

Table of Contents
Preface

Part 1: Game Testing Foundation

Chapter 1: Setting the Stage – Introduction to QA for Modern Games

Chapter 2: All Engines Go – The Basics of Game QA

Chapter 3: A Deeper Look – Types of Testing in Games

Chapter 4: Deeper Look – Testing on Various Gaming Platforms – Mobile,
PC, and Console

Chapter 5: It Must Be Hardware: Testing Hardware in Modern Game QA

Part 2: Test Strategy and Execution

Chapter 6: Friend or Foe – Test Cases

Chapter 7: It Works on My Machine: Bug Flow

Chapter 8: I Thought I Fixed That: How to Write Efficient Bug Reports

Chapter 9: It Works, but It Hasn’t Been Tested: Testing Approach

Chapter 10: Eat, Sleep, Test, Repeat: Test Methodology

Part 3: Test Management and Beyond

Chapter 11: Are You on the Right Version? Live Ops and QA

Chapter 12: Beyond Testing – Introduction to Test Management

Chapter 13: There Are No BUGS Without U – QA and the Game Team

Index

Other Books You May Enjoy

Preface
It is surprising how difficult it is to find relevant information about how
modern game testing works. While we can find lots of information about
how to test more traditional, premium games, somehow, more detailed
guidelines into modern games QA, especially on mobile and in live ops, are
almost impossible to find. My goal in writing this book was to give you a
deep insight not only into how modern games are tested today, but also into
how to work efficiently with agile methodologies, flat team organization,
and the unique challenges of free-to-play games. We will go into great
detail about the best QA practices that will ensure your games are high
quality, on budget, and released on time. While we will briefly discuss
automation testing, please note that the focus of this book is primarily on
manual testing. Modern Games Testing was written with the intent to
provide plenty of practical examples, rooted in personal experience, helping
you get an inside look at the fascinating world of games QA.

Who this book is for
This book is aimed primarily at game testers but also game producers, game
developers, testing managers, and other QA professionals who want to learn
more about modern approaches to game QA and use them to build more
efficient and cost-effective QA teams and products. It is desirable that you
have prior professional testing experience, either in software or games
testing, and/or experience working in the gaming industry. Basic familiarity
with agile working practices such as scrum is needed to fully understand all
concepts explained in the book. A basic understanding of the gaming
industry ecosystem will help you understand the covered topics in more
depth.

What this book covers
Chapter 1, Setting the Stage – Introduction to QA for Modern Games,
discusses the importance of QA and the main differences between games
and software QA.

Chapter 2, All Engines Go – The Basics of Game QA, examines what we
test in games and the main challenges of games QA.

Chapter 3, A Deeper Look – Types of Testing in Games, explores the
different types of testing in games and how to execute them.

Chapter 4, Deeper Look – Testing on Various Gaming Platforms – Mobile,
PC, and Console, delves into the specifics of QA on different gaming
platforms.

Chapter 5, It Must Be Hardware: Testing Hardware in Modern Games QA,
covers the importance of hardware and how to create optimal test sets.

Chapter 6, Friend or Foe – Test Cases, discusses how to write great test
cases and their alternatives.

Chapter 7, It Works on My Machine: Bug Flow, explores how to set up
efficient bug flow and statuses.

Chapter 8, I Thought I Fixed That: How to Write Efficient Bug Reports,
examines in detail how to write great bug reports.

Chapter 9, It Works, but It Hasn’t Been Tested: Testing Approach, delves
into agile methodology and its approach to testing.

Chapter 10, Eat, Sleep, Test, Repeat: Test Methodology, covers the most
commonly used QA methodologies with practical examples.

Chapter 11, Are You on the Right Version? Live Ops and QA, examines the
details of how QA works in live ops.

Chapter 12, Beyond Testing – Introduction to Test Management, explores in
detail how to make a test plan and efficient testing estimation.

Chapter 13, There Are No BUGS without U – QA and the Game Team, gets
you familiar with a career in QA and explores the future of QA.

To get the most out of this book
Please get yourself familiar with the basics of agile methodology.
Familiarity with games business models and genres will help you
understand the material in more depth.

Download the color images
We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here:
https://packt.link/LG6tq.

Conventions used
Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles.

There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word, or words that you see on
screen. For instance, words in menus or dialog boxes appear in bold. Here
is an example: "We can also see that the bug has a Repro rate value of
10/10. That affected the Priority value, which is set to Highest.".

Tips or important notes

Appear like this.

https://packt.link/LG6tq

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Modern Game Testing, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

Download a free PDF copy of this
book

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com/
https://packt.link/r/1803244402

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803244402

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email

directly

file:///C:/Users/pc/AppData/Local/Temp/calibre_ofk3bzna/nvtywpvv_pdf_out/OPS/xhtml/pref001.xhtml

Part 1: Game Testing Foundation
In this part of the book, we will get familiar with the basics of games QA,
including the different types of testing, working with gaming platforms, and
how to utilize hardware in game testing.

This part has the following chapters:

Chapter 1, Setting the Stage – Introduction to QA for Modern Games
Chapter 2, All Engines Go – The Basics of Game QA
Chapter 3, A Deeper Look – Types of Testing in Games
Chapter 4, Deeper Look – Testing on Various Gaming Platforms –

Mobile, PC, and Console
Chapter 5, It Must Be Hardware: Testing Hardware in Modern Games

QA

Setting the Stage – Introduction to
QA for Modern Games
At its core, quality assurance (QA) in game development isn’t much
different from QA in other types of software. However, there are some QA
testing aspects that are specific to games.

But, let’s first start by introducing how QA is done in modern games, when,
and by whom? How is it organized in this extremely fast-paced industry?
These are some of the questions we are going to answer in this chapter.

In this chapter, we will first discover the main differences between the
testing of games and the testing of other types of software. Then, the reader
will learn more about the importance of QA. Finally, we will go through a
couple of real-world scenarios that showcase what can happen when testing
goes wrong in the gaming industry.

By the end of this chapter, you will have good insights into the basics of
game QA and its importance.

In this chapter, we will cover the following topics:

Understanding the evolution of
modern game testing

Understanding the evolution of modern game testing
Exploring the differences between software and game testing
Why is QA important for games, especially within the agile process?
When and how should QA testing for games be performed?

Today, QA is one of the key components of any modern software
development process. It is unimaginable to release software to users without
testing it first. Users now have so many choices with regard to apps, games,
and digital tools, and if you release software that does not work properly or
has usability issues, you risk losing many of your users. Even worse, you
risk your reputation as a developer if players discover something in your
game that doesn’t work and publish this information online on game forums
and social media.

Therefore, QA is an important component of the development process.

QA and testing are interchangeable terms. Throughout history, humans
have striven to provide quality of execution in their work – from the ancient
pyramids through medieval fortresses to modern software. At its core,
modern QA has its roots in medieval professional guilds, such as those for
tailors, merchants, and smiths. To ensure that the quality of their products
met the required quality standards, guilds implemented strict peer control
that in many ways is similar to testing today. They set quality standards that
guild members had to meet in order to become part of and stay in the guild.
These parameters ensured that guild members everywhere provided a high
level of service and in return, drove more business to them.

Modern testing is not too far from that: we test software to ensure that it
meets the required quality standards and includes all implemented and
approved features. Of course, these days, we have replaced the quality
standards set by guilds with ones set by product owners and end users.

Modern game testing has developed along with the growth of the gaming
industry. Games became widely popular in the 1980s, and they kept on
evolving to various new platforms: first consoles, then home PCs, and, in
the 21st century, mobile and other handheld devices. It doesn’t look like the
industry is going to slow down anytime soon either. The gaming industry in
2021 was globally worth more than 180 billion USD, more than the music,
TV, and film industries put together (https://www.thc-pod.com/episode/the-
gaming-industry-is-now-bigger-than-movies-and-music-combined). The
biggest money makers are mobile and free-to-play (F2P) games, and the
top earners among them bring in over a billion USD per year
(https://newzoo.com/key-numbers;

https://www.thc-pod.com/episode/the-gaming-industry-is-now-bigger-than-movies-and-music-combined

https://www.statista.com/statistics/263988/top-grossing-mobile-ios-gaming-
apps-ranked-by-daily-revenue/).

Games are a big business today and quality is more important than ever.
With that said, there are no common standards for game QA across the
industry. Every gaming studio is different and even within the same
company, different teams follow different QA practices. The differences are
even more significant when testing for different gaming platforms – while
testing on consoles hasn’t changed too much since the beginning of game
development, mobile game testing is embracing the latest trends in QA to
be able to support more fast-paced development.

The terminology used in game testing is not unified (a particular term may
mean completely different things in different studios), and even QA jobs
might have different levels of responsibilities or completely different job
descriptions from studio to studio. Taking into account all those differences,
certain things remain the same. Testers generally spend months testing
games repeatedly, using different approaches and shifting focus to different
parts and characteristics of the game.

What would we consider to be QA today? There are many different
definitions out there, but at its core, game QA is a set of testing activities,
including test execution, exploration, and verification, that aims to ensure
that games meet design specifications, technical quality, platform
regulations, and player expectations. As we can see just from the definition,
QA in gaming entails a lot of responsibilities and requires a whole range of
skills. A game tester is a person who must fully understand the product’s
vision, is familiar with technical risks and dependencies, can juggle
conflicting priorities, knows the game better than anybody, and represents
the players’ interests.

Now that you have a basic understanding of the prerequisites and best
practices of QA for games, let us try and understand what makes game QA
different from normal software testing. Knowledge of these differences,
especially in terms of the unique aspects we test for in game development,
is essential for us to master QA testing and meet the end user’s expectations
within the gaming industry.

https://www.statista.com/statistics/263988/top-grossing-mobile-ios-gaming-apps-ranked-by-daily-revenue/

Exploring the differences between
software and game testing
Regardless of whether our software is used in medical devices, spaceships,
or the games we play, the testing methodology, if not the same, is
remarkably similar. But, even if testing medical software might seem more
demanding, it doesn’t mean that testing games is going to be any easier. It’s
challenging to adequately perform QA on time and within budget. Usually,
if development encounters problems and misses milestones, QA testing,
which generally occurs toward the end of the development cycle, will also
be postponed. Unfortunately, software release dates are rarely moved
forward. Hence, the more delayed development is, the shorter the time span
allowed for QA checks. However, the scope for testing stays the same or
even grows wider. That’s why the profession of game testing is somewhat
notorious for its long working hours and high stress levels.

As per their definition, games also comprise software, just like the app you
use on your phone to track your steps, the software that assists pilots to fly
planes more efficiently, and even the software you use to read this book! All
these digital products have their differences – in terms of complexity, the
programming language they use, the target audience, user experience, and
so on. However, they also have lots of similarities.

Software that is used in airplanes, medical devices, and military
applications is considered life-critical. That means that if such software
fails for any reason, it can lead to the loss of human life. When we compare
this to game software, the worst consequences of bugs in game systems are
a loss of progress or, in the case of F2P games, a loss of money. While
unpleasant for users, failures in game software are much less impactful.

Looking at the difference through the lens of QA, life-critical software
testing is usually more rigid, takes longer, and has strict, well-defined
requirements. When we talk about non-life-critical software, testing
practices will very much depend on the internal company processes and
software development methodology in use. Although some aspects of

software testing are company- or industry-specific, the following aspects
are common:

When testing games, in addition to the aforementioned aspects, we also test
for certain specific aspects that are generally not tested in any other
category of software development. These include the following:

Stability
Scalability
Functionality of features
User interface (UI) look and function
User flow and usability (UX)
Performance under stress
First-time user experience (FTUE)
Localization

Fun factor
Artificial intelligence (AI) in games
Game physics
Evaluation of game rules
Level progression
Game difficulty balancing
Multiplayer functions
Playthrough
Realism
Consistency
Game levels
Achievements

We can see from the preceding list that although there are many crossover
areas in testing, gaming software has its own specific requirements that
require mastering. In this book, we will cover in detail the methodologies
and practices that will help you do that.

Now that you know what makes game QA unique, let us understand why
testing these unique factors is necessary to launch and maintain a successful
game in the market.

Why is QA important for games,
especially within the agile process?
By now, it’s obvious that QA is an essential part of ensuring the quality of a
product. But, just how important is it? What will happen if QA is not done,
or if it hasn’t been done well? There are quite a few examples of software
failures that have had a big impact on end users and caused significant
damage and even loss of human life.

One of the more well-known examples is the case of Stanislav Petrov, an air
defense officer in the USSR, who potentially managed to avert a third world
war. On September 26, 1983, while on duty, Officer Petrov received a
notification from the nuclear early warning system, showing that the US
had launched its nuclear missiles, attacking the USSR. Officer Petrov
realized in time that the system was malfunctioning and that the alarm was
false.

Gaming examples are less scary, but one that really showcases how bad
game bugs can get is the case of the World of Warcraft Hakkar bug. The
final boss in the Zul’Gurub raid, the Blood God Hakkar, was designed to
spray Corrupted Blood when killed on enemies close to him, potentially
killing weaker heroes. Unfortunately, that caused pets in the game to
become poisoned and they quickly managed to spread the plague and kill

Sound and music
Voice-overs

thousands of players. Of course, all those deaths were digital and Blizzard,
the game’s developer, reacted fast and released a patch that revived most of
the slain characters. To learn more about the Hakkar bug and the impact it
had on the game and the players, see
https://en.wikipedia.org/wiki/Corrupted_Blood_incident.

From these couple of examples, we can already see how important role QA
plays in software testing. Without skilled, efficient, and timely QA, we can
lose users, revenue, and even human lives. But modern QA is important for
other reasons as well. With the rise of the free-to-play (F2P) business
model and the huge importance of live operations (live ops), game
development had to change its methodology to accommodate fast-paced,
iterative development. Most of the game development industry has now
switched from the waterfall model to agile methodology.

For QA testers in gaming, that was a significant change in terms of when
and how testing was executed. Instead of being done at the end of the
development, QA now plays a more active part in development teams, with
testers representing the players’ perspective and working closely with
designers and coders as part of the team. QA testers verify issues that are
highlighted by the player support team, do early tests of new features, and
learn about technical risks from developers. From being purely quality
gatekeepers and critics, in modern game development, QA testers are part
of a team that has an accurate understanding of how users will really
interact with the game.

While having QA functions embedded into the team will not replace proper
playtests, it does give developers early insights into how a player will
perceive certain features or changes in the game. This can make product
development more efficient and help avoid making expensive design and
balancing mistakes that can cause lots of harm to the end product. And
while not all agile teams will have embedded QA, the ones that do usually
make sure that they take full advantage of the intimate player knowledge
that the QA specialists hold, as well as their deep insight into game
strengths and weaknesses. This reliance on QA specialists or teams not only
makes QA important to prevent games going live with bugs such as Hakkar

https://en.wikipedia.org/wiki/Corrupted_Blood_incident

but also helps make for more fun, engaging, and at the end of the day, more
profitable games.

When and how should QA testing
for games be performed?
There are lots of discussions about when QA is executed. Traditionally, QA
was always done toward the end of development. This was especially true
when using a waterfall system. Following the waterfall development rules,
QA testing is performed only after development has concluded and the
finished software is handed over to the testing team. The following figure
shows how the waterfall model follows specific steps in a particular order:

Figure 1.1 – Waterfall system

In a waterfall system, testing is done only when development is finalized.
However, with the rise of agile methodology, gaming studios have
gradually started to adopt this method of development as well. Furthermore,
with the explosion of mobile gaming and F2P games, it became obvious
that agile development was necessary for efficient live ops. This required
that we change the way we test games. Handing the product to the testing
team when “done” became impossible, because modern F2P games never
end, and hence development is never finished.

When should QA for games be
performed?

Game development has evolved into an iterative model, where we develop
smaller chunks of code that are tested as they are developed. As we can see
in the following figure, agile development is iterative – small, usable pieces
of code are frequently released and tested:

Figure 1.2 – Iterative development

The aim of agile methodology is to develop minimum viable features that
can be continuously improved in future iterations.

There are several unique aspects of testing in an agile environment:

Testing is continuous: a QA tester still holds the position of gatekeeper
and has the responsibility of validating whether a feature or the whole
build is of good-enough-quality to be released to the target audience.
However, besides that, QA testers also test early features, validate
usability flow, develop test cases based on use case scenarios, and
perform many other tasks. If your game is live, the QA team will

Table 1.1 – Testing focus per development phase

additionally handle live testing and verification of bugs coming from
player support, forums, and your game’s social media channels.
To be able to support continuous testing, QA is part of the agile team,

rather than a separate unit. It is impossible to get full insight into agile
development if QA is not part of the team. In modern game
development, we still often use outsourced testers for the QA-heavy
stages: first-time releases, major updates, or significant changes such as
the introduction of multiplayer. However, very often we have situations
where we have one full-time QA team member and a scalable external
QA partner.
Testers must adapt their approach to testing based on the development

stage and feature readiness. It doesn’t help to report minor bugs while
testing the first version of a major feature. This can be particularly
challenging for QA testers. These professionals need to have
experience, skills, and great collaboration with the rest of the team to
fully understand the product priorities and focus their testing effort on
the right thing at the right time. In the following table, you can find a
high-level overview of what the testing focus should be in each stage of
game development.

MILESTONE TESTING FOCUS HOW TO TEST

PRE-

PRODUCTION

User stories, scalability, game

design flow

Document reviews,

decision tables

ALPHA
Core gameplay, fun factor,

stability

On the selected

principal device,

emulators

BETA
UI, UX, game flow, FTUE,

monetization, coverage

On a wide range

of target devices

RELEASE

CANDIDATE

Balancing, meta game,

localization, game polish, shop

and monetization, coverage

On the main

supported devices

Based on everything we have discussed up to here, we can freely conclude
that optimally, QA testing should start as soon as we start development.
Many studios still hold on to old ways of working and test only at the end
of the development cycle, as it’s perceived to be cheaper. This type of
testing is usually very stressful as there is rarely enough time to ensure
adequate testing coverage and many serious bugs can easily creep into the
live game. By having QA performed in a more iterative way, we decrease
that risk. This approach is potentially much cheaper than having to fix the
damage of a failed product launch.

By now, we have a better understanding of when games should be tested.
But, how should the testing be undertaken?

How should QA testing for games be
performed?

When we start thinking about testing, it’s important to have some kind of
understanding of what the desired outcome of our test is. That will allow us
to compare the actual result of the test with the desired outcome. For some
tests, this might be obvious – for example, the test case open settings and
mute the sound has the obvious desired outcome that the game is muted.

For other scenarios, however, it’s not so simple. If we investigate a test case
such as check whether game loads, it might seem deceivingly obvious: of
course, the game should load! But, how long should the loading process

Testers represent the player in the team. It’s their job not only to test
the code, but also to collaborate in the development process, putting
themselves in the players’ shoes. This approach requires testers to have
an in-depth understanding of the target audience, its preferences, its
likes and dislikes, and a solid knowledge of competitors’ games. Most
of the time, the QA specialist closely collaborates and communicates
with player support; testers can consequently gain precious insights into
players’ gaming patterns, game preferences, and the things they find
most frustrating.

take? Should there be any sort of loading indicator? Will the audio be on or
off while loading? As we can see, it’s not necessarily that simple to
determine what the desired outcome is. This test case is something my team
and I had to experience ourselves to find the answer to. It took our team
almost a week, while also researching competitors, to finally agree on what
the expected outcome of that particular test case should be. The desired
outcome of a test case is also sometimes called the test oracle.

More often than not, we also use test cases for testing. Even if they are not
a mandatory part of game testing, they are very frequently used across
various gaming studios. We will study test cases in depth later in the book,
but for now, it’s sufficient to become familiar with their general definition.
Test cases are written instructions that list specific steps for how testing
should be performed.

Besides test cases, testers can execute tests using different types of
documentation. Many teams create their own product test plans, which are
detailed, carefully planned documents describing all aspects of testing that
will be undertaken for a specific game. Test plans usually don’t contain test
cases themselves, but they specify test case tools, who created them, how,
when, and based on what. The plan might also contain links to the test case
repository.

If your team has fully embraced agile development practices, you might
also use test charters. Test charters are less formal documents compared to
test cases. They generally contain information about what the testing goal is
and some ideas and approaches regarding how to reach it.

Lastly, let’s talk about who is doing the testing. By now, you have probably
realized that we are using tester and QA specialist/tester as interchangeable
terms. There are really no differences between the two, but, as we don’t
have a unified industry terminology, there might be some differences
between the two, depending on how a particular studio interprets testing
tasks. However, besides professional QA personnel, there are other people
who perform testing as well:

Developers

It’s part of the developer’s job to do testing as well, although they use a
very different methodology from testers. Developer testing focuses on what
is called white-box testing. This implies testing mostly focused on unit tests
and code reviews. While these tests are exceptionally useful, they have
slightly different purposes compared to the tests performed by QA teams.

In modern agile teams, most of the team performs at least some type of
testing. Designers review the logic and validity of their designs. Artists
check how their work looks and feels in the game. UX designers review any
changes in the user flow. The producer will have an overall look at all the
components, trying to assess the level of completion and early build quality.
All of these help the QA team to get a better picture of where the specific
risks are and focus their efforts in the right place at the right time.

When we talk about marketing, we primarily talk about player support. It is
wise to keep the player support team informed well in advance about any
game developments and provide them with design documents and access to
early builds. That will help them understand the game better and address
customer comments and complaints properly. As they are the people
spending the most time with the players, very often, you get valuable
feedback from those early play sessions.

Lastly, players themselves are also testers, whether we like it or not. They
will play the game in all the possible ways they see fit and report bugs
through player support, forums, or social media. You might ask, if they test
it themselves, why would we bother paying specialists to do it? This is
because, usually, when a player notices bugs in the game, it’s already too
late, especially if the bug is a serious one. We might already have lost part
of our players or a significant amount of revenue.

Members of your development team apart from developers (designers,
artists, etc.)
The marketing team
Product managers
Players

However, there are ways of utilizing players’ testing in a more formal way.
We do that through beta testing or playtests. In these types of tests, we
allow smaller, often specifically selected groups of players to play early
builds of the game. The primary goal of these tests is to get an idea of how
players will receive the game and their likes and dislikes, but they also very
often yield useful bugs.

Summary
In this chapter, we learned about some of the basics of modern game
testing. This will help you to easily transition into modern, fast-paced game
teams and adapt more quickly to agile teams. You also learned about the
main differences between testing software and games, which lays the
foundation for what comes next: practical QA steps and the challenges that
come with it.

All Engines Go – The Basics of
Game QA
In this chapter, we are going to dive deep into the core of game QA and
examine in detail the elements that should be tested in games. We will learn
how QA works in practice and what the main challenges of game QA are.
At the end, we will touch upon modern agile practices and how game QA
fits within these practices.

The goal of this chapter is to provide you with practical information on
modern game testing that will allow you and your team to optimize their
efforts and focus on the most important elements. You will also learn more
about how game QA functions within the modern agile development
framework.

By the end of this chapter, you will have a good understanding of the
following:

What is tested in games?
By now, we already know that there are lots of similarities between general
software and games. In practice, this means that games must go through the
same vigorous testing as any other software. We have also established that
games have their own unique characteristics. Looking at games as a whole,
they lie at the intersection of technology, art, and business. This makes them

What is tested in games?
What is the most important element to test?
How to prioritize in QA
The basics of QA in practice
Where QA fits in the modern agile methodology

a unique type of software that requires us to consider a broader picture
when talking about testing games.

The gaming industry is notorious for its lack of documentation, and very
often testers need to figure out themselves what to test and how. It’s
advisable to get any design documents or use cases to help you determine
the scope of testing and the expected results. In general terms, we are
testing the following:

We will go through each of these aspects in the following subsections.

Stability
Stability is the core element of any application and forms the foundation
for all other QA efforts.

So, the primary aspect that we want to test in a game is its stability, which is
an indicator of whether the following have been achieved:

Stability
First-time user experience (FTUE)
Core game loops
Level progression
Game physics (if the game has physics)
Game logic
AI behavior
Usability flow (UX)

The game can be installed on a target platform
The game’s installation process is not too long
The game runs on the target platform

As we can see from this list, there are quite a few aspects of stability that
we need to consider. Another thing we need to pay attention to is that some
of these requirements are ambiguous. When we say the installation process
is not too long, what does that mean? Is there a standard optimal time for
this? The answer is not straightforward. Some complex games can have
long loading times; this is something that would not be acceptable for
casual games. Ultimately, the right answer is determined by the actual
players. Will players accept this long installation process? If the answer is
no, then the installation takes too long. Another more practical way to set
specific values for this requirement is to check the loading times of similar
games that can be considered your competition. You probably want to stay
in the same range as your competitors, or do better.

Of course, when we talk about premium PC games, this particular
requirement is not that important. Players already paid for the game, and
they are committed to waiting until the game is loaded. They might not be
too happy about it, but this will not affect your game sales. On the other
hand, if we talk about a free-to-play mobile game, this same problem can
spell disaster for your game. Players have low levels of commitment as they
didn’t spend money on it in advance and there are many competitors
offering a similar gaming experience, also for free. If it takes too long for
your game to load, they might just abandon it and move on to the next best
thing. Even worse, they might give you a one-star review in the store and
say that the game doesn’t work, which will discourage other players from
downloading your game.

In the example above, we can see how the specifics of the platform and
business model directly affect the importance of QA.

The game runs on multiple versions of an operating system
The game runs at appropriate framerate and doesn’t have delays or

glitches
The game is stable and doesn’t crash
The game doesn’t freeze
The game doesn’t kick a player out of the game

Another reason why it is important to test game stability first is the fact that
this is a precondition for all other tests you will run. You will struggle with
testing progression or game logic if the game is unstable, and you won’t be
able to test anything if the game doesn’t load. These tests are always part of
Basic Acceptance Testing (BAT) and are usually run first.

After stability, the next thing we want to test is whether the game does what
it is supposed to do.

First-time user experience (FTUE)
FTUE is similar to a tutorial. We test how the player is onboarded to the
game: is the gameplay explained well enough? Is it paced properly? Does
the player have enough chances to practice what they are taught? Is it too
long? Is it correct? Is it misguiding? Asking these types of questions gives
us practical guidance on how to test the FTUE. We do have to keep in mind
though that these answers will vary from game to game. As with many
other things, often, the answers depend on the specific game genre and the
target audience. While role-playing games (RPGs) and many strategy
games are known for their steep learning curves, most casual and puzzle
games have more detailed explanations on how to play the game and don’t
become too challenging early on.

Core game loops
Core game loops are the main game design mechanics. These are the main
actions that the player carries out in a game; these actions strongly depend
on the game genre. For example, in match-three games, the player will be
taken to a level where they need to match three or more elements to create
strings. Matching the elements clears the board and the player is rewarded
with a specific number of points for each match. When the player reaches a
certain number of points, the player will win the level and be able to move
on to the next level. This is the core game loop of a match-three game; we
can see many items that we can test here:

Can you start a level?

There are many more things we can test on each level but asking these
questions will tell us if the core game loop works as intended.

Note on testing more complex games

More testing is required for more complex games, such as strategy games,
where a player needs to get currency to build a building (generator) that
generates goods that are used to build an army, and an army in turn is
needed to conquer more territory, as more territory brings more currency.
As we can see, these game loops are much more complex with more co-
dependencies, and as such, will take more time to test fully.

