facilities is that they are usually already
equipped with sophisticated metering infrastructure used for monitoring and control
of the warehouse conditions, in order to ensure that the products maintain their quality.

Refrigerator warehouses are excellent candidates for DR programs since the pro-
cesses taking place are much simpler, compared to other industries. Both load shifting
and load shedding techniques can be used as shown in Figure 1.4. In load shifting,
power demand is moved from high demand to off-peak periods, ensuring lower prices
and less stress for the grid. The thermal capacitance of the stored products plays
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an important role for the warehouse’s ability to perform this type of operation. Load
shedding reduces power consumption on peak periods, but only affects operations that
do not need to be recovered in the future. DR methods that are affecting the indoor
temperature of a warehouse should be cautiously implemented, since the product
quality could be reduced, resulting into additional costs [54].

One of the first studies that considered the implementation of DSM techniques
in refrigerated warehouses is presented in [53]. In two different case studies where
Auto-DR was implemented, an average load shed of 36% and 25%, respectively, was
achieved. In nine cases where manual DR was adopted, the analysis showed that the
results were less consistent. Furthermore, it is observed that the actual total DR poten-
tial obtained from California’s refrigerated warehouses in 2008 is much less than the
estimated potential due to low participation. A more realistic approach is made in [54],
where only a part of the industrial consumers is expected to comply to the DR set
points. A cooperative demand response (CDR) scheme for refrigerated warehouses is
proposed, incorporating a punishment mechanism that tries to avoid selfish behavior
from the consumers. The problem is mathematically formulated making assumptions
for the warehouses consumption, the cost coefficients, and the electricity prices. A
constrained optimization approach is followed, deriving the optimal strategy for each
consumer. Results indicate that CDR strategy reduces electricity costs, especially
when a small number of warehouses (∼60) are participating in the program. The
work presented in [55] tries to define all the important parameters that could affect
the DR potential of refrigerated warehouses. Various constructional and operational
characteristics such as the walls, the pallets, and the refrigerator machines are taken
into account. Moreover, external weather conditions are also considered. A model
is finally built trying to predict the temperature of a warehouse during DR events.
Temperature measurements of an actual warehouse validate the accuracy of the simu-
lation model. Various DR scenarios are then implemented, coming to the conclusion
that season, the percentage of loaded products and the DR event duration are the most
important parameters. As expected, optimal results are obtained on winter, for short
period DR events and a large percentage of loaded products that ensure high thermal
inertia. A similar work, studying load, temperature (outside and set points), and DR
duration effects, is presented in [56]. The cold room parameters such as heat trans-
fer coefficient and coefficient of performance are experimentally measured on site.
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An important finding is that after the completion of each DR event, even though the
product surface temperature started to decrease (heat transfer by convection), the core
temperature continued to increase for a while (heat transfer by conduction) and this
should be taken into consideration in order to ensure the quality of the stored products.
Furthermore, a cumulative effect was observed on the core temperature of the prod-
ucts after three consecutive days of implementation of DR events. The authors of [57]
highlight the need to make sure that DR events respect food temperature regulation
ensuring the safety of the products. They propose four different deep learning archi-
tectures, making an effort to predict the effects of the implementation of a DR event.
Three experimental datasets were used for the study, while it was found that power
demand prediction is more accurate than the temperature prediction, since tempera-
ture is related to more complex phenomena. It is concluded that data-driven predictive
models can assist toward more informed decisions for DR applications in cold storage.

1.3.3 IT industry/data centers

We are in the midst of a digital transformation that has been called the fourth industrial
revolution that aims toward the digitalization and automation of the entire value chain
process. In the distant past, industries embraced IT infrastructure in manufacturing,
however the recent advances in networking, data storage, AI, edge devices, enable
the potential of a fully automated production process. Definitely, this ongoing digital
transformation has a vast impact on the power and electricity demand. A few years
earlier data centers could be categorized as part of the commercial sector, but nowa-
days there are multiple data centers (DCs) that are industrial-scale operations using
huge amounts of energy. Moreover, traditional industrial sectors are significantly
contributing toward the increase of the electricity demand of data centers, since the
automation of their processes requires the implementation of IT support services with
high storage and computational requirements. According to [58], the IT sector will
contribute 50% to the total consumed electricity power, approaching 3,200TWh over
the next few years. Considering this along with the great potential that data centers
have to turn into key players for flexibility provision to the grid, we can conclude
that they are proper candidates for demand response. DC facilities can be divided in
two main categories, IT-network and site infrastructure. The first category consists of
servers, storage, networking equipment, while the second is composed of equipment
that is supporting to IT (fans, cooling, etc.).

Over the last years, several studies have been published that considered DR imple-
mentation, while there is a limited number of review publications [59–62]. In [63],
the authors proposed two algorithms to achieve energy savings and also performed
simulations to evaluate numerically their performance. The first algorithm aims at
minimizing expenditures of a DC estimating from historical data when electricity
demand will be the highest and cautions will occur. The second algorithm presents
another DC optimization method that emphasizes minimizing the worst-case cost.
They claim that there is always a limited number of warnings that will occur, in a
period, and knowing the exact workload demand and renewable generation, they solve
a convex optimization formula. The main difference between these two approaches
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is that the first algorithm takes for granted that it has the exact knowledge of the
distribution of coincident peak warnings, while the second uses an upper limit. The
experimental results show that their methods manage to reduce energy expenditures
by 40% compared to baseline algorithms. The authors of [64] presented a study aiming
at reducing energy costs in small and medium HPC clusters. They utilized SLURM
workload manager to perform job scheduling and manage queue(s) of work and they
combined it with EDEALS, to assess the magnitude of energy savings. Their approach
reduced the power consumption utilized and they claimed that if they apply the same
procedure in HPC clusters it would save 7% of data center consumption. In [65], the
authors modeled a two stage interaction between the smart grid and the data centers.
First, the utility company estimates pricing procedure in order to stabilize the con-
sumed power and then the data centers perform all the necessary actions in order to
reduce their cost. The formulate this method as a bi-level quadratic program, reject-
ing optimization techniques. Finally they aim to attain decent results in electric load
index (ELI ) showing a win–win situation for both utilities and DC. This publication
explored the topic of emergency demand response (EDR) in data centers and it intro-
duced an environmentally friendlier technique that was able to extract load reduction
from tenants at an EDR period. They proposed coloEDR and validated it through sim-
ulation tests. The study presented in [66] provided two novel methods that performed
simultaneously as a holistic DR for the DC. The first one is a workload scheduling
method with time-shifting and the second one uses a UPS for energy storage. By
enabling these two methods, the DC can participate in the DR since high-frequency
variance can be smoothed and the low frequency can be reshaped by the UPS storage.
In [67], the authors implemented a control strategy for DC that maintained all its key
activities. Based on this, they have implemented a system model that was based on the
physical attributes of all the DC components in order to adjust the electrical, thermal
and IT subsystems power consumption. This method ensures the DR participation.
The approach introduced in [68] suggests a real-time pricing framework and mod-
eled a decision support system for monitoring utility company choices and workload
scheduling. According to [69], the implemented two-way DR method can reduce the
energy expenses of the DC. The first stage aimed at utilizing the interaction between
the DC and the SG, by allowing the second to send DR signal based on the price
of electricity. In the second stage, an auction method was proposed, where the user
had to submit bids when the DC sent the DR signals. A recent study [70] introduced
MOEA, a multi-objective algorithm for calculating Pareto efficiency for workload
and energy scheduling values. This method ensures escalation and optimization for
IDC networks and QoS respectively. The numerical evaluation on Google and IBM
internet data centers shows that the suggested algorithm outperforms all existing
approaches.

1.4 Barriers and limitations

In a rapidly evolving environment based on the transformation of the traditional power
systems, the successful implementation of DSM techniques requires the coordinated
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operation of several mechanisms. Industries have to cover the knowledge gap that
probably exists, making their participation to DR programs technically feasible. More-
over, they have to constantly monitor and understand the complex structure of the
novel market schemes that are emerging in the electrical energy sector. Regulatory
authorities should respond in a timely manner to the challenges that may arise, setting
the rules for the involved stakeholders by adopting regulatory measures toward the
full liberalization of the electricity market.

1.4.1 Financial

The participation in DR programs has as a prerequisite an initial investment that has to
be made for the installation of equipment that enables the execution of DR requests.
The level of participation of the industrial customer to DR schemes has to ensure
that future energy cost savings compensate for the cost of this initial investment. The
return of investment (ROI) calculation is a key factor that a DR participant would
take into consideration as a strong financial incentive, in order to accept even a
slight disturbance on the production process. Another fundamental issue that has a
combined financial and regulatory nature is that ToU and dynamic pricing are not
widely adopted yet. Thus, participation is discouraged because load shifting is not able
to provide the expected profit for the industries. Moreover, as indicated in the previous
sections, each industry has a certain flexibility potential, so each request should be
individually assessed by the industry. Implementing the requested setpoints could
possibly risk the quality of production, causing a larger financial damage, compared
to the profits obtained for implementing DR.

1.4.2 Behavioral/social

Widespread adoption of the DR programs among the industry’s employees is of utmost
importance. Shutting down or even minimizing energy usage may sometimes jeopar-
dize the accomplishment of the operational targets. That is why planning for the DR
strategies should align with the KPIs and the targets of the employees of the business.
This way, employees stay motivated and the interruption of operation of the equipment
does not affect their productivity. Moreover, communicating the benefits (financial,
environmental, etc.) of the DR concept and its benefits to the whole team is important.
When employees are educated, they are able to understand the value that DR adds
to the business. An important point is also raised in [71] where it is highlighted that
there should be a trustworthy relationship among the interacting stakeholders. This
ensures that the exchanged information between the DR provider and the industries
is correct as expected.

1.4.3 Regulatory

Regulation and policies, regarding DSM framework, are different across countries
[72]. Pricing strategies on the wholesale and the retail electricity market may signifi-
cantly vary. It is also noticed that, being affected from the operation of the traditional
power systems, the regulations usually focus only on the supply side, since power gen-
eration was considered only on this side of the grid [4]. The most important barrier
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from regulatory aspect seems to be the lack of a framework defining the market par-
ticipants and their respective roles. A stable regulatory framework would ensure that
industries are able to estimate the expected profits, coming from the provision of DSM
services. Moreover, when regulations fail to keep up with the technical progress, the
energy efficiency and GHG emissions reduction targets also fall behind.

1.4.4 Technological

Implementation of DR programs requires the installation of the necessary IoT infras-
tructure, which is used for communication and metering purposes. The installed
equipment should successfully exchange large volume of data, in real-time and at
high sampling frequencies. According to [71], IoT for DR systems has a high level of
complexity, hence experts with high technological skills should design and assemble
these technologies. No common approach is followed in the data exchange process by
the involved stakeholders and as a result this interaction is a very slow process. But
even if DR signals can be technically handled with success, industries should properly
assess the impact that the adoption of DR strategies might have on the production
process. Risk should be minimized by defining the maximum number of events or
the length of the events that they could respond to, under certain circumstances. DR
impact is obviously different for each type of industry and this mainly depends on
the equipment that is being used. Hence, analysis of the load characteristics should
ensure that the flexibility potential is maximized, the energy cost is minimized and at
the same time the seamless operation of the production process is ensured.

1.5 Conclusions

Industrial sector accounts for a large part of the total electrical energy globally con-
sumed in modern power systems. Given the progress that is being made on electricity
market mechanisms and monitoring and control infrastructure, there is a large flex-
ibility potential that can be exploited, providing benefits both for the industries and
the grid operators. In this study, a comprehensive review was made, analyzing the
most energy-intensive industries, while state-of-the-art DSM case studies were pre-
sented for each sector. Most of the studies still remain at a simulation level, without
on-site implementation on industrial facilities, highlighting the fact that more effort
should be given toward this direction. The analysis of the barriers reveals the factors
that should be considered in order to accelerate the wider adoption of industrial DR.
Smart grid transition is expected to increase the percentage of RES penetration to
the grid, introducing severe challenges such as power quality issues and frequency
instability. DR holds the key that can provide the necessary flexibility to the grid, with
the industrial sector being a major contributor toward this effort.
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Chapter 2

Demand response cybersecurity for power
systems with high renewable power share

Hassan Haes Alhelou1 and Behrooz Bahrani1

Cybersecurity is crucial for modern power systems due to their high digitization. The
open information and communication technology, which is (ICT) being used for the
operation of such systems, is highly vulnerable to cyber threats. The adopted smart
grid concept around the globe enables the utilization of demand-side for providing
ancillary services based on well-known demand response (DR) programs. These pro-
grams aggregate smart appliances in homes and electric vehicles (EVs) for providing
vital services such as frequency regulation and voltage support. Since the aggregation
is based on the cyber layer, any cyber threat could affect the ancillary services that are
being delivered from the aggregators, which might lead to stability and security issues
resulting in brownout or massive blackouts. This chapter discusses the cybersecurity
in DR program and shows its importance for modern and future smart power systems
due to their stability and security margins. Furthermore, the cyberattack case study is
implemented in a power system with a demand side program responsible for provid-
ing primary frequency support ancillary service, where the results confirm the high
vulnerability of modern power systems to cyber threats on DR-active power reserve
providers. Moreover, technical suggestions are provided for enhancing the cybersecu-
rity in DR programs in power systems with high power share from renewable energy
sources.

2.1 Introduction

Energy systems are among the most complex systems created by humans during his-
tory. Their stability, security, and growth are direct reflections of the advances and
prosperity of the countries in which they are being operated. For decades, the tra-
ditional power systems were operated safely and securely with no problems related
to their stability and security. This view of power systems has been changed dur-
ing the last few decades due to environmental challenges and energy security risks

1Department of Electrical and Computer Systems Engineering, Monash University, Clayton,
Australia
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which enforced the upgrade resulted in new version called smart grid concept, where
most countries around the globe are working on the adoption of such concept in
their energy systems. In the last decade, the penetration level of renewable energy
sources (RESs) has been highly increased. Although RESs reduce the environmental
concerns, but have negative impacts on the stability and security of existing power
systems. For instance, the high share of renewables in modern power systems reduces
the total rotating inertia and as consequences, the power system frequency stability
and security has been affected. In conventional power systems, the frequency which
is a global variable was controlled by well-operating and managing of primary and
secondary reserves came from the generation side. However, this is not yet valid due
to changes in the power system situation and high reduction of the rotating inertia,
therefore the operators need a faster reserve that cannot be available from genera-
tion side. It has been found that the best source of such active power reserves for
supporting the frequency is the demand-side. Later, new topics have been initialized
which are demand-side management and demand response (DR) for controlling the
intelligent appliances that can provide some of their capacities as source for the nec-
essary reserves. As a consequence, it has been suggested to take advantage of DR for
providing ancillary services in power systems. There are specific types of loads and
smart appliances that can provide ancillary services to power systems. These loads
should not affect the conformable of the consumers and at the same time, the man-
agement of these appliances should be done based on reserve and energy markets. For
instance, there are great research activities these days on building practical aggrega-
tors of electrical vehicles so that they can participate in the ancillary services market
by well-controlling their charging, discharging and state of charge situation during a
specific period of time. Likewise, the participation of air conditioners, refrigerators,
water heaters, and other thermostat appliances have been suggested for as consider-
able and good storage aggregators that can provide some services to power systems
instead of traditional battery energy storage systems. It is clear that there is a need
for a comprehensive look on the security and stability issues related to DR programs.

It is obvious that the penetration level of RESs is highly increasing over the
world. Solar and wind energies are among the most percentage shares of renewables
in modern power systems. By nature of the photovoltaic cells, they provide zero inertia
to power systems. This means that increasing the power generation from solar power
plants would at least reduce the inertia with the same percentage of their active power
generation share increase. As aforementioned, this high reduction in inertia would
bring new challenges and technical issues to the operators of modern power systems
where the main problems related to stability and security of energy systems. On the
other hand, different types of wind turbines provide neglectable inertia, almost zero,
to modern power systems bringing the same problems that would be arisen from solar
energy systems. Therefore, there is a serious need for new sources to keep the balance
in power system operation especially in the view of providing ancillary services.
With the low inertia in future power systems, the traditional and conventional reserve
sources would not act accurately and properly in the aim of maintaining the power
system stability, therefore, it is highlighted that the demand side can be considered
as a good source of such services based on DR programs. The main advantage of DR
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over energy and reserve sources in the generation sides is its high flexibility, which
is the most important feature to the operators. Different types of demand-side loads
can provide DR services to power systems, where more discussion on them can be
found on the other chapters in this book.

Since demand–response (DR) programs will provide a considerable reserve for
supporting the stability of both voltage and frequency in future power electronic
dominated-power systems, the security in such programs will be crucial due to their
direct impact on the overall stability and security in the energy systems. The DR
providers are built based on aggregators, which are a cyber-layer. Therefore, the
biggest threat to such systems would be cyber threats, including false-data injection
cyberattack and other malicious malware cyberattacks. This gives an overview on the
importance of cybersecurity in virtual power plants based on DR, electrical vehicles
(EV)-based DR, and other DR programs. Therefore, this chapter focuses on DR
cybersecurity for future smart power systems with high-power share from renewable
energy sources.

This chapter is organized as follows. Section 2.2 presents a literature survey on
DR, where the review of DR cybersecurity is presented in Section 2.3. Section 2.4
models the EVs-based DR for supporting frequency in power systems with high
renewable power share. Section 2.5 presents a new method for detecting cyberattacks
on measurements used in DR aggregators. The results are presented in Section 2.6,
while Section 2.7 concludes.

2.2 An overview of DR and EV-based DR

Traditional power systems consider the demand side as non-flexible, where the flex-
ibility comes from generation side by providing load following service and other
ancillary services such as frequency control and regulation for keeping the grid oper-
ated in a stable and secure mode. These services depend on fossil fuel-based power
stations, whose output is determined by the amount of fuel that they are supplied,
and consequently, they can be considered controllable to some extent. However, the
high-power share from RES has introduced a level of uncertainty on the generation
side and reduced the total rotating inertia resulting in new challenges in providing
high-speed services in such new systems with high penetration of RES. Therefore,
the demand side has been introduced as a solution for providing flexibility in mod-
ern power grid instead of generation side. The concept of demand side management
(DSM) was first introduced by the Electric Power Research Institute (EPRI) in the
1980s as a series of activities that utilities undertake to change their load shape and/or
energy consumption pattern for benefit maximization, investment delay, and reliabil-
ity enhancement [1]. DSM activities can be classified either as “Energy Efficiency
(EE)” or as “Demand Response (DR).” DR denotes a power consumption shift made
by a utility customer, as a response to a price signal or an incentive-based reward.

It inherently tries to mitigate some of the challenges that are deriving from the
smart grid transition, such as the intermittent and stochastic nature of RES and EVs or
the high cost and flexibility of the electrical storage systems. DR consists of a highly
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dynamic interaction between demand and supply, capable of efficiently handling
energy equilibrium toward several goals such as greater RES penetration, adjusting
the demand according to the generation available, increasing the overall reliability and
stability of the power grid. DR can be categorized into three main branches, namely
industry DR, commercial DR, and residential DR. The industry DR is based on heavy
industries and manufacturers, such as iron and steel, aluminum, and cement industries,
while the residential one is based on smart appliances such as AC air conditioners,
refrigerators, and water heaters. It is worth mentioning that the transportation system
can be devised into either residential or industry DR based on the type and operation
of its individual units. Usually, the common private EVs-based aggregation method
can be considered as a residential DR, while public E-buses, trams, and E-trains-based
aggregation methods can be considered as industry DR providers.

The industry DR can provide a considerable reserve amount for providing the
required flexibility in future power systems. According to the US Energy Infor-
mation Administration [2], the industrial sector uses more delivered energy than
any other end-use sector, consuming about 54% of the world’s total delivered
energy. However, the research activities mainly focused on providing the ancillary
services and flexibility from residential DR instead of industry one, which show
a research gap that should be discussed. It has been shown in [3] that optimal
energy management in the industrial sector could provide considerable flexibility,
avoiding the use of expensive storage units and peaking power plants. However,
the implementation of DR programs can be more challenging for industrial facil-
ities compared to residential customers, as reliability issues are usually vital for
industries [4]. The violation of the operational constraints could lead to the inter-
ruption or even the stoppage of production. Moreover, two-way communication
between the system operator and the participating industry is required. Most indus-
trial sites already have metering infrastructure installed, so their participation is
facilitated. However, a low participation rate is observed, mainly due to lack of
knowledge, technical constraints, and complexity issues [5]. For more informa-
tion on industry and residential DR programs, readers are referred to Chapter 1,
where a comprehensive discussion is presented. In what follows, the electric vehicles-
based DR methods for supporting the frequency in power systems are reviewed and
discussed.

The environmental concern and energy during last few decades have led to sev-
eral changes in energy and transportation systems. The main change in energy system
was the replacement of fossil fuel power plants with renewable energy sources which
introduce stability issues to the operation of the grid. On the other hand, the main
change in the transportation system was its electrification leading to high deployment
of EVs over the globe, where the connection of EVs to distribution system would
change the power consumption pattern and introduce new uncertainties to the opera-
tion of the power grid. However, the studies showed that the problems and technical
challenges due to the high penetration of RES can be solved by DR program based
on EVs, which is also known as EV-based virtual power plants (VPPs). The manage-
ment and real-time control of the charging and discharge power of EVs can provide
a considerable virtual generator that can highly help in maintaining the stability,
especially the frequency stability in the modern grid.
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Due to its fast response, EVs have been aggregated for providing primary fre-
quency support in modern power systems with high power share from renewable
energy sources. In [6], an aggregated dynamic model of plug-in EVs has been pro-
posed for primary frequency control. The model allows the power system operators to
consider EVs as DR program for providing the primary active power reserve used to
intercept the frequency decline before triggering under frequency protection relays.
Alhelou et al. have developed a hierarchical plug-in EV control method in [7] that
considers EV for supporting the primary frequency in interconnected power systems
with low rotating inertia due to the high-power share from renewables. In the same
context, a multi-agent system is developed byAlhelou et al. in [8] for aggregating EVs
for providing sufficient frequency support to microgrids. Similarly, several methods
have been developed in [9,10] for controlling the charging and discharging power
for providing considerable ancillary reserve services for regulating and controlling
the frequency in smart grids. In addition to the primary frequency control, EVs have
been widely considered for providing secondary reserve services used in secondary
frequency control in both bulk power systems and microgrids. A dynamic model of
EVs for secondary frequency reserve support has been proposed by Alhelou et al.
in [11,12], which provides a sophisticated tool based on DR of EVs that can be used
in wide-area monitoring systems for online controlling the frequency variations due
to generated power fluctuations from renewable energy sources. The model builds an
aggregator of EVs with dynamic behavior similar to sophisticated conventional power
plants with high ramp rates by modeling the governor response for an aggregated EV
model. In [13], EVs have been considered as an industry DR that can support fre-
quency in two-area power systems. The proposed model is also updated for wide-area
power systems in [14].

The recent research activities try to build VPP based on the aggregation of EVs
that could provide a considerable vehicle-to-grid services (V2G) [15]. A closed-loop
V2G control method has been suggested in [16] for load frequency control, to meet
the charging demand and control the frequency in weak power systems. This work has
also considered the modeling of time-delay in the EV model and analyzed it, to study
its impact on the DR of EVs. Likewise, a wide-area interconnected power system with
high integration of EVs that contribute to load frequency control has been investigated
in [17]. Generally, the results in the aforementioned study need to be analyzed for
practical usage in light of the presence of nonlinearties in modeling EVs. A similar
method has been developed in [15,18] for controlling the frequency in microgrids.
For a further and comprehensive review on EVs considered for supporting the power
grids, the readers are referred to [19,20]. The aforementioned studies confirm that
there is a great research activity over the globe for developing new methods that
model and use EV demand for providing ancillary services to power systems with
high penetration of renewable energy sources. Since these methods will be consid-
ered in practical and real-world power systems for providing sensitive services that
directly impact the stability and security in overall the grid, their security, including
cybersecurity becomes of great importance and crucial. Therefore, the cybersecurity
in power systems and more specifically, in aggregators and cyber layers related to
virtual power plants, EVs aggregators, and different types of DR providers needs to
be highly taken into account in future studies.
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2.3 An overview of demand side cybersecurity

The implementation of DR has become a reality. In 2018, the USA utilities used more
than 4.5% of the peak load capacity for DR services. It is estimated that the percentage
will increase to reach 20% in 2030, resulting in operational cost savings of more than
15 billion US dollars [21]. Considering these great benefits and the concern regards
the stability and security of power systems enriched with DR programs, the cyberse-
curity in DR becomes a challenge due to its direct impact on the overall stability and
security of energy systems over the world. In this regard, the DR cybersecurity topic
started recently attracting research funding bodies, governments, policymakers, and
researchers for suggesting DR programs resilient against cyber threats.

Open automated DR (OpenADR) is widely used and implemented for the com-
munication between end-users and DR aggregators [21,22]. The open automated
DR standard specifies two ends of a communication channel. These communication
channels are the virtual top node (VTN) and the virtual end node (VEN). Gener-
ally, OpenADR is responsible for issuing the digital certificates to the nodes for
authenticated communication and encrypting information exchanged between the
nodes [21]. Despite the standardization and the use of industry-grade encryption,
cyber threats inADR prevail because DR customers lack industry-grade cyber defense
and hygiene on their devices [23]. It has been shown in [23] that cyberattackers can
exploit vulnerabilities in the communication technologies, such as WiFi and ZigBee,
to compromise smart meters and energy management systems used in DR aggre-
gators. Similarly, cellular networks and power line communication used in modern
industry DR aggregators are vulnerable to man-in-the-middle cyberattacks [24].

Due to its importance, demand-side cyberattacks on power grids launched by
manipulating DR programs built based on EVs and other smart appliances has been
recently considered in [21,25,26]. It has been verified in [21,25] that the EVs charging
stations used for providing ancillary services can be subjected to a remote cyberat-
tack that could affect the grid security leading to massive blackout in future power
systems. The study was done based on a real-data from the New York power grid and
transportation system in USA. The main result in the study showed that an intelligent
cyberattack on only 1,000 EVs in New York could result in over-frequency leading
to cascading events, putting the stability and security of the power grid in danger
of blackout. Another study presented in [26] has shown that a demand-side cyberat-
tack that aims to affect the operation of high-voltage transmission systems could also
result in massive power cuts. A study in Ref. [27] shows that a cyberattack aims to
manipulate the behavior of end-users, who provide DR services, could deplete the
reserve used for frequency support in the transmission level and corrupt the voltage
profile in the distribution level. Similarly, a new study has explored vulnerabilities of
AI-based DR learning and designed a data-driven attack strategy informed by DR data
collected from the New York University campus buildings [28]. The aforementioned
recent studies focused on the manipulations of DR smart appliances during events
affect the stability in the grid. In the cyber defense topic, Alhelou and Cuffe have
developed a dynamic observer in [29] that could detect and isolate cyberattacks on
power systems with EVs used for supporting the frequency. The results showed that
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dynamic state estimation methods are promising for developing cyberattack on DR
detection techniques. Similarly, Alhelou et al. in [30] proposed a novel functional
observer that could control the frequency considering unknown inputs and cyberat-
tacks in complex systems with high penetrations of renewable energy sources and DR
providers. The aforementioned studies show that there is a research gap related to DR
cybersecurity that needs to be filled with new methods for detecting cyber threats and
building DR and EVs aggregators that are resilient against cyberattacks.

2.4 Modeling power system with DR

For investigating the capability of DR programs, including EVs aggregators in fre-
quency support in modern power systems, a suitable frequency response (SFR) model
should be adopted. In this chapter, we introduce a new model developed based on the
recently published benchmark by Alhelou et al. in [14]. This new benchmark con-
siders the well-modeling of demand-side in SFR model. Power systems are usually
divided into several subsystems called power regions or control areas. These areas
are usually connected together using major transmission lines known as tie-lines,
which can be HVDC or controlled HVAC transmission links. Likewise, the areas
could be a large geographical area in the country or even a representative of the whole
country when connected with other power systems in other countries. Figure 2.1
shows the block diagram of the ith area SFR model considering EV aggregation for
supporting the frequency. This model assumes that the system is dynamically weak
due to the high penetration of renewable energy sources. For more detailed models
with high order dynamics of synchronous generating units and their PSS, VAR, and
governor-turbine controllers, readers are referred to recently published work by Alh-
elou et al. [14]. Based on the blockdiagram, the SFR model can be described by a set
of algebraic–differential equations as follows:
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Figure 2.1 System frequency response model for interconnected power systems
considering EVs as a DR and high penetration of RESs

where �f , �Pg , �Pr , and �Xg , are the frequency deviation, active power devia-
tion, output mechanical power deviation from turbine, and valve position deviation,
respectively; Kg , Kr , and Kt represent the gains of the governor, mechanical turbine,
respectively, while T models the time constant associated with the corresponding
subscript.

In the above equations,�Pev is the DR power from EV aggregator, Kev is the EV
aggregator-based DR gain, and Tev is and EV aggregator-based DR time constant. Fig-
ure 2.2 shows the aggregator of EVs that provides the required primary and secondary
reserve used for controlling the frequency based on market negotiations with the ISO
responsible for operating the system. In this aggregation technique, each individual
EV agent sends its information to the concentrator agent in its area, and the concen-
trator agent sends the information of EVs interested in the provision of the primary
reserve to the aggregator agent. The aggregator calculates the reserve available from
the EVs in the power system. To this end, the aggregator agent needs to obtain the
following information about EVs: the initial SOC, the required SOC for the next trip,
their rated charging power, and departure time. Then, based on the required primary
reserve announced to the aggregator agent by ISO, the aggregator agent determines
the share of each EV in primary and/or secondary frequency response. For more
detailed information, this complete procedure is developed by Alhelou et al. in [7,8].

The most important factors related to the parameters that model the dynamic
behavior of the system, i.e., H , D, and R, are the total rotating inertia, damping
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Figure 2.2 EV aggregator-based DR for supporting frequency in power systems

coefficient, and the droop coefficient of the governing system, respectively. �ACEi

is the area control error (ACE), and bi is the bias of frequency in area i. It is worth
mentioning that the subscripts i and j are indices of the ith and jth areas, respectively.
In Figure 2.1, �Pdi models the variations in the generated power from RES and the
fluctuations in the consumed power due to stochasticity and uncertainty [14].

In (2.7), the transferred power deviation, which is of great importance in stability
and frequency control, is calculated as the difference between the actual measured
power, Ptie,actij , in real-time compared with the scheduled transfer power, Ptie,schedij ,
based on the decisions from power dispatching operator. The above well-described
system can be represented in a linear format considering the fact that load frequency
control provided by DR deals with small-frequency variations around the operating
point, therefore, the system can be represented by

ẋ(t) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t)
(2.8)

where x ∈ �n×1 is the state variable vector, u ∈ �r×1 is the input vector, y ∈ �m×1 is
the output vector, and d(t) ∈ �q×1 is the disturbance vector. Matrices A, B, C, and E
are the state matrix, input matrix, output matrix, and disturbance matrix, respectively.
According to Figure 2.1, the state vector, the known input vector, and the unknown
input vector for the ith area are [14]:

xi = [�fi �Xgi �Pri �Pgi �Pei

∫
ACE]T

ui = [�Pci], di = [�Pdi �Ptie,i]T

(2.9)

Based on the aforementioned dynamic model of the power system, including the
EV dynamic aggregator, an unknown input observer can be designed for detecting
cyberattacks on the cyber layer as described in the method developed recently by
Alhelou and Cuffe in [29]. The method could be developed to detect the cyberattack
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on the different parts of the aggregator resulting in a higher resiliency against cyber
threats.

2.5 Discussions on the results of cyberattacks on EV aggregator

It has been shown in the previous section that the EV aggregator could be built
based on multi-agent systems. The aggregator has different types of agents, namely
individual EV agents, EV concentrate agents, and EV aggregator agents. As regards
the power and information flows, there are different layers, as shown in Figure 2.3.
For information communication between different agents and between EV aggregator
and TSO, there are three layers, where the cyberattack on each of these layers would
result in different consequences. For instance, the most severe impact on the power
system stability and security would be a result of an attack on the higher information
or communication layers since they would result in high-frequency fluctuations.

In what follows, we present the impact of cyberattacks on EV aggregator
used for supporting the frequency in power system based on the dynamic model
shown in Figure 2.3. The system parameters are as follows: the system frequency
F = 5 Hz, the frequency bias for each area is 0.425 p.u. MW/Hz, the inertia constant
is 5 sec, the thermal turbine time constant is 0.3 sec, the governor time constant is
0.08 sec, the tie-line between the two-areas synchronous coefficient is 0.545 sec, the
damping coefficient is 0.0083 p.u. MW/Hz, the governor droop is 2.4 Hz/p.u. MW
and the same value used for tuning EVs reserve for supporting frequency response
in power systems, the gains are 1.0 p.u., the time constant for a solar PV system is
1.8 sec, the time constant for modeling the wind turbine power plant is 1.5 sec, the

EV Agent

TSO
MAS

EV Aggregator

Concentrate Agent

EV EV EV EV EV

Figure 2.3 Possible cyberattacks on EV aggregator
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reserve share from EVs is 0.3 p.u., and the reserve share from conventional power
plants is 0.7 p.u.

In the first scenario, it is considered that the power system is equipped with
LFC controllers for controlling the frequency in each area of the system (two-area
power system). In this scenario, it is considered that both EV aggregator as a DR and
conventional power plants contribute to secondary frequency control for regulating
the frequency. It is considered that the power system was under normal operation
situation, and cyberattack on the EV aggregator occurs suddenly. The cyberattack is of
data-injection cyberattack, and it changed the scheduled EV demand through the next
40 sec slightly as shown in Figure 2.4. This minor cyberattack on the scheduled EV
demand changed the demand around 0.01 p.u. and the accumulated change reached
0.04 after 25 sec, as can be seen from Figure 2.4. Although this change is minor,
its consequences on power system were severe as shown in Figure 2.5. This figure
shows that the frequency fluctuates, which affects the over stability in the system.
By comparing the frequency of area 1 where the cyberattack is occurred with the
frequency in the second area, as shown in Figure 2.6, one can see that this attack
resulted in local frequencies, meaning that the frequency in each area is different
from the other one, resulting in high threat on the stability of the system and if the
power system stabilizer would not act correctly, this could result in cascading events
and blackouts.

In the second scenario, a denial of service (DoS) cyberattack is considered.
As shown in Figure 2.3, in this scenario, three cases are considered. In the first
case, the system is considered under an event as a sudden change in the demand
by suddenly connecting a large load, or trapping a generator equal to 0.3 p.u. of
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Figure 2.7 Frequency response due to DoS cyberattack on different parts of the EV
aggregator

generated power. Figure 2.7 shows that in such case, the frequency will deviate from its
nominal value but the system will keep operated in a safe mode since the conventional
power plants and EV aggregator will support the primary frequency response from
their primary active power reserve (the frequency response is shown in the light blue
curve in Figure 2.7). In the second case, it is assumed that the system will be under
cyberattack on the EV concentrate agent of area 2 leading to more frequency deviation
affecting the stability as shown in the frequency response depicted by the blue curve
in Figure 2.7. In the third DoS cyberattack, it is considered that the attacker would
attack the EV aggregator agent and prevent EV aggregator from supporting the grid
during frequency fluctuations. This case would result in dramatic frequency decline,
as shown in the red curve in Figure 2.7, leading to cascading events and blackout
due to the DoS cyberattack. The aforementioned scenarios confirm the importance
of cybersecurity in ancillary services providers, especially those who provide service
for supporting the frequency in power systems with high-power share from RESs,
such as DR programs, virtual power plants, battery energy storage systems used for
supporting the frequency, and EV aggregators.

2.6 Conclusion

This chapter highlights the importance of cybersecurity in power systems, especially
in the providers of frequency support ancillary services. The importance of DR pro-
grams for enabling the transition of transitional power systems toward the smart grid
concept was first discussed. Likewise, the studies on DR and electric vehicle-based
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DR programs were reviewed to highlight research gaps in this important topic. Fur-
thermore, a dynamic system frequency response model considering DR and electric
vehicle aggregation was introduced, which is suitable for studying the impact of
cyberattacks on power system stability and security from its frequency viewpoint.
Moreover, the multi-agent system-based EV aggregator for providing primary and
secondary frequency support ancillary services was discussed, followed by present-
ing two cyberattack scenarios on the aggregator. The scenario studied two different
types of cyberattacks, namely false data-injection cyberattack and DoS cyberattack.
The results confirmed the importance of considering cyberattack in designing DR pro-
grams and EV aggregators to avoid cascading events and blackouts in future power
systems.
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Chapter 3

Recurrent neural networks for electrical load
forecasting to use in demand response
Nils Jakob Johannesen1, Mohan Lal Kolhe 1

and Morten Goodwin 2

Electric load forecasting is a fundamental technique to understand end-user behavior
and therefore a crucial factor in the design of demand response (DR) programs.
Load forecasting will also identify the appropriate design of DR programs. In this
chapter, a range of different machine learning applications are studied to represent the
influential factors for electrical load demand forecast in a DR context, with a variety
of different data scenarios, temporal and technical scenario. This chapter explores
and compares the load prediction analysis through basic recurrent neural networks
(RNNs); Vanilla RNN, gated recurrent units (GRU), and long short-term memory
(LSTM), using principal component analysis (PCA). It is found that PCA can be used
to reduce the number of principal components for Vanilla RNN, GRU, and LSTM
networks. Reducing the number of principal components using PCA is one of the
techniques that is used in dimensionality reduction. Reduction in dimensionality will
relieve the computational burden. In this work, the dimensionality reduction improves
the predictive output. It is observed that for electric load demand forecasting, the
preferred technique is GRU, trained with a principal component. The performance is
evaluated through mean absolute percentage error (MAPE), which is relatively lower
than other techniques.

3.1 Introduction

It is important to have more accurate electrical demand forecasting in urban area
network for finding the opportunities in industrial demand response (DR) programs.
Due to market energy price dynamics, urban area electric energy consumption patterns
may change and hence the DR programs. Therefore, it is necessary to have accurate
demand prediction considering user patterns as well as impact of meteorological

1Department of Engineering & Science, University of Agder, Kristiansand, Norway
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parameters [1]. The state-of-the-art research in electrical load demand forecasting
focuses on three main aspects in order to make sound predictions, these aspects
are related to weather parameters, holidays, and time of day. The relations among
these aspects have been found equally important throughout the techniques used in
electrical load forecasting, including time series analysis and simpler instance based
machine learning models to the more complex black box neural networks [2–4].
Considerations of these aspects are important in short-term [2,5,6], mid-term [7],
and long-term forecasting [8]. The impact of external weather parameters has proven
also to be important for forecasting on limited data, such as for households and
buildings [9], as well as seasonal holiday demands [10].

In the electrical demand forecasting, it is necessary to analyze the load patterns
with reference to time of use. A typical diurnal load profile for urban area of New
South Wales is given in Figure 3.1. The automatic metering infrastructure (smart
energy meters) is helping in collecting the aggregated energy data with time for ana-
lyzing the load patterns for finding opportunities of DR program. The enhancement of
information structure enabled by automatic metering infrastructure has transformed
the grid to a smarter grid that ties consumers directly into managing the grid through
Demand Side Management (DSM). An overview of DSM and some of the avail-
able incentives in DR programs are illustrated in Figure 3.2. Within DSM, there are
two main strategies for alternating the loads, shifting electric load in peak demand
(Figure 3.3) [11,12]. The DR program takes care of the first strategy, namely load
shifting, where customer load is transferred from daily peak demand to other times of
the day when the consumption is less. By shifting the diurnal load demand curve, the
DR facilitates more electricity to be produced by less expensive base load generators.
A successful DSM flattens the load curve [13].

This chapter is organized in the following sections; Section 3.2 are going to cover
the role of electrical load forecasting in DR programs. In Section 3.3, a review of load
forecasting is given, and in Section 3.4, the use of RNN’s in electrical load forecasting
is given. Section 3.5 explains PCA, and in Section 3.6, a case study using RNN’s and
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Figure 3.1 Typical diurnal load profile for New South Wales
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PCA on the New South Wales power system is given. The results are presented in
Section 3.7, and finally the conclusions in Section 3.8.

3.2 DR programs

DSM is divided in DR programs and energy efficiency and it is illustrated in Figure 3.2.
Energy efficiency involves a storage capacity, whilst DR programs are actions to
actively manage the electrical loads. The dispatchable energy sources involve the
sources of electricity that can be controlled by the power grid operators and hence,
dispatched at their control. The non-dispatchable energy sources cannot be managed
by the operators and time-based incentives are made to engage customers to adjust

Demand Side Management

Demand Response Programs Energy Efficiency

Dispatchable

Capacity Reserves

Non-Dispatchable Time-Sensitive Pricing

Timeofuse

(TOU)

Critical Peak Pricing
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Real Time Pricing
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(CPP)-with control

Loadas
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Figure 3.2 Overview of demand side management and representative incentives in
DR programs
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their energy demand accordingly. Price-based DR programs generally include time of
use (TOU), real-time pricing (RTP), critical peak pricing (CPP), and peak time rebates
(PTR). TOU is price rates of electricity that either varies diurnally or seasonally.
RTP is dynamic pricing that reflects real-time scenarios with prices shifting more
frequently than TOU, and up to hourly price variations. CPP is also dynamic, where
short-term prices are preadjusted to reach a specified load demand. In RTP, prices
are adjusted on short notice and are not fixed at the time the tariff is effectuated. The
incentive based actions generally involve direct load control (DLC), interruptible or
curtailable rates (I/C), demand bidding (DB)/buy back (BB), emergency DR program
(EDRP), capacity market program (CMP), and ancillary service market (ASM). The
DLC refers to the control actions taken directly by the power grid operators, normally
by remote accessing the customers appliances (e.g. water heaters, electric vehicle
charging) and manage and reschedule these loads. While DLC is for the residential
sector, I/C is for industrial and large commercial actors that are asked to curtail their
consumption for shorter periods when the grid is congested, in return they receive
discounted electricity bills. In DB/BB, customers themselves ask or bids at a price
they are willing to reduce their load consumption as opposed to DLC where they are
asked by the power companies to reduce their loads. Similar to DLC, I/C is designed
for large-scale consumers that can plan their operation. For large-scale consumers
participating in EDRP-programs, the ISO announces amounts up to 10 times the off-
peak electricity price, to cut their consumption. When contingencies arise, costumers
that are in the CMP programs commit to curtail their consumption. Ancillary services
are support services in the power system and are essential in maintaining power quality
and reliability. There are typically three types of ancillary service products that DR
can participate in. From the faster to the slower acting, these are regulation, spinning
reserve, and nonspinning reserve [14–19]. DR strategies based on changing load
patterns are illustrates in Figure 3.3.

3.2.1 Load forecasting in DR

Electric load forecasting is a fundamental technique to understand end-user behavior
and therefore a crucial factor in the design of DR programs. Load forecasting will also
help in identifying the appropriate design of DR programs, and these programs are
described in Section 3.2. Robust load prediction can help determine the DR events
and DR capacity [20]. In the DR program, decision making the impact in terms
of user comfort have been analyzed, in consumption aware analytical DR scheme,
considering factors such as appliance adjustment factor, appliance priority index, and
appliance curtailment priority [21].

3.3 Review on load forecasting

Time series analysis has traditionally been performed in meteorology, energy, and eco-
nomics [22]. Elements from time series analysis are used to find the parametric values
in autoregression (AR) and moving average (MA) and later Auto Regression Mov-
ing Average (ARMA) [23]. The AutoRegressive Integrated Mean Average (ARIMA)
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model is useful for modeling time series behavior by removing the influence of trend
in the data. In multivariate cases, the exogenous variable aids the predictive outcome
inAutoRegressive Integrated MovingAverage with Exogenous variables (ARIMAX).
This is further developed into Seasonal AutoRegressive Moving Average with Exoge-
nous variables (SARIMAX), that also accounts for seasonal behavior [24]. These
methods are useful for the modeling of time series and aid the electrical load anal-
ysis. Cycles, trends, and periodicity can be found through tests provided by time
series analysis [25]. Medium-term electric load forecasting has been performed in
Bruce County in Canada using data from 2010 to 2018 comparing Random For-
est Regression, Support Vector Regression and Recurrent Neural Networks (RNN)
achieving a MAPE of 4–10% [26]. In short-term electric load demand forecasting,
RNN by Levenberg-Marquardt and Bayesian regularization on 30 min predictions
had achieved a mean absolute percentage error (MAPE) of an average in one week
1.4792 [27]. One hour ahead prediction has been performed on hourly power con-
sumption in Toronto Canada using Long Short-Term Memory (LSTM), achieving a
MAPE of 2.639, which was an improvement of the Vanilla RNN of 3.712 MAPE [28].
The Resnetplus model for the ISO-NE dataset proposed a day-ahead load forecasting
model based on deep residual networks. A basic structure of several fully connected
layers to produce preliminary forecasts of 24 h. A forecast is then made on the residu-
als of the preliminary forecast provided with a formulation of Monte Carlo dropout for
probabilistic forecasting, achieving an average MAPE of 1.447 [29]. Gated recurrent
unit (GRU) was used to predict the electricity market in Singapore. Multi-features
input models of different time structural architecture named Multi-GRU has been
used to give 30 min predictions [30].
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Hybrid forecast combining neural networks with autoregression has proven to
aid in tracing the curvature of the peak in the volatile electricity markets [31]. A range
of different machine learning applications have been tested to research the influential
factors for electrical load demand forecast in a DR context, with a variety of different
data scenarios, temporal, and technical scenarios. The authors of [32] tested Echo
State Network (ESN), Extreme Learning Machine, Linear Regression and Support
Vector Machine, with incrementally adding data input and mixing the factors to test
for the most influential factors on the load demand. The authors state [32] that the
output from their findings may be used in modeling building characteristics such as
ventilation load or as an informed input to the data selection process for modeling. It is
found that the most influential factors on load prediction, based on data from an office
building in Denmark, are weather and time of day. When including weather forecasts
and occupancy did not improve the forecast accuracy. The authors of [20] also used
ESN, that uses reservoir computing, a form of recurrence to capture influence of past
states in the decision making, and compared them to a general Feed Forward Neural
Network, in electrical load forecasting in DR programs.

Based on investigating the electrical load profile of a university campus building
and analyzing the weather parameters, data is divided into clusters using k-means-
clustering, into tree types of clusters based on types of day. This gives meaningful
input to DR applications since some clusters depicts a higher load demand than
others, and hence is more useful for shifting loads. K-means clustering is a type of
data mining technique that together with k-Nearest Neighbors and ARIMA were used
in a case study carried out in Tulkarm District, Palestine [33]. Based on case study
objectives, the electricity consumption is shifted through DR programs to periods of
lower demand on a weekly basis.

3.4 RNNs in electric load forecasting

The traditional deep neural networks (DNN’s) learn patterns on the assumption that
inputs and outputs are independent of each other. The first DNN’s used stacked gen-
eralization to develop deep learning based on the concept of a perceptron [34]. A
perceptron mimics the behavior of neurons in the brain for decision making. When
the sum of weights and inputs reach a certain threshold value, neurons fire off, similar
to learning paths in the brain. In neural networks, an activation function decides upon
the state of activation. The output from the activation function is compared to the
real value from the targeted response vector in a loss function, as shown at Frame 1
in Figure 3.4. The output from the loss function is used to trace the global minima
through stochastic gradient descent. The information is backpropagated through the
network and use to adjust the weighted input of the network, and this process is found
when training and validation losses converge and a stop criterion terminates the pro-
cess. In Frame 2 of Figure 3.4, a feed forward neural network (FFNN) as a black box
representation, with input, black box, and a learn output is illustrated.

A RNN depends on the prior elements within the sequence, to perform its decision
making. The RNNs used in this work are all based on Keras [35]. RNNs were first
developed in natural language processing and the Vanilla RNN is a fully-connected



Recurrent neural networks for electrical load forecasting to use in DR 47

T1

��wk * xk

w1

w2

w3

w4

Activation
function

b
ack

p
ro

p
o
g
atio

n

adjusting weights (wi)

Loss
functionT1

T1

T1

1

xt Feed Forward
Network

yt

2

x t
F

ee
d

F
o

rw
ar

d
 

N
et

w
o
rk

y t 3

xt

Feed Forward

Network

yt

Hidden layer: ht

xt

Feed Forward
Network

ht−1 ht

yt

Recurrent

Network

xt

yt

Figure 3.4 RNN explained themathically

RNN where the output from previous time step is to be fed to the next time step by
an additional set of units. The units have also proven to be successful in other time
series application, and for all problems constituted by sequences, such as electrical
load demand.

Frame 3 in Figure 3.4 shows a FFNN transposed to its vertical axis, to show the
key concept of units in RNN’s.

Recurrence that provides the key concepts behind RNNs, the key idea, is that the
RNN’s remain the internal state, ht , that is updated for each timestep, and keep the
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sense of recurrence in the network. The update is defined mathematically in equation
as shown in (3.1):

ht = fw(xt , ht−1) (3.1)

This internal state, ht , is a hidden layer used to define the state. When computed in
the network is used as shown in [36]:

hi,t = σt(Uhi,t−1 + Wxi,t) (3.2)

In (3.2), σ is the activation function, U and H are learned weighted parameters for
hidden states and input vectors. The process then composes a set of learned weighted
parameters in matrixV, which for a regression problem uses a linear activation function
σy to give the result in the output layer:

yi,t = σy(Vhi,t) (3.3)

3.4.1 Scaling data, normalizing

Data is scaled. The general method of calculation is to determine the distribution
mean and standard deviation for each feature. Next we subtract the mean from each
feature. Then we divide the values (mean is already subtracted) of each feature by its
standard deviation:

x′
ij = xi − x̂j

σj
(3.4)

x′
ij is the value of the input variable of row i and column j, x̂j is the mean of the values

in column j, and finally σj is the standard deviation of the values in column j [37].
Findings from auto-correlation and cross-correlation the most important time and
external factors on the targeted vector are found, and will help in the appropriate design
of the networks time-lag vector. The multivariate case is a 3D-vector, containing the
amount of data (samples), lags, and number of inputs (features). Equally on the output,
it aims for the target vector. In the training phase, this is the next step ahead relative
to the input vector.

In the further feature engineering, a lower indicator variable is designed to dif-
ferentiate over working-days/non-working days with a binary switch [38]. The RNNs
purposefully search in a higher category space to find meaningful relations between
the vectors, and therefore the time input is coded using circular coding. The circular
coding identifies the time of day according to the unit circle, giving both a sine and
cosine coordination as its parameters. They are used as training inputs for the target
vector, the electric load demand.

3.5 PCA for electrical load forecasting

Appropriate feature engineering reduces the dimensionality by reducing number of
attributes, while preserving the variation in the data. The reduced dimensions in data
relieve the algorithm some of its computational burden, hence the training time is
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reduced, as well as reducing noise in the dataset. Another benefit from dimensionality
reduction is mitigating the problem of overfitting, since many features of data means
that the models become more complex. This is treated in the bias variance trade off,
where the most suitable model is found.

Dimension reduction techniques are both linear and non-linear. The state-of-
the-art dimension reduction techniques include Deep Convolutional Autoencoder
(DCAE), t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Man-
ifold Approximation and Projection (UMAP), and Principal Component Analysis
(PCA) [39].

PCA is a multivariate technique that can be applied to many fields for feature
reduction. To find the intrinsic nature of linguistic representation, PCA has been per-
formed on the hidden unit activation patterns to reveal that the network solves the
task by developing complex distributed representations which encode the relevant
time relations and hierarchical constituent structure [40]. It is the underlying patterns
and structures in the dataset that can be discovered from the high-dimensional data,
through PCA. PCA is extracting the important information for later to represent it in
a new set of orthogonal vector input constituting the principal components. This is
done by averaging the data and shift the origo to the mean of the data. A best fitted
line going through origo is found then by a linear regression of minimizing each
inputs square distance to the line or maximizing the sum of squared distances from
the projected points to the origo.

These principal components are linear transformation of the data so that the first
coordinate explains the most of the variation, the second coordinate the second most,
and so on. The components are found through the eigen-decomposition and singular
value decomposition [41,42].

To perform PCA, the input matrix is transposed and crossed with its non-
transposed version, stored in matrix L. By diagonalzng L, find a matrix M and diagonal
matrix W:

L = M T WM (3.5)

The feature space is reduced by restricting inputs based on the number of columns
that sums up M to make a rotated matrix. The eigenvalues from W are related to the
variance of the principal components.

The score value for an observation is the distance from the observation to the
origo, along the best fitted line (loading point).

3.6 Load data pre-processing with time organization and
training, validation and testing: case study of Urban Area of
New South Wales

In this work, New South Wales, Sydney region load profile data set [43] is used,
which includes meteorological parameters (e.g. DryBulb and WetBulb Temperature,
Humidity, weekday and time of use) [44]. Power system network of New South Wales
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Figure 3.5 New South Wales, Australia, with the main power plants, substations
and transmission lines

is illustrated in Figure 3.5. Map made with geojson source file [45] in Geopandas [46],
and source files from [47].

Time-dependent structures are composed as vectors and fed as inputs to the RNNs.
To avoid biases and overfitting, the data is to be divided amongst training, validation
and testing. In particular, the algorithm must capture trends and seasonal variations.
If the time series can claim to be stationary, no means needs to be taken. To prove
stationarity, a search for no trend, constant variance and constant autocorrelation is
conducted. Testing for stationarity is done by introducing the null hypothesis Ho: time
series is non-stationary due to trend. By the Augmented Dickey-Fuller (ADF) test, if
certain criteria are met the null hypothesis is rejected and the time series is assumed to
be stationary. The ADF basically searches for trends in the dataset by evaluating mean
and variance over time. Based on this assumption that the time series is stationary, a
division into training, validation and test set are done The Sydney Region data with
load measurements for every 30 min from 2006 to 2010 (Figure 3.6). The training set
ranges from the beginning of the recorded data on 01.01.2006 until 31.12.2008. The
entire 2009 is used for validation and finally 2010 is for testing.

The proposed model in this work finds suitable training, validation and test-sets
by searching for stationarity through Augmented Dickey Fuller Test. The original
training set is then reduced feature space and variation representation by performing
its PCA, reducing the principal components from an offset features of 9 to be repre-
sented by 8 principal components according for 99% of the variance. The training set
has then been scaled, and trained on three different RNNs, Vanilla RNN, GRU, and
LSTM, see Figure 3.7. These different models have been tested for different seasons
to analyze how they assimilate for seasonal variations. Finally the models using PCA
are compared to a version that does not reduce its feature space through PCA.
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Figure 3.6 The Sydney Region data with load measurements for every 30 minutes
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components, with red dashed line indicating 95% variance

There are several methods to illustrate PCA. A loading plot shows how strongly
each loading point influences a principal component, shown by the loading vectors.
A scree plot shows how much variation each principal component capture from the
data, as in Figure 3.8. The scree plot depicts the proportion of variance that is captured
by each number of principal components after feature engineering for the Sydney
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Data. The red dashed line signifies that when we include the 6 principal components
the PCA-process capture 95% of the variance.

3.7 Results and discussion

It is observed from training the RNNs with PCA that during 50 epochs of training
and validation, the training loss and validation loss decrease to a point of stability
with a minimal gap between the two final loss values; Figure 3.9 illustrates with
the GRU with PCA, for the Vanilla RNN and LSTM, the loss curves show the same
convergence.

The RNNs have been tested for a week in January, April, July, and October (see
Table 3.1), and MAPE has been averaged. The results show that all of the RNNs are
capturing the inherent structure of the electric load demand quite well, resulting in
an acceptable MAPE around 1–2% through all seasons, see Table 3.2. In the case of
GRU networks, the results for all the seasons are improved through PCA concluding
with 99% of the variation captured by the 8 principal components, see Table 3.7. Also
for the Vanilla RNN, there is a benefit from reduced number of principal components
in a lesser MAPE, and for the summer test on a week in July (Figure 3.10), it scores
best of all RNNs. Yet for the LSTM, it does not benefit from an improved MAPE
from the PCA. The best results are measured in January when also the electrical load
demand is at the highest (Figure 3.10), and the impact of external weather parameters is
influencing greatly on the load demand. The curvature of the load profile is dominated
by a high peak at noon, and GRU captures this very good.

The results from the week of April (Figure 3.10) have a lower load demand than
January. In January, the load demand is highly correlated to the weather parameters
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Figure 3.9 GRU networks training and validation loss decreases to a point of
stability
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Table 3.1 Seasons and test week

Season Name Test week

Season 1 Winter 11th–17th of January 2010
Season 2 Spring 10th–16th of May 2010
Season 3 Summer 12th–18th of July 2010
Season 4 Autumn 11th–17th of October 2010

Table 3.2 Performance (MAPE)

MAPE Vanila RNN GRU LSTM

January 0.95 0.87 0.90
April 1.45 1.21 1.25
July 1.84 1.64 1.30
October 1.38 1.26 1.24

readings in winter season. In April, as in January, GRU with PCA achieves the best
forecast MAPE result for the week in April, yet with a slightly higher MAPE than for
January. This can be explained by the lower load demand in April and that correlations
to weather parameters are usually lower in spring and autumn. In the winter season,
the correlations to weather parameters are higher than other seasons, as well as in
general the winter season has a higher load demand. These are factors explaining the
lower MAPE in winter season as opposed to other seasons.

In the test week of October (Figure 3.10), which has the same range in load
demand (6,000–10,000 MW), it is also GRU with PCA that scores best with a MAPE
of 0.94, see Table 3.3.

When comparing the results, the MAPE is in the same range for Vanilla RNN
(1.45 for April and 1.38 for October), GRU (1.21 for April and 1.26 for October), and
LSTM (1.25 for April and 1.24 for October), in Tables 3.2 and 3.3. The similarity in
results from spring (observed from the test results for the week in April) and autumn
(observed from the test results for the week in October) can be explained by similar
load range and meteorological conditions. In the case of Vanilla RNN and GRU, the
explanations of the compared results indicate the same when investigating the results
on the RNNs tested with PCA. The exception is the LSTM tested with PCA that
shows a higher MAPE. It is observed that LSTM is a more complex algorithm, than
the Vanilla RNN and GRU.

When it is trained with relatively lesser data, although it is analyzed using its
principal components, it is not able to improve the predictions. It is observed that
for the for the week in July with the lowest load demand, the simplest RNN (Vanilla
RNN) with reduced principal components achieves the preferred MAPE, amongst all
of the predictors.
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Figure 3.10 Results from RNN on electric load demand in New South Wales

Table 3.3 Performance using PCA(MAPE)

MAPE Vanila RNN GRU LSTM

January 0.87 0.75 0.89
April 1.11 1.16 1.60
July 1.39 1.53 1.75
October 1.06 0.94 1.27

3.8 Conclusion

This chapter explores and compares the load prediction analysis through basic RNNs;
Vanilla RNN, GRU, and LSTM, using PCA. The winter season load behavior is more
influenced by weather parameters, which explains why in the winter season the RNNs
scores relatively higher than in other seasons. It is found that PCA can be used to reduce
the number of principal components for Vanilla RNN, GRU, and LSTM networks.
Reducing the number of principal components using PCA is one of the techniques
that is used in dimensionality reduction. Reduction in dimensionality will relieve
the computational burden. In this work, the dimensionality reduction improves the
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predictive output. For the electric load demand forecasting, the preferred RNN is
GRU trained with a principal component of 8, and it is shown through MAPE. After
comparing with the version without PCA, the results show that MAPE is reduced
when using PCA. For the 30 min forecasting, GRU with PCA performs best MAPE
of 0.74%. This work will benefit the reliable forecasting to anticipate the events
involved in dispatching, control and management of the operating grid.
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Chapter 4

Optimal demand response strategy of an
industrial customer

Arvind Kumar Jain

Demand response (DR), which is an important feature of the smart grid, can play a vital
role by making the demand side more responsive to the varying gap between demand
and supply. DR is utilized by power utilities to maintain system reliability, security
and stability while customers utilize it to reduce the electricity cost by increasing or
decreasing the load during valley or peak demand periods. Industries consume huge
amounts of electricity; therefore, DR strategies are required to be implemented by
industrial customers to enhance the saving. Further, industrial customers can provide
DR by employing many different technologies or strategies to achieve shifts in demand
in the following ways: (i) reducing or interrupting consumption temporarily with no
change in consumption in other periods, (ii) shifting consumption to other time peri-
ods, and (iii) temporarily utilizing onsite generation in place of energy from the grid.

Recently, the installation of smart meters at the customer premises, for measuring
the actual amount and time of energy consumption, and automatic switching on/off of
appliances as per the day-ahead market schedule, has been made possible due to the
technological advancement. This enables large industrial customers to change their
demand in response to the market price as well as shift the demand from high price
periods to comparatively low-price periods.

During recent years, some research work has been carried out to investigate the
impact of the DR on electricity markets, with and without transmission congestion. In
the existing double-sided electricity markets, an industrial customer can participate
directly in the day-ahead market by submitting hourly price-quantity bids. The demand
side load curtailment bids can be modeled in the market clearing process in terms
of the demand benefit function of buyers. Although these bids influence the market
price, these are limited in certain periods and are unable to recover the loss of load
that occurred during the high price periods. Further, if the line flow constraints are
not included in the bidding formulation problem, locational marginal prices (LMPs)
will be the same at all the buses. However, if any line flow is constrained, LMPs will
vary from bus to bus or zone to zone.

The LMP methodology is being used as a tool for pricing and congestion man-
agement in day-ahead and real-time spot markets of PJM interconnection, California,
New England, and New York. In the majority of the existing double-sided electricity
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markets, congestion management and system security are analyzed after the day-
ahead market is settled. This approach may not be suitable for an industrial buyer, as
it cannot afford to curtail the energy consumption required for the completion of the
production process.

Therefore, the prime aim of this chapter is to propose a novel optimization for-
mulation for developing the optimal DR strategy of an industrial buyer. This will
be incorporated into the bidding strategy by formulating it as a stochastic linear
programming problem, comprising of two sub-problems, viz. market-clearing sub-
problem and maximization of the purchase cost saving sub-problem. In addition, the
impact of the DR strategy of the industrial customer on market clearing price and on
the other market participants will be investigated. The effectiveness of the proposed
methodology will be established with the help of a case study.

4.1 Demand side management categories

DSM was introduced by electric power research institute (EPRI) in the 1980s. Demand
side management (DSM) can play a vital role to maintain the reliable, secure, and
efficient operation of the modern grid. Under restructured power systems, DSM is
a customer-driven activity. Depending on the timing and the impact of the applied
method on the customer process, DSM categorization is shown in Figure 4.1.

DR is being considered as an integral part of the market operations. At present,
although demand responsiveness in electricity markets is low as compared to the other
commodities markets, even a small amount of DR can make difference in enhancing
the market efficiency and system security. During June 2000 California crisis, rolling
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blackouts had taken place due to a shortage of 300 MW in a system of 50,000 MW
[1]. This example underlines the need of demand-side participation in the electricity
market.

Further, the introduction of DR in constrained electricity networks can signif-
icantly lower the peak energy costs and can potentially act as a check against the
exercise of market power by generators [2]. DR also has the potential to increase the
long-run efficiency of the energy market. DR programs are expanding in response to
rapid load growth, as well as the cost and time required in bringing the new generation
into service [3].

4.2 What is DR?

Electricity cannot be stored in bulk. Therefore, the supply and demand of electricity
must remain in balance for secure and stable system operations. When electricity
demand goes up during peak hours or supply decreases due to the generator and/or
network outages, utility and grid operators have the followings options: (i) buy elec-
tricity from the real-time market which is expensive, (ii) fire up the next peaking
power plant if not already running, (iii) dispatch a DR network and (iv) risk a black-
out. Instead of adding more generations to the system, DR may be implemented to
maintain the balance.

According to Federal Energy Regulatory Commission, DR is defined as:
“Changes in electric usage by end-use customers from their normal consumption
patterns in response to changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized.” The end-user customers can also be
the customers who are participating in the wholesale market operations.

A customer can incorporate the demand responsiveness by curtailing the energy
consumption, time-shifting of the energy consumption and shifting to own source of
energy during peak hours. Since consumers become more sensitive and responsive to
price signals, DR results in an increase in the elasticity of demand.

4.3 Why DR?

DR is utilized by power utilities to maintain system reliability, security, and stability
by increasing or decreasing the load during valley or peak demand. Further, DR led
to a reduction in power system infrastructure requirement to meet the peaking load. It
may control the market price by shifting the load from high price hours to low price
hours. During forced outage of the generator, it helps to avoid brownouts, blackouts,
or utilization of expensive generators. In recent years, the load-modifying capacity
of DR is used to enhance grid flexibility through the provision of ancillary services.
These services may facilitate the integration of renewable energy sources by balancing
between supply and demand in real-time.
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4.4 DR classification

DR resources can be classified into non dis-patchable resources and dis-patchable
resources.

i Non dis-patchable resources: Non dispatchable resources participate in price-
based DR programs such as real-time pricing, critical peak pricing, and
time-of-use-tariffs. As smart meters are installed, price-based DR provides an
opportunity to customers, mainly residential and commercial, to reduce their
energy consumption during high price periods. Further, residential and small
commercial customers may provide dis-patchable services to system operators
at contact price or market price through aggregators.

ii Dis-patchable resources: Dis-patchable resources may influence the market price
by participating in competitive bidding. In regions, where the electricity market
does not exist, distribution utilities implement DR to avoid high peak prices and
maintain system reliability by balancing consumption and supply.

Further, DR may be classified into competitive, non-competitive, and incentive-
based DR.

4.4.1 Competitive DR

In competitive DR, aggregators/distribution utilities/industrial buyers participate in
competitive day-ahead/real-time electricity market and submit their price-quantity
bid to the system operator. System operator clears the market utilizing suppliers and
buyers bids. The equilibrium point gives market price and quantity. In the market
clearing process, DR plays a vital role to set the market price with power balance.

4.4.2 Non-competitive DR

In non-competitive DR, aggregators/distribution utilities/industrial buyers participate
in day-ahead/real time electricity market and submit their modifiable load and price
bid to system operator but do not participate in the setting of market-clearing price.
However, during the high price periods system operator utilizes the DR resources who
submitted bid price less than market price.

4.4.3 Incentivebased DR

If the DR provider is not interested in participating in an electricity market or the
electricity market does not exist, then the DR provider informs the system operator
about the curtailment of load in one day advance. The system operator utilizes the
DR for obtaining system-wide techno-economic advantages and pays some monetary
incentives to the DR provider.
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4.5 Benefits of DR

DR provides various techno-economic benefits to participants by flattening the
demand curve. The major benefits of DR are the followings:

i Construction of new power plants to meet the peak load may be curtailed, which
will reduce the adverse the environment impact.

ii DR can be activated within 5 min, which may help in improving the reliability
of the system during an outage of the generator or line.

iii Distribution system operator (DSO) can use DR for managing congestion,
voltage, and quality of supply at the distribution level.

iv Incentive-based DR may reduce the financial risk of electricity retailer, who sells
the electricity at a flat rate, during high price periods.

v Distributed generation under smart grid paradigm motivates the inclusion of DR
to achieve tecno-financial benefits.

vi Market integrated price-based DR can mitigate the market power of suppliers by
shifting the demand from peak hours to off-peak hours.

vii System operator may use DR to avoid brownouts and black-outs by load
modifications.

4.6 Challenges in DR implementation

There are several challenges in implementing DR in a modern electricity grid. The
major challenges are mentioned as below:

i Information communication technologies (ICT) play a pivotal role in implement-
ing the DR. Therefore, sufficient metering and communication equipment are
required to be integrated into the power system to check the system performance
and DR. Further, training of distribution companies (DisCos) is highly required
to implement the DR.

ii Participation of customers in DR is a major challenge which may be dealt with
by educating the customers about the benefits of DR.

iii Installation of smart recording equipment at customer’s location involves finan-
cial risk. A cost–benefit analysis to recover the cost within the stipulated time
may motivate the customers to participate in DR.

iv DR being a comparatively new technology has uncertainty regarding system-wide
techno-economic performance, which leads to low acceptance.

v Policy and standard are required to be developed by regulators to set the reference
for measuring DR contribution to ensure desired performance and compensation.

vi To incorporate the DR in the electricity market, barriers pertaining to the mini-
mum size of DR and type of participants may be modified to enhance the effective
implementation of DR.
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4.7 DR provisions

Industrial, commercial, and residential customers can provide DR by employing many
different technologies or strategies to achieve shifts in demand in the following ways,

● Reducing or interrupting consumption temporarily with no change in consump-
tion in other periods.

● Shifting consumption to other time periods.
● Temporarily utilizing onsite generation in place of energy from the grid.

In addition, ancillary services like frequency regulation and load-following can
be provided by DR. When surplus electric energy is available, DR with a storage
facility may be used for pumping water, charging batteries, compressing air, etc.
while maintaining the power balance between load and generation automatically.

4.8 Applications of DR

The main applications of DR are given below:

i Reduction in power system infrastructure and environment issues
Peak energy demand is less than 10% of total energy demand. In order to supply
this load demand, huge power system infrastructure like generation, transmission,
and distribution is required which has huge financial implications as well as
environmental issues. DR can mitigate these problems by flattening the load
profile.

ii Reduction in market price
In a competitive energy market suppliers’ objective is to maximize their profit
by submitting a price higher than the marginal price. This phenomenon is called
market power. DR can mitigate the market power through participation in the
electricity market and shifting the demand from peak hours to off-peak hours.

iii Renewable energy integration
Integration of renewable energy generation in the power grid is known to pose a
challenge in the reliable operation of the grid due to its associated intermittent
and uncertain nature. DR can be used to deal with these challenges introduced
by renewable energy generation by changing the demand in accordance with the
energy generated by the renewable sources.

iv Ramping
DR can be used to reduce ramp-up and ramp-down requirements of the generators.
This can be achieved by increasing the demand to fill the valley of the load curve
and by decreasing it for the peak shaving. This will help in saving the ramping
cost of the generators apart from managing the system operation.

v Voltage and frequency control
The stability of the power system can be ensured by maintaining the voltage–
frequency variations within limit while changes in demand occur. Tradi-
tionally, it is achieved by load-following approach where the power plant
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increases/decreases their generation according to the load variation. In the mod-
ern power system, the generation following approach can be used by integrating
DR to control voltage and frequency.

vi Spinning reserve
Spinning reserve is utilized to meet the load requirement during generator outages
and/or peak load hours. Economically, DR participation led to less committed
generating units in energy scheduling and accordingly less operation cost. Tech-
nically, within peak load hours the share of generator participation in providing
reserve capacity becomes lower than the share of DR participation, while in other
hours the opposite trend is observed.

4.9 Motivation about DR

DR would have a significant impact on the operation of the competitive electricity
market. It has been observed that the absence of the DR is the prime reason for causing
price spikes, shortages, and exercise of the market power. Kirschen et al. [4] discussed
that the overall benefit, that is derived from trading, is optimal when suppliers and
consumers in a competitive market are allowed to operate freely and the price settles at
the intersection of the supply and demand curves. Although, demand responsiveness
in the electricity markets is low as compared to the other commodities markets, even a
small increase in the demand elasticity can improve the market performance [5]. In the
literature, most of the work has focused on studying the impact of the demand price
elasticity on the market. Some algorithms have been proposed to consider it in the
auction mechanism [6]. However, few efforts have been made to develop the optimal
bidding strategy of the buyers or load-serving entities using either load adjustment
without recovery or load curtailment to model the price elasticity [7]. This approach
may not be suitable for an industrial buyer as it cannot afford to curtail the energy
consumption required for the completion of the production process. During recent
years, a few research works have been carried out to investigate the impact of the
price-based DR on electricity markets, with and without transmission congestion [8]
and [9]. However, no efforts have been done to develop the optimal bidding strategy
of a buyer considering the price-based DR.

4.10 DR of an industrial buyer

In the existing double-sided electricity markets, an industrial customer/Disco can
participate directly in the day-ahead market by submitting hourly price–quantity bids
[10]. The demand side load curtailment bids can be modeled in the market clearing
process in terms of the demand benefit function of buyers. Although these bids influ-
ence the market price, these are limited in certain periods and are unable to recover the
loss of load that occurred during the high price periods [11]. This approach may not be
suitable for an industrial buyer, which cannot afford to curtail the energy consumption
required for the completion of the production process. Also, it is not suitable for a
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Disco/load-serving entity as this may lead to monetary loss and /or bad reputation
among the retail customers due to the reduction of their demands from the scheduled
contract.

Recently, the installation of smart meters at the customer premises, for measuring
the actual amount and time of energy consumption, and automatic switching on/off
of appliances as per the day-ahead market schedule [12], has been made possible due
to technological advancement. This enables large industrial customers, Discos and
group of small customers/domestic consumers to change their demand in response to
the market price as well as shift the demand from high price periods to comparatively
low price periods.

The prime aim of the work carried out in this chapter is to propose a new optimiza-
tion formulation for developing the optimal bidding strategy of a buyer considering
price responsive demand shifting (PRDS) under uniform price, hourly day-ahead elec-
tricity markets. This has been incorporated into the bidding strategy by formulating
it as a stochastic linear programming problem, comprising of two sub-problems,
viz. market clearing sub-problem and maximization of the purchase cost saving
sub-problem.

In addition, the impact of the PRDS based bid strategy of the buyers on mar-
ket clearing price and on the other market participants have been investigated. The
effectiveness of the proposed methodology has been presented through a case study.
Results obtained with the PRDS based bidding strategy have been compared with
those obtained with a conventional price quantity (CPQ) bidding of a buyer.

4.11 Problem formulation

Development of an optimal bidding strategy requires the determination of the optimal
bid price as well as the optimal bid quantity of the buyer. In a uniform price market,
though the buyers, who are willing to pay a higher price, are given priority, all the
selected buyers are required to pay uniform market clearing price (MCP), irrespective
of their bid price. Therefore, in the uniform price market, the strategy of the buyer
would be to bid higher than the MCP in order to avoid the risk of not getting selected
in the market. Thus, the optimal bidding strategy of an industrial buyer gets reduced to
determine the optimal bid quantity, which maximizes their purchase cost-saving over
the scheduling horizon. For computing the purchase cost-saving, a buyer needs to
predict the MCP either by forecasting it or by simulating the market clearing process.
In this work, MCP has been estimated by simulating the market clearing process
for the double-sided bidding, which requires the bid quantity of the participants.
Thus, the MCP and the bid quantity of the participants are interrelated. Therefore, the
optimal bidding strategy problem of a buyer has been formulated as a stochastic linear
optimization problem. The nature of the proposed PRDS-based optimization model
is stochastic due to the uncertainty involved in the prediction of electricity price and
demand.

The proposed formulation comprises two sub-problems. The first sub-problem
deals with the market clearing and the second sub-problem is formulated as the
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purchase cost saving maximization problem. These two sub-problems are explained
below.

4.11.1 Market clearing sub-problem

In double-sided bidding, the system operator receives bids from the suppliers as well as
from the buyers. The market is cleared by maximizing the social welfare subject to the
power balance, while satisfying minimum and maximum generation limits, minimum
and maximum load requirements of buyers. Mathematically, it can be expressed as

Max
T∑

t=1

⎛

⎝
Nl∑

j=1

ρ t
jd ∗ P t

jd −
Ng∑

i=1

ρ t
is ∗ P t

is

⎞

⎠ (4.1)

subject to,

Ng∑

i=1

P t
is −

Nl∑

j=1

P t
jd = 0, ∀ t (4.2)

Pt
is min ≤ P t

is ≤ P t
is max, ∀ i, ∀ t (4.3)

Pt
jd min ≤ P t

jd ≤ P t
jd max, ∀j, ∀t (4.4)

where ρ t
is and ρ t

jd are the bid prices of supplier-i and buyer-j at time t, respectively, Pt
is

and Pt
jd are the bid quantity of supplier-i and buyer-j at time t, respectively, Pt

is min and
Pt

is max are the minimum and the maximum generating capacity of supplier-i at time t,
Pt

jd min and Pt
jd max are the minimum and the maximum demand requirement of buyer-j

at time t. Ng and Nl represent the number of suppliers and buyers, respectively and T
denotes the scheduling horizon.