Level progression
We already mentioned level progression when we spoke about core game
loops. Many games have levels – sequential stages of the game that
showcase that a player’s skills and fortunes are growing with the time they
spend in the game. They act as a motivator for the player and are one of the
reasons why they keep playing the game. Levels can be obvious and part of
the gameplay: they may be displayed on a map or similar and numbered.
But they can also be incorporated more deeply into the gameplay and
shown as the player’s skill level, settlement level, or similar. We can find
great examples of embedded levels by looking at games in the 4X genre

Does each level start at zero points?
Can you do the matching as intended?
Does each match give you the appropriate number of points?
Does the physics of matching work (do matching items disappear,

explode, etc.)?
Are matched elements removed from the board?
Does a level really end when the target is reached?
Can you move to the next level when the current level is won?
Do points reset with each new level?

such as State of Survival. Regardless of how levels are displayed, we need
to test the following:

Besides the technicalities of moving to the next level, here we also need to
pay attention to the difficulty of the level. This is one of the parts of testing
that is very specific to the gaming industry. How can we determine whether
a level is too difficult or too easy? Usually, with free-to-play games, we can
adjust the degree of difficulty relatively easy. But, with premium and boxed
games, it’s often impossible or exceptionally hard. One of the best ways to
decide what is too hard/too easy is to try to put yourself in the player’s
shoes. Who is playing your games? What level of gameplay difficulty will
they expect? As a tester, it’s always recommended to play similar games
yourself, to get a sense of how difficulty is balanced. It is also advisable to
have discussions with level designers and get a better understanding of the
desired balance.

Game physics
Some of the most successful games out there are physics based. Angry
Birds, Goat Simulator, Portal, and Half Life are all examples of games that
rely heavily on the physics gameplay element. By physics, we mean
mimicking the behavior of objects in real life: for example, heavy objects
will fall faster, or if you hit a ball with more force, it will fly further. Of
course, games are supposed to be fun, and sometimes the laws of physics
are bent or even broken. In GTA, your car has a flying car mode; in some
games, you can jump really high; or, for example, in Madden you can get an
acceleration boost that allows you to run extremely (unnaturally) fast.

Can you start the level?
Does it start with appropriate resources/counters?
Can you finish the level when the targets are met?
Can you pass the level?
Can you start the following level?
Are leveling-up rules clearly visible?

Note on testing physics in games

When testing physics in a game, it is very important to understand how
objects in the game are supposed to behave: are physics in the game a copy
of the real world or does the game design allow for certain freedom? After
we are clear on that, we should focus on testing physics consistency: that
flying car mode should really enable us to fly the car, or tapping the
character twice should allow him to jump extra high every single time when
physics apply in the game.

Game logic
Game logic is somewhat like game physics, but not all games utilize
physics for their main gameplay. Game logic means a game is behaving in
the expected manner. For example, if you are testing a story-driven game,
you need to make sure that the dialogue makes sense and that the story is
progressing in an understandable and logical way.

AI behavior
In many games, especially ones with slightly more complex gameplay, we
encounter non-playable characters (NPCs). Their role might be to guide
us through the game, assist us, or, more often, act as our nemesis that needs
to be defeated. The behavioral patterns of these characters can range from
very simple to more complex. Some of them are so complex that it’s hard to
tell if they are a real player or AI!

For example, let’s take a soccer game. Before you start to play against a
real-world opponent (multiplayer mode), you might get a couple of practice
rounds against an AI team to build up your team and earn some experience.
If the AI is designed well, the opponent’s team will act as if it is managed
by a real player; it will play following the rules and respond to your team’s
actions. A tester’s job is to make sure that all programmed behavior is as
realistic as possible and responsive to the player’s actions.

Usability flow (UX)
Usability is one of the most important parts of any software. It’s the same
with games – it is very important that a player’s journey through a game is
fluid, logical, and easy to understand. If not, players will leave the game
fast. But how do we test UX in games?

UX testing is a discipline on its own and it’s usually done by representatives
of the players. As a part of generic game testing at a high level, we need to
test the game flow. To do this, we can ask the following questions:

Of course, there are plenty of other things we need to test in games. Many
of them will depend on the game genre, platform, and even business model.
We will go through many of them in detail in the following chapters, but
let’s go through them briefly here:

Is the game flow easy to follow?
Are transitions logical from the players’ perspective?
Can players easily transition from one screen to another?
Are there any dead ends in the game?
Is there anything frustrating or unnecessarily complicated?

Platform compatibility
Purchasing
Visuals
Audio
Multiplayer
Playthrough
Third-party integrations
Achievements

Platform compatibility

We will touch upon platform compatibility testing in Chapter 4, Deeper
Look - Testing on Various Gaming Platforms – Mobile, PC, and Console.
Depending on the platform, this can be a very important part of testing.
Regardless of which platform we publish our game on, it’s always a tester’s
job to make sure that all platform requirements are met in the game.

Purchasing

Purchasing is another exceptionally important thing to test in the games. If
your game is free-to-play (F2P), which has been the predominant business
model in the gaming industry for the last decade, you want to make sure
that players’ purchasing experiences are smooth and glitch-free. When
testing purchases, we should investigate the following things:

Consistency
Compliance and legal requirements
Game world rules
Fun factor
Hardware compatibility

Can I access the in-game shop?
Does the shop display the correct amounts, visuals, and names of items

for sale?
Can I execute the purchasing action without any interruptions?
Do I get items that I purchased?
Am I charged the correct amount?
If the supply is unlimited, can I repeat the purchase?

Visuals

Every game has its own visual identity. When we test visuals, we want to
make sure that the game looks good and that there are no visual glitches or
obvious mistakes. We also check the following:

Audio

Audio is also a very important component of the gaming experience,
particularly when we look into deeply immersive games on PCs and gaming
consoles, games that include actors dialogue, have music as a part of the
core gameplay, and where the game’s atmosphere is important for the
overall experience. Can you imagine a battle scene without the sounds of
weapons clashing? Or investigating a dark alley at night for clues, without
eerie music following your journey? To make sure that the audio works as
intended, these are following things we need to pay attention to:

Do animations play correctly?
Are any of the visuals missing?
Are any of the visuals misplaced?
Are any of the visuals significantly distorted?
Is the user interface (UI) clearly visible?
Can interactive visual elements (such as buttons) be tapped, and do

they do what they are supposed to do?

Does the audio actually play?
Is the sound clear, without any interruptions or distortions?
Can the audio be switched off?
Does the audio play in a timely manner, without delays, and in

correspondence to the actions that a player does on the screen?

Multiplayer

Multiplayer is one of the most complex and time-consuming things to test
in games. First, let’s answer the question of what multiplayer is. We
consider multiplayer any action that involves other players in the game; it
could be one other player or many. Multiplayer can be collaborative –
several players join a group (most often called a guild) and work together
toward common goals and the betterment of the whole guild. Equally,
multiplayer is also competitive – competing for resources, territory, or skills
with another player or group of players. As we see, just by its nature, it’s
impossible to properly test multiplayer with only one tester. Moreover, lots
of collaborative or competitive actions in the guild happen over a specific
period of time.

Leaderboards example

For example, let’s look into a simple multiplayer feature: the leaderboard.
Leaderboards are always time-determined: they can be daily, weekly,
monthly, or all time. Also, they can be determined by an event in the game
– if your game has special events that last for a certain period, that
particular event might have its own leaderboard. Even if it’s a feature that
seems relatively simple, once we scratch the surface, we can see that there
are plenty of parameters we need to check to be able to confirm that this
feature works well.

Figure 2.1 – Competitive versus collaborative multiplayer

Some of the high-level tests that we want to run when testing multiplayer
are as follows:

Can multiple players join the common activity?
Do all players have the same playing experience (no delays, glitches,

freezes etc.)?
Does multiplayer activity follow set rules (for example, a guild can

have up to 20 members, or players can only fight 3v3)?
Are players matched correctly in PvP?

Playthrough

While playthrough was traditionally the bread and butter of game QA, in
modern games, this is not the case. Full playthroughs are rarely done in
mobile F2P games because it would take far too much time with little
benefit. By their core design, F2P games never end and players are
supposed to be able to play them continuously for years to come.
Performing complete playthroughs on games like these is practically
impossible. On the other hand, it’s still a very important part of testing
premium games, especially ones that are released in physical format. Those
games are a finite product, with a specific number of hours they can be
played, and we want to make sure that these games work as intended from
beginning to end.

Third-party integrations

In modern games, especially mobile ones, third-party integrations have
become the norm. There is rarely a game that doesn’t have some sort of
analytics in it. If your game shows ads, it will come with an ad platform
included and potentially mediation platforms as well. While we don’t test
those additions ourselves, we want to make sure that they are correctly
installed and do what they are supposed to do.

For example, if our game contains ads, we want to make sure that they
work as intended: they can be seen without issues, and if players are
rewarded for watching ads, we should check that they receive the correct
reward for watching them.

Achievements

Do you have a chat in the game? If yes, does it follow the specified
rules (local, global, security, etc.)?

Achievements testing is a huge and very important task for console games
and can take a long time. Some of these achievements are purposely created
to require a player to play the game for a long time or on an exceptionally
difficult setting. Very often, there is a specialized group of testers who test
achievements, as it requires testers to also be skillful gamers. While most of
the time, we can rely on the help of cheat menus that are created
specifically for testing purposes, we still need to make sure that
achievements are attainable, and therefore, it is advisable to try to obtain
them without cheat menus when possible. In mobile games, achievements
can also be important depending on how they were implemented in the
game design; however, testing achievements doesn’t usually require such an
intensive effort, as they are not a prerequisite for passing game submissions.
We will learn more about submissions in Chapter 11, Are You on the Right
Version? Live Ops and QA.

Consistency

Consistency testing is especially important when we work with large games
that have a rich metagame and plenty of content. In these cases, you might
have a large game development team working on the game or even several
ones. It can easily happen that terminology, parts of a narrative, or even
how something in the game looks or sounds get mixed up. In consistency
testing, we make sure that text, names, looks, behavior, and sounds are
consistent throughout the game.

Compliance and legal requirements

Compliance testing is its own discipline within testing, especially with
consoles. We will examine it more in Chapter 4, Deeper Look - Testing on
Various Gaming Platforms – Mobile, PC, and Console. Legal requirements
testing is somewhat related to this. While nobody expects testers to be legal
experts and it’s not really a QA job to make sure that all legal issues are
covered in a game, it is good to keep an eye out for something that might
raise a possible copyright issue and that credits are listed as agreed. For
example, while I was testing achievements for one of the console games I

worked on, I noticed that one of the achievements was called NASA. I
thought it was worth checking if copyrights are needed for such usage. It
turned out that we couldn’t just simply use the name without explicit
permission, and it was a valid legal issue.

Game world rules

When we create game settings, we create different environments that very
often are worlds with their own rules. Every game you play, even the tiniest
mobile game, has its own setting. Worlds will have maps or just general
environments in which players move, perform actions, match items, battle
with cards, merge, flip, fight, collect, and do thousands more different
things. Each of these worlds, even if it’s trying to emulate real-world
scenarios, has its own rules. They are defined by the game design and game
mechanics. A big part of testing is validating that these game rules work as
intended.

Fun factor

The fun factor of a game cannot be quantified or measured; as a result,
there’s a lot of subjectivity involved when testing for the fun factor. Without
it, games will not really be successful with players. But how do we define
fun for each game? The fun factor is very hard to quantify, and testers often
have to rely on their own experiences and familiarity with the given genre
to make sure that the game is fun to play. A good rule of thumb here is to
play several other successful games of a similar genre. You will get a good
idea of what feels like fun for the player. It is also important to understand
who your game’s target audience is. Players who enjoy first-person shooters
might not necessarily enjoy match-three games and vice versa. In testing
the fun factor, the most important quality a tester can bring to the table is to
be able to put themselves in the players’ shoes. Being able to understand
what the target audience expects and desires to see in these types of games
will help a tester be more objective.

Hardware compatibility

Lastly, we will touch upon hardware compatibility. This is another major
part of testing that requires thorough preparation and planning. While it’s
not so much of an issue for console games or even PC games (although PCs
do come with thousands of different specifications), it is very important for
mobiles, especially when considering the Android platform. There are over
10,000 Android phones on the market, made by different manufacturers.
Making sure that the game works well on most of them is no small task. We
will discuss this in more depth in the chapters that follow.

We have now covered in detail the wide range of elements to be tested in
games. With so many different aspects available to test, next we will focus
on how to figure out what the most important thing to test is at any given
time.

What is the most important thing
to test?
There is no simple, straightforward answer to this question. There are many
dependencies that will affect what the most important thing to test is:

Timelines: when are we doing the testing?
Platform: different platforms have different rules
Target audience: who is your player and how do they behave in the

game?
Business model: is our game an open or closed ecosystem (F2P versus

premium)?
Build readiness: what is ready to be tested?
Target market: different markets bring different challenges
Business requirements: do we have a partnership or stakeholder that

requires us to focus on something specific?
Technical changes

These are by no means all the possible dependencies. The gaming business
is a very fast-paced industry and constantly changes and evolves. This also
affects QA as one of the crucial parts of game development. How we do
determine the most important thing to test? Let’s look at the timeline
priorities first. Based on where you are in game development, your testing
focus will shift. There is no need to test detailed content, for example, when
we are in early game development and still developing the architecture.
Game testing always follows game development, and we focus on testing
what is in development at the current milestone (see Figure 1.2 in Chapter
1, Setting the Stage - Introduction to QA for Modern Games).

We can see that there is a significant shift in focus as we pass different
game development milestones. Not only do we shift focus on what is tested,
but also how it is tested. As a game develops, we slowly expand the range
of testing performed. In this way, testers contribute in the best possible way
to the overall development effort and we get optimal execution overall.

We also want to make sure that we find the most complex and hardest-to-fix
bugs early on. If we find a bug that affects game architecture or exposes
significant game design flaw late in development, this bug will be much
more expensive to fix than if we were to find it early on. This is due to the
fact that development in the early phases is very much focused on building
the architecture, while the design is still relatively fluid without too many
co-dependencies. When the game release date is still far off in the future,
there is plenty of time to fix bugs without requiring extra resources, long
working hours, or timeline pressures. By contrast, finding such bugs just
before the game is released causes lots of problems and increases costs.
Most of the game content is already locked – fixing issues in the foundation
of the game will possibly affect lots of co-dependencies with other elements
in the game, potentially causing other bugs or instabilities in other parts of
the game. Due to tight release deadlines, these issues must be fixed before a
certain date, which leads to working overtime and even pulling in extra
resources. This type of situation is one (among many) of the reasons why
traditional game QA is not the best way to test games. Handing over the
finished product for testing means that all bugs, big and small, will be found

at the same time, which can cause lots of stress and increased costs for
development teams.

We already discussed that some features of the game, by nature, just take
longer to test. If a game has multiplayer or achievements functionalities, for
example, we need to make sure that there is sufficient time to test them. The
closer we get to the release date, the more important these types of tests
become.

One thing that is important to mention is that game QA never really ends.
The only point when QA is really finished is when the game is not
supported anymore or is removed from the store. When a game goes live,
we enter live operations or the live ops phase, which comes with its own set
of QA challenges.

In the live ops phase, priorities change even more frequently, and player
input becomes a significant factor in determining the most important thing
to test. For example, if we get lots of complaints through player support or
social media about a particular issue or feature of the game, this issue will
quickly become a priority to test.

Sometimes, even the game genre can dictate what aspect of the game
should be prioritized for testing.

Let’s take audio, for example. Most players play games on mobile phones
with the audio turned off. This is due to the nature of the platform: mobile
games are played in public transport, waiting rooms, and even school
classes and work meetings. It makes sense that many players decide to turn
the sound off on their mobile device. On the other hand, there are many
successful games out there that are based on music and sound. There are
rhythm-catching games, such as Piano Tiles, where it’s important for the
player to hear the sounds as part of the core gameplay experience. So, while
in many mobile games, audio might not be the most important thing to test,
it is very important for games that have sound and music at their core.

Business requirements are another important reason that can heavily affect
testing priorities. For example, in one of the companies I worked for, the
board of directors intervened and wanted a particular issue to be fixed

immediately, and the bug fix to be verified. Needless to say, our team
reshuffled priorities and made the board request a priority. A similar thing
can happen when, for example, you are aiming to get featured by a mobile
platform. The platform might give you a list of things that they want your
game to have in order to be featured. Usually, those requests take priority in
development and thus in QA as well.

In all of the preceding examples, we can notice a common string: QA
follows development efforts. In modern game testing, it is important that
the QA specialist is a member of the game team, working closely with
developers. A QA specialist can act quickly, adjust testing plans to meet the
real needs of the project, and spend their time in the most efficient manner.
In more traditional QA, plans would be solid, and QA staff would very
often be the last ones to find out about any last-minute changes. When they
did, it was usually already too late to shift the testing focus. This resulted in
many testing hours being wasted, as well as long working hours and lots of
pressure to accommodate last-minute changes. With mobile games being
constantly worked on and developed, it’s nearly impossible to have
traditional QA and expect to get good results. While traditional QA is still
frequently practiced in console and PC environments, QA has significantly
evolved in the mobile gaming context, picking up development best
practices.

Game QA in practice
How does game QA look in practice? We already went through several
examples of how QA works in the gaming industry. One important
distinction we can make is to split QA into two major game life cycle
phases:

Figure 2.2 – Game life cycle phases

In the pre-launch phase, as we have seen in the previous sections, QA
works together with the development team on pre-determined, long-term
production timelines. Very often, QA will be added to the team only much
later in game development, and early testing efforts will be done by the
development team. There is the single pressure point of the release date,
and that is generally an equally important and stressful day for QA
regardless of which platform, business model, or genre they are dealing
with. The release or launch date is the first time your game will go live to a
wide audience, and it involves significant marketing efforts and costs to
attract players to the game. This is particularly important for premium
games, where most of the revenue is generated within the first 30 days after
launch.

In the post-launch phase, or live ops, QA is very different. Development
times are much quicker and plans are changed more often, and game key
performance indicators (KPIs) as well as player opinions very often re-
shape production schedules. Most mobile games in the live ops phase have
a cadence of content updates that recurs every two weeks or so.
Furthermore, owing to the constant development of technology and the
release of new phone models on the market, QA must keep an eye on the
latest industry developments and make sure that game is still compliant
with new versions of operating systems, works well on new mobile devices,
and successfully meets the other challenges of a live product. So, how do
we perform QA in practice?

QA usually works in following way:

Figure 2.3 – Testing cycle

The preceding figure shows the standard testing cycle:

1. QA gets a working build for testing. It’s only distributed internally to
the testing team and is not available for the general public yet. This
build is deployed in a test environment. Testers usually receive a
change log or release notes, which list the changes made in this build.
This helps QA to focus their testing efforts and develop additional
test cases if needed.

2. Testers execute testing. This is the core of our work. We use the
knowledge we have about the platform, the game itself, what to test
in games in general and in this particular build, along with any
documentation we got from the dev team, and apply a testing
methodology and approach that is the most appropriate for the testing

we are doing. Testers usually use a set of test cases as a script for
their testing efforts.

3. The output of our work is bugs. Most of the time, QA will find at
least some bugs in the software that is being tested. They may be
major or minor bugs, and together with the producer or product
manager, it will be decided which bugs must be fixed. Bugs are
reported in a common repository (bugs database).

4. The bugs are then fixed by developers and committed to QA to test.
We need to make sure that bugs found previously are truly fixed and
confirm that those fixes didn’t cause any other issues. When
validating bug fixes, it’s important to use the same parameters we had
when we originally reported the bug.

5. After all the relevant bugs are fixed and validated as such by QA, the
development team deploys the build in a live environment – it is
released to the public gaming audience.

6. It is always advisable that QA also tests the build that is released.
While the test environment should always closely copy the
production environment, there are still some differences. Testing a
live build immediately upon launch helps us find any significant
issues with the game in a live environment and helps us minimize the
damage that such issues would otherwise have on the players.

In live ops, when we finish with one release, we very often already need to
prepare for or even start testing the next one.

In game development, QA very often acts as a sort of gatekeeper – a green
light or QA confirmation is required before a game or game update can be
released. In small studios, this is generally a simple process, and the
discussion to send the game for QA might happen only via an informal
meeting or email. But in larger studios, this process can be very heavy and
involve multiple steps. It often involves detailed testing reports and large
meetings where findings are discussed and final decisions are made as to
whether the game should go live or not. While this detailed process ensures
that there is team alignment and the product is mature enough for launch, it
can easily be way too time consuming for live ops. A heavy release process
can become cumbersome and disrupt update cadence, which, in turn, can

push players away from the game. If there is no fresh content to play,
players might turn to competitors’ games and never come back.
Unfortunately, even if QA has general ownership of greenlighting the
release, it rarely has ownership of the process or the final word.

Now that we know more about how to determine what to test and how
game QA works in practice, we will next learn more about the main
challenges in game QA.

Game QA challenges
We can already see that there are many challenges in QA. We will list some
of them and offer practical advice on how to handle them.

Frequent changes in technology
It is a fact that technology is advancing and constantly changing. Since
we’re working in a digital environment, we need to stay aware of what is
going on not only in the gaming industry but also in technology in general.
We need to consider how these changes will impact the games we are
working on. Do we need to upgrade our engine version? How will we test
the impact of that? How will our game perform on a 5G network? Will the
game run on the latest model of iPhone? While many testers are also
passionate gamers, to be excellent in QA, we need to keep up with
advancements in technology as well, as they will affect how our games are
made and how they are updated. With an awareness of advancements in
technology, we will be able to develop new and relevant test cases that will
ensure that our game will work great with all new technology upgrades.

Changes in platform guidelines and
regulations

Every platform has its own set of rules and regulations. Some of them are
stricter than others, but they all change every now and then. Sometimes,

those changes will make our job easier but more often than not, they throw
us a curve ball that we might struggle to catch on time. Furthermore,
platforms don’t necessarily inform developers when they change their
requirements or guidelines; we have to learn about them the hard way, when
our submissions fail. If your studio is big enough to have a submissions
team, make sure to check in with them regularly and see if platforms still
have the same requirements. If you are working in a smaller team, it is
recommended to have someone in QA responsible for keeping an eye on
platforms and making sure that all compliance tests are frequently updated.
Remember that platforms set their own rules, so there is no point in arguing
or ignoring them. It’s in our interest for the game to be published on time,
and having a complete understanding of the platform requirements in
advance is one of the key components in achieving that.

Conflicting priorities
If there is one skill that would be considered crucial for QA, it is
prioritization. We already know that QA has a lot to test, even in what we
would consider small games. It is important to understand what we need to
test and when. When in doubt, it can be helpful to talk to your product
manager and producer to get a clear picture of the game release pipeline and
product requirements. And that brings us to the following item.

Limited time for QA
There is never enough time for QA. We can always find something else to
test. Unfortunately, very often during the pre-release game development, the
team decides to make major changes in game design or even in architecture,
but it doesn’t necessarily push forward release dates. That puts QA in a very
unenviable position: there is more work, but the timeline is shorter. In
situations like this, prioritization is key. But, besides that, it’s important to
state clearly to other stakeholders and the game management team that there
might not be enough time to test everything as planned. By doing that,
everyone in the studio will be aware of the risks of limited QA, and if it’s
considered a really high risk, there might be some additional QA time or

resources added to the project to minimize the probability of critical bugs
slipping through.

Considered an entry-level role but
with lots of requirements

Another unfortunate thing with QA is that is generally considered an entry-
level role in the gaming industry. When you start in QA, there is not much
structured training to take advantage of and it takes time before someone
really grows into a good QA. But due to the entry-level positioning of QA
in development, many great QA people decide to switch to other disciplines
such as game design and production when they become experienced
enough. This can cause lots of challenges in doing QA professionally and
efficiently. Here we can find an example of how things can go very wrong
when QA for a highly anticipated game was done by a team that was too
junior for the task: https://www.thegamer.com/cyberpunk-2077-quantic-lab-
cd-projekt/.

Working with the development team
Working with the development team can be an excellent experience, and it
generally makes the QA job more rewarding and even easier. You can ask
questions directly to team members, understand planned features better,
participate in game development, and give early input. But it can also be
very challenging. Some teams are not used to working closely with QA or
they consider the QA team the enemy of the development team. During my
time in QA, I even once heard a comment to stop putting bugs in the game.
I assure you that QA doesn’t put bugs in a game, but we do find them –
that’s our job! The key to working with the dev team is clear
communication and mutual respect. As long as we report relevant bugs that
are useful to the team and work in a collaborative manner, with clear
communication, most of these challenges can be resolved.

Of course, QA doesn’t work only with the development team. We work also
with marketing, analytics, player support, and other departments. It can

https://www.thegamer.com/cyberpunk-2077-quantic-lab-cd-projekt/

often happen that QA will receive a request from another department to do
testing for them. While it’s great to help other teams, it’s QA’s duty to make
sure that they fulfill their tasks first. Once I worked in a team where our QA
lead spent most of his time verifying issues that were reported through
player support. While that was worthy help, he didn’t manage to keep up
with the testing of regular updates and the number of live bugs just kept
increasing. We resolved that issue by training player support in basic QA
practices and assigned a player support agent to the game team to have
better insight into how development worked, when bugs will be fixed, and
to be able to do basic verification of the bugs reported by players.

Live bugs
Bugs that come from a live environment are generally considered more
severe than the ones found in production. This is because it’s the players
that experience them and very often they are reported by players
themselves, writing angry emails to customer support, posting negative
comments on game forums and social media, and giving one-star reviews in
the Google Play/App Store. The damage is already done. Unfortunately, it
is generally perceived that live bugs are the fault of the QA team. In reality,
live bugs mostly occur because QA didn’t have enough time to perform
thorough testing. Live bugs are challenging not only because of the effect
they have on players, but also because they come from reports outside of
the game teams. This means we often don’t have all the parameters
regarding where and how a bug appears. If we don’t have a good
communication pipeline between player support and the production team,
we might not even hear about this bug for a long time. Ultimately, we have
to find time to fix this bug or even make a decision on rolling our update
back to a previous version. This can be very complicated and sometimes
risky.

Another challenge when dealing with live bugs is distinguishing real issues
from non-issues or identifying issues that are happening to only a very
small portion of the players. It’s human nature that we immediately react to
someone who is loud about the bug they found or who threatens to leave the
game. While happy players are of utmost importance to the success of any
game, it is also important to have a look at the overall picture. Is this issue

affecting only one player? Is it escalating quickly? What is the effect on
players – are they losing progress, money, or can they even run the game?
Even if a player is very loud, an issue that affects thousands of players
should take priority over addressing an issue that is an edge-case scenario
for one or a handful of players.

Gaming studios develop different processes for handling live bugs and
escalating the issues that players are facing. While there is no universally-
accepted, perfect solution, if we have processes in place that work and are
efficient enough to resolve these types of issues quickly, we will be ready to
face the challenges of working with live games.

In the previous section, we learned how testing works in practice and what
things we need to pay attention to. In the following section, we will learn
more about where QA fits in modern agile practices.

Agile practices and game QA
Before we dive into agile practices, we should revisit agile’s predecessor,
waterfall. The waterfall methodology was used in software development
until the early 2000s, when the transition to agile methodology started. The
gaming industry heavily relied on waterfall and still does to some degree,
but the need for fast-paced live ops (or, as it’s sometimes called, games as a
service) couldn’t be properly met by following the rigid waterfall system.
How does the waterfall methodology work in the games industry?