The solution to the above problem determines the market-clearing price as well
as the optimal generation and consumption schedule for each trading hour.

4.11.2 Proposed purchase cost-saving optimization sub-problem

In the existing double-sided electricity markets, the system operator (SO) accepts
price-quantity bids from the participants. The generators submit offer price and quan-
tity whereas, the buyers submit the load requirement and the price they are willing to
pay. While submitting the bids, generators’ motive is to maximize their profit, due to
which they may bid higher than the marginal cost and may lead to MCP away from the
competitive level. From the buyers’ perspective, instead of bidding as per the actual
load requirement, a buyer, who can shift its consumption pattern, may bid strategically
for demand shifting. This shifting of demand would change the price and load pattern
over the scheduling horizon, leading to a reduction in the MCP. Thus, the objective of
the buyer would be to maximize the difference between the purchasing cost incurred
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without demand shifting and with demand shifting while satisfying the demand
requirement over the scheduling horizon. Mathematically, it can be expressed as,

Max
T∑

t=1

(
MCPt

0 ∗ Pj,t
d0 − MCPt ∗

(
Pj,t

d min + Pj,t
dshift

))
(4.5)

subject to,

T∑

t=1

(
P j,t

d0 − P j,t
d min − P j,t

dshift

)
= 0 (4.6)

P j,t
dshif min t ≤ P j,t

dshift ≤ P j,t
dshift max, ∀t (4.7)

where,

P j,t
dshift max = α ∗

T∑
t=1

P j,t
d0

P j,t
dshift min = 0

⎫
⎬

⎭ (4.8)

MCPt
0 and MCPt are the market clearing prices at time t without demand shifting and

with demand shifting, respectively, P j,t
d0 is the actual demand requirement of buyer-j at

time t, P j,t
d min is the minimum demand of buyer-j at time t, P j,t

dshift is shifted demand of

buyer-j at time t, P j,t
dshift min and P j,t

dshift max are the minimum and the maximum demand
to be shifted by buyer-j at time t, α is the value of the price responsive demand.

The output of the above sub-problem is the optimal value of the demand of buyer-
j, which can be shifted during each trading hour. Based on it, a buyer can obtain the
optimal consumption pattern for the scheduling horizon.

The demand, which is to be shifted in any particular hour, has a certain minimum
and maximum bounds. In a period with higher MCP, the buyer would like to meet
only the minimum demand required and, hence, the demand to be shifted in this hour
is zero. Thus, the minimum bound on the demand, which can be shifted, is kept zero.
However, in periods with lower MCP, the buyer would like to shift the whole of the
shift-able demand. Thus, the maximum bound on the shift-able demand is the total
shift-able demand over the scheduling horizon.

4.12 Proposed solution algorithm

The solution of the purchase cost-saving maximization sub-problem, as described
in Section 4.11.2, requires the initial guess of the MCP. This has been obtained by
simulating the market clearing process considering the actual load requirement of the
buyer. Based on this MCP, the optimal bidding strategy of the buyer is obtained by
solving the purchase cost-saving maximization sub-problem. The main purpose of the
proposed simulation is to develop PRDS-based bidding strategy of buyer(s). Buyer
(s) may shift the demand from peak demand periods to off-peak demand periods
for maximizing the purchase cost saving by modifying the MCP. To consider this,
the proposed methodology is simulated for a sufficient number of iterations, which
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Figure 4.2 Flowchart of the proposed demand shifting based bidding strategy of a
buyer

is taken as 25 in the present work after experimentation. Therefore, the maximum
number of iterations has been considered as the stopping criterion in the proposed
work as suggested in [13]. A flowchart describing the proposed solution algorithm is
shown in Figure 4.2.

4.13 Case study

The effectiveness of the proposed methodology for developing the optimal bidding
strategy of an industrial buyer, considering PRDS, has been tested on the 5-bus,
system, whose details are given in [14]. The proposed stochastic linear optimization
problem has been solved using MATLAB optimization toolbox. To ensure that the
bid of an industrial buyer, whose strategy has to be developed, will be accepted and
the minimum quantity required at each hour is satisfied, the bid price of the industrial
buyer is taken to be higher than the marginal cost offer of the most expensive generator.
Thus, the optimal bidding strategy of the industrial buyer is to determine the optimal
bid quantity over the scheduling horizon, which is taken as 24-h, to maximize its
purchase cost saving. In this work, Gencos are assumed to submit a multi-block bid,
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whereas the industrial buyers are assumed to give an hourly price–quantity bid for
each trading hour. The value of the demand, with PRDS bids, has been assumed to be
5% for both systems during each hour. The results obtained on the two systems are
described below.

The 5-bus system comprises of three Gencos and two buyers. The optimal bid
strategy of buyer-1 has been developed. Table 4.1 lists the offer prices of the Gencos
whereas, the forecasted system demand is shown in Table 4.2. The maximum and
minimum demands are 440 MW and 310 MW, respectively, and the total generation
capacity is 375 MW. The total demand of both the buyers, over the scheduling horizon
of 24-h, is 4,433.8 MW each. The PRDS-based bidding strategy of the industrial buyer
has been developed considering the following cases:

● Case I: Buyers 1 and 2 both offer CPQ bids in each hour.
● Case II: Industrial buyer-1 offers PRDS bid and buyer-2 offers CPQ bid in each

hour.
● Case III: This case is the same as the case II except that the buyer-1 cannot shift

the demand during hours 6–10.
● Case IV: Buyers 1 and 2 both offer PRDS bids in each hour.

The load profiles of both the buyers are assumed to be the same in order to show
the impact of the demand shifting bidding strategy of the buyer-1 on the buyer-2. The
bid prices of the buyer-1 and the buyer-2 for the entire scheduling horizon are taken

Table 4.1 Offer prices of generators in 5-bus system

Gen. Bid quantity in MW Marginal cost in $/MWh

Block 1 Block 2 Block 3 Total Block 1 Block 2 Block 3

1 75 25 50 150 7.827 8.342 8.856
2 50 50 25 125 9.166 9.731 10.18
3 40 30 30 100 8.292 8.567 8.916

Table 4.2 Forecasted system demand in 5-bus system

Hour Forecasted system Hour Forecasted system Hour Forecasted system
demand in MW demand in MW demand in MW

1 340 9 385 17 372.5
2 320 10 415 18 420
3 390 11 430 19 430
4 385 12 440 20 390
5 340 13 427.5 21 312.5
6 320 14 395 22 310
7 330 15 370 23 330
8 340 16 355 24 320
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Table 4.3 Optimal bid strategy of buyer-1 considering demand shifting in 5-bus
system

Hour Forecasted Min. Demand shift (MW) Optimal bid quantity (MW)
demand demand
(MW) (MW) Case II Case III Case IV Case II Case III Case IV

1 170.00 161.50 −8.50 −8.50 6.27 161.50 161.50 176.27
2 160.00 152.00 36.29 36.48 6.77 196.29 196.48 166.77
3 195.00 185.25 −9.75 −9.75 −9.75 185.25 185.25 185.25
4 192.50 182.87 −9.62 −9.62 5.15 182.87 182.87 197.65
5 170.00 161.50 −8.50 −8.50 6.27 161.50 161.50 176.27
6 160.00 152.00 36.29 0.00 6.77 196.29 160.00 166.77
7 165.00 156.75 −8.25 0.00 6.52 156.75 165.00 171.52
8 170.00 161.50 −8.50 0.00 6.27 161.50 170.00 176.27
9 192.50 182.87 −9.62 0.00 5.15 182.87 192.50 197.65
10 207.50 197.12 −10.37 0.00 −10.37 197.12 207.50 197.12
11 215.00 204.25 −10.75 −10.75 −10.75 204.25 204.25 204.25
12 220.00 209.00 −11.00 −11.00 −11.00 209.00 209.00 209.00
13 213.75 203.06 −10.68 −10.68 −10.68 203.06 203.06 203.06
14 197.50 187.62 −9.87 −9.87 −9.87 187.62 187.62 187.62
15 185.00 175.75 −9.25 −9.25 5.52 175.75 175.75 190.52
16 177.50 168.62 −8.87 −8.87 5.90 168.62 168.62 183.40
17 186.25 176.93 −9.31 −9.31 5.46 176.93 176.93 191.71
18 210.00 199.50 −10.50 −10.5 −10.50 199.50 199.50 199.50
19 215.00 204.25 −10.75 −10.75 −10.75 204.25 204.25 204.25
20 195.00 185.25 −9.75 −9.75 −9.75 185.25 185.25 185.25
21 156.25 148.43 36.45 36.31 6.96 192.70 192.56 163.21
22 155.00 147.25 36.78 36.41 7.02 191.78 191.41 162.02
23 165.00 156.75 −8.25 −8.25 6.52 156.75 156.75 171.52
24 160.00 152.00 36.29 36.16 6.77 196.29 196.16 166.77

to be 14.17 $/MWh and 13.15 $/MWh, respectively. The total demand to be shifted
over the whole scheduling horizon is 221.69 MW.

The optimal bidding strategy of the buyer-1 obtained using the proposed method-
ology, for the cases II, III and IV is shown in Table 4.3. From Figures 4.3–4.5, it can
be observed that when the MCP is highest, only the minimum demand of the buyer-1
has been met and the rest of the quantity is shifted during comparatively low MCP
periods. In case II, during the hours 2, 6, 21–22, 24, the demand of the buyer-1
is maximum because during these hours, MCP is low. During the remaining hours,
buyer-1 has the minimum demand. In case III, the demand pattern is the same as in
the case II, except during hours 6–10. During these hours, it is assumed that buyer-1
cannot shift their demand due to some technical reasons. For cases II and III, during
the hours 5, 7, 8, 15–17, 23, though the MCP is comparatively low, it can be seen from
Figures 4.3 and 4.4, that the demand shift is negative in spite of sufficient generation
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Figure 4.3 Response of demand shifting of buyer-1 to MCP for case II
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Figure 4.4 Response of demand shifting of buyer-1 to MCP for case III

capacity. It has happened to avoid a further increase in the MCP. PRDS of buyer-1
and buyer-2 for case IV are shown in Figure 4.5. In this case, fluctuations in MCP
are less as compared to cases II and III, because both the buyers are offering PRDS
bids in each hour. Day-ahead MCPs, for the four cases, are given in Table 4.4. From
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Table 4.4 Day-ahead MCP under four cases in 5-bus system

Hour Case I Case II Case III Case IV Hour Case I Case II Case III Case IV

1 9.73 9.73 9.73 9.73 13 13.15 10.18 10.18 10.18
2 9.16 9.73 9.73 9.73 14 10.18 10.18 10.18 9.73
3 10.18 10.18 10.18 9.73 15 9.73 9.73 9.73 9.73
4 10.18 9.73 9.73 10.18 16 9.73 9.73 9.73 9.73
5 9.73 9.73 9.73 9.73 17 9.73 9.73 9.73 9.73
6 9.16 9.73 9.16 9.73 18 10.18 10.18 10.18 10.18
7 9.73 9.16 9.73 9.73 19 13.15 10.18 10.18 10.18
8 9.73 9.73 9.73 9.73 20 10.18 10.18 10.18 9.73
9 10.18 9.73 10.18 10.18 21 9.16 9.73 9.73 9.73
10 10.18 10.18 10.18 10.18 22 9.16 9.73 9.73 9.73
11 13.15 10.18 10.18 10.18 23 9.73 9.16 9.16 9.73
12 13.15 13.15 13.15 10.18 24 9.16 9.73 9.73 9.73

Table 4.5 Impact of demand shifting bid strategy of buyer-1 in 5-bus system

Case I Case II Case III Case IV

Purchase cost of buyer-1in $ 46,279 44,390 44,480 43,874
Purchase cost of buyer-2 in $ 45,655 44,337 44,427 43,860
Satisfied demand of buyer-1 in MW 4,433.8 4,433.8 4,433.8 4,433.8
Satisfied demand of buyer-2 in MW 4,386.2 4,424.8 4,424.8 4,433.8
Total system load fulfilled in MW 8,820 8,858.6 8,858.6 8,867.6
Saving of buyer-1 in $ using PRDS bid – 1,889 1,799 2,405

this table, it can be seen that the PRDS based bidding normalizes MCPs by reducing
the peak values and increasing the off-peak values.

Comparison of the CPQ bids with the PRDS bids and the impact of the PRDS
bidding strategy of the buyer-1 on various factors are shown in Table 4.5. From this
table, it can be observed that due to the PRDS bidding strategy, the purchase cost of
buyer 1 has been reduced in cases II, III and IV, as compared to the case I. However,
the minimum purchase cost is obtained in the case IV. Further, it has been observed
that due to fixed demand during hours 6–10, saving of buyer1 has reduced in case III
as compared to the cases II and IV, since it cannot take advantage of the low MCPs
during these hours by shifting the loads.

The total demand requirement of the buyer-1 is fulfilled in all the cases as its
bid price is higher (Figure 4.5). When both the buyers are bidding PRDS bids, in
case IV, the total unsatisfied demand of the buyer-2 has reduced to zero MW. This
is because, now, both the buyers have shifted their consumption pattern in response
to the price to fulfill their demand, as shown in Figure 4.5. In case IV, the saving of
buyer-1 is $2,405, which is higher than the cases II and III. The reason is that, in this
case, both the buyers are offering PRDS bidding, which has resulted in a reduction
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Figure 4.5 Response of demand shifting of buyer-1 and buyer 2 to MCP for case IV

in the peak load demand and MCP. The total system load fulfilled is depicting the
increasing trend from case I to case IV. It shows that the PRDS bidding is beneficial
to all the market participants, as the demand fulfilled has increased and the MCP is
comparatively low.

4.14 Conclusion

In this chapter, a stochastic linear optimization problem has been proposed to develop
a price responsive demand shifting (PRDS) based bidding strategy of an industrial
buyer. The results obtained with the PRDS based bidding strategy have been compared
with those obtained with the conventional price quantity (CPQ) bidding strategy of
the buyer. Effect of the demand shifting has been observed on the MCP, purchase cost
and satisfied demand of the buyers, system demand fulfilled and savings of a buyer,
whose bid strategy has been developed. The results on the 5-bus systems reveal that
the savings of a buyer depend on their ability to reduce their demand during the peak
price periods. Further, it is observed that the PRDS strategy improves the economic
efficiency of the day-ahead market by reducing the electricity price. The proposed
bidding strategy is generic in nature and can be utilized by the buyers in any electricity
market, which allows the demand side bidding.
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Chapter 5

Price-based demand response for
thermostatically controlled loads

K.S. Swarup1 and Devika Jay1

Smart grid enables active participation of consumers daily operation of the grid
through Demand Response (DR). DR refers to the actions initiated from contracted
customers by changing their demand in response to price signals, incentives, or
directions from grid operators. In this chapter, industrial DR suitable for frequency
regulation is discussed. For this, a mathematical model of price-based DR from ther-
mostatically controlled loads (TCL) for controlling the temperature of the chillers in
large academic complex environment is presented. A probabilistic model of the den-
sity function of aggregated TCL loads is discussed. The variation of the thermostat set
point demand temperature an increase in the price is presented. In order to match the
power demand and power supply, a new method for dynamic demand control (DDC)
with automatic generation control (AGC) in smart grid environment is proposed. A
load frequency control using DDC was modeled in this study. The load frequency
control model was simulated for a step load change of 0.01. The frequency devia-
tion was compared with the frequency deviation obtained when generation control,
using PI controller, alone was implemented for frequency control. Thus, DDC alone
is required to maintain the system frequency, during small load variations. DDC will
play a major role in reducing these losses caused to the GENCOs under a Smart Grid
environment.

5.1 Demand response

In order to increase efficiency and reduce costs, a shift from supply-side-only view-
point to an integrated demand- and supply-side viewpoint was considered, in which
customers are considered as a new utility planning option. This leads to the concept of
Demand Side Management (DSM). In [1], DSM has been defined as “the planning,
implementation, and monitoring of those utility activities designed to influence cus-
tomer use of electricity in ways that will produce desired changes in the utility’s load

1Department of Electrical Engineering, IIT Madras, Chennai, India
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shape.” Load shape means the load profile or the demand of the customer on time-of-
day, day-of-week basis. The important DSM techniques relevant to even traditional
electric power systems are as follows [1]:

1. Peak clipping
This involves reduction of peak load by using direct load control.Another example
of peak clipping is the use of curtailable rates for industrial and commercial
customers.

2. Valley filling
This involves building off-peak loads. This is suitable when long-run incremental
cost is less than the average price of electricity. One of the many ways to achieve
this is by adding new thermal energy storage in place of loads served by fossil
fuels.

3. Load shifting
This is shifting load from on-peak to off-peak periods. Use of storage water
heating, coolness storage, and customer load shifts, etc. falls in this category of
DSM.

Smart grid environment facilitates for an increased role of DSM in planning and
operation of the grid. This is because with the advent of Information Communication
Technology, the gap between the various utilities has been bridged effectively. Thus
the dimension of DSM widens and many more load management techniques can be
implemented in a smart grid. These techniques have been classified based on the time
scale as follows [2]:

1. Energy efficiency
2. Time of use
3. Demand response (DR)
4. Spinning reserve – primary and secondary control of grid frequency

The time frame for these techniques is as shown in Figure 5.1.
Energy efficiency refers to energy conservation techniques that are implemented

at the customer level. Time of use DSM is change in load profile during peak and
off peak hours, and this can be initiated by change in market price. Load can act
as a “virtual” spinning reserve during grid frequency restoration, by responding to
the grid conditions like frequency etc. Among this, DR is gaining much importance,
which means a response from demand side to explicit requests to shut off or change
consumption pattern from grid operators.

It has been observed that electricity price mechanism plays a major role in ini-
tiating DSM [3,4]. Very low elasticity of the demand causes large price spikes and
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Figure 5.1 DSM techniques
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thus allowing generating companies to deliberately reduce their generation. A price-
based DSM will be useful to curtail price spikes and the price mechanism should
include demand side also [5]. Thus DR turns out to be the most important among
DSM techniques.

For a sustainable operation of the grid, renewable energy resources will play a
larger significant role in electric power systems. But renewable power generation is
only in parts plan and adjustable. This means that in the future, the share of “easily”
adjustable power generation will decrease posing challenges to future energy manage-
ment system. A solution to this problem is a paradigm shift from “generation follows
load” to “load adapts to generaton” [6].

DR means response of customer consumption of electricity to supply conditions,
for example, having electricity customers reduce their consumption at critical times
or in response to market prices. DR mechanisms respond to explicit requests to shut
off. Dynamic demand devices passively shut off when grid operator issues instruction
when the grid is stressed. DR can be mainly divided into two schemes:

1. Energy management: this means the energy balance needs to be achieved in each
charging period, generally 15–60 min.

2. Near real-time power management: this means energy needs to be balanced at
all times.

Energy management DR, also known as Market DR, can be classified as

1. Flat rate pricing schemes
2. Slab rate pricing schemes
3. Incentive-based DR

(a) Direct control
(b) Load curtailment
(c) Market-based demand bidding
(d) Emergency DR

4. Price-based DR
(a) Time of use
(b) Critical peak pricing
(c) Extreme day pricing
(d) Real-time pricing

Real-time DR or physical DR can be achieved using emergency signals issued
by the system operator. This can include real-time price-based DR schemes also.

For effective DR, a transparent pricing mechanism is required to ensure active
participation of customers. Communication channel is the backbone of DR as infor-
mation on current load and generation, and real-time measurements are requirements
for DR. Also forecast of these quantities will help in active DR in the grid. An effi-
cient DR scheme can be achieved in residential and building energy management,
when there are manageable loads like Heating Ventilation and Air Conditioner loads,
Distributed Energy Resources and storage devices.
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5.2 Smart grid control

The electric power industry has been working to improve the functionality, efficiency,
and availability of electricity so as to meet the ever increasing demand. The develop-
ment of human society and industry demanded a revolution of electric power systems.
The advancements in technology, the electrical power industry have transformed the
way to generate, deliver, and consume power today. Modern civilization practices
result in the release of greenhouse gases to the atmosphere causing global climate
change. The global efforts to reduce carbon emission will be incomplete if power
sector continues to be in its traditional power generation and operation schemes.

The word “Smart grid” or “Intelligent grid” has been coined and this has created
a buzz around the world. The term Smart Grid is used to describe a “digitized”
and intelligent version of the present-day power grid. A grid becomes smart when
power delivery via a two way digital technology supports secure and effective control
over consumers resulting in efficient, economic, and environmental friendly power
systems. Smart grid features are still under debate. A complete picture of the various
entities in a smart grid, and the features associated with each entity that makes the
grid smart is depicted in Figure 5.2.

The emerging technologies under smart grid are described below:

1. DSM
Advanced metering infrastructure (AMI) plays an important role in Smart grid
which provides a 2-way consumption control. This helps in curtailment of load
and demand management. Home Area Network also provides DSM facilities.
The backbone of DSM is communication infrastructure.

2. Photovoltaic and solar heating
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Figure 5.2 Smart grid components and features
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Photovoltaic (PV) can serve local loads. But the challenge is inherent uncertainty
and the need for energy storage devices.

3. Energy storage
Solar, thermal, and wind energy plants require storage devices. Lithium–ion,
nickel–cadmium, and lead acid batteries are common storage devices. Fly wheel
and super capacitors are also being involved.

4. Microgrids
Distributed energy resources (DER) are an efficient way to reduce environmental
pollution, transmission losses and grid congestion. DERs may be referred to PV
cells, wind resources, fuel cells, combined heat and power (CHP), etc. Some of
these such as PV and wind are intermittent in nature and possess some problems
when directly connected to the grid. If these DERs (both intermittent and con-
sistent) of a locality or a distribution network are interconnected together along
with necessary storage systems and a control center, can form an autonomous
grid termed as a “MicroGrid (MG).” Microgrid can solve some of the problems
associated with distributed generators (DG) in grid integration [7]

5. Self-healing
Self-healing capability of a grid makes the grid smart and intelligent. This requires
efficient monitoring, analysis and control of the grid. The advent of Synchronous
Phasor Measurement units (PMU) has made monitoring efficient. An enormous
amount of data is now available from PMUs. Thus smart monitoring is achieved
when data obtained from the PMUs are then converted to useful information.
Analysis of the system limits like thermal limit and stability limit must be then
carried out using the real time information obtained from the real-time measure-
ments. The analysis can be then validated using simulation-based analysis. As
suggested in [8], the analysis should be comprehensive and proactive with look-
ahead analysis. A coordinated control based on online security assessment and
online restoration plans are necessary to make the grid self-healing.

5.3 Modeling of thermostatically controlled loads (TCL)

Though the concept of “Load Following Supply” existed earlier, DR is now emerging
as an important feature in smart grid paradigm with the help of Information Com-
munication Technology (ICT). DR broadly classified into price based and incentive
based has been extensively studied and analyzed in various aspects. The focus was
mainly on peak clipping, load shifting and demand control schemes. For residential
load control, TCLs like heating, ventilating, and air conditioner (HVAC) loads are
considered as they cause minimum inconvenience to the users.

The feasibility of such HVAC load control was studied in [9]. Aggregation of
these loads and the impact of DR were studied in [10]. In [11], an On/OFF scheme
for HVAC units was discussed. A control scheme that manipulates the thermostat set
point of such loads to balance fluctuations from intermittent renewable generators
was developed in [12]. A change in thermostat set point results in a change in state
of the unit and this has been modeled and studied in [13]. Thermostat set point was
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considered to be varying with market price based on a predefined linear relation. But
a scheme that can find the optimal thermostat set point corresponding to market price
that varies in real time was not studied from a consumer perspective.

Dynamic characteristics of TCL and aggregated response of such loads had been
studied and modeled using a set of ordinary and partial differential equations called
Coupled Fokker Planck Equations [14]. “Load Following capability” of these loads
when they are under a minimum variance control law was studied in [12]. The coupled
Fokker Planck equations are detailed in Appendix A. Later in [15], a transfer function
that provides the aggregate response ofTCL units to uniform disturbances was derived.
But the limitation of the model is the assumption that the magnitude of disturbance
applied to the thermostat set point is negligible when compared to the deadband zone
of the thermostat set point. But with consumers aiming at minimizing the increase in
amount paid by reducing the thermostat set point, this assumption will not be valid.

This section presents a mathematical formulation to determine the optimal ther-
mostat set point corresponding to the market price is provided for price based demand
response from a consumer perspective. The scheme being from a consumer perspec-
tive aims at finding the optimal thermostat set point that will minimize the increase
in amount paid due to increase in price issued by the system operator.

When there is an increase in electric price signal, DR is expected from the cus-
tomers contracted for price-based DR. Customers can adjust their consumption by
adjusting the thermostat set point of HVAC loads (TCL) to exercise DR, instead of
load shifting or load shedding. In this section, the change in power consumption in a
TCL unit due to change in thermostat set point is derived.

HVAC loads are specified by their energy efficiency ratio (EER) which is
defined as

EER = COP ∗ 3.413 (5.1)

where COP is the coefficient of performance given by [16]

COP = Work Done(Q)

Electric Power Input(Pinput)
(5.2)

Work done (Q) by the HVAC unit is given by

Q = m ∗ Cp ∗ (Tout − Tin) (5.3)

where
m is the mass of the coolant; Cp is the specific heat capacity of the coolant; Tout is
the outside temperature; Tin is the inside temperature. Assuming thermostat set point
to be the same as inside temperature, change in work done (�Q) for a change in
thermostat set point (�Tst) is

�Q = −m ∗ Cp ∗�Tst (5.4)
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A change in work done (�Q) results in a change in electric power consumed (�Pinput),
given by (5.2). Thus

�Pinput = �Q

COP
(5.5)

�Pinput = −m ∗ Cp ∗�Tst

COP
(5.6)

Equation (5.6) establishes a linear relation between change in thermostat set point
and change in power consumed by the HVAC unit. An increase in electricity price,
initiates DR because customers aim at reducing the increase in total amount paid.
It shows that DR contracted customers can adjust their thermostat set point so as to
reduce the power consumption. Thus an increase in price can be responded with an
increase in thermostat set point so as to reduce the power consumption and in turn
reduce the increase in amount paid.

Let ρ1 $/W be the current rate at which consumers are charged. Thus amount
paid (P1) for an input power, D1, of HVAC units is

P1 = ρ1 ∗ D1 (5.7)

Let ρ2 $/W be the new rate, such that ρ2 >ρ1. Then the amount to be paid (P2
1)

for the same input power, D1, is

P1
2 = ρ2 ∗ D1 (5.8)

Customers aim to minimize the increase in amount paid by exercising DR. This
results in change in demand from D1 to D2 = D1 + �D. Thus amount paid becomes

P2 = ρ2 ∗ D2 (5.9)

The increase in amount paid (�P) is

�P = P2 − P1 = (ρ2 − ρ1) ∗ D1 + ρ2 ∗�D (5.10)

Substituting (5.6),

�P = (ρ2 − ρ1) ∗ D1 − ρ2 ∗ m ∗ Cp ∗�Tst

COP
(5.11)

Figure 5.3 shows the relation between the increase in amount paid and the change
in thermostat set point.

Customer objective is to minimize the difference in amount paid. The optimal
difference in amount paid should be zero. The initial difference in amount paid is
�P1 and shown as operating point, A(�Tst1, �P1) in Figure 5.4. The operating point
corresponding to optimal difference in amount paid is B(�Tstdesired , 0).

The optimal operating point is achieved by increasing the thermostat set point to
the value given by (5.11). Thus price-based demand response contracted customers
can exercise DR, by adjusting the thermostat set point to an optimal value which will
minimize the increase in amount paid (due to increase in price signal) to zero. Another
advantage of the proposed scheme is that consumers need not turn off theirTCL/HVAC
loads for DR, making DR scheme much more attractive with more participants.
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Figure 5.3 Increase in amount paid versus change in thermostat set point
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Figure 5.4 The optimal change in thermostat set point for price-based DR

5.4 DR from aggregated TCLs—load model

The price-based DR scheme discussed in the previous section determines the optimal
thermostat set point change required to exercise DR. In this section, a transfer function
for the response of aggregated TCLs to the change in thermostat set point is derived.
The model is based on the Coupled Fokker-Plank equations (CFPE) [14] that describe
the aggregated behavior of TCLs. An exact solution for the CFPE was given in [12],
so as to model the change in power demand in aggregated population of TCL due to
change in thermostat set point under minimum variance control law. Aggregate power
response model in a homogeneous population of TCLs was derived in [15] based on
the exact solutions of CFPE. In this section, the exact solution of CFPE is utilized
to model the change in power consumption in aggregated TCL due to the change in
thermostat set point to optimal value as defined in the previous section.

Consider “N” homogeneousTCLs at thermostat set point θ 0 with dead band of�.
Let P be the power drawn by the TCL. The dynamic characteristic of the TCL is shown
in Figure 5.5. θ0

− from θ0
+ is the heating period and θ 0

+ to θ0
− is the cooling period.
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Figure 5.5 Dynamics of thermostatically controlled loads

The expressions for time taken to reach temperature θn during cooling period
tc(θn) are [15]

tc(θn) = C ∗ R ∗ ln

(
PR + θ 0

+ − θamb

PR + θn − θamb

)
(5.12)

and during th(θn) is

th(θn) = C ∗ R ∗ ln

(
θamb − θ0

−
θamb − θn

)
(5.13)

where,
C is the thermal capacitance; R is the thermal resistance; θamb is the ambient
temperature.

In steady-state cooling time, constant TC and heating time constant TH are defined
as [15]

TC = CR ∗ ln

(
PR + θ 0

+ − θamb

PR + θ 0− − θamb

)
(5.14)

TH = CR ∗ ln

(
θamb − θ0

−
θamb − θ0+

)
(5.15)

The ON probability density curve f1(θ ) and OFF probability density curve f0(θ )
for aggregated TCLs are shown in Figure 5.6.
Where

f1(θ ) = C ∗ R

(TC + TH ) ∗ (PR + θ − θamb)
(5.16)

f0(θ ) = C ∗ R

(TC + TH ) ∗ (θamb − θ )
(5.17)

These functions define the probability of a TCL load to be in either ON state or
OFF state. These are obtained by solving the CFPE equations [12].
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5.4.1 Transfer function of aggregated response of TCL units

A change in thermostat set point, δ, causes a shift in the temperature band of operation
[θ−, θ+]. To study the response due to change in thermostat set point, four different
TCL conditions namely a, b, c, and d are considered on the probability density curve,
as shown in Figure 5.7.

The power consumption waveforms for the four operating points at the initial
thermostat set point and the new thermostat set point are provided in Figure 5.8. Initial
waveform is shown using dotted lines and power waveform after demand response is
shown in thick lines.

From Figure 5.8, a difference in power consumption can be observed. The ON
time is reduced and OFF time is increased when thermostat set point increases for
demand response.

The difference in power consumed before and after demand response is the pri-
mary concern and thus the power gain at each operating point has to be determined
in detail.

The power gain for operating point a is shown in Figure 5.9.
It is observed that the power gain after θ+ occurs after cooling period which is

in hours. Hence for applications like Load Frequency Control, power gain after θ+
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Figure 5.9 Power gain waveform for TCL units at operating point a

need not be considered. Thus the waveform relevant to LFC time frame is the power
gain waveform from θa to θ+. The Laplace transform of the relevant waveform is
computed and the total power gain for aggregated TCL units operating at point a is
calculated by integrating the transform over the distributions f0. Integration is done
over f0 because the operating point considered lies in the off period.

Thus the total power gain from TCLs at operating point a is

Pa(s) =
∫ θ0+

θ−
f0(θa) ∗ Ga(s)dθa (5.18)
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where Ga(s) is the Laplace transform of the difference in power consumption before
and after DR of loads at operating point a given by

Ga(s) = P ∗ e−sτa ∗ (e−sτδ − 1)

s
(5.19)

and τa = TH − th(θa) τδ = T 0
C − t0

c (θ−) which can also be defined as τδ = TH − t0
h (θ0

+)
Operating point b is shown in Figure 5.10.
The difference in power i.e. power gain after θ0

− occurs after a time period equiva-
lent to the heating period before DR, which is in hours. Thus the Laplace transform of
the relevant waveform from θb to θ0

− is computed and the total power gain is calculated
by integrating over the distributions f1. The total power gain from TCLs at operating
point b is

Pb(s) =
∫ θ0+

θ−
f1(θb) ∗ Gb(s)dθb (5.20)

where
Gb(s) is the Laplace transform of the difference in power consumption of loads at b,
given by

Gb(s) = P ∗ e−sτb ∗ (e−sτδ − 1)

s
(5.21)

and
τb = t0

c (θ−) − t0
c (θb) which are given by (5.12) with respect to temperature set point

before DR.
The power gain waveform for TCL units at operating point c is shown in Fig-

ure 5.11. Similar to point a, in operating point c power gain after θ+ occurs after
cooling period. Thus the Laplace transform of the waveform from θc to θ+ is com-
puted and the total power gain is calculated by integrating over the distributions f0.
The total power gain from TCLs at operating point c is

Pc(s) =
∫ θ−

θ0−
f0(θc) ∗ Gc(s)dθc (5.22)
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Figure 5.10 Power gain waveform for TCL units at operating point b
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where Gc(s) is the Laplace transform of the difference in power consumption of loads
at c given by

Gc(s) = P ∗ e−sτc ∗ e−sTH (1 − esτδ )

s
(5.23)

and
τc = t0

h (θ−) − t0
h (θc) with respect to initial temperature set point. In operating point d,

the power gain is as shown in Figure 5.12. The Laplace transform of the waveform
from θd to θ 0

− is computed and the total power gain is calculated by integrating over
the distributions f1. The total power gain from TCLs at operating point d is

Pd(s) =
∫ θ−

θ0−
f1(θd) ∗ Gd(s)dθd (5.24)

where
Gd(s) is the Laplace transform of the difference in power consumption of loads at d
given by

Gd(s) = P ∗ (e−s(τd−τδ ) − 1)

s
(5.25)

and τd = T 0
C − t0

c (θd) + τδ
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Thus average change in power due to demand response from “N” TCL units is
given by

Pavg(s) = Pa(s) + Pb(s) + Pc(s) + Pd(S) = −P ∗ (esτ2
δ − 1)

s(TC + TH )
(5.26)

The above equation is the transfer function for the change in power from aggre-
gated thermostatically controlled loads that execute price based demand response by
adjusting the thermostat setpoints.

5.5 Automatic generation control (AGC)

Once a generating unit is tripped or a block of load is added to the system, the power
mismatch is initially compensated by an extraction of kinetic energy from system
inertial storage. This causes system frequency to decline as speed decreases. As
system frequency decreases, power taken by loads decreases. Thus equilibrium for
large systems is often obtained at the resulting new frequency. If the mismatch is large
enough to cause the frequency to deviate beyond the governor deadband of generating
units, their output will be increased by governor action. Many governor deadbands
are beyond 35 mHz.

Interconnected systems are formed by allowing tie line flows between genera-
tion plants. This helps in sharing resources during emergencies and during normal
operating conditions in economics of power production. For control analysis, this
interconnected system is divided into control areas. Each control area has an Energy
Control Centre to monitor the change in system frequency and the change in tie-line
flow. Power systems utility in a geographical area has control over certain generator
units to provide secondary control that allocates generation. This control scheme is
called load frequency control (LFC). As frequency control is achieved by automati-
cally changing generation, it should also be ensured that the change in generation of
each plant is economical. Thus LFC followed by economic dispatch (ED) completes
the objective of the system and the cycle is called AGC.

The objectives of AGC are to [17]

1. Minimize mismatch between generation and load
2. Maintain system frequency at nominal value
3. Maintain Tie-line flow in interconnected systems (area) at the scheduled value
4. In an area, generation sharing must be at optimal value, i.e. economical

The first three objectives come under the term load frequency control and the
last objective comes under economic dispatch. Thus AGC is complete only when load
frequency control scheme is followed by economic dispatch. AGC scheme can be
considered to have three levels of control:

1. Primary control
2. Secondary control
3. Tertiary control
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It should be noted that AGC is not expected to limit the magnitude of the first
frequency swing which occurs within the seconds after the loss of a block of generation
or load in the system. Generation changes are realized by sending control signals to
the units. Thus the design of AGC depends on how the unit responds to the signal [18].

5.5.1 Primary frequency control

Traditional load frequency control is based on the electromechanical dynamics of the
system, which is described by the swing equation [19]

2H
�ω

�t
= (Tm − Te) (5.27)

where,
H is the inertia constant (seconds); ω is the rotor speed; Tm is the mechanical torque;
Te is the electrical torque.

The relationship between power, P, and torque, T, is given by

P = ωr ∗ T (5.28)

Considering a small deviations �P, �T from initial values P0 and T0 respectively,
we get

P0 +�P = (ω0 +�ωr) ∗ (T0 +�T ) (5.29)

On further simplification of the above equation,

�P = ω0 ∗�T + T0 ∗�ωr (5.30)

�P occurs due to difference in mechanical power �Pm and electrical power �Pe as
given in

�P = �Pm −�Pe (5.31)

At steady state, T0 is equal to 0. At per unit, ωr = 1. Then

�Pm −�Pe = �Tm −�Te (5.32)

Load can be classified as frequency independent and frequency dependent,

�Pe = �PL + D ∗�ωr (5.33)

where,
�PL is the non-frequency-sensitive load change,
D*�ωr is the frequency-sensitive load change, and D is the load-damping constant.

Governor and turbine are modeled as the first-order system. The transfer function
for Governor with time delay Tg is

G(s) = 1

1 + sTg
(5.34)

Turbine transfer function with time delay Tt is

T (s) = 1

1 + sTt
(5.35)
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Speed governors accomplish primary frequency control. The ratio of steady-state
frequency deviation�f to change in valve position so as to change power output�Pm

is referred to as the speed regulation or droop R,

R = percent change in speed or frequency

percent change in power output
∗ 100 (5.36)

Primary speed control action will result in steady-state frequency deviation. The
deviation in frequency is shown in Figure 5.13.

The initial steady-state operating point is A (P0, f0). An increase in load results
in a deviation in frequency and the droop characteristics of the governor results in an
operating point B (P1, f1). The entire control area can be modeled as transfer function
in Figure 5.14.

The single area scheme for primary frequency control involves governor with the
speed droop characteristics, turbine model, and the combined generator load model.
This is sufficient to minimize very small variations in system frequency.
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Figure 5.13 Deviation in frequency with increase in load
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Figure 5.14 Primary level of frequency control
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5.5.2 Secondary frequency control

The primary control scheme as given in Figure 5.13 shows that steady-state error i.e.
�f �= 0. This can be achieved by shifting the generator curve to reach the operating
point C as shown in Figure 5.15. Hence, a control action is required to maintain the
frequency at nominal value by minimizing the steady state error. This can be achieved
using an integral controller. The load frequency control for a single area system is
shown in Figure 5.16.

The control signal issued by the controller acts as governor reference set point,
which is capable of minimizing the steady-state error to zero. An integral controller
integrates the change in frequency over time and produces a signal. This signal is then
fed to the speed governor as the reference set point.

5.6 Dynamic demand control (DDC)

The “load follows supply” concept based on frequency adaptive power energy sched-
uler (FAPER) was introduced in [6]. An active role for intelligent loads in frequency
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Figure 5.17 DDC model for frequency regulation

control was proposed in [9]. This leads to the concept of DDC. DDC implies an
optimal load control strategy suitable for controlling real power demand based on
frequency deviation that occurs due to generation-load imbalance. Through DDC the
load follows supply concept is found to be effective for regulating frequency [20].

DDC will be useful in cases where wind penetration is high. Loads whose utility
to the consumer is a function of the energy consumed over a period of time rather
than their instantaneous power consumption are used for DDC. Thus in order to match
power demand and power supply, DDC can be used along with AGC. Advantages of
DDC are (1) Fewer generators would require speed governor control and thus allowing
to work under fixed power loading, thus more efficient power plant operation. (2)
Improves system stability. In distributed generation, or smart grid, the variation in
system load is a combination of actual load uncertainties and fluctuations in generation
from renewable distributed generation. This may lead to situation in which every
MW of renewable generation must be backed up by a MW of fossil fuel capacity.
A demand-based frequency control eliminates this constraint by reducing the level
of generation based frequency control [21]. In this section, the load model derived
from the price-based DR model for aggregated thermostatically controlled loads is
discussed.

The generator-load model described in Figure 5.16 contains non-frequency sen-
sitive and frequency sensitive component of loads. In addition to this model, the
price-based DR model is introduced as shown in Figure 5.17. The price-based DR
model represents the DDC model which is based on frequency deviation in the system.
The required control in demand is achieved through price-based DR of aggregated
model of thermostatically controlled loads in the single area.

Figure 5.17 shows the block diagram of load frequency control in which, in
addition to change in generation, change in load is also incorporated. �Pl is the
change in load and �Pg is the change in generation. �f is the frequency deviation.
For small frequency variations, a change in load is used instead of changing generation
whereas for large variations a generation change is essential. During contingencies,
the load is shed to maintain the system frequency at 50 Hz.

5.7 Simulink model

Let a TCL with coefficient of performance (COP) 2.92 and m, Cp equal to 1, be
contracted for price-based demand response. For a change in price signal sensed, the
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Table 5.1 Increase in price signal and the corresponding
increase in thermostat set point

Increase in price signal Increase in thermostat
set point

3 units to 4 units 0.75
3 units to 5 units 1.2
3 units to 8 units 1.8
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Figure 5.19 Governor—turbine model

corresponding optimal change in thermostat set point required is given in Table 5.1.
It can be observed that the scheme which is capable of minimizing the increase in
amount paid by the customer cause minimum inconvenience to them, as the increase
in thermostat set point required for DR is within the thermal comfort level.

The aggregated TCL DR model is then applied to a single area AGC scheme.
A single area system with 2 steam turbine units with reheat was considered as in
Figure 5.18.

In this system, the deadband nonlinearity of governor as well as the generation
rate constraints was included as shown in Figure 5.19. A single area LFC with real-
time pricing scheme based on frequency deviation [22] was considered. Real-time
price which is proportional to the initial df /dt value [22] is assumed to be known at
the system operator with the help of phasor measurement units. The parameters of the
single area system are provided in Appendix B. System operator sends price infor-
mation signals to the customers that participate in DR. The delay in communication
is assumed to be negligible. 1,000 TCLs were assumed to be available for DR.

A single area system with a step load change of 0.01 p.u. was simulated in Mat-
lab/Simulink. The load frequency control scheme with and without price-based DR
is compared and the change in frequency and generation are provided in Figure 5.20.
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Figure 5.21 Change in generation for 0.01 p.u. step load change

The change in generation for 0.01 p.u. step change in load, when DR was included
in the AGC scheme, is given in Figure 5.21.

The system was the simulated for a load change of 0.02 p.u. The change in
frequency is given in Figure 5.22.

The corresponding change in generation required when demand response was
included in the scheme is given in Figure 5.23.

Simulation for a step load change of −0.03 p.u. was done and the change in
frequency is shown in Figure 5.24.

The change in generation required in DR-based AGC is given in Figure 5.25.
A step load change of −0.04 p.u. was also simulated. The frequency deviation in

this case is provided in Figure 5.26.
The change in generation in this case is shown in Figure 5.27.
Aggregation of TCL loads that are contracted for price-based DR is modeled to

obtain the change in power consumed by these loads when a change in thermostat set
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point occurs. The model is then applied to load frequency control scheme for a single
area system. The increase in generation required when there is an increase in load
can be reduced when demand response is included into LFC scheme. The results are
tabulated in Table 5.2.

Aggregation of TCL loads that are contracted for price-based DR is modeled to
obtain the change in power consumed by these loads when a change in thermostat set
point occurs. The model is then applied to load frequency control scheme for a single
area system. The increase in generation required when there is an increase in load can
be reduced when demand response is included into LFC scheme.
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Table 5.2 Increase in price signal and the corresponding increase in thermostat set
point

Step change in load Change in generation
Without DDC With DDC

+0.01 +0.01 +0.00707
+0.02 +0.02 +0.01214
−0.03 −0.03 −0.01731
−0.04 −0.04 −0.02731

Appendix A: Modeling of aggregated TCL loads using coupled
Fokker–Planck equations

Considering the probability distribution by temperature of aggregated homogeneous
thermostatically coupled loads (TCL), i.e. a population of TCL units, a set of
equations called Coupled Fokker–Planck Equations (CFPE) was used to model the
dynamics of aggregate TCL units [14].

Coupled Fokker–Planck equations
Let θ (t) be the temperature of a TCL unit at time (t). Let the probability densities
of loads in the on state be f1(θ , t) and for off state be f0(θ , t). Let C be the thermal
capacitance (kWh/deg C), R be the thermal resistance (deg C/kW)
θa be the ambient temperature, P is the rate of energy transfer due to operation of
TCL. (kW)

Then the CFPE equations are

∂

∂t
f1 = ∂

∂θ

[(
θ (t) − θa

CR
+ P

C

)
f1

]
+ σ 2

2

∂2

∂θ2
f1 (5.37)
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∂

∂t
f0 = ∂

∂θ

[(
θ (t) − θa

CR

)
f0

]
+ σ 2

2

∂2

∂θ2
f0 (5.38)

Let a represent the region where temperature is less that the deadband (θ−) and
b denote the region within the deadband (θ− to θ+). c represents temperature greater
than deadband. The boundary conditions at upper and lower limits of thermostat
deadband to enforce the conservation of probability are

∂

∂θ
f0a(θ−, t) − ∂

∂θ
f0b(θ−, t) − ∂

∂θ
f1b(θ−, t) = 0 (5.39)

∂

∂θ
f1c(θ+, t) − ∂

∂θ
f0b(θ+, t) − ∂

∂θ
f1b(θ+, t) = 0 (5.40)

At the limits of deadband, the natural boundary conditions are

f0a(θ−, t) = f0b(θ−, t) (5.41)

f0b(θ+, t) = f1b(θ−, t) = 0 (5.42)

f1a(θ+, t) = f1b(θ+, t) (5.43)

f1c(∞, t) = f0a(−∞, t) = 0 (5.44)

The total probability mass in the system is unity and hence
∫ θ−

−∞
f0adθ +

∫ θ+

θ−
(f0b + f1b)dθ +

∫ ∞

θ+
f1cdθ (5.45)

These equations form the complete system of CFPE equations to model the
dynamics of a population of homogeneous TCL units

Appendix B: Single area AGC system parameters

The parameters of the single area system used for simulation are as shown inTable 5.3.

Table 5.3 Single area system parameters

Parameter Value

Inertia constant, H 5 sec
Damping constant, D 8.33*10−3 p.u. MW/Hz
Turbine time constant, Tt 0.3
Steam turbine reheat constant, Kr 0.5
Steam turbine reheat time constant, Tr 10 s
Governor time constant, Tg 0.08
Governor Droop, R 2.4Hz/p.u. MW
Change in load, �PL 0.01 p.u.
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Chapter 6

Electric vehicle massive resources mining and
demand response application

Yun Zhou1 Donghan Feng1 and Chen Fang2

6.1 Introduction

In 2020, the sales volume of electric vehicles (EVs) in China reached 1.367 million.
A rapid growth trend was witnessed by the huge increment of electric vehicles in
past the several years. By the end of 2020, China has nearly 5 million new energy
vehicles. Meanwhile, China’s charging infrastructure has reached 1,681,000 units. It
is expected that the global penetration rate of new energy vehicles will exceed 30% in
2030. At that time, the number of electric vehicles in China is prospected to be 80–100
million. As the largest EV market in the world, China has unique conditions to develop
and study the interactive application of EVs and power grid. The power system can
have a chance of promoting comprehensive innovation thanks to the booming of the
EV industry. A smart energy transportation network, that can participate in the grid
demand response (DR) timely, would possibly consist of massive EVs, the power grid,
renewable energy network and transportation network.

Because of the inherent mobile energy storage characteristics of EVs, flexible
large-scale EV clusters have great potential in power load regulation, renewable energy
consumption, power quality improvement, etc. Thus EVs can be used to participate
in auxiliary services such as peak shifting and valley filling, frequency regulation,
emergency support so as to interact friendly with the grid. In recent years, many
cities in China have tried to include EVs in the pilot and made positive exploration in
vehicle network interaction.

6.2 Development status and trend of EVs and charging
infrastructure

Under the background of energy saving, carbon emission peak, and carbon neutrality,
the technologies of EVs and public charging infrastructure have developed rapidly and

1Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
2Electric Power Research Institute, State Grid Shanghai Municipal Power Company, Shanghai, China
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gained significant attention over the last few years around the world. The discussion
of this section mainly focuses on the development status of EVs, the construction
situation of charging infrastructure, and the governments’ supporting policies.

6.2.1 Development status of EVs

As an effective vehicle technology, EVs can reduce the greenhouse gas emissions
and gasoline consumption obviously [1]. According to the data from EV Sales Blog,
3,124,793 EVs (battery EVs (BEVs) and plug-in hybrid EVs (PHEVs)) were sold
worldwide in 2020, of which more than 68% were pure EVs (PEVs) [2].

The detailed EVs sales worldwide in 2020 are summarized in Table 6.1. Tesla,
Volkswagen, SAIC Motor, Renault-Nissan-Mitsubishi, and BMW Group occupied
the top five spots in the sales chart. The total share of the top five is 51.7%, and other
EVs’ electric car brands’ shell has taken over 48.3%.

Figure 6.1 shows the ownership of new energy vehicles (NEVs) in China from
2016 to 2021. The number of EVs has been steadily increasing from 2011 to 2021. At
the end of June 2021, the number of NEVs nationwide reached 6.03 million, which
accounts for 2.06% of the total number of vehicles in China. In addition, there are
4.93 million BEVs among them, occupying 81.68% of all NEVs. The proportion of
NEVs in newly registered vehicles has increased to 7.80% in 2021, which means one
is a new energy vehicle in per 14 newly registered vehicles [3].

Table 6.1 The sales volume of EVs in 2020

Brands Tesla Volkswagen SAIC Renault–Nissan– BMW Others Tesla
Mitsubishi Alliance

Sales 499,535 421,591 272,210 226,975 195,979 1,508,503 499,535
Market 16% 13% 9% 7% 6% 48.3% 16%
share

0

20,00,000

40,00,000

60,00,000

2016 2017 2018 2019 2020

2016–2020 ownership of new energy 
vehicles in China

New energy vehicles Battery electric vehicles

Figure 6.1 2016–20 ownership of new energy vehicles in China
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6.2.2 Construction situation of charging infrastructure

The construction of energy supply infrastructures is the foundation and prerequisite
for the large-scale promotion and application of EVs. By the end of 2020, there were
4.92 million NEVs on China’s roads. At the end of April 2021, there are 0.87 million
EV chargers for public use in China, including 41.82% DC charging piles and 58.28%
AC charging piles. That means around 6 EVs share one EV charger.

In Figure 6.2, a schematic diagram of a public EV charging station with photo-
voltaic and energy storage systems (PV-EES-EV charging station) is presented. The
EV chargers for public use are mainly located in Guangdong Province, Shanghai
City, and Beijing City. At the end of April 2021, Guangdong Province ranks the
first with approximately 119,000 public chargers, while Shanghai comes second with
86,000 and Beijing occupies the third with 83,000. The top 10 provinces account for
72.10% of total public EV chargers in mainland China. As for the operator, at the
end of February 2020, TELD occupies over 28.7% share of the market. Star Charge
occupies approximately 24.5%, and State Grid occupies around 15.9% [4].

Besides the public charging network, expanding private charging infrastructure
is also significant support to develop the mobility characteristic of EVs [5]. Taking
Shanghai City as an example, for private EV chargers installed in residential areas,
EV users pay according to the inexpensive residential electricity price standard. And
from 2016, for a newly constructed residential communities in Shanghai, 100% of
parking spaces should equip or reserve installation conditions for EV chargers [6].

6.2.3 Governments’ supporting policies

Governments around the world took various measures to increase policy support for
EVs. The State Council of China published the ‘Guidance on accelerating construction

Battery energy
storage system

PV system

Monitoring system

Distribution system

Figure 6.2 Public PV-EES-EV charging stations
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Table 6.2 China’s supporting policy issued on 09 September 2015

Goal To 2020, the EV charging infrastructure should meet the charging demand of
more than five million vehicles.

Guidance According to the “piles and station first” requirement, orderly promote the
construction, ensuring that the construction scale is moderately ahead.

Planning For new residential, the supporting parking spaces with charging facilities or
and design reserved construction conditions should be 100%;

For large public buildings, the ratio between the public parking lot with
charging facilities or reserved construction conditions and parking lot without
charging facilities is not less than 10%;
Every 2,000 EVs at least support the construction of a public charging station.

of the EV charging infrastructure’ on 09 September 2015. The goal, guidance,
planning and design of the supporting policy are summarized in Table 6.2.

For the latest policy in China, on 2 November 2020, the State Council issued
a development plan for the new energy vehicle industry from 2021 to 2035 aiming
at accelerating the country into an automotive powerhouse. The plan put forward
five important tasks including technological innovation ability, building new-type
industry ecosystems, advancing industrial integration and development, perfecting
the infrastructure system, and deepening opening-up and cooperation [7].

6.3 EV massive resources digging and DR capability/potential
evaluation

With the support of national policies and the development trend of new power sys-
tems, EVs have occupied an increasingly important position. Large-scale EVs will
bring opportunities and challenges to the grid at the same time. Because of the uncer-
tainty and randomness of the behavior of EV users, it will increase the difficulty of
optimization and control of the grid. If the resources of EVs cannot be used reason-
ably, large-scale EVs are charged during the peak load period, which will aggravate
the distance between the peak load and the valley load of the grid and increase the
burden on the power system. On the contrary, if the charging load resources of EVs
are fully dug, friendly interaction between EVs and the grid can be realized, and the
consumption of renewable energy will be promoted.

6.3.1 EV massive resources digging

In order to effectively realize the friendly interaction between large-scale EVs and
the power grid, fully exploring the charging load resources of EVs on the basis of
considering the uncertainty and randomness of the behavior of EV users is necessary.
On the one hand, the charging load resource can be modeled and predicted based on
the historical data of EVs, and, on the other hand, the real-time dispatchable energy
of EVs can be evaluated by obtaining real-time data of EVs.
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6.3.1.1 Prediction of EVs charging resources based on historical data
Based on trip chain theory and EV user behavior, an EV charging load forecasting
model is established for quick charge station operators [8]. It is possible to predict
the charging load of a large-scale EV group in a wide area, and the result has a high
reference value for the construction of charging facilities and the operation of the grid.

First, the characteristics of EVs trips are analyzed based on the travel statistics
(such as the 2017 National Family Travel Survey (NHTS) statistics). To abstract the
behavior patterns of EV users, a large amount of data should be recorded. For each
closed trip chain, all necessary data should be collected, including plug-in time, plug-
out time, trip duration, trip length, average velocity, and so on. According to the
number of different types of trip chains, the proportion of every type of trip chain
can be obtained. Through the kernel density estimation method to process the data,
the distribution of these parameters to describe the behavior patterns of EV users can
also be obtained [8].

Second, based on the travel characteristics and geographic information of EVs,
the Monte Carlo simulation method is an effective way to simulate the travel behavior
of each electric vehicle in the city to obtain the spatiotemporal characteristics of
the charging behavior of each vehicle. The load is superimposed according to the
temporal and spatial characteristics, and the charging load of each location (POI,
point of interest) within the city (or part of the administrative division) at each time
period is obtained.

Finally, based on the obtained charging load of all locations, the prediction result
of the total charging load in a wide area can be obtained. In addition, the kernel
density estimation method can be used for smoothing, and thermal analysis of the
charging load can be used to grasp the thermal characteristics of the charging load.

Using this method to predict the charging load in the Shanghai area has produced
relatively good results in Figure 6.3. The result is better in line with the actual charging
load situation in Shanghai.

Kernel density

0

3.67747×109

Figure 6.3 Charging load results by the modeling prediction
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6.3.1.2 Evaluation of EVs dispatchable capacity based on
real-time data

First, evaluate the dispatchable capacity of one EV in real-time information. The real-
time data includes the current capacity status of the EV, the end charging time, and
the desired capacity status when leaving. These real-time data can be used to obtain
the real-time dispatchable capacity of each EV:

SEVbase
j,t+�t = SEVdep

j −
(

tplug-out
j − (t +�t)

)
× Pmax × ηch (6.1)

P+
j,t = min

{
Smax − SEV

j,t

�t × ηch
, Pmax

}
(6.2)

P−
j,t =

⎧
⎪⎪⎨

⎪⎪⎩

SEVbase
j,t+�t −SEV

j,t

ηch×�t
, if SEVbase

j,t+�t > SEV
j,t

max
{

SEVbase
j,t+�t −SEV

j,t

ηdis×�t
, −Pmax

}
, if SEVbase

j,t+�t ≤ SEV
j,t

(6.3)

where SEV
j,t presents the capacity of the jth EV at the current moment, SEVbase

j,t+�t presents

the minimum capacity of the jth EV at the next moment tplug-out
j presents the end

charging time of the jth EV, P+
j,t , P−

j,t present the power of the jth EV can be adjusted

up and down at the current moment respectively, SEVdep
j presents the desired capacity

when the jth EV leaves, Pmax, Smax present the upper limit of charging power and the
upper limit of capacity, respectively, ηch, ηdis present the charging and discharging
efficiency, respectively.

The meaning of (6.1)–(6.3) is to calculate the power space that the EV can be
adjusted up and down during the evaluation period. For each EV, its maximum power
does not exceed Pmax, nor does it exceed the power that can fully charge its battery
at the next moment. Considering V2G, EVs also need to ensure that if the EV is off
the grid at the next moment, its energy is not lower than SEVbase

j and the maximum
discharge power cannot exceed −Pmax.

In the entire charging cycle of each EV, as long as the power constraints and
capacity constraints are met, the dispatchable capacity of the entire charging cycle
can be evaluated. In addition, charging and discharging frequently for EVs can cause
serious battery life loss [9]. The deeper the depth of discharge, the greater the life
loss. Therefore, the lower limit of the EV energy can be specified to calculate the
real-time dispatchable capacity of the EV considering the battery life loss:

⎧
⎪⎨

⎪⎩

−Pmax ≤ Pj,t ≤ Pmax t ∈
[
tplug-in
j , tplug-out

j

]

Pj,t = 0, t /∈
[
tplug-in
j , tplug-out

j

] (6.4)

SEV
j,t+�t = SEV

j,t + η(Pj,t) × Pj,t ×�t (6.5)
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Figure 6.4 Dispatchable capacity of one EV during the entire charging cycle

η(x) =
⎧
⎨

⎩

ηch, if x > 0
1, if x = 0
ηdis, if x < 0

(6.6)

SEV
j,tplug-out

j
≥ SEVdep

j (6.7)

Smin ≤ SEV
j,t+�t ≤ Smax (6.8)

where tplug-in
j presents the start charging time of the jth EV. According to the constraints

(6.4)–(6.8), the dispatchable capacity of one EV during the entire charging cycle can
be analyzed. It is shown in Figure 6.4.

The dispatchable capacity of each EV is insignificant to the grid, so it is nec-
essary to evaluate the dispatchable capacity of large-scale EVs from the perspective
of an aggregator. Accumulating the real-time dispatchable capacity of EVs in the
corresponding time period can obtain the dispatchable capacity of the aggregator.
The dispatching resources can be used to participate in auxiliary services, including
frequency regulation and emergency support of the power grid, thereby interacting
friendly with the power grid.

6.3.2 EVs in DR capability/potential evaluation

V2G technology can enable mass EVs to realize energy storage functions. As a typical
representative of user-side and distributed new energy storage, EVs have important
development potential in the application of new power systems.

Large-scale EVs can provide: power from megawatts to gigawatts or more; con-
tinuous discharge time with hour level; response speed with a minute and second
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level; accurate control and the stability at any power point; bidirectional adjustment
capability as a load to charge or a power source to discharge.

According to these different characteristics, EVs are the potential resource to par-
ticipate in the auxiliary services, including peak shifting and valley filling, frequency
regulation, emergency support so as to interact friendly with the grid.

6.3.2.1 EVs in peak shifting and valley filling
The characteristics of the high power level and long-term continuous discharge capa-
bility can help EVs participate in the auxiliary service of peak shifting and valley
filling of the power grid. Generally, the DR method is used to organize EVs to par-
ticipate in peak shifting and valley filling. The financial incentive is a commonly
used method to guide the customers in the demand process [10]. The customers can
participate in DR well by controlling their electricity consumption following the need
for power grid. Though the capacity of a single EV is small, a large scale of EVs
can become one of the most potential DR participators. Among them, private cars
are the main body of EVs participating in DR [11]. The travel habits of owners are
usually constant, which is plugging in after work and plugging out before leaving
home. So the plug-in duration of EVs is so easy to overlap with the peak load time
that increases the pressure of the grid. Because of this phenomenon, EVs participating
in peak regulation and valley filling is an effective measure to relieve the peak load
from the disordered charging of EVs [12].

The DR service is carried out in Shanghai, and the resources of EVs are reasonably
regulated through price incentives. In Figure 6.5, it can be seen that the peak charging
load of EVs has transferred part of the low charging load at night through the form
of DR. Therefore, EVs have the potential to participate in peak shifting and valley
filling ancillary services.

6.3.2.2 EVs in frequency regulation
Utilizing the high power level and the ability to quickly and accurately respond to
frequency modulation commands can help EVs participate in the frequency regulation
auxiliary services of the grid. The auxiliary services generally require the participants
to have a second-level responsibility and EVs can meet this requirement well. The
dispatchable capacity of one EV is insignificant for the power grid, so a large number
of EV resources need to be aggregated to participate in the frequency regulation
auxiliary services of the power grid.

With the development of communication technologies such as optical fiber and
wireless communication, real-time monitoring of the charging status of large-scale
EVs can be realized and these real-time charging data and data digging techniques
can be used to improve the accuracy of V2G power capacity evaluation. Through
the “decentralized access and centralized control” mode for large-scale EVs, use
aggregators for unified management and control, and participate in grid dispatching
as a unit of aggregators in Figure 6.6. The aggregator acts as a bridge between the grid
and EVs and it mainly includes two parts: data management system and control system
[13]. The two parts have their own tasks correspondingly. The data management
system is responsible for collecting real-time data and related historical data sent by
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Figure 6.5 The comparison figure of EV charging load with/without control

the battery energy management monitoring system and the power grid dispatching
center. The control system is responsible for analyzing the data and instructions,
optimizing calculations, and obtaining the charging and discharging power of each
EV. The control of the intelligent charging and discharging machine can regulate the
behavior of the charging and discharging power of EVs.

6.3.2.3 EVs in emergency support
With the introduction of large-scale EVs, the distribution network as its main carrier
gradually shows the characteristics of multi-source initiative, which brings new oppor-
tunities to the formulation of power supply restoration strategies for the distribution
network.

Utilizing on-stake EVs can participate in emergency support of the power grid. In
the islanding mode, when the internal power supply in the power outage area cannot
meet the demand for the loads, it can be considered to remove the existing charging
loads of EVs with the high SOC level in turn, so that the important power outage
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Figure 6.6 Information exchange of EVs in frequency regulation

loads can be supplied quickly to improve the reliability of the power grid. In the grid-
connected mode, in addition to cutting off the charging loads of EVs, EVs can exert
their V2G characteristics as the power source to supply power to the outage area. This
mode digs the potential of EV participating in ancillary services more deeply and can
complete the emergency support service better [14].

In addition, it can also play the emergency support function of emergency EVs.
Emergency EVs contain large-capacity energy storage batteries. Compared with ordi-
nary EVs, they have more power storage and higher output power. They can be used
as power sources to maintain the stability during outages. Because of their mobile
feature, they can be allocated to the required nodes for charging and discharging
flexibly during failure recovery.

6.4 The mode of EVs participating in DR

In order to improve the power grid’s regulation and control of EVs in DR, a large-scale
cluster modeling of EVs is proposed in the multi-station and single-station forms.
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For the multi-station mode, we propose an efficient organization and management
structure, and a charging optimization strategy with the goal of minimizing the overall
cost of the grid in the angle of the power grid. For the single-station mode, we propose
a charging optimization strategy that aims at the maximum operating profit of the
station at the angle of the charging station.

6.4.1 Research on multi-station mode participating in power grid DR

In order to quantify the effect and value of EVs participating in grid DR, this section
considers that the output plan of the grid units needs to be formulated in advance.
With the goal of minimizing the grid’s comprehensive costs, the energy optimization
algorithm of the day-ahead stage, as well as efficient solving method are proposed.

6.4.1.1 The DR mechanism for EVs in multi-station mode
In order to improve the efficiency of information transmission and charging control
between the power grid and EVs, aggregators are generally used as middlemen to
uniformly manage one or more charging stations. The aggregator, on behalf of the
grid, issues DR invitations to EV owners before the DR project starts and then obtains
control right over EVs charging from those who agree to participate in the DR, which
is called flexible EV load (Figure 6.7). For those EVs that do not participate in DR
(inflexible EV load), the aggregator is simply a power supplier [15].

Aggregators

ISO

DR 
invitation

Charging 
pattern

prediction

DR 
invitation

Non-EV load 
prediction

EV load 
prediction

DR resource
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Figure 6.7 Structure of DR mechanism for EVs in multi-station mode
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Figure 6.8 Extraction of EV charging behavior cluster

6.4.1.2 Extraction of EVs charging behavior cluster
EV charging behavior can be described by a set of parameters (tplug-in, tplug-out, Ech),
which are composed of start charging time tplug-in, end charging time tplug-out, and
required energy Ech (determined by EV initial SOC, end SOC and battery capac-
ity) (Figure 6.8). This set of parameters can be calculated by aggregators based on
historical charging data. EV charging behavior clusters can be extracted from all EV
parameters and described by a new set of parameters (tplug-in, tplug-out, Ech, v). The main
difference lies in the number of EVs added into the cluster (v). NEV EVs are man-
aged by NA aggregators separately and the sth aggregator clusters its EVs into �s

typical EV charging patterns (s = 1, 2, . . . , NA). Clustered EV charging patterns are
presented as (tplug-in

s,π , tplug-out
s,π , Ech

s,π , vs,π ). Then

NA∑

s=1

�s∑

π =1

vs,π = NEV (6.9)

Extraction of EV charging behavior cluster can significantly decrease the
dimensionality of the optimization model, while the necessary information between
aggregators and the ISO can be simplified meanwhile.

6.4.1.3 Rolling optimization process
Generation scheduling is generally set 24 h in advance, but EVs are usually charged
from night to the next morning, which affects the 2-day unit generation scheduling
[16]. In order to jointly optimize the charging process of EVs and unit scheduling for
two consecutive days, rolling optimization process is utilized.

Figure 6.9 depicts the timeline of the rolling optimization process for ISO to dis-
patch flexible EV load and generation scheduling. The timeline consists of a moving
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optimization window, which includes implemented intervals and unimplemented
intervals. The detailed steps are as follows [17]:

(a) Measure values of variables at the initial time and predict them in the remaining
time period.

(b) ISO schedules resources in an advanced optimization window through the unit
commitment model and executes the optimization strategy in the implemented
intervals.

(c) The state of the power system is constantly updated, waiting for the next
optimization window. Repeat (a) and (b).

6.4.1.4 Charging optimization model in the day-ahead stage
(1) Objective function

min
NG∑

i=1

T∑

t=1

(cpi,t + cui,t + cdi,t) + cEV

∑

t∈ST

PEV,t (6.10)

The objective function in (6.10) is to minimize the comprehensive costs in the power
grid, which is composed of fuel costs, startup costs, shutdown costs and peak regula-
tion subsidies for EV users (Figure 6.10). In (6.10), NG is the number of units; T is the
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intervals in a rolling optimization window for peak regulation; cpi,t , cui,t , and cdi,t are
the generation cost, startup cost, and shutdown cost of unit i at time t, respectively;
cEV is the unit peak regulation subsidy; PEV,t is the total flexible EV load:

cpi,t = CAip
2
i,t + CBipi,t + CCiui,t (6.11)

cui,t = yi,tCStarti (6.12)

cdi,t = zi,tCShuti (6.13)

where pi,t is the generating power of unit i at time t; ui,t is 0-1 binary variable. When
the unit is online/offline, ui,t is 1/0. CAi, CBi and CCi are fuel cost parameters of unit
i. yi,t /zi,t is the binary variable. When the unit i startup/shut down at time t, yi,t /zi,t

is equal to 1. CStarti/CShuti is startup cost/-shutdown cost for one time. Through
the piecewise linearization method, (6.11) can be rewritten as a linear constraint for
simplification [18].

(2) Commitment constraints

ui,t − ui,t−1 = yi,t − zi,t (6.14)

yi,t + zi,t ≤ 1 (6.15)

t∑

k=max (t−Ton,i+1,1)

yi,k ≤ ui,t (6.16)

t∑

k=max (t−Toff,i+1,1)

zi,k ≤ 1 − ui,t (6.17)

ui,tP
min
i ≤ pi,t ≤ ui,tP

max
i (6.18)

pi,t − pi,t−1 ≤ ui,t−1Pup,i (6.19)

pi,t−1 − pi,t ≤ ui,t−1Pdown,i (6.20)

Constraint (6.14) ensures the consistency of start-up variables, shut down vari-
ables and state variables. In constraint (6.15), one unit is restricted to start and shut
down simultaneously. Constraints (6.16) and (6.17) are the minimum startup and
shutdown time constraints, where Ton,i/Toff,i is the minimum startup/shutdown time.
Constraint (6.18) shows the upper limit and lower limit of power generation pi,t . Unit
ramping constraints are shown in constraints (6.19) and (6.20) and Pup,i/Pdown,i is the
maximum ramp-up/ramp-down rate of unit i.

(3) System constraints

NG∑

i=1

pi,t = PD,t + PEV,t + Ploss,t (6.21)

NG∑

i=1

ui,tP
max
i ≥ PD,t + PEV,t + Rt (6.22)
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The power balance of the system is ensured in constraint (6.21), where non-EV load
and inflexible EV load are included in PD,t ; PEV,t represents charging load involved
with DR (flexible EV load); network losses at time t is considered as Ploss,t . The
spinning reserve requirement at time t is represented in constraint (6.22), where Rt is
the spinning reserve capability.

(4) Aggregator-based DR constraints

η
∑

t∈Ts,π

ps,π ,t�t = vs,πEch
s,π (s,π ) ∈ SEV

flexible (6.23)

vs,πPmin
s,π ≤ ps,π ,t ≤ vs,πPmax

s,π (s,π ) ∈ SEV
flexible (6.24)

PEV,t =
NA∑

s=1

�s∑

π =1

ps,π ,t (s,π ) ∈ SEV
flexible (6.25)

SEV
flexible is the set of charging behavior clusters of flexible EV load. For the sth aggrega-

tor, its π th cluster of EV charging behavior is represented as (s,π ). Constraint (6.23)
ensures that the energy required by EV charging behavior clusters is satisfied, where
the plug-in period Ts,π is determined by start charging time tplug-in and end charging
time tplug-out; η is the charging efficiency; ps,π ,t is the total charging power of cluster
(s,π ) at time t; �t is the optimization time step. Equation (6.24) shows the upper
limit and lower limit of charging power. All the flexible EV load is aggregated into
PEV,t in (6.25).

6.4.2 Research on single-station mode participating in power
grid DR

EVs can participate in DR in the single-station mode. The charging station controls
the charging situation of the EVs charged at the charging station to participate in DR.
Stopping charging and sending power back to the grid are the common methods to
provide flexibility. In the single-station mode, EV load organized by the charging
station can participate in power grid response effectively.

6.4.2.1 Typical structure of charging station with battery energy
station

With the decline of battery cost, it is expected that the adaptability of battery energy
stations (BES) will be wider [19]. Therefore, in the single station mode, the charging
station with BES can participate in emergency DR (EDR) better.

The structure diagram of a typical charging station with BES participating in
EDR is shown in Figure 6.11.

Different units have corresponding tasks. First, the duty of the utility company
is to provide power to the charging station and send signals of EDR requirements.
Second, the charging station operator is in charge of the optimal operation of EV
and BES. Under normal conditions, BES is charged during off-peak hours at night
and serves as a standby generator set only during EDR events. When an EDR event
occurs, the utility company will issue important parameters, like EDR event duration
and participation bonus, to invoke load shedding and the charging station operator
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Figure 6.11 Structure diagram of a typical charging station with BES participating
in EDR

must respond within a certain period [20]. In addition, the charging station operator
needs to decide whether to participate in the EDR event according to the decision
algorithm [10].

6.4.2.2 Charging station EV load modeling
(1) M/M/c queueing model
The M/M/c queuing model can be used to estimate EV charging load [21]. In the
above Kendal symbol, the first M represents the distribution of EV arrival rate. In this
paper, the arrival rate of EVs should follow Poisson process to solve the randomness
of an EV. The second M represents the service time distribution calculated by the EV
battery charging behavior, and the c represents the number of charging piles in the
charging station. The queuing model of the charging station is shown in Figure 6.12.
The arrival rate of EVs follows Poisson distribution and μ indicates the number of
EVs that can be serviced per unit time.

In queueing model, (6.26) shows the probability of n EVs charging simultane-
ously in queueing model:

Pt(n) =

⎧
⎪⎪⎨

⎪⎪⎩

ρn

n! Pt(0), n < c

ρn

c!cn−c
Pt(0), n ≥ c

(6.26)
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where Pt(0) =
[

c−1∑
n=0

ρn

n! + ρc

c!
1

(1−ρ/c)

]−1

and ρ = λt

μt
. ρ is the probability that there is at

least one EV in the charging station. λt is the arrival quantity of EV per unit time and
is the number of EV that can be serviced per unit time in hour t respectively. In order
to ensure the rationality of the queuing system, the occupancy rate of the charging
station (ρ/c) shall be less than 1.
(2) Charging behavior of EV
At the beginning of each charging phase, the state of charge (SOC) of the EV battery
is determined in (6.27):

SOCy = 1 − ECy

CBaty

(6.27)

where Ecy is the daily charging energy of EV in each charging stage, and CBaty is
the capacity of EV battery. The charging time T required for an EV is given by the
formula (6.28):

T = SOCy − bl

al
(6.28)

where al and bl can be obtained from piecewise linearizing of the battery charging
behavior as explained in [21]. The (6.29) gives the charging current It,y consumed by
the EV within the charging time T in hour t:

It,y = min
(

ECy

VT
, IMax

)
(6.29)

where IMax is the upper limit of charging current, and V is the charging voltage
constant.

Therefore, the total charging power of n EVs is given by (6.30) by accumulating:

PEV ,t =
n∑

m=0

Im,t,yV (6.30)



120 Industrial DR: methods, best practices, case studies, and applications

For all possible n values, the total expected EV charging demand at time t is
shown in (6.31):

E[PEV ,t] =
c∑

n=0

Pt(n)PEV ,t (6.31)

Therefore, the total EV charging demand obtained will be used as the input of
the next part of the EDR participation decision-making model.

6.4.2.3 Optimization problem for charging station with battery energy
station participating in emergency DR

(1) Optimization model
When an EV charging station with BES is selected to participate in EDR, the charging
station operator has the right to choose whether to participate in EDR events according
to the decision algorithm. BES plays the role of improving the economy and flexibility
of EV charging stations during EDR events.

The objective function of the optimal dispatching model is to maximize the
operating profit of the charging station. In (6.32), the first item is the revenue from
charging services. The second item is the profit from participating in EDR. The last
term is the cost of purchasing electricity from the grid.

max

(
∑

t∈SH

pEV(t)PEV(t) +
∑

t∈SH

pEDR(t)�PEDR(t) −
∑

t∈SH

pGrid(t)PEDR
Load(t)

)
(6.32)

where PEV (t)(=E[PEV ,t]) represents the actual EV charging power in the correspond-
ing time, and pEV (t) represents the price of the real-time.�PEDR(t) corresponds to the
EV that participate in EDR, and pEDR(t) is the incentive price for utility companies
to participate in EDR. PEDR

Load(t) is the net load of the EV charging station during the
EDR event, and pGrid(t) is the real time electricity price of the power grid. SH is a set
of discrete-time steps, where ts is the start time, and H is the time span:

SH = {ts, ts + 1, . . . , ts + H − 1} (6.33)

The following (6.34)–(6.44) constitute the constraints of the optimization model:

�PEDR(t) =PFore
Load(t) − PEDR

Load(t) t ∈ SH (6.34)

�PEDR(t) ≥ �Pmin
EDR(t) t ∈ SH (6.35)

PEDR
Load(t) ≥ 0 t ∈ SH (6.36)

PEV(t) = PEDR
Load(t) + PBES(t)t ∈ SH (6.37)

where PFore
Load(t) is the adjusted EV charging station baseline load prior; PEDR

Load(t) is
the actual load during EDR events. �Pmin

EDR(t) is the minimum load reduction signal
from the utility. Constraint (6.36) restricts PEDR

Load(t) is nonnegative because the vehicle
to grid technology is not considered in the EV charging station. Constraint (6.37)
explains the relationship between PEV(t), PEDR

Load(t) and the BES output PBES(t):

PBES(t) =Pdis
BES(t) − Pch

BES(t) t ∈ SH (6.38)
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0 ≤ Pdis
BES(t) ≤ Pdis,max

BES vdis(t) t ∈ SH (6.39)

0 ≤ Pch
BES(t) ≤ Pch,max

BES vch(t) t ∈ SH (6.40)

vdis(t) +vch(t) ≤ 1 t ∈ SH (6.41)

SOC(t) = SOC(t − 1) − ηdisPdis
BES

Crated
+ ηchPch

BES

Crated
t ∈ SH (6.42)

SOCmin ≤ SOC(t) ≤ SOCmax t ∈ SH (6.43)

pEV(t) = KEVpGrid(t)t ∈ SH (6.44)

Constrains (6.38)–(6.44) are the BES constrains. Where Pdis
BES(t)/Pch

BES(t) is the dis-
charge/charge power of the BES; Pdis,max

BES /Pch,max
BES is the BES discharge/charge power

upper bound; vdis(t)/vch(t) is the binary discharge/charge state variable; ηdis/ηch is the
discharge/charge efficiency parameter; SOCmin/SOCmax is the lower/upper bound of
SOC(t). Constrain (6.41) is a logical formula to prevent the BES from being operated
in charging and discharging modes simultaneously. Equation (6.42) constrains the
relationship of the SOC of the BES between two adjacent discrete time steps. pEV(t)
is the price of EV charging service. To break even the operation and maintenance cost
of EV charging station along with maintaining operating profit, the constant KEV is
usually set higher than 1. pEDR(t) is the incentive price offered by the utility.

Therefore, combined with the objective function and constraints, the optimal
decision optimization model for a charging station with BES participating in EDR
can be formed. Because all constraints are linear constraints with binary variables,
the model can be effectively solved by commercial solvers as a mixed-integer linear
programming (MILP) model.

(2) Optimization results
To study the impact of incentive price of EDR, the detailed parameters of two different
EDR events are shown in Table 6.3 [22]. The EDR event will be notified at 16:00
and the duration is 4 h. The difference between cases 1 and 2 is the inductive price of
EDR. The response time is set to 1 h for the decision of the charging station operator.
Figure 6.13 shows the profit of the charging station when the inductive price is 85
$/MWh and 150 $/MWh. The results show that when the incentive price is high,
the charging station operator profit enough to respond to the EDR signal sent by the
power company.

Table 6.3 Parameters of EDR cases

Parameter Case 1 Case 2

EDR notification time 16:00 16:00
EDR decision making duration 1 hour 1 hour
EDR event time 17:00–20:00 17:00–20:00
pEDR(t) t ∈ SH 85 $/MWh 150 $/MWh
SOC(ts − 1) 0.85 0.85
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Figure 6.13 Profit comparison when the inductive price varies

6.5 Practical experience on EVs participating in DR

As the world sees the rapid growth of EVs and their tremendous charging loads, DR
programs are conducted in many countries and regions to coordinate the charging and
to meet the requirements of the power system. The demand information in the power
system is gathered in the operation units, and the demand signals are published to
potential responsible agents. EV charging loads aggregated as a responsible agent,
are adjusted upward or downward.

In practice, pilot projects are executed and can provide experience in differ-
ent electricity markets, while these experiments can be divided into structural pilot
projects and event pilot projects. The flexibility of charging demand and the response
characteristics of customers are analyzed through these projects as experimental
references.

6.5.1 DR pilot projects – in structural mode

Structural pilot projects launch the DR programs periodically, e.g., in a specific
period of every single day. Daily DR projects aim to shift the electricity loads in peak
shaving and valley filling. The DR signals in these periodical projects are price curves
in general, and the revenue settlements are implemented monthly or yearly. The price
mechanism can be in three categories: time-of-use tariffs (TOU), critical peak pricing
(CPP), and real-time pricing (RTP) [23].

As the DR programs are implemented in a period and the price information
is openly published, structural DR projects allow responsible agents to draw up
specific user plans, e.g., monthly contracts, service packages to EV groups. The struc-
tural features are reflected in categorized customers and their administrable response
behaviors.
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6.5.1.1 Projects organized by the State Grid Corporation of China
As the world’s largest utility, State Grid Corporation of China (SGCC) supplies power
to a 1.1 billion population with a service area covering 88% of Chinese territory. State
Grid EV Service Co., Ltd (SGEV) is one of the subsidiaries directly managed by State
Grid and conducts business in 14 provinces in China [24]. The services of SGEV
include EV charging management, green electricity trade and interaction between
EV aggregators and power systems. Routine DR projects setting specific periods in
one day as DR time are one of the methods to improve its service quality and reduce
operation cost.

● DR area: Zhejiang Province, Shanxi Province, Tianjin City, in China.
● DR period: 00:30–07:00, 12:30–16:00, each day.
● DR parts: (A) SGEV, as a schedulable branch of grid operator; (B) EV aggregator;

(C) individual EV user (provided charging service by A or B).
● DR policy: (1) a receiving dispatch command (to regulation total charging power)

and reporting total adjustable power; (2) setting DR time and non-DR time, and
making a contract between A and B/C, which permits A to provide peak load reg-
ulation service; (3.1) adopting lower electricity tariffs to encourage B/C to charge
in DR time; (3.2) noticing real-time charging tariff discounts to B/C according
to the dispatch command in DR time (in Shanxi Province); (4) B organizing the
charging of aggregated EVs, and reporting its adjustable power to A in line with
the contract. The full view of the policy is concluded in Figure 6.14.

● DR performance: Providing peak load regulation service to the power system.
Average DR participating electricity per month in 2021: Tianjin city – 43,000
kWh; Shanxi Province – 450,000 kWh; Zhejiang Province – 1,364 kWh.

Power system operator

B-EV aggregatorA-SGEV

C-Individual EV user

1) Command and reports

2) Making contract

2) Making contract

3) Sending signals

3) Sending signals

4) Reporting adjustable power

Figure 6.14 DR policy in projects organized by SGCC
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6.5.1.2 Project in north China – V2G in peak load regulation market
Vehicle-to-Grid (V2G) technology enables bi-directional energy transfer between EVs
and power grids. InApril 2020, China officially included V2G charging pile resources
into the north china ancillary service market, which enables EVs to be aggregated
and discharged according to price signals [25].

● DR area: North China (Beijing-Tianjin-Tangshan area).
● DR period: All day.
● DR parts: (A) North China ancillary service market; (B) EV aggregator (able to

provide no less than 10 MW/30 MWh regulation capacity); (C) Individual EV
user.

● DR policy: (1) A announcing the peak load regulation tariff and the regulation
demand after real-time dispatch; (2) A and B communicating via a coordinated
dispatching platform; (3) B aggregating C with user agreements, which permits
the supply of electricity to power grids.

● DR performance: 2430 charging stations/battery swapping stations being involved
in the project, including around 24,000 charging piles. The potential EV
participating quantity is up to 400,000 [25].

6.5.1.3 ChargeForward program in the USA
The ChargeForward program is open to BMW EV/PHEV owners who is also cus-
tomers of Pacific Gas and Electric Company (PG&E) customers, which has kicked
off its third phase. This collaboration launched in 2015 has been one of the longest-
running partnerships between an electric utility and an automaker. This project aims
to test the ability of EVs to support the electric grid and provide benefits to customers
through vehicle-grid-integration applications that enable smart charging and DR [26].

● DR area: Northern California, USA.
● DR period: All day. (last for 24 months in phase 3).
● DR parts: (A) Utility – PG&E; (B) EV aggregator – BMW; (C) BMW EV owner.
● DR policy: (1)A sending an alert to B, indicating the quantity and duration to curb

load when cutting demand emerges at any time of day; (2) B going to signal the
telemetry equipment in each participating vehicle, and going to halt the charging
for the duration of the event; (3) C going to get compensations or incentives
through its participation, amounting to $150 at sign-up and an annual price of
$250.

● DR performance: Around 3,000 EVs will participate in the DR project (100 in
phase 1, and 400 in phase 2). Renewable energy usage can be more than double
through the DR project, and over 1 million miles were powered by 100% renewable
energy charging during a one-year period [26].

6.5.2 DR pilot projects – in event mode

Event pilot projects launch the DR programs in a specific period separately according
to the notice of the power system operator. Compared to the structural DR projects,
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event projects see a lower implementation frequency, and often show seasonal char-
acteristics and the characteristics of the electricity load in holidays. In contrast, this
kind of DR projects generally cover a longer duration, e.g. tens or hundreds of hours.
Hence, event DR projects are able to provide various services, including but not
limited to peak-load regulation and emergency support.

As an independent program, power system operators offer incentives or compen-
sations to responsible agents in event DR projects, other than the general electricity
tariffs. This type of DR is open to various participants, while EV aggregators are
able to self-organize the charging loads based on the DR signal. The policy and
backgrounds of event DR projects are different, and there exists no fixed mechanism.

6.5.2.1 Serial pilot projects in Shanghai
As an economically developed metropolis in China, Shanghai sees a huge peak-valley
difference in electricity consumption, while the city relies on external electricity and
renewable energy in the power supply side. DR is one of the effective countermea-
sures to solve these problems, and Shanghai is the first city to implement DR projects
nationwide. Current DR programs, including peak-shaving and valley-filling ser-
vices, are assessed in different time scales, i.e. medium and long term mode, intra-day
mode, and fast response mode. During 2015–18, Shanghai conducted a series of eight
short-team DR projects, and involves increasing areas and participants.

EVs were first included in the DR project in 2019, as Shanghai saw an EV popula-
tion of 300,000 in this year. An aggregator-based structure was designed, where invited
EV aggregators are responsible for organizing users under the coordination of the
municipal control center. The organization structure is demonstrated in Figure 6.15.

Three DR projects in 2019 with the participation of EVs were conducted at 2 am–5
am, 7 June, 12 am–2 pm, 9 August, and 10 am–11 am, 5 December, respectively [27].
In these projects, EVs responded to the power grid signals collaborating with other
flexible loads, e.g., energy storage, air conditioner. Although the duration of projects
was not long, various characteristics of EV participating in DR were evaluated in the
serial projects, e.g., the advantages compared with other loads, the characteristics
of different kinds of charging methods in DR, and the performance comparison in
peak-shaving and valley-filling. Comparative programs were executed in 2021, which

Municipal control center

EV user

EV aggregator EV aggregator

EV user EV user EV user

Figure 6.15 Organization structure of DR projects in Shanghai
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retains the organizational structure of those in 2019. The compensation standard was
changed, and users’ response was analyzed.

● DR area: Shanghai, China.
● DR period: Several hours.
● DR parts: (A) virtual power plant platform; (B) EV aggregator (no capacity

limit, least participation duration 1 h), including private charging piles, specific
charging piles and battery swapping stations; (C) EV users.

● DR policy: (1) Registration: A sending the project plan to B in advance, while
B inviting C to sign up for the DR project; (2) preliminary report: B predicting
the DR capacity curves with the sign-up information, and reporting it to A at pre-
liminary stage (including medium-term curves and day-ahead curves); (3) online
report: B sending guiding signals to C based on the charging plan, collecting the
real-time charging information, and reporting it to A in every 15 min; (4) Settle-
ment: A paying B in line with the incentive standard and the DR performance,
while B compensating C based on the sign-up agreement.

● DR incentive standard: The DR performance was evaluated with the baseline of
loads and the real consumption, while the DR incentive was calibrated with impact
factors. Impact factors include electricity quantity in DR, response duration in
DR, response efficiency in DR and participation ratio. The reference value of the
incentive is 30 CNY/kW for peak-shaving and 12 CNY/kW for valley-filling.

● DR performance: (1) Private charging piles are fit for providing valley-filling
service, as the charging electricity increased to 7.8 times of base value in the
project. The profit of single participation was more than 14 CNY. (2) Specific
charging piles are fit for providing peak-shaving service, as the charging elec-
tricity decreased to 25% of the base value in the project. The profit of single
participation was more than 23.5 CNY. (3) Battery swapping stations are fit for
providing peak-shaving service, as the charging electricity was reduced by 81.2%
at maximum in the project. And battery swapping stations showed advantages in
response efficiency. The profit of a single station for one participation was more
than 500 CNY [27].

6.5.2.2 Project helping release California’s rolling blackouts
Extreme weather continues to intensify due to climate change, e.g., continuing
extreme heat. As power grids decarbonize, a greater volume and faster deployment
of these resources are required to keep the power supply at nights. Charging ser-
vice providers participate in utility and grid-sponsored DR programs to monetize the
flexibility of aggregated EV charging loads. In the summer of 2020, record heat in
California led the state’s grid operator to call on residents to reduce electricity usage
by issuing a “flex alert.” In consequence, California experienced rolling blackouts for
the first time in 19 years, with nearly a million residents affected. The smart charging
piles were activated automatically and responded to the emergency demand.

● DR area: California, USA.
● DR period: 3.6 h/day in total, standby all day [28].
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● DR parts: (A) Power system operator – CAISO; (B) EV aggregator – Enel X; (C)
EV user.

● DR policy: (1) C installing application software “JuiceNet” and agreeing to hand
over the charging control right to B; (2) B able to aggregate charging piles into a
virtual power plant with capacity of automatic DR and to bid in the spot market.
(3) A announcing DR signals (2,750 times per month on average) and issuing a
“flex alert” in an emergency.

● DR performance: (1)The JuiceNet customers participate in the DR project around
6,000 times per month in the common market; (2) during the rolling blackouts,
the average dispatch event duration to JuiceNet customers was just over 3.6 h per
day, with event participation rates above 90% [28].

6.5.3 Practical experience

The major contribution of EV in current DR programs is peak load regulation, while
various types of services, e.g., frequency regulation, emergency support, can be
provided in the future. V2G technology can improve the performance in DR.

With a high-performance and small-capacity battery, EVs are generally aggre-
gated by a charging service provider to participate in DR programs, while individual
EV users could also participate in the programs directly. Diverse charging infras-
tructures and aggregators are expected to be involved in DR programs. Different
subjects show advantages in different kinds of grid services. The carbon emission
reduction effect has been tested in pilot projects, and EVs will play an important role
in participating in DR jointly with renewable energy.

The market mechanism of the DR program should be transparent, and an optimal
incentive mechanism or a price system needs to be studied. Specified DR policy
is recommended to be designed for different scenarios, different participants and
different regulation targets. The research on users’ behaviors and the game model
among interest bodies will be an important preliminary study. Intelligent equipment
and user education are crucial for large-scale EVs participating in DR programs. In
terms of hardware, intelligent equipment provides users a convenient participation
approach, which has a great influence on users’ participation will. It also provides
aggregators timely information interaction approach and data for accurate predictions.
In terms of user education, the advertising effect can expand the scale of imitators
and promote DR programs.

6.6 Summary and prospect

6.6.1 Summary

The focus of this chapter, EV massive resources mining and DR, is illustrated from
four aspects in the above sections. The DR technology of massive EVs is thoroughly
discussed, according to the basic conditions for its development, the technologi-
cal capability and potential evaluation, the implementation mode, and the practice
experience of this technology in real scenarios.
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On top of this analysis, the feasibility of this technology is fully demonstrated.
The charging facilities of massive EVs have great potential to play a crucial role in the
future power system, as the largest distributed energy storage in the whole society.
Thus, current work should be concentrated on technology iteration, optimization,
further deep application and improvement of relevant mechanism construction and
industry supervision.

6.6.2 Prospect

According to some cases above, some future development directions for EVs to
participate in DR are put forward.

6.6.2.1 Technology breakthrough of EVs
There are many cases abroad to promote EVs as a flexible resource of the power sys-
tem. The implementation mode and scale of cases in different regions are different.
Generally speaking, V1G programs are essentially a type of demand-side manage-
ment strategy, which many utilities compensate customers for their participation. By
agreeing to shift their energy use to the less in-demand hours, utilities can offer finan-
cial incentives, cheaper energy prices, and other benefits. V2G or V2X means that
the energy between vehicle and network or vehicle and X can flow in both directions.
The technical requirements and business model of V1G are relatively simple, and
there have been many successful cases, but the sustainable business model and user
participation are still the problems to be solved. For V2G, most of the cases are still
in the trial stage. So the technology of V2G should be broken through.

6.6.2.2 Development of charging facilities
The development of charging facilities is an indispensable basis for the interaction
between vehicles and networks. For example, private charging piles in many single
storey houses in the United States are easy to mobilize participation, but the devel-
opment of public charging infrastructure, especially rapid charging infrastructure, is
uncertain, and its utilization scenario prediction is difficult. So in order to develop the
DR, the location and capacity of the charging facilities should be planned reasonably.
And the technology of charging power control level should be improved. More precise
control in a larger power range can help EVs participate in DR effectively.

6.6.2.3 Market mechanism on the user side
In addition to the technological breakthrough of EVs and charging facilities, the
market mechanism on the user side is also one of the key factors. In order to answer
the questions of how to effectively utilize and manage the charging load of EVs and
which types of EVs, analyzing the charging load characteristics of users is necessary.
By considering user response characteristics to electricity prices or control signals,
user wishes and other factors make a series of subsidy policies and establish a precision
DR model to help EVs participate in DR effectively.
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6.6.2.4 Exploration of more possibilities for EVs in DR
By 2030, China promises to reduce carbon dioxide emissions per unit of GDP by 60–
65% compared with that in 2005, and increase the proportion of non-fossil energy
in primary energy consumption to 20%, reaching the goal of “peak carbon.” By
2060, more than half of all energy sources will be produced from non-fossil fuels,
while being “carbon neutral.” With the “double carbon” targets, China, as the largest
EV market in the world, needs to rely on the flexibility of the massive EVs charg-
ing/discharging to establish a green, stable and safe energy system. By promoting
efficient collaboration between EVs and renewable energy with the “double carbon”
targets, it is helpful for wind-PV accommodation. And PV-EES-EV charging stations
are good combinations of EVs and renewable energy. Through carrying out more
V2G pilot programs, more experience can be concluded and the experience can be
used to help EVs participate in more types of auxiliary services.
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Chapter 7

Demand response measurement and verification
approaches: analyses and guidelines

Hamidreza Arasteh1, Niki Moslemi1 and
Seyed Mohsen Hashemi1

Demand response (DR) programs are defined as the ability of customers to change
their consumption pattern in response to market/system signals. Nowadays, DR pro-
grams are interested worldwide as an essential part of the future power system and
also considered as virtual generation resources. However, an accurate measurement
and verification (M&V) approach is needed to implement these programs success-
fully. Indeed, the evaluation of the real potential of a DR program that is enabled
during a DR event is depended on an evaluation method that should be employed to
estimate the consumption behavior of the customers if they have not participated in
DR. In this regard, customer base-load (CBL) estimation is defined as the approach
to estimate the customers’ load levels if they have not received DR calls. Then, by
computing the difference among the estimated baseline and measured load data, the
real potential of DR would be calculated. So, the determination of the real potential
of DR is dependent on the difference between the estimated baseline and measured
load data. Since various factors (such as load type, weather condition, day of a week,
etc.) could affect the CBL, it is a challenging and complex task to provide an accurate
estimation of the CBLs.

Generally, three steps could be considered to estimate the CBLs:

● Data selection: refers to the task to determine which data should be used for the
estimation procedure. For instance, if the event day is a weekday, the historical
data from the weekdays should be used.

● Computation: refers to the approach that is employed to estimate the CBLs.
● Adjustment: refers to the modifications that could be applied to the initially

estimated baseline to enhance the accuracy.

In addition to the accuracy of the estimation, other aspects are also crucial to
select the appropriate approach. Indeed, selecting the suitable method is based on
four pillars: accuracy, simplicity, integrity, and alignment.

1Power Systems Operation and Planning Research Department, Niroo Research Institute, Tehran, Iran
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The aims of this chapter are to introduce the concepts and characteristics of M&V
approaches, introduce different classes of CBL estimation methods, compare the
features of different techniques, present some practical results, and finally provide
a guideline and suggestions to help the decision-makers to select the appropriate
approach.

Keywords: Demand response, Customer baseline estimation, DR measurement
and verification, Guideline, Practical results

7.1 Introduction

7.1.1 Concepts

Demand response (DR) is defined as the ability of customers to modify the con-
sumption pattern to help the operators to provide the required energy demand in a
cost-effective and reliable manner [1,2]. DR programs could be categorized as time-
based and incentive-based programs [3]. In the broader view, using the demand side
potentials can improve the power system operation capabilities. For example, in [4–7],
the system security is increased using the load control mechanisms. Also, the demand
side resources can be employed by the EMS of the MGs [8] to achieve the economic
goals. There should be precise mechanisms to measure and verify the performance
of the responsive loads during the DR events. Different methods have been employed
to evaluate the baselines/customer base-loads (CBLs). These approaches could be
distinguished based on their features. As an instance, baseline estimation approaches
may be dynamic or static, they may use historical data or utilize statistical sampling,
or they may use hourly or daily data [9–11].

One of the essential factors for the successful implementation of DR programs
is to perform an accurate measurement and verification (M&V) [12]. The determi-
nation of the load reduction due to the performance of DR depends on the difference
between the estimated baseline and the measured load levels. CBLs are not measur-
able and should be computed based on the available data. Several factors such as load
types, weather conditions, day of the week, etc. could affect the baseline calcula-
tions. Therefore, the accurate determination of CBLs is a complex and challenging
procedure [13].

The implementation of DR needs to identify the baseline to evaluate whether they
have been enabled successfully or not. In other words, in order to measure and verify
the success level of energy service companies, it is needed to employ the accurate
M&V calculations. Hence, CBL estimation plays a pivotal role in DR evaluation. As
explained, baseline estimation is the task of forecasting the consumption patterns, if
DR is not called. Indeed, by using the baseline estimation, the actual load reduction
resulting from the DR is calculated. However, the accurate determination of the CBLs
is challenging. CBLs could be diverse due to some phenomena that are not necessar-
ily related to DR. Independent to the price changes or DR incentives, factors such as
weather conditions, programs of the broadcasting organization, seasonal variations,
and holidays are some of the factors that could affect the consumption patterns [14].
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In baseline estimations, such factors should be taken into account. However, accu-
racy is not the only criterion to evaluate the performance of the baseline estimation
methods. A suitable method is simple enough so that all the DR beneficiaries could
easily comprehend and compute the baselines. The employment of simple approaches
could also decrease the managerial costs and would make it enjoyable. Moreover, DR
providers may be able to employ some strategic behaviors to manipulate the base-
line calculation approaches to enhance the forecasted load levels and receive higher
incentives [15]. Therefore, a baseline estimation method should be able to handle
these behaviors to ensure the proper implementation of DR. In addition, the partic-
ipants should be incentivized well to be motivated to keep their participation in DR
events. Consequently, it is a complex and challenging task to preserve all these goals,
since they may be conflicting with each other. As an instance, a complicated method
could preserve the baseline estimation approach from the manipulations. However,
it may lose the simplicity of the calculations and would not be interesting for all
the DR players. Similarly, a simple method may not model various factors (such
as calendar data or weather conditions) and so will lose the accuracy criteria. Due
to such problems, several methods have been developed, and the most appropriate
approach should be selected based on various factors such as the types and aims of
DR programs, frequency and duration of the events, and notification periods [16, 17].

Baseline estimation aims to estimate the amount of loads that would be needed
in the hour and day of the event if DR programs are not enabled. As shown in Fig-
ure 7.1, the difference between the baseline and measured load levels is the actual
enabled capacity of DR. Figure 7.1 shows the measured consumption data after the
implementation of DR against the estimated CBL [18,19].

Some important definitions and concepts regarding the CBL studies are presented
in the following:

● DR event: request for load reduction during a time interval of an event day by
participating in one of the DR programs is called a DR event.
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Figure 7.1 Measured consumption data after the implementation of DR vs. the
estimated CBL
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Figure 7.2 Timing of DR events [16]

● Timing of DR event: it denotes all the time-intervals to implement DR, which
includes:
– Deployment;
– Ramp period;
– Sustained response period;
– Release/recall;
– Recovery period.

● Deployment period: The time interval from “Deployment” to “Release/Recall” is
called the “deployment period.”

The timing of DR events and the definitions mentioned above have been
illustrated in Figure 7.2 [16].

7.1.2 Literature review

Several studies have investigated the M&V of DR programs. Generally, such
researches aim to find an appropriate approach to estimate the CBLs. The authors
of [20] used the neural network method to calculate the CBL of the industrial loads.
They have concluded that this method has better performance in comparison to the
linear and polynomial regression methods. Gabaldón et al. [17] proposed a simple
method to calculate the CBL that uses some of the adjustment factors based on the
physically-based models. Reference [21] proposed a method to calculate the CBLs
of the residential customers, who their daily loads vary randomly. They use a virtual
control group for each DR event and combine it with difference-in-differences to form
the V-CBL method. Ziras et al. [22] analyzed the local flexibility markets (LFMs),
as a solution to appropriately react against the intermittency of the DERs consider-
ing the customers’ activities. They used the CBL method to monitor and analyze the
performance of the consumers in the provision of the flexibility services. In general,
the baseline methods can be categorized as Figure 7.3 [22].
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Figure 7.3 Overall categories of the baseline calculation methods [22]
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Averaging methods are other types of approaches to estimate the CBLs. In these
methods, the baselines are calculated based on the average consumption of the con-
sumers in X days from theY non-DR days [23, 24]. In some researches, the averaging
methods have been adjusted by some influential factors, such as the weather [14]. The
regression methods use the historical data to determine the dependence of the cus-
tomer’s load to the different regressors of the temperature, sunrise time, sunset time
[23], etc. The authors of [25] used several regression methods, including different sea-
sonal and daily time scales in which different regressors such as the temperature are
considered. In [26], regressors such as days of weeks or holidays are considered. The
relationship between the customer’s load and the hour of the day has been analyzed
in [27] using a cubic regression method. According to [28], grouping the customers
will improve the accuracy of the CBL calculation in the regression method.

In the control group method, the customers participating in DR events have been
compared with a similar load group to evaluate their performance. Müller et al. [29]
divided the aggregators’ customers into two parts for calculating the CBLs. One part
was for the control group and another part was the DR participants. This method may
require reserving a large share of the consumers as the control group to determine the
performance of other groups. In order to deal with this drawback, the authors of [21]
have proposed a dynamic control group in which different control groups are made
for various DR events. Reference [30] used the k-means clustering method to find the
most similar control group for each load. For this purpose, they propose a clustering
technique to determine typical load patterns for the consumers. The authors of [11]
determined the optimal control groups based on the load curves of each customer.
They use a constrained regression method. Zhang et al. [31] assessed the correlation
of the load patterns of the customers in the non-event days. By this method, they split
the loads to the DR participants and the control groups.

Machine learning is another popular method to calculate the CBL. The authors
of [9] used the support vector machine (SVM) to estimate the base-load based on
the smart meters and the weather data. The machine learning-based methods may
be combined with other approaches to perform the hybrid procedures. The authors
of [32] compared the accuracy of the SVM with the methods of averaging and the
exponential moving average. They concluded that the SVM has better performance
for residential consumers. The authors of [33] used a combination of the methods to
improve the performance of the CBL calculation procedure. They disaggregate the PV
generation and the residential load using the SVM method. This data disaggregation
enhances the performance of the averaging and regression methods. Sun et al. [34]
extracted a set of the daily load profiles by applying the deep-learning method for
the non-participating consumers. Also, they create the training and testing data sets
by assessing the energy consumption of the loads before and after the DR events.
A machine learning approach based on the Gaussian process regression is used in
[35]. Also, the k-means clustering method and a self-organizing map are utilized in
[36] to estimate the load during a DR event. The authors of [37] and [24] used the
linear and polynomial interpolation methods to determine the CBLs, respectively,
based on the load’s energy consumption before and after the DR events. In some
methods, the load forecast of the residential consumers is considered as the baseline
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load. These scheduling-based methods may be performed based on the aggregators
[38], consumers [39], or even the individual appliances [40,41]. The authors of [42]
proposed the usage of the CBLs. In this structure, the consumers are incentivized to
be truthful. According to [43], the mentioned structure has better performance when
the activation probability of the loads is very low.

7.1.3 Classification of CBL estimation methods

As explained, the goal of baseline estimation is to compute the DR performance to
reduce the load levels and show how DR implementation is successful. Indeed, the
baseline could be considered as an index of the expected value of the load. Since
baseline estimation methods should be accurate and simple, averaging and regression
are two widely used approaches to compute CBLs. North American Energy Standards
Board (NAESB) categorizes the baseline calculation methods into five groups [16]:

● Baseline type I (BT-I): This class of baseline uses the historical data (usually,
using the 1-h time intervals) and also may utilize weather and calendar data (such
as holidays). In other words, this is a performance evaluation method based on
the customers’ historical data that may include other factors, e.g. weather and
calendar. Nowadays, BT-I is the most prominent approach to calculate CBLs.
Averaging method, regression, rolling average, and comparable day techniques
are some of the approaches in the BT-I group.

● Maximum base load (MBL): In this method, the system’s data during a period (e.g.
the last season) is used to create a constant level of demand. This is a performance
evaluation method based on the ability of the customers to reduce their loads to
the specific levels. MBL is also named as firm service level in PJM.

● Meter before – meter after (MBMA): In this approach, the baseline is created by
using the load data immediately before and after an event. In other words, in this
method, electricity demand data before an event will be compared with similar
measurements after the event.

● Baseline type II (BT-II): In this approach, statistical sampling is employed to
estimate the baselines for the customers who are not equipped with individual
metering devices. Hence, BT-II is a performance evaluation approach that uses
the statistical sampling technique to estimate the customers’ load levels.

● Generation: This type of baseline is applicable for facilities with on-site generation
and is not discussed in this chapter.

Baseline estimation methods are different based on the load shape, required data,
time intervals of historical data, aims, and design of the programs. These approaches
are presented to forecast the customers’ load levels if customers are not called by DR
to calculate the actual participation capacities in DR.

7.1.4 Features of CBL estimation methods

A proper baseline should not incentivize or penalize the customers because of the
regular operation. Moreover, it should consider the changes of the activities that are



140 Industrial DR: methods, best practices, case studies, and applications

Table 7.1 Central concepts in baseline estimation studies [12]

Measurement
granularity

Load measurement time intervals (e.g. 5-min intervals)

Profile baseline (from
now on, for the sake of
simplicity, “baseline” is
used instead of “profile
baseline”)

It indicates an approach in which the baseline is estimated using the
historical data of the past similar days through a granular measure-
ment (e.g. hourly) of the customers’load data. Therefore, customers’
load patterns are evaluated dynamically during a 24-h horizon time.

Static baseline Despite the hour or day of a week, a static baseline uses the average
load during a long period (like a season) to estimate the baseline.

Individual baseline Individual baseline refers to an approach that calculates the baseline
for a particular customer or a region and then integrates all the
individual baselines to create the baseline of whole the system.

Portfolio baseline Portfolio baseline is the calculation of the baseline for all the systems
under study, which is involved in DR programs.

Baseline window or
look-back window

It refers to a time interval (like, the number of days) in which all
the required data are extracted from this interval to calculate the
baseline.

Exclusion rules The rules that would be applied to the data of the look-back window
to remove the undesired data, such as the data from the event days
or holidays.

Baseline adjustments When a baseline is initially created based on the historical data, a
specific value may be added to enhance the accuracy of the cal-
culations. To this end, usually, data from 2 to 4 h before the DR
deployments on an event day are being used. In this regard, the
averages of the differences between the estimated baselines and real
measured data during the adjustment windows (i.e. time intervals
that their data are used to calculate the values of adjustments) are
used to modify the initially estimated baseline during the DR event
periods.

Adjustment cap Adjustments may be capped or uncapped. Capped adjustments indi-
cate that the amounts of increasing/decreasing adjustments should
not exceed a maximum value, while the amount of the adjustments
is not limited in the uncapped manners.

not related to DR (such as the development of new businesses or normal commercial
activities).

The main concepts in baseline estimation studies are presented in Table 7.1 [12].
It should be mentioned that comprehensive explanations are provided in the following
sections.

In order to evaluate the performance of the baseline estimation approaches, some
principles should be considered as the pillars of the baseline estimations that are
illustrated in Figure 7.4 [44,45].

Based on Figure 7.4, a baseline estimation approach should be accurate and
simple enough, not be easily manipulatable, and also be aligned with the DR goals.
These features are explained in detail as follows.
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Accuracy

Alignment Simplicity

Integrity

Pillars

Figure 7.4 Pillars of CBL estimation approaches

● Accuracy: it means how the estimated baseline is close to the actual load data.
Responsive customers should not gain a credit less or more than their actual
participation.

● Integrity: Baseline calculation approaches should prevent the customers from
manipulating the baseline by changing their consumption behaviors. In other
words, customers should not be able to change their consumption pattern in a
way to affect the computation results.

● Simplicity: Baseline calculation methods should be simple enough to be
intelligible by all the beneficiaries, e.g. electric customers.

● Alignment: The baseline estimation methods should be aligned with the DR
implementation goals, i.e. peak reduction, in a way that all the load management
attempts result in the proper incentives for responsive customers.

These features may be conflicting with each other. As an instance, preventing
the baseline manipulation needs to employ more complex tools that conflicts with the
feature of simplicity. All in all, the baseline estimation approaches should keep the
compromises among these features.

7.2 An overview of different CBL estimation approaches

Different CBL estimation approaches are investigated and analyzed in this section.
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7.2.1 Averaging method

One of the most essential advantages of the averaging methods is simplicity. Hence,
all the beneficiaries would be able to analyze the data that will enhance the clarity of
the procedure. By using other features of the baselines, it may be possible to improve
the accuracy and integrity of the averaging methods.

Averaging methods are the most usable approaches among the BT-I methods
that utilize the recent historical data to estimate the CBLs during the specified time
intervals. These methods are also known as the representative day or X ofY methods.
This approach is based on the selection of X days within Y recent days and could be
classified as [16]:

● High X of Y: In this approach, a Y-day baseline window proceeding the event
days is considered. The data from X days with the highest load average within
this baseline window is used to calculate the baseline. As an instance, a 5 of 10
methods has been used in NYISO (New York Independent System Operator) in
which five days with the highest consumptions within a 10-day baseline window
are selected to perform the baseline estimations.

● Low X of Y: In this approach (employed in New England ISO), a Y-day baseline
window proceeding the event days is considered, and data from X nonholiday
days with the lowest load average within this baseline window is used to calculate
the baseline.

● Middle X of Y: In this approach, some days with the highest and lowest con-
sumptions are removed from the Y-day baseline window so that the data of the
remaining X days are utilized to perform baseline calculations.

Moreover, in X of Y approaches, weekdays and holidays should be investigated
separately, where:

● Weekdays: In this approach, the averaging procedure is employed based on the
data from the most recent weekdays, in which, all the weekends, holidays, and
event days should be excluded from the baseline window.

● Holidays: In this approach, data from the weekends and holidays could be used
as the input data for the baseline calculations.

From now on, for the sake of simplicity, the terms of X of Y or X/Y are used to
indicate the high X of Y method. The following considerations could be taken into
account to determine the numbers of X and Y [16]:

● Baseline window: As explained, the baseline window is a Y-day interval that
its data is used to perform the baseline estimation calculations. Considering the
limitations on the baseline window could help to avoid the utilization of the
outdated data that may not be representative of the load levels of the event days.

● Exclusion rules: In the baseline estimation procedure, some days would be
excluded since the consumption patterns of these days are substantially differ-
ent from the event days. Indeed, these days could not be well-representative of
the event days. Usually, holidays, weekends, and also the event days in which
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DR programs have been previously enabled are not considered in the calcula-
tions. North American Electric Reliability Corporation (NERC) has introduced
holidays as the “Off-peak days,” and this standard is utilized by many numbers
of programs. In addition to these fundamental cases, thresholds and scheduled
shutdowns have been considered. In 2008, PJM investigated the consideration
of the thresholds in the selection of the baseline window. As an instance, a 10%
threshold means that if the average of the loads during a specified time interval
in a day is less than 10% of the average of loads in the similar time interval dur-
ing all the Y days of the baseline window, that day should be excluded from the
calculations. Also, large swings in energy and curtailments could be considered
as the exclusion rules [25].

● Relationship between X andY: After selecting theY days as the baseline window,
these days would be narrowed down to a sub-set of X days. This sub-set should be
formed based on the nature of the programs. For instance, it is expected that a DR
event day in summer would be occurred in a day with extreme weather conditions
when the load levels are high. However, all the Y days of the baseline window
are not the days with high-load levels. Hence, if a baseline estimation approach
uses the data from all the Y days, it will also consider the days in which the load
levels are not high and are not similar to the event days. So, such an unadjusted
approach will understate the customers’ baselines, and reduce the incentives. In
order to avoid such challenges, days with the lowest load levels could be removed
from the calculations. Similarly, it may be observed that some of the DR programs
are not always enabled during high load days. In such conditions, selecting the X
days based on the “Middle X of Y” method may be better.

● Time intervals: Frequent intervals of data could be utilized by many DR programs.
Hourly data are often used by many baseline estimation approaches, since data
processing for a huge number of customers using data of shorter time intervals
may be an unnecessary logistical strain.

● Baseline adjustments: As explained, the set of X days is selected from the look-
back window in a way to obtain the most similar days to the event day. However,
usually, the event day is not entirely the same as the selected days (especially for
the consumers who are sensitive to the weather conditions). Programs associated
with the peak load periods or the emergency conditions (because of the outages
of the power plants) are usually required concurrently with the severe weather
conditions. Therefore, some adjustments are needed to be applied to the initially
calculated baselines. Baseline adjustments also could be called daily adjustments
since these modifications are being computed using the data from the event days.
Baseline adjustments could help to better reflect the load conditions in the event
days and enhance the accuracy of the calculations for any type of DR program.

● Timing & duration: Data from 2 to 4 h period preceding the DR events is usually
used for baseline adjustments. On the one hand, this period should not be too
short (in order to take into account the load differences in different hours). On the
other hand, this adjustment period should not be too long (typically, if it is more
than 4 h, data that are not close enough to the event time may reduce the accuracy
of the adjustments to consider the conditions during the events). To calculate the
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adjustments, actual load data from the adjustment windows should be compared
with the initial estimated data. It should be noted that the ramp period data should
not be used to calculate the adjustments. Indeed, if the data from the ramp period is
used, a customer who has decreased its load level earlier than the event time would
lose the DR incentives and may be penalized. In addition, the consumer may be
able to game the system by increasing their load levels during these periods. Such
problems would negatively affect the integrity and accuracy of the estimations.
So, by utilizing the data from the period before the notice of the event, it would
be possible to prevent such problems.

The features of the baseline adjustments are:

a. Adjustments could be performed using additive or scalar factors:
Adjustments could be performed through additive or scalar manners. In an additive
adjustment, the average of the load differences in adjustment windows would
be added to the estimated baselines during the DR event hours. These additive
values could be positive or negative. In a scalar approach, the average percentages
of the differences during the adjustment windows would be multiplied with the
estimated data during DR event periods. These scalar values also could be positive
or negative.

b. Adjustments could be performed symmetrically or asymmetrically:
Baseline adjustments could be symmetrical or asymmetrical. The symmetrical
approach means that the adjustments could be positive or negative. So, usually, the
accuracy of the symmetrical adjustments is better than the asymmetric one. How-
ever, symmetrical adjustments may have damaging unintended consequences. For
instance, if a customer decides to shut down a product line before the deployment
of the DR and the meter data from after the production line has been shut off
are used for the adjustments, its baseline will be decreased significantly. Under
such situations, it should be noted that the time interval of such actions should
not have any overlap with the adjustment windows [16]. Taking into account the
alignment feature, negative adjustments may have some concerns, because, if
customers typically have low load levels before the DR deployments, they will
not be motivated to keep their demand at lower levels. As another instance, if in
response to DR calls, an end-user decides to shut down some parts or all of its
devices to perform maintenance plans, if morning adjustments are considered in
the baseline calculations, symmetrical adjustments would significantly decrease
its baseline. Also, if customers are aware of such influences, they may increase
their demand during the adjustment windows to increase their baselines. From
the administrative point of view, it is not desirable that customers keep their load
levels at high levels during the adjustment window [12].

Asymmetrical increasing adjustments may also be faced with some challenges,
since they may result in an overestimation of the baselines due to some problems,
such as gaming. In addition, the baselines of the customers who, unusually, have
high-load levels during the adjustment windows may be overestimated. It is note-
worthy that, in these cases the problem is with the accuracy of the approaches, not



DR measurement and verification approaches 145

the alignment. Under such situations, the customers may be received higher incen-
tives, and they will be motivated to have participation. So, there is an alignment
between the goals of the programs and the incentives [12]. Also, it is essential to
note that if the increasing adjustments are not applied, it is possible that customers
are not motivated to participate in DR during the days with high-load levels. So,
harmful consequences may be occurred [12].

c. Adjustments could be capped or uncapped:
In order to limit the amounts of adjustments, a maximum range may be considered.
Based on [16], the capped adjustments may penalize the consumers if the load
levels are abnormally high in the event days.

In the symmetrical adjustments, considering a cap for the adjustments (especially
for the decreasing adjustments) could help to keep the alignment characteristic, as
well as the customers’ satisfaction. However, considering a cap for the incremental
adjustments may be resulting in some undesirable consequences. For example, if the
event day has a severe weather condition with a very high temperature, the demand
levels would normally be much more than the previous days through the baseline
window. So, if the adjustments are capped, the customers may be penalized even if
they are responsive to the DR calls.

Therefore, it should be tried to consider different consequences of the decisions
regarding the characteristics of the baseline calculation methods.

7.2.2 Regression method

The regression method uses several variables such as the hour, day type (in a week),
sunrise, and sunset to calculate the CBL. The simultaneous employment of the regres-
sion method and the ones mentioned above can improve computational accuracy. In
other words, as the regression method uses a large number of variables, it is one of the
most accurate methods. During the past 10 years, several researchers have compared
the regression method and X/Y methods. According to LBNL, the X/Y methods have
better performance than the regression method for the consumers with high load vari-
ability. According to [46], the performance of the X/Y methods is relatively similar
to the weather regression models. According to [47], the regression method has bet-
ter performance than the X/Y methods. However, the regression method may not be
appropriate for real-time applications [48]. Some of the explanatory variables of the
regression method used in these studies are the average load, cooling and/or heating
degree days, day type indicators, and the day of average load [16].

The calculation of the regression-based CBLs is complex as needing the data of
the load, weather, and day type. This method may require all the summer data for
the estimation of the load levels in the event days. In such a case, it is impossible to
calculate real-time CBL during an event period. It is worth noting that the real-time
reporting of the CBL is required by the consumers and aggregators, as the feedback
to determine their performance. Furthermore, the regression method defers the post-
event performance evaluation of the consumers that may reduce their satisfaction
level. Although the regression method is accurate, it is complex and is not recom-
mended for the measurement and validation of the DR programs [16]. According to
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the high complexity of the regression-based methods, they cannot be manipulated
easily, which means the improvement of the integrity. In return, they cannot provide
a proper understanding for the DR players about the exact relationship between the
load reduction and the incentives [12]. Accuracy improvements against the loss of
simplicity may face the entities with some challenges since incentives would not be
clear enough [12].

7.2.3 Other CBL calculation methods

This section introduces some other types of CBL calculation methods as the
followings:

● Comparable day method: In this method, the CBLs of the event days are calculated
using the data from their similar days. Unlike the averaging methods, this approach
only uses the data of a single day. The comparable day method is faced with two
main challenges [16]:
– The CBL cannot be calculated during the event period.
– There is no clear criterion for the selection of a similar day that would make

it difficult to evaluate how a day is appropriate to be selected as a similar day.
● Rolling average method: These methods use historical data and give greater

weight to the recent days. It is more accurate for the consumers with approx-
imately constant load patterns. If a customer is active only in winter since the
rolling average method will also consider the data of other seasons, the accuracy
of the calculations to estimate its winter load pattern would be decreased [16].

● Virtual control group method: In this method, the customers are divided into two
groups and one of them controls the behavior of another one. These groups should
be very similar in different aspects such as the load profile, types of electrical
devices, and energy consumption levels. In general, randomized group control
(RGC) and non-experimental group control methods are utilized to choose the
control groups. Based on the RGC method, the selection of the control group
and the responsive group should be made in a way that both of them have similar
characteristics and conditions. The RGC method is used in different companies
such as Statewide Pricing Pilot [49], Anaheim Critical-Peak Pricing Experiment
[50], Olympic Peninsula Project [51], Kyushu Electricity Pricing Experiment
[52], and Energy Demand Research Project [53]. The main drawback of the
RGC method is its implementation cost, as it requires that all the consumers be
equipped with smart measuring infrastructures. Moreover, in the systems with
high penetration of the smart metering equipment, most of the consumers receive
the load reduction signals. So, it is a difficult task to find a control group that is not
receiving the DR signals. Under these conditions, the non-experimental methods
could be used to determine the control groups, in which, the utility companies
create a database containing load data of the consumers such as the load profile,
annual or daily energy consumption, building infrastructure, demand levels, etc.
By using this approach, control groups are selected based on the customers’
characteristics using the available data of this database. Although this approach
is cheaper than another one, it has some drawbacks. It requires a large amount
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of data to determine the various energy consumptions, and it is costly to gather
such a volume of data. Another drawback of this method is that the stored load
data are static and cannot determine the dynamic behavior of the loads.

● Machine learning method: This method employs neural networks in which dif-
ferent effective factors (such as the average temperature of a day) are used as the
learning coefficients to calculate the CBLs [30].

● Polynomial interpolation method: This method is based on the actual data of the
day and uses a polynomial function (usually a fourth-degree function) to estimate
the CBL by using data from the period before or after the event hours.

● Cluster-based baseline calculation: In these novel approaches, the actual data
of the event day are used rather than the historical data [31, 54]. This method
considers different effective factors such as weather data. Also, the following
clustering methods are being used by this approach to cluster the customers:
– Based on the historical load data.
– Based on the decision tree and using the demographic information.

Each cluster is divided into two subsets: participants and control groups. The
average of the load levels of a control group is used to calculate the baseline of the
participated consumers. It is worth noting that the weighted regression methods can
be used instead of the averaging methods to consider more factors, such as weather
conditions.

7.3 Comparison of different baseline estimation methods

As mentioned, the performance of the baseline estimation methods could be evaluated
considering four criteria, i.e., simplicity, accuracy, integrity, and alignment. The per-
formances of some of the baseline estimation methods are compared in the following
[12,16].

● X of Y: This approach is simple enough and makes it easy to have proper com-
munication with customers. Since the temperature data is not the input of these
methods, they may not have high accuracy, especially if the weather condition
is approximately constant during a long period and it varies significantly in the
event days. Also, customers may be able to manipulate their consumption patterns
through the X days in order to enhance their baselines and receive more incentives.
However, it should be noted that these drawbacks could be eliminated by employ-
ing some actions such as adjustments (as an instance, if suitable adjustments
are applied, they could significantly reflect the effects of weather conditions and
improve the accuracy. Also, the appropriate selection of the look-back window
could improve the integrity).

● Regression: Since different variables such as weather temperatures are used by
this approach, it has high accuracy. However, its complexity makes it difficult to
have proper communications with customers. From the integrity point of view, it
is not easily possible to manipulate the consumption patterns, since this approach
is based on data from a long period, and changing data in some limited hours
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would not significantly affect the results. The disadvantage of this approach is its
weakness to identify the substantial changes in the consumption patterns (such
as installing the storage devices).

● Machine learning: Since this approach can consider the temperature data, it is a
good choice to estimate the residential baselines. The machine learning method
could identify the relationships between the inputs and outputs. However, this
approach is more complex than the previous ones and would make it difficult to
have effective communication with the customers. From the accuracy viewpoint,
it is more accurate than others. In addition, it is based on enormous data, and so
the possibility to manipulate its results is near to zero.

● Polynomial interpolation method: This approach is based on the interpolation
of the data of limited hours. Therefore, it is simple and does not require a high
amount of input data. Also, the accuracy of this approach is acceptable since it
uses data from an interval that is close to the event hours. However, variables such
as temperature data are not the inputs of this method. Moreover, it is under a high
risk of manipulation, because it is based on data from a short period.

● Virtual control group method: This method has a high accuracy in estimating the
baselines. It is not manipulatable because the customers are not compared with
their own historical data. Also, one of the important features of this method is
its scalability which could cover a large number of customers. In this approach,
the various data of several consumption patterns are available for the distribution
companies or aggregators (such as the types of the devices, number of family
members, and the area of houses) that could be used to estimate the baselines.
The main drawback of this method is that a massive number of factors should be
considered to be able to correctly select the control group, which most of them
are not available.

● Maximum base-load (MBL): This method is based on the ability of a responsive
load to reduce its load to a specified load level [16] which is calculated by subtract-
ing the contracted load reduction amount from the maximum expected load level.
This method is sometimes called as “drop to” method, as the consumer should
reduce its load to a specified load level. In return, most BT-I methods are called
“drop by” methods as the consumer is aware of the load reduction amount while
the load level is not a specific value. Unlike the BT-I methods, which create a
dynamic load profile, the MBL is a static baseline calculation method. It is worth
noting that in the MBL method, while the normal loads are lower than the spec-
ified load levels, consumers could be considered as the responsive participants
without the need for any load reduction.

The Average Coincident Load (ACL) and Peak Load Contribution (PLC) are two
popular methods based on the MBL. The ACL method has been employed by NYISO,
and the PLC method has been used by the PJM in the Emergency Load Response
program [16]. In both of these methods, the peak hours of the previous year are used to
calculate the average values of the consumers’peak loads, which would be considered
as their baselines during all hours. These two methods are different from each other
in the process of identifying the peak hours.
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MBL is of two types: coincident and non-coincident. In the coincident type, the
system peak hours are being considered as the peak hours of this approach. In return,
in the non-coincident type, the peak hours of different individual consumers are being
used instead of the system peak hours.

● Meter Before – Meter After (MBMA): “A performance evaluation methodology
where electricity consumption or demand over a prescribed period before deploy-
ment is compared to similar readings during the Sustained Response Period”
[16]. This method is appropriate for the ancillary service events due to the mini-
mal notice and reduced event durations. In general, the ancillary service programs
aim to reduce the load in a short period of time.
The properties of the MBMA are as the following:
– The CBL is static.
– It uses the historical data of each individual consumer.
– It is based on the historical data during a short time.

The previously analyzed DR programs and their related CBLs focused on the
emergency and energy services in which the consumers participate for around 4–
8 h. In return, in the ancillary service programs, the participation period is short
(generally around 10 min–2 h). So, the ancillary service programs usually use the
MBMA method for calculating the CBL.

● Baseline type II (BT-II): This is a performance assessment method that uses sta-
tistical sampling to estimate the energy consumption of the aggregated demand
resource, where interval metering is not possible for all consumers. Often, histor-
ical data are used to calculate CBLs. However, sometimes data are not separately
available for each consumer, and the existing data is related to a group of cus-
tomers. Under these conditions, CBLs could be calculated for the groups of loads,
and then a method should be used to determine the share of each consumer. As the
industrial and commercial loads are equipped with metering devices, the BT-II
method is not commonly used for them. In return, this method is appropriate
for the residential consumers that installing metering devices for them is costly.
By increasing the number of metering devices for these consumers, the need to
employ the BT-II method would be decreased.

7.4 Accuracy evaluation indexes

To determine the accuracy of the methods, the calculated CBL could be compared with
the actual loads during the periods without DR. Here, some criteria are introduced to
assess the accuracy of the methods.

7.4.1 RMSE and RRMSE

Root mean squared error (RMSE) is calculated using the following equation [55]:

RMSE =
√

1

n

∑n

i=1
(ŷi − yi)2 (7.1)
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In this equation, n is the number of data samples, i is the indicator for the number
of data, yi is the actual value of the ith sample, and ŷi is the estimated value of the ith
sample.

The relative root mean squared error (RRMSE) [56] can be calculated using (7.2),
in which, ȳ is the average of the actual data.

RRMSE = RMSE
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(7.2)

7.4.2 MAPE and MAE [57, 58]

The mean absolute percentage error (MAPE) is calculated using (7.3) [55]:

MAPE = 100
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yi

∣∣∣∣ (7.3)

Also, the mean absolute error (MAE) is calculated as the following [21]:

MAE = 1

n

n∑

i=1

∣∣yi − ŷi

∣∣ (7.4)

It should be noted that, regardless of whether the estimated values are more or less
than the actual values, the differences among these values are used by these indexes.
Therefore, it is suggested here to take into account the positivity or negativity of the
differences, since it shows that the estimation methods are over/under-estimating the
load behaviors.

7.5 Guidelines and suggestions to select a proper baseline
estimation method

Based on the literature, some guidelines and suggestions are summarized in this
section. To enhance the accuracy of the methods, it would be beneficial to utilize
some approaches, such as data-mining or clustering-based methods. In addition, the
integrity criterion denoted that an appropriate method should not be vulnerable to
manipulations. Moreover, the CBL estimation method should be designed in a way to
incentivize the customers to participate in DR programs (that is defined as alignment).
Simplicity indicates that the calculation of the baseline should be simple enough to
be computable using the simple available tools and also be easily understandable by
all the players. However, it should be noted that if an approach is too simple, it may
lose the accuracy, integrity, or alignment.

Based on the literature, in the averaging methods, the following guidelines should
be taken into account [12,16]:

● If X approachesY, an unadjusted baseline would increasingly understate the value
of CBLs;

● If adjustment is used, the X to Y proportions are less important;
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● Usually, the utilization of the uncapped adjustments is better than the capped
adjustments from the accuracy point of view. Hence, it is suggested to employ
uncapped adjustments.

● Based on the experiences, usually if 0.4<X/Y<0.8, the error is minimum.
Moreover, if 0.4 <X/Y<0.8, an increase in X will probably decrease the errors.

● The utilization of the increasing/decreasing adjustments is suggested, since, usu-
ally the utilization of load data immediately preceding the events could improve
the accuracy of the estimation.

● X of Y methods is generally able to provide a satisfying tradeoff between the
simplicity and accuracy. Based on [59], the accuracy of the X ofY and regression
methods are close to each other, while the regression methods are more complex.
Therefore, based on [59], X of Y methods are preferred to regression-based
methods due to less managerial costs.

● Symmetrical adjustments will be able to increase or decrease the initially esti-
mated baseline. If the uncapped adjustments are employed, the load data during
the preceding hours of the events is utilized nicely to improve the accuracy of the
calculations. However, the utilization of the asymmetrical adjustments would be
more interesting for responsive customers.

● The symmetric adjustments are appropriate for the programs that are not designed
for the extreme load conditions. In these programs, the load levels of different
days are similar, and there are the same probabilities for the unadjusted baselines
to be higher or lower than the actual loads.

● When DR events are called on-peak periods, by the symmetric adjustments, the
consumers may need to take some actions in the baseline adjustment period to
prevent the baseline understatements. While, given an asymmetrically adjusted
baseline, they need no special action. The asymmetric adjustments are effective
solutions to reduce the negative consequences of the early curtailment actions.
These methods have no negative effects on the logical behaviors of the energy
users to reduce their load at the time of grid stress.

● Adjustment windows should not have any overlap with the ramp period.
● If X < Y, since X days with the highest energy demand for each individual

customer may not be the same with other customers, if the combined load data
of all the customers is used, the estimated baseline may be less than the way in
which the baseline is individually calculated for each customer. Hence, usually,
it is better to calculate the baseline separately for each individual customer.

● A look-back window with ten working days could have satisfying results since it
is not a too short or too long period.

● For the industrial and commercial customers, a 10 of 10 approaches could be
a proper choice, since these types of customers typically have constant con-
sumption patterns and are not highly dependent on weather. If the consumption
pattern is intermittent, this method may not be suitable enough [60]. For such
loads, the usage of the control group method or the utilization of the periods
before or after an event with similar weather might be proper. The identifica-
tion of the suitable methods to evaluate the baselines for the customers with the
intermittent load patterns is a challenging task and needs more investigations
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and analysis and is highly dependent on the specifications of the system under
study.

● Although the utilization of the MBL methods is simple, they may significantly
overestimate the baselines and be resulted in high errors. So, usually, X of Y
methods are preferred to the MBL methods.

As it could be observed from the literature, none of the approaches are necessarily
better than others. It is vital to implement different approaches in the system under
study and analyze the results. The appropriate method should be identified based on
the analysis of the load specifications in the system during the DR implementation
period.

7.6 Practical results

In this section, a sample of the calculation results for the baseline estimation is
presented using the actual data in 2020 (spring, summer, and fall). To this end, a
calculation tool is developed and 44 averaging approaches are simulated and their
performances are examined. All these approaches are based on the X of Y methods.
According to these models, the historical load data of X-days with the maximum
average load levels from aY-day look-back window is utilized. It should be noted that
holidays and weekends are excluded from the computations. It is noteworthy that the
days with entirely different consumption patterns should also be excluded.

In these calculations, hours 12–17 are the DR event times when the DR aggre-
gators should enable the DR potential. Adjustments should be applied using the data
from the period when the customers have not changed their behaviors in response to
DR signals. Here, it is assumed that DR deployment time is 12 PM, and customers may
react to DR signals since 11AM. Therefore, 9AM and 10AM are selected to calculate
the adjustments. Table 7.2 shows the calculation types that are employed here.

The accuracies of the calculation methods are evaluated using the RMSE,
EEMSE, MAE, and MAPE indexes.

The simulation results show that in all cases, the utilization of the scalar
adjustments leads to better performances compared to the additive ones. More-
over, generally, during the summer and fall, in which load levels are not usually
increasing/decreasing and show some oscillations around some values, symmetrical
adjustments are better than asymmetric ones. Based on the results, it is not possible
to explicitly select an approach as the best one. Such achievements were expectable
based on the available experimental results in the literature. Indeed, based on the
existing studies and practical experiments, none of the approaches are always better
than others. The selection of the best method is wholly based on the features of the
system under study, policies, and the period that DR is enabled.

Tables 7.3–7.5 show four methods with better results during spring, fall and
summer.

As it could be observed, in spring, symmetrical and asymmetrical two of three
methods and asymmetrical three of three and four of five methods, all of them using
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Table 7.2 Employed methods

Method Adjustment

No. X/Y Symmetrical Asymmetrical A
dd

it
iv

e

Sc
al

ar

C
ap

pe
d

U
nc

ap
pe

d

increasing/decreasing increasing/decreasing

1 3/3 � � �
2 3/3 � � �
3 3/3 � � �
4 3/3 � � �
5 2/3 � � �
6 2/3 � � �
7 2/3 � � �
8 2/3 � � �
9 10/10 � � �
10 10/10 � � �
11 10/10 � � �
12 10/10 � � �
13 4/5 � � �
14 4/5 � � �
15 4/5 � � �
16 4/5 � � �
17 6/11 � � �
18 6/11 � � �
19 6/11 � � �
20 6/11 � � �
21 10/11 � � �
22 10/11 � � �
23 10/11 � � �
24 10/11 � � �
25 10/15 � � �
26 10/15 � � �
27 10/15 � � �
28 10/15 � � �
29 15/15 � � �
30 15/15 � � �
31 15/15 � � �
32 15/15 � � �
33 5/10 � � �
34 5/10 � � �
35 5/10 � � �
36 5/10 � � �
37 8/10 � � �
38 8/10 � � �
39 8/10 � � �
40 8/10 � � �
41 5/6 � � �
42 5/6 � � �
43 5/6 � � �
44 5/6 � � �
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Table 7.3 Four baseline estimation methods with better results during spring

Method Accuracy 5/6 8/10 5/10 15/15 10/15 10/11 6/11 4/5 10/10 2/3 3/3
evaluation
index

Symmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Symmetrical RRMSE 2
using RMSE 2
scalar MAE 3
adjustments MAPE 3

Asymmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Asymmetrical RRMSE 3 1 4
using RMSE 4 1 3
scalar MAE 4 1 2
adjustments MAPE 4 1 2

Table 7.4 Four baseline estimation methods with better results during summer

Method Accuracy 5/6 8/10 5/10 15/15 10/15 10/11 6/11 4/5 10/10 2/3 3/3
evaluation
index

Symmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Symmetrical RRMSE 4 2 3 1
using RMSE 4 2 3 1
scalar MAE 4 1 3 2
adjustments MAPE 4 2 3 1

Asymmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Asymmetrical RRMSE
using RMSE
scalar MAE
adjustments MAPE



DR measurement and verification approaches 155

Table 7.5 Four baseline estimation methods with better results during the fall

Method Accuracy 5/6 8/10 5/10 15/15 10/15 10/11 6/11 4/5 10/10 2/3 3/3
evaluation
index

Symmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Symmetrical RRMSE 1 3 2 4
using RMSE 1 3 2 4
scalar MAE 1 3 4 2
adjustments MAPE 1 4 2 3

Asymmetrical RRMSE
using RMSE
additive MAE
adjustments MAPE

Asymmetrical RRMSE
using RMSE
scalar MAE
adjustments MAPE

the uncapped and scalar adjustments are the most appropriate approaches. However,
the differences are not significant. Against the results in spring, in summer, the
symmetrical 10 of 10, 10 of 11, 15 of 15, and 8 of 10 using the scalar and uncapped
adjustments show better performances. Also, during the fall, the symmetrical 10 of
10, 8 of 10, 4 of 5, and 5 of 6 methods using the scalar and uncapped adjustments are
the most proper approaches.

It is noteworthy that the load trend in spring is different from summer and fall.
Therefore, the results presented in Table 7.3 (that belongs to spring) are considerably
different from the results represented in Tables 7.4 and 7.5 that belong to fall and
summer, respectively. During spring, the average of load levels is increasing from the
beginning until the end of the period, while in fall and summer seasons, often, the
behavior of the load levels is in a way that it is growing until some specific levels and
then violate around these levels. Based on the investigations, the 10 of 10 approaches
are usually an appropriate method when the consumption patterns are not highly
intermittent.

Based on the literature, it could be concluded that the 8 of 10 using the sym-
metrical and uncapped adjustments could be a proper approach, due to the following
criteria:

● X increments through the 0.4< x/y< 0.8 interval could decrease the error [16];
● A 10-day look-back window containing the working days could be a proper choice

[12];
● Symmetrical adjustments could improve the accuracy of the calculations [12,16];
● Uncapped adjustments are usually better than the capped ones [16].
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As the final comparison, based on the practical results and also what could be
found from the literature, two approaches are selected to be compared with each
other: 10 of 10 vs. 8 of 10 (both of them using the symmetrical, scalar, and uncapped
adjustments). The RRMSE and MAPE indexes are used for the comparison. Based on
the comparison results, it seems that the symmetrical 10 of 10 approaches using the
scalar and uncapped adjustments is the most appropriate tool to estimate the CBLs in
the test case of this chapter during the fall and spring seasons.

7.7 Concluding remarks and outlook

In this chapter, different baseline estimation methods are introduced, and their speci-
fications are investigated. To determine the accuracy of the approaches, four indexes
have been used: RMSE, RRMSE, MAPE, and MAE. It should be noted that based
on these indexes, only the differences between the actual and estimated values are
considered in the calculations, and the negativity or positivity of the errors are not
considered (that denotes the underestimation or overestimation of the calculations).
Hence, it is suggested that not only the accuracy indexes are used but also the neg-
ativity or positivity of the errors be considered to avoid severe underestimating and
ensure the alignment to enhance the participation of the customers in DR.

As discussed in this chapter, a suitable baseline estimation method should provide
a tradeoff between different features, i.e. accuracy, simplicity, integrity, and align-
ment. Quantitative studies are needed to evaluate the accuracy of the methods in the
system under study.

On the one hand, based on our experience, in most cases in which the con-
sumption patterns do not show sudden changes, the 10 of 10 approaches could have
satisfied performance. On the other hand, based on the literature, it seems that some
approaches, such as 8 of 10, may also be able to show good performances. As men-
tioned, the selection of the appropriate method is wholly based on the specifications
of the system under study, and it is required to implement and analyze different
approaches.

In this chapter, the concepts of the baseline estimation are introduced, and differ-
ent evaluation methods and their advantages and disadvantages are presented. Then,
comparisons have been provided between different approaches. In addition, a guide-
line is provided that could be used by all the beneficiaries of DR programs for selecting
the appropriate baseline estimation approaches. Moreover, some practical results and
experiences have been presented, and the relevant analyses have been explained. It
should be noted that the provided guideline is a set of scientific and experimental notes
that could help different players in making the DR-oriented decisions. However, the
final decision about the appropriate method should be made after the investigation and
implementation of different methods in the system under study. Indeed, the selection
of the best approach is completely based on the system’s specifications during the DR
implementation period and is not clear before such studies. Our experiences based on
the specifications of the system show that during the fall and summer, symmetrical
10 of 10, 8 of 10, 15 of 15, and 10 of 11 using the scalar and uncapped adjustments are
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suitable. However, during spring, when the consumption pattern is utterly different
with fall and summer (it shows smoothly increasing behavior from the beginning to
the end of the spring), the symmetrical and asymmetrical 3 of 4 methods and also
the asymmetrical 3 of 3 and 4 of 5 approaches using the scalar and uncapped adjust-
ments show better performances. These decisions are made based on the values of the
RMSE, RRMSE, MAE, and MAPE indexes. It is suggested to select the approaches
that firstly have the minimum error and secondly do not underestimate the baselines
(in order to support the activities of the startup companies and increase the partici-
pation rates in DR programs). Also, it is suggested that the days with typically lower
load levels (like holidays and weekends) be excluded from the look-back window
to avoid the underestimating the baselines. Finally, it should be emphasized that the
selection of the appropriate baseline is wholly based on the load specifications in the
system under study during the DR implementation period and also should be done
based on the expectations and goals of the decision-makers taking into account the
accuracy, simplicity, integrity, and alignment, as the pillars of the baseline estima-
tions. The notes that have been presented in this chapter are a guideline regarding the
selection of the appropriate approach based on the scientific findings and practical
experiences.
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Chapter 8

Transactive energy industry demand
response management market

K.S. Swarup1 and T. Vidyamani1

In a smart grid paradigm, the concepts of demand response (DR) and transactive
energy (TE) are used to optimize the consumption and generation in the power net-
works. In this chapter, two models for DR are analyzed based on the well-known
Cobb–Douglas utility function. Both models maximize their utility, subject to differ-
ent constraints. A time-of-use price-based DR program is employed. Restructuring in
the electricity sector, with an increase in renewable energy resources and distributed
energy management technologies, offers the potential for significant improvement
in the efficiency of power systems through the TE framework. In a TE framework,
prosumers of all sizes can participate in the double auction electricity markets via
automated home energy management systems. Heating, ventilation, and air condi-
tioning (HVAC) and energy storage devices are the two important loads in residential
buildings that account for a large proportion of building energy consumption. A
two-way exchange of energy and information is possible with the current advent of
communication systems and net metering. In this work, we consider the case of solar
photovoltaics (PV), HVAC, and energy storage devices (electric vehicles and battery
energy storage systems) of prosumers participating in the retail real-time double auc-
tion market. The problem is formulated as maximization of social welfare subject to
power balance and network constraints. Simulation studies and results are presented
for the modified IEEE 13 node distribution system.

8.1 Demand response

Dynamic pricing and demand response (DR) programs play a key role in the modern
smart grid environment to manage peak loads. The most important constraint of the
power system, i.e., supply-demand balance constraint, can be met either by optimizing
the generation side or the demand side. DR programs focus on the consumption side of
the network. DR is defined as “Changes in electric usage by end-use customers from
their normal consumption patterns in response to changes in the price of electricity

1Department of Electrical Engineering, IIT Madras, Chennai, India
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over time, or to incentive payments designed to induce lower electricity use at times
of high wholesale market prices or when system reliability is jeopardized” [1]. DR
strategies are generally classified into two types:

1. Incentive-based programs
2. Price-based programs

Price-based DR programs include,

1. Time of use (TOU)
TOU is a static price schedule. Higher rates during peak consumption hours and
lower rates during partial peak and off-peak hours

2. Critical peak pricing (CPP)
Pre-specified higher price during a limited number of hours or days per year

3. Extreme day pricing (EDP)
Higher price for the whole 24 h which is known only day-ahead

4. Real-time pricing (RTP)
Market prices are forwarded to end-use customers

8.2 Transactive control

Concentrating only on the consumption side might not fully exploit the capabilities of
future smart grids. Thus there is a need for a framework that focuses not only on the
consumption side but also on the rate of generation in both grid and demand sides [2].
Traditionally the flow of energy was from wholesale power plants to transmission
systems and then to the end-use consumers of the distribution system. The flow was
uni-directional, but now with the increase in the percentage of variable and intermittent
distributed energy resources (DERs), the way the power system operates has changed.
There is a bidirectional power flow due to the penetration of DERs such as distributed
generation (DG), Battery Energy Storage System (BESS), and electric vehicles (EVs)
in the distribution system.

There can be three control strategies established between the utility and the
customer [3].

1. Passive control
No real time transfer of price signal.

2. Active control
Real-time price signals are sent from utility to end-use appliances which then
respond based on their comfort.

3. Transactive control
This control involves two-way communication in which end-use loads can bid for
their demand and price is determined based on the bids from buyers and sellers.

Load pattern and the peak demand of the residential building will be different in each
scheme [4]. Transactive control operation with HVAC as a transactive agent is shown
in Figures 8.1 and 8.2. Where � is the electricity price, and T is the temperature of
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HVAC. More details about the derivation of bidding price and adjusted temperature
of HVAC from Figure 8.2 can be found in [5].

8.3 DR modeling and simulation results

Classical demand theory is a branch of microeconomics, and it is about the study
of consumer demand in a market economy. Important tools in this theory are utility
functions and two constraints, i.e., physical and budget constraints. In [6], authors have
proposed Cobb–Douglas utility function based DR subjected to budget constraints.
Here, two models for DR are analyzed based on the well-known Cobb–Douglas utility
function. Based on the willingness to participate, consumers are classified into three
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types i.e., high flexible, medium flexible ,and low flexible. Results are discussed
by considering different levels of participation in the program. The utility function
is subjected to budget constraint in model A and total consumption constraint in
model B.

8.3.1 Model A

In model A, the utility function is subjected only to budget constraint. Utility function
and budget constraint of model A is given by,

Maximize U (q1, q2) = qα1 qβ2 α > 0,β > 0,α + β = 1 (8.1)

subject to

I = p1q1 + p2q2 (8.2)

Lagrange function is given by,

L = qα1 qβ2 + λ(I − q1p1 − q2p2) (8.3)

∂L

∂q1
= αqα−1

1 qβ2 − λp1 = 0

∂L

∂q2
= βqα1 qβ−1

2 − λp2 = 0

∂L

∂λ
= I − q1p1 − q2p2 = 0

From the above equations,

q1 = Iα

p1
(8.4)

q2 = Iβ

p2
(8.5)

Demand functions q1 and q2 depends on total budget, prices of electricity and elasticity
parameter.

Where,
q1 is the peak period demand
q2 is the off-peak period demand
p1 is the peak time price
p2 is the off-peak time price
Q is the total demand
α, β is the elasticity parameter
U(.) is the utility function
I is the budget/bill amount (|/kWh).
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8.3.2 Model-B

In model B, the utility function is subjected to total consumption limit constraint. The
utility function and constraint of model B is given by,

Maximize U (q1, q2) = qα1 qβ2 α > 0,β > 0,α + β = 1 (8.6)

subject to

Q = q1 + q2 (8.7)

Lagrange function is given by,

L = qα1 qβ2 + λ(Q − q1 − q2) (8.8)

∂L

∂q1
= αqα−1

1 qβ2 − λ = 0

∂L

∂q2
= βqα1 qβ−1

2 − λ = 0

∂L

∂λ
= Q − q1 − q2 = 0

From the above equations,

q1 = αQ (8.9)

q2 = βQ (8.10)

Demand functions q1 and q2 depend on total demand and elasticity parameters.

8.3.3 Simulation results and discussion

Performance of both the models is analyzed using a residential load profile shown
in Figure 8.3. Based on the load profile, the daily time horizon is divided into two
time periods i.e., peak period and off-peak period and prices of the same are given in
Table 8.1. The average price is 3.83 per kWh. Peak time and off-peak time demand can
be adjusted by changing the values of elasticity parameters α and β. To participate in
the DR programs, each user should have smart meters with the capability of entering
their willingness to participate in the program with the elasticity parameter α. It is
known that α + β = 1, so β = 1 − α.

8.3.3.1 Analysis of model A
Peak demand and off-peak demand without DR is 28.8 kWh and 17.55 kWh and the bill
amount is |196.65. Table 8.2 shows the total demand for various values of the elasticity
parameter ranging from 0.1 to 0.9. We have a budget constraint, so the billing amount
will be the same irrespective of the elasticity parameter. Total energy consumption
without demand response is 46.36 kWh. As seen from Table 8.2, when α is greater
than 0.7, the total energy is less than 46.36 kWh which is the energy consumption
without demand response. Here the assumption is that no user wants the reduction in
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Figure 8.3 Load profile

Table 8.1 Price of electricity in different time
periods

Demand level q1 q2

Time period 6:00–9:00, 23:00–6:00
16:00–23:00 9:00–16:00

Price (| per kWh) 5 3

their energy consumption after participating in a demand response program. So the
appropriate range for the elasticity parameter in model A is 0.1 < α < 0.7. Figure 8.4
shows that with increase in α, the amount of consumption increases in peak time.
Figure 8.5 shows that with increase in α, the amount of consumption decreases in
off-peak time. If the user selects the small value of elasticity parameter α, then the
participation of that user in demand response program is more, thus he is more flexible.
So his peak time consumption will be less and off-peak consumption will be more.
With α = 0.1, total energy consumption is 62.92 kWh which is 16.56 kWh more than
the energy consumption without demand response program. Thus with the same bill
amount, users can consume more energy if their willingness in participating demand
response programs is more.
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Table 8.2 Changes in the power consumption after
implementation of model A

Elasticity q1 q2 Q (kWh)
parameter α (kWh) (kWh)

0.1 3.93 58.99 62.92
0.2 7.86 52.44 60.3
0.3 11.79 45.88 57.67
0.4 15.73 39.33 55.06
0.5 19.66 32.77 52.43
0.6 23.59 26.22 49.81
0.7 27.53 19.66 47.19
0.8 31.46 13.11 44.57
0.9 35.39 6.55 41.95
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Figure 8.4 Model A—peak period consumption for different values of α

8.3.3.2 Analysis of model B
The main difference between model A and model B is the constraint it is subjected
to. In this model, we have total consumption constraint. That is energy consumption
before and after the implementation of demand response program will be the same.
Table 8.3 shows the peak and off-peak time period power consumption of model B.
As shown in Table 8.3, the bill amount has increased with an increase in the elasticity
parameter α. Figure 8.6 shows the peak period consumption for different values of α.
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Table 8.3 Changes in the power consumption after
implementation of model B

Elasticity q1 q2 Bill amount
parameter α (kWh) (kWh) (|)

0.1 4.63 41.71 148.29
0.2 9.27 37.08 157.59
0.3 13.90 32.44 166.82
0.4 18.54 27.81 176.13
0.5 23.17 23.17 185.36
0.6 27.81 18.54 194.67
0.7 32.44 13.90 203.94
0.8 37.08 9.27 213.21
0.9 41.71 4.63 222.48

Peak period consumption increases with an increase in the elasticity parameter. When
α is greater than 0.6, q1 is more than the peak period energy consumption without
demand response. Figure 8.7 shows the off-peak period consumption for different
values of α. Off-peak energy decreases with an increase in the elasticity parameter.
With α > 0.6, bill amount is also more than the usual one without demand response.
So the appropriate range for the elasticity parameter in model B is 0.1 < α < 0.6. So
it is clear that similar to model A, the user is more flexible if he chooses a small value
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of elasticity factor. Thus users can consume the same amount of energy with less bill
amount if their willingness in participating demand response programs are more.