Figure 2.4 – Waterfall methodology

We can see that in game development, a project is handed over from one
team to another when it’s considered done. This process is linear and
visually looks like a cascading waterfall, hence the name. When we start
working on a game using the waterfall methodology, designers first create
the overall game design, then an artist develops all the required art, which is
then handed over to developers who code the game features based on the
game design and bring the art to life in the game. At the end of the cycle,
QA is passed a build that is considered done to test it in time for the big
release date.

While this system has its advantages, it is a lengthy process, and it usually
takes years to create a game following this methodology. It is also a rigid
system, where it’s very difficult to get any feedback early in development.
For example, certain designs might be exceptionally difficult to implement
with a given technology, but we will not be able to address this issue until
the game is handed over to the development team. With emerging new
technologies, the changing preferences of players, and the need for fast
content updates in free-to-play games, this model doesn’t serve game
development anymore.

With the growth of the free-to-play business model in the early 2010s, the
agile methodology saw increased adoption in gaming studios and
consequently in QA as well. Today, free-to-play is the dominant business
model in the industry and agile practices are dominant in mobile gaming
studios.

The change to agile methodology was not only about how development
takes place. It also changed the role of QA in the development team. In
agile, QA represents the player and is embedded in the development team.
It participates in feature development and provides valuable input. QA does
think a little bit differently from the rest of the team. While the dev team
thinks “how can we build it?”, QA often focuses on “how can we break
it?” Having this insight early on helps optimize game design and allows for
more robust solutions. Being involved in development from the beginning
also allows QA to have a deeper understanding of the game we are testing,
to get better testing estimates, and prioritize work better. Agile is also a
much more collaborative system: it allows for better understandings of
different disciplines, development timelines, and business requirements.
The following figure shows the agile development workflow. We will learn
more about the agile methodology applied to gaming in Chapter 9, It
Works, but It Hasn’t Been Tested: Testing Approach.

Figure 2.5 – Agile development

Another major difference in the agile methodology is that it is, by nature,
iterative. The goal of agile teams is to produce a workable piece of software
as soon as possible. Very often, big features will be broken down into
smaller pieces so they can be worked on in an iterative manner. Making
features small means that all team members work on the same feature
almost at the same time. Testing these small pieces of working software
enables us to avoid long, exhausting QA rounds at the end of the
development cycle.

Not all agile methodologies are the same. There are several main agile
methodologies used in modern games development:

Scrum
Kanban
Lean development
Crystal
Combinations (such as Scrumban)

Any methodology can be called agile as long as it fits into the four core
pillars of agile: individuals and interactions over processes and tools,
working software over comprehensive documentation, customer
collaboration over contract negotiations, and responding to change over
following the plan. You can learn more about agile methodologies by
reading the Agile Manifesto at https://agilemanifesto.org/.

In the gaming industry, we mostly use Scrum, Kanban, or a variation of
these two. Let’s now look into them more closely.

Scrum
Scrum is by far the most popular and widely used agile methodology. It is
represented in the following diagram.

Figure 2.6 – Scrum methodology

While the methodology is simple, the biggest shift in agile development is
the mindset change. Scrum is based on five values (source:
https://scrumguides.org/scrum-guide.html#scrum-values):

https://agilemanifesto.org/
https://scrumguides.org/scrum-guide.html#scrum-values

Most of the time, the hardest transition is the adoption of these values and
mentally changing how we do the work. How do these values affect QA in
Scrum?

In many ways, they make the QA job easier. QA is often a bearer of bad
news: something is broken or not working as intended; there is not enough
time to test; a bug fix doesn’t really work. Having openness and courage as
the core values of Scrum development makes it easier for the rest of the
team to appreciate this QA point of view, and furthermore to see the full
value it provides. Working so closely with other team members also allows
QA to make fast checks of smaller pieces of software and catch potentially
severe issues early in the development process. In Scrum, QA also has a
voice: it participates in Sprint planning as well as in retrospective meetings.
Open communication helps resolve any issues that might arise in the team
or the testing process.

Sprint

During a sprint planning meeting, items are chosen from the product
backlog, assigned a specific weight, and added to the sprint backlog. The
sprint backlog is a list of items that teams commit to execute during the
sprint. Scrum teams are usually small, a maximum of 15 people and ideally
even smaller. Sprints last between 1 and 2 weeks, and at the end of the
sprint, the team ships a workable piece of software: a feature, new content,
bug fixes, or any combination of them. At the end of the sprint, teams hold
a retrospective meeting where they discuss what went well and what went
wrong.

Courage – to do the right thing and handle tough challenges
Focus – everyone is focused on sprint goals and tasks
Commitment – team members commit to achieving the sprint goals
Respect – team members respect others and trust their competence and

character
Openness – the Scrum team agrees to be open about all the work and

challenges in performing the work

Kanban
Kanban is another very popular agile methodology that is frequently used
in the gaming industry. Kanban was invented in Japan for Toyota. You can
learn more about the history and practice of Kanban at
https://kanban.university/kanban-guide/.

Kanban focuses on managing the flow of tasks and limiting the workload.
One of the simplest, but also most innovative features of Kanban is to focus
on finishing, not on starting. As humans, we can only focus on one task at a
time. Rather than having multiple tasks open, in Kanban we put emphasis
on finishing what we started. Another great thing about Kanban is that it’s a
system that doesn’t necessarily require change for the sake of change. Every
Kanban methodology implementation starts with reviewing what are we
currently doing and what works well. There is no need to reject elements of
Scrum or even the waterfall methodology if they work for the team. As we
focus on the flow in Kanban, it’s important to be able to visualize it. Very
often teams use physical boards, as well as digital ones, to display the
tickets. While there is no ultimate right or wrong Kanban board, they
usually look something like this:

https://kanban.university/kanban-guide/

Figure 2.7 – Kanban board example

We can see that every task is represented by a separate ticket. QA has its
own column, where we can see what testing tasks are currently being
addressed. Work distribution is based on pulling – team members pull the
ticket from the previous column when they have time to work on it.

Kanban is an amazing system that allows for very fluid collaboration and
gives an instant overview of where the team is in executing the planned
work. Of course, like every other methodology, it does have its own set of
challenges. It relies heavily on people being experienced enough and having
the confidence to decide what task to pull into their own column. It also
relies on people’s ability to limit the tasks that they are working on. Very
often, digital versions of the Kanban board will even have a technically
imposed limit on work in progress (WIP), meaning it will restrict the
number of tasks you can have in your column. This prevents tasks from
piling up. Kanban has been proven to work exceptionally well in live ops,
where teams need to move fast and iterate quickly. Kanban is also very
often used with some kind of time-boxing method. Often, those are sprints
that work the same as they would in Scrum, or involve releases, where the
work of the team matches the timeline of planned releases. Kanban allows
the QA team the same level of participation in the game development
process as in Scrum, but additionally gives more clarity on the status of
each task. Most importantly, the usage of WIP limits in Kanban prevents
QA from being overloaded with tasks. It is an ideal process for resolving
bottlenecks and helps improve QA efficiency, decreases confusion, and
minimizes risk.

Summary
In this chapter, we learned in detail what is tested in games and the basics of
how to do it. This information is crucial for any test planning and
prioritization. We also learned at a high level how modern game testing
works in the agile framework and how this is differentiated from the
traditional waterfall model.

In the next chapter, we will dive deeper into the types of testing in games.
We will learn how functional testing works, explain the importance and
practice of localization testing, and provide practical tools for executing the
other types of testing we encounter in the gaming industry, including
regression, acceptance, and stress testing, among others.

A Deeper Look – Types of Testing
in Games
In this chapter, we begin by taking an in-depth look at the most common
type of testing in games – functional testing. Then, we will dig into
compliance testing, followed by localization testing and regression
testing.

These are by no means all the types of game testing; in the final chapter, we
will touch upon other types of testing that are necessary for modern game
QA. We will learn about the basic differences when testing on different
platforms and where these tests fit in the game development process.

What you’ll learn here is exceptionally important, as it will provide the
foundation for all that you’ll subsequently learn. By mastering these topics,
you will get a solid grasp on how testing is organized for different platforms
and all the important aspects that need to be taken into account when
planning and estimating testing efforts.

In this chapter, we’ll be taking a look at the following topics:

Functional testing
What is functional testing? As the name suggests, functional testing is a
type of testing where we verify whether a game or part of the game

Functional testing
Compliance testing
Localization QA
Regression testing
Other types of testing – stress testing, acceptance testing, and more

functions as designed. Besides game features, usability and stability testing
also fall under the functional testing umbrella. Functional testing literally
means that we are testing whether the game and its components are working
as they should. This part of testing makes up the bulk of a tester’s job, and
it’s considered the main part of testing.

Functional testing is not a specialized discipline, and as such, it’s expected
that every tester can execute functional tests, even those at a junior level.
While everyone in QA is expected to be able to do functional testing, it
often happens that testers, with time, specialize or just become much better
at testing specific features of games – for example, testers can specialize in
testing achievements, multiplayer games, late gameplay, and so on.

With functional testing being such a large category, it’s important also to
mention what is not considered functional testing. If we follow the
definition, things such as the fun factor, scalability, security, performance,
and production quality are not part of functional testing. We will talk more
about those later in this chapter.

Now that we know what it is (and what it is not), we will look into how it is
executed.

How do we carry out functional
testing?

Firstly, we need to understand what the feature being tested is supposed to
do. Sometimes, it is obvious. Let’s presume that you are testing the
gameplay in the game Candy Crush. You can quickly see that you are
supposed to match elements on the screen to empty the play area. It is easy
to figure out what we would consider a pass and what we would consider a
fail.

With games growing more and more complex, especially with long-lasting
F2P games, new features can be quite complex. They might be targeted
only at players who play the game for a very long time, have co-

dependencies with already existing features, or reuse items that were
already in the game.

Understanding these types of features would require that the tester
themselves play a game for some time and/or maintain very detailed
documentation, describing how a feature fits within the existing game
ecosystem. In such cases, it is always advisable to combine functional
testing with regression testing to obtain optimal coverage and avoid
unpleasant surprises.

During game development, before a game is live, functional testing is the
main testing activity.

Figure 3.1 – Functional testing

In functional testing, it is important that the tester has a good understanding
of what is considered to be a pass and a fail. While this might seem
obvious, it’s not always the case. For example, a feature may sometimes
work – a player can play the game and it’s stable, but the in-game character
may seem overbearingly strong. The tester won’t necessarily know what the
right amount of strength is for that character to show unless they have
access to the game design document (GDD) where this is determined, or
the designer didn’t explain the intended impact of the character in the game.

We generally use test cases when we run functional testing. Since it’s
presumed that a function or feature is new, we might have to create new test

cases. If we don’t use test cases at all, it’s wise to at least keep testing notes
that can be used as the base for regression tests later. We will talk in more
detail about regression testing later in this chapter.

It is very important that we execute functional tests in the right testing
environment. Primarily, we should check with game developers in which
environment they deployed new code. As a standard, functional testing is
usually done in QA or an environment that resembles the live environment.
Testers should also ensure that they have a cheat mode available in a game.
It might be very cumbersome, if not impossible, to properly execute
functional tests if testers can’t use a cheat mode, especially if the game is
already far into development. Depending on our target platform, we want to
have the right set of hardware and operating system. This is not an issue for
console games, but when we talk about mobile games, it’s an important step
in preparing for testing. We will talk more about hardware in Chapter 5, It
Must Be Hardware: Testing Hardware in Modern Game QA.

Lastly, we execute tests and report all relevant bugs. Depending on the
phase of game development and the impact a bug has on a player, a QA
specialist will select the appropriate bug severity and assign bugs to the
developer to be fixed. We will learn more about bug reporting in Chapter 8,
I Thought I Fixed That: How to Write Efficient Bug Reports

Note – bug severity

When we do game testing, not all bugs we find will be equally important.
While some of them have a very minor impact on the player (for example,
misalignment of an icon), some of them can impact players very harshly.
Let’s say that a player downloads your free-to-play (F2P) game, and after
they have purchased an item in the in-game store, they don’t receive an item
that they just bought. This would impact the player severely (as they would
get nothing in return for their money) and, furthermore, could jeopardize
your studio’s reputation if the player decides to share their bad experience
on game forums and social media. Setting up appropriate bug severity when
a bug is found is extremely important and one of the most important skills
game testers should have.

We can approach functional testing in two different ways – positive and
negative testing.

In positive testing, we follow an optimal player’s route and the use case of
how a player is supposed to use the feature being tested. We test whether
that function works as intended.

In negative testing, testers check whether a game or feature works as
intended, even when a player follows a less-than-optimal path. In practice,
that would mean that we explore what happens when a player plays the
game wrong.

For example, let’s take a car racing game. You are testing a specific, newly
added racetrack. You start the race in the car you selected, but instead of
following the track like other players, you start to drive backward. What
happens?

Finally, we will investigate what type of issues we can find during
functional testing. When functional tests are usually run for the first time,
we can find the following:

These are not all the types of issues we will find, but these will give you a
good idea of the importance of functional testing.

Incomplete or conflicting documentation
Missing functionalities
Broken functionalities
Visual bugs
Audio bugs
Broken UX flow
Broken UI functionality
Broken links

We now have an understanding of how functional testing works and why is
it so important when testing games. Next, we will learn about compliance
testing.

Compliance testing
In game QA, we would consider compliance testing to be any type of QA
that is testing the compliance of a game with the target platform and/or
operating system. All digital platforms for game distribution have some sort
of requirements that games need to meet in order to be published on them.
Those regulations are non-negotiable; failing to meet them will result in the
game not being published on the platform. All games targeted for any
platform are required to go through a submission process, and generally,
compliance readiness will be assessed during that process. We will talk
more about the submission process in Chapter 11, Are You on the Right
Version? Live Ops and QA.

The following are things we need to keep in mind when we talk about
compliance testing:

Let’s take a deeper look into the specifics of compliance testing.

Mobile (iOS and Google Play)
Compliance testing for the Google Play store and App Store (iOS) is
generally not too demanding. Both platforms have publicly available

There are significant differences in compliance requirements between
platforms
Platforms occasionally change their requirements
Compliance testing can be potentially extremely demanding and

difficult to do without prior experience
There are different consequences for failing compliance tests, and they

can potentially be very serious for the game we are working on

guidelines at
https://play.google.com/console/about/guides/releasewithconfidence/ and
https://developer.apple.com/app-store/review/guidelines/ respectively.

This makes it easy for developers to implement the guidelines and for
testers to follow them. Both platforms are prone to frequent changes in
compliance requirements though, and it’s important that testers regularly
follow up for any changes. App Store requirements are generally considered
to be slightly more demanding, and Apple does more rigorous internal
testing.

Note – testing on other mobile platforms

There are other stores on the Android platform besides Google Play (which
is the largest). Most mobile phone manufacturers also have their own stores
(Samsung, Xiaomi, Huawei, etc.), and they might have slightly different
compliance rules than Google Play. It is always important to check directly
with the store about what kind of compliance requirements they have.
While Amazon also runs on a version of Android, it has its own devices, its
own ecosystem, and its own store, with different requirements. Just like
with other mobile-based marketplaces, compliance testing is relatively
straightforward but, nonetheless, important to do right.

Gaming consoles (PlayStation,
Nintendo, and Xbox)

Compliance testing is exceptionally important for gaming consoles, and it is
considered to be a demanding testing task. In many large gaming studios,
which produce multiple console games, there are specialized departments
that focus only on compliance testing, or there are team members who are
specialized in it. Many QA companies also have specialized console
compliance testing teams.

We should also keep in mind that compliance testing for a console differs
quite a bit from platform to platform. They all have their unique
requirements lists that need to be adhered to. For Sony PlayStation, there is

TRC; for Xbox (Microsoft), TCR and XR; and for Nintendo, there is Lot
Check. And while Xbox and Nintendo compliance documentation are
relatively easy to follow, PlayStation’s TRC can be challenging to fully
understand and apply.

Console compliance is not necessarily only about how a game is supposed
to work. The documentation also provides detailed instructions on specific
technologies that need to be used, language that the game needs to display
when performing specific system actions, and even branding that a gaming
studio is required to use.

Another important aspect of testing compliance for consoles is that we can’t
test it on any store-bought console. In order to do QA for console games
that are not commercially published yet, QA would need to use a specific
console test set that can be only obtained directly from the console
manufacturer. We will talk more about hardware testing and requirements in
Chapter 5, It Must Be Hardware: Testing Hardware in Modern Games QA.

PC and Mac
The PC doesn’t have a default store for games. Players can purchase and
download games from one of the many popular online stores, such as
Steam, GOG, or Epic Games, but they can also download them directly
from the developer’s web page. Sometimes, they can still be bought on
disks and installed like that, although physical PC games are slowly
decreasing in popularity. As PC platforms are so fragmented, there are no
unified regulations that games should adhere to in order to be published.
Very often, these requirements are either loose or not actively checked out
by platforms.

If you are a PC gamer yourself, you might have noticed that even big
studios release games on PC that still have lots of technical issues. Games
such as EVE Online, Rainbow Six, and Diablo III all had serious bugs in
them when released, and some of them couldn’t be played for hours or even
days! You can read more about the most well-known botched launches on
PC here: https://www.pcgamer.com/the-worst-pc-game-launches/.

https://www.pcgamer.com/the-worst-pc-game-launches/

On PC platforms, compliance testing is often skipped, or it’s left to
developers to decide themselves what is acceptable quality for their target
audience. It’s not unheard of for players themselves to commit patches and
bug fixes on published games, even ones from big gaming studios.

We now have an idea about compliance testing on various game platforms.
Next, we will take a deep dive into localization QA.

Localization QA
Localization QA is a type of testing, where we verify whether game content
is properly displaying the target language and using game-appropriate
vocabulary.

Games are truly global phenomena, and they are played everywhere. This
became even more prominent with the penetration of smartphones to all
corners of the world and with the rise of F2P games. As a result, the entry
barrier to playing games became low; almost any modern phone can run at
least some games, and people can play without purchasing games in
advance or ever spending any money. With the democratization of gaming,
there is an increased need to make game content more appealing to local
audiences. For instance, traditionally many people who were gamers were
also deeply interested in tech and, used English as the lingua franca;
however, many mobile gamers nowadays have little to no interest in
technology. There is literally a game for everyone out there – from children
to the elderly, from competitive, hardcore gamers to casual ones.
Additionally, some huge gaming markets, such as China and Korea, don’t
have as many English speakers as in Scandinavia or India, for example.
And even in European markets, where English is relatively common as a
second language, some research showed that players still prefer to consume
content in their local language, especially when it comes to purchasing
something in the games.

While software localization has been around since we started making
software, it has become really important during the last decade in the
gaming industry.

Figure 3.2 – The localization process

When a gaming studio decides that they are going to do localization, they
must first prepare for it. Localization is usually done in the later stages of
game development, after the UI is finalized and all in-game texts are
finished. If we start the localization process too early, we might have to
repeat the cycle again after adding more texts to the original game.

As localization is done by an outsourced team, the game studio needs to
prepare for successful localization. Game teams should follow these
procedures:

Game texts should be exported into separate files that the localization
team can work with.
The product owner should decide which fonts will be used for specific

languages, especially if they are complex script languages.
Game producers should prepare internal bug flow and how a team will

handle localization bugs. We will learn more about bug flow in Chapter
7, It Works on My Machine: Bug Flow
Designers should prepare all available game documentation,

including videos and screenshots of a game, to be able to give the best
possible overview of the game to the localization team.

Following these points will allow for a more smooth localization QA
process and minimize localization errors. After localized texts are
implemented in the game, game builds with integrated localizations will be
sent to the localization QA team for testing.

Next, let’s take a quick look at the different levels of localization.

Different levels of localization
We should recognize that in games, there are different levels of localization.
They will depend on a studio’s business strategy, game target audiences,
studio financials, and many other factors.

Basic localization

Only marketing assets and game descriptions are translated. This means that
when browsing through the platform store, a player will see a localized
screenshot and game description that will give them a better idea of what a
game is about, but the game itself won’t be localized. This is a relatively
cheap way to test international audiences and for studios to decide whether
full localization would be profitable for them.

Full game localization

In this case, we translate not only the marketing assets but also the overall
texts in the game. That means that all the menus, dialogues, instructions,
and any other texts in the game will be localized. In this case, a player will
usually have the option to select the desired language from the settings
menu.

Internationalization

The development team should have technical clarity on how to
implement new languages into an existing game.

When we aim for significantly different markets than our initial one and we
want to make sure that a game will do well, studios will invest in full
internationalization. Not only do we localize text but we also adopt the
look, feel, UI, UX, and even story to better match local tastes. This means
that the same game can look significantly different and even play very
differently, depending on which country you got it. This type of localization
is very expensive, time-consuming, and requires lots of effort, so it’s
usually done only for major global markets. Rather than adopting existing
games, internationalization is frequently done as a separate version of the
game, intended only for specific markets.

Things we look out for during
localization QA

Localization is usually done by specialized companies. There are
localization companies that also specialize primarily in games, and their
translators are gamers. These companies often offer localization QA or
localization testing services. In localization testing, we do much more than
just check whether localized content in a game is localized correctly. We
also look for the following:

We will cover these in more detail in the following subsections.

Translation consistency

Translation consistency
Translation quality/wrong translations
Whether the translation fits the overall game
Missing translations
Wrongly displayed text
Cultural awareness
Functional bugs

Sometimes, the translation of in-game text might be done by several people
in order to increase the speed of translation. Translators very often don’t
have the full context of the game, and if it’s text heavy, they might use
synonyms or different words later in the game. The job of localization QA
is to find such inconsistencies in the game and report them. Even if they
might not seem like a big problem, they could potentially confuse a player
and even give wrong information.

Translation quality

Depending on the language, there are usually at least several ways to say
the same thing. Good translation quality will be easy to understand and
follow and not necessarily involve a word-for-word translation. It won’t
have many spelling and grammar mistakes. We can notice sometimes with
games coming from developers where English is not widely spoken, such as
China and Japan, that the English translation can be somewhat odd or even
completely nonsensical. The very popular mobile game Love Nikki is a
good example of it. While the main story is relatively well translated, when
it comes to item descriptions, they are very often unintentionally funny,
confusing, or just bizarre. For example, low-level common dress has the
following description: “Collect all ordinary sets and you’ll unlock the
achievement of Nobody. You can do it!” It’s a localization QA job to flag
this type of issue.

Another relatively common issue is wrong translation. This is not
necessarily because translators don’t know the language well enough.
Without the full context of the game, sometimes it can be challenging to
translate correctly. For example, in one of the games I worked on in the
past, we had a case where you had the option to retire a character – that is,
not use them anymore. The German translation of the game came out
saying something along the lines of “character goes to pension.” The
translation wasn’t exactly wrong, but it made no sense within the game
context.

Does the translation fit the overall game?

A good translation will try to match the feel and spirit of a game. For
example, if we are translating text spoken by an in-game character that is a
Regency-style nobleman, we would aim to have a more formal and stiff
expression than if we were translating the dialogue between two skaters in a
park. This can sometimes be very hard if we have characters from a specific
era or style that don’t exist in our target country. It might be challenging to
find the right vocabulary to realistically paint the Wild West to an average
Chinese player, for example. At the very least, localization QA needs to
check that translations are era-appropriate and that they describe the spirit
of the game in the best possible manner.

Missing translations/text

This is one of the most common bugs we find in localization QA. It is not
necessarily because text wasn’t translated; it’s often due to a technical
mistake made during the integration of localized text files. In cases when
text is missing, we might see placeholder text, text in the original language,
or fully missing text. These are all considered bugs and should be reported.

Wrongly displayed text

Text can be displayed incorrectly in multiple ways. It commonly happens
that text doesn’t fit in a UI box and is spilling over, or is cut off. In one
language, a word for something can be very short, while in another, the
same word may be exceptionally long. If you want to say that you got lost
in German, you will need to use much more space than in English to
accommodate “abhandengekommen.” If UI boxes are not designed to be
scalable or translators are not given a character limit, we will find these
types of bugs often.

Additionally, we can also find issues where text covers part of the screen,
and in the case of complex languages, it might be displayed in the wrong
direction or display only certain characters incorrectly. Besides text,
localization QA also verifies whether date, time, and currency are displayed

properly, as these formats vary significantly between countries. All these
bugs would make reading and understanding a game very difficult and can
sometimes even mislead a player.

Cultural awareness

While we all have many things in common across the globe, every country
has its own cultural specifics that are hard to understand if you are not local,
or if you haven’t spent time in that country. Even some things that are
considered universal, such as emojis, might have a different meaning in a
different country. There are also certain things that we presume are just part
of gaming iconography, such as seeing lots of fairly realistic violence in
first-person shooters or skeletons in RPGs. Anyone who has ever played
Diablo or Skyrim can confirm that you will encounter plenty of those!
However, your game might get banned in Germany if it contains too much
violence and gore. While skeletons and skulls are not banned in China, they
are considered culturally insensitive.

Hand gestures are another thing to be very careful about. One of the most
universal signs, the sign for peace, if shown with the back of the hand
visible, is insulting in the UK, Ireland, South Africa, and Australia. Part of
localization QA is to be aware of these cultural differences and flag them to
developers.

Lastly, we will mention humor. Games often contain light humor, jokes, and
wordplay. These can be quite difficult to translate, as they often don’t do so
directly, but a localization agent needs to adapt them to local tastes.

Functional bugs

By now, we have an idea that localization QA involves quite a bit of testing.
In practice, localization QA involves going through all aspects of a game
where text appears, and that means end-to-end testing of the game. While
localization QA is organized differently and has different goals compared to
functional testing, due to the thoroughness of localization QA, it will also
very often find functional bugs that might have passed through unnoticed.

Now, when we know more about how we do localization QA, it’s important
to mention who is undertaking it. Localization testers are a specialized
branch of QA, who are generally native or near-native speakers of the
language. Very often, localization testers have a background as translators
who pivoted in the technical direction. It can sometimes happen that a
localization QA specialist moves to functional QA, especially after gaining
more testing experience. As localization QA is not always needed in game
development, it’s generally one of the most commonly outsourced services.
Only large studios have their own internal localization QA teams.

While localization testing might not be seen as important as game testing as
such, that is not the case. If a gaming studio already invests money and time
in localizing a game and commits to marketing spend on a target market,
poor translation can affect players negatively and even make them leave the
game.

Finally, what languages do we most commonly translate? This is also
affected by the platform – it can be much more cumbersome and time-
consuming to localize and do localization QA for console-based games than
for mobile ones.

Generally, games are localized in what is commonly called EFIGS, which
is an acronym for English, French, Italian, German, and Spanish. We
should recognize that this means European Spanish, while LATAM Spanish
is generally considered a different language. Besides those, other common
translation languages are Brazilian Portuguese, simplified Chinese,
traditional Chinese, Korean, Japanese, and more recently, Arabic and
Turkish.

Now that we are familiar with how localization QA works and how to
execute localization QA, we will take a look at regression testing next.