8.3.3.3 Comparison of model A and model B
To participate in the demand response programs, consumers should have smart meters
with inbuilt energy management system (EMS) software. Power demand equations
and algorithms can be coded in the EMS systems. Demand response programs are
user-friendly that consumers can join or leave the program at any time. In the digital
display of EMS, the consumer has to enter elasticity factor α, which is the measure of
their willingness to participate. In model A, the user will have the same bill amount
before and after the implementation of demand response. If he is highly flexible, then
most of his peak period loads will be shifted to off-peak period time. As an incentive
for participation, he can use extra energy with the same bill money. In model B,
though the energy consumption remains the same before and after implementation,
a highly flexible consumer who is more willing in participating demand response
programs will get a reduction in the bill by shifting his loads from peak period to
off-peak period. It is assumed that EMS has the capability of changing from model A
to model B when needed and vice versa in a suitable time interval. So the consumer
can set his preference depends on whether he wants the same energy consumption
with a reduction in the bill or more energy consumption with the same bill amount.

8.4 TE management

TE is the generalized form of price-based demand response. TE manages the rate
of generation in both the grid and demand sides. GridWise Architectural Council
(GWAC) defines TE as “A set of economic and control mechanisms that allows the
dynamic balance of supply and demand across the entire electrical infrastructure
using value as a key operational parameter” [7]. Decisions in TE Framework (TEF)
are made based on the value, which is analogous to or literally economic transactions.
Application of transactive control is well established in the wholesale market and in
transmission level, but its application is largely missing in the distribution level and
retail markets [8]. Transactive control accommodates two-way power flow and new
generation using a decentralized supply model. It allows for faster transmission of
information about supply, demand, and price across the entire infrastructure.

The TE framework helps the power system to evolve as a hybrid system of
the wholesale energy market (WEM) and local energy markets (LEM) as shown
in Figure 8.8. The wholesale energy market operator manages the network and power
balance at the transmission level, and the local energy market operator/distribution
system operator (DSO) is responsible for managing the DERs and power balance at
the distribution level [9].

In a TE management system, transactive agents negotiate their actions with each
other through double auction transactive markets.A double auction market mechanism
computes the clearing price and quantity based on the bids and offers from buyers
and sellers of energy. A transactive agent may be a residential house, industrial or
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commercial building, microgrid, demand response aggregator, microgrid aggregator,
renewable farm, etc. As seen in Figure 8.8, the transactive control concept can be
applied in all levels of the power system from residential to transmission level, and it
facilitates the integration of the local energy market and wholesale energy market [2].

At the bottom level of the TE framework, we have residential houses, no matter
their sizes, they can participate in the retail or local energy market and modify the
schedule of its controllable appliances based on the cleared market price and user’s
local information. The TE concept can also be applied inside a single building where
each zone can bid or compete among themselves [10]. Retail markets can be oper-
ated for only one microgrid (MG) as well as for the group of microgrids [11]. An
energy management scheme for residential microgrids has been proposed in [12,13].
Transactive control helps in congestion and voltage management in the distribution
system by considering the network operational constraints [14]. There are forward
and spot transactions in transactive markets. Forward markets operate by relying on
future delivery, and spot market is used for instant delivery.

GridWise Olympic Peninsula project [5] is the field demonstration of the trans-
active control concept in the distribution network with the market clearing interval
as 5 min. Residential electric water heaters and Heating Ventilation Air Condition-
ing (HVAC) loads, commercial building HVAC loads, municipal water pump loads,
and several distributed generators were coordinated to manage the congestion in the
distribution feeder. The bid price of HVAC has been calculated based on the con-
sumer’s desired temperature set-point, comfort setting factor, and temperature limits.
The temperature set-point will be adjusted based on the market-clearing price [15].
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A reinforcement learning-based model-free bidding strategy for HVAC systems in
double auction retail markets has been proposed in [16].

Authors in [17] formulated the bidding strategies of Electric Vehicles (EVs) to
participate in the retail real-time double auction market. The bid price of EV has been
calculated based on the consumer’s comfort setting, arrival time, departure time,
and the battery SOC level and limit values. Comfort setting factor (k) reflects the
consumer’s flexible nature whether he wants more comfort or a reduction in the bill.
The bidding and offering strategies for EV participation in the real-time retail market
have been proposed in [18]. The offering strategy has been developed by considering
the wear price of the battery. In [19], the authors proposed the bi-level bidding model
for residential prosumers in the day aheadTE market using the flexibility of BESSs. An
energy storage model has been developed by incorporating the operational constraints
and degradation of storage units when they undergo frequent charge-discharge cycles.

EV charging and HVAC systems account for a large proportion of energy con-
sumption. Coordinated dispatch of EV and HVAC has been proposed using model
predictive control in [20] and [21] to reduce the cost and to accommodate the uncer-
tainties in the PV supply. TE framework can have centralized or decentralized energy
trading [22]. In a centralized energy trading, all microgrid participants send their
energy bids and offers to the LEM operator. LEM operator aggregates all the bids and
offers to determine the market-clearing price while satisfying the network constraints.
The cleared market price is sent back to the participants to initiate the transactions.

In this work, each prosumer is assumed to have PV, HVAC and Energy stor-
age devices (EV, BESSs). A real-time market framework is developed that enables
prosumers to adjust their willingness to pay/accept according to their comfort in a
user-friendly manner. Prosumers can participate in the retail market via their HEMS.
The DLMPs are calculated for the network with price-responsive devices by solving
ACOPF equations.

8.5 Methodology

In a TE framework, the market participants submit their “price-quantity” bids/offers
for electricity demand or supply in each time interval. Interaction of retail market
with the wholesale market is incorporated in the developed model. The independent
system operator in the wholesale market clears the market and sends the clearing
prices of the day-ahead market known as locational marginal prices (LMPs) to all
participants. The DSO, associated with retail market operations, calculates the dis-
tribution locational marginal prices (DLMPs) for the next day based on the received
LMP and forecasted net demand. The calculated DLMP will be an uncertain param-
eter because of the uncertain nature of the net demand of distribution systems. In
this work, the uncertain nature of DLMPs is defined by using the normal proba-
bility distribution function. DSO estimates the mean and standard deviation of the
price and sends these signals to all the prosumer buildings as transactive incentive
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signals (TIS). In each market time step, HEMS of prosumer buildings estimates the
bid/offer prices of PV, energy storage devices, and HVAC based on the received
prices, comfort settings, required and current SOC levels of energy storage devices,
and temperature set-point limits of HVAC. Then, these estimated bids/offers are sent
back to the DSO as transactive feedback signals. DSO clears the retail market by
maximizing social welfare considering the network constraints. Based on the market-
clearing prices, the real-time action of PV, HVAC, and energy storage devices will be
determined.

For energy storage devices, if the local market-clearing price (MCP) is lower
than the bid price, they will be charged. If the local market-clearing price is above
the offer price, they will be discharged. Otherwise, they will be in idle mode until the
next time step. For HVAC, in cooling mode of operation, if the MCP is greater than
its bid price, the cooling set point will be moved higher, decreasing its consumption
and if the MCP is less than its bid price, the cooling set point will be lowered further
to take advantage of low market prices. PV sells the power only when it exceeds
the self-consumption. If the local market-clearing price is greater than the PV’s offer
price, it sells power. Otherwise it will be stored in the BESS for future use. This
section presents the bidding/offering strategies of energy storage devices, HVAC, and
PV used in the proposed market clearing problem.
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8.5.1 Bidding/offering strategy of energy storage devices (ESD)

Energy storage devices include EV batteries and BESSs. This work uses the model
developed in [17] for the bidding strategy of EV and [18] for the offering strategy of
ESD. Bid price model of ESD is given by,

λ
buy
ESD = λ̄+ (σ × k ×�ESD) (8.11)

�ESD = Required time to fully charge(trequired)

Available time(tavailable)
(8.12)

trequired = (SOCdesired − SOCcurrent) × Emax

Prated
(8.13)

tavailable = tdeparture − tcurrent (8.14)

In (8.11), λ̄ andσ are the mean and standard deviation of the price in the corresponding
time step and will be sent by the retail market operator. k is the user’s comfort control
factor with the range of [0,1] and can be interpreted as the higher the value of k,
the more comfort. trequired can be calculated using (8.13), where Emax is the battery
capacity in kWh and Prated is the charging rate in kW. SOC is the State Of Charge of
energy storage device. For EV battery, tavailable is the difference between the current
time and the departure time. For BESS, tavailable is equal to 24 h as it will be available
at home all the time. The offer price of ESD is estimated based on its discharge cost.
The total discharging cost ESD is given in (8.15),

Costdis = Costrech + Costwear (8.15)

First-term in (8.15) is the average cost of recharging during the following time steps,
and the second term is the battery wear cost caused by the discharge. The detailed
modeling of recharging cost and wear cost can be found in [18]. Offer price model of
ESD is given by,

λsell
ESD = λ̄

ηchηdis
+ 2 × wp

ηdis
(8.16)

ηch and ηdis are the charging and discharging efficiency of ESD. wp is the battery wear
price.

The bidding and offering quantities of electricity by ESD are calculated by HEMS
as given in (8.17) and (8.18) [18]:

Pbuy
ESD = min

{
Prated ,

Residual capacity

ηch�T

}
(8.17)

Residual capacity = (1 − SOCcurrent) × Emax

Psell
ESD = min

{
Prated ,

ηdis(SOCcurrent × Emax − Emin)

�T

}
(8.18)

Emin is the minimum allowable SOC level.
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8.5.2 Bidding strategy of HVAC

This work uses the model developed in [3,16] for the bidding strategy of HVAC. Bid
price model of HVAC is given by,

λ
buy
HVAC = λ̄+ (σ × k ×�HVAC) (8.19)

�HVAC = Tcurrent − Tdesired

Tmaximum − Tminimum
(8.20)

In this work, only the cooling mode of operation is explained. However, the working
of heating mode is similar. In addition to the bid price model, HEMS should also
calculate the bid quantity of HVAC. The actual demand of an HVAC system varies
with many factors like the voltage, outdoor air temperature, house construction mate-
rials, and room temperature set point. So the exact demand model should consider
the actual previous power demand of HVAC systems for the specified conditions and
bid this quantity in the market. However, in this work, we consider the nameplate
capacity of HVAC as demand quantity bid as detailed modeling of appliances is out
of the scope of this work.

8.5.3 Offering strategy of PVs

λsell
PV = λ̄+ σ (8.21)

Psell
PV = Max(PV prod − Pd , 0) (8.22)

In (8.22), PV prod is the predicted power generation from PV and Pd is the load demand.
Like ESD and HVAC, we do not have any comfort factor for PV. So PV is bidding at the
mean price scaled by standard deviation and PV sells power only when it exceeds the
self- consumption as given in (8.22). It is assumed that the load demand and power gen-
eration from PV are predicted with acceptable accuracy before the bidding window.

8.6 Problem formulation

The considered test system is the radial distribution network with node 1 being
connected to the substation. Power exchange with the upstream grid and network
constraints are considered in the formulation. The objective function as formulated
in (8.23) is the social welfare (SW) maximization problem:

SW =
∑

n∈N\{1}

∑

i∈I

�i(λ, Pi) − λLMPPbuy
grid + λFIT Psell

grid (8.23)

�(λ, P) = λ
buy
EV Pch

EV + λ
buy
BESSPch

BESS + λ
buy
HVACPHVAC

−λsell
EV Pdis

EV − λsell
BESSPdis

BESS − λsell
PV PPV

0 ≤ Pch
n,i,EV ≤ Pbuy

n,i,EV ; ∀i ∈ I , n ∈ N\{1} (8.24)

0 ≤ Pdis
n,i,EV ≤ Psell

n,i,EV ; ∀i ∈ I , n ∈ N\{1} (8.25)

0 ≤ Pch
n,i,BESS ≤ Pbuy

n,i,BESS ; ∀i ∈ I , n ∈ N\{1} (8.26)

0 ≤ Pdis
n,i,BESS ≤ Psell

n,i,BESS ; ∀i ∈ I , n ∈ N\{1} (8.27)

0 ≤ Pn,i,PV ≤ Max(PV prod
n,i − Pdn,i) ; ∀i ∈ I , n ∈ N\{1} (8.28)
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where N defines the set of all nodes in the system and n is the index of nodes. L is the
set of lines in the distribution network. (j, k) are the indices of buses, i is the index
of prosumers, I is the set of prosumers at bus n. 
j

l is the set of all nodes which are
connected to node j. λLMP and λFIT are the electricity price and Feed in tariff rate.
From the social perspective, DSO desires to increase the sum of comfort obtained by
each user and to decrease the cost. Equation (8.23) states that the scheduling will be
optimal as the difference between total gross benefit of buyers and total cost of sellers
i.e., surplus is maximized. Last two terms in (8.23) represent the cost and revenue of
energy exchange with the main grid. The limits on prosumer’s decision variables are
given in (8.24)–(8.30)

● Energy exchanging constraints

0 ≤ Pbuy
grid ≤ Pgrid,max.x (8.29)

0 ≤ Psell
grid ≤ Pgrid,max.x̄ (8.30)

−Qgrid,max ≤ Qgrid ≤ Qgrid,max (8.31)

x + x̄ ≤ 1 (8.32)

Maximum allowable range of active power and reactive power exchange with the
upstream grid is given by (8.29)–(8.31). Equation (8.32) implements the binary logic
for the direction of flow of active power with the upstream grid.

● Power balance constraints
∑

i∈I

(Pdis
n,i,EV + Pdis

n,i,BESS − Pch
n,i,EV − Pch

n,i,BESS − Pn,i,HVAC + Pn,i,PV )

−PDn,load =
∑

k∈
j
l

Pjk ; ∀n ∈ N\{1} (8.33)

−QDn,load =
∑

k∈
j
l

Qjk ; ∀n ∈ N\{1} (8.34)

Pgrid
in − Pgrid

out =
∑

k∈
j
l

Pjk ; ∀n ∈ N {1} (8.35)

Qgrid =
∑

k∈
j
l

Qjk ; ∀n ∈ N {1} (8.36)

Active and reactive power balances at the buses are formulated as (8.33)–(8.36).
PDi,load and QDi,load are the unresponsive active and reactive power load at bus i.

● Electricity network constraints

Pjk = GjkV 2
j − GjkVjVkcos(θj − θk )

−BjkVjVksin(θj − θk ) ; ∀{j, k} ∈ l (8.37)
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Qjk = −BjkV 2
j + BjkVjVkcos(θj − θk )

−GjkVjVksin(θj − θk ) ; ∀{j, k} ∈ l (8.38)

−Pmax
jk ≤ Pjk ≤ Pmax

jk ; ∀{j, k} ∈ l (8.39)

−Qmax
jk ≤ Qjk ≤ Qmax

jk ; ∀{j, k} ∈ l (8.40)

V min ≤ Vn ≤ V max ; ∀{n} ∈ N (8.41)

Equations (8.37) and (8.38) compute the real power and reactive power flow in the line.
Equations (8.39)–(8.41) impose the limits on line flow and bus voltage magnitude.
The market clearing prices are determined by solving the social welfare maximization
problem. DSO sends these cleared prices to the HEMS in each prosumer house and
then the real-time action of PV, energy storage devices, and HVAC will be determined
by comparing the cleared prices and the submitted bid/offer prices. Energy storage
devices will charge, if the retail market clearing price (MCP) is less than its bid price
and if the MCP is greater than its offer price, it will discharge. Otherwise, it will be
in idle mode until the next time slot.

The SOC of energy storage devices will be updated in each time slot as given in
(8.42) below,

SOCnew,ESD = SOCold,ESD +
ηch

ESDPch
ESD − 1

ηdis
ESD

Pdis
ESD ×�T

Emax
(8.42)

SOCminimum ≤ SOCt,current ≤ SOCmaximum

At every time slot, the SOC of energy storage devices should be within its maximum
and minimum limits.

For HVAC, in cooling mode of operation, if the MCP is greater than its bid price,
the cooling set point will be moved higher, decreasing its consumption and if the
MCP is less than its bid price, the cooling set point will be lowered further to take
advantage of low market prices. The temperature set point of HVAC will be updated
in each time slot as given in (8.43) below,

Tadjusted,HVAC = Tcurrent,HVAC + (λclear − λ
buy
HVAC) × (Tmaximum − Tminimum)

k × σ
(8.43)

Tt,minimum ≤ Tt ≤ Tt,maximum

8.7 Simulation results and discussions

For the simulation studies, a modified version of IEEE 13-node test distribution
feeder [23] shown in Figure 8.10 is considered. For the sake of simplicity, it is assumed
that the system under study is a balanced system, and just one transactive home from
nodes 2, 3, 4, 6, 7, 9, 11, 12, and 13 are participating in the local energy market.
Voltage regulators and capacitors from the original test feeder are not considered. The
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Figure 8.10 IEEE modified 13 node distribution feeder
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Figure 8.11 LMP and FIT rate of electricity price

developed social welfare maximization problem is solved using GAMS software.
The electricity price (LMP) and feed-in-tariff (FIT) rate considered in this study are
shown in Figure 8.11. All prosumers are assumed to be equipped with the same model
of appliances. The comfort factor, initial SOC and desired SOC of energy storage
devices, and the desired temperature of HVAC are assigned based on the prosumer’s
preference within the range defined in Table 8.4. Arrival and departure times of EVs
are considered within the range defined in Table 8.4. Solar panel capacity and HVAC



Transactive energy industry DR management market 181

Table 8.4 Prosumer parameters

Parameters Value

Initial SOC of energy storage devices 0.3–0.6
Desired SOC of energy storage devices 0.7–1
SOC minimum and SOC maximum 0.1 & 1
Arrival time of electric vehicles 16:00–21:00 (hours)
Departure time of electric vehicles 06:00–8:00 (hours)
Emax and Prated of EV 10 (kWh) and 4 (kW)
Emax and Pratedof BESS 32 (kWh) and 4 (kW)
ηch and ηdis 0.95
Comfort factor 0.1–1
Wear rate 0.03 ($/kWh)
Rated power of HVAC 2.5 (kW)
Desired temperature of HVAC (70–80) ◦ F
Minimum and maximum temperature limits 67◦ F and 84 ◦ F
Solar PV panel capacity 3 (kW)

rating of all the prosumer’s household are assumed to be the same, and its value is given
in Table 8.4. The values of other parameters used in the study like charging efficiency,
discharging efficiency, battery wear rate, capacity, and power rating of energy storage
devices are given in 8.4. The wear rate of energy storage devices is taken from [18].
The capacity and power ratings of energy storage devices are taken from [24]. The
considered real-time market-clearing duration is 15 min. For all the time slots, the
standard deviation of DLMP is assumed to be 0.1. The participation of prosumers
in the local energy market will be started by submitting bids/offers to the DSO. The
action of prosumer appliances will be determined by comparing the bid/offer prices
with the market clearing prices by the HEMS. Figure 8.12 shows the local market
clearing prices of all the time slots. In this work, we considered the available time
of ESS as 24 h since, unlike electric vehicles, it will be available at home all the
time and participating in the electricity market based on the prosumer’s willingness.
Figure 8.13 shows the SOC profile of BESSs, and Figure 8.14 shows the SOC profile
of an electric vehicle during its available time at home. Energy storage devices have
charged when the MCP is less than its bid price and discharged when MCP is greater
than its offer price. Figure 8.15 shows the desired SOC level of prosumer EVs and
SOC level at departure times. Based on prosumer’s preferences, the SOC level at
departure time has a slight variation with the desired level of SOC. The difference
is around 5% which can be negligible. Figure 8.16 shows the temperature variation
of HVAC at one of the prosumers who participated in the local energy market. The
minimum and maximum temperature limits are 70◦ and 84◦. As seen from Figure
8.16, whenever MCP is less than the bid price of HVAC, the cooling set point reduces
than the current room temperature to take advantage of the low market prices. The
current temperature is assumed to be the same for all time slots just to show the
variation of adjusted temperature in accordance with the prices.
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Figure 8.12 Average of market clearing prices
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Figure 8.16 Operation of single HVAC transactive agent

8.8 Future works

In future studies, the linearization or convexification of ACOPF network constraints
can be included in the model to ensure the global optimum. The developed model
can be extended to include the other non-base loads of the prosumers. A decentral-
ized optimization based market-clearing can be used to analyze the extension of the
developed model.

8.9 Conclusion

This chapter analyzes two models for demand response programs based on the Time
of Use price method. These models are compatible with all types of users with any
level of flexibility. DR programs are applied only on the demand side to optimize the
energy consumption in the network. Due to the shifting of the majority of loads from
the peak period to the off-peak period in time-of-use price-based DR, the rebound
effect may occur, which can be reduced by using real-time prices.

TE is the generalized form of price-based demand response which manages and
controls the rate of generation in both grid side and demand sides. This chapter
studies the scheduling of Prosumer’s controllable appliance based on the TE concept.
TE concept is two-way communication of data and energy. With more DERs at the
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distribution level, there is bidirectional power flow in the network. In this study,
Prosumer is assumed to be equipped with HVAC, energy storage devices, and PV.
The market is cleared based on the bids and offers from prosumers. Prosumers and
the market operators can both benefit from the distribution market. The developed
model is scalable, and it can be applied to the market with any number of participants.
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Chapter 9

Industrial demand response opportunities with
residential appliances in smart grids

Anam Malik1 and Jayashri Ravishankar1

Supply-demand balance is imperative for the reliability of the power system. Inability
to maintain this balance results in frequency deviation and system failure. The recent
integration of renewable energy sources such as wind and solar have reduced inertia
and variable output which leaves the power system at risk of disturbance while also
reducing the controllability of generators. However, the latter-day demand response
is coming across as an economical and effective way of adding to the reliability
and security of power systems by managing the electricity demand of customers at
times of severe power imbalance. This chapter carries out a detailed literature review
of centralized and decentralized demand control approaches. As well as presents a
novel demand control approach for providing frequency regulation by using domestic
refrigerators as control loads. This chapter also carries out a detailed study of large-
scale appliance level interval meter consumption data fromAustralia’s largest network
provider Ausgrid. Appliance level data is used in combination with household-level
data to study the contribution of air-conditioners in summer peak demand. Clustering
is performed on air-conditioner data to identify various air-conditioner load profile
patterns. These patterns are then used with demand control strategies to study the
possible load reductions from residential air-conditioner control across the Australian
State of New South Wales.

Nomenclature

Symbols

T_therm Thermostat temperature
T_comp Compressor temperature
Total_Power Total power being consumed by refrigerators in utility
Total_Power_CoHEM Total power being consumed by refrigerators in a

particular CoHEM
P_comp Compressor power of refrigerators

1School of Electrical Engineering and Telecommunications, The University of New South Wales (UNSW),
Sydney, Australia



188 Industrial DR: methods, best practices, case studies, and applications

f _ref Nominal frequency of power system
f Frequency of power system
M Scaling parameter
load_o Total number of ON refrigerator units at the

previous iteration
df Frequency error
load_c New number of refrigerator units that need to be ON/OFF
Total_Units_OFF Total number of OFF refrigerators in all three CoHEMs
New_load New refrigerator load
Control_Total Number of refrigerator units whose compressor cycle

needs to be manipulated

9.1 Introduction

Proper functioning of the power system relies on maintaining continuous supply-
demand balance. Supply-demand imbalance results in frequency deviation from the
nominal value that may result in power system failure. Therefore, reducing power
mismatch in real-time is critical for the best operation of power system. However,
maintaining power balance always is not easy as many unforeseen circumstances such
as distribution and transmission line outages, frequent changes in customer demand,
generation outages etc., may occur [1].

Historically, automatic generation control (AGC) is used for maintaining supply-
demand balance. AGC works on the principal that supply always follows demand.
Output from multiple generators is manipulated such that supply-demand balance is
maintained. However, the recent penetration of renewable energy sources in power
systems has rendered AGC insufficient. Renewable energy sources such as wind and
solar have reduced inertia and variable output which leaves the power system at risk
to disturbance while also reducing the controllability of generators. Fifty per cent
penetration of renewables in the power system reduces system inertia to half of its
nominal value [2].

Literature in past has mentioned studies whereAGC is able to maintain frequency
within a narrow offset without renewables. However, with the penetration of 50%
renewables in the power systems AGC alone failed to maintain frequency within
desired limits [2].

To rely onAGC alone for frequency regulation in power systems with renewables,
there will be a need to spend considerable additional cost on generators that offer
responsive services at times of frequency deviation, resulting in huge economic burden
and inefficiency of resources [3].

9.2 Demand peaks

The residential sector accounts for 30–40% of total energy consumption worldwide
[4]. In the past few years, residential demand has been seen as a major contributor to
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electricity demand peaks recording as high as 45% in the UK [5] and more than 50%
in South Australia [6] and New Zealand [7].

Electricity demand peaks occur when many customers coincidentally turn their
heating or cooling devices on, on hot summer or cold winter days. These peaks are
infrequent; however, the network businesses need to invest in additional generators
and upgrade their network to meet such infrequent peak demand requirements [4].
A study of the load duration curve for South Australia reveals that demand equals or
exceeds 60% of maximum demand for only 10% of the time [6].

Another study reveals that the zone substation of the Sydney region in NSW serves
the top 10% of peak demand for only 0.5% of the times [8]. The recent increase in
electricity prices in Australia has been attributed to the increase in network invest-
ment to meet peak demands. Such expenditures have resulted in a 50% increase in
residential electricity bills in Australia [9].

9.3 Demand response

In the latter day, demand response (DR) is coming across as an economical way of
complementing AGC. DR adds to the reliability and security of power systems by
managing the electricity demand of customers at times of severe power imbalance.
DR manipulates customer loads and maintains an even load profile while avoiding
the need for network augmentation and huge investment in generators [10].

DR is believed to offer added benefits over AGC some of which are reduced
response times, pollution free, economically viable, widely spread in distribution
network, etc. [11].

It has been reported in a study [10] that with just 10% of consumers participating
in the DR, great peak reductions of about 5.6% can be achieved. If 25% of consumers
are active, the network losses reduce by 2.6%.

It is believed that just a 5% cut in electricity demand could have reduced electricity
prices by one-half during the extreme electricity crisis seen by California in the years
2000–01. The reason being generation price considerably rises when generators run
close to their maximum generating capacity. Therefore, curtailing customer demand
during these severe electricity peaks can save generation costs resulting in reduced
electricity bills for customers [1].

9.4 Thermostatically controlled loads (TCLS)

Thermostatically controlled customer appliances such as air-conditioners (aircons),
fridges, freezers, and electric water heaters have large thermal inertia and show great
demand response potential. Their large thermal inertia allows a delay in the appliance
on and off operation for short time periods without affecting their function ability and
customer comfort, therefore, making them suitable candidates for DR [12].

Considerable literature in past has confirmed the DR capability of TCLs. An
experiment performed on 25 refrigerators confirmed their potential for secondary
frequency control [13]. In another work [14], peak demand hours were saved in the
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memory of the fridge. During the peak hours, the fridge would turn off operation.
However, the devised strategy failed to cater for demand peaks outside the hours set
in fridge memory.

Some studies relied on centralized DR for TCLs. In a centralized DR approach a
central, controller device communicates with all connected devices, signalling them
to turn their operation ON or OFF. In [15], a centralized DR strategy was proposed
where electric water heaters were used as control loads and were turned ON or OFF
with the aim of eliminating frequency offset. Simulations were carried out both with
and without wind generation. The simulation results verified the success of central-
ized DR approach with electric water heaters in eliminating frequency error. However,
coincident signals sent out to all devices to turn ON or OFF at the same time resulted
in the phenomena of synchronization, where the duty cycles of all devices sync up
resulting in severe oscillations that can lead to power system failure. The centralized
control approach reduces the chances of error but at the same time it has the disad-
vantage of increasing complexity of data processing tasks as well as communication
cost on utility as a single controller device is responsible for communicating to all
connected devices [16].

Much of the work considers decentralized DR strategies which rely on more than
one centralized controller. The strategy involves deploying frequency measurement
units in every household that continuously compare nominal frequency to real-time
frequency. Any frequency deviation outside a narrow band of nominal frequency
sends a signal to the connected household device to start or seize operation for a
short time. Work in [17] suggested a stochastic decentralized approach for manip-
ulating the operation of several TCLs for maintaining frequency close to nominal
frequency. However, the study failed to control switching events of TCLs within a
given time resulting in the possibility of TCLs to switch multiple times in a short time
interval. Another decentralized demand control technique was suggested in [18]. Sim-
ulation results carried out on 1,000 HVAC units confirmed the performance of the
proposed strategy in regulating frequency. Unlike a single controller in centralized
control approach the presence of multiple frequency measurement units reduces the
communication cost as well as data processing burden on the utility. However, the
decentralized control approach has drawbacks like inaccurate measurements from
frequency measurement units as well as the additional cost associated with installing
these units in every household [16].

Few studies [19–22] introduced a hybrid control approach using aggregators
as links between utility and customers. The aggregators negotiate incentives with
customers for responding to signals by manipulating their device operations. In turn,
the utility pays the aggregator for managing the supply–demand balance. However,
the hybrid approach involved complex data processing and resulted in reduced profits
for utilities as now they had to pay aggregators for executing frequency regulation for
them. Table 9.1 summarizes the limitations of centralized, decentralized, and hybrid
control techniques [23].

Considering the limitations highlighted in Table 9.1 a hybrid architecture is pro-
posed in a case study that is expected to exploit the benefits of both centralized and
decentralized demand control strategies without hampering utility profits [24].
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Table 9.1 Limitations of centralized, decentralized and hybrid control techniques
[23]

Centralized control Decentralized control Hybrid control
approach approach approach

High cost associated with Local measurement of Involves three different tiers
maintaining secure two-way frequency signal with (utility, aggregator, and
communication network. accuracy is difficult. customers) resulting in complex
Huge processing burden on Frequency measurement data processing tasks that
centralized controller. units are expensive to are difficult to evaluate.

be installed in every house.
Feasible only with Reduced utility profits.
limited number of
control loads.

9.5 Case study 1: hybrid control approach for frequency
regulation

Refrigerators are TCLs that have previously been used for DR. In [3], refrigerators
were used as control loads for frequency regulation. Simulation results confirmed
that refrigerators could provide ancillary services like spinning reserves.

9.5.1 Refrigerator modelling

Refrigerators are cooling devices that operate by maintaining compartment temper-
ature (T_comp) within a nominal value of the thermostat temperature (T_therm)
decided by the end-user. Figure 9.1 shows the operation of a refrigerator [24]. The
refrigerator thermostat is set at 5◦C and has an offset of ±2◦C which implies that the
refrigerator compartment temperature should stay between 3◦C and 7◦C. Maintaining
compartment temperature within these limits is critical for the safety of food inside
the fridge.

To utilize refrigerators as control loads for DR, additional refrigerator states have
been added to the conventional ON and OFF states. Table 9.2 explains the condition
for each refrigerator state as well as the availability of the refrigerators for load
manipulation in each state.

The new added critical states prevent the sudden ON and OFF operation in refrig-
erators. Without critical states, if for example the compartment temperature hit 7◦C
and the compressor just turned ON, on receiving an OFF signal it will turn OFF
and then immediately turn back ON to keep the temperature within limits. The crit-
ical states help avoid these sudden ON, OFF in refrigerators in turn adding to the
robustness of the controller.
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Figure 9.1 Compressor cycle and refrigerator states [24]

Table 9.2 Conditions for each refrigerator state and refrigerator availability for
load manipulation

State Condition for each state Availability for
load manipulation

State 0, OFF T_comp > T_therm & compressor = OFF Compressor is available to
be switched ON.

State 1, ON T_comp < T_therm & compressor = ON Compressor is available
to be switched OFF.

State 2, T_comp < T_therm & compressor = OFF NOT available for
Critical Load load manipulation.
OFF (CL-OFF)
State 3, T_comp > T_therm & compressor = ON NOT available
Critical Load for load manipulation.
ON (CL-ON)

9.5.2 DR controller description

DR at the customer level will require home energy management systems (HEMs) to
be deployed in local households. HEMs are screens installed in households capable
of measuring the energy consumption of customers in given time periods [25]. It will
act as a link between utility and customers and will assist in load scheduling. Studies
in [26,27] have verified the ability of HEMs in scheduling customer loads at times
of low electricity price, therefore benefiting the customers. However, HEMs may
cause volatility in demand and result in rebound peaks. Rebound peaks occur when
many customers schedule loads at times of low electricity price resulting in a new
peak demand at those times. This problem can be solved by using a cooperative home
energy management system (CoHEM) that will communicate with the utility and will
coordinate the operation of many HEMs with the aim of avoiding new peaks as well
as down-turning utility revenues.

This study introduces a hybrid architecture where CoHEMs will be installed at
distribution transformers and each CoHEM will be able to communicate only with
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HEM

CoHEM CoHEM

UTILITY

CoHEM

HEM HEM HEM HEM HEM HEM HEM HEM

Figure 9.2 Recommended architecture with CoHEMs acting as link between utility
and end-users [24]

HEMs connected to that distribution transformer [24]. Figure 9.2 shows the hybrid
architecture of utility, CoHEMs, and HEMs.

Refrigerators are the control loads used for frequency regulation in this study.
Refrigerators will continuously update HEM of their compartment temperature.
HEM will use the refrigerator thermostat, offset, and compartment temperature to
compute refrigerator state as given in Table 9.2. It will then forward the refrigera-
tor state to CoHEM. On receiving refrigerator states from all HEMs connected to
it, it will calculate the total power being consumed by refrigerators as shown in
Figure 9.3. Each CoHEM will send their calculated total refrigerator load to the util-
ity (Total_Power_CoHEM). On receiving the values from each CoHEM utility will
calculate the total refrigerator load (Total_Power):

Total_Power = (Total_Power_CoHEM1) + (Total_Power_CoHEM2)

+ (Total_Power_CoHEM3) (9.1)

The utility continuously measures system frequency ( f ) and compares it against
nominal frequency ( f _ref). A deviation (df = f − f _ref) of ±0.05 Hz from nominal
frequency is acceptable. Table 9.3 lists the various actions that need to be taken in
case of frequency deviation.

In the event where system frequency is not within acceptable bounds, the utility
will use Hill-Climbing Method to calculate the total number of refrigerators whose
compressor operation needs to be manipulated to regulate frequency.

9.5.3 HillClimbing method

Hill-Climbing method uses a constant scaling factor ‘M’ that is used to curtail fre-
quency error [15]. The number of refrigerator units required to be in ON state (load_c)
is then calculated using the number of refrigerators at the previous iteration (load_o)
and df. Load_c will be greater than load_o in case of df>0 suggesting that additional
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HEM 1
State of HEM 1

CoHEM

CoHEM will calculate total

number of refrigeerators in

ON, OFF, CL-On and CL-

OFF stats. it will then

compute total refrigerator

power.

Total_Power_CoHEM=

(Total_ON+Total_CL-ON)

*P_comp

State of HEM 2

State of HEM 3

State of HEM 4

State of HEM 5

State of HEM 6

HEM 2

HEM 3

HEM 4

HEM 5

HEM 6

Figure 9.3 Steps required for calculating total refrigerator load at CoHEM

Table 9.3 Control action required based on frequency deviation value

Frequency deviation value Action required

If abs|df| < 0.05 No action required.
If abs|df| > 0.05 and df < 0 Additional refrigerators need to be turned OFF

to regulate frequency.
If abs|df| > 0.05 and df > 0 Additional refrigerators need to be turned ON

to regulate frequency.

refrigerator units need to be turned ON. Load_c has to be greater than zero. However,
it cannot be greater than the total number of refrigerators available to be turned ON:

Total available units to be turned ON = load_o + Total_Units_OFF (9.2)

New_load can be calculated by multiplying load_c with refrigerator compressor
power (P_comp). Also, Control_Total gives the total number of refrigerator units
whose compressor operation needs to be manipulated. Figure 9.4 outlines all the
steps involved in Hill Climbing method [24].

Once the Control_Total is computed, signals will be sent by the utility in a round-
robin approach. The control signal will first be sent to CoHEM 1. In case where
CoHEM 1 has a smaller number of refrigerators than that computed by the utility
for manipulation, the control signal will be sent to CoHEM 2 and then to CoHEM
3 if required. Control signals will be sent out until the frequency is regulated within
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Start

load_o=

Total_Power/P_comp,

dlf=f.f_ref

Yes

Load_c> load_o*

Total_Units_Off
No

Yes

No

load_c < 0

load_c =load_o+

(100*df*M)
load_c = 0

load_c = load_o +

Total_Units_Off

New_load = 

load_c * P_comp

Control_Total =

load_c *=comp_o

Stop

Yes

load_c=

load_o+(100*df*M)

No

New_load =

Total_Power,

load_c=load_o,

Control_Total =0

abs|df|>0.05

f_ref=60,

load, c=0,

M=0.1,

P_comp=100

Figure 9.4 Hill Climbing method [24]

limits. Round robin approach ensures that the same CoHEM is not selected every
time for frequency regulation.

9.5.4 System description

A power system with both wind and diesel generation is considered in Simulink
for analysis. Twenty-four refrigerators each with P_comp of 100 W are considered.
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Diesel Engine with

governor and

excitation system

Synchronous

Generator

Wind Turbine
Asynchronous

Generator

Fixed load

Domestic

Refrigerator

load

Hill Climbing

Formula
f_act

PCC

f_ref

Figure 9.5 Configuration of proposed system [15]

The refrigerators are treated as control loads, whereas all other loads are fixed loads
and do not alter their operation in case of frequency deviation outside nominal value.
The system configuration is shown in Figure 9.5 and is a modified system from [15].
The latter only considered a conventional power system with the diesel engine only.

9.5.5 Simulation results

A fixed load of 6,800 W is considered for simulations. The control load is 2,400 W.

Control load = Total number of refrigerators ∗ P_comp (9.3)

Control load = 24 * 100 = 2,400 W
Four different scenarios are considered to compare the performance of the system

with and without DR. Two cases are considered where the wind speed is dropped
resulting in reduced wind energy. In the other two cases, the fixed load is varied.
Table 9.4 discusses the four different scenarios and compares frequency regulation
results with only AGC and with both AGC and DR.

9.5.6 Discussion

Simulation results validate the superior performance of control cases over non-control
cases in all four scenarios. It is evident from Table 9.4 that AGC alone is insufficient



Table 9.4 Frequency regulation performance comparison between the controller and non-controller cases under four different
scenarios

Scenarios Frequency regulation Frequency regulation Control load
without controller with the proposed manipulation
(AGC alone) controller (AGC + DR)

Scenario 1 Wind speed reduced Frequency falls below Frequency restored in 1.5 s Refrigerator load dropped from 1,100 W to
(Figure 9.6) from 9.5 to 8 m/s 49.6 Hz and oscillates within a narrow dead band 100 W by controller to regulate frequency.

resulting in wind around that point. of 49.5–50.5 Hz.
power reduction df > 0.05 Hz
of 1,300 W.

Scenario 2 Wind speed reduced At 20 s: frequency At 20 s: frequency dropped Refrigerator load dropped from 1,500 W to
(Figure 9.7) from 9 to 7.5 m/s dropped to 45.5 Hz. to 48.7 Hz. 100 W by controller to regulate frequency.

resulting in wind At 24 s: frequency At 24 s: frequency
power reduction dropped to 37 Hz. dropped to 47.5Hz.
of 1,500 W.

Scenario 3 Load changed from Without the controller With the controller Refrigerator load dropped from 1,800 W to
(Figure 9.8) 6,200 W to 6,800 W frequency was frequency was regulated in 300 W by the controller to regulate frequency.

at 15 s for 1.5 s and regulated in 3 s. a little over 1 s.
reduced afterward to
6,500 W for the rest
of the simulation.
Wind power fixed
at 1,700 W.

Scenario 4 Load changed from The frequency The frequency mismatch Refrigerator load dropped from 1,600 W to
(Figure 9.9) 6,800 W to 7,700 W mismatch was 0.3 Hz. was 0.3 Hz same as df in 100 W by controller to regulate frequency.

at 15 s. Wind power AGC alone was unable no controller case.
fixed at 2,500 W. to regulate frequency. Frequency regulated

within acceptable
bounds in 1.5 s.
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Figure 9.6 System frequency graph for no control and controller case under
Scenario 1 [24]

in regulating frequency in a renewable-rich power system. However, AGC and DR
together are better able to regulate frequency. In Scenario 2 both controller and non-
controller cases were unable to maintain frequency within acceptable limits after
a drop in wind energy. Even so the controller was able to restrict frequency drop
to 47.5 Hz compared to the 37 Hz without the controller. In scenarios where both
controller and non-controller cases were able to regulate frequency, the controller
showed improved performance by regulating frequency in shorter time periods.

The proposed hybrid architecture is also believed to exploit the benefits of all
three centralized, decentralized and hybrid controllers. Unlike centralized controller,
the presence of multiple controllers (CoHEMs) reduces the computational burden
on utility. Similarly, the proposed architecture offers advantages over decentralized
controllers by using CoHEMs to coordinate the operation of HEMs avoiding rebound
peaks. The suggested architecture is similar in concept to hybrid control systems where
aggregators act as a link between utility and customers. However, with CoHEMs
instead of aggregators the utility does not need to downturn its revenues by paying
aggregators to carry out DR services on their behalf.

This case study highlights the effectiveness of TCL in regulating frequency. A
clear understanding of key drivers of demand peak can help devise DR strategies for
reducing power mismatch and hence the need for frequency regulation.
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9.6 Case study 2: appliance level data analysis of summer
demand reduction potential from residential aircons

Aircons and electric water heaters have been identified as major contributors to peak
demand in many jurisdictions on extreme weather days. Such extreme weather days
in Australia pose risk of blackouts due to extremely high customer demand as well as
high stress on the electricity network [28].

The true cost of aircons in Australia is identified in [29] where it is said that a
$1,500 aircon can impose a cost of $7000 on electricity industry when adding to peak
demand.

Many research studies have confirmed the DR capabilities of aircons and elec-
tric water heaters during extreme demand periods. However, much of the studies to
date rely on interval metered household consumption data to estimate the contribu-
tion of aircons and electric water heaters to peak demand. Where aggregated data is
successful in identifying demand peak times it fails to highlight the key appliances
contributing to peak demand in those times. Appliance level interval metered data is
much more valuable in studying the contribution of multiple household appliances to
peak demand. However, very few of such data sets are available, and consumption is
of course very context-specific.
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In Australia, the Smart Grid Smart City (SGSC) project carried out by the Aus-
grid distribution business has unlocked a great opportunity by providing half-hourly
interval metered household data as well as appliance level data for a relatively larger
sample of households in NSW, Australia. This dataset can be used for studying the
actual contribution of various household appliances to peak demand.

SGSC data has previously been used in [30,31]. In [30] SGSC household interval
metered data was used along with survey information to find the key peak demand
contributors. Data analysis and modelling techniques suggested aircon ownership,
number of household members, swimming pool and dryer ownership as being the
major contributors to peak demand. Another work in [31] studied SGSC household
interval metered data along with local weather forecast to identify aircon existence,
energy consumption patterns and peak demand. However, household level data,
survey results and weather forecasts are not very accurate in identifying particu-
lar appliance usage in peak demand as the appliance usage maybe correlated with
other factors in the study. Therefore, the proper understanding of appliance level data
is required.

This study is one of the first studies that used SGSC appliance level data to
study aircon usage during summer peak demand times. The SGSC data in its original
form was unworkable with problems like missing entries, unsynchronized data, and
duplicate entries. Several steps were taken to treat the data. A data availability rate (a
measure of how many of the total time periods being analysed were missing data) was
calculated for the treated data. A smaller data availability rate suggests more missing
data entries whereas a higher rate suggests high data quality. A data availability rate of
75% was chosen for the analysis. At this data availability rate, there were 127 unique
customers and 64 aircons [32].
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Figure 9.11 Normalized consumption (kW) of different appliances at the time of
overall state summer peak, 20 December 2013 [32]

9.6.1 Summer peak demand analysis

Household consumption data was separated for customers with and without aircon
ownership using SGSC household metered data along with survey results. Normalized
demand of customers with and without aircons is shown in Figure 9.10 for a full year
[32].

It is evident from Figure 9.10 that customers with aircon showed higher demand
in summers. The demand for customers with aircon ownership peaked in December
owing to extreme weather in Australia. The highest demand occurred on 20 December
2013 which was an extremely hot day. Average consumption of various household
appliances was also studied over the peak period as shown in Figure 9.11 [32].

Aircon contribution is by far the highest during the state demand peak of
December 2013 contributing over 80% more than other appliances.

To further build up analysis aircon consumption, appliance level and household
level data are studied in Figure 9.12 [32]. The highest summer peak is highlighted and
zoomed in to show the contribution of aircon load in appliance level and household
peak demand. It is apparent that aircon load makes up most of the load in appliance
level data and is a key contributor to household-level demand.

9.6.2 DR opportunities with aircons

A study of individual aircon loads averaged over three summer state peak days is
shown in Figure 9.13 [32]. Aircon usage is distributed throughout with each aircon
displaying varied usage patterns. For identifying the DR potential of aircons at peak
times, it is important to first categorize aircons based on their usage patterns. K-means
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clustering is performed and aircons are categorized in six different clusters as shown
in Figure 9.14 [32].

Aircons in clusters 1 and 4 do not show much load contribution at times of NSW
state demand peak. Whereas aircons in clusters 2, 3, and 5 (58% of aircons) contribute
significantly towards peak demand and show great DR potential. Aircons in cluster 6
are not operating at times of peak demand.

The combined operating power of aircons in clusters 2, 3 and 5 calculated over
peak times over three summer peak days from the NSW state load for the year 2013–14
is 4.508 kW.A study conducted in [33] shows that increasing aircon thermostat by 1◦C
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Figure 9.13 Individual household aircon consumption profile, averaged over the
three highest summer state peak days [32]

during a DR event that lasts two hours can result in a 25% power reduction. Assuming
similar responses, this case study will carry out the possible demand reductions by
using 58% aircons for DR.

Increasing thermostat of 58% aircons by 1◦C will result in a new operating power.

New operating power = combined operating power ∗ 0.75 = 3.381 kW (9.4)

A survey conducted in (Ausgrid, 2015) on NSW aircon ownership rate suggests
aircon ownership of roughly 1.66 million households in NSW. Upscaling share of
clusters by number of households with aircon we estimate 967,000 aircons (58%) can
be used for DR.

Power reduction = (combined operating power − new operating power)

∗ 967, 000 (9.5)

Power reduction = (4.508-3.381) * 967,000 = 1.09 MW
Thermostat increase by just 1◦C for residential aircons in NSW can help achieve

peak demand reduction of over 1 MW.

9.7 Conclusion

This chapter has endeavoured to improve our understanding of the limitations of
current frequency regulation strategies as well as peak demand studies. To overcome
these limitations, several steps have been introduced to devise a novel frequency
regulation strategy that does not suffer from previous problems. Also, a detailed
study is carried out for appliance contribution to demand peaks and possible DR
scenarios for peak reduction at the state level.
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Figure 9.14 Clusters of aircon energy consumption profiles over the three highest
summer state peak days. The black broken line shows the average
normalized energy consumption of aircons in a cluster and the
magenta bar shows the NSW state peak demand times [32].

The dataset undertaken for case study 2 is geographically limited. The aircon
usage patterns as well as contribution to peak demand may vary in other NSW regions
particularly where temperatures are more extreme. Also, the dataset from households
across a larger geographical area would improve the quality of analysis and enhance
understanding of aircons as key contributors to peak demand. Despite the limitations
of this case study, and while the power reductions are just estimates the methods
introduced are of greater potential relevance. It is hoped that this study will contribute
to the work of utilities and DR service providers.
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Chapter 10

Modelling and optimal scheduling of
flexibility in energy-intensive industry
Roman Cantu1, Emilio José Palacios-García1,

and Geert Deconinck1

10.1 Introduction

Current environmental trends such as the rapid penetration of renewable energy
resources (RES) and decommissioning of controllable but polluting generators are
putting stress on the reliable operation of electricity systems. This reduction of flex-
ibility and the increase in volatility in the supply-side call for compensation from
other sources in the grid. Although the development of energy storage systems (ESS)
is creating an opportunity to relax the energy balance constraints in the grid, it is
currently not sufficient to solve the constantly growing need for flexibility [1].

Many researchers identify demand-side flexibility as a feasible approach to tackle
this problem [2]. Therefore, it has been under research for some years already. How-
ever, most studies focus on commercial and residential consumers only [3,4]. Even
though these sectors are usually less constrained than the industrial sector, which
boosts their capacity to shift or curtail their demand, industry accounts for approxi-
mately 42% of the worldwide electricity consumption [5]. Hence, the industry shows
flexibility potential that could be aggregated with other consumers’ to provide greater
grid balancing capacities.

Multiple constraints bound the ability to alter production plans in industrial facili-
ties from technological, economic, or practical perspectives. While power generation
facilities comprise a single or only a few processes, industrial production usually
compounds several interdependent processes [6,7]. Such inter-dependencies appear
as shared input or output resources [8], sequential structures in the production line [9],
mutually exclusivity, etc. Following this line, some actions in industrial plants provide
flexibility that results in a feasible increment or decrement of local energy consump-
tion, i.e., adjustments in production line order, machine re-assignments, worker shifts,
rescheduling of processes, capacity investments, among others.

Furthermore, an industrial energy consumer does not concentrate its optimisation
efforts on its energy consumption [1,10]. Energy has been historically perceived

1KU Leuven ESAT-ELECTA, EnergyVille, Leuven, Belgium
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rather as a resource that is constantly available at a fixed price. These industrial
consumers prefer to focus on profit maximisation, which depends more strongly on
bottlenecks and idle times in their production processes. However, this focus is slowly
changing due to the current trends in energy systems and the global objectives towards
decarbonising human activities, simultaneously increasing the importance of energy
use in production planning and scheduling.

Various authors have proposed approaches to model and schedule industrial
demand-side flexibility. Their models are a basis for an inclusive modelling methodol-
ogy which combines all the relevant characteristics and remains simple but applicable
across energy-intensive industrial sectors.

This chapter exposes the need for an industrial flexibility model and its require-
ments by identifying characteristics from contemporary grid balancing approaches.
Section 10.2 gives an introduction of the need for flexibility and provides a com-
parison between the flexibility of diverse sectors of players in the electricity system.
Considering the differences between other flexible resources and industrial loads,
Section 10.3 reviews characteristics and existing formulations that should be part
of an industrial energy system model. Once identified, these characteristics give the
foundations for a high-level modelling framework for an energy-aware production
planning formulation, whose description is included in Section 10.4. Finally, a case
study in Section 10.5 exemplifies the use of the framework in a production line, where
the flexible operation of the system results in economic benefits by performing a two-
step sequential scheduling. This is on the day-ahead and intraday markets (DAM and
IDM, respectively).

10.2 Understanding flexibility across electricity
consumer sectors

Historically, flexibility has been sourced from the supply-side, considering the
demand profiles as variable signals that require to be predicted and matched by
the total available generation while keeping some capacity to cover for forecast-
ing errors. On the supply side, flexibility from conventional generators is evident
since their technological constraints are enough to know the upwards and down-
wards limitations. Furthermore, power plants produce and sell electricity to consumers
intending to maximise their profit. In contrast, system users on the demand-side only
perceive electricity as a utility required to fulfil some specific tasks, usually with-
out considering its price variation [10] and only focusing on their primary business
objective.

Demand-side management (DSM) comprises a set of practices to plan, imple-
ment and monitor energy-consuming activities to shape the consumption pattern as
desired [11]. These practices include but are not limited to energy efficiency policies,
demand response (DR) programs and on-site backup generation strategies. Multiple
authors identify industrial DSM as one of the most cost-effective practices to cope with
the flexibility requirement of current electricity systems [2]. This observation results
from the intensive power consumption in this sector, their already available monitoring
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and control systems, the currently low participation of this type of consumers in
balancing services and the increasing economic incentives for ancillary services
providers [9].

DR is the most relevant DSM practice to tackle potential imbalances in the
grid. It encloses actions that influence the magnitude and timing of a load’s power
consumption to balance supply and demand in the electricity system. The trigger for
these measures is incentives such as time-varying electricity prices (price-based) or
direct load control from the system operators after capacity contracting (incentive-
based) [12–14]. Hence, DR programmes often bring external incentives to exploit the
energy flexibility in the consumers’ premises.

Both price- and incentive-based DR can be implemented in all electricity markets,
depending on the type of consumer. For large commercial and industrial consumers,
the DR signals come from wholesale electricity markets such as spot markets, ancil-
lary services markets and capacity markets [15,16]. In contrast, small consumers
receive stimuli to participate via Real Time Pricing (RTP), Time of Use (TOU) or
Critical Peak Pricing (CPP) mechanisms since they are often subject to retail markets
through an electricity supplier.

Recent studies explore the application of DR programs to tackle the flexibility
needs in the grid. However, most of these studies focus on the residential and com-
mercial sectors and ignore the high potential of the industrial sector, which is studied
by only a few works [3,17]. However, the electricity consumption in the industrial
sector accounted for approximately 42% of the total world’s consumption and 37%
of the European’s consumption (EU-28) in 2018 [5]. As a large consumer, this sector
has an inherent responsibility to participate in stability and reliability measures for
the electricity system.

In addition to the fewer constraints in commercial and residential loads, DR stud-
ies in such sectors have been enabled by features such as the high energy intensity of
heating, ventilation, air conditioning, and refrigeration technologies and their associ-
ated thermal inertia. Additionally, controllable appliances provide a high load shifting
potential since most of their operations are not tightly time-constrained (e.g., washing
machines, dishwashers, drying machines, electric vehicles, etc.) [18].

Energy flexibility in industrial contexts is more complex to quantify and operate
since several factors influence its potential, which can be internally and exter-
nally bounded by technological, practical, and economic limitations as depicted in
Figure 10.1. Furthermore, some of the feasible commercial flexibility might not com-
ply with the requirements of the power system, which shrinks the consumer potential
to participate in balancing markets.

Industrial processes usually comprise sub-processes that transform raw materi-
als into final products or take part in this transformation as an intermediate step.
Moreover, many of these processes and sub-processes are interdependent, which fur-
ther shrinks their combined feasible operational region [6,7]. These links between
processes often appear as shared resources between multiple processes such in the
case of successive processing stages where the output of a process is the input of
the next one [9]. Thus, efficient and effective scheduling of industrial loads requires
consideration of all these interactions.
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Figure 10.1 Industrial flexibility potential domains and influencing factors binding
its feasible commercial capacity. Adapted and translated from [19].

10.3 Basis for an industrial flexibility model

Model is a term used for a mathematical structure that aims to reproduce the char-
acteristics of a system. It should be accurate but simple enough to enable its use
in practical applications [12]. Thanks to models, some dynamics, relationships, and
behaviours of a system can be studied, explained, and optimised. The quality of the
results from using a model will depend on the model’s accuracy to reproduce real-
world characteristics and its applicability on different systems. According to Maher
and Williams [20], there are multiple types of models: mathematical programming,
simulation, network planning, econometric, and time series models. We aim to build
a mathematical programming model that enables operation and design optimisation
of energy-flexible industries. In this regard, the size of the feasible solution space, the
optimality of the results and the simplicity of the solution algorithm depend on the
formulation selected [21].

A useful industrial flexibility model results from the analysis of characteristics
describing: grid requirements, operation of supply-side flexibility (which has been
extensively studied) and models describing the demand-side flexibility in other sec-
tors (i.e., commercial and residential). This analysis is crucial to ensure compatibility
between diverse sources and to foster the integration of industrial demand-side flex-
ibility into balancing mechanisms. In this section, the characteristics reviewed target
formulations of demand in electricity systems with an emphasis on those that allow
for flexible consumption decisions. The first appearances of such characteristics in the
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text are emphasised with a bold font. At the end of this section, Table 10.2 describes
these characteristics to clarify what these features represent in a system.

10.3.1 European grid balancing services

The definition of products’ bids in balancing markets can be used as a starting point
to build an industrial flexibility model since this is one of the mechanisms in which
flexibility generates value from both perspectives: the grid system operator’s and
the industrial consumer’s. Aspects related to the amount of power, reaction times,
holding duration and transition times are part of the parameters that define the flexi-
bility capacity according to European reserve markets, which is expected to enter in
operation in the near future. Note that the reserves mechanisms described in this sec-
tion tackle transactions between transmission system operators (TSOs) at a European
level. These mechanisms aim to enhance the cooperation between TSOs in charge
of different control blocks to improve the reliability of the coupled European grid.
However, they still help understand the characteristics required in an electricity flex-
ibility mechanism because traded products will comprise a portfolio of previously
procured (by TSOs) downstream flexible loads and generators. Figure 10.2 depicts
the relevant aspects in a generic graph of a flexibility source. Most of the parameters
shown here have restrictions according to the reserve market as stated by the European
Network of Transmission System Operators for Electricity (ENTSO-E). In this fig-
ure, the quantity (vertical) axis measures the power deviation offered by the balancing
service provider (BSP). All the loads and generators in the system must be in a BSP
portfolio. BSP are responsible for the imbalance caused by their portfolios after gate
closure of the DAM and IDM. Thus, the TSO charges or pays a BSP according to its

A: Minimum quantity C: Minimum delivery period E: Preparation period G: Full activation time
H: Deactivation periodF: Ramping periodD: Maximum delivery periodB: Maximum quantity
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Figure 10.2 Visual representation of characteristics of energy products in reserves
markets [22]



214 Industrial DR: methods, best practices, case studies, and applications

position after delivery. This position is a balance that considers the DAM and IDM
commitments and the physical production/consumption measured after delivery.

Before going into the details of each characteristic, it is worthwhile introduc-
ing the various reserves markets here. All markets have multiple names, according
to the country where they operate. First, the frequency containment reserve (FCR),
also known as primary reserves or R1, is the first measure against imbalances in
the grid. FCR’s objective, as its name implies, is to contain any frequency changes
via activation of fast flexibility sources to prevent any further drops or rises in the
frequency. These sources are activated automatically in the synchronous area by con-
trollers implemented in the FCR-contracted generators or loads in a decentralised
manner. Second, there are the automatic frequency restoration reserves (aFRR), also
known as secondary reserves or R2. Once the frequency is stable thanks to the FCR,
the aFRR comes into play to drive the frequency back to its correct value (50 Hz
in Europe) employing automatic controllers. Third, the manual frequency restora-
tion reserves (mFRR), also known as tertiary reserves or R3, operate in combination
with the aFRR with the same objective. Both aFRR and mFRR are activated locally
(where the imbalance occurred) by the TSO within the load frequency control area
(LFC area). There is a difference in full activation time (FAT) between these last
two types of reserves. Thus, the aFRR is activated automatically first but, minutes
afterwards, the TSO manually activates some reserves from the mFRR contributing
to the imbalance correction within the LFC area and releasing some of the capacity
used from the aFRR. Lastly, some TSOs use replacement reserves (RR) to release
the capacity of both of the frequency restoration reserves, making them available
again for future imbalances. At the end of this section, Table 10.1 summarises the
constraints in the TSO–TSO reserves markets in Central Europe.

The first parameter to address is the reserved quantity which has minimum and
maximum limits. These limits apply in FCR and aFRR, where the minimum is 1
MW for both and the maximum 25 MW (for each indivisible bid) and 9,999 MW,
respectively. These minimum and maximum requirements in different markets, com-
bined with the unavoidable consumption or generation limitations of assets, make
this an important parameter to characterise flexibility. Additionally, all the balancing
products in the market contain a bid granularity of 1 MW, making a portion of the
flexibility unusable. To illustrate this, consider a generator with a free capacity (after
committing their day-ahead schedule) of up to 5.5 MW upwards and 2.1 MW down-
wards. Due to the bid granularity constraint, such a generator can only offer 5 MW
as upward regulation capacity and 2 MW as downward regulation capacity.

Due to the integration of RES and the consequent displacement of conventional
generation, there is a reduction of inertia in electricity systems that are causing faster
variations in frequency when an imbalance occurs [16]. This phenomenon translates
into a fast response requirement from flexibility sources, which highlights the impor-
tance of ramping rates in the characterisation of these sources. Depending on the
intrinsic reaction time of flexible resources, they can participate in different balancing
reserve markets: FCR, aFRR and mFRR, which are required to achieve full activation
times of maximum 30 sec, 5–15 min, and 12.5 min, respectively. The variation in the
full activation times for aFRR depends on the country as depicted in Figure 10.3, but
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Table 10.1 Characteristics, constraints, considerations and differences between
TSO–TSO reserves markets in Central Europe. Sources: ENTSO-E
Balancing Report 2020 [22] and ENTSO-E Market report 2021 [26].

Characteristic FCR aFRR mFRR RR
(FCR (PICASSO) (MARI) (TERRE)

cooperation)

Minimum quantity 1 MW 1 MW – –
Maximum quantity 25 MW 1 9,999 MW – –
Bid granularity 4 1 MW 1 MW 1 MW 1 MW
Minimum delivery period 15 min – 5 min *
Maximum delivery period 30 min – – *
Full activation time (FAT) 30 s 5 min 3 12.5 min 2 30 min
Preparation period – – – 0–30 min
Ramping period – – – 0–30 min
Deactivation period – ≤ FAT – –

Validity periods 4 h 15 min 15 min *
Auction frequency 6×daily 6×daily 6×daily 24×daily
Gate opening time (GOT) – D-1 @12:00 D-1 @12:00 T-70 min
Gate closure time (GCT) – T-25 min T-25 min T-55 min
Product bid horizon 6×4 h 6×4 h 6×4 h 1 h

1 For indivisible bids.
2 Homogenised after 24 July 2022.
3 Homogenised after 18 December 2024. Currently, each TSO defines their FATs for aFRR.
4 Activation request can be lower than the granularity.
* Only discrete delivery periods are available: 15, 30, 45 or 60 min.

shall be homogenised to 5 min by December 2024 to comply with the requirements
of ENTSO-E [22].

Ramping rates stand out as features that characterise the flexibility from exten-
sively studied sources such as those in the supply-side [24,25]. These features describe
the maximum rate of change at which the flexible generator/load can change its power
production/consumption. They result from the intrinsic inertia of processes, which
physically limit the speed of change of their operation set-point. Furthermore, these
changes can happen in both directions: an increase or decrease in the power produc-
tion/consumption, each associated with a corresponding ramping rate. Hence, two
different parameters are often used and identified as ramp-up and ramp-down rates,
respectively. These two parameters can be visualised in Figure 10.2 as the slopes of
the lines during periods F and H.

In that figure, it is also possible to observe how the duration of the reserves is
another factor to consider in the bids. This is because network operators require the
BSPs to maintain their balancing power activated in order to correct the frequency
rate of change, its stable value, or to give time to other BSPs to take over, accordingly
to the requirements of the specific type of reserve. For instance, BSPs contracted as
FRR must operate once activated until units in the RR reach their full activation. If
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Table 10.2 Summary of characteristics identified as a basis for a generic industrial
energy planning model and their relation to our framework

Characteristic Modelled
by∗

References Description

(1) Max/Min
power

Flow
boundaries

[12,15,22,
24,27–34,
37]

(see Section 10.3.1)

(2) Ramping rates Ramping
rates

[12,15,17,
22,27–29,
32,33,37]

(see Section 10.3.1)

(3) Minimum
up/down times

Minimum
up-time and
down-time

[8,12,15,
17,22,27,
29,31,32]

(see Section 10.3.1)

(4) Startup costs Start-up
detection

[12,15,27] Costs incurred due to, e.g., startup energy
requirements, set up costs, wear of
machines, etc.

(5) Transmission
constraints

–1 [27] Safe limits of power transmission
elements including the underlying power
distribution dynamics across the grid.

(6) Min/max
active duration

Minimum
up-time2

[8,12,15,
17]

Minimum and maximum duration of
flexibility activation. Complementary
to (3).

(7) Max number
of activations

–3 [12,15,17,
30]

Maximum number allowed of activation
instances for the flexibility measure.

(8) Flexibility
activation costs

– [12,15] Costs related to opportunity costs,
penalties and fees as a consequence of
short notice changes, changes in work
shifts, etc.

(9) Energy level at
deadline

–4 [12,15,17,
27,30,32]

Required level of energy in an ESS that
must be acquired by the end of the time
horizon.

(10) Energy
capacity limits

Storage
capacity
limits

[8,12,15,
17,27,28,
30,31,33–
35]

Feasible range of energy levels that an
ESS might achieve during operation.

(11) (Dis)charge
efficiencies

–5 [8,12,15,
17,28,31,
33]

Efficiencies associated with charging
cycles of ESSs.

∗ Framework block or constraint that models each characteristic.
1 Not considered within the scope of the planning and scheduling model, thus, not modelled.
2 Only the minimum up-time is modelled in the framework, the maximum duration can be given by the
user bid after characterisation of feasible flexibility.
3 It is not included in the framework since we believe that this restriction might be a result of the
availability of resources and interdependencies between processes.
4 Easily implemented with a custom constraint for the storage variable at the last time-step.
5 Can be modelled by a combination of blocks in the framework.

(Continues)
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Table 10.2 Summary of characteristics identified as a basis for a generic industrial
energy planning model and their relation to our framework. (Continued)

Characteristic Modelled
by∗

References Description

(12) Energy drain –5 [12,17,28,
31,33]

Energy lost with time in an ESS due to
its physical interactions with the
environment or other reactions even
when the ESS is not in use.

(13) Energy
conversion
efficiencies

Conversion [17,28,31,
33,35,37]

Energy losses incurred during energy
conversion between carriers.

(14) Energy
balance

Flow
balance

[8,28,31,
35,37]

Restriction related to the law of
conservation of energy where the sum
of energy inputs is exactly equal to the
sum of outputs.

(15) Startup and
shutdown profiles

– [29,31] Specific pattern of processes’
electricity consumption during the
start-up or shutdown transitions.

(16) Transport
capacity limits

Flow
boundaries

[28,31,37] Limits in the rate of energy carriers that
can be transported through the energy
transmission systems.

(17) Flow
dependencies

Pools [34] Functions that interrelate two or more
flows of resources.

(18) Flow
equations

Flow
balance

[31,34] Restrictions analogous to (14),
including non-energy resources.

(19) Processes
interdependencies

Pools [12,17,34] Constraints that relate the operation
state of multiple processes.
Complementary to (17).

(20) Earliest start
time

– [8,12,17,
37]

Earliest possible time-step at which a
process can be activated.

(21) Multiple
resources

Whole
framework

[17,31] Approach that considers material and
energy resources as requirements to
fulfil the production objectives
of a plant.

(22)
Uncontrollable
processes

Conversion [12,17,28,
31]

Identification of the processes whose
operation cannot be modified.

(23) Operation
modes

Discrete
operation
levels

[12,17,27,
32,34,35,
37]

Set of modes in which a process can
operate, e.g., a mode for each
different product, or a discrete
number of multiple safe and stable
operational modes.

∗ Framework block or constraint that models each characteristic.

the holding time of this FRR is not long enough, a further imbalance would appear in
the system, calling for FCRs to operate and start the whole process again. A reserve
product duration is a feature of the bids offered by BSPs in the reserves markets.
Furthermore, a minimum and a maximum delivery periods length enclose the possible
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Figure 10.3 Full activation times of automatic frequency restoration reserves
(aFRR) in different countries in Europe [23]

duration of reserve bids as depicted in Figure 10.2. These boundaries often translate
to flexible loads models as minimum-up times.

10.3.2 Models in contemporary research

This section describes models that other authors have used to represent demand-side
flexibility mathematically in the literature. They cover models with different aims,
ranging from optimal electricity system operation to optimal schedule of demand-side
loads from the consumer’s perspective.

10.3.2.1 Models focusing on system operation
To start, we introduce multiple works that model flexible assets in both the supply and
demand sides from a system perspective. They show different features that a model
must have to enable the optimisation of the electricity system operation. Reza et
al. [27] introduced a multi-objective security-constrained unit commitment (SCUC)
problem formulated in the form of a mixed-integer linear program (MILP) consid-
ering thermal and hydro generators. On the one hand, this formulation is related to
industrial demand-side flexibility since the hydro-generator is an energy-constrained
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asset, which resembles features in production plants such as products and energy
storage techniques. On the other hand, the thermal generators show formulations
related to the characteristics required in reserves markets such as limits in power,
ramp rates and minimum up-times. Simultaneously, it shows other technical features
of machines, e.g., the minimum down-times, start-up costs and the transmission
constraints in the network that are essential in unit commitment (UC) problems (in
this case, formulated according to the Direct Current (DC) power flow model).

Similarly, Parvania et al. [15] modelled a SCUC problem to integrate DR
resources in wholesale electricity markets. For this purpose, the flexible loads are
modelled according to four common flexibility products: load curtailment, load shift-
ing, on-site generation and utilisation of ESSs. The characteristics of each type of
product are assumed to be known and non-time varying (e.g., load curtailment power
quantity is constant and known throughout the optimisation horizon), which might
not be accurate in industrial sites. Each product type is associated with a set of con-
straints that bound the feasible solution set. The load curtailment product includes
constraints on minimum and maximum duration of load reduction, maximum
number of curtailments and the activation cost. Load shifting includes the quan-
tity of load reduction, its associated cost, the minimum and maximum duration of
load reduction and an unchanged final energy consumption. The on-site generation
units contain constraints on minimum and maximum generation power limits, ramp-
up and -down limits and minimum on and off times. Finally, the ESSs are modelled
equally but including energy capacity limits, (dis)charge efficiencies and a limit in
the minimum number of daily charging/discharging cycles.

From a different perspective, Heussen et al. [28] introduced their power nodes
framework, which considers conversion and storage of multiple energy types. The
main objective of this work is to represent the characteristics and limitations of energy
after/before conversion from/into electricity in a unified framework to facilitate a
more effective operation strategy in the electric network. With this, power grid opti-
misation problems can consider the storage and conversion of non-electrical energy.
This model is versatile since the same formulation can describe many types of grid
users, depending on the constraints and parameters chosen by the modeller. A state-
dependent energy drain in the storage system and energy conversion efficiencies
are the new constraints and parameters identified in this formulation in comparison
with the ones previously discussed.

Lastly, another MILP model was used by Wang et al. [29] inspired by opera-
tional models with system balance constraints and the main operational features of
assets connected to the grid. In this model, generators are described by a combina-
tion of maximum and minimum power limits, ramp-up and ramp-down limits, and
minimum online and offline times. The authors used this model to find operational
bottlenecks under multiple system conditions and the optimal cost-effective energy
storage technology investment to correct them.

10.3.2.2 Flexible residential and commercial demand models
Lessons learned in other demand sectors can serve as a source of inspiration as well.
On the one hand, these models can show the required characteristics of loads to be
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operated either as an aggregated pool of flexible distributed resources or in retail
electricity markets. On the other hand, these sectors are certainly more explored as
DR participants, resulting in more mature models.

A virtual power plant (VPP) is an aggregator that creates a portfolio of elec-
tricity producers and consumers and jointly operates them in the spot or balancing
markets to generate profit. Consequently, these companies must decide what sources
are flexible and useful, and select the best for their portfolio. Once they created a
portfolio, these companies must decide on an operation plan that optimises the profit
of these resources. With this purpose, Petersen et al. [25] identified all the possible
characteristics to assess the quality of a flexibility source. The elements they listed
are related to the source’s level and duration of the power deviation and its reaction
time. More specifically, they are power capacity, duration of flexibility measure,
activation time, base load requirements, deadlines, ramp rates, storage capacities,
length of storage period and up and down-time limits. In a different study, Petersen
et al. [30] selected four constraints to characterise each element in a VPP portfolio:
power capacity, energy capacity, energy level at deadline and minimum up-time.
According to the set of constraints that applies to each element, they classified them
as (1) buckets: power and energy-constrained, (2) batteries: buckets with energy level
at a deadline and (3) bakeries: batteries with a minimum up-time. As expected, for
elements of the same size, a bucket provides greater-quality flexibility than a battery
whose flexibility quality is greater than a bakery since more constraints are added.
Adding constraints to a problem has one of two effects in the feasible solution space,
it is either not modified or shrinks.

To simplify and generalise the modelling task, Fink et al. [31] defined a frame-
work that contains a set of building blocks that can be used and tuned to resemble
real systems. This framework allows them to consider devices that consume, produce,
store, transport or convert energy, which enables the representation of multi-energy
systems. Thanks to the general approach of defining the blocks, a great variety of
systems can be represented using this method without the need for adaptations accord-
ing to, for instance, the type of industry, the specific dynamics of certain processes
or other behaviours that physics-based models would contain. The set of building
blocks contain pools, non-controllable devices, converters, pipes, buffers and time-
shiftable devices. Each of these blocks contains a set of equations that will be part
of the objective function and constraints of the optimisation problem. Pools are cru-
cial blocks in this framework since they maintain the energy balance for all energy
types considered in the system by restricting the consumption to equal the production
of each energy type at every time interval. All the devices are connected to pools
according to the energy type that they consume or produce. Converters are on/off
devices characterised by a minimum run-time and specific start-up and shutdown
profiles. Pipes are elements that transport energy from and/or to a pool and feature
a transport capacity and energy losses. Buffers are energy storage devices such as
batteries or thermal storage systems that have storage capacity limits, energy losses
during charging, storing and discharging, and charging and discharging rate limits.
Time-shiftable devices have a predefined energy consumption profile whose starting
time can be decided. Since the converters and time-shiftable devices have specific
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energy consumption profiles, a more controllable block could be added to model
devices with multiple feasible operation points.