Regression testing
When we work with large games or games that have already been live for a
long time and have lots of different content in them, it becomes quite
difficult to map all areas of a game. We develop live games with

development plans that range from 6 months to a year in the future, but
some of the most successful F2P games now run for over a decade. Candy
Crush was released for the first time in 2012 and is still topping gaming
charts.

With these types of games, it becomes necessary to occasionally do
regression testing and check how new features, new content, and even more
complex bug fixes affect already existing parts of the game. We can
conclude that the purpose of regression testing is to ensure that a game still
functions as it was intended after any update, code change, platform update,
or bug fix has been made to the game, or if a new feature has been added.
Regression testing is sometimes also considered part of functional testing,
as at its core, it validates whether a game works as it should.

Let’s have a look at the main differences between functional and regression
testing.

Differences between regression and
functional testing

As mentioned previously, regression testing can be considered a subset of
functional testing, since their overall purpose appears similar, but these two
sets of tests do have some differences. Let’s take a look at some of them.

Testing goal

In functional testing, our goal is to find out whether a game or feature
functions as intended. However, in regression testing, our goal is to find out
whether a newly added feature or fix has broken already existing code.

Testing approach

In functional testing, we identify how the new code should work and verify
that it does what it is intended to do. In regression testing, we identify what

areas of a game might be affected by new code and test whether that is the
case or not.

Test cases

In functional testing, as we are dealing with a function for the first time, we
usually have to create new test cases based on user scenarios or game
documentation. In regression testing, we use already existing test cases that
we might only slightly modify.

Timing

We execute functional tests when new functionality or a feature is
developed for the first time. On the other hand, we execute regression tests
when we are adding new features to an already existing system or
deploying bug fixes.

Now that we have a brief idea of what regression testing involves, let’s
check out some of the approaches that we adopt to perform regression
testing.

Different approaches to regression
testing

The idea of regression testing might come across as overwhelming.
Retesting a whole game would take a lot of time, money, and work. How do
we decide what to test? There are several different ways to approach
regression testing.

Collaborative approach

The best way to approach regression testing is to consult with the coder and
game designer in your team. As a tester, the better you understand the risk,

the better idea you will have of where to focus your regression testing
efforts. You can jointly make a solid assessment of the impact new changes
can potentially have and the inherited risks. To even further optimize your
testing efforts, regression testing can be done along with functional testing,
and if a feature is new, as well as using basic acceptance testing (BAT),
the testing team will probably need to develop some new test cases. We will
learn more about test cases in Chapter 6, Friend or Foe – Test Cases.

While functional testers focus on testing new functionality that was
introduced by implementing new code, regression testers focus on the
immediate impact of the changes in that part of the game. This type of
testing should find potentially the most problematic issues relatively early
and help optimize a development effort, avoiding a last-minute crunch.

Thorough regression

With a game that has existed for some time, the testing team usually has at
least some regression tests prepared that can be run when needed.
Difficulties in using those tests arise when the code changes are either so
significant or out of the ordinary that generic tests will not be enough to
ensure that the risk brought by the changes is properly addressed. This is
especially important in cases when a game is already widely popular with
players and we are implementing a major new feature. For example, if a
game has been live for, let’s say, 6 months, has millions of players, and we
decide to add on a multiplayer feature, there will probably be marketing
campaigns about it and player expectations will be high. However, the
actual code implementation would be complex and impact several areas of
the game.

In cases like the aforementioned, it’s always recommended you do a more
thorough regression. While we also start with a collaborative approach, in
thorough regression, we should also investigate areas of a game that are not
directly impacted by the change but that might be indirectly. In this type of
regression testing, a QA specialist can often use already existing test cases
that might need to be modified to adapt to new changes. In Chapter 10, Eat,
Sleep, Test, Repeat: Test Methodology, we will cover in detail different

testing methodologies that will help us prepare in the best possible way for
regression testing.

Quick regression

We do quick regression in cases where a game has already been thoroughly
tested and all major bugs have been identified and fixed. Quick regression
is done with the intent to give assurance to product managers and the rest of
the team that new changes are working well and don’t negatively affect the
rest of the game. While quick regression is never supposed to be used as a
substitute for full regression, it often happens that it’s the only type of
regression done, due to time constraints and the fast-paced cadence of game
releases.

In this section, we provided an in-depth overview of regression testing and
how to execute it. In the following section, we will briefly cover other types
of testing that are relevant in the gaming industry.

Other types of testing
There are other numerous types of testing that are used in the gaming
industry. We will briefly cover the most significant ones that are frequently
used.

Basic acceptance testing/acceptance
testing/smoke testing

Basic acceptance testing (BAT), acceptance testing, and smoke testing
are terms often used interchangeably. They are all considered to be part of
functional testing, but with the specific purpose of validating only the basic
functionality of the game or feature under test. These tests are time-limited,
so we always have a benchmark on how long it takes to run one
BAT/smoke test.

Stress testing/load testing
Stress testing is often performed by backend developers themselves or in
collaboration with QA. In stress testing, we simulate potential stressors to
game performance – multiple players joining a game at the same time, a
rapid increase in game downloads, players focusing on only one part of the
game, and similar. Load testing generally requires at least some coding
work, and it can be automated.

Playtesting
Playtesting is most commonly done by a selected group of players. If it’s
done by a QA specialist, they should try as best as possible to put
themselves in a player’s shoes and try to play the game as the player, and
not as a QA professional. Playtests can be done in many different ways – as
a one-on-one, within a focus group of 5 to 10 testers, or as an extended
playtest, where the player plays the game for several days.

Note – one-on-one playtesting

Playtesting is a user-centric testing methodology that is used to validate
how end users will perceive and interact with the software we are
developing. It’s usually done in a game while it is not completely ready, as
we try to get these crucial insights as early as possible. Otherwise, it would
cost us lots of time and money to redesign a product that is almost finished.
In one-on-one testing, we have a test moderator and playtester. The test
moderator guides the playtester throughout the game, providing instructions
on what to do next and asking questions. One-on-one playtesting is usually
recorded and the moderator also takes notes. The moderator is either a UX
designer or someone who is very familiar with the design of the game.

The goal of playtesting is to get an idea of how players perceive a game,
how well they understand the tutorial, and how players interact with the
game. Playtests can be arranged by game studios themselves, or they can
use specialized agencies that provide these types of tests. When we do
playtests, it’s important that the game is mature enough that players can

have a relatively smooth and bug-free experience, that players who
participate are the right target audience (screening surveys help to
determine that), and that players are not biased toward the company or
game.

Ad hoc testing
Ad hoc testing is a unique but very common type of testing, where we
don’t use documentation, test cases, or a predetermined process. This type
of testing is generally done by experienced testers who have already been
working on a game for some time. They have such sufficient knowledge of
the product that they already have an idea of what might be broken or not
working well. Generally, this type of testing should be done only after more
formal testing is done, but due to fast-paced game development in live ops
and integrated QA, ad hoc testing is sometimes executed as the only testing
as well.

Beta testing
Beta testing is unique in the sense that it is not done by the QA team but,
rather, by the players themselves. It’s very common in the gaming industry
and used on all platforms, especially on PC and consoles. For games for
mobiles, it’s more common to do a soft launch. We will talk more about
soft launches in Chapter 9, It Works, but It Hasn’t Been Tested: Testing
Approach.

Beta testing can be open or closed. Open beta means that a game is
available on the target platform for a wide range of target audiences. Most
of the time, to test the game in open beta, a player doesn’t have to fulfill any
special requirements besides sharing their email address.

Closed beta is when a game is open only to a selected group of players.
They are chosen based on different parameters – geographical location,
their gaming preferences, familiarity with the IP, or something else. For
some highly anticipated game releases, there is quite a demand to get access
to closed beta testing.

Why do we do beta testing? This is the last, big test before a game is
released globally and studios start to spend big amounts on their marketing.
It is beneficial to have beta testers included in the game community, such
as forums or Discord channels, where studios can follow discussions,
players can report bugs, and share their first impressions of the game. Beta
testing allows game developers to do final fine-tuning of the game’s
difficulty, fix any outstanding issues, and get an idea of how the game will
be received when released publicly.

Summary
In this chapter, we got a deep insight into what type of testing we most
commonly undertake in game testing. First, we covered functional testing,
the most common testing in games. After that, we got more familiar with
the localization process and how localization QA works. We also learned
the best ways to perform regression testing and how it is different from
functional testing. Lastly, we briefly covered several other types of testing
that are used within the gaming industry.

In the next chapter, we will turn our focus to gaming platforms, their
importance in game QA, and how to execute testing based on each
platform’s specifics. We will cover in depth all the main gaming platforms,
including mobile, consoles, and PC.

Deeper Look – Testing on Various
Gaming Platforms – Mobile, PC,
and Console
In this chapter, our focus will be on gaming platforms, which are
exceptionally important in game QA. The choice of platform determines the
entire flow of testing and can completely shift the focus. We begin this
chapter with an explanation of platform relevance. Next, we focus on
modern mobile platforms and how one mobile platform is differentiated
from another. We take a deeper look into why console platforms are so
different from others and finally, we wrap up this chapter with a look into
how to handle testing for PC and other platforms.

In this chapter, we will learn the main reasons why platform testing is
important and master the skills to organize testing for platforms. We will
learn how to overcome the most common platform-testing challenges and
uncover the strategies for efficient execution of platform testing. These are
the topics we will address:

Platform relevance

Platform relevance
Testing for Google Play
Testing for the Apple App Store
Testing on other mobile platforms
Testing on consoles
Testing on PC and other platforms

Before we go into the details of why the choice of platform matters so much
in game QA, it’s important to define what we mean by platform in gaming
terms.

What is a platform?

A platform is a digital space/ecosystem where our games are published and
can be obtained by players either purchasing it, or for free. In order for
developers to publish games on any platform, they have to meet a set of
predetermined requirements. In some cases, the platform will test the game
that its developers are attempting to submit. The process of submitting a
game to a platform is called submission and is an important part of game
development that also heavily involves QA. We will talk about it in more
detail in Chapter 11, Are You on the Right Version? Live Ops and QA.

Players usually obtain the game from the platform by downloading it fully
or partially to their own device. It’s the player’s responsibility to ensure that
their device is on the specific version of the platform needed to run the
game. It is rare and, in some cases, impossible for a given game to run on
all existing versions of the platform. We can break down the process of the
player obtaining the game into the following steps:

1. Finding the game on the platform – usually in some type of online
store

2. Purchasing the game – either for a fee, through a subscription, or by
obtaining it for free with the option of in-app purchases (IAPs)

3. Accessing the game – usually by fully or partially downloading it
onto their own device

In broad terms, we can split the platforms primarily into the groups of
devices used for playing games: mobile, console, and PC. There are
significant differences between these three groups. Not only that games
have to meet very different requirements to be published on each of those
platforms, but even the games themselves need to be developed with
different code structures to be able to run on those different platforms. The
same game will not run on mobile, console, and PC by default. If you want
to develop a game that will run on each platform, you need to create

different versions of it. Furthermore, if you want your game to be successful
and work well for a long time, your game architecture also needs to be
optimized differently for each major platform. Of course, with additional
work, the same game can be released on different platforms via a process
we call porting.

What is porting?

Porting is the process whereby we export the game to other platforms than
the one for which it was originally developed. Porting includes making all
the required technical changes as well as changes in usability, the user
interface, and compliance for the new platforms. Depending on the game,
porting can be a very quick and straightforward process – for example, it’s
very easy to port a game from one mobile platform to another. But, in other
scenarios, porting can be a lengthy and challenging process. For example,
when we ported Angry Birds from mobile to consoles, we not only had to
change the code and add content, but we also reworked lots of visuals, as
screen resolutions are very different on mobile and TV screens.

We can already see that there are major differences between the approaches
required for each platform. To make it even more complicated, each of
these major platforms can be further split in others, with their own unique
characteristics.

Mobile can be split into two major platforms: Android (Google Play) and
iOS (App Store). Android is not only Google Play; it also hosts other
stores, the major ones being Amazon, which is a standalone Android-based
platform, Samsung, Huawei, and others. They usually offer the Google Play
Store as well as their own stores on the Android platform. The iOS platform
runs only on Apple-made devices and as such has only one store and
unified platform rules.

On the other hand, consoles are split into the Sony PlayStation, Microsoft
Xbox, and Nintendo. There are other consoles in existence as well, but they
are either obsolete and can’t be purchased anymore or they don’t hold a
significant enough part of the market to be notable. Each of these consoles
usually has one major current model.

Lastly, there are PCs and Macs. PCs have been used for gaming ever since
they became a common household item, while Macs have traditionally not
been used for gaming that much. This has changed recently and both
computer platforms are used for playing games nowadays.

Now we know more about the platforms themselves, but why are they so
important? Platforms set the rules about what can be published in their
digital stores. Sometimes those rules are simple and easy to follow, but
more often those rules are strict and require quite a bit of skill to implement
and test for. Most of the platforms also perform their own QA. If you
submit your game to a platform, it will be tested to check whether it meets
the requirements. If it does, no problem. But if it doesn’t, your game will be
rejected, and you will need to fix the issues the platform discovered in the
game. As you can imagine, this can potentially be time consuming,
demanding, and very expensive, especially if your studio is running big
marketing campaigns announcing a specific launch date. If your game fails
to meet the platform requirements in time, your game will not make it to the
platform’s store and your marketing spend will have been wasted.

Now that we know why platforms are so important, let’s continue with a
deeper look into Google Play.

Testing on Google Play
Android is today the most widely used platform in the world. Over 3 billion
people used Android phones in 2022 (source: https://earthweb.com/how-
many-people-use-android/). While iOS is the most common platform in the
USA, almost everywhere else in the world, Android is dominant, giving it a
global market share of 86.1%.

While Google bought Android in 2005, we need to be careful not to use the
term Android and Google Play interchangeably, as Google Play is just one
of the marketplaces on Android, albeit by far the most popular one.

Google Play is one of the most approachable platforms; it is relatively easy
to publish games and the requirements are not particularly strict. To be able
to publish games and other apps on Google Play, you just need to register as

https://earthweb.com/how-many-people-use-android/

a developer, which is a simple and relatively cheap process. The
requirements for Google Play submission are easy to follow and are not
excessively strict. You can always find the most recent requirements on the
Android developer pages at https://developer.android.com/quality.

Up to now, this has sounded very easy and simple, but now we come to the
biggest challenge that we meet with testing for Android. As we learned,
Android is the most popular platform in the world, and even if it’s owned
by Google, it allows for other stores and multiple phone manufacturers.
While having so much diversity is great for users as they can choose from
very basic and cheap models all the way to the latest technological marvels,
that same diversity causes headaches for testers. It is estimated that there
are more than 10,000 different Android devices currently in existence.
Having such a wide range of devices and manufacturers means that when a
new version of the Android operating system is rolled out, it doesn’t always
hit all the devices at the same time. Some devices never get updated to
certain Android versions at all.

Figure 4.1 – Android version market share graph (Source:
https://gs.statcounter.com/android-version-market-share)

https://developer.android.com/quality

You can find a more detailed breakdown of this at
https://infogram.com/android-os-market-share-1h7j4dvwrw18v4n.

As we can see from the preceding chart, there are multiple versions of the
Android operating system in use simultaneously. That means that if we
want to ensure that our game will work across those versions, we need to
test our game on them.

You can imagine that with such a high number of devices and operating
systems in use, choosing which ones to test on can quickly turn into every
tester’s worst nightmare. We will talk more about how to select the optimal
test set in the next chapter, Chapter 5, It Must Be Hardware: Testing
Hardware in Modern Game QA. That still leaves us with the open question
of how to test on so many versions of the Android operating system. Your
strategy for handling this should focus on creating the least possible testing
permutations that will give you optimal results. The first thing is to exclude
versions that you know are not supported or that represent only a very
minor fragment of your player base. Then, it’s time to pick the “main one”
– the OS version that is a must for your game. That will be your principal
version. It will not necessarily be the latest one available – it’s the version
where most of your players are. How do you figure that out? If your game
is not out yet and you don’t have this type of analytics available, you can do
some deductions yourself. Is your game casual or mid-core? Is it in 3D,
with lots of content, animations, and action scenes? Or is it in 2D, with
simpler gameplay and not too heavy a load on players’ devices? Mid-core,
resource-heavy games will target mostly newer devices where they will run
the best, while if you are working with a lighter, more casual game, chances
are that most of your players will be also on mid-range devices. That means
that your principal operating system is probably the one that is most
distributed and works on the widest range of mid-level devices. This is
where you should focus most of your testing efforts. With that said, if you
are aiming to get the biggest spenders and most visibility from the platform,
it’s very important to make sure that your game works on flagship devices,
which generally means the latest version of the operating system.

One thing that can help us with testing for Google Play is the possibility to
“blacklist” certain devices. If we discover during QA that the game doesn’t

https://infogram.com/android-os-market-share-1h7j4dvwrw18v4n

run on a specific device, we can just blacklist it. That means we exclude the
game from being visible on that device altogether. In that way, we won’t get
bad reviews in the store saying, “the game doesn’t work” and we buy
ourselves time to fix the problem in the next release.

Even if Google Play platform testing is relatively straightforward, we can
already see that there are many different permutations that we need to take
into consideration and that testing might become challenging, not because
of the complexity of the platform but rather because of its popularity. For
that reason, it’s really important to prepare your test sets for Google Play
testing on time and have appropriate testing resources to achieve sufficient
coverage.

Besides that, it’s good to have testing strategies ready that will optimize
tester time. For example, how do we handle bugs found on a particular
version of an operating system? Do we test for that bug on all other
versions? If we do that, this prolongs testing and makes it very difficult to
finish, especially if we work with lots of bugs. The best strategy to deal
with this is the following:

1. Determine whether the bug is low, medium or high impact (we will
learn more about bugs severity in Chapter 8, I Thought I Fixed That:
How to Write Efficient Bug Reports). If it’s low impact, we don’t need
to do anything else about it.

2. If we deem the bug to be of medium or high impact, we should verify
whether the same bug appears on the lowest and highest supported
versions of the OS.

3. If the answer is yes, the chances are that the bug is present in all
versions of the OS.

Now that we have learned more about Google Play, it’s time to switch to its
main competitor, the App Store on iOS, and learn how it is different.

Testing on the Apple App Store

The App Store is the main store for Apple mobile devices. These mobile
devices run on iOS or iPadOS. The whole ecosystem is fully controlled by
Apple; unlike Android where we have many different manufacturers and
stores, all Apple devices are made by one manufacturer, and it has only one
store. While that potentially means fewer challenges in selecting test sets,
App Store testing has its own unique challenges. Apple phones are
predominant in the USA, UK, and Japanese markets, but can be bought
almost anywhere in the world. It is considered that Apple users are on
average bigger spenders than Android users and practically all Apple
smartphones are considered premium devices. Compared to Google Play,
the App Store also has somewhat more demanding testing requirements.
The team at Apple proactively tests games that are submitted to the
platform, and game build can be rejected due to bugs or other issues.

Apple’s game requirements change relatively frequently and it’s important
to always keep up to date with them. You can find the latest App Store
requirements here: https://developer.apple.com/app-
store/review/guidelines/.

When it comes to operating systems, Apple works slightly differently than
Android in that Apple always pushes their users to update to the latest
version of iOS. Even if some users purposely keep their devices on older
versions of iOS in order to reduce bloatware, most Apple users upgrade to
the latest version of iOS as soon as it’s available. With that in mind, it’s still
important to also test on older versions of iOS, especially if our game has
already been live for some time.

Another thing to pay attention to is that unlike Google Play, with the App
Store, you cannot blacklist devices. The game will show up on all devices,
regardless of whether it works on them or not. What it is possible to do,
though, is to exclude certain versions of the operating system. So, if you
tested your game on an older version of iOS and you noticed it doesn’t
work, you can choose not to publish the game on that particular version,
regardless of which phone it is installed on. This is handy when dealing
with cases where the game doesn’t work well on older versions of iOS.
Often it is more economical just to cut support for that version of iOS than
spend weeks trying to fix the game.

https://developer.apple.com/app-store/review/guidelines/

As mentioned earlier, games and apps submitted to App Store will be
tested. What is usually tested by the team at Apple?

Make sure that your internal testing team includes all these tests in their
testing plan. That way, you will avoid the disappointment of your game
being rejected by Apple.

Testing on other mobile platforms
As previously mentioned, these are not the only mobile platforms. The
other most significant mobile platform is Amazon. while its OS is based on
Android, it does have its own devices and its own app store.

Amazon is predominant in the USA and even if it doesn’t have such a big
chunk of market share as Google Play and Apple’s App Store, it has
significant revenue and almost half a million available apps to download.
Amazon users are also known as very good spenders, and generally spend
more than even Apple users. Developing for the Amazon platform is
relatively easy as it’s based on Android, but, of course, Amazon has its own
set of requirements that need to be met in order to publish games on its
platform.

There are other significant mobile platform stores owned by phone
manufacturers. The most significant ones are the following:

Core gameplay on flagship devices
Purchases
Any Apple integrations
Does the game meet the App Store guidelines?

Samsung Store
Huawei AppGallery
TenCent MyApp (which is based on the QQ instant messaging service)

Lastly, we will mention Netflix, the latest platform to join the mobile
gaming market. Netflix’s mobile platform is, at the moment, restricting who
can publish games. Developers who want to publish on Netflix have to
make arrangements directly with the firm. This makes it a much more
difficult platform to reach than Google Play or the Apple App Store. For
now, all games on Netflix are free and developers make revenues through
direct agreements with Netflix. Netflix also has its own strict list of
requirements that games need to meet, but those are not publicly listed.
Besides Netflix’s internal requirements list, every game published on
Netflix also must meet App Store/Google Play requirements.

Now that we are familiar with mobile platforms, let’s next move on to
consoles.

Testing on consoles
While there is a lot of similarity across gaming consoles, they all have their
own unique sets of requirements. In the following diagram, you can see the
main consoles on the market and the major differences between them.

Sony Apps

Figure 4.2 – Gaming console breakdown

All console testing consists of gameplay testing, which follows a similar
methodology as any game testing, but it has specific achievements and
compliance testing. At a high level, console testing includes the following:

Gameplay testing
Gameplay testing and stability are important parts of platform testing for
any platform. You can be sure that each platform will thoroughly test your
game and make sure that there are no issues with loading, performance, or
glitches within the gameplay. To make sure that your game passes the
submission process, it is recommended that the QA team does in-depth

Gameplay testing
Social gameplay (if implemented)
Achievements (if implemented)
Legal compliance based on specific checklists provided by consoles

testing and ensures there are no major bugs. This also includes all forms of
multiplayer or social gameplay.

Achievements
Many console games have numerous achievements, some of which are
exceptionally hard or time consuming to reach. Game developers do this
deliberately – it makes the game more interesting for the player and adds to
the fun and long-term playability. While achievements work great as a
motivator for the player, they can create lots of headaches for testers.
Consider the following example. When I worked on the Angry Birds trilogy
for consoles, one of the achievements we had in the game was to finish all
levels with maximum efficiency, 3 stars. The game had over 400 levels and
some of them were very challenging! But in order to ensure that an
achievement can be reached, testers need to reach the achievement
manually at least once. As achievements testing can be very demanding and
time consuming, it is often outsourced to specialized testing companies.

Legal compliance
Legal compliance is different for every platform, and it is challenging to
achieve. Each major console has its own set of regulations. They are not
available publicly – to get access to them, you need to be a part of the
development program with the target platform. As part of these programs,
you are under a non-disclosure agreement (NDA) and hence it’s not
possible to disclose the full scope of those checklists. What can be said is
that the checklists are very thorough and include items such as ensuring that
games work well, that legal concerns are met, that all documentation is
created and correct, all in-game texts are displayed correctly, and many
other things. Some of the requirements can be challenging even to fully
comprehend, which makes testing extra demanding.

It is important to note that Sony and Nintendo have multiple offices across
different regions. If you want your game to go live globally or in multiple
regions, you need to submit it to each main territory’s office separately.
There might be slight differences within the compliance requirements for

each territory even on the same platform, so you should consider
submission to each office as a separate process with separate QA required.

Specifics of console testing
When we plan for console testing, we need to bear in mind the pressures of
time. Console games are usually very large productions with fixed release
dates, and QA must be done in a timely manner. The development process
works very differently than mobile F2P games, where we can fix live bugs,
push content, or balance the game very quickly. On consoles, every change
takes time and there is lots of pressure on QA to find all issues promptly.

Another major difference between testing for console versus mobile is that
in mobile games, we don’t have to worry too much about balancing the
game. Very often, studios make very generic game-balancing decisions (i.e.
character strength, weapons capacity, ease of passing levels, etc.) and wait
to see game data to optimize the balance in the best possible way – making
it both entertaining for players and profitable for the studio. On consoles,
with a different development process where quick changes are very difficult
to do, we prepare for the launch of the game as a finite product, they have
beginning and the end. Game balancing needs to be thoroughly tested prior
to launch, as it will be challenging to adjust quickly once the game is live.

Lastly, we shouldn’t forget about sounds and music. This is another
important difference between testing mobile and console games. Every
game, on any platform, will have at least some sounds and music. It’s
impossible to even imagine a game that has no sound. But as mobile games
are often played “on the go” – in public transport, while waiting in queues,
even in schools and workplaces – the sound is often muted. Furthermore,
mobile games are designed to be easy to pick up and easy to leave, and
even if atmospheric music is great, it’s not necessarily such an important
part of the mobile gaming experience.

With consoles, the situation is very different. Console games are usually
played in longer sessions rather than short spurts and provide much deeper
levels of player immersion. Therefore, as they are part of the core gaming
experience, sound effects and music have a much more important role in

console games. For that reason, sound testing with console games is a very
important task that needs to be done in a timely manner.

Figure 4.3 – Console game production milestones

In the above diagram, we can see the traditional console game production
milestones. These days, if the game is not going out on physical disk,
instead of “release candidate” and “gold master”, we use only one
milestone, sometimes called gold candidate. These production milestones
are different from those used in mobile game development. In console game
development, the Alpha milestone signifies that the game has all features
and content complete and QA usually starts there, being done intensively
until the Beta milestone is reached. QA is not finished at Beta though. At
the Beta milestone, all major bugs should be finished, and no major changes
should be made to the game, but there will still be QA activities focusing on
improving the polish of the game and taking care of any outstanding
regression, acceptance, and localization testing.

Console compliance testing is generally considered the most demanding
type of game testing, and it’s most often done by specialized teams. Large
studios that regularly produce console games have their own internal testing
teams, while smaller studios most often outsource console compliance
testing to external partners.

As with the other elements of compliance testing we mentioned in this
chapter, compliance checklists are often updated and changed, so it is
important that your team regularly checks for any changes.

In this section, we went into the details of testing on consoles and how it
differs from mobile and other popular gaming platforms. Next, we will look
into the basics of testing on PC and other smaller platforms and how this is
different from the platforms we covered already.

Testing on PC and other platforms
The PC has been around for a long time and since the early 90’s has been
widely used for gaming. The PC is a unique platform as it doesn’t have a
predominant store or preferred way to get games. As a player, you can get
your games from various online stores, directly from the developer’s web
pages, or buy them as a physical product. Today, the most popular way to
get games for PC is through the Steam Store. Steam has the largest
selection of games, from AAA productions to indie offerings. Steam, as a
marketplace, does some testing on games submitted to its platform, but
those tests are not as strict or comprehensive as the ones for consoles.