10.3.2.3 Energy-aware industrial consumers
The last source of inspiration in this section is models and formulations utilised directly
in industrial energy management contexts. Following this reasoning, it is worthwhile
to introduce the industRE project, which took part in the European Union’s Hori-
zon 2020 research program. The objective of this project was to identify and assess
the flexibility potential of industrial electricity consumption to lower the barriers to
the integration of RES into the electricity grid. One result from this research was a
Demand Response Audit methodology that contains four steps: identification, quan-
tification, valorisation and exploitation [32]. This methodology helps to map the
flexibility of an industrial consumer by analysing its processes structures and quan-
tifying their potential. In this context, flexgraphs were developed as a technique to
quantify this potential. They are graphs representing the flexibility potential as a set
of trajectories that the electricity consumption of the industrial site can follow. Thus,
it helps to visualise the power, energy, ramping and modulating constraints of each
process. In addition, all the individual flexgraphs can be easily aggregated into an
overall flexgraph by adding all the feasible consumption patterns of each process.
These graphs are well in line with the metrics identified by Ulbig and Andersson [33]
as a flexibility trinity: ramp-rates, power and energy. According to these authors, the
capabilities of flexible electrical loads or generators can be visualised as a two- or
three-dimensional representation of these three parameters. Although this methodol-
ogy shows great visualisations, it is constrained to elements in which each one of the
axis limits is independent. During aggregation, this is even more critical when each of
the aggregated elements is interdependent. For instance, in a system with two flexible
sequential production processes, the flexibility of one of them is constrained by the
operation of the other. Both can operate flexibly as long as there is enough buffer
capacity or material availability for their inputs/outputs. However, if the first process
stops operating for a long time, the second process will deplete its input stock. Thus,
the operation of one process constrains the flexibility of the other. Although Ulbig
and Andersson did not focus on industrial demand-side flexibility, this helps under-
stand some flaws that might appear by approaching industrial consumption from the
electricity flexgraph perspective.

Karlsson developed a method for analysis of INDustrial energy systems (MIND)
as a computational decision tool for energy management tasks [34]. This method
revolves around formulating a MILP optimisation problem that applies to several
industrial sectors in four steps: identification of the system, construction of the model,
solution of the problem and export of results. The formulation considers the energy
system as a network of nodes and edges where each node represents a process, machine
or whole industry while the edges show the flow of resources between different nodes.
These resources can be energy such as electricity, heat or fuels, or materials like
raw materials, intermediate, by- or final products. Furthermore, the functions that
represent the interactions in the system are malleable and can be defined according to
the identified nodes and edges. The abstract model includes a multi-objective linear
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function that can be adapted to optimise the system according to the user requirements.
This abstraction in the model is what allows to apply the methodology to fit multiple
industrial cases for a variety of objectives. Similarly, the predetermined constraints
are adaptable to specific systems and contain formulations for connecting resource
flows, their boundaries, resource storage dynamics, processes dynamics and logistical
restrictions; but customised functions are also allowed. Among the predetermined
constraints, it is possible to find flow dependencies, flow equations, flow relations,
flow boundaries, final flow deadlines, storage equations, storage boundaries, batch
processing constraints, and mutually exclusive processes constraints. However,
there is no formulation for the interactions of continuous processes, causing a gap
in the model since some industries operate non-batch production processes (e.g.,
continuous steel casting, steam production, etc.).

A more concrete model was developed by Waldemarsson et al. [35], specifically
designed for an energy-aware supply chain of a pulp production company. In this
case, the problem was again formulated as a MILP, considering the transportation of
energy and material resources, and optimises decisions on material supply, produc-
tion jobs allocation, distribution of resources, and energy imports and exports along
the supply chain. Although the problem matches the behaviour of a specific pulp
production company, according to the authors, it is extendable to other pulp compa-
nies. However, a disadvantage of such a concrete model is that most of the structure
of the problem would require reformulation to match a new system. The constraints
and variables in this problem include interactions related to the flow of materials,
raw materials inventory, production, storage and sales of pulp, energy carriers and
by-product energy-rich materials, and water consumption. Note that exports of by-
and intermediate products, and utilisation of energy carriers/products, are considered
in the problem as additional valorisation strategies.

Similarly, there is another concrete model developed by Zeng et al. to reduce
energy consumption and emissions of air pollutant agents in an iron and steel plant
[36,37]. They include features such as fuel selection to cover the heat demand, gas
storage level control, minimum heat requirement, operation of Combined Heat and
Power (CHP) plants, and ramp rate limits. Their mathematical formulation is based on
the physics of the processes considered in the plant and includes constraints that model
energy balances and operational boundaries for all heat or heat and power generation
units. Although this formulation follows a different approach, it shows how some
relevant characteristics in an industrial energy system operation can be mapped to a
combination of integer and linear constraints, resulting in a MILP formulation. In this
case, the optimisation problem does not consider the production processes. Instead,
only auxiliary processes for energy production restrict the feasible operational states
of the system, which implies that some potential flexibility offered by the process
is not exploited because the production schedule (represented by the heat and power
demand) is fixed.

The case presented by Pei et al. [8] described an interesting problem where
the schedule of a battery manufacturing production line is modelled and optimised.
Although most of the features included in the problem have been discussed already, the
ageing process that the batteries must undertake before being ready to export creates
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a special problem that might not be present in other industries. The ageing process is
a charging and discharging treatment that the newly built batteries receive to improve
the overall stability of the battery pack. Hence, the operation of this process in a DR
program would resemble an ESS that needs a charge and discharge cycle before a
deadline, but that can be operated flexibly. This is true to a certain point since the
power and energy required for each charging cycle are constrained to a certain value,
which means that only the start time can be decided for each job performed by the
ageing machine.

To create a model that resembles the energy system of an industrial plant, it is
necessary to understand the type of processes and behaviours in the objective sys-
tems. In general, the processes can be clustered according to the variety of outputs
that they can produce and their production volume. Pelzer et al. [24] identified five
classes of industrial processes, which ordered from more variety-oriented to more
volume-oriented are: customer-oriented processes, job shop processes, batch pro-
cesses, repetitive processes and continuous processes. In addition to this contribution,
they point out that industrial sites are often multi-energy systems whose flexibility
is extended by coupling the on-site need of multiple energy carriers and considering
their interrelations.

As it can be noted, each author represented industrial energy systems according
to the approach that they reckoned best, usually in the form of a MILP. This procedure
requires a high engineering effort to learn and apply multiple approaches, which might
raise the barriers against DSM strategies adoption in the industry. In this regard,
Barth et al. [17] tackled this issue by reviewing current demand-side modelling
approaches and developing a unified framework to optimise the operation of demand-
side resources across the residential, commercial and industrial sectors. There are 14
quantifiable features that must be included in a demand-side flexibility model: (1)
time frame, (2) interruptible processes, (3) storage, (4) interdependencies between
processes, (5) earliest start time, (6) deadlines, (7) production outputs, (8) multiple
resources, (9) uncontrollable processes, (10) operation modes, (11) drains/losses,
(12) on- or off-times limitations, (13) number of activations, and (14) ramping rates.

Finally, another attempt to homogenise the task of modelling power consumption
in industrial loads was presented by Schott et al. [12]. This approach presumes to be
general enough to describe generically all power demand sectors (i.e., industrial, res-
idential and commercial) and more modern players such as electric vehicles. In this
context, three building blocks were identified as the pillars of flexibility models: flex-
ible loads, dependencies and storages. Each element contains a set of key figures that
parametrise the system and delimit the feasible operational limits. Flexible loads are
the main elements of a flexible system since they are devices whose operation point
shows freedom to execute different actions. Dependencies model the interrelations
between two or more flexible loads and can describe sequential or mutually exclusive
behaviours. Storages are the buffers that allow flexible loads to be operated flexibly
by shifting resources availability in time. Although this is an extensive framework, the
multi-resource approach seems to be missing. We define a multi-resource approach
as one where multiple energy carriers and material flows throughout the processes
are considered in the formulation. This extends multi-energy systems to consider
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materials and intermediate products as elements that interact with and transform into
each other.

10.4 Modelling framework formulation

A modelling framework is proposed by the authors of this chapter. This framework was
developed by taking inspiration from the reviewed models presented in Section 10.3,
intending to fill the gaps identified in these models. It is based on a multi-resource
perspective that contemplates all the materials and energy resources and their flows,
storage, and transformations throughout the system. Note that this is an energy-
aware high-level production planning and scheduling model that intends to unify the
modelling of demand-side flexibility across industrial energy users. Consequently,
this is not a physics-based model that replicates the behaviour of specific processes.
Instead, it assumes a quasi-static generic behaviour on all processes.

10.4.1 Definitions

Before diving into the formulation of the framework, this section states some auxiliary
definitions to facilitate the comprehension of the model.

10.4.1.1 Flexibility
Energy flexibility can be ambiguous due to the different perspectives from which it
can be framed. Thus, from an individual (energy consumer or producer) operation
perspective, we define flexibility as the capability to deviate from a plan [30], on short
notice, as a reaction to new information. This definition consists of three parts: (1) the
capability to deviate, (2) the plan, and (3) the new information. First, the capability
to deviate is the set of feasible actions that would result in a technically correct
operation of the system, regardless of the impact this might have on the objective
functions or KPIs of the company. Second, the plan is the a-priori set of actions that
have been decided, usually as a result of solving an optimisation problem. Lastly, the
acquisition of new information is the update of known parameters in the problem due
to contingencies, forecast inaccuracies, and changes in external incentives that would
result in a sub-optimal outcome if the plan remains unchanged.

10.4.1.2 Resources
In this framework, everything that can be stored, exchanged, supplied, consumed, and
transformed into something else is denominated resource. Energy carriers, materials,
and labour fall under this category and might be present in the model of an industrial
system in the form of electricity, heat, fuels, raw materials, intermediate and final
products, among others. Each resource is subject to a balance equality constraint that
enforces the contemplation of on-site availability of resources.

10.4.1.3 Flow
Resources can flow to and from each of the components in the system. Flows are
defined as these transfers of resources between components and are closely related
to the conversion control variables in the optimisation problem formulation. Flow,
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storage and conversion control variables comprise the decision variables of the prob-
lem. Following our definition of flexibility, flows F are divided into two parts: the
planned term F∗ and the flexibility term �F . Although this does not affect the opti-
mum solution of the problem, the separation of this variable helps to easily identify
the solutions before and after new information is acquired and to quantify the flexi-
bility activated. In practice, once the optimisation problem is formulated, it is solved
by fixing the flexibility terms to zero. This solution is the plan, which is the first
part of the definition of flexibility. Once the optimal plan is known, the acquisition
of new information will cause an update in some parameters of the problem. This
update can cause the plan to be sub-optimal or, in some cases, even infeasible. Then,
the schedule is corrected by fixing the planned terms (F∗, S∗ and x∗), unfixing their
flexibility terms (�F ,�S and�x) and optimising the problem over the free decision
variables.

Fft = F∗
ft +�Fft (10.1)

10.4.1.4 Storage
Some of the components in the framework include storage variables S that quantify
the resources that they contain. Similar to the flow variable, this one is also divided
into pre- and post-flexibility activation parts S∗ and �S, respectively.

Sst = S∗
st +�Sst (10.2)

10.4.1.5 Conversion control variable
Lastly, the conversion control variables x are present in the converter blocks of the
framework. In the most basic case, the value of these variables represents the per-unit
capacity used in a transformation process, where a set of input resources transform
into a set of output resources. Unsurprisingly, the conversion control variables x are
also divided into two parts, similarly to flows and storages.

xut = x∗
ut +�xut (10.3)

10.4.2 Modelling blocks

This framework predetermines a set of building blocks to facilitate the modelling
of industrial energy systems. Each block is parametrisable and contains a group of
abstract constraints that use the block parameters to add concrete constraints to the
system’s optimisation problem. The accuracy of the model still relies on the ability
of the user to resemble the target system. However, the design of each block contains
an intuitive structure, which intends to reduce the possibility of mistakes or missing
characteristics. The underlying constraints composing each block and their respective
required parameters are described in this section.

10.4.2.1 Component: the parent class
Although components are not model blocks themselves, they are used to conglom-
erate the recurrent parameters and constraints between all blocks to avoid redundant
explanations. The three blocks that inherit all the component characteristics are the
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converters, storages and networks. Every system is modelled over a uniform dis-
crete time horizon that delimits the information contained in the problem. Thus,
each variable in this problem spans over the whole horizon, showing its evolution in
time. Additionally, this horizon is represented as the set of time-steps T and contains
an index t for each instant in the problem. Table 10.3 gives an overview of all the
parameters required for every component during its instantiation.

Flow boundaries
One of the simplest constraints is the flow boundaries, which model a process’s
maximum and minimum flow limitations. These limits can model both the technical
limits of a process, the transportation capacities between processes or safe operative
boundaries. Furthermore, a single process might contain multiple flow boundaries if
it is associated with multiple flows as is the case for Converters. Additionally, some
machines or processes might have feasible ranges that do not include the off-state in
between the maximum and minimum (e.g., if Ff > 0 and Ff > 0). In these cases, the
Flow boundaries constraint is replaced by the On/off constraint.

Ff ≤ Fft ≤ Ff ∀f , t ∈ Fc × T (10.4)

Ramping rates
As it was discussed in Section 10.3, ramping rates are important characteristics to
consider during the operation of flexible resources. This is especially true for resources
that provide balancing reserves services since the type of reserve they can provide

Table 10.3 List of parameters associated to all components

Characteristic Representation in
equations

Description

Maximum flows F Upper bound for each resource flow
(in absolute value).

Minimum flows F Lower bound for each resource flow
(in absolute value).

Time-step length �t Amount of time between contiguous
time instances in optimisation
horizon.

Set of indices Fc, Sc, Uc, Pc, d Lists of the Flows (Fc), Storages (Sc),
control variables (Uc), Pools to which
the component is connected (Pc) and
a device index (d) corresponding
to the component.

Ramp-up and
Ramp-down

r, r Maximum upwards and downwards
rate of change in each of the
resource flows of the converter.

Number of
elements in
sets

nf , ns, nu, nt Number of indices contained in
sets Fc, Sc, Uc, and Pc, respectively.
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depends on the reaction time capabilities of the flexible resource. Additionally, most
industrial processes have an intrinsic stabilisation time during their transitions, usually
associated with mass or thermal inertia

rf ≤ Fft − Ff (t−�t) ≤ rf ∀(f , t ∈ Fc × T|t > t1) (10.5)

10.4.2.2 Converter
Converters are the main blocks in the framework since they model the transformation
between resources. This block can resemble a processing step in a production line, a
device that converts between energy types such as water boilers, etc. Its conversion
equation is a multi-dimensional linear equation that relates the output flows to the
input flows given a certain conversion rate, selected by the modeller. The parameters
used for the converter blocks are summarised in Table 10.4.

Conversion
The transformation between resources along the production line is modelled by the
conversion constraint in all converters. It is a linear equality constraint that relates
resources to each other, making the problem a multi-resource approach. Briefly, the
rate of conversion is ruled by two parameters defined in the converter: the conversion
matrix M and the conversion vector b. The former gives the first-grade term of the
flow equation and contains nf rows (linked to each flow) and nu columns (linked to
each conversion control variable). The latter provides a constant conversion term that
does not depend on the conversion control variables, which makes it useful to model
non-controllable converters, or processes with a fixed operation constraint and little
flexibility around this point.

⎡

⎢⎣
Ff1t
...

Ffnf t

⎤

⎥⎦ = M

⎡

⎢⎣
xu1t
...

xunu t

⎤

⎥⎦+ b ∀t ∈ T (10.6)

Conversion control variable limits
According to the definition of conversion control variables in the modelling frame-
work, these variables give the per-unit level of operation of a converter. Thus, they

Table 10.4 List of parameters associated to converters

Characteristic Representation in
equations

Description

Conversion matrix M First-grade coefficient in the linear conversion
equation.

Conversion vector b Constant term in the linear conversion equation.
Minimum up-time
and down-time

tu, td Minimum number of time-steps that the com-
ponent must remain in operation after start-up
and remain off after shutdown, respectively.
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are bound to take values between 0 and 1 or between −1 and 1 depending on whether
the process is reversible over this variable.

{−1 or 0} ≤ xut ≤ 1 ∀u, t ∈ Uc × T (10.7)

Discrete operation levels (optional)
Some industrial processes have a discrete action-space rather than a continuous one.
Thus, its operation point can vary with a certain granularity. Another set of processes
can operate in different modes, to produce a variety of outputs, to provide an idle
state that allows a warm start, etc. Therefore, the discrete operation levels constraint
is an optional feature that can transform a continuous action-space converter into
a discrete one in a similar fashion to a step-wise linear constraint. In this case, a
conversion control variable xut and its corresponding conversion matrix column are
selected for each operation mode. The conversion control variable is then constrained
to be a binary variable and an additional constraint prevents simultaneous activation
of more than one of them.

xut ∈ {0, 1} ∀u, t ∈ Uc × T (10.8)

ydt =
∑

u∈Uc

xut ∀t ∈ T (10.9)

Binary variables
Three binary variables are used as indicators in the optimisation problem. The first
one (ydt) gives the operating status of a process at every interval in the time horizon,
where the possible status is on or off. The second (zon

dt ) and third (zoff
dt ) variables are

similar to each other and they are equal to one at the time-steps where the process was
started after an idle period or turned off after a running period, respectively. These
three variables are required to model the following features: minimum up-time and
down-time constraints, the on/off constraint and the start-up costs.

ydt ∈ {0, 1} ∀t ∈ T (10.10)

zon
dt ∈ {0, 1} ∀t ∈ T (10.11)

zoff
dt ∈ {0, 1} ∀t ∈ T (10.12)

Minimum up-time and down-time
Due to maintenance requirements, safe operational limits, setup dead time, etc., there
can be processes that have a time-constrained operation or idle times. These times
are modelled by the minimum up- and down-time constraints, making use of the
indicator variables ydt . Since the optimisation horizon is finite, the problem has an
inherent reduction of optimality near the start or the end of the problems caused
by this constraint. This is because the constraint requires information from multiple
steps, causing overestimated constraints in the vicinity of the start and end of the
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horizon. However, this limitation can be overcome by extending the time horizon, at
the expense of a more computationally intensive solution.

(tu − 1) · (ydt − yd(t−�t)) ≤
min(t+tu , tnt )∑

k=t+1

ydk ∀(t ∈ T|t > t1) (10.13)

(td − 1) · (1 + ydt − yd(t−�t)) ≥
min(t+td , tnt )∑

k=t+1

∀(t ∈ T|t > t1) (10.14)

Start-up detection and shutdown detection
This set of equations provides the logic to ensure that the start-up and shutdown
indicators take the correct values during the solution of the problem.

zon
dt ≥ ydt − yd(t−�t) ∀(t ∈ T|t > t1) (10.15)

zon
dt ≤ ydt ∀t ∈ T (10.16)

zon
dt ≤ 1 − yd(t−�t) ∀(t ∈ T|t > t1) (10.17)

zoff
dt ≥ yd(t−�t) − ydt ∀(t ∈ T|t > t1) (10.18)

zoff
dt ≤ yd(t−�t) ∀(t ∈ T|t > t1) (10.19)

zoff
dt ≤ 1 − ydt ∀t ∈ T (10.20)

On/off constraint
As mentioned previously, the on/off constraint is used instead of the flow boundaries
to include the off-state in the feasible operation space of converters even if the range
between their minimum and maximum flows does not include the zero. Moreover, this
constraint enforces the flow values to zero when the converter must be off according
to the binary indicator variable while giving the maximum and minimum on-state
boundaries.

ydt · Ff ≤ Fft ≤ ydt · Ff ∀f , t ∈ Fc × T (10.21)

10.4.2.3 Storage
Storage components can model ESSs or material/product stock. They are limited by
the maximum and minimum flow and storage capacities, but their flow variable is free
to take the value that optimises the objective function as long as the resource balance
is maintained (see Section 10.4.2.5). A list of the parameters of storage blocks is given
in Table 10.5.

Storage transition
Depending on the flow at instant t, the storage variable of the storage and Network
components will increase or decrease according to the storage transition equality. At
the first time-step, this equation uses the value of the initial storage level S0 instead of
Ssi(t−�t). Note that in these constraints a special set of indices Ic relates each flow to
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Table 10.5 List of parameters associated to storages

Characteristic Representation
in equations

Description

Maximum storage
capacity

S Maximum storage capacity in the storage element.

Minimum storage
capacity

S Constant term in the linear conversion equation.

Value of the initial
storage level

S0 Maximum upwards rate of change in each of the
resource flows of the converter.

Table 10.6 List of parameters associated to networks

Characteristic Representation in
equations

Description

Exchange prices π Time-series values of the prices of flows from
the network.

each storage in the component according to their associated resource. This is important
since flows and storages of non-matching resources should not be mixed.

Ssit = Ssi(t−�t) + Ffit�t ∀((fi, si), t) ∈ (Fc × Sc|i ∈ Ic) × T (10.22)

Storage capacity limits
Since the storage capacities are limited, this constraint gives the maximum and
minimum values that the storage variables can take.

Ss ≤ Sst ≤ Ss ∀s, t ∈ Sc × T (10.23)

10.4.2.4 Network
In our modelling framework, a network is a specific type of storage component with an
added transaction price (seeTable 10.6). Thus, every flow from or to these components
has an associated cost or revenue. All the constraints and parameters required are the
same as for storage components, with the addition of a time-series array containing
the import/export prices at each instant t. Mainly, this component is created: on the
one hand, to keep track of imports and exports and their prices, allowing their easy
inclusion in the objective function; on the other hand, to differentiate external and
internal components of the plant and make the model more self-explanatory.

10.4.2.5 Pool
The last block in the framework is the pool (its parameters are given in Table 10.7),
which is in charge of maintaining the balance between inputs and outputs of each
resource at every time step. During modelling, the first step is to identify the pools
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Table 10.7 List of parameters associated to pools in the system

Characteristic Representation in
equations

Description

Flows linked to
pool p

Fp Set of indices containing all the flows f for a
specific pool p.

Pools P Set of all pools in the system.

in the system, since there can only be as many resources as pools. Sometimes, it
might be useful to define two different pools for a single resource. That is the case
when two sets of processes require the same resource but do not have direct access to
each other. For example, suppose that process A and process B require material X as
input, but process A is in location L1 and process B in location L2, from a practical
perspective, defining a single pool for resource X is unrealistic since transportation
from location L1 to L2 might not be possible, feasible, or might require additional use
of resources. Instead, two pools can be defined, one for resource X_L1 and another
one for resource X_L2.

Flow balance
This constraint is the only one implemented in this block and applies to all resources
and all instances of time. The special set of indices Fp relate the flows from all
components that correspond to the same resource pool.

∑

f ∈Fp

Fft = 0 ∀ p, t ∈ P × T (10.24)

10.5 Case study

As a proof of concept, the modelling and subsequent schedule optimisation of a steel
powder production plant exemplify the use of the framework. This industrial case is
based on the one presented by Yu et al. [7], introducing some slight adaptations and
assumptions to fill information gaps in the system. The system consists of a single
production line with sequential processes and buffer capacities in between, where
the intermediate products are stored. The production line is depicted in Figure 10.4
and follows the next sequence: spraying atomisation, dehydration, drying, crushing,
classification, magnetic separation, finish-reduction, a second crushing and classi-
fication steps and blending. All production processes show some degree of freedom
thanks to their multiple operation modes, except the finish-reduction furnace that is
a non-controllable load constantly in operation. While some of them are only capable
of switching between on and off states (spraying atomisation, dehydration, drying
and magnetic separation), the other processes have three possible operation modes
(crushing, classification and blending). In addition, the auxiliary processes have
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Figure 10.4 Overview and modelling of a steel powder production line

a continuous operation space, ranging from the off-state to the nominal operating
point. Electricity can be sourced externally from the power grid, but the cold water
and nitrogen demands are self-supplied. All these utilities can also be stored locally
for later use thanks to the presence of a battery energy storage system (BESS) and
tanks for cold water and nitrogen.

The main objective of this problem is to maximise the profit of the production
line. On the one hand, the revenues are given only by the export of electricity and
final product. The final product is not bound to a specific demand and is taken as a
free decision variable. On the other hand, the costs come exclusively from the imports
of electricity. Although this problem should consider the material imports, it does not
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due to the lack of available information and the fact that the production line starts
at the output of an own blast furnace. As a result, the molten iron coming from the
blast furnace is assumed to be imported at zero cost. Electricity imports and exports
are traded in the wholesale market, under the assumption of large and competitive
markets whose prices do not depend on the decisions made by our production line.
For this reason, past prices in the DAM and IDM in Belgium are used in this example.
Most of the processes in the production line have two or three operation modes with
different throughput and utility consumption rates. The finish-reduction furnace is
the only non-controllable production process. Additionally, the auxiliary processes
have continuous action-spaces, including the off state.

10.5.1 Model

Our model comprises 14 Pools, 12 Converters, 13 Storages and 3 Networks. First, the
14 resources in the Pools are the molten iron produced by the blast furnace, all the
intermediate and the final products and electricity, nitrogen and cold water. Second,
each of the Converters is associated with one of the processes in the production line
or the auxiliary processes (see Figure 10.4). Third, the 13 Storages model the buffer
capacity of each resource, except for the output of the blast furnace. Lastly, the
networks model the electricity grid, the customer that imports the final product and
the blast furnace.

To showcase the economic potential of flexibility in this system, it is exploited
according to the definition given in Section 10.4.1.1. First, the capability to deviate is
described by the feasible solution space of the optimisation problem. This space spans
all possible combinations in the problem variables that would result in compliance
with all constraints. Second, the plan is found by solving the problem in advance with
available information. We assume that only the DAM electricity prices are available
in advance. Thus, the plan only takes into account these prices, resulting in an optimal
day-ahead schedule (optimum Jplan). Third, the IDM electricity prices for the whole
day are acquired as new information and the system flexibility is used to correct
deviations from the optimal schedule (optimum Jflex).

Jplan =
∑

t∈T

⎡

⎣
∑

f ∈Fcust

F∗
ft · πprod −

∑

f ∈Fgrid

F∗
ft · πDAM (t)

⎤

⎦ ·�t (10.25)

Jflex = Jplan +
∑

t∈T

⎡

⎣
∑

f ∈Fcust

�Fft · πprod −
∑

f ∈Fgrid

�Fft · πIDM (t)

⎤

⎦ ·�t (10.26)

The first objective function (Jplan) is maximised over the plan variables (F∗
ft , S∗

st
and x∗

ut) while keeping the flexibility variables fixed at zero. On the contrary, the
second (Jflex) is solved over the flexibility variables (�Fft , �Sst and �xut) keeping
the planned variables fixed at the previous solution. In this formulation, Fcust is the
set of flows connected to the customer, πprod is the export price of the final product,
Fgrid is the set of flows to/from the grid, πDAM (t) is the time-varying DAM price and
πIDM (t) is the time-varying IDM price (see Figure 10.5). Although the customer and
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Figure 10.5 Comparison between DAM and IDM prices

the electricity grid are connected to only one flow variable each, the formulation of
the objective functions is given for a general case that considers the possibility of
additional flow variables. The most general profit formulation is the sum over all
network flows and all time-steps of each flow multiplied by their respective (time-
varying or constant) price and the time-step length. Nonetheless, a custom objective
function can be designed according to the goals of the user.

10.5.2 Results

Shifting the use of electricity to better match the sequential markets while using
the buffering capacity in the plant, allowed the system to reach a much better profit.
These results show that although constrained, industrial energy flexibility can produce
benefits for the system.

Some of the results are illustrated in Figure 10.6, which includes four charts.
These are the evolution over the time horizon of the storage and flow variables (Sst

and Fft) related to electricity in the grid network and to the final product in the
customer network. Starting with the electricity grid charts, Figure 10.6(a) represents
the accumulated energy injected into the network. All these values are negative since
there is a net consumption rather than production in the industrial plant. Figure 10.6(b)
shows the power withdrawn from the electricity grid, thus, the industrial consumption.
Contrastingly, Figure 10.6(c) shows the accumulated final products imported by the
customer. Finally, chart (d) displays the customer’s rate of product exports, which
is negative since the customer always imports. In addition, the storage graphs (a)
and (c) show the upwards and downwards flexibility used in different coloured areas.
These areas are the change between the original plan and the updated schedule after
receiving information on the IDM and exploiting the flexibility capacity. Similarly,
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Figure 10.6 Schedule results after utilisation of flexibility to benefit from
differences between DAM and IDM prices

the flow graphs (b) and (d) show the original plan and after-flexibility plan in different
coloured lines. Note that the storage capacity limits in the storage variables and the
flow boundaries in the flow variables are delimited by a dashed grey line and a pair
of grey surfaces, respectively.

Upwards and downwards flexibility can be combined when participating in
sequential markets to correct the production schedule according to the expected mar-
ket prices. Figure 10.6(a) illustrates this argument, where decisions of reducing and
increasing consumption at key time intervals resulted in the optimum operation of flex-
ibility. These alterations to the original plan match the differences in prices between
the DAM and IDM. Although the total final electricity use by the end of the optimi-
sation horizon was not directly constrained to a certain value, the solver found that
the optimum flexibility operation did not cause large deviations in this value. There-
fore, multiple intraday shifting can result in financial benefits for flexible consumers
participating in sequential markets.

Shifts in exports of the final product are also observed in the figure. Although
the product price was constant and shifting its exports do not change the revenues
(if the amount of product remains unchanged), the processes required to generate the
final product were operated smartly to reduce their associated electricity costs.
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In this example, the framework utilisation aimed to optimise the day-ahead and
intraday production schedule, using profit as the objective function. The results show
a high potential added value by the sequential schedule optimisation approach. This
approach decreased the energy costs of the system throughout the day by 10.3.

Although we used profit as an objective in this example, the framework can also
identify the amount of feasible flexibility to be offered in reserve markets, minimise
polluting emissions resulting from production processes, find re-design opportunities
in the processes structure, just to mention a few.

10.6 Conclusions

The superficially studied industrial flexibility shows balancing potential that could
generate value for both the energy-intensive industry and the electricity system.
Unfortunately, the interdependencies between industrial processes in a plant make
the planning and scheduling task complex.

For this reason, we propose a modelling framework to simplify the modelling and
optimisation tasks. It contemplates interactions between multiple energy and material
resources that allow the integration of production planning and energy management
into a single problem. Additionally, the framework intends to be compatible with exist-
ing grid operation mechanisms and with other flexibility sources. Thus, this chapter
reviews various models used in balancing markets, grid operation, and demand-side
management in all consumer sectors. As a result, relevant characteristics were iden-
tified and used to design our modelling framework. Grouping multiple equations in
intuitive blocks facilitates the interpretation of the models. Consequently, they can be
easily represented in a map of blocks and edges to display their topography.

To illustrate the framework, its application on a steel powder production line
showcased a successful planning and scheduling procedure that optimises the plant’s
profit, considering interactions in the day-ahead and intraday electricity markets.
Nevertheless, other valorisation mechanisms can be explored by defining a differ-
ent objective function (e.g., carbon emissions, profit from participation in reserve
markets, among others).
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Chapter 11

Industrial demand response: coordination with
asset management

Salman Mohagheghi1 and Abdulrahman Almazroui1

Demand response (DR) is one of the pillars of the modern distribution system, where
consumers would voluntarily reduce consumption in response to financial incentives.
While for residential consumers, demand curtailment is mainly a matter of incon-
venience, for industrial customers, reduction in electric demand can lead to severe
operational ramifications such as a halt in production, a pile-up of inventory, or wasted
labor. These challenges have caused industrial DR to remain less explored compared
to residential demand-side management. Although the industrial sector may be small
by numbers, its energy consumption is the dominant load on most distribution sys-
tems. This further underlines the potential benefits gained by involving industrial
loads in DR events.

One way to motivate industrial DR is to improve opportunities for indirect cost
savings as a result of participation in a DR event. For instance, it has been shown in
the literature that demand curtailment can be performed in conjunction with inven-
tory management in order to help the plant operate at or near just-in-time. Another
option can be to coordinate DR with asset management, i.e. by shutting down lines
and workstations under stress or those that are due for maintenance. This way, the
direct financial incentives from participating in DR can be augmented with long-term
benefits of optimal asset utilization. Providing one such solution is the goal of the cur-
rent chapter. A multi-objective optimization framework is proposed here that allows
plant operators to balance and optimize different financial, operational, and resource
objectives while taking advantage of DR to alleviate operational stress on assets. The
approach can further incentivize plant managers to participate in DR events while
allowing electric utilities to employ this significant untapped potential.

11.1 Introduction

Asset management is the process of managing resources and financial investments to
maximize the reliability of the power system, balance customer needs, and optimize

1Department of Electrical Engineering, Colorado School of Mines, Golden, CO, USA
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shareholder value [1]. It helps balance performance (efficiency), cost (of assets,
replacement, and maintenance), and risk (of failure). Over the years, the industry’s
approach to asset management has moved from being mere asset operators to asset
monitors, asset managers, and more recently, asset optimizers [2]. This was in part
inevitable since load growth, aging equipment, rate freezes, and regulatory uncer-
tainty have all forced electric utilities to look for ways to increase earnings [3], which
further underlines asset management as a viable solution. The objective of asset man-
agement is to maximize the performance of the equipment while minimizing the cost.
This requires an analysis that considers both the reliability and the cost of failure.
Many utilities increase the loading of their assets with the goal of deferring spending,
e.g. by postponing capacity expansion projects. In the short run, this reduces costs,
but it also increases risk, which needs to be analyzed and incorporated into the asset
utilization strategy. Based on the outcome of the analysis, the utility could decide
whether to do nothing, change maintenance policy, overhaul, or replace the compo-
nent [4]. In general, operating the components within manufacturer-specified limits
would be the easiest way to prolong the effective lifetime of assets and avoid premature
failure. The latter would require repairs and overhauls, resulting in downtime.

Asset failure in industrial plants can have significant ramifications. First and
foremost, failure of a production line or a workstation may result in a halt in production
and failure to meet the desired demand, which in addition to lost revenue may trigger
contractual penalties. This is especially likely in manufacturing plants with highly
interdependent production lines and with little or no backup resources. Further, a
failed workstation may directly or indirectly lead to inventory buildup across the
plant. Depending on the criticality and shelf-life of the outputs produced by individual
workstations, accumulation of pre-process and/or post-process inventory may result
in a significant waste of material, capital, and energy. Last but not least, crew members
may need to be reassigned to avoid lost person-hours. All this affects the efficiency,
sustainability, and productivity of the plant.

To avoid such operational issues, many industrial plant managers are moving
from simple corrective or time-based maintenance strategies to preventive ones,
where maintenance actions are performed before the (at times inevitable) operational
stressors can develop into component failures. This, however, is not always easy to
implement because of the potential negative impacts of a downed workstation, as
stated above. One solution could be a comprehensive and unified operation strat-
egy that takes into account various aspects related to financial objectives, inventory
constraints, crew constraints, and physical health of assets. While such an approach
would undoubtedly result in long-term benefits, short-term losses due to interruption
in service may still outweigh the gains. To offset the balance between short-term gains
and losses, the plant manager may coordinate asset operation and maintenance with
potential financial incentives from utility-initiated DR programs.

DR is a demand-side management solution that targets residential, commer-
cial, and industrial customers, and is developed for reduction or shifting of demand
at a specific time for a specific duration. DR programs can be roughly classified
into three groups according to the party that initiates the demand reduction action
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[5]: (a) incentive-based DR, in which load curtailment or demand reduction signals
are issued by the electric utility and sent to the participating customers in the form of
voluntary demand reduction requests or mandatory commands; (b) rate-based DR,
in which variations in the hourly price of electricity is intended to encourage cus-
tomers to adjust their consumption according to the needs of the electric utility; and
(c) demand reduction bids, where customers (mainly larger commercial and indus-
trial ones) initiate and submit bids to the electric utility for payments in exchange for
reduced energy consumption. These bids would consist of the amount of proposed
power curtailment, the corresponding duration, and the posted price. The electric
utility would assess the bids, sort them, and accept the ones that it finds financially
viable.

In the past decade, many industrial plants, especially those equipped with local
distributed energy resources (DER), have been taking advantage of DR. When the
electric utility issues a DR event (for instance, by sending a demand reduction request
to the plant), the plant can switch to local generation and reduce its consumption
from the viewpoint of the utility. These DER units may consist of small-scale gas
turbines, diesel engines, or battery systems, most of which have a short startup time
of a few seconds to about 5 min [6, 7]. In particular, battery energy storage systems
allow industrial plants to store the energy from on-site solar photovoltaics (PV) and/or
small-scale wind turbines (which are generally non-dispatchable resources) to be used
at a later time when the DR event is issued. Alternatively, when an on-site generation
or energy storage is not available, the plant operator can comply with a DR request
by shifting the loads to a future time. Of course, this requires a detailed analysis to
ensure that operational constraints, crew constraints, inventory constraints, and/or
maintenance requirements are not violated. Real-time scheduling of industrial loads
has been the focus of much research in the past few years. For example, El-Metwally et
al. [8] used sequential ordering of loads to improve load factors through actions such
as load shifting and peak shaving. Some authors have adopted solutions that are based
on those commonly used for real-time computing. For instance, Subramanian et al.
[9] modeled deferrable loads as tasks with attributes such as arrival time, departure
time, and energy requirements, and proposed algorithms for allocating resources
to these tasks based on their energy needs and/or deadlines. A similar approach
was proposed in [10]. O’Brien and Rajagopal [11] used a greedy algorithm to shift
deferrable loads in such a way that the overall load profile matches a specified target
profile. From a different aspect, Dobrin et al. [12] combined offline scheduling and
fixed-priority scheduling to achieve flexibility while coping with complex timings of
different tasks. Others have viewed the problem of load scheduling from the angle
of variable electricity prices such as time-of-use (TOU) and real-time pricing (RTP)
[13, 14].

An alternative to demand shifting or reverting to local generation would be to
simply reduce/curtail demand. Examples of intelligent load shedding algorithms have
been proposed in the literature based on the priority ranking of loads [8], expert
systems [15, 16], and artificial neural networks [17]. However, when it comes to
industrial plants, shedding load is not merely a matter of inconvenience. In the highly
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interconnected operational environment of modern manufacturing plants, different
workstations and production lines are highly interdependent, and the unavailability of
each one can have significant operational impacts on the overall plant, i.e. it may lead
to the unwanted buildup of inventory in dependent/supplier workstations, a need for
reassigning workers to other lines and workstations with a possibility of wasted labor,
and under the worst-case conditions, failure to meet the desired production level.
Hence, there is a need for unified and comprehensive optimization solutions that will
consider these (at times) contradictory objectives before making recommendations
for load curtailment. The ultimate goal is to ensure the overall financial viability of
the plant operation, which means financial gains from participating in DR must be
weighed against potential losses due to waste in material or labor.

If coordinated with asset management, DR is an effective strategy that can enable
opportunistic asset maintenance while allowing the plant to take advantage of the pro-
gram’s financial incentives. This can serve as indirect cost savings, which will tip the
balance in favor of DR. To do this, the industrial plant can participate in various DR
programs for load curtailment or shifting, or alternatively, can proactively take part
in the DR bidding market. However, implementing industrial DR would require an
optimal solution to incorporate financial, asset, and technical considerations within
a unified framework of operation [18]. Devising such a solution is the goal of this
chapter. A multi-objective mixed-integer optimization framework is presented that
facilitates the sustainable operation of a manufacturing plant by coordinating opera-
tional efficiency with asset management. A case study has been presented for a sample
industrial plant, a luxury vehicle cockpit assembly line, to further demonstrate the
effectiveness of the proposed approach.

11.2 Proposed strategy

11.2.1 General idea

Without DR incentive, the natural goal of the plant operator would be to maximize
financial benefits while ensuring wasted labor and inventory buildup are minimized.
Such an approach may force some workstations to work continuous hours to produce
more end-product, which can at times lead to operational stress. On the other hand,
with DR, a new revenue stream will open up for the plant, which can also assist with
other operational constraints and objectives such as reducing the stress on assets and/or
minimizing inventory buildup. This way, part of the financial losses incurred due to
shutting down one or more workstations will be compensated for by the financial
gains resulting from participating in DR.

To do this, the plant operator can run a scenario with no DR incentive to find the
power consumption level that would maximize profits subject to other operational
constraints. A follow-up scenario is then run with a DR incentive. The difference
between the two would indicate the energy level that can be offered in the electric
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utility’s DR market as capacity relief. In the most general case, four different objectives
can be considered:

● maximizing the net revenue,
● minimizing the inventory buildup,
● minimizing the waste in labor, and
● maximizing the number and duration of operation breaks for various workstations.

The last objective is what leads to stress relief on assets. By reducing the number
of consecutive hours during which a workstation has to be operational, not only the
operational stress is reduced, but it can also be queued for preventive maintenance.
Naturally, the overall problem is subject to a variety of operational constraints, which
makes it a constrained multi-objective optimization model as described in the next
section.

11.2.2 Problem formulation

The problem has been formulated as a constrained multi-objective optimization model
as outlined below.

11.2.2.1 Objective functions
A total of four objective functions have been defined that cover various aspects of the
plant’s operation.
O1: Maximizing the financial benefits

This objective ensures that the plant takes advantage of all opportunities to max-
imize its net revenue. These consist of the financial gain from selling the end product
[first term in (11.1)], the cost of electricity consumption [second term in (11.1), with
a negative sign], the financial gain from participating in DR bidding and providing
capacity relief [third term in (11.1)], and the financial losses associated with unful-
filled orders [last term in (11.1), with a negative sign since it must be minimized].
Note that pmax is a fixed value that represents the energy consumption level of the
plant with no DR incentive, i.e. when maximizing profits from production is the main
driving force:

O1 = max

⎛

⎜⎜⎝
ρ ·

T∑
t=1
αn · pn,t − ct ·

T∑
t=1

n∑
i=1

pi,t

+rDR ·
[

pmax −
T∑

t=1

n∑
i=1

pi,t

]
− π · β

⎞

⎟⎟⎠ (11.1)

O2: Minimizing inventory buildup
In an effort to move towards just-in-time (JIT) strategy, it is often desired to

minimize the inventory buildup at the input of a workstation (pre-process inventory)
and/or its output (post-process inventory). Different materials may have different
criticality levels based on their shelf life (e.g. food products or chemicals may expire
sooner than other produced outputs). In order to determine the capital value of this
inventory buildup, workstation products can be divided into three different categories,
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A, B, and C [19]. The products in the A category have the highest value in the
organization. The B category also consists of important products but is less strictly
monitored, whereas the third category, C, is relatively less important than the other
two; although, it usually exists in larger quantities [18]. This categorization can be
used when deciding on the operation status of a workstation, i.e. operation strategies
that lead to a significant buildup of product categories A and B must be avoided if at
all possible. To model this, the inventory buildup of different workstations is weighed
here based on a heuristically defined criticality coefficient γ . It should be noted that
the post-process inventory of the last workstation (i.e. workstation n) is not included
in this equation, since it represents the final product of the plant:

O2 = min
T∑

t=1

n−1∑

i=1

γi · si,t (11.2)

O3: Minimizing wasted labor
When a workstation is shut down to allow the plant to take advantage of DR,

crew members working at that workstation need to be reassigned to other units. Unas-
signed crew indicates a wasted resource that could incur financial losses to the plant
(if workers continue to get paid regardless) or the workers (if they lose their pay
during the unassigned hours). In either case, this must be minimized as indicated
in (11.3):

O3 = min
T∑

t=1

(
Wtotal −

n∑

i=1

wi,t

)
(11.3)

O4: Minimizing stress on assets
In this study, asset management is viewed in terms of reducing the total number

of consecutive hours during which a workstation may be operational and is formulated
as maximizing the number of “operation breaks” a workstation receives during any
(H + 1)-hour working period, as indicated in (11.4) – also see (11.12) for more
details:

O4 = max
T∑

t=H+1

n∑

i=1

bi,t (11.4)

11.2.2.2 Constraints
The problem is solved subject to the following constraints:

Workstation production constraints:
The product of a workstation (viewed as its post-process inventory) is assumed to

be linearly proportional to its energy consumption. This assumption has been made for
proof-of-concept purposes and does not affect the generality of the problem. Nonlinear
relationships or stepwise functions can also be assumed, although this could change
the structure of the optimization model into a nonlinear one.

At the end of each time-step, the post-process inventory at a workstation is a func-
tion of the inventory buildup at the previous time-step, the workstation’s production
level at that time-step, minus the production level of those workstations that directly
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use the former’s product. This is modeled as in (11.5). The post-process inventory of
each workstation must remain within the acceptable range at all times, as indicated in
(11.6). Reducing the upper limit in (11.6) moves the operation towards just-in-time.
Depending on the units defined for the output of each workstation, the post-process
inventory can be considered to be a discrete or continuous variable:

∀i, ∀t : si,t = si,t−1 + αi · pi,t −
n∑

j=1,�=i

vj,i · αj · pj,t (11.5)

∀i, ∀t : Smin
i ≤ si,t ≤ Smax

i (11.6)

Workstation operation constraints:
The power consumption level of any workstation is limited by its lower and

upper bounds [see (11.7)]. The upper bound is intended to prevent damages to the
workstation and/or its components, whereas the lower threshold is more of a financial
constraint, i.e. it may not be economically viable for the workstation to operate below
a certain level. Further, the total amount of power consumed by the plant must be
limited to the maximum allowable level, set by either the contractual agreement with
the electric utility or the maximum capacity of the service transformer supplying the
plant [see (11.8)]. Finally, if the workstation is operational, the necessary number of
workers will be assigned to it [see (11.9)], which naturally cannot be more than the
total number of workers available for the entire plant [see (11.10)]:

∀i, ∀t : Pmin
i · ui,t ≤ pi,t ≤ Pmax

i · ui,t (11.7)

∀t :
n∑

i=1

pi,t ≤ Pu,max (11.8)

∀i, ∀t : wi,t = Wi · ui,t (11.9)

∀t :
n∑

i=1

wi,t ≤ Wtotal (11.10)

Workstation interdependence constraints:
For any workstation j, the produced output is limited by the amount of pre-process

inventory available. Note that pre-process inventory for workstation j is the same as
post-process inventory of the immediately preceding workstation i. Assuming that
there are multiple workstations, each providing the required pre-process inventory
for workstation j, this constraint can be expressed as in (11.11). The term in the
parenthesis consists of the amount of post-process inventory at workstation i at the
end of the previous time-step, the amount produced by workstation i during the
current time-step, minus the amount used by other workstations other than j that use
i’s product. The second term is included in the equation to remove the effects of any
workstation i that is not connected to workstation j. Without this term, since vj,i is
zero, the term inside the minimum function will become zero, thus dominating the
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constraint. Naturally, the function min can be linearized by breaking it into multiple
inequalities:

∀j, ∀t : αj · pj,t ≤ min
i

⎧
⎪⎨

⎪⎩
vj,i ·

(
si,t−1 + αi · pi,t −

n∑
k=1,�=i,�=j

vk ,i · αk · pk ,t

)

+(1 − vj,i) · M

⎫
⎪⎬

⎪⎭
(11.11)

Asset management:
The approach to asset management adopted in this model is to ensure that, as

much as technically possible, workstations do not consecutively work higher than
a predetermined number H of hours. The goal is to allow for operation breaks in
between, which could be used simply for operational stress relief or for conducting
preventive maintenance. This is modeled as in (11.12). Notice that without operation
breaks in the consecutive (H + 1)-hour period, the summation will add up to (H + 1).
This indicates that the workstation has worked for more than H consecutive hours,
which is not desirable. A nonzero bi,t indicates a break in between, which denotes that
the workstation has worked for H or less number of consecutive hours:

∀i, ∀t ∈ [H + 1,T] :
H∑

d=0

ui,t−d = (H + 1) − bi,t (11.12)

Unfulfilled orders:
Ideally, the plant manager would like to meet the target production level during

each workday. However, to allow the plant to take advantage of DR, this constraint is
relaxed, as shown in (11.13), although subject to a threshold [as shown in (11.14)].
Of course, the shortage in meeting the demand leads to penalties, as indicated in the
objective function (11.1):

β = Ddes −
T∑

t=1

αn · pn,t (11.13)

β ≤ βmax (11.14)

Integrality and non-negativity constraints:

∀i, ∀t : pi,t ≥ 0 (11.15)

∀i, ∀t ∈ [H + 1,T] : bi,t ≥ 0 (11.16)

∀i, ∀t : ui,t ∈ {0, 1} (11.17)

β ≥ 0 (11.18)

11.2.3 Solution methodology

Due to the multi-objective nature of the optimization model, a goal programming
approach has been adopted to ensure that no individual objective function would
dominate the others, and that Pareto optimal solution is reached. Pareto optimal solu-
tion is one in which no individual objective function can improve without worsening
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others. This is especially important when two or more objective functions are con-
tradictory to one another. For instance, objective O1 in this study tries to push the
workstations to produce more in order to maximize profits, which may result in higher
inventory buildup, hence being contradictory to objective O2.

In this goal programming approach, all objective functions are solved one at a
time, i.e. in a single objective framework. Their corresponding optima are then set
as the goals (targets) to be achieved in the multi-objective framework. These goals
are usually slightly relaxed to ensure that all targets can be met. The problem can
be modeled as shown below, where L is the multi-objective function. We wish to
minimize the distance of each objective function Oq from its pre-determined goal
(target) Gq. This is achieved by defining non-negative surplus or deficiency variables
for the minimization and maximization objectives, respectively. These variables will
then convert those requirements into soft constraints [see (11.20)–(11.23)]:

min L (11.19)

Subject to:

O1 + b1 ≥ G1 (11.20)

O2 − b2 ≤ G2 (11.21)

O3 − b3 ≤ G3 (11.22)

O4 + b4 ≥ G4 (11.23)

∀q :
bq

Gq
≤ L (11.24)

∀q : bq ≥ 0 (11.25)

11.3 Case study

11.3.1 System description

The proposed methodology is applied to a sample industrial manufacturing plant for
luxury vehicle cockpit assembly. The schematic diagram of the plant layout and the
workstations is illustrated in Figure 11.1. The plant consists of multiple workstations
that are arranged in series or parallel configurations. The data for the baseline electric
demand consumption of the workstations, the criticality level of their product (i.e.
post-process inventory), the number of crew members necessary for operating each
one, and the hourly rate of electricity is provided in the Appendix.

It is assumed that at time 0 all workstations have a starting pre-process inventory
of 4 units, with the exception of workstations 1, 7 and 8 whose inputs are provided from
external resources and considered to have no limitations. The problem has been solved
for 10 time-steps, i.e. T = 10. It has also been assumed that a total of 20 workers
are available during every hour of the workday. These workers are sufficiently skilled
to be able to be assigned to any workstation necessary. The desired number of units
to be produced by the plant during the workday is 20 with a revenue of $40,000 for
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Figure 11.1 Schematic diagram of the manufacturing plant under study

each unit, and the maximum permissible number of unfulfilled orders is eight units
with a penalty of $5,000 per unit. The maximum power to be received from the utility
is assumed to be 1,000 kW per hour and the baseline DR incentive rate is $50/kW
of demand reduction. Lastly, it is desired that no workstation operates for more than
four consecutive hours. These values are all considered for demonstration purposes
and do not affect the generality of the problem.

11.3.2 Results

To solve the multi-objective optimization model, the individual objective functions
are first solved one at a time, subject to all relevant constraints. This will provide the
global optima for each objective, which will then be used to set the goals (targets) to
be met in the multi-objective framework. The results are shown in Table 11.1. With
only objective O1, the optimization model tries to maximize the financial gains, which
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Table 11.1 Single objective optima

Obj. Net Inventory Wasted No. of Total
revenue buildup labor operation energy Unfulfilled
($) (units1) (person-hours) Breaks consumption (kWh) orders

O1 798,815 420 76 115 4,875 0
O2 562,814 10 96 145 3,120 7
O3 446,443 352 17 16 4,721 8
O4 536,645 200 128 263 2,925 8

1This is a weighted sum, considering the criticality level of each workstation product.

means that all other limiting factors such as inventory buildup, wasted labor, or stress
on workstations are ignored. As a result, the workstations are pushed to operate at or
close to full capacity throughout the workday, meeting the desired production level.
Despite providing the highest net revenue, it can be seen that this case would result in
the highest post-process inventory buildup, since the operation is encouraged. When
O2 is considered as the single objective, the level of post-process buildup reduces
significantly, as expected. However, this occurs at the expense of lower net revenue and
higher unfulfilled orders because more workstations are expected to be shut down or
to work at a lower capacity. Higher instances of workstation shutdown mean that more
labor is wasted (since the plant is left with a higher number of unassigned workers)
but more substations are receiving operation breaks (due to the higher number of idle
hours). With only O3 to optimize, the optimization model prioritizes wasted labor
over other factors. As expected, that number reaches its lowest value compared to
other cases. Interestingly, the number of operation breaks decreases significantly (i.e.
an indication that workstations are operating more continuously), yet the net revenue
is low. This is because many workstations work at less than capacity so as to satisfy
maximum worker assignment, but not necessarily to produce more, which is why
the number of unfulfilled orders is at the highest permissible level. Finally, when
considering only O4, the goal is to maximize the number of operation breaks, which
is achieved by implementing more workstation shutdowns. Naturally, this results in
a larger number of workers being left unassigned (i.e. the highest value of wasted
labor) and a significantly low power consumption (i.e. 60% of the first case). It can
be seen that the inventory buildup is not particularly high, which aligns with the low
operation capacity.

What is evident from Table 11.1 is the contradictory nature of the four objective
functions. A goal programming approach would make sure that no objective will
dominate the others and that each will reach the closest value possible to its own
optima. To do this, we define the optimal value of each objective function as the
goal (target) to be (ideally) met in the multi-objective framework, i.e. goal values Gq

in equations (11.20)–(11.23). In problems such as the one studied here, where the
individual objectives cannot simultaneously achieve their individual optima, the goal
(target) values are often slightly deteriorated with respect to the true optima in order to
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provide some flexibility for the multi-objective problem. For minimization objectives,
this means slightly increasing the value (typically by 10% or so), whereas the value
is slightly decreased for maximization objectives. The multi-objective optimization
model is then solved as minimizing (11.19) subject to constraints (11.1)–(11.18) and
(11.20)–(11.25). The results are shown in Table 11.2. It can be seen that no objective
function manages to achieve its single objective optima, with objectives O2 and O3

having the largest percentagewise difference, which indicates that they have the largest
impact on the overall solution (and hence on deteriorating other objective functions).
For the overall solution, the total number of unfulfilled orders stands at four, with the
overall power consumption of 3,900 kWh. Further, the total incentive received from
DR amounts to $48,750.

Table 11.3 shows the hourly power consumption level of individual workstations
over the 10-hour dispatch period. Many workstations operate at lower than rated
capacity (to reduce post-process inventory buildup) or are shut down (to facilitate
asset stress relief). Figure 11.2 illustrates the post-process inventory buildup across

Table 11.2 Multi-objective optima

Objective Single Goal Multi-objective Shortage/surplus
function objective value optima with respect to single

optima objective optima

O1 $798,815 $718,933 $667,658 17%
O2 10 11 25 150%
O3 17 19 44 158%
O4 263 236 63 77%

Table 11.3 Hourly power consumption of individual workstations (kW)

Station no. Time step

1 2 3 4 5 6 7 8 9 10

1 15 25 15 25 15 25 15 25 15 25
2 30 50 30 50 30 50 30 50 30 50
3 60 100 60 100 60 100 60 100 60 100
4 6.4 44.8 6.4 44.8 6.4 44.8 6.4 44.8 6.4 44.8
5 6.4 19.2 6.4 19.2 6.4 19.2 6.4 19.2 6.4 19.2
6 0 25.6 0 25.6 0 25.6 0 25.6 0 25.6
7 0 160 20 140 20 140 20 140 0 160
8 20 140 20 140 20 140 20 140 20 140
9 0 20 0 20 0 20 0 20 0 20
10 0 25.6 0 25.6 0 25.6 0 25.6 0 25.6
11 0 32 0 32 0 32 0 32 0 32
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Figure 11.2 Post-process inventory buildup across the plant during the workday

the plant during the workday. It can be seen that the overall operation is reason-
ably close to being just-in-time, i.e. not accumulating any unnecessary inventory
and using almost all units produced by each workstation. Note that the post-process
inventory of the last workstation is the final product of the plant and is therefore
not penalized [see (11.2)]. Figure 11.3 demonstrates the workstations that undergo
operation breaks during the workday. Although these breaks provide opportunities
for asset stress relief and possibly preventive maintenance, they do result in wasted
labor.

11.3.3 Discussion

Certain aspects of the problem formulation can be changed to make it applicable to
more specific cases. For instance, the number of workers assigned to each workstation
was assumed to be a fixed number, regardless of the workstation’s loading level.
However, it is possible that workstations require a smaller number of workers when
operating at partial capacity. This change can easily be applied by modifying (11.9),
i.e. by making the assigned workers to be a function of discrete levels of consumption
power of the workstation, rather than its operating status. Further, it is possible that
some workstations can only be operated by especially trained skilled workers. This
means that not all workers can be reassigned to all workstations.

Further, the approach to asset health assessment may be extended by considering
the loading level of each workstation in addition to the number of consecutive hours it
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Figure 11.3 Operation break status of different workstations during the workday
(1: under operation break, 0: operational). No workers are assigned
to the workstations under operation break.

has been operational. This can be easily accomplished by modifying (11.12) in a way
that each working hour of a workstation is also weighed based on its loading level,
hence converting the equation into a weighted sum.

Lastly, many manufacturing plants may be equipped with the onsite generation,
e.g. battery energy storage, diesel generators, or renewable energy resources such as
small-scale wind turbines or solar PV systems. In these situations, the available onsite
power can be utilized for local consumption, to sell back to the utility (for instance
at peak hours), or to charge the battery unit for future use. This will provide the
plant operator with a larger number of degrees of freedom to integrate into the plant’s
operation strategy and is expected to improve financial gains. One such solution was
proposed in the first author’s earlier work in [20].

11.4 Conclusions

In the recent years, with the push towards sustainability and energy efficiency, asset
management has become the focal point of many modern manufacturing plants.
Global competition and reduced profit margins often push these plants towards con-
tinuously operating close to their full capacity, which can place additional stress
on the components and under extreme cases, lead to their premature failure. This,
in turn, could result in a halt in operation, unwanted inventory buildup, potential
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waste, and the possible need for component replacement. Advanced asset manage-
ment approaches can help manufacturing plants move from being reactive asset users
to proactive asset optimizers. Various condition-based or opportunistic maintenance
approaches can be adopted to optimize the utilization rate of assets and minimize asset
failures and/or degradation. While in the long run, this can lead to significant cost
savings, its short-term benefits may be more difficult to justify given the potential
temporary lost revenues and/or sub-optimal inventory utilization and buildup.

If coordinated with asset management, DR is an effective strategy that can enable
opportunistic asset maintenance while allowing the plant to take advantage of the
program’s financial incentives. To do this, the industrial plant can participate in various
DR programs for load curtailment or shifting, or alternatively, can proactively take
part in the DR bidding market. However, implementing industrial DR would require
an optimal solution to incorporate financial, asset, and technical considerations within
a unified framework of operation. One such solution was proposed in this chapter. A
multi-objective mixed-integer optimization framework was presented to facilitate the
sustainable operation of a manufacturing plant by coordinating operational efficiency
and asset management. A case study was provided to show how various operational
objectives can be coordinated with asset management to ensure that the plant operator
can reduce the operational stress on assets while taking advantage of DR financial
benefits.

11.5 Nomenclature

11.5.1 Indices
i Index used for workstations
j Index used for workstations
k Index used for workstations
n Number of workstations, and the index for the last workstation that produces the

final product
q Index used for objective functions within the multi-objective framework
t Time index

11.5.2 Parameters
ct Cost of power provided by the utility at time t ($/kWh)
Ddes Desired production level of the plant (number of units, volume, or weight

produced); this can be viewed as the post-process inventory of the final
workstation

Gq Goal (target) value for objective function q within the multi-objective opti-
mization framework (units vary)
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H Desired a maximum number of consecutive hours during which a workstation
can be operational (h)

M A very large value
Pmax

i Workstation i maximum (rated) power, i.e. power consumed by workstation
i when working at full capacity (kW)

Pmin
i Workstation i minimum permissible power (kW). The unit cannot operate at

lower capacity and must therefore be shut down
Pu,max Maximum power available from the utility (kW)
rDR

t Incentive rate for participating in DR at time t ($/kWh)
Smax

i Maximum acceptable post-process inventory for workstation i (number of
units, volume, or weight)

Smin
i Minimum acceptable post-process inventory for workstation i (number of

units, volume, or weight)
vj,i Binary parameter indicating whether workstation j is directly connected to

workstation i, i.e. uses its product (=1: if j is connected to i, 0: otherwise)
Wi Number of workers to be assigned to workstation i when it is operational
W total Total number of workers available during the workday
αi Factor relating the number of units/volume/weight produced by workstation

i to the power consumed by it (No. units/kW, m3/kW, or kg/kW)
βmax Maximum permissible number/amount of unfulfilled orders, i.e. maximum

permissible shortage in the production level of the last workstation compared
to the desired level (number of units, m3, or kg)

γi Criticality level of the product produced by workstation i
π Penalty due to unfulfilled order ($/unit, $/m3, or $/kg)
ρ Revenue from selling the end product ($/unit, $/m3, or $/kg)

11.5.3 Variables
bi,t Number of break hours that workstation i receives in the (H + 1)-hour period

terminating at time t
bq Surplus or deficiency variable for objective function q within the multi-objective

optimization framework (units vary)
Oq Objective function q within the multi-objective optimization framework (units

vary)
pi,t Operational level of workstation i at time t (kW)
pu

t Utility power provided to the plant at time t (kW)
si,t Post-process inventory at the output of workstation i at time t (number of units,

volume, weight)
ui,t Binary variable indicating whether workstation i is operating at time t (=1: if

workstation is operating, 0: otherwise)
wi,t Number of workers assigned to workstation i at time t
β Unfulfilled orders, i.e. shortage in the production level of the last workstation

compared to the desired level (number of units, m3, or kg)
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11.6 Appendix

Table 11.4 Workstation data

Workstation Pmin
i (kW) Pmax

i (kW) αi Smin/max
i (units) Wi γ i

1 5 50 0.16 0/20 2 1
2 5 50 0.08 0/30 1 3
3 10 100 0.04 0/30 3 1
4 6.4 64 0.125 0/20 1 3
5 6.4 64 0.125 0/20 2 3
6 25.6 256 0.125 0/25 3 5
7 20 200 0.02 0/22 2 3
8 20 200 0.02 0/20 1 1
9 2.5 25 0.16 0/25 2 5
10 12.8 128 0.125 0/25 1 5
11 4 40 0.1 0/– 2 N/A

Table 11.5 Rate of power purchased from the utility

Rate Time (h)

1 2 3 4 5 6 7 8 9 10

ct 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4
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Chapter 12

A machine learning-based approach for
industrial demand response

Ronke M. Ayo-Imoru1, Ahmed A. Ali1 and
Pitshou N. Bokoro1

Considerable interest is now being vested in low-carbon energy sources in other
to meet the world’s ever-growing energy demand without causing damage to the
environment, which has given rise to the increasing contributions of renewable energy
sources to the energy grid. This development is not without its challenges to modern
electric power systems. Due to the intermittent nature of renewable energy resources,
its increase has resulted in energy demand–supply mismatch, grid imbalance, or grid
instability. A reliable and cost-effective approach is required to address this energy
trade imbalance caused by the influx of renewable energy sources. Demand response
(DR) is a concept that aims at achieving energy balance in the grid by controlling and
adjusting flexible loads.

Industrial DR has the potential for a significant contribution to the operational
flexibility of power systems. This is because the industrial sector is one of the major
electricity consumers in the world, as many industrial loads consume much electrical
energy. Therefore, a proper industrial demand response regime will help in ensuring
a safe and secured grid, improve energy balance, promote decarbonization, more grid
reliability and cost reduction for customers.

Machine learning is one of the primary drivers of the fourth industrial revolution;
it is currently widely applied in many areas, and DR is not left out. This work explores
the application of machine learning for industrial DR. Over the years, different tools
based on machine learning have been developed for DR applications. This research
aims to review and analyze machine learning approaches, the current trends, and
innovations in industrial DR.

Some of the different machine learning tools analyzed from this review included
the artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS),
Markov chain, random forest, and support vector machine (SVM) approaches. The
strengths, challenges, and opportunities of the different machine learning approaches
were further analyzed and explained.

1Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg, South
Africa
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12.1 Introduction

In tackling the issues of climate change, there is a need for low-carbon emission
energy sources. Consequently, there has been a rapid increase in the contribution of
renewable energy sources (RES) to the electricity grid in recent times. The intermittent
nature of the RES results in instability of the grid. Therefore, there is a need to stabilize
the grid by balancing the electricity supply and demand. It is reasonable or easier to
adjust the electricity supply by adjusting electricity generation across the different
plants, but this is not economical and not good for the health of the generation plant.
Generating electricity at a constant load is better for the generating plants and more
sustainable. These issues have given rise to the concept of demand response (DR).
The DR concept focuses on stabilizing demand and supply from the demand side.

DR is an approach that brings flexibility to power systems by adjusting the
demand side. In DR, flattening the peak of the demand curve reduces the instability
in the grid. It involves consumers changing their electricity consumption patterns,
and this they achieve via different methods. DR helps stabilize the electric grid, helps
generation plants to work optimally with minimal interruptions, saves cost for both
the electricity supplier and the consumer, and helps consumers be involved in the
electricity demand and supply process. Implementing IDR reduces the need for flex-
ibility options like storage, which are mostly more costly [1]. DR is a critical smart
grid technology. An intelligent DR implementation could provide 185 GW of sys-
tem flexibility globally, almost the same amount of electricity currently installed in
Australia and Italy combined [2].

The types of (DR) can be classified based on the loads connected. There is
the residential DR, which focuses on adjusting electricity consumption patterns in
households. At the same time, the Industrial demand response (IDR) focuses on
changing electricity consumption patterns in the industries. The type of load used in
the industries is heavy. Having a thriving (IDR) will have a significant impact on the
power system stability. The focus of this chapter is the IDR. Different approaches
have been deployed in the application of IDR. The focus of this work is the use of
machine learning in achieving IDR.

Machine learning is a branch of data science that deals with training the computer
with data in other to discover patterns that can be used in developing an algorithm for
further analysis of other data with which it had not been trained. Machine learning
is a fast-growing field that is presently applied widely in almost every field – the
health sector, banking, engineering, aerospace, finance, and many others. For DR,
machine learning has also been greatly employed. From the search on current trends
in demand response, it was discovered that most of the available publications on
DR were for residential demand response. Only a few publications are on machine
learning applications for industrial DR. Hence, this has prompted the interest in
carrying out this research. This research focuses on investigating work done so far on
the application of machine learning in industrial DR, the best approaches used, and
the results obtained from this approach.

This chapter consists of five sections for a proper exploration of the application
of machine learning for industrial response: in Section 12.2, the types of industrial
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loads are discussed, Section 12.3 discusses DR in the industry; Section 12.4 discusses
the machine learning approaches for IDR and Section 12.5 contains the conclusion.

12.2 Industrial load

The term ‘load’ in electricity refers to any device or component connected to the
electricity supply and uses electricity, converting it to other forms of energy [3].
Generally, in power systems, load classifications are residential, agricultural, com-
mercial, and industrial loads [4]. Thus, Industrial load refers to the electrical devices
and components that the industries use. These industrial loads include machines, heat-
ing appliances, cooling appliances, and other electrical devices that the industries use.
Some of these devices can be in operation for days.

In literature, Industrial loads have different classifications, Shoreh et al. in [5]
classify industrial load into two, namely production and support services. The pro-
duction loads are involved in the manufacturing/industrial process, while the support
loads are used in the production processes. Starke et al. in [6] classify industrial
load into three types which are mechanical I, mechanical II, and thermal loads. The
mechanical I can provide energy and DR capacities; they cannot modulate but can
be turned on and off. The mechanical II type of industrial load can modulate and are
most suitable for DR. The thermal loads are process equipment that are continuously
running and cannot be interrupted except for scheduled maintenance. Lu et al. 2021
in [1] also categorized industrial load into three: shiftable, non-shiftable, and control-
lable loads. The shiftable load has two operation states of on and off. The non-shiftable
load must work continuously once the operation has started and the controllable load
(can work at different operating levels at different power demands).

12.2.1 Characteristics of industrial load

The power range for industrial load depends on the industry’s size. The small-
sized/scale industry is between 3 and 20 kW, the medium-scale industry is about
25–100 kW, and the large industry is from 100 to 500 kW. Examples of industrial load
are motors, air conditioners, refrigeration systems, defrosting systems, production
equipment processing lines [7].

Some of the challenges facing industrial loads include Multiple power sources,
different electrical uses, disturbance from grid, complex distribution network [8].
Proper management of the industrial load is of great benefit to the industries as it will
help overcome the stated challenges. Therefore, the application of DR is beneficial
to both the industry and the electricity supply units.

12.3 Industrial DR

The industry has a significant role in the implementation of DR because of the magni-
tude of power, industrial loads usually consume, which can provide much flexibility to
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the grid, and industries also mostly have infrastructures for communication, control,
and market participation which enhances DR [9]. Examples of heavy industries are
steel, pulp, paper, cement, oxygen generation, oil refinery, and aluminum production.
An effective industrial response will reduce the need for alternative flexibility sources
like costly storage systems and fast-run power plants. The DR policy for industries
is focused on increasing and effectively optimizing the flexibility of production [10].
Some of the major themes of DR in the industry are further explained below.

12.3.1 Industrial load forecasting

Load forecasting is one of the critical aspects of IDR that determines the successful
implementation of DR applications. Accurate load forecasting is beneficial to both the
power system operators and the consumers [11]. The industry with a proper forecasting
tool will be able to optimize its energy management system. Almost every model and
approach developed for industrial DR involves load forecasting. Another type of
forecasting in IDR is price forecasting.

12.3.2 Role of technology in IDR

For the successful application of DR, technology plays a very vital role. The progress
made so far in DR applications has been mainly due to advancements in technology.
For IDR implementation, some of the required technologies include a good com-
munication network and protocols, advanced control-device technologies, and smart
metering, which must work impeccably to form fully functioning systems [12].

12.3.3 Role of policy in IDR

For effective implementation of IDR, there is a need for policies to be put in place.
For example, having regulations that encourage government administrators to use
incentives to attract customers’ interests in involuntarily engaging in DR in which
they vary their load, and also adopt enabling price mechanisms, and which will
further improve the energy efficiency [12]. One of the essential drivers of industrial
DR is government policy [12].

12.3.4 Incentives and price-based DR

DR is classified into two the price-based and incentive-based DR. The approaches
used in the price based are further broken into the day-ahead pricing (DAP) [13] and
real-time pricing (RTP) [14]. While for the incentive-based, we have the Time of use
TOU approach. In RTP, the actual online condition of the power grid is better reflected.
The DAP approach is based on the assumption that the electricity price of the next day
is known in advance, which gives rise to fixed scheduling of electricity operations
and does not allow for an adequate response to unanticipated variations [1]. TOU
involves fluctuating the electricity tariff during the peak and off-peak periods. In this
DR type, the price of electricity is increased during high electricity demand periods
and reduced during off-peak periods [15]. The DR types are shown in Figure 12.1.
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Figure 12.1 DR classification

12.3.5 Ancillary services

Besides DR, the industrial load also serves for ancillary services. Ancillary services
are services provided to help maintain a stable and secure operation of the power
system. These services help to maintain grid reliability. These services are provided
to ensure voltage stability, frequency stability, power quality, and transient stability
[16]. Examples of ancillary services include spinning reserves, reactive power control,
speed regulation control, voltage control, automatic generation, load shedding and
automatic islanding.

12.4 Machine learning in IDR

Machine learning is described as a branch of Artificial intelligence that involves the
use of data and algorithms in learning progressively similar to how humans learn until
accuracy is attained [17]. Machine learning uses algorithms to find patterns in histor-
ical data and for many other applications like prediction, diagnosis, and estimation.
Machine learning can be classified as supervised, unsupervised, and reinforcement
learning which is shown in Figure 12.2.

A. Supervised learning involves using an algorithm that has both the input data and
the target data. It is like having a data set with a teacher where the target data is
the teacher like the supervisor. So the algorithm gradually learns in the presence
of the target data (the supervisor). In DR, supervised learning has been employed
by [18] for DR applications in industrial and commercial buildings. Examples
of supervised learning are Neural Networks, Support Vector Machine (SVM),
Linear Regression, Random Forest and Naïve Bayes, as shown in Figure 12.2.

B. Unsupervised learning: It involves training the algorithm without target data
(teacher/supervisor). This method is majorly used for finding patterns in a dataset,
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Figure 12.2 Machine learning classification

clustering, and dimension reduction. Examples of unsupervised learning are prin-
cipal component analysis (PCA), singular value decomposition (SVD), neural
networks, k-means clustering, probabilistic clustering methods.

C. Reinforced learning: In reinforced learning, learning is done through an agent
that is able to interact with its environment and learn through trial and error.
A comprehensive review of the applications of reinforced learning for DR was
done by [19]. Examples of reinforced learning are the Markov decision-making
process and the Q learning process.

Machine learning is widely used in almost every field today, and DR is not left
out. However, machine learning has been chiefly used more for residential DR and
has very few applications in this area for IDR, which has necessitated this work. From
five different academic search engines employed, the research output for industrial
DR and in machine learning (ML) applications for IDR are minimal compared to
other types of DR. Table 12.1 shows the result from these search engines.

From Table 12.1, we can see that very little has been done in the application of
machine learning in the industrial DR. The few research output on machine learning
applications on IDR found in the literature is shown in Table 12.2.
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Table 12.1 Articles for machine learning in Industrial DR

Search engine DR IDR ML

Scopus 14,415 142 32
Core 333,348 177 158
Mendeley 16,381 43 12
Google Scholar 151,000 625 148
Microsoft Academic 17,192 266 31

Table 12.2 Machine learning application in Industrial DR

Articles Machine learning Industry Application
approach

[1] Multi-agent deep Lithium-ion battery Minimize electricity cost
[20] reinforcement manufacturing industry Maintain production task

learning
[1] Recurrent neural Steel powder Peak shifting to off-peak

network manufacturing industry Electricity cost reduction
[21] Artificial neural Desalination Load forecasting and price

networks Air separation plant forecasting
[18] Deep learning Generic Load forecasting

reinforcement
algorithm

[6] GA Assessing IDR potential Load curve modelling
[6] Linear regression Assessing IDR potential Relationship between electricity

consumption and price
[19] Reinforcement Generic Review of algorithms for DR

learning
[22] Fuzzy logic Generic Electricity price forecasting
[23] GA nondominated Multimachine shop floor Scheduling of jobs for machines

sorting GA II and humans
(NSGA-II)

[24] Support vector Generic Demand elasticity estimation
machine

[25] particle swamp Ball mills in a slurry Energy cost reduction
optimization shop floor

Some of the machine learning that have been mostly used in literature for indus-
trial DR include the genetic algorithm (GA), neural networks, SVM and fuzzy logic
which are further described in the following sections.

12.4.1 Genetic algorithm (GA)

GA is a heuristic machine learning approach based on Charles Darwin’s theory of
evolution [6]. The basic principle behind GA is the principle of selection of the fittest,
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like natural selection, where the fittest genes are selected for the reproduction of the
next generation. GA uses majorly five parameters in its operation: population size,
cross over, fitness function, search space, and mutation probabilities [23]. The GA
process always starts with a set of solutions called population. The individual solution
in a population is called a gene. The genes are presented in a string called chromo-
somes. Figure 12.3 shows the relationship between the genes, chromosomes, and
population.

The fitness function is characterized by the fitness score, which indicates how
to fit each individual is. The selection probability, which is the possibility of being
chosen, is determined by the fitness score. Cross over involves the two selected
genes being paired to produce the offspring. The process involved in GA is shown in
Figure 12.4.

12.4.2 Support vector machine (SVM)

SVM is a supervised learning algorithm that learns by assigning labels to objects. They
are primarily used for solving classification problems, regression problems and for
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outliers detection [24]. SVM is used for non-linear problems and performs well with
a limited amount of data. The setback with SVM is that they can be computationally
expensive. This is why in computation, SVM classifiers are done alongside a kernel
function to reduce computational price.

A hybrid system of least square support vector machine (LS-SVM) was developed
to determine the demand elasticity by assessing the response of demands to different
influence signals for a DR system [24]. SVM is used in identifying miscellaneous
electric loads in [26].