Besides Steam, there are other online stores where players can purchase
games, including GOG.com, Epic Games, and Itch.io. These generally have
very few requirements that need to be met. Of course, that doesn’t mean
that PC games shouldn’t be tested – it only means that their quality won’t
be scrutinized by professional testers working for stores on the platform.

Of course, the PC is not the only remaining platform. Games are also
played on Macs and on computers running other operating systems, such as
Linux.

The biggest challenge in testing PC games is ensuring that they run on a
wide range of PCs. Even though they have similar characteristics, there are
thousands of different specific hardware configurations out there, including
some that are custom-made by players themselves. It’s virtually impossible
to ensure that game will work on all of them. As a rule of thumb, bigger and
more hardcore games usually require more powerful machines to run, while
smaller and more casual games can run well even on average computers.
We will talk more about how to test hardware in the following Chapter 5, It
Must Be Hardware: Testing Hardware in Modern Game QA.

Besides computers and consoles, modern games can also be played on
smart TVs, smart watches, and other technical gadgets. They all have their
own compliance requirements that games need to meet and be tested for,
just like with any other platform. As a rule of thumb, regardless of the
platform on which you are going to publish your game, you want your
game to run smoothly, look great, and meet all the requirements of the
given platform. In this way, not only will you make the target platform
happy, but you will also help provide a wonderful experience for the
players. Make sure that you take platform compliance into consideration
early, ensuring you have sufficient time to fix any outstanding bugs and
respond to any comments the platform might have.

Lastly, we will touch on browser games. Although they are theoretically
PC or Mac games, as you do need an actual computer to play them, these
games are slightly different, as they are played in the browser and not
launched on their own. As such, there are specific QA tasks required for the
browser platform. Browser games are different than other PC games in
several ways:

Browser games are not that popular anymore, but are still relevant. One of
the simplest browser games, Wordle, took the world by storm just last year
when it seemed like absolutely everyone was playing it. We need to
consider when testing browser games that there are many different browsers
in use, as well as many different versions of those browsers! To ensure that
games work properly, QA needs to take this into account.

You need an internet connection to play them
They don’t take up space on your PC
You don’t need a specific hardware configuration to run them
Very often, they are free to play

Figure 4.4 – Browser testing

In the preceding figure, we can see the range of browsers by popularity on
each computer platform. When you are planning testing for browser games,
make sure that your game is tested on the most popular browsers among
your target market, as well as on the main versions of browsers currently in
general use.

Summary
In this chapter, we learned more about the specifics of testing for each
platform and strategies to handle platform compliance tests. You have
learned how the platforms differ from each other and the main challenges of
developing and testing for each platform. We also learned more about
player behavior on each platform and how this affects QA.

In the next chapter, we will continue with our study of platforms and go
even deeper into platform differences by investigating how to test on
different hardware and how to prepare optimal hardware test sets.

It Must Be Hardware: Testing
Hardware in Modern Game QA
While this chapter is relatively short, it’s also really important to take into
consideration when testing games. It’s exceptionally difficult, if not
impossible, to test games without using specific hardware to do so. In this
chapter, we will explain how to build your hardware test sets, with an
emphasis on mobile game testing. You will learn how to plan and optimize
your test sets in order to meet your schedule and avoid issues in live games.
At the end, we will wrap up the chapter by sharing tips on how to select and
use your hardware for other gaming platforms.

In the previous chapter, we spoke in great detail about the differences in
testing between different platforms. In this chapter, we will dive deeper into
the core difference – hardware. What is hardware testing in the context of
game QA? We can look it at from two angles:

In this chapter, we will primarily focus on the first option – testing whether
the game works on a wide range of existing gaming hardware. As this book
is focused on game testing, this angle is much more relevant for us as it’s
part of any modern game testing effort.

The second option is important as well, especially if the hardware
manufacturer is aiming to sell to the gamer market, but this type of testing
is generally not done in gaming studios, but rather in special labs on the
manufacturer’s premises and often using testing rigs.

Testing whether the game works on a wide range of existing gaming
hardware
Testing whether gaming-focused hardware performs well when we

play games on it, especially new, popular games

Is hardware important in modern
game QA?
Hardware is one of the most important factors we need to take into account
when testing games. The platform itself is in many ways defined by the
hardware used. For some platforms, such as consoles, hardware testing is
not particularly demanding. On the other hand, hardware testing for mobile
is complex and requires good planning. In this chapter, we will focus
mostly on mobile hardware testing and go into depth on how it affects game
QA.

When talking about mobile, we need to make a clear distinction between
iOS (Apple) and Android. While Apple has an increasing number of mobile
devices and tablets on the market and in active use, they are all
manufactured by the same company. It does take some effort to make sure
that all supported devices are covered, but it’s generally manageable even
with a relatively small testing team. The big challenge testers face with
testing for iOS is when Apple releases new models of phones. This usually
happens in September each year, and it’s hard to get those devices ahead of
time. If you have followed Apple throughout the years, you have probably
noticed that new phone launches are big events, with dedicated fans waiting
for hours in line to get the newest device. Those people are called “early
adopters” and they are known for being very good customers, who are most
likely to convert to spenders. That’s the market you probably don’t want to
miss with your game. But if you didn’t get a chance to test the game on a
new device before it became available, and this particular model is
significantly different from the last generation of Apple phones, your game
might not work as it should.

It’s possible for well-known studios to get access to new devices relatively
quickly after launch, but for many smaller gaming companies, making sure
that game works on the latest Apple device might be challenging.

On the other hand, Android has its own set of challenges. Android is an
open source platform and many manufacturers use Android as the operating

system for their devices. The result is that the hardware in each device is
supplied by numerous different companies.

Source: https://gs.statcounter.com/vendor-market-share/mobile/worldwide

Figure 5.1 – Global mobile manufacturers breakdown

In Figure 5.1, we can see that Apple (iOS) and Samsung (Android) have
been in positions of global primacy over the last couple of years. In Figure
5.2, we can see a breakdown of the current market share between major
mobile manufacturers.

Figure 5.2 – Global mobile manufacturers breakdown in %

As we can see in Figure 5.2, the Android manufacturer with the biggest
portion of the market is Samsung. Even if Samsung’s market coverage
varies from country to country, they have such a big chunk of the market

https://gs.statcounter.com/vendor-market-share/mobile/worldwide

overall, that we can safely say they are the leader in the Android market.
How is this information useful to game testers? If you had a limited pool of
devices to purchase and test on, picking up a Samsung flagship mobile
phone is a good choice.

In this segment, we learned how important hardware is for game testing and
the main challenges that come with it. We learned more about mobile
manufacturer market segmentation, and more broadly about how different
platform hardware is utilized in game testing. Next, we will learn how to
prepare test sets for game testing, with a focus on mobile games.

Test sets – how to build one
Every game, besides console games, needs to be tested on at least several
devices. That means the QA team needs to have a set of testing devices that
can be used as required. The collection of devices used for testing our game
build is called the test set. But how do we go about building an optimal test
set? We will be focusing primarily on mobile devices here.

We always start from the principal device. This is the device that we use
the most and should be representative of the majority of our target
audiences. Very often in small studios, developers just use their own
personal devices. While that’s better than nothing, it’s not necessarily the
best approach to testing on devices. If the device is made only for the local
market, for example, or is different from what our target audience uses, we
might prioritize bugs differently and have an unrealistic idea of the
priorities in the project. We will learn more about how to prioritize bugs in
Chapter 8, I Thought I Fixed That: How to Write Efficient Bug Reports. For
these reasons, it’s important to select a principal device that is the most
relevant for our target market.

While many testers are passionate about technology and might have good
ideas about the ideal smartphone to use for testing, this isn’t necessarily
always the case nor is it a QA specialist job requirement. Before we choose
the principal device, we need to ask ourselves the following questions:

When we have answers to those questions, we can narrow our choice of
device down to a manageable list. After the principal testing device, we
should prepare our “must work” set. These are the devices on which our
game must be confirmed to work well. The following are some reasons why
games are required to work on specific devices:

As you can see, there could be numerous reasons why we might want to
include certain devices in our test sets. Even with these parameters, though,
as there are so many active devices out there, we can still end up with lists
containing thousands of devices. How can we narrow it down to something
more manageable? What would our studio consider as manageable?

What country or territory is our main market? Which phone
brand/model is popular there?
What is our target audience? Are we making educational games for

kids? Casual games targeted mostly at middle-aged women? Or a new
twist on first-person shooters that would appeal to younger male
audiences? Every segment of the audience has different gaming and
device preferences.
Are any new flagship devices coming out very soon, or have just been

released? Often, those devices can quickly take over from previous
models in terms of popularity, and may also have implemented new
technological advancements that affect how your game runs on them.

We are trying to secure being featured on Google Play or the App
Store and it’s one of their requirements
A big portion of our players in some of our major markets uses this

device
Players who use these devices are known to be better spenders than

average; that’s usually case with early adopters who purchase new
technology, meaning new phones as well
We have a partnership with a manufacturer or other stakeholder, and

this is one of their requirements

The overall size of your test set also depends on the size of your QA team.
If the team consists of only one or two testers, having 100 devices in a test
set will not be helpful. There is only so much time that one person can
spend testing on each device. Unfortunately, there is no “ideal” number of
devices that one tester can cover, as the frequency and intensity of testing
change throughout the project. If you need to verify a quick bug, you might
be able to do it on a dozen devices. While I was a localization tester at
Lionbridge (now Telus), I managed to test one specific task on 11 devices,
and it took me only about an hour. But when your testing task is more than
a quick check, it might take an hour per device, or even more. And
sometimes it can take a significant amount of time to upload the testing
build to each and every device, and this time requirement should not be
taken lightly.

In cases when your test round lasts for a couple of days on one device, it
might take way too long to test on more than one or two devices. I usually
suggest having three devices per tester (one high-end, one medium, and one
low-end), as that setup is also ideal for quick bug verifications and early
identification of how widespread a bug is. Therefore, taking the math of
three devices per tester, if your testing team has, let’s say, five testers, the
size of your “must have” test set should be about 15 devices.

But how we can make sure that we have the right devices? Even if the
number of available Android phones is overwhelming (and Apple is also
steadily increasing its number of supported devices), most of them have
very similar configurations. They might be from different brands and look
different on the outside, but they can be surprisingly similar “under the
hood."

Figure 5.3 – Android phone comparison

In the preceding table, we can see one of the possible ways to group
devices. It’s generally considered safe to pick one of the devices from a
group with the same characteristics – if your game works on one of those
devices, it should work without major issues on others as well. The
preceding table also has specifications for three high-end devices. We can
notice that while they have lots of similarities, they also have important
differences. Additionally, we can see that at least some of them have
alternative configurations intended for different markets: the Samsung
Galaxy S22 Ultra for the rest of the world outside Europe, and the Oppo
Find X5 Pro for China. If our main markets were, for example, in the US,
we would need a different model of Samsung Galaxy S22 Ultra, and
likewise if our main market for the Oppo Find X5 Pro was China.

We already spoke about the importance of testing on different versions of
operating system in Chapter 4, Deeper Look - Testing on Various Gaming
Platforms – Mobile, PC, and Console. Your game might work great on
devices running a specific operating system version, but not run at all on the
same device with older or newer versions of that operating system. So it’s
important to take this into account when creating your test set. Make sure
that you have several devices running different supported operating

systems. Here it is important to mention that you need to control who can
update the operating system version on your test sets. Unfortunately, once
when you upgrade the operating system on a phone, it’s exceptionally
difficult to downgrade it, and you want to make sure that this is not done
before prior approvals and considerations.

It's worth noticing that, we add devices considered “good to have” or for
which we are recommended to check. We generally approach this group
heuristically. Based on our previous experience, we might know which
devices could potentially create problems and want to take them into
consideration. We also look at the general availability of devices on the
market where our players are. The product team might have plans to take
our game into new markets or localize it for a specific market to increase
downloads and revenue. We would want to know in advance how the game
will perform on the devices popular in those markets, and we should
definitely consider including them in our sets.

In this section, we learned in detail how to prepare our test sets for mobile
and the things we must take into account to do this efficiently. In the next
section, we will learn more about hardware testing outside mobile: how this
is different from mobile and the things we need to consider when working
with those hardware platforms.

Hardware testing beyond mobile
Let’s investigate in more depth how to organize hardware testing beyond
mobile games.

Console hardware testing
Console games are usually made for one model of the current generation of
consoles, although many do offer backward compatibility. Consoles of the
same generation don’t have too much differentiation. They might have
more or less memory or look slightly different on the outside, being painted
in different colors or patterns, but the console hardware itself is pretty much
the same.

When we test for consoles, we can’t test on commercial versions of the
console hardware that you buy in the store. In order to test consoles, the
studio needs to be registered as a developer with the target console platform
(Sony Playstation, Nintendo, or Xbox) and order development and testing
consoles directly from the manufacturer. While the process of ordering and
getting the target console might be lengthy, testing the hardware itself is
not. You only need to test the game on one test console, so tests don’t need
to be repeated on a series of devices. It is necessary to order the dev and test
console, as you won’t be able to use a burned disk or USB stick to install a
working version of the game. Commercially available consumer units
can only run commercially released games. They are set up in that
particular way by the manufacturers themselves to combat game piracy.
Besides the ability to run the game from different storage media, the test set
can also be adjusted to different regions. This way, your team won’t need to
get separate testing sets for each region in which your game is going to be
launched. We briefly spoke about testing for consoles in different markets
in the previous chapter. Lastly, console test sets have the capacity to store
data dumps and do certain automation checks in order to assist in the testing
efforts. This is an important feature that helps developers fix bugs timely
and efficiently.

Lastly, test and dev consoles can look quite different to consumer units. As
they are intended only for internal and professional use, there is no need for
them to have appealing aesthetics.

PC hardware testing
We already briefly mentioned in the previous chapter how challenging it
can be to test on different PC hardware configurations. Not only do we
have numerous PC manufacturers, but PCs are often modded or even
assembled by users themselves.

Most PC users also use additional peripherals: keyboards, mice, and
cameras, among others. It would be impossible to test all possible hardware
permutations.

Usually, this challenge is handled by establishing minimum hardware
requirements that need to be met in order to run a specific game. These are
clearly marked in the descriptions of games when buying them online, or on
the actual box if you are purchasing a game in physical format. This, by
default, excludes the need to test the game on every possible permutation.
But it still leaves lots of possible different hardware on which the game can
be installed. When we are preparing to test PC games, we should ask the
following questions:

Testing the game on the minimum supported hardware is a good indicator
as to how the game will perform on more powerful configurations. If we
realize during testing that there is lots of lag in-game, or other issues that
arise with this configuration, we can choose either to fix the most
concerning bugs or increase the minimum system requirements. This way,
we can save time in development and avoid a deluge of post-release
customer tickets on the player support system.

While it is recommended to test your game on a wide variety of supported
configurations, these days, lots of studios, even big ones, are skipping this
step. The cost of time and effort to run such an extensive operation toward
the end of the game development cycle is often considered not worth
investing in, especially if it would lead to the game launch being delayed.
Big gaming studios usually have very well-planned launch schedules, with
marketing activities that start months before the actual launch date.
Announcing last-minute delays would potentially enrage fans and lead to
marketing budgets being wasted. For that reason, PC games often go out

Which supported graphic cards are most commonly used by our target
market? Sites such as https://store.steampowered.com/hwsurvey/Steam-
Hardware-Software-Survey-Welcome-to-Steam are a good source of
information.
What is the minimum CPU on which the game will run?
What is the minimum GPU required?
What are the minimum memory requirements?

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

with quite a few bugs that are only fixed after launch. Even if this might
sound counter-efficient, PC gaming fans are mostly used to it.

Summary
In this chapter, we learned how hardware testing relates to modern game
testing, the things we need to take into consideration when preparing
mobile hardware test sets, and how to differentiate hardware testing needs
for different platforms. Among other things, we also learned how to
approach preparing test sets for Android phones. The skills learned in this
chapter will enable you to optimize test sets for the size of your team, make
the necessary hardware procurements, and by making smart hardware
choices, avoid serious bugs in production. In the next chapter, we will start
our journey into test cases: the first step towards testing execution, the key
activity of QA.

Part 2: Test Strategy and Execution
Part 2 of this book is all about test execution, the main activity of QA. We
will learn how to create great test cases, set up different types of bug flows,
and write effective bug reports. We will wrap up this part with deeper
insights into how agile methodology affects game QA and learn more about
the best testing approaches.

This part has the following chapters:

Chapter 6, Friend or Foe – Test Cases
Chapter 7, It Works on My Machine: Bug Flow
Chapter 8, I Thought I Fixed That: How to Write Efficient Bug Reports
Chapter 9, It Works, but It Hasn’t Been Tested: Testing Approach
Chapter 10, Eat, Sleep, Test, Repeat: Test Methodology

Friend or Foe – Test Cases
For a long time, test cases were considered a staple in game testing. With
the adoption of agile methodologies and the gaming industry’s increased
focus on Games as a Service (GaaS), test cases had to evolve as well. In
this chapter, we will talk in detail about the importance of test cases, how to
approach them, how to recognize good ones, and most importantly, how to
create them. In modern game testing, we don’t necessarily always use test
cases. We will also look into the most common test-case alternatives in
more detail.

In this chapter, you will learn how to write great test cases, when to use
them and when alternatives are a better choice, and lastly, how to create and
use test-case alternatives.

We’ll cover the following topics:

What are test cases, and do we need
them?
A test case consists of instructions to testers that need to be executed in
order to find out if a game is working as intended. Very often, when
creating test cases, testers uncover issues with game design and logic. In
simple terms, test cases are instructions about how we execute testing.
While they have been a crucial part of traditional testing, in more modern
approaches, test cases are sometimes not even used at all.

What are test cases, and do we need them?
How to write great test cases
Test case alternatives

Do we need test cases? As with many other game testing-related questions,
the answer is, “it depends”. There are instances when test cases are
exceptionally useful, while in other situations testing might be more
efficient without them. Let’s investigate this a bit deeper.

Figure 6.1 – Test case usefulness

Test cases are useful when we are just starting work on a new game that
hasn’t been tested before. In those early stages, the process of designing
test cases based on game documentation, use cases and requirements can
reveal flaws in game logic, missing components, and similar things. As the
process of designing test cases is consecutive, utilizes testing strategies, and
follows logic, it can be relatively easy to spot missing steps in design.

Another time when test cases are highly useful is when we get a new tester
on the team. Having well-written test cases ready for execution drastically
decreases the onboarding time for new testers. By following test cases, they
can start contributing to the testing team’s efforts almost immediately. This
works in a similar manner when we work with outsourced QA partners. It’s
easy to send them batches of test cases and monitor their execution. If test
cases are well prepared, testers rarely need additional instructions or
training to start working on our game.

We also need to keep in mind that our team members might move on to
different departments or even different companies. When people leave, they
take lots of know-how with them. Having solid test cases makes handovers
much easier. We can conclude that any testing involving teamwork can

benefit from having test cases. I remember a situation from my time at
Rovio, where we had a very tight deadline for one of Angry Birds games
and testers were offered overtime to make sure that we were on time for
launch. We had quite a large group of testers, but without well-defined test
cases, some time was wasted. We had cases where a few people tested the
same areas of the game, while others were not tested at all. At the end of the
day, everything worked great, and the game launch was a great success, but
looking back, we could probably have done it with a bit less stress and in a
bit less time.

We have spoken in detail about when test cases are useful, but what about
times when they are not useful? There are numerous situations when test
cases are not really that useful. When you are working with a very
experienced group of testers working on the same game for a long time,
sometimes test cases can be more of an obstacle than a useful tool. Those
testers are very familiar with how the game works, and they might find
more bugs heuristically than using test cases.

Another case is when test cases are so detailed that it takes more time to
maintain them than execute them. If you realize that you are spending more
than 20% of your time maintaining test cases, it’s time to check in and re-
evaluate their usefulness.

Lastly, test cases might not be appropriate when used as a key indicator of
testers’ efficiency. Having test-case execution speed as a major (or the only)
measure of testers’ efficiency will definitely give us an incomplete picture
of the team’s work. It might encourage testers to speed through the test
cases to meet the targets and get better management reviews. This can lead
to a lack of focus, superficial execution, and as a result, missed bugs. When
we document test cases and they are approved, it’s human nature to think
that we have done our job and we primarily rely on the test cases,
minimizing thoughts about other ways to test games. That can lead to
“mindless repeating” of work and missing important bugs. Even the best-
conceived test cases eventually suffer from testing fatigue and stop
producing bugs. Therefore, testers should stay vigilant and even when using
test cases, always keep their eyes and mind open. We will talk more about

the future of testing in Chapter 13, There Are No BUGS Without U – QA
and the Game Team.

Now that we know when test cases can be useful, let’s take a more thorough
look into them.

Test cases can be very different in style, length, detail, and how they are
managed. While they are often kept as Excel sheets, there are also
sophisticated tools for creating, managing, and executing test cases. These
are called test management tools. These tools allow us to link test cases
directly to bug reports. This way, not only can we get much better reports
about the efficiency of our test cases, but it’s also much easier for testers to
do bug verification in later stages. We will talk about bug verification in
more detail in Chapter 7, It Works on My Machine: Bug Flow.

While there are many different ways to create test cases, they should all
have the following:

By using unique identifiers, we can recognize much more easily which test
case was the one that revealed the bug. Depending on how we set up our
identifier system, we can also easily recognize which part of the game the
test case covers or what type of testing it employs. If we don’t have defined
identifiers and we have multiple test cases, it’s much easier to get confused,
especially if you are working in a team of multiple testers. Dividing work,
collaborating, and rechecking are all much easier with identifiers attached
to the test cases. Generally, we use numeric identifiers (think 1.1, 1.2, and
variations of these) but there are no strict rules on that. As long as you and
your team can easily identify them, it is good enough.

When we work with games, some test cases naturally come later than
others. The simplest example of that is when testing specific levels.
Usually, you need to pass earlier levels before you can move forward to the

Unique identifier

Any required preconditions

following levels, unless you use a cheat menu. But some preconditions
might be less obvious than that. For example, lots of test cases covering
aspects of multiplayer functions usually have specific preconditions. While
some preconditions might not be necessary as they are obvious (i.e., start
the game, make sure it runs), some might be very important but much less
obvious (i.e., start the game, leave it idle for 15 minutes). Here, it is
important to use your common sense and decide when it’s acceptable to
skip the preconditions, and when they are a must.

Here, we come to the main part of test cases – test case steps. There is no
rule on how many steps a test case should have. It’s often only one,
especially with more generic test cases aimed at more senior testers. Test
case: “Check the start screen” is completely valid (and is also an important
test case to pass as it can have severe legal consequences if the game isn’t
displaying the right logo and visuals). Of course, not all test cases can have
only one step, and often need a few. While it is good to split more complex
test cases into smaller executional units, being too granular is not
recommended. When I worked at Nokia, I often encountered test cases that
had over 20 steps. Not only was it quite difficult to keep focused on the test
case, they were also a nightmare to maintain. The team did not have enough
resources to properly maintain them and we ended up with a large number
of test cases that were obsolete and could only be used as high-level
guidelines.

Games slightly change with every update, and in free-to-play games, we
continuously add new content. That means that test cases should be
adjusted to reflect the changes made to the game. If you create your test
cases with too much detail, very soon you will find yourself spending most
of your time updating them. This can end up with us having a lot of test
cases that took significant effort to create, but they become useless
relatively quickly.

Another thing that we need to mention here is the language we use when we
create test cases. Use simple, straightforward language and clear, industry-
standard terminology. Keep your sentences short and clear. While at Rovio,

Clearly written steps on how to execute the test case

we used an outsourced QA service provider that created test cases featuring
sentences that were three rows long. Nobody was sure what those test cases
meant or how exactly to execute them. Reporting bugs from a test case that
is hard to understand or execute can easily result in bugs being downgraded
to lower severity than reported.

This is another field that can either be very obvious for the tester, or
exceptionally confusing. In my career, I used to have very passionate fights
about whether a test case passed or failed, as we didn’t have the desired
outcome mapped in the test case. The developer kept claiming that the
game worked as intended, while the QA team, in the team to represent the
players, kept claiming that this test case is a fail. When we clearly define
the expected outcome, doubt is removed, and we can rest assured that bugs
found through this test case will be taken seriously.

Testers should be able to mark the status and result of the execution of a test
case. This is useful for several reasons. Firstly, we can follow the testing
progress and have an estimation of how much work is still left. Secondly,
we can get a good idea about the maturity of the build under test. If we see
that most of our test cases receive a fail status, we know that the game is not
mature enough to be released. Lastly, having the capacity to change the
status of the test case helps us optimize the usage of the test cases
themselves. If we find that many of the test cases help us find bugs, it
suggests they are very efficient and that by running these tests, we will get
good results. On the other hand, if many of them have statuses such as can’t
execute or n/a, it means that our test cases might be outdated, and that they
need to be replaced with more relevant ones.

Let’s look at a couple of real-world test cases:

Desired outcome/what is considered pass

Possibility to mark the status of the test case (pass, fail, can’t
execute, etc.)

Figure 6.2 – Test case example 1

The preceding test cases were written for a real game and stored in Excel.
We can see that besides test case IDs, there are also game area markers that
help determine which part of the game we are testing. Descriptions include
the test steps and the expected results are clearly marked. The Result
column indicates clearly whether the test case passed or failed and the
Comments column can be used for linking to bug reports. These test cases
are well written and easy to understand and follow.

Figure 6.3 – Test case example 2

The preceding test cases also use Excel as the repository, but the setup is
more elaborate here. At the top, it has a summary of execution progress,
which gives us a great overall view of how testing is going. We can see how
many test cases are still left to run, how many have passed or failed, were
blocked, or received N/A. In some cases, we need to execute test cases
consecutively, passing the prior test cases before advancing to the following
ones. One good example of this is where we have a test case to successfully
join the guild in a game, and the following test case involves using the chat
in the guild. If we can’t join the guild, it would be impossible to use the
chat, so that test case would be blocked if the prior one failed.

While we call this example a test case, it would be more precise to call it a
test scenario. We will talk in more detail about test scenarios in the Test

case alternatives section of this chapter.

We have now learned what test cases are, how useful they are, and how they
can be presented. In the next section, we will learn in more detail how to
write professional bug-finding test cases.

How to write great test cases
Before we fully jump into the instructions for writing great test cases, let’s
have a look first at those test cases that would be considered poor or not that
useful. It takes skills and experience to create great test cases. The tester has
to have logical thinking, really understand the game being tested, and also
can write in an understandable manner. With experience, testers learn which
types of test cases are more likely to find bugs and what type of language
works the best. Let’s have a look at an example of a poor test case.

Figure 6.4 – An example of a poorly written test case

In the preceding figure, we can see a test case that is less than optimal. Let’s
analyze what is wrong with it. Firstly, this test case has no identifier. If we
want to link to it, quote it, or re-use it, it would be quite difficult. Secondly,
there are no preconditions mentioned. When we look at the test steps, we
can see that preconditions are included. That’s not necessarily bad, but it
makes this test case quite long – it has 13 steps! Taking a closer look at the
test steps, we can see that they are not really unified. Some are very generic,
some are detailed, and others are more of an expected result than a test step
that needs to be executed. There is no expected outcome per test step and
the overall test case’s expected outcome is way too vague. Lastly, we can
see that the test case status is somewhat confusing. While “Pass” is
understandable, “Yes” and “No” are too generic. Now we know what a

poorly written test case looks like, let’s take a much closer look at how to
create great ones.

If we decide to use test cases in our testing processes, it’s really important
to create test cases that have these four attributes:

We design test cases in the test design phase. Test design is the earliest
stage in the test creation process. In this phase, we decide what features we
are going to test, what our test oracle is (meaning, what are we testing
against, e.g. use cases) and which approach we are going to adopt in the
creation of test cases. For example, in this phase we might decide we are
going to write thorough test cases with well-defined steps, or use a more
high-level approach.

It is important to go through the test design phase, as it helps us unify our
approach and prepare test-case writing standards that make it easier for
testers to prepare tests themselves. Failing to do so, we might end up with
test cases that are of different lengths, styles, focus, and granularity, all of
which would impact testing negatively.

Besides test cases design, in this phase we will also decide how we report
bugs and if they are going to be linked to the test cases. We will also decide
on our test case repositories, the ways we will share them among testers,
and what test reports will be created based on the test-case execution.

Depending on the size of your studio and QA team, the test design phase
could take the form of a single meeting where you agree with all
stakeholders how to approach writing test cases and prepare simple, one-
page instructions. In bigger, more complex organizations, this process can
be lengthier, and you might have to go through several layers of iteration

Easy to read, understand, and follow
Has a good chance of producing bugs
It can be reused
It’s accurate and focused

and approvals. For that reason, make sure that you start the planning
process early.

When we have decided on our approach for producing test cases, the work
can start. Test cases are most commonly written by testers themselves. If
the QA team is on the larger side, there are often one or two team members
who might take the lead on the test-case creation task. Sometimes, test
cases can be also written by game designers or producers, but these days
this is not that common. They will provide the test oracle, the use cases, the
Game Design Document (GDD), and other documentation to the testers to
use as a base for test-case creation, but rarely have the responsibility of
creating the test cases themselves.

As we mentioned previously, test cases are usually stored in some type of
repository. While this is often Excel, Google Sheets, or something similar,
there are also specific tools used for storing and executing test cases. If your
team heavily relies on test cases, it’s worth investigating the test case tools
available and putting them to use. TestRail is one of the most popular test-
case management tools, but there are multiple others such as Testiny,
QACoverage, TestCase Lab, Tuskr, and Xray.

When we start creating test cases, we should create them in specific test
sets. Test sets can be divided by test focus, where each test set covers one
part of the game (critical path, multiplayer, tutorial, etc.). If we divide them
into testing phases, we need to take into consideration in which phase of
development the game is (user acceptance tests, alpha tests, regression) or
testing strategy (negative testing, pairwise testing, etc.). Test cases can also
be differentiated based on their purpose: while we use basic acceptance
testing to verify that a game is working, functional testing helps us find
functions of the game that are not working. We already examined the
different types of testing in Chapter 3, A Deeper Look - Types of Testing in
Games.

There is no specific order to the creation of test cases; it’s always good to
start from what we would consider the critical path – the most likely path a
player would take when playing the game. After that, we can focus on
writing test cases for other areas of the game.

Figure 6.5 – Characteristics of great test cases

While test cases are relatively short and somewhat technical instructions,
it’s exceptionally important to use proper language when we create them.
Always use sentences that are as simple as possible. Avoid too many
abbreviations and uses of industry jargon – the gaming industry does not
have a unified approach to this, and what is clear and understandable to you
might be very confusing to someone else. It is not only much easier to
follow and execute test cases that are concise and clear; they are also much
easier and faster to update. Whenever possible, use short, actionable verbs
such as “go there, push this, stop that.” This type of language makes
execution much smoother and faster.

Another very important thing to keep in mind while creating test cases is
their usefulness. Testing time is always limited, and we want to focus our
testing execution on the most efficient, bug-finding test cases. To find
relevant bugs that are difficult to dispute, we need solid test cases that
truthfully reflect the players’ intended behavior. For example: while
working on the Angry Birds Trilogy for consoles, one of the outsourced
testers created a test case which, in brief, was about holding your finger on
the controller’s X button for six hours straight. It really didn’t matter what

happened as the result of that test case, because no player will ever hold
their finger on one button for such a long time!

When we create test cases, although we know that they will eventually run
out of steam and stop producing bugs, we do want them to be usable for as
long as possible. We want to make sure that our test cases are easily
repeatable and can be reused in the future.

Now that we have learned more about how to write and prepare test cases,
let’s have a deeper look into what test cases should consist of.

We already mentioned previously the must-haves for a good test case, but
often they have even more information in them. We will go through them
here:

Test case name: Very often, test cases might have a name, especially if
they are more detailed ones that take some time to execute or they need
to be visibly distinguishable from similar test cases. If you use test case
names, they should be clear, descriptive, and short. For example, “First-
time tutorial walkthrough without interruptions” is a much better name
than “We will be going through the first-time experience of the tutorial,
with a focus on the pure walkthrough and without any interruptions”.
Test case ID: We already mentioned this earlier as a good test-case

must-haves. As long as it’s unique and recognizable by your team
members, it’s a good solution.
Test data: Some test cases require you to use specific test data, for

example, email or social media logins. You should have test accounts
and data available for these types of tests. It helps to have these listed in
the test case or even better, a link to a document where this information
is stored in one place.
Test preconditions: Another must-have on the list. While some of the

preconditions are very obvious, we should also not assume knowledge.
It’s much less harmful to skip known preconditions than execute a test
case poorly while lacking the preconditions.

We now know how to create great test cases and have seen real-world
examples of how test cases can look in gaming studios. We also learned that
test cases are not always the optimal choice. In the next section, we will
take a closer look at the alternatives to test cases and how to use them.

Test case alternatives
We now know that test cases are not always necessary for the successful
execution of testing. On the other hand, testers rarely test by making it up as
they go along, without any guidelines. Here, we will cover the most popular
test case alternatives used in the games industry.

Test scenarios
Test scenarios are short, usually one-line instructions on what to test. Rather
than giving detailed instructions on how to execute the test case, it gives the

Test steps: The core of the test case. While it’s perfectly fine to have
only one test step, it’s not recommendable to have too many in one test
case. If your test case has more than five steps, see if you can split it in
two test cases. Make sure that each step is short, clear, and actionable.
Expected result: Make sure the desired outcome is very clear to

everyone.
Test case status and result: It’s important to be able to change the

status of test cases. This helps us assess the maturity of the game under
test (pass versus fail) as well as testing coverage. If we notice that many
test cases have the N/A or can’t run statuses, it indicates that it is time to
quickly update the test cases as they are not relevant anymore.
Links: Many test-case repositories allow testers to link to related test

cases, but also to link to actual bugs found by the test cases. This
functionality is great to assess the efficiency of the test cases as we can
clearly see which ones are producing bugs. Besides that, having related
test cases linked to each other shortens the search time and makes test
execution faster.

freedom to the tester to utilize their experience and skills and follow trails
that might lead to bugs. As test scenarios are usually brief and generic, they
age well, don’t suffer from testing fatigue, and can be reused for a long
time.

Test cases Test scenario

What is it?
Detailed information on what
to test, the steps to be taken,
and the expected result

A one-liner stating what to test

It’s about… Documenting details
Thinking about and discussing

details

Importance
Outsourced testers,

coverage measure

Saves lots of time when team

members can understand the

details from the one-liner

scenario

Advantage

Easy regression,

faster and easier to

write bugs (if you

just add tc id)

Time saver, idea generation,

easy to maintain, no testing

fatigue

Beneficial
A foolproof test case

document is a lifeline

for new testers

Reduces complexity, makes

people think rather than just

following commands

Disadvantage
Time and money

consuming

Needs more team effort, can

be misunderstood

Figure 6.6 – Comparison between test cases and test scenarios

In Figure 6.6, we can see a comparison between test scenarios and test
cases. As with any other tool, there are situations where one is more
beneficial than the other, but test scenarios are very common these days.
Their simplicity and ease of maintenance makes them a very popular
choice, especially when working with live ops and free-to-play games that
are frequently updated.

Use cases
Agile methodologies are very commonly used in the gaming industry, and
thus so are use cases. These are used as a source for writing test cases and
in many teams, use cases themselves are used as a substitute for test cases.
In embedded teams, QA is part of the team and very familiar with all work
being done on the game. Without the need to use traditional test cases and
by reusing use cases, testers can work much faster and focus on testing the
most critical parts of the game.

Test charter
Test charters are also frequently used in agile teams. They are primarily
used for exploratory testing. Rather than giving detailed instructions to
testers, they allow them to explore new areas of the game and record their
findings. The pairwise testing technique is often used in executing test
charters. In pairwise testing, we have two testers of different seniority levels
executing tests together, one acting as a lead and the other as a follower.
They test together, discussing the items under test, bouncing ideas off each
other, and trying different approaches. The idea behind the usefulness of
pairwise testing is that “two heads are better than one,” and by working
together, testers will generate more ideas.

Test charters, while lightly documented compared to test cases, still need to
have certain information to be useful to testers. Each test charter should
contain the following information:

What should be explored
What should be covered
How long the testing session will last
Who will do the testing
Any specific setup that is required for test execution

During test charter execution, testers take notes, report bugs, and note down
any issues they found while testing. This type of report can also be used as
a foundation for writing traditional test cases.

Summary
We are now fully familiar with test cases and their alternatives. We learned
how to write great test cases, examined some examples of what they look
like, and learned more about when it’s not ideal to use them. Furthermore,
we also covered their alternatives, their advantages, and when they are
appropriate for use. The desired outcome of a test case is a bug and in the
next chapter, we will start our journey into bugs in great detail. We will
build on what we have learned about test cases and see how bug reporting
works, how it flows between the game team, and how QA fits into this
process.

It Works on My Machine: Bug
Flow
Bug flow is a part of every game development. Even when it’s not designed
by anybody in particular, it still exists – it’s impossible to write and fix bugs
without it. Bug flow can be used interchangeably with the term bug life
cycle – it’s the set of stages that a bug goes through before it’s finally
addressed. I’m purposely not saying fixed, as not all bugs will be fixed (and
they shouldn’t), but all bugs need to be addressed. That means that each and
every bug reported should go through a second set of eyes, and the team
should decide how it is going to be handled.

In this chapter, we will learn about the importance of good bug flow and
what can happen when bug flow is not optimized. Then, we will learn how
to set up a great bug flow for any type of game team, with detailed
examples that can be used as a base for creating bug flow in your own
teams. We will also learn about good practices for creating and maintaining
bug flow.

We will cover following topics in this chapter:

The importance of bug flow in
game teams
If you are working in the gaming industry in any capacity, you have
definitely heard about bugs. They are some of the most dreaded
consequences of game development and, at the same time, the reason why

 The importance of bug flow in game teams
 How to set up a good bug flow
 Bug flow statuses and transitions

quality assurance (QA) is so important in game production. Without QA,
it would be difficult to find relevant bugs on time. But finding bugs is just
the beginning of the story. How we handle them and what we do with them
are equally important. Bug flow is the main way testers, developers, and
producers communicate. While we often think of game teams as small
groups of people working together in the office, today, this picture is very
different. Games, especially ones on consoles and successful free-to-play
ones are built and maintained by large teams scattered across different
geographical locations. Studios also frequently use outsourced QA services
as support or a main testing force. If our bug flows are not properly set,
game production can experience severe problems and can even lead to
delayed launches or faulty updates.

Figure 7.1. – A simple bug life cycle

In the preceding diagram, we can see a simple bug life cycle. Each bug has
to be addressed in some way when it is found. Primarily, we want most
bugs to be fixed. But that’s not always possible or even advisable, as not all
bugs are made equal. We will talk in more depth about bug reporting in
Chapter 8, I Thought I Fixed That: How to Write Efficient Bug Reports.
Even if the bug ends up not being fixed, it should be addressed. What does
this mean for the game team? Each bug should be seen by someone in the
team, either a developer or a producer, who will make the call about what to
do with the bug next. This is where things can get complicated in bug flow.
If we presume that the bug was fixed, it also needs to be verified and
committed into the game. Let’s investigate this in more detail:

1. The bug is found and reported in a bug database. The tester who
found the bug assigns the bug to the next person in the bug flow. This
is most often the developer, but it could also be the QA manager who
checks whether the bug meets the required standards. If the bug is
related to art, design, or sound, it might be assigned to that particular
discipline lead.

2. The bug’s destiny is decided – the bug is either rejected (there should
be a valid reason for this) or assigned to the person who is going to
fix the issue. Sometimes, it’s the same person who reviewed the bug.

3. The bug is fixed by the developer and assigned back to the tester for
verification. The tester will execute the same test steps that they did
when they found the bug, making sure that they are in the correct
testing environment and confirming whether the bug is fixed.

4. The bug fix is committed to the game under test – if we are not live
with our game yet, the bug fix will be committed to the code, whereas
if we are working with the game already in live ops, the bug fix will
probably be committed as part of the next update, unless it’s a major
fix. We call those fixes hot fixes, and we will talk more about them in
Chapter 11, Are You on the Right Version? Live Ops and QA.

When we look through the basic bug flow, we can easily see that there are
many alternative ways in which the bug flow could possibly go. Depending
on the team size, production methodology, and internal processes, we could
also have different actors participating in almost all stages of the bug flow.
Setting up the proper bug flow is not an easy task, and often we must go
through a couple of iterations before we nail the process down to fit the
whole team. There are many steps in the process where we could go wrong,
and they might not really work as we imagined. So, what are the
consequences of a poorly designed bug flow?

One of the common mistakes is not designing the bug flow, but rather
letting bugs move through the life cycle in an organic way. In these
situations, bugs take on a life of their own Everyone does what they think is
right, and quickly, we lose track of bugs. Some crucial bugs can easily fall
through the cracks and the team might focus on the wrong things and lose
precious time. In general, the whole team might become disgruntled and

start accusing each other of doing a poor job. Additionally, the bureaucratic
load will significantly increase as it will be very hard to get a clear picture
of the situation regarding bugs and, consequently, the game build maturity.

When I started working at Nokia as a QA manager for Nokia tools, I
inherited a similar situation in the project. We had a bug repository with
more than 1,000 bugs, and nobody knew if they were valid, fixed, or
anywhere in between. It took a lot of time and effort to go through all of
them and clear the slate.

Another mistake is creating rules that are too tight. Processes change,
people change, and even the methodology we use can change. When we
work with live products, we can also encounter lots of bugs that need to be
addressed differently than bugs in pre-launch game production. If our
process doesn’t allow for that, we might end up with bugs that are not
“flowing” through the system, or they are assigned to the completely wrong
person who can’t assign them further. I found this type of situation when I
took over production at Next Games. Our bug flow was so tight that when a
bug was assigned to a developer or artist, they could only assign it to the
tester. While in theory, that might look like the ideal scenario, in slightly
larger teams and more complex games, one bug might be reassigned to a
different developer for a fix, or it might even go through several hands
before we could confirm that it’s really fixed. This is especially the case for
audio or design bugs, for example, that might require two different
disciplines to fix one bug. We resolved this situation by relaxing the bug
flow but also training the team on the new process and explaining the
responsibilities that came with it. In that way, we secured process adoption
by the team and gave space for early questions and feedback.

In the following segments, we will look deeper into how we can set up
efficient bug flows for different scenarios and what things we need to
consider.

How to set up a good bug flow
While we already know that there is no one-size-fits-all solution, certain
procedures will help you create the optimal bug flow for your team.

I’m a big fan of keeping what’s not broken. That means that your first step
should be to analyze the current bug flow. Even if it wasn’t purposely
designed, there is always some unwritten way the team generally handles
bugs. Analyze what the team does, see what is working well and what the
team considers to be problematic. The best way to do so is to interview each
team member and ask them three questions:

When you collate the individual information, analyze it, and take it as a
base for your bug flow creation. After that, it’s usually a good idea to have a
meeting with the whole team. If your game team is really large, have a
meeting at least with the discipline leads and have an open discussion about
bug flow. Present them with your solutions, get their feedback and
suggestions as a group, and use them to refine the process further. It is
important not only to get everyone on board but also to make different
disciplines hear each other out and understand others’ needs better. In that
way, you will be able to create a bug flow that is understood on a deeper
level by the whole team and accepted as their own. This is a very important
step because if the team doesn’t feel that process reflects their needs and
they don’t understand why things are done a certain way, you will struggle
with bug flow adoption and might have to redesign it.

When this work is done, the next step is properly documenting the flow. I
always recommend having a one-page document with a flow chart that is
easy to access and clear to understand. When this flow chart is fully flushed
out and clear to all, then you can add additional information explaining the

How does bug flow work? (You want to make sure that they all have
the same understanding, or whether it’s widely different between team
members. It will also give you the full picture of the bug flow, including
the parts that are not documented.)
What part works well for you and helps your work?
What part doesn’t work for you, and would you like to see improved?

Also, ask whether they have an idea for improvement themselves. That
doesn’t mean you will automatically adopt it, but it will help you
understand the need of the person and give you an idea of their
expectations.

transitions and transition statuses in more detail. Make sure that conditions
for each transition are clearly explained, and try to stick to a limited number
of transitions. If your transitions are way too complicated with ambiguous
explanations, the team will probably not take them into use, or at least not
in the way that you might have imagined.

One of the most important things to do when creating a bug flow is to
appoint a person responsible or the owner of the bug flow. That is usually
either the game producer or QA manager. This person is responsible for
flow adoption, enuring that everyone is following it correctly and that all
team members are familiar with it. Another part that comes with ownership
is actual flow execution. This takes us to the last step in flow creation –
execution.

When flow is charted, understood, and supported by the team, it’s time to
take it into use. In every studio, we use some kind of bug database. Jira is
probably the most common one in the gaming industry these days, but there
are numerous others in use.

The bug flow owner should adjust the bug database in a way that reflects
the agreed flow. That can be quite a demanding job and it requires good
knowledge of the bug database in use. Usually, QA leads and producers are
very well trained in the usage of not one but several different kinds of bug
databases. Very large teams might even have bug databases maintained by
internal or external technical teams. In that case, the flow owner will
present the documentation to the party who is in charge of the bugs
database maintenance and oversee implementation.

While this might seem like quite a straightforward process, in practice, it
can take days or even weeks, especially if we have an existing bug flow
(and bugs) that would need to be transitioned to a new bug flow. Depending
on the bug database in use and differences in old and new bug flows, there
might be a need to make some additional manual adjustments after the flow
has been implemented. As we can see, this process can be quite delicate and
demanding, and it’s best to do it during quiet QA times – either early in
production or when we don’t have any pending testing rounds coming soon.
In this way, we will not interrupt any crucial work, and we will have time to
smooth out any issues with adaptation to the new bug flow.

Now that we know more about how to create a good bug flow process, let’s
look deeper into bug flow statuses and transitions.

Bug flow statuses and transitions
When we are setting up bug statuses and transitions for the first time, it’s
easy to get carried away and try to include status and transition for any
possible scenario. While this might seem like a good idea in theory, in
practice it rarely works. We already learned earlier in this chapter that bugs
flow through many hands. Your team members have lots of duties, and if
you create very complex and lengthy transitions, most people will start to
feel uncomfortable using them, especially if there is no easy way to see the
exact meaning and purpose of every transition. For that reason, it’s always
recommended to make them as simple as possible but sufficient to support
your team’s development methodology.

We need to consider that every game development team is utilizing some
type of methodology, such as Scrum, Kanban, Waterfall, and so on, but
there are many variations on how work is actually executed within the
methodology framework. QA work needs to fit into the existing
methodology and processes, and how we handle bugs is a big part of that
process. That’s why QA can’t create the bug flow in isolation without
consulting with other team members and the producer.

Next, let’s look at an example of a detailed bug flow:

Figure 7.2 – A bug flow with multiple transitions

This bug flow includes all the major possible states through which the bug
can transition. Let’s go through them to understand the process better:

Next, we come into a phase where the bug can go into multiple states. We
will go through each of them here.

New: While it can be used interchangeably with open, it’s sometimes
used as a separate step in a bug flow (as indicated by the dashed arrow
in the preceding diagram). For example, when we work with outsourced
QA or large QA teams, the first step is usually reporting a bug, and the
bug reporting system we use will assign it automatically to a status of
new. That means that QA has found a bug but nobody else had a chance
to see it or work on it.
Open: This status means that the bug has been accepted into the flow.

It has been reported as valid by the tester who found it, or it has been
approved by someone who is reviewing all found bugs. That is
sometimes done by the QA supervisor or QA lead, but in some cases, it
can also fall on the back of the producer, as they will have the best
insight into the team’s schedule and priorities.

Of course, not all bugs get accepted by developers for fixing. So, let’s go
through other alternative transitions.

In progress: This means that someone is actively working on fixing
this bug. We should keep an eye on how long a bug is in in progress for.
If we have an efficient development methodology in the team, such as
Kanban, developers can only take a specific number of bugs to work on,
and they will generally be looked into relatively fast. On the other hand,
if we work with Waterfall or some less agile methodology, it can happen
that developers have assigned multiple bugs for fixing and put them in
the in progress state, but in reality, they might be working on something
else.

Not a bug: This status indicates that the bug reported is not actually a
bug and as such, doesn’t require fixing. While many jokes have been
made about it, “it’s not a bug, it’s a feature,” in some instances we do
really have cases when this is fully acceptable. For example, the bug
appeared due to external influences, such as Wi-Fi availability or the
tester testing on the wrong build. While I’m generally a strong
proponent of the idea, if testers don’t get it, it’s a feature, and neither
will the players in some cases; the bug really is a feature. The situation
comes to mind when we got several bug reports about random eggs in
the game. It was an Easter holiday game update, and the gameplay was
inspired by the Western Easter tradition of hiding eggs in the garden and
have an egg hunt. Our testing partner was from Asia, and they were not
familiar with the tradition – of course, that game looked really weird to
them!
Canceled: This status indicates that work on this bug has been started,

but for some reason, has been canceled. It might have been a business
decision or the priorities shifted. Canceled is used interchangeably with
Postponed or On Hold.
Invalid: While similar to not a bug, it has its differences. Invalid

means that this could potentially be a bug, but it’s either not relevant
(for example, we are dropping this feature) or the tester possibly did
something wrong: for example, used the wrong preconditions, an

What should the tester do with all of these statuses? Firstly, they should
read the comments from the developer and try to understand why the bug is
in such a status. If they disagree with the developer’s opinion, they should
put a comment against the bug and add more information supporting their
claim. Then, reopen the bug and send it back to the developer.

Let’s go through the remaining transitions, in case everything goes as
intended. After working on the bug for some time, the developer will move

unsupported testing device, or didn’t provide sufficient information. For
that reason, we also sometimes use the following status.
More info: This status indicates that the bug is not rejected as such,

but there is just not enough information for the developer to go forward
with. We will talk more about how to write a great bug report in
Chapter 8, I Thought I Fixed That: How to Write Efficient Bug Reports,
and learn how to avoid getting bugs in this status.
Can’t reproduce: This is my favorite of all, frequently misused status.

Sometimes it’s also called it works on my machine. This means that
the developer couldn’t reproduce the bug the tester submitted. I
generally like to avoid this status, just because it’s used too often
without further explanation. Sometimes bugs will be difficult to
reproduce, or they will reproduce only occasionally. In those cases, we
use repro rates when reporting bugs – we will talk more about them in
the next chapter. While there is nothing wrong with having a Can’t
reproduce status, ensure that your development team understands that it
should be used only in genuine cases. Lastly, we will talk about the
following status.
Duplicate: This status indicates that the same bug has already been

reported. When we test and find a bug, we should always check whether
the bug has already been found. In cases where we see that the bug has
been found, but it might be reported for a different platform or device, it
is usually sufficient to update that bug report with your finding.
Alternatively, you can make a separate bug report, but you do want to
link it to the original bug. Testers should have a good knowledge of how
to use a bug database and search by keywords through reported bugs
before reporting.

it to one of the following statuses:

After the verified status, the bug is usually put into a status of Closed. That
means that all the work on the bug has been done and it doesn’t need to be
addressed anymore.

We should remember that sometimes bugs will reappear in the future. We
have learned by now that game architecture can be quite complex and with
continuous updates, parts of the code might end up being reused or some
old code might get triggered with new changes. In those cases, we will
change closed bugs to Reopened with the addition of the latest information
on the bug. This happens surprisingly often, and sometimes even months
after the bug was fixed and closed. We should just keep in mind that even if
it’s the same bug, new and updated information will help everyone
understand that the bug is still valid and it will help with the new fix.

Fixed: This indicates that the developer or whoever the bug was
assigned to perform the fix did work on this bug and claims it’s fixed.
Often, this is also accompanied by a developer comment, and usually,
it’s indicated in which build the fix is committed. This information
helps the tester determine where and how they can verify the fix.
Verified: The tester’s job is not over when the bug is found, but only

when the bug is fixed and they have verified that the fix works as
intended.
Reopened: Sometimes though, the fix doesn’t really work. In those

cases, the bug is reopened and assigned back to the developer. In this
stage is important to add additional information to the bug and explain
how and where the bug is verified and add new screenshots or crash
logs.

Figure 7.3 – A bug flow example

Now that we have learned more about bug statuses, let’s have a closer look
at the different types of transitions.

In the preceding diagram, we see a relatively simple way of bug transition.
Here, we utilize the New status when a bug is found and Assign as a status
for indicating someone is responsible for looking into this bug. It can be
assigned, for example, to a senior QA team member for review or to a
producer who will decide who the most appropriate person in the team is to
handle this issue. After Assign, the bug can be in one of two statuses: Open
or Rejected.

Opened means that the bug is entering the fix cycle, while Rejected
indicates that nobody will work on this bug for the time being. Here, we
notice that this transition is very simple, and we don’t go into multiple
options of why the bug is not accepted.

In simple transitions like this, it’s always advisable to put a comment
against the bug indicating why the bug is rejected. If the tester doesn’t agree
with the reason why the bug was rejected, they can assign the bug back to
the person who rejected it or to someone else, depending on the reason for
the rejection. For example, we might assign the bug to a developer who is
not an expert in this area, and they think that this bug would be better
addressed by another developer in the team. In that case, they will transition
the bug into rejected status with a comment about who to assign the bug to
instead. This might seem like a very cumbersome way of working, with lots
of messaging going back and forth. Bugs are, in a way, exactly that – one of

the main areas of communication within a game development team. Rather
than just automatically transitioning bugs through the process, everyone
included in the bug flow should pay attention to bug reports, read them
carefully, and think about what to do next. It’s always time better spent than
hurrying along, reporting incomplete bugs, and trying to force our point of
view on another team member without reasoning and proof supporting our
claims.

Moving forward with our example, we can see that when a bug is open it
means that it’s being worked on. From that status, it transitions to Ready to
test, which indicates to QA that bugs are ready to go through verification.
That means that after testing, the bug can either be in a status of Verified or
Reopened, informing developers that the fix wasn’t working as intended. In
this simple bug flow example, we don’t necessarily use Closed, as we can
conclude that all bugs that are in the Verified status have gone through the
bug life cycle, successfully passed it and no additional work is needed.