12.4.3 Artificial neural network (ANN)

ANN is a supervised learning algorithm that is inspired by the operation of human
learning. It is patterned after how the brain works. The human brain is a highly
complex, non-linear, and parallel information processing system. It can perform
functions like pattern recognition, perception, and motor control faster than any
computer that ever existed. ANN can be called a virtual brain – the ANN compo-
nents are similar to that of the brain, which includes a collection of neurons that are
interconnected through synapses [27]. The neurons are simple processing units with
the ability to store knowledge and make it available for later use by other compo-
nents of the code. Neuron interconnections have a strength called synaptic weight,
which is used to store the acquired knowledge. A simple ANN structure is shown in
Figure 12.5.

ANN has different procedures for learning, which are called learning algorithms.
The learning algorithms modify the synaptic weight of the network in an orderly
fashion to attain the desired design objective [27]. A neural network can learn and
generalize to produce output from inputs it did not encounter during training. The
other strengths of the neural network are that it can: work well in non-linear systems;
do input–output mapping; adapt to changes in the environment, and give confidence
level on decisions that it made. ANN was used in forecasting load and locational
marginal price for an inverse DR process developed by [21]. The inverse DR process
was used in demonstrating IDR in desalination and air separation plants. Load and
price prediction was made using deep learning neural networks for IDR by [28].

Synapse

Input

Neuron

Figure 12.5 A simple neural network
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ANN was used in forecasting the temperature and power demand perturbation for
cold storage that uses DR [29].

12.4.4 Fuzzy logic

Fuzzy logic uses human expertise in interpreting incomplete and imprecise infor-
mation in IF-THEN rules to solve problems. It performs numerical computation
by using linguistic labels stipulated by membership functions. The fuzzy system
incorporates human knowledge and performs inferencing and decision-making [30].
Fuzzy logic may be viewed as a methodology for computing words rather than
numbers. Although words are inherently less precise than numbers, their use is
closer to human intuition. Furthermore, computing with words exploits the toler-
ance for imprecision and thereby lowers the cost of the solution. Fuzzy logic relies
on age-old skills of human reasoning. The strengths of fuzzy logic are approxi-
mation capability; ability to compute with words; tolerance for imprecision, and
the ability to model non-linear functions. A fuzzy-based method is used to model
the uncertain electricity price for industries to make decisions for maximum profit
for the consumer. The fuzzy α-cuts method developed by [22] gives the consumer
upper and lower limits price, giving them a price range from which to make their
decisions. Reference [31] developed a Fuzzy system that is used in deriving pri-
ority factors for the difference in other to make appropriate DR decisions in the
industry.

12.4.5 Adaptive neuro-fuzzy inference system (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) is the neuro-fuzzy method of
interest in this research. ANFIS was proposed by [32]. ANFIS combines the strength
of fuzzy logic approximation with the adaptive capability of the ANN. The member-
ship functions are generated using a neural network approach and, therefore, it does
not require expert knowledge, which is usually a prerequisite for a standard FL sys-
tem. In ANFIS, the membership function (MF) parameters change through a learning
process. ANFIS uses either back-propagation or a combination of least squares esti-
mation and back-propagation for MF parameter estimation. The ANFIS approach and
applications are well described in [32].

12.4.6 Linear regressions

Linear regressions are a supervised learning algorithm mainly used for trend forecast-
ing, predicting effects, and determining the strength of predictors. Linear regressions
could be simple linear regression or multiple linear regression. In assessing the IDR
potential at the western interconnects of the united states of America, Linear regres-
sion analysis was used in analyzing the relationship between electricity consumption
and peak in relation to the sales of the industries [6]. A summary of the different
machine learning algorithms, showing their strengths and weaknesses, is given in
Table 12.3.



Table 12.3 Machine learning algorithms, applications, and weaknesses

Machine learning Application Strengths Weaknesses
algorithms

Genetic algorithm Optimization Good at parallel implementation Works Give different output results
for discrete and continuous functions Not good in dealing with complexities
Solutions improve over time Slow speed of convergence

Artificial neural Forecasting/ Good non-linear problems Computationally expensive
network prediction Can do a parallel implementation Requires a large amount of data

Fuzzy logic Decision Approximation capability; Completely dependent on human expertise
making/control Ability to compute with words; Inaccuracy of output due to the inaccuracy of data

Tolerance for imprecision;
Ability to model non-linear functions

Adaptive neuro-fuzzy Prediction Fast learning capacity Computationally experience
inference system control High generalization capacity

Support vector Classification Performs well with a limited amount of data Computationally expensive
machine and regression High speed of performance Mathematically complex

problems Good at generalization
High accuracy in classification

Linear regression Forecasting Simple to interpret Sensitive to outliers
Estimating Easy to implement It works with a non-linear data set
predictors strength Sensitive to poor quality data

Particle swarm Optimization Easy implementation Slow convergence speed
optimization

Principal component Dimension Improves visualization Information loss
analysis reduction Reduces overfitting Difficult to interpret

Random forest Classification Reduces overfitting Computationally expensive
Regression Can work with missing data Large training time
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12.5 Conclusion

Industrial DR is a vast resource for proper and efficient energy management that can
bring stability to the grid in an economical manner. This chapter has discussed the
different aspects of industrial DR while focusing on machine learning applications in
IDR.

The different machine learning algorithms from the literature were covered. The
ANN is good at prediction and its primarily used for prediction in IDR, forecasting
load, and price. The GA is mainly used for optimization problems.

In this chapter, the strength and weaknesses of some selected machine learning
algorithms were explored. It can be concluded that all the machine learning algorithms
have their strength and weaknesses. To obtain the best algorithm for IDR, It is best to
understand what to trade-off with the different algorithms and how to combine more
than one algorithm to get the best result.

References

[1] R. Lu, R. Bai, Y. Huang, Y. Li, J. Jiang, and Y. Ding, “Data-driven real-time
price-based demand response for industrial facilities energy management,”
Applied Energy, vol. 283, p. 116291, 2021.

[2] IEA. “Promoting digital demand-driven electricity networks: digital solu-
tions to support power systems in transition.” https://www.iea.org/areas-
of-work/promoting-digital-demand-driven-electricity-networks [accessed 9
October 2021].

[3] K. Daware. “Industrial loads.” https://www.electricaleasy.com/2016/06/types-
of-electrical-loads.html [accessed 1 October 2021].

[4] E. Fact. “Types of industrial loads.” https://www.electricportal.info/2019/
01/what-types-electrical-loads-curves.html [accessed 1 October 2021].

[5] M. H. Shoreh, P. Siano, M. Shafie-khah, V. Loia, and J. P. Catalão, “A sur-
vey of industrial applications of Demand Response,” Electric Power Systems
Research, vol. 141, pp. 31–49, 2016.

[6] M. Starke, N. Alkadi, and O. Ma, “Assessment of industrial load for demand
response across US regions of the western interconnect,” Oak Ridge National
Lab. (ORNL), Oak Ridge, TN, USA, 2013.

[7] E. Lee, K. Baek, and J. Kim, “Evaluation of demand response potential flexi-
bility in the Industry based on a data-driven approach,” Energies, vol. 13, no.
23, p. 6355, 2020.

[8] Honeywell. Industrial Load Management System. (2015). [Online]. Avail-
able: www.honeywellprocess.com/library/marketing/brochures/brochure-on-
industrial-load-management-system.pdf

[9] X. Zhang, G. Hug, Z. Kolter, and I. Harjunkoski, “Industrial demand response
by steel plants with spinning reserve provision,” in 2015 NorthAmerican Power
Symposium (NAPS), IEEE, 2015, pp. 1–6.



A machine learning-based approach for industrial DR 273

[10] H. Golmohamadi, R. Keypour, B. Bak-Jensen, J. R. Pillai, and M. H.
Khooban, “Robust self-scheduling of operational processes for industrial
demand response aggregators,” IEEE Transactions on Industrial Electronics,
vol. 67, no. 2, pp. 1387–95, 2019.

[11] A. Bracale, P. Caramia, P. De Falco, and T. Hong, “A multivariate approach
to probabilistic industrial load forecasting,” Electric Power Systems Research,
vol. 187, p. 106430, 2020.

[12] B. Shen, C. C. Ni, G. Ghatikar, and L. Price, “What China can learn from inter-
national experiences in developing a demand response program,” Lawrence
Berkeley National Lab. (LBNL), Berkeley, CA USA, 2012.

[13] M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An MILP framework
for optimizing demand response operation of air separation units,” Applied
energy, vol. 222, pp. 951–66, 2018.

[14] J. M. Yusta and J. A. Dominguez, “Measuring and modeling of industrial
demand response to alternative prices of the electricity,” in Proceedings of
the. Power Systems Computation Conference, Session, 2002, vol. 15.

[15] K. Jessoe and D. Rapson, “Commercial and industrial demand response
under mandatory time-of-use electricity pricing,” The Journal of Industrial
Economics, vol. 63, no. 3, pp. 397–421, 2015.

[16] J. Wang and W. Xu, “Present situation and problems of large-scale wind power
transmission and accommodation policy,” in Large-Scale Wind Power Grid
Integration, Elsevier, 2016, pp. 257–76.

[17] IBM. What is Machine learning? [Online]. 2020. Available:
https://www.ibm.com/cloud/learn/machine-learning [accessed 9 October
2021].

[18] G. Krishnadas and A. Kiprakis, “A machine learning pipeline for demand
response capacity scheduling,” Energies, vol. 13, no. 7, p. 1848, 2020.

[19] J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand
response: a review of algorithms and modeling techniques,” Applied Energy,
vol. 235, pp. 1072–89, 2019.

[20] R. Lu, Y.-C. Li, Y. Li, J. Jiang, and Y. Ding, “Multi-agent deep reinforcement
learning based demand response for discrete manufacturing systems energy
management,” Applied Energy, vol. 276, p. 115473, 2020.

[21] M. Buchman, C. Mascarenhas, A.Trueworthy, and S. Watson, Inverse
Demand Response for Energy Intensive Industrial Processes [Online]. 2017.
Available: http://mbuchman.scripts.mit.edu/projects/files/Final%20Paper.pdf
[accessed 9 October 2021].

[22] M. Zarif, M. Javidi, and M. Ghazizadeh, “Self-scheduling approach for large
consumers in competitive electricity markets based on a probabilistic fuzzy
system,” IET Generation, Transmission & Distribution, vol. 6, no. 1, pp.
50–58, 2012.

[23] X. Gong, Y. Liu, N. Lohse, T. De Pessemier, L. Martens, and W.
Joseph, “Energy-and labor-aware production scheduling for industrial demand
response using adaptive multiobjective memetic algorithm,” IEEE Transac-
tions on Industrial Informatics, vol. 15, no. 2, pp. 942–53, 2018.



274 Industrial DR: methods, best practices, case studies, and applications

[24] L. Xie and H. Zheng, “Demand elasticity analysis by least squares support
vector machine,” in 2013 6th International Congress on Image and Signal
Processing (CISP), IEEE, 2013, vol. 2, pp. 1085–89.

[25] S. Ma, Y. Zhang, Y. Liu, H. Yang, J. Lv, and S. Ren, “Data-driven sustain-
able intelligent manufacturing based on demand response for energy-intensive
industries,” Journal of Cleaner Production, vol. 274, p. 123155, 2020.

[26] L. Du, Y. Yang, D. He, R. G. Harley, T. G. Habetler, and B. Lu, “Support vec-
tor machine based methods for non-intrusive identification of miscellaneous
electric loads,” in IECON 2012 – 38th Annual Conference on IEEE Industrial
Electronics Society, IEEE, 2012, pp. 4866–71.

[27] S. S. Haykin, “Neural networks and learning machines/Simon Haykin,” New
York, NY: Prentice Hall, 2009.

[28] R. Lu and S. H. Hong, “Incentive-based demand response for smart grid with
reinforcement learning and deep neural network,” Applied Energy, vol. 236,
pp. 937–49, 2019.

[29] H.-M. Hoang, M. Akerma, N. Mellouli, A. Le Montagner, D. Leducq, and
A. Delahaye, “Development of deep learning artificial neural networks mod-
els to predict temperature and power demand variation for demand response
application in cold storage,” International Journal of Refrigeration, 2021.

[30] R. R. Yager and L. A. Zadeh, An introduction to fuzzy logic applications in
intelligent systems, Springer Science & Business Media, 2012.

[31] S. Mohagheghi and N. Raji, “Managing industrial energy intelligently:
Demand response scheme,” IEEE Industry Applications Magazine, vol. 20,
no. 2, pp. 53–62, 2013.

[32] J.-S. Jang, “Input selection for ANFIS learning,” in Proceedings of IEEE 5th
International Fuzzy Systems, IEEE, 1996, vol. 2, pp. 1493–99.



Chapter 13

Feasibility assessment of industrial demand
response

Jose-Fernando Forero-Quintero1, Roberto
Villafáfila-Robles1 and Daniel Montesinos-Miracle1

Industrial Demand Response (IDR) has been used for regulation and balance purposes
for many years [1]. Large energy intensity manufactures have responded to external
signals, generally from System Operator (SO) to shift or shutdown loads according to
emergence or unexpected situations in power system [1,2]. Historically, such ancillary
services were very constrained and only remunerated by means of payments accord-
ing to an individual contract agreement between SO and industrial customer [3].
Nowadays, new IDR programs have been investigated, which have received a great
impulse because of the development of new control and communication systems, Dis-
tributed Energy Resources (DER) based on Renewable Energy Sources (RES) [4],
energy storage capacity, alongside market liberalization and pricing diversification.
Such new IDR programs tend to focus on controllable, deferrable and interruptible
loads aggregation [2], as well as on DER and Energy Storage Systems (ESS) aggre-
gation through Virtual Power Plants (VPP) [5] or the energy market participation of
an aggregator on behalf of the prosumers [6].

IDR programs generate economic, social and environmental benefits for whole
stakeholders (consumers, utilities, regulatory entities, system operators and gov-
ernments, among others) [2,8], where IDR impacts meaningfully in the frequency
regulation, reserve management [6] (primary reserve, contingency, replacement and
operational), as well as in a decrease of the overall costs. Additionally, benefits in the
energy market have been identified in terms of reducing energy prices and volatility
[7,9]. Studies on flexibility services have been carried out, in where an attractive ser-
vice portfolio has been found for IDR companies (usually referred to as aggregators).
Likewise, several reforms to the energy markets and tariff structure have been identi-
fied to fit the new flexibility services. All above technical concerns have been tackled
by several studies, but feasibility assessment of Industrial Demand Response appli-
cations has not been received enough attention [1,10]. In some works, the feasibility

1Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Department
d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Barcelona, Spain
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has been corroborated by means of case studies where cost–benefits analysis (CBA)
was ill-defined and incomplete.

Accordingly, this chapter addresses the problem of how to accomplish a suitable
CBA for IDR applications, reviewing the available theories, standpoints, concepts
and indicators in literature. On the other hand, this chapter also aims to provide an
overview about the cost and benefit structures of the devices and processes involved
in IDR, considering standpoint (industrial customer, SO and aggregator), timelines
(short, medium or long terms), energy markets (wholesale, retail, balancing and
flexibility), pricing features and profitability indicators (Net Present Value, Capital
expenditure, savings, net revenues, etc.). This chapter is organized as follows. Section
13.1 describes the IDR development process, where, together with Life Cycle Cost
(LCC) approach, it defines the main costs associated with each development step. In
Section 13.2, IDR benefits are exposed, taking particular care in benefit sources, elec-
tricity tariff and energy markets. Profitability indicators involved in industrial demand
response projects are discussed in Section 13.3. Finally, case studies, conclusions and
final considerations are drawn in Sections 13.4 and 13.5, respectively.

13.1 Cost assessment of IDR

CBA is defined as the process of profitability assessment, which measures the net
cost and benefits of a project along its useful life, including the residual value of the
facilities and devices. CBA has multiplex components, among them the life cycle cost
(LCC) [11]. LCC concept is expected to be used in most CBA for industrial projects.
The LCC approach addresses not only operational cost, but also pre-feasibility study
expenses, flexibility potential assessment, design and installation of the IDR pro-
grams, as well as communication and control expenditures. Such costs are relevant,
given that the complexity of the industrial production process is greater. Accordingly,
this chapter applies the LCC approach in the CBA and therefore, in the development
cycle of the IDR programs.

Figure 13.1 shows the development cycle of the IDR programs, which are com-
posed of five steps [12], which will be remarked in the next subsections. Every step
encompasses a set of costs, which will be examined according to weight in the total
cost analysis of each one. The development cycle of the IDR programs is a closed
non-stop process, where a process of a continuous improvement process, at the end
of the cycle, identifies possible design modifications and changes of the operation
and management regime, resulting in an increasing efficiency each time.

13.1.1 Measurement of flexibility potential

Industrial demand response is linked strongly with the flexibility of electricity con-
sumption. Certainly, not all flexible devices can participate in demand response
programs, but they can be used as a bandwidth where demand response sets up its
actuations. Such bandwidth has two boundaries: baseline and expected line scenarios.
The flexibility potential is exactly the space between these borders. Both baseline and
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expected line scenarios are established through optimization process and modelling
to match the flexible capacity of the loads, processes and devices with operation and
management strategy [6,8].

13.1.1.1 Baseline
The main starting point for finding IDR potential is to consolidate a baseline scenario
[2,7]. The baseline scenario describes the energy flows through the production process,
as well as electricity consumption of cross-sectional technology (air-conditioned,
lighting, office equipment, among others) [13]. Furthermore, baseline also condenses
the existing cost, not only associated with the energy consumption, but also raw
material cost, payroll and administrative expenses, including a precise study on each
stakeholder interaction [7].

Estimating the baseline scenario implies a prioritization of all costs with respect
to their weight within the total cost [7]. On the one hand, average calculations about
historical records [7], daily consumption over recent years, monthly payments to the
suppliers among others factors are used by models, which seek to estimate a baseline
scenario where the flexibility potential of the IDR is reflected. On the other hand,
manufacturing execution system (MES) has emerged as a novel tool to control and
manage the manufacturing process, where energy management and manufacturing
process are still addressed separately. Surely, a unified platform will be raised in
the future [14]. Currently, designing and analysing the IDR programs can be accom-
plished by means of the energy management system (EMS) [12]. Baseline also is
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gauged through consumption patterns regards to normal and emergency situations,
future scenarios or related with a given pattern formed by quarter-hourly load curves
with lower standard deviations than a certain value [1]. Each estimation method aims
to be the most accurate and reduce the cost of measurement of flexibility potential of
the IDR at the same time.

All above estimation methods, based on EMS, MES, monitoring system or mod-
elling strategies, often entails a cost that can be high, which are not properly described
in the literature. Generally, these costs grow in relation to energy intensity level of
the industrial manufacturers, as well as the complexity of the production process,
the existing communication and control systems, IDR goals and flexibility services
[2,7].

13.1.1.2 Analysis of flexibility potential
Measurement of flexibility potential of the IDR programs consists not only of finding
minimum and maximum power and energy capacities but also bears within itself a
more specific analysis, which must be done considering certain variables.

Generally, measurement of flexibility potential can be seen as a process divided
into four stages or four categories depending on measurement scope. Such a process
starts with a theoretical potential related to a certain industrial sector. There are tech-
nical boundaries to control industrial loads and hence, the demand response execution
or any flexibility services [9]. For instance, for participating in ancillary markets is
required a minimum interruptible load (capacity power) able to shut down in a short
period of time [2], whereas for offering strategic reserve is needed to store energy dur-
ing a larger time than for balancing the frequency or voltage. The flexibility potential
must also incorporate the flexibility of the production process, the probable storage
capacity of the final and intermediate products [9], the flexibility of an operation
permeable regime, as well as energy generation strategy of the DG units [6].

CBA must be carried out to filter the flexibility potential according to the expected
profitability of possible DR actions. In this same way, DR actions should be accepted
by stakeholders, which limits the flexibility potential previously estimated [4]. The
stages and categories of the measurement of flexibility potential can be summarised
as follows.

● Theoretical: Flexibility potential refers to all manufacturing facilities, loads and
processes that could be an object of demand response.

● Technical: Subset theoretical potential, which is excluded from uncontrollable or
hard-controllable devices.

● Economic: Profitable potential resulting from the application of a CBA on the
technical potential.

● Practical: Usable potential composes of the interventions on loads and pro-
cesses accepted by stakeholders [4], as well as the restrictions involved in the
contact between utility and end-user, Quality of Services (QoS) and privacy
considerations and other boundaries.

Due to the above and as an overall rule, energy audit may be needed mainly for
small and medium industrial manufacturers, which are not aware of their flexibility
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potential and capacity [1]. Finally, computing capacity and specialized staff have
been required to obtain relevant results in the measurement of flexibility potential
[4]. Usually, these costs are dismissed because the technical concerns are the cen-
tre of attention in the literature, but it is clear that industrial companies will need
proper agencies (aggregator or specified company department) to design, execute
and manage an IDR program [15, 16].

13.1.2 Design and deployment

A challenging phase of the development process of the IDR programs is the design
and commissioning. The design reflects an expected scenario able to achieve the
IDR objectives. Several optimization algorithms are used to define a suitable design,
where multiple variables are included in both objective functions and configura-
tion constraints. The usage of optimization algorithms implies some costs associated
with the design. Therefore, demand response commissioning involves the required
investments to implement the final design, as well as the modifications of electrical
installations regarding with original electrical diagrams and also the expenses to adapt
the production process [17].

13.1.2.1 Design cost
Once the flexibility potential is known, the designing process aims to squeeze such
potential, putting forward an IDR program with flexible loads, devices and process
along with an operation scheme [17]. To do this, information on the energy market,
flexibility services, tariff structures, production costs, as well as available operation
and management strategies should be considered. These factors can strongly deter-
mine the kind and features of the IDR program design [2]. For instance, the melting
process of scrap steel allows only disruptions below half an hour due to its start-up
cost, as reducing the load can provoke the thermal equilibrium break-up of the melting
pots [2]. Such preparation and recuperation times after interruption should be also
considered, as they are usually very distinct for each production process [1]. Like-
wise, designing IDR programs must be coordinated with the maintenance cycles of
the machinery to make more efficient flexibility services [1]. In addition, designing
IDR programs involves also retail and spot electricity price forecasting, as well as
generation and consumption planning of the energy [8]. The energy cost calculation
(accordingly with electricity, gas, oil or any raw material price), as well as a bidding
strategy of the DG, when they participate in ancillary and balancing markets, are also
relevant aspects in the designing process.

Finally, several amounts of flexibility can subtract from the manufacturing pro-
cess. Changing the lineal or hierarchical processes for independent or interdependence
ones allow increase the flexibility of the industrial manufacturer [2]. Within the
designing process, some adjustment measures of the manufacturing processes can
be found. In the same direction, communication and control systems must be selected
accordingly with the features and capacities needed to guarantee suitable and feasible
operation. This will be discussed in Section 13.1.4.
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Given the amount of information and complexity of the design calculations,
advanced software and specialized algorithms could be needed to obtain a proper
IDR program. Therefore, computational capacity and performance must be consid-
ered for both storing pertinent information and resolving large number of scenarios.
Consequently, specific staff (workforce) may also be required to manage all flex-
ible facilities and analyse the results of the adopted strategies, as well as propose
improvement actions.

13.1.2.2 Capital cost
All investments incurred on equipment, infrastructure and others one-time expenses to
bring an IDR project to operable status can be seen as capital costs [5]. In the literature,
design and pre-feasibility costs use to be included as capital expenditures, but they
are shown separately in this chapter with the aim to identify some neglected costs of
each development cycle of the IDR program. Capital cost involves expenses from the
design stage ends to the IDR project begins the operation, including commissioning
and start-up costs.

The existing control and communication system (CCS) [2] weigh heavily within
required investments [2], given that small and medium industrial customers must
invest in CCS for cross-sectional technologies and adapt the CCS of the existing
manufacturing process technologies [9,13]. Conversely, large manufacturers have
already installed CCS throughout the production process and cross-sectorial tech-
nologies, therefore, investments will be focused on optimal production scheduling
and storage capacity [5]. With respect to the production process refitting, invest-
ments to integrate parallel machines at the manufacturing process [15], reduce the
interdependence between production stages and create storage capacity in intermedi-
ate processes, i.e. raw materials, non-finished and final products [5], are commonly
found in the literature.

All above investments are modelled depending on the financing method, which
could be either debt, equity or a mixed between them, in where it is common to observe
different interest rates. Each interest rate must be contemplated in CBA, together with
future expenses for replacing assets at the end of their useful life. Capital cost is related
to the hurdle rate of the company, in other words, the minimum rate of return must
be achieved to be profitable, and therefore, calculating capital cost is a relevant task
for the financial managers [18]. The relation (13.1)–(13.3) defines the cost of debt
(Cc−d), equity (Cc−e) and total capital cost:

Cc−d =
N∑

n=1

I d
n ∗ Kd

n (13.1)

Cc−e =
N∑

m=1

I e
m ∗ Ke

m (13.2)

CcT = 1

(Cc−d + Cc−e)
∗ (Cc−d + Cc−e) ∗ 100 (13.3)
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where I d
n represents the interest rate and Kd

n the debts for each company’s debt (n).
Likewise, I e

m is the dividend rate and Ke
m the debts for each company’s investor (m).

Normally, the existing smallest dividend rate is used in investment without risk, as
well as a return for bearing extra risk. Such rate is common for whole investors
depending on their shareholding structure [18]. Finally, there is a set of costs, which
must be counted to increase the accuracy of the CBA. All acceptance testing such as
user, factory or operational acceptance testing are usually included in commissioning
cost, as well as, expenses incurred in cases where electrical connections have not been
faithfully done with respect to electrical diagrams, issues that cannot be envisaged
previously [19]. Thus, besides of commissioning time in normal conditions, extra
time could be contemplated for Information and Telecommunications (IT) failure,
time zone adjustments, software incompatibilities, organization problems, among
others [19].

13.1.2.3 Opportunity cost
Within economic metrics, opportunity cost is commonly used to take decisions in
situations with multiple solutions, as well as supporting in the design stage of the
IDR program. Basically, opportunity cost measures the total potential missed due to
choosing one alternative over another [5]. Therefore, opportunity cost can be a guide
to define the minimum and maximum tariff of a certain service and consequently
if these could be commercially exploitable [9]. For instance, when energy surplus
appears, an opportunity cost analysis is carried out to decide whether such energy
is employed for self-consumption or balancing services to the grid. In other words,
the possible savings and profits generated by self-consumption are the minimum
expected revenue levels by balancing services, therefore, in this case, opportunity
cost influences in minimum tariff of the balancing services. This approach can be put
in practice in different case studies, becoming a useful analysis tool. The following
formula depicts the opportunity cost:

OC = FO − CO (13.4)

When opportunity cost (OC) corresponds with the difference between the return
of the best foregone option (FO) and return of chosen option (CO). Authors have
underlined the relevance of opportunity cost in demand response programs regards
reserve management, as such reserve capacity cannot take part in other markets,
therefore, the reserve price is mainly driven by OC. Opportunity cost goes together
with risk analysis, which should be comparable to allow pinpoint conclusions [8].
Investors and decision makers always aim to keep the opportunity cost at its lowest
levels and controlled.

13.1.3 Operation and management

The next stage in the IDR Program development is the operation and management
(O&M), which possesses costs that could affect ostensibly the CBAs. From mea-
surement of the flexibility potential and design stage, several operation strategies are
raised with the aim to maximize profits or minimize total cost. Such operation mode,
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not only corresponds with the IDR program, but also with changes in the production
schedule. Hence, this section describes the O&M cost of the IDR program, as well
as the assumable cost due to the impacts on the production process.

13.1.3.1 Direct and indirect cost
The costs generated by operation and maintenance of the IDR program can be, directly
or indirectly, related to either its functioning or the collateral impacts on the produc-
tion process. Such costs are classified into direct and indirect [1,10]. Direct costs
relate to the technical capacity required to carry out the demand response program
without considering demand response actions. Whereas, indirect cost is linked with
the expenses incurred during demand response is executed. Indirect cost is considered
more complex than direct cost, and in consequence, suitable penalties are employed
to model them. Table 13.1 lists the direct and indirect costs commonly used in CBA
of the Industrial Demand Response programs.

Each cost is defined as follows:

● Lost and delayed revenues in the production process: Modifications on the Pro-
duction process caused by regulation services (down or up) could provoke possible
defaults in the clients’ orders, given that these can limit production and logis-
tics schedules, reduce production flexibility, loss of productivity or increase the
intrinsic risk of the value chain.

● Increased workforce: Increasing stop and start-up frequency of the machinery
could require greater workforce, not only in quantity, but also qualified personnel
able to take technical decisions or analyse information about performance of the
system. Likewise, the control and monitoring levels could be augmented, creating
the need for further staff or investments in automation systems.

● Increased power consumption: Machinery as electric motors have energy con-
sumption peak within the star-up and pre-heating periods, therefore, demand
response actuations could increase this energy requirement. For other hand, a
greater backup power system could be needed to guarantee security and reliability
in the preparation and recovery period before and after interruption, respectively.

● Wear and tear costs: Each asset and device, both value chain and cross-sectional
technologies, have maintenance periods according with theoretical nominal per-
formance. Such normal performance can be modified by IDR actions, either

Table 13.1 Direct and indirect cost of O&M stage of IDR

Direct c Indirect cost

Lost and delayed revenues [7] Wear and tear cost
Increased power consumption Ramp-up delay cost [7]
Shut down and Start-up cost [8] Increased workforce cost [7]
Increasing maintenance cost [7]

Source: Own preparation.
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frequency and intensity of the work pace. It exits a threshold where changes in
performance can either extend or damage the useful life of equipment depending
on the frequency of interruptions [1].

● Ramp-up delay cost: After regulation, machinery should restore nominal perfor-
mance within of recovery period time. Such time could be elongated due to, for
example, raw material deficit or coordination failures, given that the start-ups are
unreliable and susceptible to the contingencies.

● Shut down and start-up cost: Costs involved in turn machinery on and off when the
demand response program is executed. Such costs exclude the ramp-up expenses
which are linked to operational constrains.

● Increasing maintenance cost: Industrial plants with demand response programs
must consider an increasing maintenance cost due to the increase in the number
of interruptions and regulation activations, as well as changes in the duration of
interruptions, not only in controlled assets but also in external devices to the IDR
program.

13.1.3.2 Energy purchasing
In the CBA framework, energy purchases are categorized as a cost for executing both
demand response actions and flexibility services [7,9]. Energy purchases include
electricity, gas, heat, and among other energy sources. Undoubtedly, energy interac-
tions will augment in the next years, in both quantity and number of stakeholders,
as well as markets and tariffs [9,10]. The industrial manufacturers can participate in
balancing and flexibility markets as individuals, as well as a conglomerate through an
aggregator. Particularly, for aggregation mode, the aggregator role is relevant due to
its knowledge and expertise in the energy sector, as well as its capacity of managing,
coordinating and monitoring end-user’s flexibility.

There are flexible services such as energy trading and price arbitrage, where in
industrial manufacturers not only react to the wholesale price passively but also act
to purchase or sell energy, generating additional benefits. This activity can be carried
out also with an aggregation model through a marketer entity. Currently, activities
such as price arbitrage are studied by research works although they are not allowed
in most EU-members.

13.1.3.3 Penalties
Industrial consumers, involved in the IDR program, could be penalized because of
non-compliance with certain demand response commitments such as reaction times,
power reduction, or amount of load shift [20]. Such penalties are included as costs
in CBA, together with sanctions for reactive power, harmonic injection, among other
factors attributed to the manufacturers that affect the Quality of Service (QoS). Addi-
tionally, as mentioned before, indirect costs are modelled as penalties for CBA, given
that these costs are not easily measurable [8].

Likewise, penalty cost is generally neglected, but they are needed to guarantee
the consistency of the models and comparison of the results. Finally, within the
optimization process, penalties have also been used to set up unpleasant decisions or
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performances such as abrupt changes of the steam pressure or mechanical mass, which
are not relevant in the model but can be considered inefficient or undesirable [21].

13.1.4 Communication and control

The IDR program’s success is going ever hand-to-hand with a proper level of com-
munication, control, and automation [4]. Demand response and flexibility services
require the compliance of technical conditions. Minimum continuous energy deliv-
ery time and minimum response time are examples of these requirements, which
can be guaranteed by the communication and control system (CCS) [2]. CCS is also
needed for observing and monitoring the responsive load performance to assure the
production process [9]. Likewise, participating in balancing markets requires commu-
nication among SO and consumers to offer energy bids and receive the corresponding
acceptance, as well as the later billing process.

Regarding cost of CCS, investment in control, communication, and monitor-
ing infrastructures must be done, as was aforementioned in Section 13.1.2.2. To
active demand response actions, information, transaction, and control costs should
be incurred in order to gather, consolidate and process the information of the IDR
program operation. Such costs are mostly in terms of computing burden and qualified
personnel [5]. The computational burden is an additional issue in both the design and
operation stages of the demand response programs. Discrete-time models cannot rep-
resent adequately events without slots of width, which could impact, for instance, the
makespan minimization results. Conversely, the usage of the continuous-time mod-
els could delay tasks without enough gain of accuracy in other estimations, such as
cost minimization [22]. Therefore, there is a trade-off between accurate model and
computational burden, which should be adequately managed, taking into account the
loss of accuracy, delays, costs of data collection, transaction, and control.

Finally, the IDR program is tended towards a completely automated operation,
namely Auto-IDR [23], which uses signals between SO and consumer’s equipment
to arrange energy exchanges, tariffs and delivery time without any manual labour.
Likewise, standards such as Open ADR [23], Green Button or SEP are being used to
unify the communication protocols and allow major interoperability grades between
diverse types of devices and systems [2].

13.1.5 Feedback system

Given that IDR programs are composed of continuous actions during long period
times, implementing a feedback system could be the convenience to evaluate the
performance in short terms in order to correct possible deviations, as well as proposing
improvement measures to increase the DR program efficiency [12]. Besides, with the
help of Internet of Things and database technologies, a feedback system safeguards
valuable information related to the energy performance and profitability of the DR
programs, which will be available for the whole stakeholders (end-users, aggregators
or SO) to refine operation schemes, production scheduling, and energy uses.

Additionally, a feedback system could realize interventions on IDR actuations
in order to react to unexpected events immediately. Within Auto-IDR programs, the
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feedback system allows to automate various interactions among SO, aggregators and
end-users, where excessive controls and authorizations can be avoided. The main
characteristics of a feedback system can be as follows:

● Assessment frequency (critical days, typical days, weeks or years).
● Input and output modules.
● Communication protocols.

Overall, expenditure in the feedback systems is included either in EMS invest-
ments or in CCS, since the feedback systems are commonly shown as a part of these
systems. This chapter was independently depicted to highlight its role in the CBA.The
costs incurred in the feedback system can be seen in the same terms of the CCS costs,
depending on IDR complexity, existing communication and control infrastructure,
and CBA assessment period.

13.2 IDR benefits

The rollout of the IDR program seeks essentially to obtain benefits for both industrial
consumers, aggregators, system operators and the whole power system. Energy bill
savings, revenues, productivity increase and efficiency improvements are the most
common benefits in the literature [2]. There are additional benefits such as reduction
in greenhouse gas emissions (GHG) or the increase of RES penetration level that
require a study more deepen to account properly for its positive impacts. On the other
hand, benefits such as the reduction in wholesale price electricity cost or positive
effects regarding the national economy are partial or completely neglected due to a
lack of suitable measurement methods. Considering the time frame to profitability
(short, medium and long terms) and CBA standpoints, the demand response benefits
are defined and discussed in this section. Some mathematical expressions are included
in order to guide the numerical calculations.

13.2.1 Regulation services

To guarantee safe and reliable power system operation, system operators employ reg-
ulation services, which aim to reduce the unbalance among generation and demand
electricity, as well as handle both expected and unexpected situations. Such regulation
services are mostly supplied by conventional generators, together with local devices
such as on-load tap-changer of the transformer and demand-side response [6]. In
the past, some large industrial consumers provided regulation services when certain
contingencies in the network could affect the continuity of the electricity services.
With the evolving of the control and communication technologies and the expansion
of the DERs and ESS, all high energy intensity plants with DR programs can partic-
ipate in the ancillary energy markets, providing not only regulation services but also
others balancing services to the grid. For that reason, the provision of regulation and
balancing services have become a new revenues source for industrial manufacturers.
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To measure the profits for regulation services, industrial consumers with IDR
programs must consider the tariff models and remuneration schemes in each balanc-
ing market. As known, the price of the regulation service is based on the marginal
cost of the conventional generation units in spite of the cost of industrial consumers
and conventional generators are very diverging. For instance, the cost of regulation
supplied by the pulp industry with CHP is composed of 58% by additional start-up
costs, 33% by intra-day energy purchases and 9% by increased fuel costs [8]. Addi-
tionally, the cost of regulation raises in relation to the activation time, reaction time
and number of actuations [8]. For the sake of simplicity, case studies use the existing
prices to estimate the profits for regulation services, which could underestimate or
overestimate the profitability. Besides, the acceptance mechanism of the regulation
bids must also be represented, some factors are used in CBA calculations [15].

In addition, bidding strategy can also affect the profits for regulation services.
Such strategies are based on either current regulation service price or cost analysis,
both providing a minimum viable price regulation. For instance, a strongly dependent
relation between the cost of regulation and spot price on the bid size can be found,
even could estimate that regulation price should be over three times the spot price to
compensate the cost for supplying regulation services [8].

13.2.2 Reserves

Reserves play a relevant role in the electrical power grids. They are designed both by
replacing the consumed secondary (or tertiary) regulation and facing contingencies
as when the largest generator in the system is tripped [1]. Reserve pricing is linked
to numerous factors, which are discussed in the next subsections. In the context of
industrial demand response (IDR), contingency and replacement reserves have been
studied, given their capacity and time response. Both regulation and reserve services
supplied by the IDR program are generally suitable for many industries [6].

13.2.2.1 Contingency reserve
Contingency reserve (known as spinning and no-spinning reserve) is currently a part
of the capacity of generation aimed to deliver energy as a response to contingency
events, which could be needed in a small period of time and remain for minutes
or hours. Part of these reserves is synchronised with the electrical power grid. In
Germany, contingency reserve is managed through an ordinance on interruptible
load agreements (AbLaV∗), which is a market structure for interruptible loads [9].
Each provider must submit offers with minimum and maximum capacity, as well as
minimum and maximum duration of switch-off. Profit calculations are described in
the relation (13.5):

Pcr =
N∑

t=1

T t
cr−up ∗ Et

cr−up +
N∑

t=1

T t
cr−down ∗ Et

cr−down (13.5)

∗Verordnung zu abschaltbaren Lasten – AbLaV.
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where T t
cr−up and Et

cr−up are contingency reserve price and energy delivered for up-
regulation, respectively. N is analysed period time and t minimum time unit (e.g.
hours, weeks, months or years). In respect of down-regulation, profits are assumed as
savings of the energy commitment, mainly in terms of operational cost since down-
regulation price (T t

cr−down) is zero for certain countries, independently of the quantity
of energy (Et

cr−down).

13.2.2.2 Replacement reserve
During scheduled shutdowns or contingencies with tolerance range in terms of reac-
tion speed, replacement reserve can be employed for smoothing the negative impacts
of these events. Besides, such reserve is useful to replace other reserves, preserv-
ing the security and reliability of the operation for long periods. Unlike contingency
reserve, replacement reserve providers are not forced to a certain reaction speed but
must be available and be able to supply the reserve for long periods (e.g. hours). As
stated before, reserves are capacities, which must not be used in other services, there-
fore, prices are established according to the auction process and the opportunity cost
of the market participants. For instance, in the Spanish market, replacement reserve
is settled within of balancing auctions in the Intraday market, which use tariff every
quarter-hour both for up-regulation and down-regulation, as can be seen in relation
(13.6) [16]:

Prr =
N∑

t=1

T t
rr−up ∗ Et

rr−up +
N∑

t=1

T t
rr−down ∗ Et

rr−down (13.6)

where T t
rr−up and T t

rr−down are replacement reserve prices for up- and down-regulation
actions. Meanwhile, Et

rr−up and Et
rr−down corresponds with energy delivered for up-

and down-regulation, respectively. N is a certain analysed period time and t minimum
time unit (e.g. hours, weeks, months or years).

13.2.3 Self-consumption

Joint with energy efficiency measures, demand response has proved to be able
to obtain savings in the production plant’s electricity bill due to smart manage
their consumption [2]. Currently, IDR not only produces electricity bill savings
but also reductions in diverse expenses such as raw materials purchases, improved
gas and vapour consumption, among other positive impacts caused by a smart self-
consumption. Basically, revenues from self-consumption are estimated based on case
reference (baseline), which are previously defined in the design stage and measure-
ment of flexibility potential. Savings for smart self-consumption reached by the IDR
program are gauged both in terms of saved energy (e.g. MWh) or saved money as
shown in relation (13.7) [7]:

Pself =
S∑

t=1

Tt ∗ (Esb
t − EsIDR

t ) (13.7)
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Considering that Tt means the price of each energy resources (S) (electricity, gas,
heat, vapour, and etc.). Esb

t and EsIDR
t correspond with energy or resources demand

for baseline scenario and IDR application scenario, respectively.

13.2.4 Changes in energy purchasing and flexibility trade

Benefits from the IDR program are also present in the energy exchanges cost between
whole stakeholders. This section will deal with possible benefits from changes in
energy purchasing and the provision of flexibility services.

13.2.4.1 Changes in energy purchasing
At the baseline scenario, energy purchases are measured and classified. IDR pro-
grams modify this baseline scenario to respond to flexibility requirements or market
signals. These changes in energy purchases generate benefits in multiple ways. Ini-
tially, industrial manufacturers could acquire electricity at low prices and hourly bands
where security and reliability are high. On the other hand, energy purchases are diver-
sified towards various energy sources, improving further the reliability of the energy
supply. Finally, better agreement conditions between utility and industrial customers
can be expected, obtaining advantageous tariff or extra services due to the reduction
of the contracted load and demand peak.

13.2.4.2 Flexibility trade
As is predicted, flexibility trade will be a plenty developed in the next years, due to
its relevant role in the increase of the RES penetration level and electric vehicle (EV)
inclusion, as well as because the number of flexible stakeholders in the grid are aug-
menting continuously [13]. Basically, flexibility trade involves the sales and purchases
of flexibility services offered by flexible end-users, aggregators or energy capacity
owners (i.e. EV, distributed generators (DGs) or energy storage system (ESS)) on the
one hand, and acquired by system operators, utilities, balancing party responsible
(BRP), marketers or even interconnectors or foreign generators. Existing energy mar-
kets could incorporate the flexibility trade, but given its complexity, some flexibility
markets have been discussed in the literature (local energy markets, capacity market,
ramping product market, among others). Each flexibility market possesses a set of
prices for each flexibility service, which are based on aspects such as the marginal
cost, return rate, tariff policy, subsidies and penalties, among others.

For industrial consumers, the role of the aggregator is relevant, which allows
the participation in the flexibility markets of the small and medium manufacturers, as
well as others stakeholders (EV or ESS) without the minimum power capacity to enter
the market. An overall model of a flexibility market is displayed in Figure 13.2. As
shown, small and medium-sized enterprises, EV fleet and small and medium smart
buildings facilities owners use aggregators to take part in the flexibility markets [24,
25]. Aggregators manage the end-user’s flexibility to offer it into flexible markets
through a bidding strategy. Prices, duration and location should be accorded, not only
with the end-users but also with flexibility consumers [2, 26]. Bid acceptances Tbid−ac,
Tbid−ag−ac are transmitted from flexibility market to flexibility providers, activating
the demand response actions.
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Figure 13.2 Flexibility market and bidding process. Own preparation.

According to the overall above scheme, the profits produced by flexibility trade
represents the difference between the prices that flexible consumer are willing to pay
and the prices that ensure a reasonable reward by providing flexibility services. Prices
and tariffs into flexibility markets have been only contemplated theoretically and can
be fused depending on the market development and regulatory framework.

13.2.5 Transmission and distribution network support

Transmission system operator (TSO) and distribution system operator (DSO) receive
benefits from IDR programs, which could be useful to reduce technical losses [6],
relieve congested lines and defer reinforcement investments. These benefits have been
neglected in most case studies in the literature, due to the vast and complex required
information from utility to calculate possible rewards. Besides, privacy issues have
not been tackled yet for transferring sensible information adequately.

Investment deferral and congestion management, which have received more
attention recently, are discussed in the next subsections. There are other benefits
such as loss reduction and positive effects on competitiveness, which could mention
but deeper studies are required.
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13.2.5.1 Investment deferral
Commonly, system operators (SO) control the network expansion through grid plan-
ning with investment schedules, which pretend to assure a reliable, efficient and
economic operation for next year’s [27]. Such investments encompass reinforcement
electrical lines to upgrade assets such as substations, transformers, moreover the
pipe enlargement or electrical infrastructure upgrades. In addition, it not only should
consider the capital cost but also the whole cost associated with the expansion and
upgrades, such as pre-feasibility studies, design and commission cost, fixed and vari-
able costs, etcetera. All above costs and investments can be deferred and avoided by
IDR programs, generating positive impacts within a finite planning horizon.

Benefits from investment deferral are related to the minimization of the net
present value of the cost of expansions and upgrades. In relation (13.8), avoided
costs are calculated as the difference between the net present value of the expansion
plan investments and the value when the investments have been deferral for the same
planning horizon. Such horizon must match with the IDR program useful life [27].

Mathematically, benefits can be formulated as follows:

Pid =
N∑

n=1

(
T∑

t=1

Ct,n

(1 + d)t
−

N∑

t=1

Ct,n ∗ (1 + i)δ

(1 + d)t+δ

)
(13.8)

where Cbl
t,i and CIDR

t,i are the investments for each expansion and upgrade required (N ),
d is the discount rate, T is the assessment period and δ is the deferral length. It is
worth mentioning that the above relation corresponds to the radial structure of the
network [27].

13.2.5.2 Congestion management
Currently, congestion in transmission and distribution lines is becoming a more and
more important problem for system operators [28]. Increasing demand and penetration
of renewable energy sources are boosting changes in the electrical infrastructure. Said
that, TSO and DSO attempt to maximize the usage of the network without harming
the Quality of Service (QoS) [28]. Congestion management seeks suitable energy
flows that represent the minimum costs possible. However, there are nodes with low
influence on the distribution and transmission network total load, therefore such nodes
and customers connected there cannot be selected for successful IDR programs. DSO
and TSO are in charge of selecting proper nodes for congestion management, given
that they possess enough technical information. The chosen nodes and their load both
before (docm) and after (dcm) of the IDR programs are employed in relation (13.9) to
measure the benefits of congestion management service [29]:

Pcm = Tinc−cm ∗ (docm − dcm)− Pecm ∗ (LRcm − docm + dcm) (13.9)

being Tinc−cm the tariffs or incentives for each unit load reduction, Pecm the penalty
for disregarding the minimum required load and LRcm is the load reduction requested
by DSO or TSO.
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13.2.6 Other benefits

IDR programs, not only have positive impacts on consumers, utilities and system
operators, but also on social welfare and the environment [6]. Such benefits have
been mentioned in multiple cost–benefits analyses, with the desire of quantifying
and in consequence, remunerating adequately these impacts. Besides, CBA could be
evaluated more accurately whether all benefits and costs are examined.

13.2.6.1 Greenhouse gases emission savings
Reducing pollution emissions is already a global challenge due to climate change
evidence of the last years, therefore, multiple policies have been raised around ener-
getic efficiency, renewable energy sources, demand response, electrification of the
transportation sector, among others. Industrial Demand Respond has positive effects
on the carbon footprint of existing manufacturing processes, besides replacing the
existing energy generation with other lower polluting emissions energy sources [10].
IDR programs can reduce the emissions of the conventional generators (top-down
approach), as well as of the industrial factories (bottom-up approach).

According to the above approaches, benefits could be gauged using two methods.
First, a count of the emissions (REtop

IDR) produced by involved power plants (N) through
pollution coefficients (bp and cp) is done and expressed mathematically in the relation
13.10. Such savings are in terms of power output both before (Pg,n) and after (PIDR

g,n )
of IDR program application:

REtop
IDR =

N∑

n=1

bp ∗ (Pg,n − PIDR
g,n

)+ cp ∗
{(

Pg,n

)2 − (
PIDR

g,n

)2
}

(13.10)

In regards to the second method, industrial factories must estimate the total
emissions of their production activities by hourly (preferably), considering that there
is an existing lineal relation between electricity consumption and production rate,
besides, any excess product will be stored without relevant costs. Both baseline and
IDR scenario, the second method can be realised as follows:

REbot
IDR =

T∑

n=1

(
Ep,t ∗ Prate,t − EIDR

p,t ∗ PIDR
rate,t

)
(13.11)

where Ep,t and EIDR
p,t are the total emissions before and after the IDR execution. Like-

wise, Prate,t and PIDR
rate,t are the production rates before and after of the IDR program.

For simplifying calculations, hourly CO2 factors of the electricity generation mix are
used to measure equivalent emissions, considering the factory location [1]. Besides,
the evaluation period (T) should involve from the preparation stage to the recuper-
ation period of the actions scheduled by IDR programs [1]. Finally, these emission
reductions must be adequately converted to CO2 equivalent emissions and later in
terms of savings with the help of the carbon emission price.
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13.2.6.2 RES penetration level
Undoubtedly, the reduction of Greenhouse Gasses (GHG) emissions is related to the
Renewable Energy Resources (RES) expansion. The increase of the RES Penetra-
tion level is prompted with a set of policies and programs, where industrial demand
response can be found [2,6]. Augmenting the RES penetration level is a relevant and
challenging task at a time [1,4]. Shifting loads of the IDR programs could allow
the matching between renewable energy generation and certain electricity usage. For
instance, wind farm produces a high amount of energy at night, precisely when most
EVs are charging [27]. Moving a significant amount of demand towards hours of the
day where PV generation has an output power peak could also bolster the investment
on RES [1]. Given that, increasing the RES penetration level could not be significantly
caused by a unique factory, necessarily it should be tackled from an aggregation point
of view.

According to the above and due to the positive effects of both electrical net-
works and consumer installations, two different approaches to gauge the impacts
of a high-RES penetration level due to IDR programs can be discussed. First, as
mentioned before, IDR programs prompt the new renewable generation units and
maximize the use of existing units. Usage rate and efficiency indicator of RES are
used as an indicator of profits. On the other side, consumers can be motivated to
apply techniques of demand-side management [30] and adjust adequately the demand
curve with the generation behaviour. The installation of new energy renewable facil-
ities during the IDR Program execution could indicate a certain avoided cost that
had been invested in environmental policies to obtain the same RES penetration
level.

13.2.6.3 Positive effects in national economy
Finally, IDR programs have also positive effects on the national economy. As men-
tioned before, the IDR program allows to increase RES penetration level and reduce
the GHG emissions. Given that renewable generation units work at a lower Lev-
elized Cost of Energy (LCOE), the higher amount of renewable energy, the lower
the whole electricity price (Spot price). Additionally, RES receives subsidies or
reduced taxes, which are not related to the power effective usage, therefore, IDR
programs could increase their utilization and hence their efficiency [6]. Likewise,
the power network stability and security will be improved due to the generation
diversification

13.2.6.4 Machinery useful life
As known, the IDR program implies wear and tear costs in the machinery due to
changes in the nominal operation. It has proved that IDR programs could be also
beneficial to the machinery’s useful life [1], only if interruption frequency is lower
than nominal frequency or if power during IDR execution is lower than nominal power
but higher than inefficiency operation of the performance curve. Such an operational
regime could extend maintenance cycles, as well as the useful life of refrigeration,
lubrication and filtration devices.
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13.3 Feasibility assessment

To fill out CBA, it is necessary to define profitability indicators that allow com-
paring diverse economic and transversal information about projects. Such indexes
help to deduce whether an IDR program action and thereby the whole IDR program
are profitable or conversely requires a financial stimulus. In this section, indicators
most commonly used are defined mathematically. Besides, a review of the relevant
information they provide is carried out.

13.3.1 Indicators

Whenever a profitability analysis is carried out, several indicators should consider,
mainly so that good decisions can be taken regard to investments or energy policies.
Basically, such indexes involve valuable information, which depends on the way they
are calculated and presented. First, the selected indicators are usually related to the
flexibility objectives such as savings in electricity bill and energy cost, as well as the
minimization of the environmental impacts, among others.

Leaving aside the above, there are specific economic indicators (e.g. net present
value, capital and operational expenditures, among others) that can reflect the good
health of a given investment. Frequently, these indexes are shown either in terms
relative with respect to baseline case or in terms of absolutes. In the end, it should be
remembered that each indicator must be related to a flexible source and the services
it can provide. In this section, will be shown a review of the indicators that are more
applied in the literature.

13.3.1.1 Net present value
Net present value (NPV) is an economic decision metric used to compare invest-
ments in projects with different revenues and costs streams within their lifetime [1,4].
According to relation (13.12), the difference between total revenues and cost is related
to discount rate, which is chosen by investors or holders as a minimum profitable rate
of return. Positive and negative values of NPV indicate the profitability level of cer-
tain projects. Broadly, investors prefer projects with the highest NPV, as well as with
other economic indexes. NPV is defined mathematically as follows:

NPV =
T∑

t=1

Ct

(1 + r)t
− Co (13.12)

Being Ct and Co are the net cash inflow during the period t and initial investment
costs, respectively. Also, r is the discount rate (%) and T is the total time periods.

13.3.1.2 Payback period and internal rate of return
Continuing with project decision indexes, payback period (PP) and internal rate of
return (IRR) are indicators of the length of time required to recoup original investment
and financial equilibrium point in a given project [1,7]. The payback period becomes
relevant as it shows the information on the liquidity of the project and management
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of possible risks in projects with high uncertainty. Meanwhile, IRR shows the point
in which the project generates revenues for the holders or investors. In the following
relations, PP and IRR are described mathematically:

NPVc =
T∑

t=1

Cct

(1 + rc)t
− Co (13.13)

NPVb =
T∑

t=1

Cbt

(1 + rb)t
− Co (13.14)

PP = Nul ∗ NPVc

NPVb
∗ 100 (13.15)

As defined above, the payback period is calculated based on net present value
both cost (NPVc) and benefits (NPVb), where Cct and rc are the net cash inflow
and discount rate for costs, respectively. For the benefits side, Cbt and rb are the
net cash inflow and discount rate for benefits. Besides, Nul is the IDR program
useful life and T is the total time period. On the other side, IRR corresponds to
the discount rate when the payback period is achieved. Both discount rates could
be streamlined at the same rate or remain as independent rates, depending on IDR
program complexity.

The application of PP and IRR in profitability analysis has drawbacks. The
lack of the salvage (residual) value could diminish the effectiveness of the results.
Besides, inaccuracies could be presented in an IDR program where continuous invest-
ments are done, as well as diversified lifespans of numerous assets. Equally, IRR is
unappropriated for mutually exclusive projects.

13.3.1.3 Savings
Benefits expressed in savings are commonly employed by IDR projects [2,10]. Sav-
ings with respect to a baseline scenario in which the costs were previously estimated
[7]. For example, IDR programs reach savings in the electricity bill for industrial
end-users. Such savings are calculated in percentage terms per year, hour or during
all IDR program lifespans. The relation (13.16) proposes an efficiency parameter (η)
for electricity cost, which is defined as follows:

η = Co
b − Cr

b

Co
b

∗ 100 (13.16)

where Co
b and Cr

b are the original electricity cost and rescheduled electricity cost due
to IDR program application, respectively. Besides, savings are also found in cost
reductions such as gas and heat consumption, raw material losses, etc. Generally,
these savings are expressed in the reduction of cost in both sub-process and total cost
of the plant. Similarly, power peak reduction rate can be mentioned as an indicator
to analyse the profitability, as well the influence of the tariff on savings [10]. Finally,
savings can be located during preparation, execution and recuperative stages of load
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interruptions, given that the average consumption of IDR action is lower than the
original average demand [1].

13.3.1.4 Profits
Many CBA, not only for IDR programs but also for diverse types of flexibility applica-
tions, use the net profits as a profitability indicator, which are usually the difference
between revenues and cost of the project during a time horizon [5,24]. The profit
indicator is a simple view of how many revenues are obtained of certain flexibility
services, as well as of a set of services seen as a unique assemblage. For instance, an
optimization algorithm for maximizing the profits of providing operation services in
electric power systems is developed [5]. In the case study, profits are shown as the final
count of the whole revenues generated by providing reserves, capacity and energy
delivery and net profit for electricity consumption reduction. Conversely, profits are
also used to quantify revenues via optimal production scheduling [15]. Considering
the aforementioned, profits become a flexible indicator but at the same time generic
and trivial.

Profits per year or per power are also applied in other case studies, which could
be insufficient to define the IDR program profitability. This approach generally is
related to benefits for main stakeholders, aggregators or industrial customers, given
that the investor role and its benefits are put at the second level. Finally, not only the
profit index but also the remainder profitability indicators are employed for iden-
tifying the profitability of adjusts in both energy markets, pricing and energetic
policies.

13.4 Case studies

In the literature, there are hundreds of case studies about multiple industry sectors,
each of them with particularities in both size and technologies, as well as services,
production processes, among others. In addition, each of the energy markets, as well
as pricing schemes and subsidies and penalties, creates a wide diversity of technical
situations, therefore, finding common patterns is a complex task. For this reason, this
section shows case studies where interesting results were obtained. Such case studies
made important findings on the IDR program’s performance.

13.4.1 Chlor-alkali production industry

A medium chlor-alkali production industry is taken as a case study to analyse the
effects of various types of markets and tariffs at Nordic electrical networks [9]. An
intermediary storage capacity is modelled to increase the flexibility potential and
provision. In addition, the effects of excess capacity on feasibility were studied both
numerical models and flexibility metrics. The Chlor-alkali production factory par-
ticipates in reserve markets through primary reserve and reserve via interruptible
loads.
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Figure 13.3 Spot price influence on CBA medium chlor-alkali production industry
at Nordic electric system

The feasibility study concluded that when the spot price is low enough and the
industry has small excess capacity, the most suitable reserve is generated by inter-
ruptible loads (FIL). Alternatively, when a factory possesses the medium or high
excess capacity and the electricity price is low, the feasible flexibility is caused by
IDR program (FIDR). In the same sense but increasing the electricity price, the
higher the electricity price, the higher the primary reserve (in comparison with IDR
and interruptible loads reserve). Finally, in a scenario with high prices and excess
capacity, only primary reserve (FP) will produce the biggest profits and advantages
[9]. The above conclusions can be seen in Figure 13.3.

13.4.2 Paper industry in Germany

A paper industry in Germany is considered as a case study [1]. The paper plant has three
main demand response actions within the DR program, which was found in an initial
flexibility audit. Each demand response action implies a set of costs and benefits,
which are defined as both minimum revenues received by the industrial customer’s due
to the DR program and the minimum payment offered by TSO/DSO. For simplifying,
the historical reserve price was used to reward the industrial participants in demand
response actions [9]. Finally, the production is affected by two maintenance periods
with monthly and semi-annual frequency, respectively. As a result of the optimization
tool, an initial investment was estimated at 130 ka and an extra pulp storage tank
was installed to guarantee the duration of interruptions. Table 13.2 shows economic
evaluation results:

As seen in Table 13.2, the ‘stock preparation’ demand response action was the
most profitable, since it has the highest NPV and IRR, with a payback period of 2
years and 2 months. Likewise, this demand response action counted 397 tons CO2

avoided.
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Table 13.2 CBA results for paper industry in Germany

Demand response action Npv (a) IRR (%) DPP (years)

Discount Discount Discount
rate (5%) rate (10%) rate (15%)

Stock Preparation 64,307 47,822 33,602 30.6% 2.2
Winder 272 75 –95 12.1% 3
Storage –1,978 –1 989 –1,982 –83.2% >5

Source: Own preparation.

13.5 Conclusions and final considerations

As seen in this chapter, a cost–benefits analysis (CBA) is needed to measure IDR
profitability. Such CBA should incorporate a LCC approach, which describe all
cost involved in each stage of the IDR development cycle. Together with the cost,
a specific analysis of the benefits should be conducted. As mentioned, such benefits
are diverse and depend on technical requirements, standpoint (industrial customer,
utility or aggregator), timelines (short, medium or long terms), market (wholesale,
retail, balancing and flexibility) and pricing features. Finally, a proper choice of
profitability indicators must be done, which allows to compare different IDR actions
and select the most suitable and profitable option.

Final considerations are featured below:

● Simulations and case studies include a historical database on regulation and
reserve prices in the current energy markets. Such prices are settled according to
the marginal cost level of the conventional generators. Units with high marginal
cost are usually used for regulation or reserve capacity, therefore, the feasibility
of IDR programs could have a wide margin to invest without posing any risk to
its economic viability. Otherwise, IDR programs with limited internal rates of
return could be affected by regulatory changes or with the application of efficient
and modern technologies (lower marginal cost).

● According to the opportunity cost concept, the energy savings index is more suit-
able than money saving one, as energy could be employed in flexibility services
generating higher profits in comparison with self-consumption [7].

● Measurement of flexibility potential is an essential part of the IDR program.
This stage allows to define the assets and processes that will participate in the
IDR program design on one hand, and find investments (batteries, endogenous or
exogenous capacity, changes in process and materials) must be done to obtain the
biggest profits possible on the other hand. Figuring out adequately IDR potential
generates expenses, which are not included in the majority of the case studies and
their CBA in the literature.
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● Risk management is still a lack in CBA applied to IDR programs. This chapter
has been included some IDR development cycle stages, but it must be researched
in greater depth in the future.

● Electro-intensive industries should plan their expansion programs considering
the future flexibility services that could be rendered since the higher is energy
intensity, the higher is IDR potential and the higher are probable profits.
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Measurement and verification of demand
response: the customer load baseline

A. Gabaldon1, A. García-Garre1, M.C. Ruiz-Abellón2,
C. Álvarez-Bel3, L.A. Fernandez-Jimenez4,

J.L. Martínez-Ramos5, S. Valero-Verdú6,
and J. Rodríguez-García3

Demand response (DR) is a basic tool to achieve power systems flexibility in the
short and medium terms. The effective deployment of DR and the engagement of new
resources need knowledge about how DR performs and how to evaluate their flexibility
to give a correct economic feedback to customers and aggregators. DR verification
requires a reference in the absence of control: the customer baseline load (CBL).
The aim of this chapter is to describe several baselines that provide an acceptable
evaluation of load response as well as the use of different adjustment methods to
improve the CBL. Some of these adjustment factors can be justified through the
simulation of physical-based load models (PBLMs), which are also used in DR for
planning and operational tasks. The chapter discusses some issues reported by grid
operators: detection of abnormal responses (before and after DR) that can be due to
gaming or are reactions to maintain load service such as pre-heating, pre-cooling or
the change of tasks timeline. All these approaches have been illustrated using real
data of an industrial customer. Results show that the adjustment of CBLs can improve
several conventional approaches described in the literature.
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14.1 Introduction

Future power systems must be much more flexible than in the past because foreseen
energy policies will involve a more significant participation of renewable resources
in the generation mix. This new scenario means that the supply side will decrease its
controllability, which requires an increasing participation of demand side. For these
reasons, the design of new markets is more “customer-centred” [1] and encourages
the participation of demand side to recover the lack of flexibility of power systems.
A valuable option is developing the portfolio of demand response (DR) including the
adequate payment for a resource’s performance. Unfortunately, this is a significant
concern because this flexibility is difficult to be measured and verified.

The engagement of customers in DR is difficult due to several barriers (regula-
tion, education, costs, etc.). To overcome some of these barriers, right and correct
remuneration of resources based on the reduction of power and energy consumption
is needed. In last decades, a main concern for regulators has been the definition of
economic incentives for participants. For this purpose, the US regulator issued Order
745 [2]. Order 745 stated that DR providers must be remunerated at the same price
paid to generators, that is, at full locational marginal pricing (LMP). Some stakehold-
ers raise the issue that paying LMP in all hours presents a significant challenge to the
accurate measurement and verification (M&V) of DR.

The future scenario in the European Union (EU) envisages the need to enhance
and increase DR. The European Directive 2019/944 establishes that “States shall
allow final customers, including those offering DR through aggregation, to participate
alongside producers in a non-discriminatory manner in all electricity markets” (article
17, [1]).

An adequate and understandable economic flow is necessary: the estimation of
the customer baseline load (CBL) is a cornerstone for defining the performance, cost
and revenue of different DR programs. Customers should receive credit according
to the actual flexibility they provide, which requires an accurate evaluation of the
amount of electricity that would have been consumed by customers in the absence of
the DR event. The evaluation of this flexibility needs a forecast of demand considering
loads and customers, whose physical behaviour can change due to several parameters:
weather, type of day, end-use shares or the frequency in DR calls (i.e. the change of
customer behaviour due to frequent DR requests). In “real time”, the baseline can be
used to show customer and aggregator whether they are meeting DR targets. In the
medium term, the baseline enables the evaluation of credits to customers as well as
the performance and potential of DR resources by system operators (SOs).

Several factors should be considered in the development of baselines according to
the literature [3]: accuracy, simplicity and integrity. The accuracy of the achieved flex-
ibility is important to avoid paying too high an incentive for DR while still encouraging
the participation of customers and aggregators. It is also important, from the customer
point of view, to recognize his/her contribution in DR and to avoid non-performance
penalties or the underestimation of DR achievement.

Another factor is that the economic feedback to customers opens up the pos-
sibility of manipulation attempts. Some SOs and consultants think that customers
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could shift the load to different times to affect the calculation of actual flexibility.
These changes in customer pattern should be detected to ensure DR integrity. Finally,
methodologies should be as straightforward as possible and should consider the char-
acteristics of customers and markets where DR resources are deployed. This justifies
the use of less accurate but understandable baselines in some industrial segments [4]
to avoid a lack of interest by aggregators and customers. Note that there must be
multiple baselines to cover different types of DR products on a range of different
sites [5]. Likewise, the improvement of the CBL through the adjustment coefficients
must be adapted to the context, for instance, the use of aggregated and elemental
physical-based load model (PBLM).

The rest of the chapter is organized as follows. In Section 14.2, a revision
of the significance of CBL is presented. In Section 14.3, traditional baselines
and their adjustment are revisited. Section 14.4 depicts the customer example and
some considerations to apply a more accurate adjustment of CBL, while Section
14.5 outlines the performance of different CBL methods and the improvement
achieved through different coefficients. Finally, in Section 14.6, some conclusions are
presented.

14.2 Literature review

Baseline methods have grown in interest due to the forthcoming role of the DR
policies in wholesale and retail markets worldwide (UE [6], United States, Australia or
South Korea [7]), both to balance renewable and to mitigate environmental emissions
of power systems over the 2030–50 horizon. Moreover, aggregators have gained
relevance during last decades, and opportunities for them and customers will arise
in future decarbonized scenarios [8]. The growth of DR means that payments and
revenues are rising [9] and the accuracy of these economic flows should be revisited.
For this reason, different laboratories [10], SO [11, 12], aggregators [3], marketers and
utilities [13, 14], and energy and environmental agencies [15] have analysed different
types of baselines and have proposed new methods or adjustments to improve their
accuracy. This proliferation of methodologies makes the management of DR more
difficult [16] but also allows the choice of different CBL according to the customer
characteristics. In some cases, the CBL methodologies must adapt to DR alternatives.
This happens in some of the US SOs [9, 12], and also in other regions, KPX (the SO
in South Korea [7]).

The issue of CBL harmonization was first recognized by the North American
Energy Standard Board (NAESB) as a barrier [17] and later in the EU [18]. Conse-
quently, NAESB developed a series of definitions that have been acknowledged by
US authorities [2, 19].

CBL methods outlined in the literature depend on customer segments and regions,
and some reports include a comparison of diverse baselines in the same or even
among different countries [7]. For instance, Lawrence Berkeley reported [10] that
adjustments usually improve the performance of CBL, but the use of a different
model for different groups of loads, due to weather sensitivity of some loads, is
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suggested. Con Edison presents similar results in [14], and they state that simple
baselines perform well in most customer segments.

San Diego Gas & Electric obtained similar results in [13] using 21 different
CBLs. The authors conclude that “traditional” baselines reasonably estimate across
all customers and all event days, but none of the “traditional” methods are the most
accurate for single customers on individual event days. In conclusion, more complex
baselines sometimes provide marginal improvements in accuracy but with a higher
computational cost. In [20] the authors propose the clustering of customers to reduce
the randomness of each individual demand. This improves the performance of CBL,
but unlike industrial and commercial customers, the morning adjustment produces an
adverse impact in their “overall performance index” for residential customers. This
demonstrates the need to make a classification of segments and end-uses into “homo-
geneous” groups. The same conclusion was previously established in DR planning
and management [21–23].

Baseline estimation and short-term load forecasting (STLF) share common
methodologies because they provide demand forecasts in the short term (<48 h). STLF
comprises multiple methodologies, for example, linear regression and artificial neu-
ral networks (ANN) which can also be used to calculate the baseline [24,25]. Some
other machine learning methods such as support vector regression (SVR) and support
vector machine (SVM) have been employed to forecast demand in [26–28]. Hybrid
parameter optimization [26] and ant colony optimization [27] have been proposed to
find the optimal parameters for SVR, whereas SVM with simulated annealing has
been presented in [28]. The efficiency of ensemble methods based on regression trees,
such as random forest or boosting, has been analysed in [29]. Nevertheless, classical
methods like ARIMA models still perform well for demand forecasts. For this reason,
hybrid models that combine two or more different methodologies (ARIMA, SVM or
ANN) outlined good results. For instance, SVM and ARIMA are proposed in [30,
31], and the combination of ANN and SVM has been developed in [32]. A machine
learning approach to disaggregate load and photovoltaic (PV) generation from net
load data is analysed in [33] to obtain CBLs in prosumers. Authors conclude that
reducing errors in the PV output power estimation can improve the performance of
the CBLs.

Several approaches have considered CBL for industrial segments. Large indus-
trial customers are considered in [34] using historical data to define a baseline. In [4],
CADMUS consulting presents the evaluation of CBL for small, medium and large
commercial and industrial customers (C&I) engaged in DR peak shaving programs in
Pennsylvania (USA). Authors used regression analysis and day-matching CBLs for
large C&I customers, and provide evidence that some of these customers adjusted
their loads in response to the advance notifications. Again, authors state similar con-
clusions than other reports: regression methods can give the best accuracy for some
facilities and specific customers, but day-matching methods provided better accuracy
on average.

The performance of several CBL approaches to quantify the effects of DR in the
demand of a university campus building is presented in [35]. The interest is based in the
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large share of heating, ventilation and air conditioning (HVAC) in the overall demand
of buildings. Specifically, authors propose a simple linear interpolation method that
uses the least squares to fit a linear baseline to the fan data in HVAC over a 5-min
event just before DR event and 5-min period after the settling time. As a conclusion
of the proposed method, it is possible to develop more accurate baselines if customers
(or aggregators) use sub-metered data from flexible loads (fans in HVAC systems),
rather than the overall building load data. The analysis of the responsive demand in
buildings before and after DR through the use of PBLM is proposed in [36]. In this
case, simulation and sub-metering are applied for the adjustment of baselines.

Control groups are also suitable for the calculation of baselines. They include
customers without DR control to compare their behaviour with those who are respond-
ing to DR. Because this approach intends to reflect the response of weather-sensitive
(WS) loads, the customer in the control group should experience the same weather
conditions as the responsive one. Two alternatives are used in [12]: randomized con-
trol trial and matched control groups. The randomized trial involves customers that
are able to participate in DR actions but that are randomly selected in advance, and
their flexibility is withdrawn during the target period. In matched control groups, the
control consists of customers who do not participate in DR but have similar char-
acteristics (segment, end-uses, income) to DR participants. According to [12], this
specific option outperforms traditional baselines.

In the context of residential customers, Ref. [24] proposes linear regression,
using historical demand and weather as independent variables. Also in this context, [7]
compares Korean and French matching-day baselines and it establishes that weighted
baselines (South Korea) outperform French CBL. However, the author does not use
real data for residential segments, taking estimations from the total consumption
instead. In [37], a synchronous pattern-matching principle-based residential CBL
estimation approach without historical data requirement is proposed. Customers are
split into two groups with and without control. The control group is clustered and then
each DR participant is matched to the most similar cluster to predict their CBLs. The
main problem of this approach is that it works better with large-enough sample sizes
(between 200 and 400 participants) and this reduces DR potential and income for non-
participants. In [23], three different baselines (exponential moving average, regression
and HighXofY) are analysed for residential customers and the authors discuss their
performance. They conclude that the type of CBL will affect customers’ decision and
participation in future DR events and that bias is more important than accuracy.

14.3 Customer baseline load, non-intrusive load monitoring and
physical-based load models

14.3.1 The necessary linkage between DR methodologies

Four tasks are critical for the success of DR policies and the increase of flexibility
in power systems: planning, operation, measurement and verification. Figure 14.1
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Figure 14.1 Interaction among PBLM, CBL, NIALM and STLF tools according
to [21]

depicts a layout of the Spanish Research network REDYD2050 [21] issued from
past and present research developments of this group. According to REDYD2050,
different methodologies can be used for more than a single task, and this can make
the management of DR easier while overcoming some barriers. For example, the
statement of some authors about the need to develop a specific tool for each customer
and DR service. This idea makes the development of DR more complex, as well as
the understanding of these methodologies by customers.

DR actors should be aware that the evaluation and deployment of the DR potential
need some end-use and load models, especially “grey” or “white” ones, like PBLM.
The aggregated response [38] is another important issue to determine the flexibility
potential of resources (e.g. reduction levels, loss of load service, rate of change,
energy recovery/snapback, etc.). As DR is basically achieved by responsive loads
with some kind of energy or product storage [22] for maintaining service (e.g. HVAC
and water heaters, ice or heat storage tanks), aggregators and large customers need
some tools to perform DR simulations before the event (planning/operation).

Non-intrusive load monitoring (NIALM) plays an important role in this context.
Elemental end-use demand can be obtained to tune the parameters of PBLMs, to
validate them or even to define homogeneous and heterogeneous load groups and
customers. Moreover, NIALM allows the definition of average end-use patterns (i.e.
the calculation of elemental end-use load baselines [39] in customers where sub-
metering is not available), all of them from Smart Meter measurement at a lower
cost. Another example of linkage between methodologies can be found in market
participation: the aggregator needs load forecasts to define the energy requirements
in day-ahead markets and avoid penalties in balance markets. This can be done through
specific forecasts [29], but CBLs can also be used. Weather or gains in efficiency can
be evaluated from modelling, if these models are physical-based. Finally, NIALM
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should contribute to the verification of the performance of responsive loads (e.g.
through a representative sample) to verify the change of use of some devices before
DR (to detect potential gaming) or during DR (for the verification of load flexibility).

As discussed in previous paragraphs, segmentation is crucial for achieving greater
performance in the CBL, but it is also a fundamental step in other DR tasks. For
instance, segmentation is important to perform load aggregation, evaluate their DR
potential and adjust their CBL through PBLM [36].

STLF and CBL also provide inputs for PBLM toolboxes (e.g. the change in cus-
tomer behaviour due to market prices) and are common tools for day-to-day operation
of aggregators. It is also worth mentioning the linkage in the opposite sense (from
PBLM to CBL) which is further considered in the adjustment of CBL.

14.3.2 Physical-based load models

PBLMs are considered as grey-box or white-box models for end-use loads (heat-
ing, cooling, ventilation, water heating, etc.). The advantage of these models is that
they consider the physical laws of the loads and their environment to determine the
behaviour and changes of the system they serve. The model defines an energy and
flow balance between heat gains, heat losses and generation, the storage capacity, the
energy conversion and thermal or product flows. The model is tuned through real data
measurements or NIALM, including performance tests with control and response, to
cover energy responses of actual or load capabilities through DR policies.