This type of bug flow is well suited to internal teams or external teams that
have been collaborating for some time and have a good understanding of
studio workflow. It works particularly well for relatively small to medium
teams who are utilizing an agile methodology. Due to the limits of the bug
statuses, it would work great for periods when we don’t expect massive
amounts of bugs – for example; it would work well in live ops.

Now, let’s look at another example, which has more complexity in
transitions.

Figure 7.4 – A bug flow, example 2

In the preceding bug flow, we can see that we start with New, but after that,
we transition into Evaluation. This status indicates that the team using this
bug flow is not automatically accepting all reporting bugs, but instead, they
have to go through the process of some type of evaluation. This can be done
either as a simple evaluation by the QA manager or producer or with a
working group of people who will decide whether the bug is accepted or
not. As a result of the evaluation, the bug will be put in a range of statuses,
which we covered earlier in this chapter.

The different status we use here is Started. It means the same as Opened in
the previous bug flow example – it indicates that someone has actively
started working on this issue. After that, the bug goes to the Fixed status,
which corresponds to the Ready to test status in the bug flow presented in
Figure 7.3. After that, the bug goes through verification, where it can either
be confirmed as fixed or it has to go back to the beginning of the cycle. We
see here that bug has slightly more transitions but far more statuses than in
the example in Figure 7.3.

Having more bug statuses helps us filter the bugs and get useful data, not
only about the quality of the game but also about the quality of the testing.
For example, if we see that we have lots of bugs in the Duplicate or
Incomplete status, we can conclude that testers might not have really paid
enough attention while reporting bugs. It might indicate that we have to
additionally train our QA staff to create and report better bugs.

This type of bug transition will be well suited for larger, dispersed teams,
where we have a high rotation of QA staff. Evaluation is used as a check
point that will catch all irrelevant bugs, and we have multiple options for
each bug, which will help with reporting and traceability. This type of bug
life cycle would also be well suited for periods when we do expect higher
bug turnover, but in that stage, we need to pay attention that the evaluation
process doesn’t become a bottleneck for the bug flow. While this is a very
informative and detailed bug flow, it can be too restrictive for agile teams
where there is more emphasis on team trust and independent work.

Next, we will check out an example of a bug flow where we will also add
actions and actors to the chart.

Figure 7.5 – A bug flow, example 3

As you can see in the preceding diagram, this is a relatively straightforward
bug flow, similar to the one we already looked into in Figure 7.2. What is
important here is to pay attention to who transitions the bug. We can see
that in many statuses, several people could potentially address the issue.
That’s because bugs in games are not only software errors but could also
reflect issues with art, sound, or the logic of the game design. In this
example, after the tester reports the bug, it can end up in other statuses than
In progress. As before, In progress indicates that someone is working on it.

In other cases, the developer will change the status to Incomplete or
Duplicate and assign the bug back to the tester who reported it. The
developer might also assign the bug to be in the Invalid state, but most
often, it is the producer who decides that the bug is in the Postponed state.
The bug can get postponed for multiple reasons, but most of the time is due

to changes in focus and priority. As it’s generally the producer who is the
keeper of the schedule and milestones, it falls on them to postpone fixing
the bug. In smaller teams that don’t have producers, the developer or even
the game designer might make the final call about it.

In this bug flow, we should also pay attention to the possible two-way
transitions from the Incomplete and Postponed states. We can see them
marked with a blue dotted line. This indicates that those two statuses are not
final – it is expected that the tester adds missing information and that the
incomplete bug is opened again.

With Postponed, we want to have the option to open the bug again.
Postponed is supposed to be used as only a temporary state, not as a soft
version of Closed. It is a good idea for the QA manager to check the bugs
in a status of Postponed every few months or even more frequently,
depending on the number of bugs in your project. If we see that some bugs
are sitting in that status for a very long time, maybe it’s time to close them
as it doesn’t seem likely they will be fixed.

We should make sure that when we create bug flow, to think about who will
be included in the flow and that all team members who we identify have
training on how to use the bug flow as well as the actual ability to do so in
the bugs repository. We can clearly see in the bug flow from Figure 7.5 that
bug fixing can involve anybody on the team.

Very often, the bug flow can be one of the most problematic parts of the QA
effort. It is often misunderstood, and questions such as “why do we have to
do it like this” can pop up. It is a good working practice to have patience in
explaining to your team members the importance of bug flow but also
hearing out their concerns. Asking them “how would you like to see it
done?” might give you great insights into improving the bug flow and
making your team happier working with it. Especially team members who
are not developers can sometimes struggle with the workings of the bug
databases and following the bug flow, as fixing a bug is something that
happens relatively rarely for their discipline.

Sometimes, people would prefer not to have any bug flow at all and to
decide what to do case by case. While that can work in an indie studio

where you have only two or three people, in a professional setting, this type
of bug handling would quickly turn into chaos where nobody would know
or understand what is happening with bugs.

Next, let’s look at our final example of a bug flow.

Figure 7.6 – An example of a bug flow in Kanban

The last example here will be bug flow for Kanban teams. This is a
simplified bug flow I utilized in one of my previous jobs, and it shows that
we are working with an agile methodology.

We can see that in the bug flow, bugs have much fewer statuses and go
through very simple transitions. All new bugs will go into the To Do
category after they have been accepted in the bug flow. As we used this in
live ops and worked only with internal senior QA, there was no need for
bug evaluation prior to being put on the board. In the actual board that
contained bugs, we could see the bug priority, and that indicated which
bugs should be addressed first. In Kanban, team members pull their own
tasks from the column without having bugs assigned or having the Ready
to test status. Statuses here are passive, as it’s up to the team members to
decide what to address next. In this Kanban board, bugs go through all the

columns and are tracked just like any other task. But to make them more
visible and have better tracking of bug progress, bugs have a separate,
dedicated swimlane, as indicated by a separate segment of the board in
Figure 7.6. While this type of bug flow might seem counterproductive and
overly simplistic, when we are working with the Kanban methodology,
everyone in the team has the agency to decide what tasks they will focus on
next, and the bug flow, as such, follows this philosophy.

In some teams that are using Kanban, teams might have a dual way of
tracking the bugs. One separate for bugs in the bug databases and on the
common Kanban board. While this approach gives more flexibility to the
QA team, this generally makes the QA process too heavy and requires
administrative overhead that is counterintuitive to the Kanban methodology.
It’s a much better solution to work within the team’s Kanban framework
and try different approaches to bug flow until you find the one that works
for the whole team.

As the name says, this type of bug flow is intended to work in agile teams
using the Kanban methodology. It’s particularly well fitted for games live
ops as it gives high visibility and allows for fast and efficient movement of
the bug through its life cycle.

Summary
We have now learned how to approach the creation of a bug flow; we got a
deep insight into several different examples of bug flows and in what
situations we should use them. We learned about all the possible transitions,
their meaning, and how they relate to each other in the flow. We also
learned why this part of QA is exceptionally important and how difficult it
might be to implement properly. In the next chapter, it’s time to learn about
the core of the QA job – how to report great bugs.

I Thought I Fixed That: How to
Write Efficient Bug Reports
This chapter takes a deep dive into the bread and butter of quality
assurance (QA) – reporting bugs. While bug reporting is not the only
activity QA team does, that’s the one that is the most visible outside the
discipline, and very often, QA’s work is judged based on the quality and
sometimes the number of bugs produced. This gives additional importance
to this particular aspect of QA work. In this chapter, we will learn about the
following key topics:

We will go into detail about how to write optimal bug reports and provide
an in-depth explanation of how to differentiate bug priority and severity
and what affects them. We will wrap up this chapter with practical tips and
best practices for bug reporting. At the end of the chapter, you will learn
why bug reports are so important, how to write excellent ones, and how to
set up appropriate severity levels and you will gain valuable tips that will
help you further in writing compelling bug reports that are rarely refused.

Why bug reports matter
Bug reports are the main mean of communication between different
stakeholders: coders, QA, game designers, producers, art, and any other
discipline involved with game creation. In the past, it was common to have
the whole team sitting in the same room or not too far from each other,
sharing the same office space. As outsourcing practices became more

 Why bug reports matter
 How to write excellent bug reports
 Bug priority versus severity explained
 Bug reporting best practices

dominant and parts of game development were handled by outsourced
partners, the importance of well-written bug reports grew. During the last
few years, as a consequence of the pandemic, we saw more employees
working predominantly from home. That further contributed to the
importance of having high-quality bug reports.

Today, we have game teams that are geographically dispersed and might
come from different working cultures and working in different time zones.
If our bug reports are unclear, there is missing information, or they are
written poorly, the coder can’t just walk to QA in the next room and ask
additional questions. If there is a significant time difference between
distributed teams, it might take another day before QA in a different
location will even see the question. With already relatively short testing
cycles, especially in live ops, it’s really important to have bugs addressed
quickly and efficiently and the first step to that is having great bug reports.

Another significant reason why bug reports are so important is legacy
issues. Teams change and people move to other projects or other
companies. A basic bug report might have worked well between team
members that worked very closely for a long period of time. But when that
team changes, that same bug report might be poorly understood by others.
Old bugs often resurface, especially in live ops, when we work with the
same code base for long periods of time. It can be very valuable to the team
if we can pull out an old bug report about the same issue we are facing
again and see how it was handled. If the bug report was not named properly
or it was written poorly, it won’t be of use to the team.

While developers and QA work very closely, due to the nature of their
work, sometimes there might be friction between them. Developers focus
on building games, while QA is focused on finding different ways to break
games. That’s why it’s really important to have mutual respect between
these two disciplines and collaborate in constructive ways. But if QA keeps
producing poor-quality reports, that will negatively influence developers
opinion about QA. They will start to doubt their reliability and will become
more prone to ignoring bugs or arguing about them with QA. Consistently
producing high-quality bug reports helps build respect and ensure that QA
and bug reports are taken seriously.

Now that we know why it’s so important to write good bug reports, let’s
take a deeper look into how to write them.

How to write excellent bug reports
The bug report format will very much depend on the bug tracking tool you
use. Most of them already have a pre-made template. But in every good bug
reporting tool, those templates can be adjusted to better suit the needs of
your team. In the following screenshot, you can see a couple of examples
from different bug-tracking tools:

Figure 8.1 – JIRA bug sample

Figure 8.1 showcases JIRA, one of the most commonly used bug-tracking
tools in the gaming industry. Its popularity is partially due to the fact that it

also acts as a project management tool, and it can be integrated well with
other tools, for example, player support databases. JIRA is regularly
updated with new features, and it’s highly editable, so it might look very
different from one team to another.

Figure 8.2 – YouTrack bug template

In Figure 8.2, we can see the YouTrack (YT) bug-tracking tool from the
JetBrains family. YT is often used in smaller, highly technical teams.

Figure 8.3 – Monday.COM bug sample

Figure 8.3 showcases Monday.com, a popular project management tool
that now also has incorporated a bug-tracking tool. This tool is simple to
use, and it’s been designed to perfectly fit agile teams.

Figure 8.4 – GitHub bug repository

In Figure 8.4, we can see a bug report template from the GitHub bug
repository. GitHub is a tool that is frequently used in the gaming industry.
It’s convenient to also use their bug repository, which has been updated to
be user friendly.

Keep in mind that bug databases are tools that are regularly updated, and
the user interface (UI), design, and layout will change with time. It should
also be mentioned that these are not all the bug databases out there – there
are dozens if not hundreds of different bug databases actively used. When
we look at them, we can see from these examples that even if they have
differences in the UI, they all contain very similar basic fields that form the
core of your bug report. We will go through them next.

Headline or title
While it might seem obvious, it’s very important to have a standardized
headline for bug reporting. It’s much easier to identify bugs with a good
headline, and this also helps to optimize bug database searches. Long-
lasting projects can easily have tens of thousands of bugs in their repository
and you want to make sure that you get relevant hits when looking for
something specific.

There is no common, agreed format for the headline across the industry, but
as a baseline, it should consist of key information about the bug. That
consists of the platform, the part of the game where the bug was found, and
a short summary. If you work with outsourced teams, you might want to
have a way to indicate that bug came from an outsourced partner. For
example, the format could look something like this: (partner
initials)_(platform)_(game segment): (short description). In the database, it
would look something like this: TestingPartner_Android_UI: Shop items
names displayed as logical strings.

Depending on how your testing is organized, the headline can also include
the build version, test environment (Live or Dev), or anything else that
would be useful to your team. The most important thing is that the naming
convention is standardized and that everyone in your team reporting bugs
knows how to properly name them.

Description
This is part of the bug where you need to describe the issue that you found
in the best possible way. We should always start the description with
preconditions if there are any. There is no need to write “start the game, but
we might want to indicate some more specific preconditions such as “while
the device is charging,“ or “while using Wi-Fi," for example.

After that, we will need to write the steps to reproduce the issue. Here, we
need to describe in detail how we executed the test that produced this bug.
If we followed a specific test case, we can either copy and paste or link to
the test case in question. If we deviated from the test case or we found this
bug by not using previously specified steps, we would need to write them
down as they happened. Again, it’s a good practice to use common sense:
you don’t need the step “open the game“ unless the bug is found in the
process of opening the game. But you don’t want to create steps that are too
generic either. Very often, the bug’s root cause it’s not obvious, and
something that might look irrelevant at first might provide a key clue in
finding out why the bug is appearing. When writing steps to reproduce,
please stick with one or a maximum of two short sentences per step. Use
language that is easy to understand and avoid abbreviations that are not
industry standard.

Lastly, we need to add the expected result (or expected outcome, they are
used interchangeably) and the actual result. This is important to mention, as
sometimes it’s not obvious what behavior, sound, or visual is an expected
result. For example, we might have updated the UI in a new version of the
game, and while testing, we see that the old UI is still displayed in a part of
the game. The UI that we see in the game is still usable and there is nothing
obviously wrong with it. But we know that this is an old UI that had to be
replaced with a different looking one. This brings us to the next item on the
list.

Screenshot/video or similar

The previous example perfectly illustrates how important screenshots can
be. Very often it’s difficult to describe visual or behavioral problems in the
game. Attaching a screenshot or a video makes the job much easier for the
person fixing the bug. That doesn’t mean that you should skip writing steps.
A screenshot or video on its own, without explanation, can be as confusing
as text without a picture. The best-written bugs will have both. In cases
where we report issues with a game crashing, for example, it’s also useful to
attach any crash logs, as they provide very valuable information to coders
who are working on the fix.

Version tested
This is one of the often overlooked parts that is crucial to include in bug
reports. It’s easy to just forget about it when we are in the middle of the
testing round, just before the launch, and everyone is on the same build
because the code is frozen. But throughout development, there are usually a
couple of versions of the game available, and not all of them are meant to
be tested. Sometimes we have multiple builds per day and only some are
supposed to be tested. It is vital for the tester to note in which version they
found the bug, as coders might be working with completely different
versions already where the bug doesn’t appear. This brings us to the loop of
frustrated communication with “It works on my machine“ and “invalid“
bug statuses going back and forth. Sometimes, if it’s impossible to get a
build version, you can use the build date and time to identify it.

Furthermore, when the game goes live, we deal with the live version, test
version, and development version. It becomes crucial to know on which
build the bug was found. This can also affect bug severity. For example,
finding a crash bug with a high reproduction rate (repro rate) in a live
game will have a much higher severity than finding a crash bug in the first
round of testing on a newly implemented feature in a test environment. We
will talk more about live ops in Chapter 11, Are You on the Right Version?
Live Ops and QA.

Reproduction rate

The repro rate indicates how many times the bug appears when we repeat
the test. It’s generally displayed as a fraction, for example, 1/10, meaning
“1 in 10 times the bug will appear.” While the repro rate is not a particularly
useful indicator when we report bugs such as graphical glitches or other
visual bugs, it becomes very important when we report game crashes,
freezes, or lag. The repro rate also affects the bug’s severity: a game crash
that is 9/10 will have a much higher severity than a crash that is 1/10. When
using the repro rate, please don’t use 1/1 because that doesn’t really say
much besides “I did this test and it failed.” The only time this is acceptable
is if your repro rate field is obligatory to fill in the bug report and the bug
you are reporting is about a visual glitch or a minor issue.

A good practice is to have at least five attempts, but every case is different.
Reproducing bugs can take from very short to quite long periods of time, so
use your common sense and experience when deciding how many attempts
you will make.

Platform and OS version
If you are testing on multiple platforms, it’s crucial to indicate on which
platform you found the bug. We spoke in Chapter 4, Deeper Look - Testing
on Various Gaming Platforms – Mobile, PC, and Console, about how
important the platform and operating system (OS) is for testing games. We
should always indicate the following details:

Sometimes, bugs will appear only on one platform, even if we develop and
test simultaneously for several platforms. The same situation can happen
with the versions of OSs and devices: bugs will not necessarily appear on
all of them. In case we want to quickly check whether the bug is appearing

What platform we tested on (iOS, Android, PC, Mac, Xbox, etc.)
If it’s mobile testing, what device we found the bug on (Samsung

Galaxy S22, iPhone 13, etc.)
The version of the OS (Android 13 or Tiramisu, iOS 16.4, Windows

11, etc.)

across multiple OSs and devices, a quick shortcut to that is to try to
reproduce the bug on the lowest supported OS/device and the highest
available version of the OS/device. If a bug appears on both ends of the
range, it’s highly probable that it appears on all of them. Knowing how
widespread a bug is across the platforms and OSs will also have an impact
on its severity and priority.

Comment
This field is best used to provide additional information that would not fit in
other fields. The Comment field is usually a free-style text field, and we
can express our opinions, suggestions about the bug, or anything else we
find relevant. This field is often used for additional communication between
team members, so when a bug gets assigned to you at any stage, it’s always
advisable to check the Comment section as well.

Assign to
In this field, we can assign the bug to someone in the team who will make
sure that bug enters the bug flow. Generally, each team has its own rules on
how this is handled. It is assigned to the QA manager or producer who will
make sure that bug is reviewed before being assigned for a fix or it can be
assigned directly to the person who is supposed to fix the issue. These rules
vary, and they are highly dependent on the team’s organization. We spoke in
great detail about the bug flow in Chapter 7, It Works on My Machine: Bug
Flow.

We learned now how to write efficient bug reports that are informative and
clear and provide the required information for coders to start their work on
fixing them. In almost all parts of the description, I kept mentioning priority
and severity. These are also fields that every bug report will contain, and
now that we understand a bit more about how each piece of information
affects them, let’s have a deeper look into how to work with them.

Severity versus priority

Severity and priority are sometimes used interchangeably, and that causes
even more confusion in understanding what they really are. In fact, severity
and priority are very different, and they should be looked at separately
when writing bug reports. Priority indicates how urgent it is to fix or
address something. Severity indicates how big an impact this bug has on the
end user. When QA reports bugs, they act as a representative of the player,
and they should have a good grasp of the severity of the bug. But a decision
about priority is rarely in the hands of QA. While QA can certainly
recommend how quickly something should be fixed, it’s up to the producer
to decide the final priority of the bug. The producer will have the full
picture of the roadmap, stakeholders’ interests, and team capacity and will
make decisions based on those factors.

In the following table, we can see what the main distinctions between
priority and severity are:

SEVERITY PRIORITY

PERSPECTIVE Technical Business

WHO DECIDES Tester Producer, product manager

DECISIVE
FACTORS

Effect of the

bug on the

player

Impact on the business, roadmap,

stakeholders’ interests, and

availability

STATUS Rarely changes Can change frequently

Figure 8.5 – Differences between severity and priority

In Figure 8.5, we can see the main differences between the Severity and
Priority fields. We can summarize it in the following way: severity
indicates what the effect of the bug is, while priority describes when the bug
will be fixed.

Generally, high priority is also high severity. But high severity might not
necessarily mean high priority. For example, if we find a bug with a high

severity very early in game development, that doesn’t mean that this bug
will automatically have a high priority to be fixed.

As we are focusing primarily on QA activity, we will talk in a bit more
detail about severity, as this is something that is up to QA to decide and
effectively communicate to the rest of the team.

Severity
How do we determine severity? Sometimes, it’s obvious – let’s say that
game under test crashes while loading with a repro rate of 10/10 on all
platforms. That means that nobody can play it, and it’s definitively the
highest severity. But not all bugs are so clear to determine. When working
on a new game or early on in the production cycle, it might be more
challenging to decide the severity of the bug. When deciding, it’s useful to
ask yourself these questions:

What’s the impact on the average player? Each game has a target
player, and we should try to imagine how this bug would affect their
gameplay.
Does this bug have any legal or financial consequences on the game?

For example, not crediting someone on the credits or using a brand
name without permission can potentially lead to complicated legal
situations.
Does it affect game revenue? This is especially important for free-to-

play (F2P) games.
Will this bug potentially cause the game to be rejected by the

platform? Most platforms have strict rules that need to be met in order
to publish your game. You can read more about this in Chapter 4,
Deeper Look - Testing on Various Gaming Platforms – Mobile, PC, and
Console.
Will it affect the company’s reputation? Some bugs can be so severe

that they might cause damage to the company’s reputation and even
decrease the company’s valuation. One famous example of that is
Assassin’s Creed Unity. It was so buggy that it dropped Ubisoft’s share

All these questions will help you determine the severity of the bug you
found. Keep in mind that bugs with high severity might only take a couple
of minutes to fix. Adding someone to the credits or changing the spelling of
the company name is generally considered a quick fix even though the bug
is classed as high severity. On the other hand, we also have bugs that might
have a low severity but can take a really long time to fix and involve several
people. Those types of bugs are not worth fixing, as the effort required
might make no sense for the benefit that we gain.

We have spoken a lot about “high” and “low” severity. Let’s have a look
next at how to set up severity levels. They are usually set up on a scale
between low and high. Sometimes, we will also have a scale that goes to
critical. This is not the only scale that is used. It depends on the bug
database your team uses and how your game production processes are set
up. Severity can also be determined on a numerical scale, where the highest
number indicates the most severe cases or vice versa. Whatever type of
severity scale you use in the team, it is advisable to use something simple
that’s easy to understand by everyone.

There is no need to have more than three to four severity statuses, as
anything more than that will make the process unnecessarily complicated. If
your team doesn’t fully understand severity statuses, you might end up with
all severity statuses as the highest ones. In that situation, the severity
categorization will become useless, as we know that not all bugs that are
marked as high severity are that severe.

value by more than 12%. You can read more about it here:
https://www.pcgamesn.com/assassins-creed-unity/ubisoft-stock-price-
falls-significantly-following-troubled-assassin-s-creed-unity-launch.
Will it affect game ranking or public perception? Higher downloads or

revenue rankings and positive reviews help increase organic sales of the
game and decrease marketing costs.
Is this a potential root cause for other bugs? Sometimes, one bug

might be the root cause of several other ones. Fixing that issue will be
much more efficient than focusing on fixing consequential bugs.

https://www.pcgamesn.com/assassins-creed-unity/ubisoft-stock-price-falls-significantly-following-troubled-assassin-s-creed-unity-launch

If you are using any other scale beside the straightforward “low to high”
naming convention, have a document with a brief explanation of each status
easily available to anyone on the team. Remember that even if the severity
is determined by QA, bug reports are read by multiple team members, and
some things that are obvious to us might be very confusing to someone
working in a different discipline.

Now that we have looked into severity in more depth, let’s touch on
priority.

Priority
While QA will not necessarily determine the priority of the bug, it is
important to understand it. Priority is usually determined using a similar
scale as severity and it’s important for QA to understand what it means in
practice. For example, if we find a bug that will prevent submission or it
will cause submission to fail because this bug is about failing to meet
platform submission requirements, it’s up to QA to flag this issue as of
utmost importance to fix it as soon as possible.

Even if QA doesn’t make a final call on priority, it should communicate the
urgency clearly and with good reasoning. This is best done by writing a
compelling bug report and adding comments that will present your case in
more detail. At the same time, QA should not hold priority hostage. When
testing, we often find issues that bother us, and we believe that they should
be fixed first. But it might happen that the producer or product manager
disagrees with us. If we didn’t manage to prove our point, we should not
take it personally. Instead, it’s good to learn the reasons why the bug wasn’t
prioritized according to our opinion and use that knowledge to better
understand the overall game production. The following are some situations
that can affect bug priority that QA might not necessarily be aware of:

It takes several people from different disciplines to fix the bug.
It requires input from a different department with no bandwidth to help

for a certain period of time. This frequently happens in game studios
that also develop their own engine or custom backend. Bug fixes might

These are just some of the situations that can affect how priority is set. The
producer’s role is, among others, to act as a connection between the game
team and other stakeholders, and they will have insight into a much wider
company picture and overall company priorities. Having a transparent
organization helps with teams working better together and aligning on
company goals. Sometimes, due to legal reasons or the way the company
was initially set up, it’s not possible to have open information sharing with
all levels of the organization. Testers should ask for reasoning if they find
prioritization confusing or they disagree with it, but they shouldn’t take it
personally if they don’t get a definitive answer. It might be that it’s just
impossible to share that information.

Now that we know more about how to handle severity and priority, let’s
have a look into bug reporting best practices.

Bug reporting best practices
We have learned now about what should be included in a good bug report
and how it should be structured. While every gaming studio might have

require work from a separate team working on the engine, but they have
their own milestones and priorities that are not necessarily aligned with
the game team.
Data from analytics shows us that there is another issue in the game

that is affecting players much more severely.
Company management requires another item on the list to take priority

due to business reasons.
The studio is planning to drop support for a specific platform where

the bug is found, but it hasn’t been announced yet.
Team members are leaving the studio, but it hasn’t been announced to

the rest of the team yet. The producer knows that there will be no
capacity to fix this bug but can’t share the reasoning with QA yet due to
privacy reasons.

different production practices, there are certain bug-reporting practices that
can be implemented in any game team. Let’s look into them more closely.

Reliability
The bug report should be factual and present the real issue as it happened,
without embellishment or additions. While it’s incredibly useful to add
additional information and supporting documentation and files, such as
screenshots, QA should restrain from presenting opinions as facts. Bug
reports have a commentary field where QA can express their opinion on the
bug, but as such: an opinion. Presenting it as a fact might cause a lack of
trust in QA, throw the coder on the wrong track, and, in return, can affect
bug-fixing rates and timelines. When we report bugs, we want to make sure
that developers and other stakeholders reading bugs can find them reliable –
that they truthfully describe what has happened to the best of the tester’s
ability.

Related to this, QA should always report bugs in bug reports, not their ideas
about how to improve the game or a feature. QA insight and feedback into
game design and playability are exceptionally important but a bug report is
not the right place to write those observations. Depending on your internal
production process, your bug report might go directly to the coder. They
don’t fix design, they fix technical issues. Your suggestion is probably
going to be rejected as ‘’Not a bug“ or ‘’Won’t fix.“ If your bug reports turn
out to be mostly suggestions, this will affect the reputation of the team and
most of your bugs might end up ignored. The right way to handle
suggestions is to have separate processes or forms to do it. For example, in
Next Games, our bugs database setup allowed us to report bugs or
suggestions. While bugs went directly to the lead developer, suggestions
were assigned to the producer to be discussed with the feature team.

Lastly, when we talk about reliability, we should mention bugs that are not
really bugs. After many rounds of testing and utilizing the same test cases,
QA might come to the point where there are simply no more bugs found. It
can be tempting to report something that’s "suspicious“ or an edge case bug
that will happen in exceptionally rare circumstances. These bugs are most
often a waste of time. If you find something that doesn’t feel or look right in

the game and if you have time, it’s recommendable to investigate it further.
But presenting it as a bug without justification is not going to help the team
or the game. When your tests don’t find any more bugs, you should change
the approach or just stop testing.