The advantage of this kind of models is that they can evaluate the effect of
changes in inputs, parameters or state variables. For example, weather sensitivity
can be evaluated with more accuracy than some adjustment methods. This gets a
more accurate and flexible response than other adjustment methods (i.e. black-box
models). More detailed information about the formulation of equations, the thermal-
electric equivalent and the physical meaning of the parameters of these models, as
well as research papers and scripts, can be found in [21]. Such reference also includes
simulation examples, coefficient values and data for several end-uses such as electric
heating, water heating or HVAC.

14.3.3 Unadjusted customer baseline load: a review of the main
methodologies

There are many works dealing with different CBL approaches. Some methodolo-
gies can provide excellent results for specific segments, DR products, markets and
situations. However, they may fail in other scenarios [12] such as small/medium cus-
tomers, prosumers, customers with a high share of WS loads, loads that vary from
day to day in a consistent pattern (some industrial facilities) or customers that usually
respond to DR calls. Literature agrees that “traditional” baseline methods are a suf-
ficient approach for obtaining a good and simple basis to develop CBLs. Although it
might not be the most suitable one for a specific customer, it can be recommended
for a set or segment of customers providing high accuracy. Therefore, it is important
that regulators provide different methods to compute the CBL to increase customer
motivation to engage DR policies. This possibility is usually deployed by operators
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and utilities (e.g. block exchange notification of DR mechanisms, NEBEF 3.1, in
France [40]).

US power systems have a significant experience in DR and consequently with
CBL methodologies. For this reason, NAESB has defined five types of method-
ologies [17]: maximum base-load (MBL); baseline type-I; baseline type-II; meter
before/meter after and metering generation output.

Baselines type-I and type-II have been adopted as default methodologies by
several SOs [11,12]. Baseline type-I is based on historical demand meter data, which
may also include other variables such as weather and calendar data. Baseline type-
II assumes the same idea, but it uses statistical sampling to estimate the aggregated
consumption. With the increase in the deployment rate of smart meters [5,18], this last
type of methodology lacks its practical interest. Other methodologies like MBL are
more straightforward since they attempt to reduce the consumption of a demand-side
resource to a specific level, regardless of its demand before the deployment. Below,
some of the main CBLs in the literature are described.

14.3.3.1 Maximum base-load
It is also known as “non-baseline” or firm service level in some systems [9]. MBL
is based on a demand resource’s ability to reduce its demand to a specified level: the
firm service level. The operator defines the annual peak of demand and the customer
contribution to this peak. The difference between these values (contribution to peak
and MBL) is the flexibility of demand. The method is used for emergency DR. The
customer should keep its demand below this MBL level to avoid some penalties. The
advantage is that revenue is easily understandable and DR objectives are fixed in
advance.

14.3.3.2 Baselines based on historical data (type I)
This type is the most usual and understandable approach in most systems. The main
methods are as follows:

(a) Y-day simple average method: To predict the CBL, it uses the average demand
over the Y most recent non-DR days immediately before the DR event being
considered. Usually 5-day and 10-day basis are used for this estimation [35].

(b) Comparable day method: This considers historical demand data to compute the
CBL. In this case, the method only takes one day that is selected for its similar
conditions with the event day (weather forecast, day of the week, etc.). If sufficient
relevant factors are not taken into account, the forecast will be erroneous.

(c) High (Middle/Low) XofY baseline: The baseline is obtained by averaging recent
historical data for a specific time interval. It considers the consumption of Y
non-DR days preceding the DR event and uses the average of the X days with the
highest (or middle/lowest) demand within those Y days. Some days are excluded,
by so-called exclusion rules [19], because operators assume that some variables
can modify the pattern of demand (e.g. day before a DR event, when SO calls
aggregators and customers). Up to 30 or 60 days (look-back window) can be
used to define Y [3], but shorter periods such as 5 or 10 days are more common
in the literature because long periods could include changes in the consumption
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pattern. By far, HighXofY is the most common baseline if DR events are due
to peak load periods, whereas Middle/LowXofY baselines are more suitable in
spring or fall seasons with no high peaks and for other markets and services
like ancillary markets. Some practical examples of these baselines (for peak load
shaving on peak days) are High5of10 in California SO [12] and in New York SO
[41] or High15of20 in IESO, Canada [41]. These unadjusted CBLs are calculated
as follows:

CBLXofY (d, h) = 1

X

X∑

i=1

A (i, h) (14.1)

where CBLXofY (d,h) denotes the baseline at time h of day d; A(i,h) is the actual
load for the ith highest (middle/lowest) energy day, at time h, among the previous
Y non-event days, and X is the number of the highest (middle/lowest) days to
be averaged in Y after exclusions. Some examples of exclusion are weekends,
holidays, event notification days, facility closures, economic participation days
[4] or previous DR event days.

(d) Nearest XofY baseline: The peculiarity of this method is that it focuses on the
total consumption outside the DR event window to determine which of the Y
previous days are more similar to the event day. The X days (among the original Y
previous days) having the closest total demand to the DR day under consideration
are selected. Then, the baseline is computed as the average load of these X days,
now including the DR event window. In this method, exclusion days are also
applied, for instance days with less or more than a percentage (e.g. 25%) of
average load during the window of DR periods.

(e) Weighted average method: This is based on a weighted average of the previous
day’s CBL (some of the above CBLXofY ). During DR event days, CBL is defined
as the previous day one. In cases where there is not a computed CBL, CBL is
the simple average hourly load calculated for each hour of the day from the five
more recent workdays with complete meter data with different weights for each
day [6]. This method is used by KPX [7]. In this case, among the 10 reference
days, the highest two days and lowest two days are excluded and the remainder
are used but with different weights. For example, KPX defines weights such as
0.10, 0.15, 0.15, 0.15, 0.20 and 0.25 ranging from the older demand to the most
recent demand.

(f) Exponential moving average: This is a weighted average of customer historical
demand, where the weight decreases exponentially with time, that is it is the same
procedure as of that CBLXofY but the days before DR deployment have different
weights, and it considers a broader spectrum for “X ” days.

(g) Control group methods: This method considers the possibility that the aggregator
(distribution system operators, DSOs, or SOs) has a database with load curves of
other non-responsive customers (in the same segment of residential, commercial
or industrial customers) from the DR event day. The customers are clustered into
homogeneous groups and the DR customer’s load curve is matched to one of these
groups. Then, the CBL is calculated by averaging the load curves in the selected
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cluster in per unit. More complex methods can use a weighted combination of
load curves in the cluster, or the load curves of the same customer and other
customers on non-DR event days [37].

(h) Short-term load forecasting methods: These types of baselines comprise a wide
range of methods. For example, the CBL can be built using a customer-specific
regression model, which usually considers historical loads, weather conditions
(temperature, humidity, etc.) and calendar features (holidays, season, day of the
week, etc.). In [35], the baseline is estimated for campus buildings and with a high
penetration of HVAC loads. For that, a linear model is fitted over the 5-minute
period just before the DR event and the 5-minute period immediately following
the set time. Another example is the use of ANN to estimate the CBL, as in [25,
42], where a back propagation neural network is adapted to establish baselines
in public buildings (South Korea and China), taking into account meteorological
indices. Some other techniques such as self-organizing maps and K-means can
be used to find the most similar load patterns to the day of the DR event. As
we mentioned before in this chapter, the close relationship between baseline
estimation and STLF models allows that many others methods, like random
forest, could be used as an approach to compute the CBL.

14.3.3.3 Meter before–meter after
This baseline is an evaluation method where electricity demand over a prescribed
period prior to deployment is compared to similar readings during the sustained
response period in previous days (X ). It not only uses historical data but also uses the
current load (day d, time h – 1) to predict the next values (d, h) for the baseline. An
example of this CBL is used in [6]. The CBL is calculated as

CBLXofY (d, h) = A (d, h − 1)+ 1

X

X∑

i=1;i �=d

(A (i, h)− A(i, h − 1)) (14.2)

14.3.3.4 Metering generation output
According to NAESB definition [17], this “baseline” is “a performance evaluation
method, used when a generation asset is located behind the demand resource’s revenue
meter, in which the demand reduction value is based on the output of the generation
asset”. If there is a meter in the generation “behind the meter”, the baseline is zero
and the flexibility is the reading of the generators which reduces the overall demand.
Another problem is the consideration of prosumers with renewable generation, mainly
PV and wind, which can be problematic due to volatility and weather dependency of
their generation. This generation “behind the meter” is very volatile because it depends
on high-variability weather factors such as cloud cover or wind speed and direction.
This makes it more dependent on the weather than the own prosumers’ load.

PV systems are the most widespread in the residential sector. In these systems,
the movement of clouds can cause the power generated to vary by more than 50%
in a few minutes or even seconds. The generation values in large PV facilities are
usually measured directly, but this is not the case for PV residential systems. Since
digital smart meters only measure net load (or net generation when it exceeds load),
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the value of the energy generated by a residential PV system at any given time is not
accessible for the aggregator (nor for the DSO), which complicates the establishment
of the CBL, as it requires an estimate or disaggregation of PV generation.

The disaggregation has been addressed with model-based and data-driven meth-
ods. Model-based methods usually require data information about the characteristics
of the customer PV installation and weather forecasts in order to estimate PV power
generation, although [43] proposes a model capable of estimating the PV system
characteristics from net load measurements. Reference [39] uses NIALM data to
disaggregate PV generation, identify turned-on appliances and estimate critical and
non-critical loads. However, some of the aforementioned baselines could be used but
the volatility of renewable sources needs to be considered (i.e. the selection of day-
matching series must include days which did not suffer great variations in climatic
conditions, wind and solar radiation, with respect to DR event days). The use of a
PV generation disaggregation method significantly improves the results in the CBL
estimation over those obtained with methods based on historical data if the days have
not been carefully selected [44].

As a recommendable procedure, any of the previous approaches could be applied
as a first stage to obtain a baseline and later, in a second stage, some adjustment
coefficients can be computed by means of PBLM to improve the final CBL. In the rest
of the chapter, some of those adjustment coefficients are presented and the complete
procedure is applied to real data.

14.3.4 Adjustment coefficients for CBL

Baseline can be improved using adjustment methods. There are two main methods:
multiplicative and additive adjustment. The objective of these adjustments is to modify
the preliminary CBL to adapt it to weather and demand conditions on the DR event
day. The easiest way to evaluate these factors is the use of pre-event DR data and then
calibrates the baseline using the observed non-event hours prior to DR periods. In
[10], the adjustment factor is defined by

amf (d) =
∑a1

k=1A(d, h0 − (b1 + k))
∑a1

k=1P(d, h0 − (b1 + k))
(14.3)

where amf(d) denotes the adjusted multiplicative factor for the day d; A(d, h) is
again the actual load of day d at time h; P(d, h) is the predicted load (from unadjusted
baseline or STLF methods [29]) of day d at time h; h0 is the start time of the DR event;
b1 is the buffer time and a1 is the length of the pre-adjustment band (Figure 14.2).
Then, the new CBL is evaluated by

CBLadj (d, h) = amf (d)× ∗ CBL (d, h) (14.4)

Alternatively, an addition adjustment factor (adf), reflecting the same concept,
can be used instead of a multiplicative one. For example, the so called symmetric
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additive adjustment (SAA; for instance in South Korea and Australia [15], b1 =1 h
and a1 =3 h):

SAA(d) = adf(d) = max

{∑a1
k=1(A(d, h0 − (b1 + k)) − P(d, h0 − (b1 + k)))

a1
, 0

}
;

CBLadj(d, h) = adf (d)+ CBL(d, h) (14.5)

Some SOs use pre- and post-DR adjustment factors combined in the same baseline
[12]. Other approaches [6] use adjustment factors which consider temperature ratios.
In this way the weight of WS loads is included. The idea is that the post-event factor
gives additional information about the boundary conditions throughout the DR event
day (e.g. weather changes that modify demand). CAISO Baseline Accuracy Work
Group (BAWG) justifies this approach to avoid contamination of baseline for both
pre-cooling and snapback periods to occur in the hours directly before and after the
DR event (Figure 14.2, pre- and post-DR buffer period). BAWG recommends a two-
hour buffer before and after DR. The problem is that the duration of this buffer is not
justified from the point of view of end-use dynamics. BAWG reports changes in the
adjustment coefficient of around 3–4% using both periods [12].

Figure 14.2 depicts this idea of using pre- and post-adjustment periods: the DR
period ranges from 8:00 to 13:00 and the pre-adjustment period uses data from 5:00
to 7:00 (a1 = 2 h) while the post-adjustment period uses data from 15:00 to 18:00
(a2 = 3 h). Note that these periods do not overlap. Besides, the consideration of
two periods (pre-buffer b1 = 1 h and post-buffer b2 = 2 h) limits the possibility of
perturbations like gaming just before the baseline. Some of these buffers are applied in
several systems in the United States (for instance, NYISO [45] which uses a two hours
buffer b1). It seems necessary that the definition and the duration of both “buffers”
should be justified by load behaviour, through load modelling, which is the approach
proposed in [36]. In Figure 14.2, n represents the period in which the consumption is
affected by the DR event, that is, the sum of pre-DR period and the post-buffer period.
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14.3.4.1 Gaming issues
The process of estimating a CBL can be open to manipulation. A change in demand
during the adjustment period determines a variation in baseline results, so there can
be economic motivations for some DR participants to change their load patterns to
generate greater revenue. Some authors report [46] that CBLs are subject to manipula-
tion because participants (customers, aggregators) should theoretically have a greater
awareness of their end-uses and consumptions than the power system agents respon-
sible for defining the baselines. For this reason, some CBL approaches include a cap
in the adjustment factors from ±20 to ±40%. This involves a limit on the amount by
which the CBL can be adjusted to account for differences in patterns of consumption
in the very short term. Some authors argue [15] that the use of larger factors can
create enough incentives and opportunities for gaming.

Despite gaming possibility, it is reported that customers increase or decrease their
loads in response to advance notifications [4] with the aim of maintaining a minimum
load service. For example: pre-heating and pre-cooling policies, or demand price
elasticity, should be considered in the definition of CBL [38]. In this scenario, it is
interesting to analyse the length and proximity of the pre-adjustment (a1, Figure 14.2)
and the buffer period (b1, Figure 14.2) but based on the physical response of loads.
PBLM can help to distinguish between gaming and pre-heating or pre-cooling policies
[36]. NIALM (or sub-metering) can help in this task, even more precisely, because it
can extract elemental load patterns in the aggregated demand, defining which load has
changed and how this change happens during the event day. PBLM can classify load
changes appointed by NIALM and attribute these changes to a normal or abnormal
customer reaction.

14.4 Case study

To test and describe the methodologies presented in Section 14.3, a representative
customer has been chosen in the food industry sector. Two main reasons support this
choice. First, the food industry is a recurrent sector that has applied DR policies
in the past with some degree of success [22]. Second, customer demand in this
segment includes a significant share of WS loads, such as electric defrost, refrigerated
warehouses, HVAC in offices, cooling production and distribution. Specifically, they
represent more than 30% of the overall demand in this type of customers.

Figure 14.3 shows two examples of the weekly demand: the overall load of the
facility and a controllable load selected for DR simulation and CBL evaluation, which
corresponds to offices, product processing and cut-up packaging.

14.4.1 Detecting pre-heating and gaming through PBLM and
NIALM

The choice of adjustment values in (14.3) can be improved through the justification
of both the adjustment and buffer periods (Figure 14.2) using PBLM. Moreover,
the use of other DR methodologies (Figure 14.1) helps in searching and filtering
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Figure 14.3 Weekly demand of the customer: (a) overall load of the facility and
(b) controllable load selected for simulation purposes

some potential disturbances in the evaluation of CBL whereas improving conventional
adjustment coefficients, that is a normal pattern to maintain load service during DR
such as pre-heating, can be distinguished from “gaming” attempts.

To exemplify the method, some simulations have been performed and the obtained
results are shown in Figure 14.4. A group of homogeneous HVAC loads of admin-
istration and engineering offices under different weather conditions was simulated
(Figure 14.4a), which is the main reason for the adjustment in the demand of WS
loads. The choice of this group is based on the relevant share of HVAC loads for
many other customer segments.

The load group performs during the winter period and, to consider weather fluc-
tuations, three scenarios have been simulated: the outdoor average temperature, the
average minus 3◦C and average minus 6◦C. A “service function” of HVACs starting
at 6:30 and finishing at 13:30, and restarting from 14:30 to 20:30, has been chosen.
Figure 14.4a represents the results for the group of loads after running PBLM scripts,
see [21] for additional information.

It can be observed that demand is similar at the start of duty cycle of these
loads (from 6:30 to 8:00) because all loads are near their full demand, irrespective
of the weather, to reach the temperature setpoint and indoor comfort parameters;
however, there is difference in a second period (from 8:00 to 13:30 and 14:30 to
20:30) when some loads reach their “steady-state” service, that is thermostat setpoints,
depending on weather, service and internal thermal loads (e.g. lighting, machinery
and occupancy). These variations in demand justify the definition of periods taken in
(14.3) for the evaluation of adjustment factors and explain the failures of adjustment
periods for some WS-CBL approaches [45]. The reason is that traditional adjustment
may consider a wrong daily period where demand is less dependent on weather.
Figure 14.4a also depicts the changes in demand due to pre-heating in morning and
afternoon periods. This pre-heating period can be detected by a demand decrease after
the pre-heating period with respect to “normal” patterns.
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Figure 14.4 Simulation of flexible loads: (a) homogeneous group with different
boundary conditions; (b) homogeneous group under control; (c)
heterogeneous group with DR in the morning; and (d) heterogeneous
group with DR in the afternoon

Figure 14.4b shows a control in the same group from 8:00 to 11:00, considering
pre-heating and normal conditions. The necessity of a buffer is justified by some util-
ities because the buffer period (two hours before event operators [9,12]) is a potential
“gaming period” and distorts DR potential, but sometimes the buffer hides actual load
changes and service for the customer. The size of snapback helps in the detection of
pre-heating, but obviously NIALM or sub-metering is needed for the purposes of
checking PBLM results (Figure 14.1).

The response of a heterogeneous group of flexible loads given in Figure 14.3b
has also been simulated through PBLM, selecting two different events: one in the
morning (from 8:00 to 12:00) and one in the afternoon (from 14:00 to 18:00). During
these periods, a forced control cycle to reduce around 20% of the HVAC demand has
been considered, a reasonable percentage for avoiding a lack of comfort or to comply
with thermal limits for manufacturing and conservation processes. Figure 14.4c and
Figure 14.4d presents the results for the two events considered.

After the DR event (see Figure 14.4), there is again an increase in the demand as
a response to the control. In the case of the morning event, the increase occurs from
12:00 to 14:00 and in the evening period from 18:00 to 20:00. During the snapback,
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loads try to recover the previous reduction of demand by increasing their consumption
to reach their “normal” operating point. PBLM allows the load behaviour of a DR event
to be understood, improving the performance of CBLs. At the same time, PBLM helps
to define the duration and magnitude of the recovery periods and potential secondary
peaks that can be a concern for distributors and balance responsible parties (BRPs).

14.5 Results and discussion

14.5.1 Comparisons of unadjusted CBLs based on historical data

To illustrate the differences of several unadjusted methods, six different baselines
among those described in Section 14.3.3 have been selected: the High5of10, the
Low5of10, the Mid4of6, the Nearest5of10, the mid6of10-weighted-average (labelled
Weighted average) and, finally, a baseline (labelled Random forest) obtained through
STLF (random forest [29]).

A database for an industrial load has been used, with hourly consumptions from
1 July 2019 to 30 June 2021. The random forest method requires a long-enough
historical dataset for the training stage (in this case, all data from 2019 and 2020), so
the common period for evaluating the six CBL methods was 2021.

Regarding the error metrics, the mean percent error (MPE) has been selected to
describe the magnitude and direction of the estimation bias. MPE reflects the per-
centage by which the baseline, on average, over- or underestimates the “true demand”
in the absence of a DR event. To evaluate the precision, both the mean percent aver-
age error (MAPE) and the normalized root mean squared error (nRMSE) have been
selected. The lower MAPE and nRMSE are, the more precise the baseline is. Note that
metrics are defined through relative errors, so they can be used to compare accuracy
and precision of CBLs measured in different scales. Mathematically, these metrics
are defined as follows [12]:

MPE = 100

n

∑n
i=1 (yi − ŷi)

ȳ
(14.6)

MAPE = 100

n

n∑

i=1

∣∣∣∣
yi − ŷi

ȳ

∣∣∣∣ ; nRMSE =
√

1
n

∑n
i=1

(
yi − ŷi

)2

ȳ
(14.7)

where yi is the real demand at time i, ŷi is the CBL (forecasted demand) at time i and
ȳ is the mean of the real demand for the n values. Note that n refers to the length of
the DR evaluation period.

These error metrics were obtained for the whole evaluation period (from 1 January
2021 to 30 June 2021) and all the methodologies (Table 14.1). As it can be deduced
from Table 14.1, the two methods that provide more accurate baselines during the
whole period analysed are the Nearest5of10 and the Random forest, but with small
differences with respect to the rest of the methods. It is also remarkable that all the
baselines overestimate the load (they have positive values of MPE) except the Low 5
of 10 that underestimate the load.
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Table 14.1 Error metrics of unadjusted CBLs in the whole
evaluation period

CBL MAPE (%) MPE (%) nRMSE (pu)

High5of10 11.1 6.5 0.1345
Low5of10 12.2 −6.1 0.1569
Mid4of6 9.8 1.1 0.1263
Nearest5of10 7.2 1.1 0.0992
Weighted average 9.8 1.0 0.1268
Random forest 8.8 2.5 0.1163

Table 14.2 Error metrics of unadjusted CBLs in DR periods

CBL MAPE (%) MPE (%) nRMSE (pu)

Morning Afternoon Morning Afternoon Morning Afternoon

High5of10 13.5 10.9 8.9 6.5 0.1377 0.1124
Low5of10 14.2 12.6 −6.3 −6.2 0.1458 0.1300
Mid4of6 11.6 9.6 2.7 1.3 0.1194 0.1006
Nearest5of10 8.6 7.2 2.3 1.2 0.0905 0.0764
Weighted average 11.2 9.5 2.3 1.3 0.1156 0.0989
Random forest 10.9 9.0 3.5 2.1 0.1130 0.0958

AlthoughTable 14.1 refers to the whole period under study, the main common and
practical use of CBLs arises in peak-shaving events. The customer/aggregator revenue
is directly related to this measurement, so CBLs need to be accurate especially in these
peak periods. In our study, we have considered two different DR periods for every
single day in the evaluation stretch: one in the morning (from 8:00 to 12:00, usually a
peak price period in the Spanish energy market) and one in the afternoon (from 14:00
to 18:00). Table 14.2 shows the metrics for DR periods of the unadjusted baselines
(data from 1 January 2021 to 30 June 2021). In the case of the morning DR period,
the errors slightly increase compared to the global metrics (Table 14.1) whereas in
the afternoon period the metrics are practically the same. In both cases (morning and
afternoon DR periods), the most accurate CBL methodologies are Nearest5of10 and
Random forest, results that correspond to those obtained in the whole period.

Figure 14.5 gives an example of how the different methodologies can work prop-
erly in one part of the day (afternoon period) but not another part (morning period).
This problem can be reduced with the use of the adjustment coefficients proposed in
Section 14.3.4.

14.5.2 Adjustment coefficients: weather sensitive (WS) and PBLM

To improve the performance of the CBLs, SOs use adjustment coefficients that are
calculated with data from the previous hours to the DR event. These coefficients
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and DR periods

Table 14.3 Definition of the adjustment coefficients for the CBLs analysed

Adjustment coefficient Data Period

Weather sensitive (WS) Pre-DR First 2 hours of the 4-hour period pre-DR event
Physically based (PBLM) Pre-DR Last 2 hours of the 4-hour period pre-DR event

(defined by PBLM)
Backward (BW) Post-DR Last 2 hours of the 4-hour period post-DR event

(defined by PBLM)

have been explained in Section 14.3.4. In our case, two different multiplicative pre-
adjustment coefficients have been evaluated: WS and PBLM. In addition, another
adjustment, using data from the hours after the DR event, is proposed, that is a post-
adjustment coefficient, known as backward (BW) adjustment. Table 14.3 specifies
the periods where the adjustment coefficients are calculated.

14.5.2.1 WS (NYISO)
The WS coefficient is commonly used by NYISO. The two first hours of the four-hour
period before the start of the DR event are used. That is, in Figure 14.2, the buffer b1
has a 2-h duration and the period a1 in which the coefficient is calculated also lasts
2 h.

In the case of the defined DR event in the morning, whose duration is from 8:00
to 12:00, the coefficient is calculated in the period from 4:00 to 6:00. Table 14.4
depicts the error indexes for the two DR periods. Note that the adjustment coefficient
slightly improves the errors for the morning period and that the reduction of MAPE
is higher when the method is more imprecise. The High5of10 and the Low5of10 are
the two methods demonstrating a greater improvement.

Figure 14.6 plots the WS-adjusted baselines, the real demand for two representa-
tive days of the 2021 database (21 January 2021 and 30 April 2021) and the two DR
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Table 14.4 Error metrics of adjusted WS-CBLs in DR periods

CBL MAPE (%) MPE (%) nRMSE (pu)

Morning Afternoon Morning Afternoon Morning Afternoon

High5of10 9.3 5.7 1.7 −1.2 0.0980 0.0618
Low5of10 10.2 6.8 1.4 1.4 0.1067 0.0729
Mid4of6 9.8 5.8 2.5 −0.1 0.1026 0.0632
Nearest5of10 9.1 5.6 2.1 −0.1 0.0964 0.0615
Weighted average 9.6 5.6 2.5 0.2 0.1009 0.0603
Random forest 9.7 6.0 1.0 −0.4 0.1018 0.0654
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Figure 14.6 WS-adjusted CBLs vs. real demand (a) in a DR morning event for a
specific day (30 April 2021) and (b) in a DR afternoon event for a
specific day (21 January 2021)

events (morning and afternoon). It can be observed that the WS adjustment coefficient
improves the precision of the unadjusted baselines (Figure 14.5a).

In the case of the defined DR event in the afternoon, whose duration is from
14:00 to 18:00, the adjustment coefficient is calculated in the period from 10:00
to 12:00. As can be seen in Figure 14.6, the load presents more variability in the
afternoon DR period than in the morning one, therefore the adjustment coefficient
works better for the improvement of the CBL curves. Note that, in the afternoon DR
period, the error is reduced from 7 to 12% to around a 6% of MAPE for all the methods
(Table 14.4).

14.5.2.2 PBLM
In this case, the duration of the period a1 and the buffer b1 are determined from
the analysis of the physical behaviour of the load. In our study, we have selected the
2 hours before the start of the DR event, without any buffer period. Although the use
of a buffer period is sometimes necessary to avoid gaming, in other cases the buffer
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Table 14.5 Error metrics of adjusted PBLM-CBLs in DR periods

CBL MAPE (%) MPE (%) nRMSE (pu)

Morning Afternoon Morning Afternoon Morning Afternoon

High5of10 5.5 4.3 1.5 −0.1 0.0601 0.0476
Low5of10 6.3 4.5 0.1 0.2 0.0679 0.0502
Mid4of6 5.6 4.3 1.4 0.1 0.0611 0.0483
Nearest5of10 5.5 4.2 1.0 −0.1 0.0602 0.0471
Weighted average 5.5 4.2 1.4 0.2 0.0598 0.0472
Random forest 6.1 4.9 1.1 −0.1 0.0666 0.0549
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Figure 14.7 PBLM-adjusted CBLs vs. real demand (a) in a DR morning event for
a specific day (30 April 2021) and (b) in a DR afternoon event for a
specific day (21 January 2021)

hides the real behaviour of the loads. As it has been explained in Section 14.3.4.1,
gaming and pre-heating or pre-cooling can be detected through PBLM simulations,
so the a1 period and the buffer b1 could be changed if any of these behaviours are
detected.

The PBLM adjustment coefficient for the DR morning event is consequently
calculated in the period from 6:00 to 8:00. Table 14.5 shows that PBLM adjustment
coefficient performs better than the traditional WS coefficient, reducing the MAPE
error to approximately 6% in all the traditional CBL methodologies, a percentage of
error lower than the one obtained with the WS adjustment coefficient. For the after-
noon event, the PBLM coefficient is calculated in the period from 12:00 to 14:00. In
this case, the improvement in the precision of the CBLs is similar to those obtained
with the WS coefficient, because the periods for calculating both coefficients ade-
quately reflect the changes in the load behaviour. However, the PBLM still improves
the MAPE error slightly, from around 6% to 4.5%.

Figure 14.7 plots the PBLM-adjusted baselines and the real demand. The PBLM
adjustment improves the precision of unadjusted CBLs (Figure 14.5a).
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Figure 14.8 Comparison of unadjusted and adjusted CBLs in a DR morning event
for a specific day (30 April 2021): (a) High5of10 and (b) weighted
average
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Figure 14.9 Comparison of unadjusted and adjusted CBLs in a DR afternoon
event for a specific day (21 January 2021): (a) Mid4of6 and (b)
Nearest5of10

Figures 14.8 and 14.9 show the comparative among the unadjusted, WS and
PBLM baselines with respect to the real demand for two specific days and two DR
periods. The benefits of using the adjusted factors are demonstrated.

14.5.2.3 Backward adjustment coefficient (BW)
The BW adjustment is a post-adjustment coefficient that makes sense for energy
recovery periods that occurs after a DR event. It is important to consider that energy
savings reported during DR control periods are partially recovered after control (pay-
back time: from 12:00 to 14:00 in a morning DR event and from 18:00 to 20:00 in an
afternoon DR event). Thus, it is necessary to study this “energy recovery period”.

Hence, PBLM provides another important insight to define the BW adjustment
coefficient. As the load does not recover its “steady-state” demand until some hours
after the control, PBLMs help to define the duration of the recovery period (see
Section 14.4).
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Figure 14.10 BW-adjusted CBLs vs. other adjusted CBLs in DR events for a
specific day (26 January 2021): (a) Nearest5of10, morning event;
(b) random forest, afternoon event

Table 14.6 Error metrics of adjusted BW-CBLs in DR recovery periods

CBL MAPE (%) MPE (%) nRMSE (pu)

Morning Afternoon Morning Afternoon Morning Afternoon

High5of10 3.1 3.0 0.3 0.4 0.0379 0.0361
Low5of10 3.2 2.8 0.1 0.1 0.0385 0.0346
Mid4of6 3.1 2.9 0.1 0.1 0.0377 0.0348
Nearest5of10 3.0 2.8 0.2 0.2 0.0372 0.0342
Weighted average 3.1 2.7 0.2 0.1 0.0369 0.0336
Random forest 3.8 3.2 0.4 0.1 0.0447 0.0391

In our study, adjustment values are taken not at the end of control, but in the 2-h
period that starts 2 h after the end of the event, that is, at the end of the recovery period
defined by PBLM. Notice that the adjusted CBLs obtained with this BW adjustment
are only valid from the end of the DR event to the end of the day, and therefore,
calculating the energy savings during DR periods with these BW-adjusted CBLs does
not make sense. The main goal of these adjusted CBLs is to calculate the energy
payback, because the increase in demand can be important for SOs, producing new
peaks after events.

In the case of the DR morning event (Figure 14.10a, from 8:00 to 12:00), the BW
adjustment coefficient is calculated in the period from 14:00 to 16:00 and these CBLs
are only valid from 12:00 to 24:00. For the DR afternoon event (Figure 14.10b, from
14:00 to 18:00), the BW adjustment coefficient is calculated in the period from 20:00
to 22:00, and these CBLs are only valid from 18:00 to 24:00. Table 14.6 shows the
error indexes for all the CBL methodologies in the energy recovery period (dashed
lines in Figure 14.10). As it can be seen, the BW adjustment significantly reduces
the MAPE index to less than 4 and 3% in the DR morning and afternoon events,
respectively.
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14.5.3 DR control events: effects on energy calculations

It is worthy to note the results presented in Sections 14.5.1 and 14.5.2 are values in
terms of power and energy, but market prices can change from one hour to another
during DR periods (control and snapback). For this reason, it is necessary to consider
an economic evaluation of error, weighting the error based on market prices. This
problem also deals with compensation mechanisms to demand-side (e.g. hourly LMP
prices) which is an issue and a complex problem for regulators [47].

For instance, the energy recovery analysed in baselines increases its interest
because DR also involves changes in the balance of energy which affects aggregators
and third parties like BRPs. The assumption of several roles by aggregators can be an
issue with regard to market regulations (e.g. article 102 of Treaty on the Functioning
of the EU on dominant positions in internal markets [48]). For instance, France has
decided that the aggregator should pay BRP/suppliers for these changes [48], and this
impacts cost-effectiveness. Appropriate CBL designs that can consider these effects
are needed. Changes in demand during those periods are also a concern for associa-
tions such as Eurelectric [8], which recommends improving aggregation development.
PBLMs, BW adjustment and NIALM tools can contribute to solving some of these
issues.

14.6 Conclusions

DR policies are necessary to make an increase of the renewable share in the future
power generation mix credible. The verification of flexibility becomes a key issue.
Baselines are a mainstay to provide the verification of DR and the subsequent revenue
and payment. An accurate and precise CBL also emerges as an important tool for
engaging and empowering customers in markets, for example for decision making in
electricity markets, recognizing and giving credit for their real flexibility.

From the point of view of the demand-side, demand resources need an accurate
and fair verification of their flexibility. In this way, the accuracy of demand forecasts
with DR (PBLM modelling) and without DR (CBL), with incomes and penalties asso-
ciated, is a crucial factor for the development of DR and subsequently the integration
of distributed energy resources. Aggregators, suppliers, operators or BRP need accu-
rate demand models since most of their decisions and their economic viability are
based on demand forecasting and its flexibility. Specific and complex methodologies
are proven to define accurate CBLs, but this option usually increases the complexity
of DR and sometimes requires a different model for each customer. Moreover, these
models can present problems if DR performs periodically and the customer changes
its behaviour, or simply if the aggregator develops more complex products like the
participation in several markets and services. Literature shows that unadjusted CBLs
are not the best option, but they can improve their performance through adjustment
factors. Until now, these factors have been proposed based on experience. This chapter
highlights the convenience of using adjustment factors explained by PBLM, and that
a double-adjusted CBL displays an even better performance. Thus, this methodology
arises as an adequate and simple baseline estimator.
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This work also states the benefits of synergies associated with the use of other
aggregator tools, such as NIALM, segmentation and ICT resources to verify load
response. In this case, the adjustment period can be justified and improved both
before and after the period of DR events to improve the evaluation of DR and the
changes for balance compensations among the different agents involved. In this way,
different DR actors can obtain necessary feedback to perform a better evaluation of
the DR potential and develop distributed energy resources (DER) in the 2050 horizon.
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Chapter 15

Modeling and optimizing the value of
flexible industrial processes in the

UK electricity market
Dimitrios Papadaskalopoulos1,2, Makedon Karasavvidis2,

Gerasimos Takis1, Athanasios Botsis1 and
Anastasios Oulis Rousis2

Despite its comparative advantages with respect to residential and commercial
demand response (DR), industrial DR (IDR) in general, and modeling of dif-
ferent types of flexible industrial processes in particular, has received relatively
limited research attention, with previous work having only explored limited and
industry-sector-specific subsets of such processes. This chapter adopts an alternative,
sector-agnostic modeling approach and develops generic models of all conceivable
types of flexible industrial processes, with the aim to shed light on their key operat-
ing differences and assist industrial consumers interested in IDR schemes to identify
and assess the types that are more relevant to their systems. In this context, this
chapter identifies and discusses seven different types: (1) uninterruptible processes
with fixed power, (2) interruptible processes with fixed power, (3) uninterruptible
processes with discretely adjustable power, (4) interruptible processes with discretely
adjustable power, (5) uninterruptible processes with continuously adjustable power,
(6) interruptible processes with continuously adjustable power, and (7) material
storage buffers.

For each of these types, a mathematical model capturing its techno-economic
operating characteristics is developed, including: (a) input parameters, (b) decision
variables, (c) operating constraints, and (d) inconvenience cost function. These models
are integrated into the electricity costs’ minimization problem of an industrial con-
sumer participating in the energy market through a real-time pricing (RTP) scheme.
A case study concerning an actual industrial consumer in the UK is investigated,
employing its real demand data and a target industrial process as well as real price
data from the UK wholesale market. Different scenarios are examined regarding the
flexibility type of the target process, and the results demonstrate, quantify, and com-
pare the economic benefits generated by different flexibility types. Specifically, the

1Decentralised Energy Solutions Ltd, London, UK
2Imperial College London, London, UK
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yearly electricity cost savings are in the range between 10.71% and 23.13% with
respect to the baseline electricity costs of the target process alone and between 1.58%
and 3.41% with respect to the baseline electricity costs of the industrial consumer as
a whole.

15.1 Introduction

15.1.1 Decarbonization challenges and value of demand response

Energy systems across the world are currently undergoing fundamental changes,
mainly driven by the continuously increasing levels of greenhouse gases emission
in the atmosphere and the associated climate change concerns. In response to such
concerns, numerous governments have taken significant initiatives towards the decar-
bonization of energy systems. In the United Kingdom (UK), the most recent advice by
the Committee on Climate Change (CCC) to the UK Government has recommended
an objective to reduce the carbon intensity of power generation from the current
levels of around 350 gCO2/kWh to around 100 gCO2/kWh in 2030 and potentially
25 gCO2/kWh in 2050 [1].

Such ambitious decarbonization objectives are to be achieved through two key
avenues, both of which introduce critical techno-economic challenges to electricity
systems. The first one is associated with the generation side of electricity systems and
involves the large-scale integration of renewable energy sources (RES) and the partial
phase-out of conventional, CO2-intensive generation technologies. Nevertheless, RES
are inherently characterized by high output variability, limited controllability and
lack of inertia. As a result, the balancing burden and costs for system operators are
significantly aggravated, while conventional electricity producers face increased price
volatility risks and the need to operate part-loaded in order to provide the required
balancing services [2].

The second avenue is associated with the demand side of electricity systems
and involves the large-scale electrification of transport, heating and cooling sectors,
since conventional gas/oil fired technologies are responsible for the emission of a
significant portion of the total CO2 emissions. Nevertheless, due to the natural energy
intensity of transport, heating and cooling sectors, this decarbonization potential is
accompanied by the introduction of a considerable amount of new electricity demand.
Furthermore, electricity demand peaks are expected to get disproportionally higher
(than the increase in the total electricity consumption), due to the temporal patterns
of end users’ travelling, heating and cooling requirements, driving capital intensive
investments in new generation and network capacity [3].

In this setting, demand response (DR) technologies have attracted great interest
by governments, industry and academia due to their significant potential in addressing
all the above decarbonization challenges. DR is defined as the flexible modification of
electricity consumption patterns with respect to its baseline patterns and entails either
reducing the electrical demand during emergency conditions, or, more importantly,
flexibly redistributing electrical demand in time without compromising the service
quality delivered to end users [4,5].
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Specifically, DR has been demonstrated to yield numerous system benefits,
including: (a) reduction of energy costs, by avoiding consumption during periods
with low RES output and rescheduling consumption during periods with abundant
RES output, (b) supporting system balancing through the provision of frequency
response and reserve services, and (c) avoiding/deferring investments in new gen-
eration and network capacity by reducing demand peaks. According to the studies
undertaken in [1], the potential size of these benefits for the UK electricity system
cannot be neglected: it is between £3.2bn and £4.7bn per year in a system meeting the
benchmark carbon emissions target of 100 gCO2/kWh in 2030, and up to £7.8bn per
year in a system meeting a more ambitious carbon emissions target of 50 gCO2/kWh.

15.1.2 Industrial DR: significance and relevant work

Most of the previous work on DR has focused on modeling, optimizing and ana-
lyzing the value of residential and commercial DR by exploring different flexible
demand technologies, such as electric vehicles with smart charging and vehicle-to-
grid capabilities, thermal appliances (e.g., heating, ventilation and air conditioning
systems, water heaters, refrigerators) and wet appliances (e.g., washing machines,
tumble dryers).

Contrastingly, the potential of industrial DR (IDR) has received relatively limited
attention. We believe that this constitutes a major knowledge gap that prevents the
exploitation of a hidden source of substantial flexibility, for the following reasons
[6,7]:

(a) Industrial demand represents a significant share of the total electricity consump-
tion (e.g., 25% in the UK in 2020 [8]).

(b) Considering their high energy costs and competitiveness concerns, indus-
trial consumers have strong economic incentives to actively participate in the
electricity market.

(c) In contrast with small-scale residential consumers, the majority of industrial
consumers already possess the required monitoring, control and communication
infrastructure to enable participation in the electricity market, and their large size
can avoid the technical and economic challenges of aggregation.

(d) Due to COVID-19 lockdown and work-from-home measures adopted world-
wide, the criticality of residential demand has been enhanced, while research
activities involving interactions with residential consumers (e.g., interviewing
residential consumers, accessing residential properties to install monitoring
and control equipment, obtaining residential demand data) have been seriously
affected.

Previous research works on IDR can be firstly classified into two broad categories
according to their scope. The first one focuses on the electricity system’s perspective,
by analyzing the value of IDR for the electricity system as a whole. Although our work
does not belong to this category, it is worth mentioning two representative references
for the interested reader [6,9]. In [6], the authors focus on the German electricity gen-
eration system and analyses the value of IDR in providing tertiary reserve; the results
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Table 15.1 Summary of previous work on optimizing industrial consumers’
electricity costs through IDR (FP: flexible processes, EG: electricity
generation, EES: electrical energy storage, ETV: electricity and
thermal energy vectors, ToU: time-of-use, RTP: real-time pricing, CPP:
critical peak pricing, IBR: inclining block rates)

Reference Industry sector Flexibility source Market segment

[10] Steel FP (2 types) Energy market (ToU)
[11] Oxygen generation FP (2 types), EG, EES Energy market (RTP)
[12] Agnostic ETV Energy market (ToU)
[13] Refinery FP (2 types) Energy market (RTP)
[14] Steel FP (2 types), EG, EES Energy market

(RTP, ToU, CPP, IBR)
[15] Agnostic FP (2 types), EG Matching demand with

on-site RES
[16] Cement FP (2 types), EES Ancillary services
[17] Cement FP (2 types) Energy market (RTP),

Carbon market
[18] Steel FP (3 types), EES Energy market (RTP)
[19] Agnostic FP (1 type), EG, EES Energy market (RTP,

bilateral contracts)
[20] Tire manufacturing FP (2 types), EG, EES, ETV Energy market (ToU)
[21] Flour mill FP (2 types) Energy market (RTP)
[22] Agnostic FP (2 types), EG, EES Energy market (ToU)
This work Agnostic FP (7 types) Energy market (RTP)

demonstrate that IDR yields significant capital cost savings by avoiding investments
in peaking (gas) generation capacity. The authors of [9] pursue a wider objective
by analyzing both long-term and short-term economic benefits of IDR in the Euro-
pean electricity system (including generation, transmission and distribution sectors)
through a novel whole-system modeling framework; these benefits are demonstrated
to be in the order of billion Euros per year, highlighting the motivation for further
exploring IDR initiatives. Due to the system focus, these works employ generic,
high-level models for the representation of industrial demand flexibility, without
delving deeper into the flexibility characteristics of different industrial loads and
processes.

The second category, to which our work belongs, focuses on the industrial energy
consumers’perspective, by developing optimization models for minimizing individual
consumers’ electricity costs through exploitation of IDR [10–22]. In the context of
summarizing this stream of previous work and manifesting where our work stands,
Table 15.1 classifies references belonging to this category based on three criteria.
The first criterion involves the industry sectors under study, with significant diversity
observed among the different relevant references.

The second criterion involves the sources of underlying flexibility that enable
the realization of IDR. At this point, it should be stressed that industrial demand
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flexibility includes a very large number of diverse energy technologies, systems and
assets, which vary greatly according to the specific sector under study, the pro-
duction processes, as well as the perceptions, preferences and requirements of the
industrial consumers. Nevertheless, we believe that such diversity can be encapsu-
lated by four different classes of flexibility sources. The first one includes flexible
industrial processes, the electricity demand requirements of which can be redis-
tributed in time; such processes have been explored in [10–22]. The second class
includes on-site (i.e., installed at the industrial consumers’ premises) electricity gen-
eration assets, which have been explored in [11,14,15,19,20,22]. The third class
includes on-site electrical energy storage assets, which exhibit the flexibility to
act as both electricity demand (when charging) and generation (when discharging)
which have been explored in [11,14,16,18–20,22]. Finally, the fourth class includes
flexibility sources associated with the interaction between electricity and thermal
(heating/cooling) energy vectors, such as electric heat pumps and thermal energy
storage [12,20].

The last criterion involves the market segments and the pricing schemes through
which the exploitation of IDR yields economic benefits for the industrial consumers.
It can be observed that the majority of relevant references have focused on the energy
market, where industrial consumers naturally aim at buying energy at low prices and
selling energy (in cases of on-site generation and storage) at high prices. This stream
of previous work has explored different energy pricing schemes mobilizing IDR, such
as time-of-use (ToU) pricing, and real-time pricing (RTP).

15.1.3 Chapter motivation and contributions

This work belongs to the second category discussed in Section 15.1.2 (i.e., industrial
energy consumers’ perspective), with a particular focus on modeling different types
of flexible industrial processes and integrating these models into the electricity costs’
minimization problem of an industrial consumer. This focus is driven by two moti-
vations. First of all, models of the other three classes of industrial demand flexibility
(i.e., on-site electricity generation, on-site electrical energy storage, and flexibility
sources associated with the interaction between electricity and thermal energy vectors)
have been also explored in previous works focusing on residential and commercial
DR and are well established. On the other hand, flexible industrial processes con-
stitute a differentiating flexibility source with respect to residential and commercial
DR applications that has received limited attention. Second, previous work modeling
this flexibility source has only explored a limited subset of particular types of flexible
industrial processes (up to three different types in [18]), and the developed models are
mostly driven by the particularities of the industry sector under study (Table 15.1).

This chapter adopts an alternative, sector-agnostic modeling approach and devel-
ops generic models of all conceivable types of flexible industrial processes, with the
aim to shed light on their key operating differences and assist industrial consumers
interested in IDR schemes to identify and assess the types that are more relevant to their
systems. In this context, this chapter identifies and discusses seven different types:
(1) uninterruptible processes with fixed power, (2) interruptible processes with fixed



334 Industrial DR: methods, best practices, case studies, and applications

power, (3) uninterruptible processes with discretely adjustable power, (4) interruptible
processes with discretely adjustable power, (5) uninterruptible processes with con-
tinuously adjustable power, (6) interruptible processes with continuously adjustable
power, and (7) material storage buffers. For each of these types, a mathematical model
capturing its techno-economic operating characteristics is developed, including: (a)
input parameters, (b) decision variables, (c) operating constraints, and (d) inconve-
nience cost function; the latter encapsulates operating costs driven by rescheduling
the timing of the processes with respect to the baseline operating patterns.

These models are integrated into the electricity costs’ minimization problem of
an industrial consumer; in line with the majority of previous works (Table 15.1), our
focus lies in the participation of the industrial consumer in the energy market through
an RTP scheme, since we believe that RTP closes the existing gap between wholesale
and retail electricity market segments and promises a more active market participation
of IDR and higher subsequent benefits for the whole electricity system. Nevertheless,
we believe that our developed models of flexible industrial processes are generic and
are applicable to problems with different pricing schemes and participation in ancillary
services markets (with the latter constituting an area of our future work).

Finally, a case study concerning an actual industrial consumer in the UK is inves-
tigated, employing its real demand data and a target industrial process (i.e., a process
which the consumer is interested in operating flexibly) as well as real price data from
the UK wholesale market. Different scenarios are examined regarding the flexibility
type of the target process, and the results demonstrate, quantify, and compare the
economic benefits generated by different flexibility types. Specifically, the yearly
electricity cost savings are in the range between 10.71% and 23.13% with respect to
the baseline electricity costs of the target process alone and between 1.58% and 3.41%
with respect to the baseline electricity costs of the industrial consumer as a whole;
we believe that these benefits are very significant, considering that the target process
corresponds to approximately 17% of the consumer’s total electricity consumption.

15.1.4 Chapter outline

The rest of this chapter is organized as follows. Section 15.2 details the developed
models of different types of flexible industrial processes and integrates them into
the electricity costs’ minimization problem of an industrial consumer. Section 15.3
presents the examined case study and the obtained results. Finally, Section 15.4
discusses conclusions and future extensions of this work.

15.2 Modeling framework

15.2.1 Assumptions and generic formulation of industrial
consumer’s optimization problem

As discussed in Section 15.1.3, our focus lies in modeling different types of flexible
industrial processes. The first key assumption of our work is that such flexibility
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does not entail reduction of the overall electrical energy consumption of the consid-
ered processes, but only redistribution of their electricity requirements in time. This
assumption is also adopted in all previous relevant works (Table 15.1), since it is widely
recognized that industrial processes require certain fixed levels of energy to ensure that
their production performance is not compromised. Therefore, IDR schemes entailing
reduction of the overall electricity consumption are generally limited to emergency
schemes deployed when the electricity grid is under massive pressure (e.g., during
generation or network outages). On the other hand, IDR schemes entailing redistri-
bution of such fixed energy requirements in time exhibit much higher applicability
and acceptability by industrial consumers. For these reasons, the developed models
of all seven types of flexible industrial processes presented in the following sections
respect this fixed energy constraint.

Despite this higher acceptability of temporal redistribution of industrial pro-
cesses, it is also widely recognized that this entails certain inconvenience costs, i.e.,
operating costs incurred by the industrial users due to changes in the schedule of pro-
cesses with respect to the baseline or preferred operating patterns. For example, these
may include additional labor costs for operating processes outside the normal temporal
horizons. For this reason, the developed models of all seven types of flexible industrial
processes include an inconvenience cost function which is accounted for (along with
the electricity cost function) in the industrial consumer’s optimization problem.

Finally, since our focus lies in the mobilization of IDR through an RTP scheme, we
assume that the considered industrial consumer possesses the required communication
and control infrastructure to receive the RTP signals from its electricity supplier and
accordingly optimize the schedules of its flexible processes in an automated fashion.
It should be noted that RTP schemes generally include -on top of the wholesale
electricity prices – a number of non-energy cost components (e.g., associated with
network charges, decarbonization subsidies, etc.); such cost components are out of
the scope of this work, and we thus assume that the RTP signals correspond to the
wholesale electricity prices.

Considering the above assumptions, we provide below a generic formulation of
the considered industrial consumer’s optimization problem. The objective function
(15.1) lies in minimizing the total operating cost of the industrial consumer across the
considered scheduling horizon (e.g., daily in the context of the case study presented
in Section 15.3) which constitutes the sum of the inconvenience cost associated with
flexible processes (first term) and their electricity cost (second term). The latter
depends on their power demand and the RTP signal at each time period, considering
the resolution of the scheduling horizon (e.g., hourly in the context of the case study
presented in Section 15.3). The input parameters of the problem include the RTP
signals along with an additional set of input parameters that apply to each specific
type of flexible industrial processes. The decision variables of the problem include the
power demands of the flexible processes along with an additional set of type-specific
decision variables. The inconvenience cost function and constraints of the problem
are also type-specific. All type-specific elements of the problem (input parameters,
decision variables, inconvenience cost function, constraints) are provided in dedicated
Sections 15.2.2–15.2.6.



336 Industrial DR: methods, best practices, case studies, and applications
P

o
w

er

P
o

w
er

Time TimeAcceptable Interval

Uninterruptible
(a) (b)

Interruptible

Acceptable Interval

Figure 15.1 Illustration of flexibility of (a) uninterruptible and (b) interruptible
process with fixed power

Objective function:

min
∑

j

[
CINC

j +
∑

t

dj,t · λt · τ
]

(15.1)

Input parameters: {λt}∀t and type-specific input parameters (Sections 15.2.2–15.2.6)
Decision variables: {dj,t}∀j, t and type-specific decision variables (Sections 15.2.2–
15.2.6)
Constraints: type-specific operating constraints (Sections 15.2.2–15.2.6)

where:

j ∈ J index and set of flexible processes
t ∈ T index and set of time periods belonging to the scheduling horizon
τ time resolution of scheduling horizon (h)
λt RTP signal at period t (£/MWh)
dj,t power demand of process j at period t (kW)
CINC

j inconvenience cost function of process j (£) (type-specific,
Sections 15.2.2–15.2.6)

15.2.2 Uninterruptible processes with fixed power

The first type includes processes that can be temporally shifted within an acceptable
(by the industrial user) temporal interval, but (a) their power profile, generally con-
sisting of a number of steps (which may also represent interdependent, consecutive
sub-processes of the same process) is fixed and cannot be modified; and (b) they
cannot be interrupted after their initiation. Therefore, their flexibility lies only in
the ability to shift their whole power profile earlier or later in time, as illustrated in
Figure 15.1(a) for an example of a process with 2 steps. Curves with different colors
indicate different feasible options for the execution of the process: (i) the red curve
indicates that the process is executed at its baseline execution time, (ii) the green
curve indicates that the process is executed at an earlier (than its baseline) time and
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(iii) the blue curve indicates that the process is executed at a later (than its baseline)
time.

The mathematical model of this type includes the following elements:
Input parameters: {T DUR

j , tBAS
j , tIN

j , tTER
j , C−

j , C+
j }∀j, {DST

j,s }∀j, s ∈ Sj

Decision variables: {uIN
j,t , dj,t}∀j, t, {δ−

j , δ+
j }∀j

Inconvenience cost function:

CINC
j = (C−

j · δ−
j + C+

j · δ+
j ) · τ , ∀j (15.2)

Constraints:

δ−
j =

y=tBAS
j −tIN

j∑

y=0

[

1 for each period of

earlier initiation
︷ ︸︸ ︷

1 −
x=y∑

x=0

uIN
j,tBAS

j −x
−

1 if initiated later︷ ︸︸ ︷
o=tTER

j −T DUR
j +1∑

o=tBAS
j +1

uIN
j,o

]
, ∀j, (15.3)

δ+
j =

y=tTER
j −T DUR

j +1∑

y=tBAS
j

[

1 for each period of

later initiation
︷ ︸︸ ︷

1 −
x=y∑

x=tBAS
j

uIN
j,x −

1 if initiated earlier︷ ︸︸ ︷
o=tBAS

j −1∑

o=tin

uIN
j,o

]
, ∀j, (15.4)

dj,t =
s=T DUR

j∑

s=1

zj,t+1−s · DST
j,s , ∀j, t, (15.5)

∑

t<tIN
j

uIN
j,t = 0, ∀j, (15.6)

∑

t>tTER
j −T DUR

j +1

uIN
j,t = 0, ∀j, (15.7)

tTER
j −T DUR

j +1∑

tIN
j

uIN
j,t = 1, ∀j, (15.8)

where

s ∈ Sj index and set of steps of process j

T DUR
j duration of process j

tBAS
j baseline initiation time of process j

tIN
j earliest acceptable initiation time of process j
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tTER
j latest acceptable termination time of process j

C−
j marginal inconvenience cost of earlier initiation of process j (£/h)

C+
j marginal inconvenience cost of later initiation of process j (£/h)

DST
j,s power demand of step s of process j (kW)

uIN
j,t binary variable expressing whether process j is initiated

at period t (1) or not (0)
δ−

j extent of earlier initiation of process j
δ+

j extent of later initiation of process j

Based on this model, the industrial user determines the baseline initiation, earliest
acceptable initiation, and latest acceptable termination times (which generally reflect
production performance objectives and operating practices such as labor shifts),
and the marginal inconvenience costs of earlier and later initiation with respect to
the baseline initiation time. The primary decision of the model is the period at
which the process in initiated (i.e., the period for which uIN

j,t = 1). As reflected in
(15.2), the inconvenience cost is proportional to the temporal extents of earlier or later
initiation (only one of its two terms can be non-zero); these temporal extents consti-
tute dependent decision variables, depending on the primary decision variables uIN

j,t ,
as determined by constraints (15.3)–(15.4). The same holds for the power demands
of the process, which are determined by constraint (15.5). Constraints (15.6)–(15.7)
ensure that the process cannot be executed outside the acceptable temporal interval
(defined as the interval between the earliest acceptable initiation and latest acceptable
termination times). Constraint (15.8) ensures that the process should be executed once
during the acceptable temporal interval.

15.2.3 Interruptible processes with fixed power

The processes of the second type differ from those of the first type (Section 15.2.2) in
that they exhibit the additional flexibility of being interruptible after the execution of
each of their steps; this may represent sub-processes which do not necessarily need
to be consecutively executed. Their flexibility is illustrated in Figure 15.1(b) for an
example of a process with 2 steps. Curves with different colors indicate different
feasible options for the execution of the process: (i) the red curve indicates that both
steps of the process are executed at their baseline execution times, (ii) the green
curve indicates that the first step is executed at an earlier (than its baseline) time, the
process is then interrupted, and the second step is executed at a later (than its baseline)
time, and (iii) the blue curve is similar to the green one, with the difference that the
interruption interval between the two steps is longer.

The mathematical model of this type includes the following elements:
Input parameters: {T DUR

j }∀j, {tBAS
j,s , tIN

j,s , tTER
j,s , C−

j,s, C+
j,s, DST

j,s }∀j, s ∈ Sj

Decision variables: {uIN
j,t,s}∀j, t, s ∈ Sj, {dj,t}∀j, t, {δ−

j,s, δ
+
j,s}∀j, s ∈ Sj

Inconvenience cost function:

CINC
j =

∑

s

[
(C−

j,s · δ−
j,s + C+

j,s · δ+
j,s) · τ ] , ∀j (15.9)
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Constraints:

δ−
j,s =

y=tBAS
j,s −tIN

j,s∑

y=0

[

1 for each period of

earlier execution
︷ ︸︸ ︷

1 −
x=y∑

x=0

uIN
j,tBAS

j,s −x,s
−

1 if executed later︷ ︸︸ ︷
o=tTER

j,s∑

o=tBAS
j,s +1

uIN
j,o,s

]
, ∀j, s, (15.10)

δ+
j,s =

y=tTER
j,s∑

y=tBAS
j,s

[

1 for each period of

later execution
︷ ︸︸ ︷

1 −
x=y∑

x=tBAS
j,s

uIN
j,x,s −

1 if executed earlier︷ ︸︸ ︷
o=tBAS

j,s −1∑

o=tIN
j,s

uIN
j,o,s

]
, ∀j, s, (15.11)

dj,t =
∑

s

uIN
j,t,s · DST

j,s , ∀j, t, (15.12)

∑

t<tIN
j,s

uIN
j,t,s = 0, ∀j, s, (15.13)

∑

t>tTER
j,s

uIN
j,t,s = 0, ∀j, s, (15.14)

tTER
j,s∑

tIN
j,s

uIN
j,t,s = 1, ∀j, s, (15.15)

uIN
j,t,s+1 ≤

y=t−1∑

y=1

uIN
j,y,s, ∀j, s ∈ [1, | Sj | −1

]
, t, (15.16)

where

tBAS
j,s baseline execution time of step s of process j

tIN
j,s earliest acceptable execution time of step s of process j

tTER
j,s latest acceptable execution time of step s of process j

C−
j,s marginal inconvenience cost of earlier execution of step s

of process j (£/h)
C+

j,s marginal inconvenience cost of later execution of step s
of process j (£/h)

uIN
j,t,s binary variable expressing whether step s of process j is executed

at period t (1) or not (0)
δ−

j,s extent of earlier execution of step s of process j
δ+

j,s extent of later execution of step s of process j

This model is similar to the model of Section 15.2.2, with the difference that its
elements are associated with each step of the process, and not just with the process
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as a whole. Specifically, the industrial user determines baseline, earliest and latest
execution times as well as marginal inconvenience costs of earlier and later execution,
for each step of the process. The primary decisions of the model are the periods at
which each step of the process is executed. As reflected in (15.9), the inconvenience
cost is equal to the sum of the earlier/later execution costs of each step. The temporal
extents of earlier/later execution of each step as well as the power demands of the
process constitute dependent decision variables, determined by constraints (15.10)–
(15.11) and (15.12), respectively. Constraints (15.13)–(15.14) ensure that each step
of the process cannot be executed outside its acceptable temporal interval. Constraint
(15.15) ensures that each step of the process should be executed once during its
acceptable temporal interval. Constraint (15.16) ensures that each step of the process
can be executed only if the preceding step has already been executed.

15.2.4 Uninterruptible and interruptible processes with discretely
adjustable power

The processes of the third and fourth types differ from those of the previous two types
(Sections 15.2.2 and 15.2.3) in that they exhibit the additional flexibility of adjustable
power profiles, as long as their total electricity consumption within an interval spec-
ified by their users is not affected (i.e., they respect the fixed energy constraint, as
explained in Section 15.2.1). Such processes may represent manufacturing machines
that can run with alternative power levels. Nevertheless, for these two types examined
in this section, this power adjustability involves a certain set of discrete power levels
(their power cannot be continuously adjusted). The flexibility of uninterruptible and
interruptible processes with discretely adjustable power is illustrated in Figure 15.2(a)
and 15.2(b), respectively, for an example of a process with 2 steps and 3 alternative
power levels. Curves with different colors indicate different feasible options for the
execution of the process: (i) the red curve indicates that both steps of the process are
executed with their baseline power profile, involving the lowest power level P1 for
the first step and the highest power level P3 for the second step, (ii) the green curve
indicates that both steps are executed with the intermediate power level P2, and (iii)
the blue curve indicates that the first step is executed with the highest power level P3
and the second step with the lowest power level P1.

The mathematical model of uninterruptible processes with discretely adjustable
power levels includes the following elements:
Input parameters: {tIN

j , tTER
j , tB1

j , tB2
j , K−

j , K+
j , Ej}∀j, {DLVL

j,l }∀j, l ∈ Lj

Decision variables: {uLVL
j,t,l }∀j, t, l ∈ Lj, {dj,t}∀j, t

Inconvenience cost function:

CINC
j = K−

j ·
t<tB1

j∑

t=tIN
j

dj,t · (tB1
j − t) · τ 2 + K+

j ·
t=tTER

j∑

t>tB2
j

dj,t · (t − tB2
j ) · τ 2, ∀j (15.17)

Constraints:

dj,t =
∑

l

uLVL
j,t,l · DLVL

j,l , ∀j, t, (15.18)



Modeling and optimizing the value of flexible industrial processes 341

Time

P3
P

o
w

er

P
o

w
er

P2

P1

(a) (b)

P3

P2

P1

TimeAcceptable Interval Acceptable Interval

Uninterruptible Interruptible

Figure 15.2 Illustration of flexibility of (a) uninterruptible and (b) interruptible
process with discretely adjustable power

∑

l

uLVL
j,t,l ≤ 1, ∀j, t, (15.19)

∑

t<tIN
j

uLVL
j,t,l = 0, ∀j, l, (15.20)

∑

t>tTER
j

uLVL
j,t,l = 0, ∀j, l, (15.21)

tTER
j∑

tIN
j

dj,t · τ = Ej, ∀j, (15.22)

∑

l

uLVL
j,t+1,l −

∑

l

uLVL
j,t,l ≤ 1 −

∑m=t
m=1

∑
l uLVL

j,m,l

| T | , ∀j, t ∈ [1, | T | −1] , (15.23)

Where:

l ∈ L index and set of discrete (non-zero) power levels of process j

tB1
j baseline initiation time of process j

tB2
j baseline termination time of process j

K−
j marginal inconvenience cost of earlier consumption

of energy by process j (£/kWh/h)
K+

j marginal inconvenience cost of later consumption

of energy by process j (£/kWh/h)
Ej total energy required by process j (kWh)

DLVL
j,l discrete (non-zero) power level l of process j (kW)

uLVL
j,t,l binary variable expressing whether power level l of process j

is selected at period t (1) or not (0)
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Based on this model, the industrial user determines the acceptable execution interval[
tIN
j , tTER

j

]
, the baseline execution interval

[
tB1
j , tB2

j

]
(implying that this constitutes

a subset of the acceptable execution interval, i.e., tIN
j ≤ tB1

j ≤ tB2
j ≤ tTER

j ) and the
marginal inconvenience costs of consuming energy earlier/later than the baseline
interval. The primary decision of the model is the selected power level at each period
t (which is either equal to one of the alternative discrete power levels l if uLVL

j,t,l = 1,
or equal to zero if

∑
l uLVL

j,t,l = 0). As reflected in (15.17), the inconvenience cost is
proportional to the amount of energy consumed earlier/later than the baseline interval
as well as to the temporal extent of such earlier/later energy consumption (i.e., it
increases as energy is obtained further before or further after the baseline interval). The
power demands of the process constitute dependent decision variables, determined by
constraint (15.18). Constraint (15.19) ensures that at maximum one of the alternative
discrete power levels can be selected at each period. Constraints (15.20) and (15.21)
ensure that the process cannot be executed outside the acceptable temporal interval.
Constraint (15.22) ensures that the fixed energy requirements are consumed within the
acceptable interval. Constraint (15.23) ensures that the process cannot be interrupted
after its initiation.

Therefore, the only difference of the mathematical model of interruptible
processes with discretely adjustable power levels is that constraint (15.23) is omitted.

15.2.5 Uninterruptible and interruptible processes with continuously
adjustable power

The processes of the fifth and sixth types differ from those of the previous two types
(Section 15.2.4) in that they exhibit the additional flexibility of continuous (instead of
discrete) power adjustability, i.e., their power can take any value between a minimum
and a maximum limit.

The mathematical model of this type includes the following elements:
Input parameters: {tIN

j , tTER
j , tB1

j , tB2
j , K−

j , K+
j , Ej, Dj, Dj}∀j

Decision variables: {uON
j,t , dj,t}∀j, t

Inconvenience cost function:

CINC
j = K−

j ·
t<tB1

j∑

t=tIN
j

dj,t · (tB1
j − t) · τ 2 + K+

j ·
t=tTER

j∑

t>tB2
j

dj,t · (t − tB2
j ) · τ 2, ∀j (15.24)

Constraints:
∑

t<tIN
j

uON
j,t = 0, ∀j, (15.25)

∑

t>tTER
j

uON
j,t = 0, ∀j, (15.26)

uON
j,t · Dj ≤ dj,t ≤ uON

j,t · Dj, ∀j, (15.27)
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tTER
j∑

tIN
j

dj,t · τ = Ej, ∀j, (15.28)

uON
j,t+1 − uON

j,t ≤ 1 −
∑m=t

m=1

∑
l uON

j,m

| T | , ∀j, t ∈ [1, | T | −1] , (15.29)

where

Dj minimum (non-zero) power limit of process j (kW)
Dj maximum power limit of process j (kW)
uON

j,t binary variable expressing whether process j is active (consuming
non-zero power) at period t (1) or not (0)

The inputs determined by the industrial user and the inconvenience cost function
(15.24) are identical to the ones of the model of Section 15.2.4. The primary deci-
sions of the model include both the binary states uON

j,t and the power demands dj,t of
the process, i.e., in contrast to all the previous models, these power demands con-
stitute independent rather than dependent decision variables. Constraints (15.25) and
(15.26) ensure that the process cannot be executed outside the acceptable temporal
interval. Constraint (15.27) ensures that the power demands respect the minimum
and maximum power limits of the process. Constraint (15.28) ensures that the fixed
energy requirements are consumed within the acceptable interval. Constraint (15.29)
ensures that the process cannot be interrupted after its initiation.

Therefore, the only difference of the mathematical model of interruptible
processes with continuously adjustable power levels is that constraint (15.29) is
omitted.

15.2.6 Material storage buffers

Many realistic industrial plants involve interdependent processes, in the sense that one
process produces a particular material which is then consumed by another process.
In case that only a subset of these processes exhibit flexibility (i.e., they belong to
one of the flexible types presented in Sections 15.2.2–15.2.5), while the rest of the
processes are completely inflexible (i.e., they cannot be shifted in time nor adjust
their power profile), such interdependencies imply that the flexibility of the subset of
flexible processes cannot be actually exploited due to the criticality of the subset of
inflexible processes.

The deployment of material storage buffers, which can store materials pro-
duced/consumed by different processes, can address this challenge and enable
exploitation of the available flexibility in the industrial plant. This is because such
buffers effectively decouple the operation of the interdependent processes, by storing
materials produced by preceding processes and providing these materials to succeed-
ing processes, at decoupled timeframes. Therefore, the power demand of flexible
processes can be redistributed in time without compromising the operation of depen-
dent inflexible processes. In this context, it should be noted that the deployment



344 Industrial DR: methods, best practices, case studies, and applications

of such buffers does not constitute a primary flexibility potential, as an industrial
plant involving only inflexible processes cannot exhibit flexibility irrespectively of
the inclusion of such buffers; it rather constitutes an enabler for the exploitation of
available flexibility in a subset of the processes.

The mathematical model we present below is generic, in that it allows the rep-
resentation of any number of interdependent flexible and inflexible processes, any
number of material storage buffers and any possible configuration of the links between
processes and buffers. Furthermore, our modeling approach can accommodate any
of the flexibility types presented in Sections 15.2.2–15.2.5 for the subset of flexible
processes; however, for simplicity and brevity reasons, the model below assumes that
all flexible processes belong to the first type i.e., they are uninterruptible processes
with fixed power (Section 15.2.2).

Input parameters: {T DUR
j , tBAS

j , tIN
j , tTER

j , C−
j , C+

j }∀j, {DST
j,s }∀j, s ∈ Sj,

{PM F
j,m,s}∀j ∈ J ∩ Gm, m, s ∈ Sj, {PM IF

i,m,t}∀i ∈ I ∩ Gm, m, t, {CM F
j,m,s}∀j ∈ J ∩ Fm, m,

s ∈ Sj, {CM IF
i,m,t}∀i ∈ I ∩ Fm, m, t, {Y m, Y m, ym,0}∀m

Decision variables: {uIN
j,t , dj,t}∀j, t, {δ−

j , δ+
j }∀j, {pmF

j,m,t}∀j ∈ J ∩ Gm, m, t,
{cmF

j,m,t}∀j ∈ J ∩ Fm, m, t, {ym,t}∀m, t

Inconvenience cost function:

CINC
j = (C−

j · δ−
j + C+

j · δ+
j ) · τ , ∀j (15.30)

Constraints:

(15.3) − (15.8), (15.31)

pmF
j,m,t =

s=T DUR
j∑

s=1

uIN
j,t+1−s · PM F

j,m,s, ∀j ∈ J ∩ Gm, m, t, (15.32)

cmF
j,m,t =

s=T DUR
j∑

s=1

uIN
j,t+1−s · CM F

j,m,s, ∀j ∈ J ∩ Fm, m, t, (15.33)

ym,t = ym,t−1 +
∑

j∈J∩Gm

pmF
j,m,t +

∑

i∈I∩Gm

PM IF
i,m,t −

∑

j∈J∩Fm

cmF
j,m,t (15.34)

−
∑

i∈I∩Fm

CM IF
i,m,t , ∀m, t,

Y m ≤ ym,t ≤ Y m, ∀m, t, (15.35)

ym,0 = ym,|T |, ∀m, (15.36)
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where

m ∈ M index and set of material storage buffers
i ∈ I index and set of inflexible processes
Gm set of processes that input material to buffer m
Fm set of processes that output material from buffer m
PM F

j,m,s amount of material produced by step s of flexible process j
and inputted to buffer m (kg)

PM IF
i,m,t amount of material produced by inflexible process i and

inputted to buffer m at period t (kg)
CM F

j,m,s amount of material consumed by step s of flexible process j
and outputted from buffer m (kg)

CM IF
i,m,t amount of material consumed by inflexible process i and

outputted from buffer m at period t (kg)
Y m, Y m, ym,0 minimum, maximum, and initial material content

of buffer m (kg)
pmF

j,m,t amount of material produced by flexible process j and
inputted to buffer m at period t (kg)

cmF
j,m,t amount of material produced by flexible process j and

outputted from buffer m at period t (kg)
ym,t material content of buffer m at period t (kg)

Beyond the inputs determined by the industrial user (which are identical to the ones of
the model of Section 15.2.2), the model assumes knowledge of the amounts of material
produced/consumed by each flexible and inflexible process, and inputted to/outputted
from each buffer, as well as the minimum, maximum, and initial (at the start of the
scheduling horizon) contents of each buffer. The primary decisions uIN

j,t , inconvenience
cost function (15.30) and constraints (15.31) are the same as in the model of Section
15.2.2; this implies our assumption that the utilization of buffers does not entail any
inconvenience cost. The time-specific amounts of material produced/consumed by
each flexible process, and inputted to/outputted from each buffer, constitute depen-
dent decision variables, determined by constraints (15.32) and (15.33). Constraint
(15.34) expresses the material content balance equation of each buffer, implying that
its material content at each period depends on its material content at the previous period
plus/minus the material inputted to/outputted from it. Constraint (15.35) ensures that
the material content of each buffer respects its minimum and maximum content limits
(reflecting its material storage capacity). Constraint (15.36) expresses the material
content neutrality assumption for each buffer i.e., that the material content at the start
and the end of the examined scheduling horizon are assumed equal.

15.3 Case study

15.3.1 Description and input data

The examined case study involves an actual industrial consumer in the UK, who has
participated in the INFINITE project. This consumer has provided us with their actual
(metered) demand data over a full year (January–December 2020) and has identified
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a target industrial process which they currently operate in an inflexible fashion, but
they are interested in operating flexibly, since it corresponds to approximately 17%
of their total electricity consumption over this year. This process needs to be executed
once every day and its current (baseline) temporal and power demand parameters
are generally identical every day. In this context, a daily scheduling horizon with an
hourly resolution is employed in the case study. As discussed in Section 15.2.1, we
have assumed that the RTP signals communicated to the industrial user correspond
to the UK wholesale electricity prices, which have been derived (for the same year
January–December 2020) from [23].

In the baseline scenario i.e., the current operating pattern, the process involves 4
hourly steps which are consecutively (without interruptions) executed at hours 11:00–
12:00, 12:00–13:00, 13:00–14:00 and 14:00–15:00 (i.e., at periods t = 12, t = 13,
t = 14 and t = 15 of our model), with their respective power demands being 250 kW,
550 kW, 700 kW and 350 kW. Since the industrial consumer has been uncertain around
the specific types of flexibility that can be deployed for the target process, the case
study examines different scenarios, considering all seven types investigated in Section
15.2. The assumed values of the input parameters applying to each type are presented
in Table 15.2. Considering that the industrial consumer currently operates the process
in an inflexible fashion and does not have prior experience on flexible operation,
these values have been determined in collaboration with the authors, with the high-
level aim to respect the key operating characteristics of the target process and allow
a consistent comparison of the different flexibility types. It should be noted that all
inconvenience cost parameters (C−

j , C+
j , C−

j,s, C+
j,s, K−

j , K+
j ) have been assumed equal

to zero, because of uncertainties and ambiguities faced by the industrial consumer
in evaluating the economic implications of different flexibility types; therefore, the
objective function of the industrial consumer’s optimization problem includes only
the electricity cost (despite the generality of the models presented in Section 15.2).

15.3.2 Benefits of flexibility types with fixed power

We start our analysis by presenting the benefits generated by the two flexibility types
with fixed power (uninterruptible and interruptible). In both of these scenarios, the
duration and power profile of the target process are not altered with respect to the base-
line scenario (Table 15.2), but the execution of the process can be shifted earlier or
later in time, with an allowable execution interval between t = 8 and t = 19; in
other words, the target process can be shifted by 4 hours earlier or later with respect
to the baseline scenario. Figure 15.3 illustrates the schedule of the target process under
the three compared scenarios (baseline, uninterruptible with fixed power, interrupt-
ible with fixed power) for one of the days examined in the case study (23 February
2020) along with the RTP signals for the same day.

In the scenario where the target process becomes a flexible uninterruptible process
with fixed power (indicated in yellow), its initiation time is shifted 3 hours later with
respect to the baseline scenario (indicated in red), i.e., from t = 12 to t = 15, in order
to exploit the lower RTP later in the day, and particularly execute the third step of the
process – which is characterized by the highest electricity requirements – at t = 17,
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Table 15.2 Assumed values of input parameters in the case study

Input Uninterruptible Interruptible Discretely Continuously Material
parameter fixed power fixed power adjustable adjustable storage

power power buffer

T DUR
j 4 4 – – 2

tBAS
j 12 – – – 12

{tIN
j , tTER

j } {8,19} – {8,19} {8,19} {8,19}

{C-
j , C+

j } {0,0} – – – {0,0}

{DST
j,s } {250,550, {250,550, – – {250,550}

700,350} 700,350}
tBAS
j,s – {12,13,14,15} – – –

tIN
j,s – {8,9,10,11} – – –

tTER
j,s – {16,17,18,19} – – –

{C-
j,s, C+

j,s} – {0, 0}∀s – –

{tB1
j , tB2

j } – – {12,15} {12,15} –

{K-
j , K+

j } – – {0,0} {0,0} –

Ej – – 1,850 1,850 –

{DLVL
j,l } – – {250,550, – –

700,350}
{Dj , Dj} – – – {250,700} –

PM F
j,m,s – – – – {0,50}

PM IF
i,m,t – – – – {0}∀t

CM F
j,m,s – – – – {0,0}

CM IF
i,m,t – – – – {0}∀t �= 14

{50}∀t = 14
Y m – – – – 10

Y m – – – – 110

ym,0 – – – – 60

since this hour exhibits a very low RTP. As a result, the daily electricity cost of the
process is reduced by 16.41% with respect to the baseline scenario.

In the scenario where the target process exhibits the additional flexibility of
being interruptible (indicated in green), its first two steps are executed at the earliest
acceptable time (t = 8 and t = 9) in order to exploit the lower RTP, and particularly
execute the second step of the process at t = 9 which exhibits the lowest RTP of the
day. The process is then interrupted for 7 hours, and its last two steps are executed at
t = 17 and t = 18 (as in the uninterruptible scenario) in order to exploit the very low
RTP of t = 17 for the third step of the process. As a result of this additional flexibility,
the daily electricity cost of the process is now reduced by 28.53% with respect to the
baseline scenario.
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Figure 15.3 Schedule of target process under baseline, uninterruptible with fixed
power and interruptible with fixed power scenarios (23 February
2020)

15.3.3 Benefits of flexibility types with adjustable power

We continue our analysis by presenting the benefits generated by the flexibility types
with adjustable power (discretely adjustable and continuously adjustable). In these
scenarios, the total energy requirement of the target process is not altered with respect
to the baseline scenario (i.e., it is equal to 250 kW · 1h + 550 kW · 1h + 700 kW ·
1h + 350 kW · 1h = 1, 850 kWh, see Table 15.2) and the allowable execution interval
remains the same with the two scenarios with fixed power examined in Section 15.3.2
(between t = 8 and t = 19) for comparison consistency purposes. In the same logic,
the assumed power adjustability is consistent with the power levels of the baseline
scenario: (a) in the discretely adjustable power scenario, the 4 alternative discrete
power levels are identical to the power levels of the 4 steps of the process in the
baseline scenario, and (b) in the continuously adjustable power scenario, the minimum
and maximum power limits correspond to the minimum and maximum power of the
process in the baseline scenario.

Figure 15.4 illustrates the schedule of the target process under four compared
scenarios (baseline, uninterruptible with fixed power, uninterruptible with discretely
adjustable power, uninterruptible with continuously adjustable power) for one of the
days examined in the case study (23 February 2020) along with the RTP signals for
the same day.
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Figure 15.4 Schedule of target process under baseline, uninterruptible with fixed
power, uninterruptible with discretely adjustable power and
uninterruptible with continuously adjustable power scenarios (23
February 2020)

In the scenario where the target process becomes a flexible uninterruptible process
with discretely adjustable power (indicated in green), it is executed at the earliest
acceptable window (from t = 8 to t = 11), in contrast to the respective scenario with
fixed power (indicated in yellow) where it is executed from t = 15 to t = 18, and
despite the fact that the two scenarios exhibit the same allowable execution interval.
The reason behind this effect is that the power adjustability allows the process to alter
the power sequence of its 4 steps and exploit the lowest RTP of the day (at t = 9) by
consuming the maximum possible power (700 kW) at this hour. As a result, the daily
electricity cost of the process is now reduced by 18.40% with respect to the baseline
scenario (while the respective benefit in the scenario with fixed power is 16.41%).

In the scenario where the target process exhibits the additional flexibility of con-
tinuous power adjustability (indicated in blue), its duration of execution is reduced
to 3 hours (from t = 8 to t = 10), despite the fact that its minimum and max-
imum power limits are identical to the respective scenario with discrete power
adjustability. This is because the continuous power adjustability allows it to con-
sume the total energy requirement (1,850 kWh) through the 3-hour combination of
700 kW/700 kW/450 kW, while such a 3-hour combination is not feasible in the sce-
nario with discrete power adjustability since the power level of 450 kW does not
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belong to the set of alternative discrete power levels; the closest feasible combina-
tions are 700 kW/700 kW/550 kW (yielding a consumed energy of 1,950 kWh) and
700 kW/550 kW/550 kW (yielding a consumed energy of 1,800 kWh). Based on this
feasible 3-hour combination, the target process consumes the maximum possible
power (700 kW) at the first two hours (t = 8 to t = 9) which constitute the most
favorable consecutive-2-hour interval within the allowable execution interval. As a
result of this additional flexibility, the daily electricity cost of the process is now
reduced by 21.17% with respect to the baseline scenario.

15.3.4 Benefits of material storage buffers

We conclude our analysis by presenting the benefits generated by material storage
buffers. As discussed in Section 15.2.6, the value of such buffers lies in cases where the
industrial consumer operates interdependent processes (in the sense that one process
produces a particular material which is then consumed by another process), and only
a subset of these processes exhibit flexibility while the rest are completely inflexible.
In order to simulate such a case, we have assumed that the examined consumer’s
4-step target process (Section 15.3.1) is broken down to two consecutive 2-step sub-
processes: (a) a flexible sub-process, consisting of the first 2 steps of the original
target process and producing 50 kg of a particular material at the end of its second
step (Table 15.2) and (b) an inflexible sub-process, consisting of the last 2 steps of
the original target process and consuming 50 kg of the same material at the beginning
of its first step. Furthermore, following the convention of Section 15.2.6, we assume
that the flexible sub-process is an uninterruptible process with fixed power (although
our modeling approach can accommodate any of the examined flexibility types, see
Section 15.2.6). Considering this case, we compare the baseline scenario (without a
material storage buffer) against a scenario where a material storage buffer sits between
the two sub-processes and can store the same material.

Figures 15.5 and 15.6 illustrate the schedule of the target process under the two
compared scenarios for two different days examined in the case study (23 February
2020 and 28 February 2020) along with the respective RTP signals. In the baseline
scenario, the flexibility of the first sub-process cannot be exploited, since shifting its
execution earlier or later in time would imply that the second (inflexible) sub-process
would not have the material required for its execution. Therefore, the whole target
process is operated in an inflexible fashion, i.e., executed consecutively from t = 12
to t = 15.

The introduction of the material storage buffer (simplistically represented as a
battery in Figures 15.5 and 15.6) enables exploitation of the flexibility of the first
sub-process, by decoupling the scheduling of the latter from the scheduling of the
second (inflexible) sub-process. In the first of the two examined days (Figure 15.5),
the execution of the flexible sub-process is shifted 4 hours earlier with respect to the
baseline scenario, i.e., from t = 12 to t = 8, in order to exploit the most favorable
consecutive-2-hour interval within the allowable execution interval. The material
produced by this sub-process is then stored at the buffer, increasing its content from
60 kg (at the beginning of the day, see Table 15.2) to 110 kg (after the termination
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Figure 15.5 Schedule of target process under baseline and material storage buffer
scenarios (23 February 2020)

of the flexible sub-process, see Figure 15.5); then, the same amount of material is
fed to the second (inflexible) sub-process at its required initiation time (t = 14). In
the second examined day (Figure 15.6), the execution of the flexible sub-process
is now shifted 4 hours later with respect to the baseline scenario, i.e., from t = 12
to t = 16, as the RTP pattern is now different, and the most favorable consecutive-
2-hour interval (within the allowable execution interval) comprises of t = 16 and
t = 17. The amount of material required by the inflexible sub-process is now provided
by the buffer, reducing its content from 60 kg (at the beginning of the day) to 10 kg
(after the inflexible sub-process, see Figure 15.6); then, the buffer is replenished with
the same amount of material after the execution of the flexible sub-process.

15.3.5 Summary of benefits of different flexibility types

Table 15.3 summarizes the results of the case study by presenting the benefits gener-
ated in each flexibility type scenario with respect to the baseline scenario. Specifically,
the table presents the generated benefits in terms of the yearly electricity cost sav-
ings (a) of the target process alone and (b) of the examined industrial consumer as a
whole, considering also its electricity demand that is not associated with the target
process. The range of the former lies between 10.71% and 23.13%, while the range
of the latter lies between 1.58% and 3.41% (since the target process constitutes a part



352 Industrial DR: methods, best practices, case studies, and applications

1,000
Baseline

Material storage buffer900

60 kg

10 kg

60 kg

RTP

800

700

600

500

400

300

200

100

0

P
o

w
er

 (
k

W
)

50

45

40

35

30

25

20
1 2 3 4 5 6 7 8 9 10 11 12 13

Time (h)

14 15 16 17 18 19 20 21 22 23 24

R
T

P
 (

£
/M

W
h
)

Figure 15.6 Schedule of target process under baseline and material storage buffer
scenarios (28 February 2020)

of the examined consumer’s total demand). Following the trends discussed in Sec-
tions 15.3.2–15.3.4, flexibility types allowing interruptibility of the target process
yield higher benefits compared to the respective uninterruptible types. Furthermore,
flexibility types allowing power adjustability yield higher benefits compared to the
respective types with fixed power, with continuous power adjustability yielding higher
benefits compared to discrete power adjustability. The scenario with a material stor-
age buffer cannot be consistently compared with the other (apart from the baseline)
scenarios since (a) the deployment of material storage buffers does not constitute a pri-
mary flexibility potential but rather an enabler for the exploitation of other flexibility
types (Section 15.2.6), (b) only one flexibility type has been examined in conjunc-
tion with a material storage buffer (i.e., interruptibility with fixed power, see Section
15.3.4), and (c) only a part of the target process’s demand can be flexibly redistributed
in time (i.e., its first two steps, see Section 15.3.4).

15.4 Conclusions and future work

In the context of addressing the relatively limited and industry-sector-specific research
attention to IDR, this chapter has developed generic, sector-agnostic models of all
conceivable types of flexible industrial processes, with the aim to shed light on their
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Table 15.3 Summary of yearly electricity cost savings quantified in the case study

Flexibility type Process Total
electricity cost electricity cost

Uninterruptible with fixed power 17.02% 2.51%
Interruptible with fixed power 18.65% 2.75%
Uninterruptible with discretely adjustable power 19.28% 2.84%
Interruptible with discretely adjustable power 21.02% 3.10%
Uninterruptible with continuously adjustable power 21.68% 3.20%
Interruptible with continuously adjustable power 23.13% 3.41%
Material storage buffer 10.71% 1.58%

key operating differences and assist industrial consumers interested in IDR schemes
to identify and assess the types that are more relevant to their systems. In this con-
text, seven different types have been identified and discussed: (1) uninterruptible
processes with fixed power, (2) interruptible processes with fixed power, (3) unin-
terruptible processes with discretely adjustable power, (4) interruptible processes
with discretely adjustable power, (5) uninterruptible processes with continuously
adjustable power, (6) interruptible processes with continuously adjustable power, and
(7) material storage buffers. For each of these types, a mathematical model capturing
its techno-economic operating characteristics has been developed, including: (a) input
parameters, (b) decision variables, (c) operating constraints, and (d) inconvenience
cost function. These models have been integrated into the electricity costs’ minimiza-
tion problem of an industrial consumer participating in the energy market through an
RTP scheme.

A case study concerning an actual industrial consumer in the UK has been inves-
tigated, employing its real demand data and a target industrial process as well as real
price data from the UK wholesale market. Different scenarios have been examined
regarding the flexibility type of the target process, and the results have demonstrated,
quantified and compared the economic benefits generated by different flexibility
types. Specifically, the results demonstrate the additional value of the target pro-
cess’s interruptibility and power adjustability (discrete and continuous) as well as the
deployment of material storage buffers. Overall, the yearly electricity cost savings are
in the range between 10.71% and 23.13% with respect to the baseline electricity costs
of the target process alone and between 1.58% and 3.41% with respect to the baseline
electricity costs of the industrial consumer as a whole; we believe that these benefits
are very significant, considering that the target process corresponds to approximately
17% of the consumer’s total electricity consumption.

Although this chapter has focused on the exploitation of the flexibility of the
seven identified types of flexible industrial processes in the energy market only, we
believe that the developed models can be extended to exploitation of such flexibil-
ity in ancillary services markets, which receive continuously increasing interest by
both industry and academia and can generate significant revenues for industrial con-
sumers. This extension constitutes an area of future work and requires a comprehensive
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review and modeling incorporation of the complex technical requirements and market
mechanisms employed by system operators for the procurement of different types of
ancillary services.
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Chapter 16

Case study of Aran Islands: optimal demand
response control of heat pumps and appliances

Marko Jelić1, Dea Pujić1, Nikola Tomašević1,
Paulo Lissa2,3,4, Dayanne Peretti Correa2,3,4

and Marcus Keane2,3,4

Demand response has proven to be a crucial mechanism in the process of flexibility
exploitation on the demand side. Throughout the years, demand response has evolved
exploiting more and more previously untapped potential energy sources. In that pro-
cess, residential users have provided a significant buffering capacity for balancing
energy production and demand, but this came with a few challenges. With more and
more households transitioning from being purely energy users to smart homes and
energy prosumers with distributed renewable energy generation, new possibilities
have opened up for integrated optimisation approaches that make the best use of both
locally generated and grid-supplied energy as well as energy storage systems.

16.1 Origins of demand response programmes

The global share of energy consumption, as analysed by the United Nations Envi-
ronment Programme [1], can be disaggregated into different sectors. According to
this report, 30% of final energy consumption and 28% of CO2 emissions can be
attributed to buildings. Interestingly, electricity consumption in building operation is
said to represent around 55% of global electricity consumption. When specifically
looking at residential buildings, they are reported to contribute 22% of final energy
consumption and 17% of CO2 emissions. Therefore, any reduction in energy con-
sumption or increase in energy efficiency in the residential sector goes a long way
towards fighting the ongoing climate battle.

Several elements have been noted in literature as key enablers of a transition to
a greener future by analysing the problem of decarbonisation of the energy system at

1School of Electrical Engineering, Institute Mihajlo Pupin, University of Belgrade, Belgrade, Serbia
2College of Science and Engineering, National University of Ireland, Galway, Ireland
3Informatics Research Unit for Sustainable Engineering (IRUSE), Galway, Ireland
4Ryan Institute, National University of Ireland, Galway, Ireland
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different scales, from the entire energy sector [2] to small and isolated grids that can
be found on geographical islands [3]. Of these, two are crucial for residential energy
use optimisation. First is the increasing prominence of distributed renewable energy
generation (photovoltaic panels, wind turbines, etc.) and implementation of highly
efficient sustainable technologies (like heat pumps) to replace legacy energy devices
with large carbon footprints. However, with intermittent renewable sources becoming
more commonplace, the delicate balance between the supply and demand has been
jeopardised. Therefore, the second enabler is the utilisation of demand-side flexibility
to aid in sustaining this equilibrium. Although a comprehensive classification of
different mechanisms by which demand-side flexibility can be exploited is not yet well
established within the related literature, it is generally well understood that demand-
side management (DSM) and demand response (DR) are the crucial instruments
in this domain. Although often used interchangeably by mistake, these two terms
signify different approaches to load modification. DSM generally depicts long-term
efficiency improvements that, overall, result in load reduction over time and aid the
process of achieving full energy autonomy. On the other hand, DR refers to short-term
load modifications that are made in reference to external impulses or incentives, thus
helping maintain the stability of the wider power supply system.

As estimated by [4] at the time, 20% of power generation capacity was utilised
only to fulfil peak demand levels which were present only about 5% of the time.
This discrepancy has resulted in high operational costs of the power supply network
as well as negative implications on emissions. However, by employing mechanisms
such as DR, load levels should be able to exhibit more flexibility and, as a result,
allow for easier load balancing between the supply and demand. Load modification
techniques such as “peak curtailment/shaving” and “valley filling”, as review by
[5], can produce more balanced load curves that are less challenging to match with
appropriate generation facilities. DR is an especially important tool in this regard as it
can guide load modifications using its several different variants, as will be discussed
in the following sections.

16.1.1 Traditional (industrial) DR applications

The first implementations of DR programmes can be traced back to the latter half
of the 20th century. At that time, attempts at DR integration were primarily focused
on large commercial and industrial customers. They were selected mainly due to an
already present high level of automation as this ensures easier control of assets without
additional devices and retrofits. Furthermore, industrial customers were also able to
provide a significant amount of flexibility which facilitated contracting much more
efficient as opposed to individual residential consumers which require some form of
aggregation to provide a noteworthy impact.

Initial approaches were based on direct load controls through the so-called
“explicit DR” which entails that the flexibility provider offers direct control over
some of their assets at predefined time intervals and frequency while being offered
monetary reimbursements in line with the provided capacity. This system has allowed
utilities to make use of a portion of industrial demand levels as a buffer. In time,
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this process has evolved into a so-called “implicit DR” where the exchange between
demand flexibility and monetary reimbursement is conducted via a variable energy
price tariff. By alternating between low and high price intervals, the periods dur-
ing which demand should be increased or decreased are implicitly encoded. When
optimising their demand, users essentially attempt to reduce their operating costs by
aligning the demand with the tariff profile, with resulting savings representing the
previously directly agreed upon monetary reimbursement.

16.1.2 Transition towards the residential sector

Understandably, the concept of direct control over household appliances in the resi-
dential sector, even if the technical challenges of deploying the necessary equipment
are ignored, is met with resistance by dwellers. Due to specific aspects of how human
behaviour influences energy consumption habits, different attempts to utilise specif-
ically price-based DR approaches have shown positive results in this domain [6].
Arguably, the most prominent implementation of implicit DR which has been in use
for some time is time-of-use tariffs (also commonly implemented as night/day or
peak/off-peak tariffs). However, the inclusion of distributed renewable generation as
well as various controllable devices, especially as more and more households embrace
the concept of smart homes, calls for an integrated approach to load modifications
based on current conditions in order to maintain effectiveness in providing a balance
between the supply and demand. One such solution, along with a set of results from
a real-world use case, will be presented in this chapter.

16.2 RESPOND control loop and methodology

In order to provide a holistic solution to the problem of energy management for res-
idential smart homes, the answer provided by the consortium of H2020 RESPOND
project∗, depicted in this chapter, utilises a set of smart services in conjunction
with edge sensors and actuators to facilitate efficient day-to-day operation. This
section presents different components of the proposed platform which, through syn-
ergistic operation, aim to integrate DR-supported optimisation into the operation of
appliances, storage systems and heat pumps.

16.2.1 IoT backend platform

Considering the various types of data that need to be processed and stored in order to
facilitate the operation of an Internet of things (IoT)-based system for home energy
management, a complex heterogeneous platform for data handling and management
was deployed as one of the primary components for this system. The RESPOND IoT
platform was composed of a set of various data repositories:

● Semantic repository which contained metadata regarding users, sensors, equip-
ment such as: characteristics of the photovoltaic panels (total capacity, slope, etc.),
energy storage (battery capacity, maximum charge and discharge rates, etc.).

∗www.project-respond.eu
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● Influx database (DB) which contained time series measurements from the
field devices such as electrical demand, renewable production measurements,
temperature measurements, etc.

● Relational database which was used as an intermediary log for interaction between
different services, as a repository for data to be shown in the accompanying mobile
phone app as well as for user management for platform access.

All of these data stores were connected to the field level equipment via a Message
Queuing Telemetry Transport (MQTT) broker. Since the integration point between
different components of the system is located within the cloud platform, each service
is envisioned to be able to obtain the required input parameters from the platform, as
well as to store the outputs into the corresponding data repositories. Even external
services like weather forecasting which are utilised within the system are integrated
with the aforementioned data repositories.

16.2.2 Forecasting services

In order to be able to shift the demand and adapt it accordingly, as explained in
the first section of this chapter, it is of utmost importance to have an estimation of
the expected, baseline, renewable energy on-site production and demand in the first
place. Hence, within the RESPOND project, both production and demand forecasting
models have been developed independently with the goal of providing predictions
for the same horizon and resolution which will be exploited by subsequent services
like the optimisation. Since, at the time of development, historical production data
was lacking while there were sufficient logs of previous demand measurements, the
models were developed to provide 24 hour-ahead hourly forecasts with the demand
forecasting model being data-driven and the production forecasting service realised
using physical models.

The production forecasting service is envisioned to map predicted meteorological
parameters to the expected production of available renewable energy sources (RES).
In the particular use case that is presented in this chapter, the pilot site was equipped
with solar photovoltaic (PV) panels. The inputs for the corresponding physical model,
presented in [7], can be classified into one of the following two categories:

● Dynamic parameters: in order to be able to provide the expected production,
external meteorological conditions are required. Therefore, as inputs for this
model, global solar radiation and cloud coverage were necessary. Additionally,
apart from the weather, temporal parameters are correlated with the production,
as it is highly dependent on the instantaneous solar position. Therefore, current
time and date are included as the inputs, as well.

● Static parameters: as usual when utilising physical models, apart from the
dynamic parameters, which are also common for data-driven models, the fol-
lowing physical and geographical parameters were necessary: slope and azimuth
of the PV cell surface, temperature coefficient and surface area of the PV cells,
rated capacity of the PV array, nominal operating cell temperature, longitude,
latitude and time zone offset.
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When performance of the utilised model is considered, it achieved a mean absolute
error of 21% and, as was expected, was not as accurate as machine learning (ML)
models would be if historical data had been available. Nevertheless, it was precise
enough to be utilised as an indicative input for optimisation purposes.

Regarding demand forecasting, a couple of different ML models were tested and
the k-nearest neighbour (kNN) algorithm was chosen for utilisation since it had the
most accurate predictions. Similarly regarding the production forecast, the demand
forecasting service was designed to provide 24 hour-ahead forecast with an hourly
resolution. As explained in more details in [8], the kNN model predicts expected
demand depending on the previous demand and a set of the time variables extracted
from the date and time such as day of the month, the season, the day of the week and a
Boolean variable indicating whether it is a working day or not. The previous electrical
load is obtained from the Influx DB, whilst the outputs of the service are stored in
MySQL DB, as was the case with the production forecaster. Since the COVID pan-
demic has impacted the validation period of the system, the models have been adapted
accordingly [9]. This improvement was necessary since household electricity demand
has changed as a result of the fact that most of the users started working from home.

16.2.3 Optimisation services

Constantly analysing the expected renewable generation and attempting to align the
demand in accordance to its profile, as well as various DR requests, is a cumbersome
task that very few residential users want to constantly take upon themselves to resolve.
In order to ensure cost-effective and energy-efficient operation, significant efforts
have to be invested in order to make best use of, for example, varying energy prices,
or local energy generation and storage. Therefore, the optimisation services within
the RESPOND control platform was envisioned as an integrative component that
would be capable of assessing multiple aspects of the energy management problem
and automatically providing the best course of action by analysing the:

● arrangement of the underlying energy infrastructure components including all
relevant energy carriers, converters and storage systems of individual energy
prosumers.

● forecasted production profile from all locally available renewable energy sources
obtained by the corresponding forecasting service.

● forecasted energy demand as well as corresponding load flexibility constraints
obtained by the corresponding forecasting service.

● limitations of the grid connection and other components of the system.

In order to make the best use of contemporary computational power while simulta-
neously guaranteeing that all available resources are being used in the most efficient
manner, adequate models of the energy systems are built and optimised using an
appropriate solver engine. The methodology that was utilised within the control
platform is based on the Energy Hub modelling approach. Originally presented
by [10] with various subsequent implementations in literature, as revised in [11],
owing to its flexible nature, the Energy Hub can be utilised in a variety of problems,
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from single carrier electric energy systems [12] to complex multi-stage hybrid sys-
tems that involve, for example, both electrical and thermal domains with adequate
converters [13].

Following this concept, a corresponding model was developed for the use cases
that will be discussed in the following sections of this chapter. Since the optimisation
in this case focuses on the electrical domain as it is supplemented with smart sensors
and actuators that are integrated in the platform, the model depicts different electric
energy sources, a battery storage system (where applicable), converters and loads, as
illustrated in Figure 16.1. In accordance with this structure, a corresponding set of
variables, bounds and constraints can be derived and implemented as a mixed-integer
linear programming (MILP) problem. This choice allows for the energy flow for each
model to be efficiently evaluated in sub-second times facilitated by the simplicity of
a MILP model that does not require the implementation of numerical solvers as this
type of precision is generally regarded as unnecessary in similar modelling problems.

The forecasting services, which are to be evaluated before the optimisation, define
a portion of the variables of the model. For example, the RES forecast depicted
previously defines the available energy from the PV array while the demand fore-
cast provides a reference based on which some form of demand flexibility can
be implemented. In line with general findings from [14], the overall flexibility in
a community-oriented project is estimated at around 20% while a use case study
depicted in [15] hits at the possibility of peak load reduction of 30% with extreme
energy tariff manipulations. These findings provide a range of values that can provide
context for the flexibility margin around the forecasted load profile in which upwards
and downwards load modifications are made.

An important feature in the optimisations service is the integration of both explicit
(direct) and implicit (price-based) DR. Namely, since the operation of each mode is
optimised with operational costs set as the main criterion, the output reflected the most
cost-effective solution with varying energy prices in mind. With implicit DR natively
supported using this setup, an additional term in the criterion is added such that, if
an external grid-side entity or aggregator wishes to request a certain demand level
at a predefined time interval, the deviation of the output demand curve is separately
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Figure 16.1 Illustration of the energy hub layout of a house in Aran Islands
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and highly penalised. This is done such that the output optimal demand reflects the
required profile as closely as possible, thus also facilitating explicit DR requests.

Finally, the outputs of the optimisation service are comprised of a set of opti-
mal energy utilisation curves that reflect when and how much energy is to be stored,
imported, exported and consumed. In accordance with these profiles, subsequent
services depicted in the following sections will provide means of converting power
consumption curves into concrete control actions depicting when to schedule appli-
ance usage and how to set the references for heating, ventilation, and air conditioning
(HVAC) devices.

16.2.4 Control services

After running the optimisation service, the system is provided with optimal energy
utilisation curves as power values through time. However, this format of data usually
cannot be considered to provide useful information without being processed first.
This process entails the conversion of these curves into discrete “turn on”/“turn off”
instructions for appliances and set-point values. These two processes will be further
discussed in the following sections.

16.2.4.1 User recommender service and appliance controls
The first component of the control service mainly focuses on the electric domain and
the conversion of optimal loading profiles into appliance use schedules. An approach
for solving this problem, outlined in [15] and further explored in [16], makes use of a
heuristic tabu search method. Namely, by discretizing the appliance usage schedule,
the algorithm looks for the best arrangements of their activity in time such that this
schedule, in conjunction with the fixed demand curve, results in a closest match to the
demand curve that is deemed optimal. However, this approach only tackles the electric
domain while applying it to the thermal one would be a much more challenging task
as it would require the use of complex models. This issue is precisely what will be
further discussed in the following section.

16.2.4.2 Building models and HP controls
To create a simulated building model, a site survey has been conducted to gather data
related to construction characteristics, such as type of the walls, windows and roof.
Furthermore, sensors and meters have been installed, measuring indoor temperature
(◦C), total electricity consumption (kWh) and heat pump electricity consumption
(kWh). The collected data was used to develop a detailed and calibrated white-box
model, using the Integrated Environmental Solution Virtual Environment (IESVE)
software. Next, simulations have been carried out to identify the main parameters and
heating transfer dynamics necessary to build a reduced order grey-box model. The
parameters extracted from the white-box model were indoor air temperature increase
and decrease rates for both, domestic hot water (DHW) and indoor temperatures, con-
sidering their behaviour during stationary conditions (system off) and when actions
are performed (indoor heating or DHW on). Additional information about the house
parameters and white-box model calibration, including the validation metrics applied,



364 Industrial DR: methods, best practices, case studies, and applications

Inputs Building Simulator Outputs

Heat Pump

Operation Profile

Predicted Energy

Consumption

Indoor and DHW

Temperatures

Simulates Control Actions

and

Calculates Heating Losses

Forecasting

services

Optimisation

Services

Weather

Forecast

Figure 16.2 Building Simulator process

can be seen in [17]. Once developed, the building simulator is able to receive the opti-
misation and forecasting services as input and translate them to optimal heat pump
control actions, as can be seen in Figure 16.2.

The Building Simulator reads the current environment state every 5 minutes and
estimates the next DHW and indoor temperature values, calculated based on the rates
established in the white-box model. This new environment allows for a more flexible
framework where different control techniques can be tested. The forecasting and
optimisation services, along with the weather forecast, are used as inputs, so they can
be part of the DR control strategy. For instance, a control action can be scheduled to
activate the heat pump when the PV production forecast will be higher in the next day.
The output of the building simulator is a heat pump control operation profile, which
indicates the control actions to be executed the next day. Furthermore, it calculates
the predicted energy consumption and the expected indoor and DHW temperatures
over the day.

16.3 Use case setup

The location of the experiments is Inishmore, the largest of the three Aran Islands,
in Galway, Ireland. With a population of approximately 800 people, the island itself
is very exposed to the weather elements, particularly during the winter months as it
has very little shelter. The islands are connected to the mainland through a sub-sea
cable, in which 1,855 MWh of electricity was imported in 2017 [18]. In 2016, a fault
in the sub-sea cable resulted in a power outage on two of the three Aran islands, that
lasted for four days and affected approximately 400 residents [19]. On that occasion,
some islanders had to rely on local diesel-powered generators. This event showed the
islands’vulnerability and dependency on the main island power generation leveraging
the need for new reliable on-site solutions.

16.3.1 Pilot installations

On the Aran Islands, there is a potential to apply demand response in 450 dwellings
that share similar characteristics in terms of construction materials. Moreover, as
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they are geographically close to each other, the external environment conditions do
not vary considerably across the buildings, hence the daily heating losses dynamics
tend to be similar. A total of nine houses have been selected to be part of the test
cases. They already had individual PV production for self-consumption, a heat pump
system for indoor heating and DHW, and appliances such as washing machines and
tumble dryers. To allow DR capabilities and to take benefit of the services provided
by RESPOND, a new set of devices from Energomonitor† were installed in each of
the houses. The new architecture added smart capabilities for the legacy equipment,
allowing for individual load measurement and control, besides as well as providing
monitoring of room temperatures and CO2 concentrations. The description of the
deployed devices and their application can be found below:

● External meter interface (Energomonitor Optosense): measures electricity con-
sumption or production by reading the optical impulse output of a digital
electricity meter. Application: Electricity meter.

● Electricity wire sensor (Energomonitor Powersense): measures electricity con-
sumption or production by induction coils installed on 1 or 3-phase wires leading
to the main breaker cabinet/panel. Application: Heat pump, PV, and electric
vehicle charger.

● Temperature sensor (Energomonitor Thermosense): is a thermometer for indoor
or outdoor use. Application: Room temperature sensor.

● CO2 and humidity sensor (EnergomonitorAirsense): monitors complex air quality
in the room – carbon dioxide (CO2) concentration, temperature, humidity and
noise level. Application: User comfort level measurements.

● Smart plugs (Energomonitor Plugsense): measures consumption over residential
electrical appliances and can be used to switched them on and off remotely.
Application: Individual load control (e.g., dishwasher, washing machine, tumble
dryer).

● Gateway (Homebase): is the heart of the solution Energomonitor, wirelessly pick-
ing up data from up to 30 transmitters in the house through encrypted radio
protocols. Application: To provide communication and data between the previous
devices and services.

The final list of measurement points per house can be seen in Table 16.1, where
each electrical appliance, equipment or sensor can be related to the aforementioned
Energomonitor devices, following their specific application. The data gathered from
the devices were utilised as input for the services described in sub-section 16.2 and
also for user’s verification and control, through a mobile application.

Finally, to assess the demand response capabilities and support the validation
process, an average dwelling, that was built in the 1970s and has a total floor area
of 110 m2, was modelled following the process found in Section 16.2.4.2. In recent
years, the dwelling has been upgraded, including additional external insulation to the
walls and roof and installation of an 8.5 kW Mitsubishi air sourced heat pump along
with a PV panel array consisting of eight panels, with a total nominal power of 2 kWp.

†https://www.energomonitor.com/
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Table 16.1 Number of measurement points per house

House number 01 02 03 04 05 06 08 10 12

Dishwasher 1 1 1 1
Electricity meter 1 1 1 1 1 1 1 1 1
EV charger 1
Heat pump 1 1 1 1 1 1 1 1 1
PV panel 1 1 1 1 1 1
Tumble dryer 1 1 1 1 1 1 1
Washing machine 1 1 1 1 1 1 1 1
Temperature sensor 3 5 5 4 5 5 5 5 5
Humidity sensor 2 5 2 1 2 2 2 2 2
CO2 sensor 1 1 1 1 1 1 1 1

The heat pump connects to a 170 L hot water cylinder which is used to store hot water
for both space heating and DHW.

16.3.2 User interface

In RESPOND, a mobile app has been deployed to increase the user’s participation in
the DR strategies. The app enables users to visualise energy-related consumption and
generation, to check comfort matters and status of the devices. Moreover, information
from the forecasting and optimisation services can also be visualised, helping user’s
to make informed control actions. Through the app, users can receive notifications
asking to consume more or less energy according to the DR event. Some of the screens
available in the user interface can be seen in Figure 16.3.

Detailed information about the mobile app can be found in the RESPOND report
[20]. Starting with the main page screen, left screen of Figure 16.3, is shown once the
RESPOND mobile app is loaded. This is the main screen where users can navigate
and select other different screens to visualise the information available. For instance,
the energy consumption screen shows the recent and historic energy consumption
at a dwelling and neighbourhood levels. Furthermore, dwellers can visualise hourly,
daily, weekly or monthly energy consumption information. The energy generation
screen (centre screen of Figure 16.3) shows users the recent and historic values of
energy being produced from the PV panels, also with hourly, daily, weekly or monthly
resolution. This information may help users to realise the levels of PV production
available, and combined with their energy consumption, to raise awareness of the
potential reduction of energy coming from conventional non-renewable sources. The
energy prices screen, right screen of Figure 16.3, shows hourly tariffs of the energy
for the current and upcoming hours and days, so users can decide the best time to use
or not some appliance.

Another important information found in the app is the comfort screen, which
helps users to verify the indoor environment quality. It provides the mean tempera-
ture, humidity and CO2 levels, which are considered the basic indicators of comfort.
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Figure 16.3 RESPOND App–general user interface

Moving to the device list screen, users can monitor and control devices within their
houses. Users can then select each of these devices and take different actions. For
example, for comfort devices, a user can check the temperature, humidity and/or CO2

measurements. For appliances, users can check their current and historical energy
consumption, as well as activating or deactivating them. The Weather Forecast screen
is aimed at showing users the expected weather for the upcoming hours and days.
This information, combined with other features such as the energy price, empowers
users to strive towards more environmentally-friendly and energy-saving behaviour.
For example, knowing that the next day is going to be hot and sunny, a user can decide
to hang out their clothes instead of using the tumble dryer.

Finally, the notifications screen presents the notifications received. Users can
receive different types of notifications such as recommendations or even alarms or
warnings. These notifications will be received in the mobile app in the form of push
messages instantly and also be available in the notifications screen.

16.4 Case studies and assessment

Four different test cases have been designed to assess different types of DR within
the RESPOND project in the Aran Islands, considering implicit and explicit DR
models. The use test cases aim to exploit as much as possible the benefits of the ICT
architecture deployed in the pilot and the optimisation services available, presented
in the previous sections.
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The test cases results were calculated using the DEXMA Energy Intelligence
Software [21]. The DEXMA platform enables real time energy management, with
a Measurement and Verification (M&V) tool that contains an automatic baseline
calculator [22] fully compatible with the International Performance Measurement
and Verification Protocol (IPMVP) [23].

16.4.1 Test case #1

The objective of the first test case was to analyse the impact of the RESPOND smart-
phone app on user consumption behaviour. The main idea was to understand if, after
having access to the information described in Section 16.3.2 (e.g. energy consumption
per appliance, PV production, etc.), consumers changed their energy consumption
pattern in a voluntary manner. For the assessment, comparison of the period before
and after the RESPOND app release has been compared. This test case started to be
applied on 13April 2020 which was the day participants received their RESPOND app
passwords. The final date of verification of voluntary behaviour change was 30 May.
As this experiment aim is to verify users’ willingness of changing their consumption,
there was no notification or other kind of intervention asking them for some energy
reduction or increase in the period of evaluation.

The baseline period used in this analysis was from 1 March 2020 until 12 April
of the same year. Considering the accumulated values of all dwellings, the results of
this test case presented a reduction of 20.28% in energy consumption in the period,
compared to the baseline. Figure 16.4 shows the results of the M&V project created
inside the DEXMA platform to calculate the energy savings key performance indicator
(KPI) in the first test case. The blue line represents the expected consumption over

Figure 16.4 Example of M&V output from DEXMA platform (blue line – baseline,
green bar – lower than baseline consumption, orange bar – close to
baseline consumption, red bar – higher than baseline consumption)
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the days (baseline), while the bars are the real consumption. Green bars are values
where the real consumption is lower than the baseline, red is the opposite, and yellow
means that they are close. The reduction of greenhouse gas emission is also estimated
in the platform and in this test case, there was a total of 2.51 t CO2e avoided in the
referenced period.

The performance of the ICT communication infrastructure is a very important
topic for guaranteeing the reliability of the test case. With this in mind, some houses
were excluded from the validation process due to a lack of sufficient data. The criteria
for exclusion in this test case was that houses should have at least 60% of data available
in the discussed period, hence three houses that presented lower values were excluded.

16.4.2 Test case #2

The objective of the second test case is to maximise PV self-consumption during
periods where there is a peak in energy production. On the day preceding the DR
event, the forecasting services estimate the hourly PV production for the next day. With
this information, a notification is sent to the participants informing them about the
best time to consume the PV produced energy if a pre-defined threshold is achieved.
Users can get energy savings and also help to reduce peak load in the grid. In the
Aran Islands, if PV production is not consumed, it is injected directly into the grid,
and users do not receive any payment from the energy provider.

This test case was applied when the prediction of energy production achieves a
specific target. The first step was to define which houses were able to participate.
Although there are nine houses in total, only houses 01, 02, 03, 04, 05 and 12 have PV
production, therefore messages were sent only to this group. The Irish language, or
Gaeilge, is unique to Ireland and it is, therefore, of crucial importance to the identity
of the Irish people [24]. To better engage the participants in the actions, the notifica-
tions were sent to the participants in English and Gaelic:

“Tomorrow between HH:MM-HH:MM your PV panels are expected to have a period
of high production. Try to use your appliances during this period to save money and
energy.”

“Amarach idir HH:MM-HH:MM meastar go mbeidh do phainéileacha fotavól-
tacha ag ginniúint roinnt mhaith leictreachas. Déan iarracht do chuid fearais tí a
úsáid i rith an am sin chun airgead agus fuinneamh a shábháil.”

The application of this test case is classified into one of two experimental periods.
During the first experimental period, a message was sent to the customers if the
predictions achieved the threshold of 900 W for at least an hour. The demand response
events started sending the messages on 31 May. Since messages were not being sent
due to the weather conditions in Ireland at that time (PV predictions rarely achieved
900 W), an analysis was performed to define a new threshold that could result in
sending notifications 2–3 times per week on average. In August, the new value was
then defined as 600W for houses 01, 03, 04, 05 and 12 and 1100W for house 02, which
has a PV system with higher capacity, effectively defining the second experiment.
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The KPI calculations showed a decrease of 6.11% in energy usage from the grid
in the first experiment period, and 21.81% in the second period, considering the
aggregated values of the participant houses. In the total test case duration, the final
result is 17.89% of energy savings. The reduction of greenhouse gas emissions is
the energy savings total converted to greenhouse gas emission equivalent and it is
estimated that this test case avoided 49.66 t CO2e over the entire period.

The total renewable energy consumption KPI shows the ratio of the total amount
of renewable energy produced and the demand at the event period. Table 16.2 sum-
marises the amount of PV energy production consumed in each day of first and
second experiment. The analysis considers the aggregated consumption and produc-
tion value of the participant houses. As a result, PV production was 72.7% consumed
on average over the first experiment. The second experiment presented an even better
performance, where 79.6% of PV energy produced during the event was consumed
on average, and sometimes reached 100% of usage.

The baseline used for this use case was from 1 March 2020 to 4 April 2020.
The main calculations were realised using the DEXMA platform. According to the
IPMVP methodology, data backfilling is not allowed [25], and in line with this,
periods with missing data were excluded during the calculation process. Outliers,
such as accumulated values due to communication issues, have also been removed.

Table 16.2 Total energy production/consumption during DR events

Date PV production Consumption % of
(kWh) (kWh) PV usage

June 1st 7.55 5.66 75%
June 3rd 4.91 3.28 67%
June 5th 5.16 3.10 60%
June 8th 1.48 1.32 89%

Experiment one avg. 4.78 3.34 72.7%

August 6th 2.68 2.73 100%
August 7th 8.49 5.23 62%
August 8th 7.90 5.85 74%
August 9th 2.69 2.30 86%
August 10th 3.39 2.02 60%
August 11th 2.76 2.93 100%
August 17th 2.06 1.68 82%
August 19th 1.79 2.55 100%
August 20th 2.39 2.17 91%
August 22nd 7.61 4.24 56%
August 28th 3.84 1.77 46%
August 29th 0.91 2.02 100%

Experiment two avg. 3.87 2.96 79.6%
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The rescheduled demand KPI aims to verify if the use case helped to move
demand into the event period. For instance, if the PV production was higher from
15:00 to 17:00 and the user had received a message, it was expected that a greater
consumption during this period and less activity before and after the event would be
observed. After the period of the experiments, the real measurements were compared
with the baseline. According to the baseline analysis, it was expected that 6.70%
of the daily load would be in the event period for experiment one. However, after
applying the demand response events, the real data showed 8.71% of the load in the
period, which represents a demand increase of around 30% in the event hours. On the
other hand, experiment two did not present the same performance, with a 1% of load
decrease during the event, compared to the baseline.

The economic savings KPI compares the difference between the average baseline
energy cost and the energy cost during the DR event. It considers the amount of energy
consumed from the grid, so using appliances when the PV production is higher during
the event reduces the final costs. As a result, imports from the grid represented only
4% of the total necessary energy during the event, which is 20% less than the expected
baseline. It is important to note that the costs are much related to the way that end
users distribute their load over the day. For instance, if the PV production is high
and achieved 2 kW, the user has to be aware and try to avoid exceeding this value
by controlling the amount of load that uses a certain time to optimise the usage.
Otherwise, the amount of energy bought from grid can be greater than expected as
all loads are concentrated during the same time interval.

16.4.3 Test case #3

The aim of the third use case is to maximise PV self-consumption by generating an
optimal usage profile for heat pumps. This use case can be performed in different
ways, such as through fully-automated operation of the heat pumps, which can achieve
better energy savings and does not rely on the user behaviour, or manually operated,
following a similar methodology as outlined in Test case 2 where users have to play
their role and perform the actions when necessary. For remote operations, the instal-
lation of an additional device, that is not available in the selected houses, is needed.
To assess the potential of this test case, tests have been performed in the simulated
environment described in Section 16.2.4.2.

The overall methodology is similar as Test case 2, where at the night before
the event, the PV production prediction is checked to identify the best period to
perform actions (when production is expected to be high). Actions are simulated and
the comfort parameters verified in the building simulator. As a result, an optimal
heat pump operation profile is generated. In this test case, the focused was placed
on optimising the DHW temperature regulation by changing the operation mode and
boosting the tank temperature when PV production is higher. This will avoid DHW
heating actions during peak consumption hours by creating a buffer of hot water. In
the Mitsubishi heat pumps available in the houses, operation mode 1 is the standard
mode, where the tank temperatures range from 40◦C to 50◦C. In mode 2, the maximum
threshold is increased and temperatures can go up to 55◦C.
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As inputs for the building simulator, 10 days in August 2020 were selected where
PV production prediction was considered good enough to aid the heat pump system
operation. The forecasting services provided information about the peak hour of PV
production for each of the days. The model was then simulated, prioritising DHW
actions mode 2 in these peak generation periods. As a result, an optimal operation
mode is set for each of the hours the energy from PV was generated. The operation
modes can then be set manually by the user or autonomously, if technology for remote
control is available. Figure 16.5 shows 2 days of simulations, where the blue line is
the tank temperature and the dotted green line is the PV production. The grey bars are
the control action for heating the tank. In the first chart, both actions are in periods
of PV production, which occurs only once in the second chart. The reason is that
the optimised model also takes into account the minimum setpoint to keep the user’s
comfort as the main premise, so regardless of the PV production, if the temperature
drops to below 40◦C, the system performs a DHW action.

If only operation mode 1 is considered, the heat pump would heat the 170 L tank to
50◦C and then stay on hold until the temperature drops to 40◦C, heating again to 50◦C
and so on. This mode can be costly, as it does not verify the best time to perform the
actions, which may be when there is no PV production or when the energy demand
peak is high. The optimised profile provided by the building simulator checks the
PV production schedule and anticipates the actions needed to achieve the economic
savings, without adversely impacting on users comfort.

The results from the building simulator were compared with the heat pump real
consumption (baseline). Almost 30% of energy from the grid used for DHW heating
could be saved if the actions had been performed as the optimal profile generated,
mostly due to using the heat pump when the PV energy production was higher. This
performance could drop to around 25% because the real world scenario can face
more uncertainties related to users behaviour. For instance, the simulations consider
an ideal profile of DHW usage, while the real user can suddenly decide to use all the
water at once, thus making the control system activate more times over a day.

Another important metric is the rescheduled demand, which was calculated
considering the total demand consumed inside the period of higher PV production
incidence (10:00–18:00) and out of it, considering the average of the 10 analysed
days. Looking at the collected data, only 37% of the heat pump consumption was
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Figure 16.6 Rescheduled demand test case #3

inside the PV event range, while the optimised model increases this value to 57%,
which effectively demonstrates an increase of 20%. Figure 16.6 presents the aver-
age consumption for both the optimised (blue line) and the real data (orange line),
including also the average of PV production (dotted green line). Note that one of the
benefits of the optimised model is the peak load reduction and load shifting, as the
peak load that was originally between 18:00 and 20:00 in the real data was moved a
few hours in advance in the optimised version.

Regarding the utilisation of PV production, the amount of real PV consumed
and the optimal PV consumption was compared. For experimental purposes, that PV
production was considered to be used exclusively for heat pump actions. For each of
the days, it was calculated the amount of renewable energy used and, on average, the
optimal profile model improved renewable energy usage by 39.14%, by concentrating
DHW action in periods with higher PV, as previously presented in Figure 16.5.

16.4.4 Test case #4

The aim of the fourth test case is to verify the changes in customer behaviour after
receiving a message asking to turn off some appliances at a specific hour of the day
with the main objective to decrease carbon emissions. In these events, the idea was
to ask the participants to not use electric energy, without offering any direct financial
incentives. The message was sent one hour prior the event to all the participants of
the pilot through an app notification in both English and Gaelic languages, as follows:

“Electricity consumption of Ireland peaks within the next few hours, which means
higher CO2 emissions. Turn off some of your appliances between HH:MM and
HH:MM – and help us with saving the climate.”

“Buaicfidh tomhaltas leictreachais na hÉireann sna cúpla uair amach romhainn,
rud a chiallaíonn astaíochtaí CO2 níos airde. Múch cuid de do chuid fearais idir
HH:MM agus HH:MM – agus cuidigh linn an aeráid a shábháil.”
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As opposed to the other test cases where the focus was on individual parameters,
such as demand or production information, in this case the timing of the event was
based on electrical grid data provided by EirGrid [26]. TheAran Islands are connected
to the electricity grid in Ireland, and during the test case period the highest demand
for energy identified occurred between 17:00 and 18:00. This test case could also be
applied using other inputs, such as periods of high consumption or lower production
identified in the forecasting services. The baseline period for the test case was the
first 2 weeks of July 2020 and the DR events happened in August 2020. Although the
average peak in Ireland is between 17:00 and 18:00, before sending the message this
range was confirmed on the demand system prediction provided by EirGrid [26] for
each event day.

A reduction of 14.73% CO2 was observed in aggregate during the days of the
event compared to the baseline period. Considering the consumption of individual
appliances, it was also verified that an additional 4.37 tCO2e could have been avoided
in the period if all the customers had carried out the proposed action. However, the
hourly analysis of the users’ consumption behaviour showed no significant reduction
in the peak load during the event period compared to the baseline. Considering the
communication performance, houses 02, 04 and 08 were excluded and not considered
in the validation process due to the missing data over the baseline period.

Conclusion

In summary, this chapter presents a platform for integrated management of residential
energy systems by incorporating demand response events into a measure-forecast-
optimise workflow for automated and semi-automated control of appliances and heat
pumps. Through smart use of a set of deployed sensors and actuators, as well as syn-
ergistic relation between different services within the platform, the proposed system
takes into account both generation and demand-side constraints in order to provide the
most cost-effective and energy-efficient scenario for energy management. Different
methodologies that were utilised for different components of the system are outlined,
followed by a set of four thoroughly analysed use cases focusing on the adaptation of
electric loads and utilisation of heat pumps in relation to specifically generated DR
events.

Various scenarios are depicted in the discussed test case results with them por-
traying, in line with the applicable time periods and baseline data, effective savings of
2.5 t CO2 emissions by providing information to users regarding their energy use and
slightly below 80% of renewable energy self-consumption achieved once adequate
messages are sent to denote periods with high expected production levels. Further-
more, an estimated 25% reduction of grid-imported energy for DHW temperature
regulation through heat pump usage optimisation is demonstrated, followed by a case
showing a reduction in CO2 emissions of over 14% when responding to DR messages
intended to shift appliance activations away from peak times for the grid.

Finally, it should be noted that this chapter provides a quantitative analysis
based on the data that was collected and processed through the presented platform.
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The results presented are based on evaluations of the absolute available numerical
data and are derived based on the selection of an appropriate baseline estimation
methodology. Since energy use, especially for the residential case, is a complex mul-
tidisciplinary problem, there are also behaviour-related factors that influence the way
in which energy is managed. Therefore, as a complementary addition to the presented
results, related studies pertaining to the user experience domain [27] should also be
considered.
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Chapter 17

Use case of artificial intelligence, and neural
networks in energy consumption markets, and

industrial demand response
Ashkan Safari1 and Amir Aminzadeh Ghavifekr2

Despite all achievements, and advances in energy markets, microgrids, and smart
grids within the world, issues such as power distribution, consumption, or opti-
mization are among the important and significant areas within the industry and
technology. As industrialization and technology improve, these subjects become more
important. Most of the experts attempt to have far better control on power consump-
tion/distribution, and technologies like combined heat, and power (CHP), or gas-
electricity, or demand forecasting, especially in smart sustainable cities (SSCs). Using
artificial intelligence (AI) and neural networks (NNs) can have an important role in
performing, and optimization that will lead to lowering the issues in future power
systems. An NN-long short-term memory (LSTM)-based model can help the experts
to control, predict, and optimize the facility consumption, and power distribution.
Conceptually, in industrial and SSCs, more they develop, more the quantity of data is
going to be generated that a simple and practical tool to research about and analyze
these big data is AI. Regarding an outsized amount of data, the training and predicting
process of AI is going to be far more accurate, due to the low root mean square error
(RMSE). Accordingly, the result is going to be near the actual and help the SSCs to
possess controlled power consumption, distribution, and CHPs. Also, the combina-
tion of quantum technology with smart grids, and NNs are analyzed. Accordingly, the
mentioned technologies cause preventing power loss and promoting a way to a smarter,
technology-based, and sustainable world with high ability of demand response (DR).

17.1 AI in energy market

Recent advances in industry and technology have caused an exponential increment
in energy through the last few years [1]. Especially in SSCs that energy, AI, and IoT
can be considered its main bases. As well as industrialization, the growing need for
electricity-consuming devices has been increased [2, 3], accordingly, most researches

1,2Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
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and developments are now in the fields of renewable energy, AI, and IoT in electricity
[4]. Also, other optimization methods such as energy management in a virtual power
plant (VPP) using robust Stackelberg game approach that is effective in Day-Ahead
(DA), and real-time market transactions [5] are used. Even, bidding of VPPs in energy
markets by a bi-level multi-objective approach [6] is in demand. Based on [7], in
the markets with different self-interest subjects, consumers become prosumers with
attribution of production and consumption by using distributed generators (DG). AI
is one of the practical tools that can help energy consumption optimization in an
easier way. In the big data-oriented fields to power consumption in control centers,
AI tools should be used in energy sectors. Also, the companies if want to remain
competitive should use it. The conventional power grid (PG) was not suitable to
handle the combination of renewable energy sources (RESs), due to the fact that a
change in the source can cause challenges in the microgrids in meeting variable loads
[8]. Applying AI leads to:
● Efficient inverter of photovoltaic (PV) systems [9]
● Maximizes the ability of power point tracking [10]

Moreover, artificial Maximum Power Point Tracking (MPPT) approaches are
efficient, and swarm optimization classes favor the approach for MPPT, since its fast
and easy capability of consumption [11].

More technology and industrialization develop, the much Big Data (BD) is gener-
ated and the use ofAI comes more sensible, especially in SSCs, so energy consumption
can be reduced through better control, prediction, reliability, and automation. Nowa-
days, the AI technology advances in SSCs and smart buildings caused two concepts
that are effective in the power consumption field [12]:
● Building management system (BMS)
● DR programs (DRP)

Ref. [13] says practical power system engineering and energy market problems
require logical reasoning. Thus, since AI has developed, it can be a constructive tool.

Finally, in this chapter, a new and practical approach, and method in power
consumption, dual fuels, and DR prediction are defined to have better control in
distribution, and transmission that helps better control the energy, and D optimization,
especially in SSCs. Moreover, it is in the combination of IoT, and so on that will
cause a reduction in energy loss and waste. One of the fundamental methods is the
NN-LSTM-based model that is entirely expressed in the further sections. Also, the
quantum-based methods are defined. The structure of the chapter is as follows:

For Section 17.2, we have NNs description. Sections 17.3 and 17.4 represent the
power consumption, and cogeneration & dual fuels, respectively. DR, power consump-
tion prediction, and the proposed framework are expressed in sections 17.5, 17.6, and
17.7, respectively. Sections 17.8 and 17.9 describe the use case, overview, and bene-
fits of the NN model, the difference between RNN, and LSTM, and their overview.
Quantum technology, its applications in general, and smart grids are presented in
Sections 17.10, 17.11, and 17.12. Sections 17.13 and 17.14 express the quantum
techniques in forecasting variables of smart grids, and the conclusion, respectively.
The brief structure of the chapter is illustrated in Figures 17.A1 and 17.A2.
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17.2 NN

A NN is a group of algorithms that resemble the operations and processes of a human
brain to recognize and distinguish correlations between large amounts of data and
information. In a different form, an NN is based on a set of connected nodes called
artificial neurons, which loosely model and trace the neurons in a biological brain.
They are used in a variety of applications in financial services, forecasting and mar-
keting research, power consumption prediction, micro and smart grids, sustainable
cities, and Blockchain. Figure 17.1 depicts a 4 inputs–3 outputs NN.

17.3 Power consumption and importance of its prediction

Recent advances in technology have caused electrical energy and power to be used
in a much larger amount than before. Accordingly, annual electricity consumption
per capita is a crucial measure of electrical power development. Generally, electricity
consumption develops faster as the industrialization and technology process quickly
and performs down rapidly when industrialization is completed or near the achieve-
ment. The same is often remarked about annual electricity consumption per capita.
The most important part of monitoring power consumption can be divided into three
main factors:

1. Comprehend the capacity of the electric panel
2. Identify the energy costs and prevent the energy waste
3. Troubleshoot circuit breaker trips

One of the fields that experts are trying to optimize the power consumption is
SSC. Based on UNECE and ITU definition, a smart sustainable city is an innovative
city that uses digital technologies to improve the quality of different aspects such as
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services while ensuring it fulfills present and future generations considering economic
and social, as well as environmental, and cultural aspects.

In order to have optimized power consumption and energy transfer in SSCs, smart
grids are being used. This subject is illustrated in Figure 17.2.

Figure 17.2 represents a schematic that indicates the process of energy generation
to energy consumption and their communication line and transportation. Based on the
model, the generated balk energy and the heat move to energy monitoring and control
and the transmission/distribution system. Accordingly, the result is transmitted and
distributed in microgrids and demand sides such as Energy storage, as well as EV
charging.

Ref. [28] studies the history of smart grids in energy systems. Accordingly,
there will be energy storage, high-temperature superconductor, and more distribution
control centers in the future.

Finally, many smart grid technology areas span the entire grid from generation to
transmission and distribution in order to supply energy for various types of electricity
consumers. This subject is manifested in Figure 17.3.

According to Figure 17.3, the world will have Digital Grid AI, and smart build-
ing or factory based on, and completely controlled by AI [29]. Also, represents the
promoted smart grids in the future, the collaboration with AI, the concept and growth
of smart grids [14], and the differences of conservational grids with smart grids [15].
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17.4 Cogeneration and dual fuels

Cogeneration also referred to as combined heat and power (CHP) is the synchronized
production of two or more varieties of energy from one fuel source. Cogeneration
power plants often operate at 50–70% higher efficiency rates than single-generation
plants. This concept is illustrated in Figure 17.5.

Figure 17.4 represents heat-electricity cogeneration that is much more practical
and economical than conventional approaches and methods. Figure 17.4 manifests
that prosumers can sell excess electricity back to the grid by creating a decentralized
energy system that leads to reduce carbon footprint and lower energy bills.
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Conventional power channels produce electricity remotely from their users. This
massive distance means it is not economically viable to move the wasted heat to homes
to be used. Also, there is an extraordinary inconvenience related to the distance and
it is that the facility generated in large power plants has to be transported to the
client, with transmission losses occurring on the long route. However, cogeneration
enables electricity to be produced directly where demanded. Consequently, it prevents
network costs and transmission losses. Up to 90% of the fuel is manipulated [16], by
the waste heat used for heating. Moreover, a residential fuel-cell-combined heat and
power (FC-CHP) system is utilized as a promising low-carbon technology that will
reduce residential energy consumption [17]. A CHP can also produce serviceable
cooling when merge with a heat-driven absorption chiller. The process during this
operation is defined as “trigeneration” or combined cooling heat and power (CCHP).
Compared to the widespread production of energy, these systems contribute many
benefits in terms of [18]:

● Primary energy savings.
● Economic and greenhouse emission (GHG) savings.

Dual fuel energy means you get your gas and electricity from an equivalent
supplier. It could prevent money and be more convenient than using separate suppliers,
leaving with one bill and one point of contact. Its only difference with the common
ways is that the consumers both energies are supplied with the same supplier. However,
there are challenges in the mentioned topics, smart grids, distributed intelligence for
energy generation, and the role of distributed energy resources (DERs) in the future
of power systems [19].

Using AI in this field will lead to creativity, efficiency, and environmental pro-
tection by saving energy and lower waste. The significant benefits can be as follows
[19]:

● Analyze the consumers’ generated data that are types of Big Data (BD), by AI to
give better services and optimized energy.

● DERs can get access to all markets using VPP concept.
● Using VPP market intelligence to optimize the process in DERs.
● Joint (gas, water, heat) and electricity demand forecasting and improve the

accuracy of the forecasting.

Figure 17.5 illustrates the energy generation capacity by RES.
Another application is modeling prediction process of required turbine power, or

gas flow of an engine, that is depicted in Use Cases section.

17.5 DR and its importance

DR is the changes in electricity usage by end-use customers regarding their regular
consumption patterns in response to change in the price of electricity over time,
or to incentive payments in high commercial market prices [24]. DR circumscribes
short-term impacts on the electricity markets, leading to financial benefits for both
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Figure 17.5 Energy generation capacity by RESs [19, 21]

the customers and the utility by promoting the interchange and responsiveness of
the customers. Moreover, it improves the loyalty of the power system and, also,
lowers peak demand reduces overall plant and capital cost investments, furthermore
postpones the need for network upgrades [24].

17.6 Power consumption prediction using artificial NNs (ANNs)

As mentioned in the previous chapter, it is significant to have a prediction of power
consumption, especially in a SSC that includes a wide range type of residential and
industrial technologies such as IoT being used and consume energy and power. For
having a high accuracy prediction, an ANN model can be used. This method is based
on LSTM. Besides other methods such as real-time recurrent learning (RTRL), since
the importance of accurate data, NN has become one of the efficient and sensible
algorithms that are being utilized for modeling market behaviors [20]. ANN is a
well-known approach that also consolidates technical analysis to make predictions in
markets. One of the most effective methods in this area is LSTM [23]. LSTM is used
in common since it predicts with high accuracy and low RMSE.

17.7 Framework of the NN-LSTM-based model

The program of the model runs with Python, which operates variety of applications
such as numeric, and educational applications, IoT, internet development, and desktop
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graphical user interfaces (GUIs). In order to predict using the ANN model, the related
AI and ANN packages are used:

Keras is an open-source implementing interface Python library for NNs. It
operates as an interface for the TensorFlow library.
TensorFlow is a machine learning (ML) library. It can be used over a wide range
of tasks, however, has a special focus on training and inference of deep neu-
ral networks (DNNs). It is an emblematic math library based on data flow and
differentiable programming.
Numpy, a Python programming library, that enhances assistance for large, multi-
dimensional arrays and matrices, concurrently with an outsized of high-level
mathematical functions to run on the mentioned arrays.
Scikit-Learn is a ML-based Python library. It has diverse classification, regres-
sion, and clustering algorithms including support vector machines.
Pandas is a Python library for data administration and analysis. Remarkably, it
extends data structures and operations for developing, modeling, training, and
handling numerical tables and time series.
Tkinter is Python’s standard graphical user interface (GUI) package and object-
oriented (OO) interface.
WxPython is a type for the cross-platform GUI API (GUI Application Program-
ming Interface). It is one of the alternatives to Tkinter GUI and performed as a
Python extension module.
Matplotlib is a library for plotting. It implements an object-oriented (OO) API for
implanting plots into platforms using GUI toolkits such as WxPython, Tkinter.
Mplfinance is a Matplotlib utility package for the visualization, and analysis of
financial data.
OS (Operating System) module accommodates functions for interacting with
the operating system in Python. It progresses under Python’s standard utility
modules. This module provides a portable way of using OS-dependent function-
ality. It incorporates many operators to connect with the file system and the
intercommunication with the environment of Python.

In this chapter, the system code to be used in use cases is based on NN attention-
based LSTM with a personalized security layer that the whole runs under Python.
The model consists of five layers: shell & input layer, hidden layer, attention layer, as
well as output layer.

The shell layer authenticates the user. The input data that meet the input require-
ments are read by the input layer. The hidden layer is associated with the linear network
within the LSTM unit. The attention layer provides future substances based on the
forecasts that are performed in the hidden layer. The final calculated and evaluated
results are received by the output layer to manifest toward the user. The LSTM-based
prediction is portrayed in Figure 17.6.

According to Figure 17.6, after the user imports the data, the system starts to create
a data frame of the entered data. Then converts the data frame to a Numpy array to start
performing algorithms in Python. In the next step, the system gets the number of rows
to train the model. After scaling data, it creates a scaling training dataset. As the next
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Figure 17.6 LSTM-based prediction diagram of the system

step, the dataset divides into two different datasets and the final ones are converted
to the Numpy array. After reshaping data, the building and reshaping process of the
model starts. After the converting process is done, reshaping and getting the predicted
values begins. Finally, the result information is visualized and depicted to the user.
This model can be used to predict power consumption, electricity costs, stock index,
and other areas.

17.7.1 Shell layer

It is the first layer of the system in which the user will be authorized and authenticated.
It works based on PIN or Voice that authenticate the user. Accordingly, if the user
authorized, he/she will be allowed to move to the next layer. The algorithm of this
layer is depicted in Figure 17.7.

17.7.2 Input layer

In this layer, user imports the data or if it is about electricity stock index, we can enter
the stock name, and the Pandas package will get data and Numpy will perform the
array-related tasks.

17.7.3 Hidden layer

It is the main layer of the system and the model. All predictions and LSTM method
and RMSE are performed on the data in this layer. The block diagram of the layer can
be exhibited in Figure 17.8.
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Depending on Figure 17.8, after the calculation finished, an email including
Excel file of the result is sent to user’s email that makes it more efficient. In this layer
RMSE is adjusted on the final data based on the number of them. RMSE is defined as:

RMSE =

√√√√√
n∑

i=1

(
Yi,Predicted − Yi,Actual

)2

n
(17.1)
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Based on (17.1), n is the total amount of imported data, Yi,Predicted, and Yi,Actual

(Yi,Predicted, Yi,Actual) are the predicted data, and the actual data, respectively. Accord-
ingly, the more data imported, the less RMSE will be which manifests the error of the
prediction is low and the predicted amount is near to the actual one.

17.7.4 Attention layer

After the time predicted data is ready in hidden layer, it moves to the Hidden Layer
which learns the relation between data and predicts the future in a quantitative and
qualitative way. When finished, it sends the result to the output layer.

17.7.5 Output layer

It is the final layer in which the results, sent from the previous layer (attention layer),
are illustrated and shown.

17.8 Use case of NNs

AI and computational intelligence (CI) have a vast and vital range of applications in
smart grids and power systems based on:

● ANNs.
● Neuro-Fuzzy systems.

As a use case that fits the subject of the chapter (prediction based onANN), power
prediction of steam turbines and gas flow prediction using ANN has been presented
and shown below.

Based on Figure 17.9, the result is obtained, the RMSE value is 0.94% in the
steam turbine model, and, in Figure 17.10, it is 2.75% in the engine, which is higher
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due to the load restrictions [22]. In both models, red lines are the prediction, and blue
ones are the real values. Factors like this can help the experts to have better control
of DR.

17.8.1 Overview and benefit

Based on the model and system presented, all kinds of fields that include pervious
database can be predicted with high accuracy and near to the actual. The data can be
the power consumption, or power consumption price of a city, company, or a factory.
Accordingly, the future value will be predicted quantitatively and qualitatively. As a
result, it can have a significant role in SSCs, and smart energy transportation, control,
and optimization fields, and even smart grids.

17.9 RNN or LSTM: Which one is better for prediction?

When we want to evaluate the prediction ability of RNN, we can perform this in stock
index prediction. The stock market is another channel for investment for individuals,
even corporations. It can influence the electrical energy market and the reverse. Due to
this fact, almost all famous companies have stock. However, success and proceeding
in this market require experience and technical skills. Moreover, recent significant
advances in the stock market such as cryptocurrencies and Blockchain technology
have been started to be used in SSCs, makes them complex and unpredictable in a
quantitative way. Also, recurrent NN (RNN) algorithms can be useful for stock market
modeling. Whereas, a tuned AI-NN-based predictor program with high accuracy will
play a significant role for investors to get the best result with the highest profit and the
least disadvantage. The difference between RNN and LSTM is shown in Figure 17.11.

According to Figure 17.11, all RNNs perform feedback loops within the recur-
rent layer that lets them maintain information in memory over time. However, it is
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challenging to train standard RNNs to solve problems that require learning long-term
temporal dependencies. LSTM networks are a type of RNN that uses specific units
besides standard ones. LSTM units include a ‘memory cell’ that can maintain infor-
mation in memory for long periods. A set of gates is used to control when information
enters the memory, its output, or when it is missed. This architecture lets them learn
longer-term dependencies. This is the significant and main difference between LSTM
and RNN.

17.9.1 Overview

Energy, its consumption, and effect on technology development, and the related com-
panies and stocks are always important and play a significant role in this area. ByANN
LSTM-based model, they can be predicted and lead to the best decision to improve
and develop. Another application is to control the energy consumption/distribution
in control centers of smart grids to prevent energy waste and loss. However, there is
a challenge here. If the amount of Big Data that will be analyzed in control centers
of smart grids is enormous, the processing will be challenging for supercomput-
ers, and they can be inefficient. In this case, another stronger technology is known
as “Quantum Technology” should be used.
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17.10 Quantum technology

Quantum technology is a class of technology, and an emerging field of engineering and
physics, which relies on the principles of quantum physics, that operates by utilizing
the principles of quantum mechanics, including quantum superposition and quantum
entanglement which leads to amazing technologies such as “Quantum Sensing,” and
high processing speed known as “Quantum Computing.”

17.10.1 Quantum computing

Quantum computing is developed and processed by quantum mechanical phenomena
that define the nature, energy at the level of fundamental subatomic particles. To get
the aspired results, quantum computer controls the behavior of subatomic particles
which permits it to possess enormously high processing power that can perform
multiple functions simultaneously by using possible permutations [25].

17.10.2 Quantum fundamentals

Quantum mechanics is a science apportioning the performance of matter and light
on, mostly, the subatomic scale. It attempts to represent the properties of molecules
and atoms and their ingredients: electrons, protons, neutrons, and other more esoteric
particles such as quarks and gluons. The main formulas of Quantum are written below:

ψ(r, sz, t) = 1√
2πh3

∫
e

ipx
h �(p, sz, t)d3pn (17.2)

�(p, sz, t) = 1√
2πh3

∫
e

−ipx
h ψ(r, sz, t)d3r (17.3)

H (t)|ψ(t)〉 = ih
d

dt
|ψ(t)〉 (17.4)

According to (17.2) and (17.3), � is the position-space wave function, h, and
� are Plank constant, and momentum–space wave function, respectively. Equation
(17.4) is the most fundamental equation of quantum and quantum mechanics which is
known as Schrodinger’s equation. The most fundamental difference between quantum
technology, and the regular ones is their particles. Regular technologies are based on
bits (0, and 1), or Fuzzy logic. However, quantum technology is based on quantum
bits known as “qubits.” Regular bits can be 0, or 1. Whereas qubits can be across
all available states between 0, and 1. Respectively, this feature makes them 1 million
times faster than the regular computing technologies [25]. As well, it causes quantum
technology to be used as an encryptor known as “Quantum Cryptography” in smart
grids and SSCs. Qubits can be modeled by a unit sphere called “Bloch Sphere” [26]
that is represented in Figure 17.12.

Depending on Figure 17.12, the North, and South poles, respectively, are |0〉, and
|1〉. In qubits, the state can be anywhere between |0〉, and |1〉that’s called superposition.
On the other hand, particles can be in any states such as position, energy, or speed, or
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Figure 17.12 Visualization of a Qubit as a unit sphere known “The Bloch Sphere”

across all available states between 0, 1 that’s clear in the figure. Based on the figure,
the related equations are, also, presented for x, and y axes, respectively.

17.11 Quantum technology general applications

As described in aforementioned sections, quantum technology is based on qubits
which makes it be much faster than the regular technologies. Accordingly, it can be
used in all fields such as:

● AI & ML
● Blockchain technology
● SSCs
● Smart grids (SGs)
● Security and cryptography

In the next section, quantum technology applications in smart grids will be
expressed in detail.

17.12 Quantum technology and smart grids

Future grids of SSCs will face challenges that have not occurred before, accordingly,
it will be challenging to perform them using the regular technologies. Quantum com-
puting is a developing technology that has a great potential to last for a long time
and be combined with other technologies such as AI, or Blockchain. As mentioned,
in smart grids, AI, and NN are among the practical tools to analyze the gathered Big
Data, however, they can perform by a limited amount of Big Data. When they face an
enormous amount of Big Data, they will be inefficient. However, when they combine
with quantum technology, QNN will be set up that runs under quantum theories and



396 Industrial DR: methods, best practices, case studies, and applications

has an enormously fast processing speed that causes smart grids to have much more
accurate, dependable result in a much less time. Hybrid systems that combine multiple
RESs, such as CHPs or vector coupling technologies, are challenging to optimize. A
grid that holds both wind and solar energy generation has the advantage of supplying
less expensive energy as long as sunshine and wind blowing. Nevertheless, to satisfy
customers’energy demands at night or during modest days, the grid needs to pull from
stored power or ramp up energy generation from other resources. An IAS, Intelligent
Automated System, that could trace demand, predict peaks in consumption, corre-
spondent energy storage, and manage resources could remarkably boost efficiency,
therefore, cover the way for a cheaper, and much more reliable, and abundant power
[27]. Since quantum computing has substantial features, it can be used in significant
aspects of smart grids that are as follows, but are not limited to:

● Optimization
● Demand forecasting
● Weather prediction
● Turbine design
● Grids stability & security

Based on the mentioned fields, we describe and focus on demand prediction, and
DR, and management that are significant in SGs [24].

17.13 Forecasting in smart grids using quantum technology

Forecasting is always among important factors, and tools in smart grids even caused
significant advances in solar or wind generation. It is performed by AI, and ML tech-
niques such asANN, RNN, etc. However, as mentioned in the previous sections, when
gathered data of smart grids is the type of enormous big data, regular supercomputing
methods are inefficient, and stronger technology is known as “Quantum Computing”
should be used. Quantum computers have an enormously fast processing speed which
makes the process and evaluate big data in much less time and perform the prediction
process in a much accurate and fast way. Quantum technology has techniques such as
QNN, Quantum behaved Particle Swarm Optimization (QPSO) to predict or forecast
different variables. Quantum-based models and algorithms have more accurate, and
faster outputs, and results than the regular models, and methods like Artificial Neural
Networks (ANN) [25]. Based on (17.1), that is RMSE equation:

RMSEα
1√
n

(17.5)

In which, (17.5) expresses that when we face an enormous amount of Big Data,
n increases accordingly, RMSE decreases, and the prediction is near to the real value.
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17.14 Final overview and conclusion

In this chapter, smart grids, their definition, and combination with AI, and quantum
technology, prediction techniques of important variables like DR have been presented.
Smart grids are among the significant and fundamental bases of an SSC which are
responsible for electricity supply. One of the important factors in smart grids is DR.
Experts try to have an enhanced prediction of it to control and optimize the grid. To
predict these types of factors AI tools are being used with supercomputers. However,
when a great number of Big Data is gathered, the prediction process with super-
computers will be inefficient. In order to cover this challenge, quantum computers,
accordingly, quantum-combined AI methods such as QNN, QPSO should be used
to have a more accurate prediction, in less time, in important variables like DR and
weather prediction.

Acronyms

The acronyms and their definitions are presented in Table 17.1.

Table 17.1 Table of acronyms

Acronym Meaning

SG Smart grid
MG Micro grid
QA Quantum adiabatic
AI Artificial intelligence
ML Machine learning
NN Neural network
IA Intelligent automation
BD Big Data
ANN Artificial neural network
QNN Quantum neural network
QKD Quantum key distribution
SSC Smart sustainable city
ITS Information technology security
PMU Phase measurement unit
DSM Demand side management
IAS Intelligent automation systems
CHP Combined heat and power
RES Renewable energy sources
QFNN Quantum fuzzy neural network
RMSE Root mean square error
ANFIS Adaptive network fuzzy inference system
qRAM Quantum random accessible memory
QPSO Quantum particle swarm optimization
SOFC Solid oxide fuel cell
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