At the end of the day, what matters the most is the quality of reported bugs,
not quantity. Several well-written and well-justified bug reports about
critical issues are much more valuable to the team and to the success of the
game than dozens of quickly written low-severity bugs.

Objectivity
While it might be hard to precisely determine the severity of the bug,
especially early on in the project or when the tester is new to the team, we
should always strive to be as objective as possible. With time and
experience, testers become much better at determining severity and priority.
While making mistakes early on is acceptable and understood, it is expected
that the tester progresses with time and becomes more precise at
determining severity. Unfortunately, sometimes it happens that QA loses its
objectivity and reports bugs that are valid, but not necessarily as severe as
QA sees it.

While I worked as a game producer, I had a case where QA flagged the
release of one of the highly anticipated games that I was in charge of. The
QA manager claimed that the quality of the game was too low to be
accepted. There were lots of bugs that were categorized as high severity, but
upon a closer look, I didn’t really consider them to have been objectively
assigned. This caused tension between QA and the development team and I
took the decision to release the game as planned, respectfully declining
QA’s recommendation. The game became a great success, and it was the
most popular game ever released by our department. While QA wasn’t
wrong about reporting some quality issues, and many of them were fixed
with time, those were not really affecting players in a significant way, and
there was no need to postpone the launch because of it.

When we talk about objectivity, it’s impossible not to mention the eternal
bug versus feature debate. It’s probably the most dreaded comment that QA

can receive: it’s a feature, not a bug. There are many opinions about this
issue in professional software development circles. When we talk about
games, we talk about a product that is made for a worldwide audience,
software that is intended for thousands, if not millions, of players out there.
Some of them might be experienced gamers who play multiple games for a
long time. But with the increase of mobile F2P games, we now have players
who don’t fit into the traditional picture of the gamer: these are people who
play only on mobile, they favor one or two games, and they don’t have the
same understanding of game mechanics or game rules as someone whom
we would consider a hard-core gamer. These days, most players in the
world fit into the category of occasional gamers. If we are creating games
primarily for this audience, which we call casual gamers, we have to make
sure that our players will understand game features. Testing teams consist of
professionals who play the same game over and over again. Most of the
time, they play other games as well. If a tester who spends months and
months playing the same game can’t figure out that something is a feature,
not a bug, there is no chance that players will.

Clarity
We previously mentioned that bug reports are one of the main means of
communication between different stakeholders within game teams. That
means that bug reports should be written with clarity and structure that it’s
easy to understand. Always use simple, precise language, and if in doubt,
too much information is always better than not enough. A bit of extra
information that turns out to be useless it’s much less damaging than having
a bug report that is missing key components and has to be bounced back
between QA and development several times.

Timeliness
It does matter when bugs are reported. While it can be easier for QA to
spend blocked time testing and write reports at the end of the testing time,
this is not ideal for the rest of the team. For example, if you test from 9 am
to 3 pm and only after that time do you start writing down all the bugs you
found in the database, the developer will see them just before they leave to

go home at 5 pm. That means that no bug fixing will start before the next
working day, or, even worse, the coder might have to stay to work overtime
and fix bugs after working hours. Besides that, reporting a bug when it is
fresh, we still have all the small details in our heads. Reporting a bug hours
after we found it, we might lose some of the small detail, which can affect
the bug report quality. It is exceptionally important to report bugs promptly
when we are doing testing rounds just before the launch. In those moments,
time is really precious and we should raise the issue as soon as possible.
Reporting bugs two hours before the submission is much better than
reporting them when the submission process has already started.

Bug examples
Now that we know how to create great bug reports, let’s look into a
practical example:

Figure 8.6 – A good bug example

In Figure 8.6 we can see an example of a bug in JIRA that follows good
guidelines. The headline is informative but not too long. We can clearly see

who reported the issue, on which platform and OS it is happening, and a
short but relevant summary.

When we check the description, it’s well structured with a clear description
and is using straightforward language. The issue described is easy to
understand and reproduce. We can also see that the tester provided extra
information – they confirmed that the bug is happening regardless of what
type of connectivity we use. This information might be of use to coders. An
alternative way to handle this information is to report two separate bugs:
both bugs will look the same, but they will be reported once for a Wi-Fi
connection and once for a cellular connection. In that case, it is advisable to
link those bugs. JIRA allows us to link bugs that are related to each other,
and this is a good example of how to utilize this functionality.

We can also see that the bug has a Repro rate value of 10/10. That affected
the Priority value, which is set to Highest.

The current version of JIRA has a Priority field as a default with the option
to add a Severity field. In this case, the tester made the judgment that this is
the highest priority to fix. The reasons for that are that bug is severe
(prevents the player from moving forward) and it appears relatively early in
the game. The majority of players will reach level 3. Priority would
probably be lower if this happened among the last few levels in the game.
Only a small proportion of players reach that far in the game. That doesn’t
mean it shouldn’t be fixed as soon as possible – those players are loyal fans
of the game and important for monetization and organic growth, but in a
limited time window, the priority decision might be taken by a bug that
affects more players.

Next, let’s look at the same bug, but this time in a poorly written report:

Figure 8.7 – A poorly written bug report example

Looking at it, we immediately see that the headline doesn’t look
professionally written. While it communicates perceived urgency, and we
can conclude something is broken, it doesn’t give us much other
information.

Reading the bug description, there is a lot of confusion in the text. The
Precondition field has too detailed preconditions and then there are steps to
reproduce in the same field.

While we can conclude by ourselves that the expected outcome is that level
3 works, saying “Level 3 doesn’t work“ doesn’t give us enough
information. How doesn’t it work? Does the game crash at the beginning or
at the end of the level?

Adding “Must fix“ is an unnecessary suggestion. We do have a Priority
field where we can determine that this issue should be fixed with urgency.
Another thing we are missing here is the repro rate value. When it comes
to crash bugs, it’s always beneficial to have a repro rate. If this crash
happened only once, it might not be of the highest priority.

Lastly, let’s mention the Environment value. While we have some
information here, it’s not enough. iPhone has numerous models that are still
supported. iPhone users are always urged to upgrade their OS to the latest
version but not all users do so. Not knowing on which device and which OS
the bug appeared on makes it even less likely to be considered a high
priority.

Bugs such as this are easy to misunderstand and commonly are bounced
back to testers with a status of more info or can’t reproduce. When time is
tight and we find a bug that has a high impact on the player and the quality
of the game, we might rush and write a report that takes shortcuts. Although
we try to save time by doing so, we end up spending more time on bug
fixing, as the bug might be initially ignored or has to go through several
rounds of bouncing back between the tester and the coder. For that reason,
it’s better to take a few minutes more to write a good quality bug report that
will be taken seriously at first glance.

Summary
In this chapter, we learned in detail how to write great bug reports, what is
appropriate information to include, and how it should be laid out. We
learned what the difference is between severity and priority and how we
should determine them. Lastly, we became familiar with several different
bug report layouts and compared a well-written against a poorly-written
bug report.

In the next chapter, we will look into the testing approach and review
testing in agile teams and learn more about testing strategies.

It Works, but It Hasn’t Been
Tested: Testing Approach
The testing approach we choose depends on many factors, from the
methodology we use to develop games to the game type we are testing and
much more. By now, we have already learned about the limitations we face
in everyday game quality assurance (QA). There is never enough time,
there are conflicting priorities, games are getting bigger and more complex,
and teams are getting more and more distributed. Picking up the right
testing approach will help us optimize our time and plan the most efficient
way how to organize and execute testing. Because even with the best-
written test cases and flawless execution, if we choose the wrong testing
approach for the game we are currently testing, we might miss important
bugs and spend our limited time on aspects of the game that might not
matter that much.

In this chapter, we will cover the most common scenarios in modern game
development, but we will not forget about lessons learned from the past.
Our journey in test strategy starts with learnings we have from utilizing the
waterfall model and analyzing which aspects of this model are still valid
and useful today.

From there, we will move to agile methodology and talk more about
embedded QA and provide useful, hands-on tools, and how to select the
right testing focus. We will do our first deep dive into live ops and discuss
approaches to testing when we deal with live games, and we will have a
deeper look into how to organize testing in agile gaming teams. Finally, we
will learn more about different types of testing strategies that can be utilized
in any environment. In this chapter, we will review the following key
topics:

Lessons learned from the waterfall model
Agile approach – embedded QA

Lessons learned from the waterfall
model
The dominant methodology in game development these days, especially
with games as a service (GaaS) (live ops), is agile. That doesn’t mean
waterfall is no longer used – it’s still heavily used in more traditional game
development. But, there are many elements of waterfall that are still
actively used even if modern game teams are overwhelmingly adopting
agile development.

One of the most commonly used waterfall features is the usage of
milestones. Game development milestones are deeply embedded in the
ways of working, and they are used as quick indicators of the readiness of
the game. Not all studios use exactly the same milestones, but these are the
ones that are most commonly still in use:

Figure 9.1 – Milestones in game development

Milestones are used predominantly in game development prior to live ops.
Once the game is live and the team is working on updates and features,
milestones are no longer used. There are several reasons for that. Firstly,
development cycles are much faster, and teams are working with minimum
viable features (MVFs).

How to pick the right testing focus
Testing strategies in live ops
Types of testing strategies

What is an MVF?

The nature of MVF is such that it is usually released as “good enough,” and
evaluated by the players. Good enough means that the feature is playable
and doesn’t have major bugs, but it might still be missing some
components, polish, and gameplay depth. After it’s confirmed through the
game key performance indicators (KPIs) that the new feature has a
positive impact on player experience, it’s further developed and polished
through one or several incremental updates.

Secondly, a live game is more determined by the reactions of the players
than by set milestones. We will talk in more detail about how development
works in live ops in Chapter 11, Are You on the Right Version? Live Ops
and QA. While we have a pretty clear roadmap for pushing the game out on
certain dates, the schedule for live ops is much more fluid and it’s
constantly changed. That’s why live ops are always done utilizing the agile
methodology.

When we talk about testing, though, we still follow the cadence of testing
tasks that we utilize in the waterfall model:

Figure 9.2 – Testing cadence

In Figure 9.2 we can see that regardless of the methodology we use, we
start testing with unit testing. After that, testers will take over and perform
integration testing, making sure that all components of the game work
well. In larger projects, work is sometimes split among several developers,
and different parts of the game might be coded by different people, even

different teams. It’s important to validate that the integrated builds work
well when all the parts are combined.

Integration testing is followed by system testing, where we test all aspects
of the game and how they interact with each other. Among other types of
testing, the bulk of testing done here will be functional testing.

After the game is deemed ready and greenlighted by the QA team, it can be
validated by the players. The game is released to a selected group of players
either as an open or closed beta and in the free-to-play (F2P) world, the
game is in a so-called “soft launch.”

In traditional QA, we call this stage user acceptance testing (UAT). In this
phase, we should no longer get any serious bugs and rather focus on gaining
insights into how players perceive the game and which parts they like or
dislike. This is done through game analytics (KPIs) and through direct
feedback from players via player support, game forums, and social media.

There are game teams that are working with a more agile approach to
testing and relying almost exclusively on exploratory testing or an extended
version of basic acceptance (BA) testing. In some very mature games that
have been live for a while, QA is done by the whole team relying on
heuristic methods. We will talk about them in more detail later in this
chapter.

Now that we have learned about the testing methods of the waterfall
methodology that are still present in game development, let’s look into the
agile approach in more detail.

Agile approach – embedded QA
What do we mean by embedded QA? It’s often understood as having a
permanent QA member assigned to the development team. But, it means
more than just that. In truly embedded QA, QA becomes an instrumental
part of game development in all development phases. QA takes the role of
representing the player and participates not only in validating whether
features work but also provides insight into how a player might interact

with the feature and suggests changes that will benefit the game from a
qualitative angle. Rather than just being placed towards the end of the
development cycle, embedded QA participates in game development and
decision-making from idea to execution.

Working in this way has several benefits for the team:

In traditional game development, it often happens that there is friction and
misunderstanding between QA teams and developers. QA is often seen as
“making problems” or “being negative,” especially if they have found a
significant number of bugs late in the development cycle. Working together
throughout different development phases helps the team to see the real
value of QA and experience their work as collaborative rather than against
the developer.

To work in this way, the tester has to develop a different mindset as well as
skillset than in traditional QA, where the finished product is just handed
over to the QA team for testing. In this type of work, the tester needs to
learn more about the role of each discipline in game production as they will
work directly with the team. There will also be more ad hoc and
exploratory testing versus thoroughly planned test case execution.
Additionally, the tester will need to understand the product in detail – that

Firstly, having QA involved so early helps decrease the number of
bugs and the team can learn early on about the inherited risks of features
they are looking to implement.
Secondly, you can get an idea of how players will respond to changes

in the game before you actually commit the feature to development. QA
plays the game more than anybody on the team and works closely with
player support in the live ops phase. They will have lots of qualitative
information about how players perceive the game, and this knowledge
can help product managers and game designers translate game KPIs into
applicable features.
Lastly, it helps teams to be more cohesive and work together towards

the common goal: a great game that players love to play.

means familiarity with the game under test and also with the competition
and overall current gaming industry standards.

When we use the waterfall methodology, the game comes to QA mostly too
late for any significant changes in core design and architecture. While QA
finds valuable bugs, if we find issues with design or usability, those
suggestions are usually dismissed as it’s perceived to be too late to make
those kinds of far-reaching changes so late in development. This approach
often results in the game’s initial reception being negative and facing lots of
criticism from the players. Having embedded QA helps mitigate these
situations and enables QA to provide valuable insights in a timely manner.

Lastly, when we utilize embedded QA, very often, we still have increased
QA efforts in a similar way as we do in waterfall methodology toward the
end of the development cycle. While embedded QA will participate in the
development and execute tests along the way, in order to get really deep
testing coverage, especially when we are working with significant changes
in the game, we will utilize outsourced QA to run a set of functional tests.
Outsourced or external QA is generally utilized more traditionally when we
already have available game builds and major development work is
wrapped up.

Now that we have learned what embedded QA is and how it works in agile
teams, let’s next look into how to pick the right testing focus.

How to pick the right testing focus?
By now, we have learned that games, regardless of their genre, are complex
systems, and when we talk about games in live ops, these complexities are
even further enhanced. With fast-paced development, it is crucial that the
QA team is utilized efficiently. How to pick the right testing focus is one of
the crucial questions that we need to answer in order to make high-quality
games on time.

Testing focus is dependent on the following:

Let’s look into these in more detail.

The development stage

Depending on where we are with game development, QA will have a
different focus and use different tools. We can see this in detail in Figure
9.3:

Figure 9.3 – Game milestones and their testing focus

Early in the production phase, certain aspects of the game are just not ready.
Even if they are in the game, they might be initial, rough versions or
placeholders. Testing parts of the game that are not ready is not only a
waste of time, but can also cause tension in the team. Making sure that QA

The development stage
The game business model
The target market
The game KPIs

tests parts of the game as they are being developed and completed helps the
development team to optimize their work and work through any major
issues early enough in the process. That makes the whole development
faster and cheaper.

When we move to the live ops stage and away from traditional milestones,
we will need to rethink how we focus testing. Especially because now we
will be facing two different tracks: live feedback from players through
player support and game KPIs and the development track, where the live
ops team develops new content and features. We will talk more about this
later in this chapter.

The game business model

Historically, games used to be predominantly premium. You purchase the
game for a fixed price and enjoy it for as long as you wish. These days, the
games market is very different, and the predominant business model is F2P.
Besides F2P, there are also other business models on the market. Let’s have
a deeper look at them and see how they affect the testing focus.

F2P is a business model where the game is obtained for free but the player
has the option to make in-app purchases (IAPs) to enhance their gaming
experience.

In order to make IAPs attractive to the player, games are trying to keep the
player in the game for as long as possible (player retention). The idea
behind this is that the more committed player is to the game, the bigger the
chances are of them purchasing something in the game. F2P games are built
to be endless – there is no end game. They are also built on scalable
architecture that allows for endless content updates and quick changes in
game balancing. When we test F2P games, we need to focus on additional
things such as purchasing flow and game updates. If we have the capacity
to make changes in the game without submissions to the platform, we need
to make sure that we have developed a process for testing those prior to
them being pushed into live production.

Many games today are not only F2P but also have the addition of ads. Ads
can be in different formats: video ads, playable mini-games, interstitials, or
a banner. The most financially lucrative type of ad is a video ad and it’s
most often implemented as rewarded ads (player watches the ad for some
kind of in-game reward). In order to make sure that the player doesn’t gain
too many goods from watching the ads, those are generally capped at a
certain amount that is available to the player to watch.

When we test games that have ads, we need to also incorporate ads testing.
That includes testing whether ads are properly implemented in the game,
whether they display correctly, whether they break anything in the game,
and whether they give appropriate rewards.

Besides IAPs and ads, games also sell subscription types of purchases. That
means that players can buy “subscriptions,” which can be daily or monthly,
and for as long as the subscription lasts, they will gain a reward every time
they log in to the game. Subscription generally works in a way that more
valuable items appear later during the subscription. If our business model
also includes subscriptions, we will need to test whether the subscription
model works as intended. For example: is it possible to log in every day,
what happens when you skip a day, do you get the appropriate reward?

Now that we have learned more about different game business models and
how they affect testing, let’s have a look at target markets.

Target markets

When we develop games, we usually have geographical market that we
consider the most important. Statistics show that the most important gaming
markets in the world are the USA and China (source: Newzoo:
https://newzoo.com/insights/rankings/top-10-countries-by-game-revenues),
but when we scratch the surface, we can see that there are many other
global markets that like games and are willing to spend money on them.
After all, gaming is a global phenomenon. If developers want to take full
advantage of other markets, they usually perform localization of the game
for that specific market. We discussed localization in Chapter 3, A Deeper
Look - Types of Testing in Games. Unless we specialize in localization QA,

https://newzoo.com/insights/rankings/top-10-countries-by-game-revenues

we will not work directly with it, but we have to take into consideration the
additional amount of time that will be given to localization and localization
QA.

Besides geographical target markets, we can also talk about players’ overall
game style preference or casual versus core players. Those groups of
players have different expectations from the games they play and will
approach gameplay differently. Casual players play more recreationally –
short gaming sessions of a couple of minutes, while on public transport or
to have a quick respite. Mid-core players might engage in a longer session
(30 minutes plus) and have a deeper gaming experience. In Figure 9.5, we
can see the main differences between casual and hard-core players:

Figure 9.4 – casual gamer versus core gamer behavior patterns

We can see from Figure 9.4 that there are quite a few differences in how
players engage with the game and what type of game experiences they are
looking for. Knowing who our target audience is will help us immensely in
deciding on our testing focus, from deciding which test sets we will test the
game on to creating test cases or test charters that realistically mimic player
behavior.

Game KPIs

Game KPIs are not often mentioned in the context of QA, but it’s an
exceptionally important part of it. When we are working with F2P and live
ops, KPIs are some of the most important information about the game that
we receive. KPIs are a reflection of player behavior in the game and they
tell us how players engage with the game, what they do within it, what and

when they buy, how they interact with each other, and many other things.
While KPIs are expressed in numbers and percentages, they actually tell a
story of how successful our game design is, what things players like, and
what they dislike. Obviously, this is an important part of the information,
but how can we use it to help us with testing focus?

If there is an area of the game where players spend the most time, it is
important to test that part thoroughly. This information tells us that if
something is wrong or subpar with that part of the game, it will have a
negative effect on a big proportion of players.

Is there an area where most of the players churn (stop playing the game)?
While those player pain points are often in the game by design, sometimes
it’s an indicator that there might be something wrong with that part of the
game. Make sure that you test it thoroughly. On one of the games I worked
on previously, we had a case where we had a high churn in a specific part of
the game, but we couldn’t figure out why. Upon deeper inspection, we
realized that churn was specifically high for players based in the USA.
After some heavy testing and trying different approaches to the problem, we
realized that our game had a very specific problem with one of the USA-
based cellular networks. As the USA was our main market, even if this was
a costly exercise, it was deemed valuable to figure out what was wrong and
fix it.

Another area that we can look into is, for example, which percentage of
players finish a certain level. While we know that some levels are purposely
more challenging, if KPIs are not what we would expect, maybe it’s time to
look into game balancing more thoroughly.

These are just some examples of how game KPIs can help you with the
testing focus. As we are measuring many things in the games, make sure
that you read game KPIs and discuss with the product manager how QA can
be of most help to the product team.

Testing strategies in live ops
Before we dive deeper into live ops, let’s first define what it means.

What is live ops?

Live ops refers to a period in a game life cycle after the game has been
released to a wide audience on the target platform. While live ops can be
viewed from many angles (development, backend, marketing, and so on)
we usually consider live ops all actions and processes that affect game
behavior while it’s in a live state. In successful games, the live ops phase is
the one that lasts the longest. Some games today have already been in the
live ops phase for more than ten years, for example, Candy Crush, Clash of
Clans, World of Warcraft, and many others.

As we can see, live ops are as important, if not even more so, than other
phase of game development. At the same time, working in live ops means
working in a much faster environment with different stakeholders. We will
discuss live OPS in detail in Chapter 11, Are You on the Right Version? Live
Ops and QA.

One of the main QA challenges in live OPS is prioritizing testing tasks. QA
has to work with two simultaneous tracks – a new development that is
continuously integrated into the game and with the constant stream of
feedback coming from the live game:

Figure 9.5 – The differences between QA in development and in live ops
phases

We can see from Figure 9.5 that there are significant differences between
the characteristics of QA in game development versus live ops. When we
are selecting an appropriate testing approach for live ops, we need to keep
in mind these differences and be fully aware of the specifics of live ops
development.

In live ops, we continuously add content and new features to existing
games. Next, let’s look into some strategies that will help us deal with new
code.

It is important to understand what changes have been made in the game.
Working in live ops is collaborative, and QA can take great advantage of
that. It is perfectly fine to ask questions from the team. You could ask
questions such as:

Answers to those questions will give you great insight into the highest
perceived risk, and QA will be able to focus their efforts where they will be
most useful.

Team discussions don’t replace the tester’s own experience, skills, and
critical thinking. When we gather information from the team, we should
also ask ourselves: “As a player, how will I interact with this new feature
compared to the old ones?”, “How will this feature fit in the overall game
ecosystem?”, and “What are the inherent risks with this feature?”

Did you change anything significant in the code?
Does the new feature in any way affect the old one?
Will the new code make the game builds bigger?
Do you expect any of the changes to affect game performance?
Is there anything specific you would like me to test or pay more

attention to?

Due to the time limitations we have for QA in live ops, the best testing
strategy is always risk focused. When the game is live, we have thousands,
if not millions of players, all over the world playing the game, enjoying its
features, and spending money. If something seriously goes wrong with the
game at this stage, it could mean the end of the game and incredible
financial and reputational loss. In production, risks are significant but not
necessarily that impactful to the game, possibly even for the studio’s
survival.

A risk-based testing strategy is based on four main phases:

Risk identification: Utilizing available documentation and discussions
with the team members, the tester will identify the main risks with the
new feature and code we are implementing.
Risk analysis: Here we investigate the impact: what would be the

consequences if something goes wrong with this feature? What are the
consequences for the player, for the game, and for the company? In this
stage, the tester can also have discussions with the product owner, game
designer, and player support to get the full picture of risk, probability,
and impact. For example, suppose we implement a new way of saving
game progress due to changes on the server. The developer tells us that
they didn’t have enough time to explore the new system properly and
there is a high chance of bugs; we can already tell that probability of
risk is high here. It doesn’t take much investigation to figure out that not
being able to save your progress in the game is going to cause lots of
inconvenience for players and there is a chance that many players will
leave the game due to that. The remaining players might start to doubt
the reliability of the game and decrease their purchases due to a lack of
trust. We can see that this is definitively a high-risk, high-probability
case, and we should prioritize testing this feature in detail. It is
important to remember that in agile teams, QA acts as a representative
of the player, and the tester should not be afraid to voice their concerns.
Risk handling: In this phase, we decide how we will address the risks

that we have identified. What testing methodology will we use? How
will we prioritize our testing tasks? We should always prioritize testing

Here, we learned the best test strategy to implement in live ops. Next, we
will look in more detail at other types of testing strategies that can be used
in any phase of game development.

Types of testing strategies
The testing strategy is choosing the right approach to testing and
successfully assessing the quality of the game. A good testing strategy
should be the following:

When we test the game for the first time, we are not familiar with its
features and characteristics yet. We don’t have firsthand knowledge about
how it is supposed to work, whether there are any inherent risks with the
code base, or how players are supposed to interact with it.

the areas with the highest risk probability and most severe impact. Your
test allocation should always follow your risk assessment.
Risk monitoring: This means that you should analyze the results of

your approach. Were your concerns correct? Did you find any new,
unexpected bugs? Did you learn something more about the game
behavior or the usefulness of the tests? Do you need additional time or
tools to ensure risk is appropriately addressed? Make sure that you note
down your learnings and use them to improve the process for the next
update.

Product specific: It takes into account all unique aspects of the
product and uses the strategy that is most suitable for the game.
Risk-focused: Risks with the most impact and highest probability

should always be the ones that we will want to focus on.
Diversified: We should implement different testing approaches to

ensure that QA didn’t leave any “blind spots.”
Practical: A test strategy needs to be easy to understand and

implement. If our approach is too theoretical or difficult to implement, it
will make testing efforts ineffective.

The first step in choosing the right strategy is learning about the game
through available documentation, discussions with the development team,
and participating in meetings. If QA is embedded in the team, they can
utilize the iterative process of creating test sets by having short, focused
testing sessions and trying different approaches in order to find the optimal
way to test the game.

Let’s look more closely at different testing strategy models that are
commonly used in agile development teams.

The heuristic testing model is based on using a set of patterns that will help
us select optimal tests. This testing model is not absolute, and it can change
depending on the game’s needs, but its core system can provide us with
guidance on what to think about when creating tests.

In the heuristic testing model, the testing techniques we choose are affected
by the game environment, quality criteria, and elements of the game. The
output of testing techniques is “perceived quality.” We use “perceived
quality” rather than just “quality” as we are aware that we can never fully
know the quality of the product, but based on our testing efforts, we can
make a good assessment of it.

What do we mean by game environment? In this context, we don’t only
talk about technical environments such as hardware, operating system, test
environment, and platform we use, but also includes testing resources, team
relations, testing team size and limitation, available documentation, and any
other resource or situation that can affect testing either positively or
negatively. Acknowledging and accepting that we do have specific
limitations and advantages and taking these into account will help us choose
more realistic and effective testing techniques.

Quality criteria are rules, values, and sources that help the tester determine
whether the game under test has problems. While we might think that
quality criteria are clear and it’s easy to recognize whether the game we test
is buggy or of poor production quality, that’s not necessarily the case.
Quality criteria can be very different between teams and organizations, and
they can often be contradicted by mixed expectations from different

stakeholders. When we look into quality criteria, we should look at the
game from the following angles:

Lastly, we will briefly look into what we mean by elements of the game.
We spoke in Chapter 2, All Engines Go - The Basics of Game QA, about
what we test in games. We can also look at it from a different perspective
and group game elements into the following categories:

Capability: Does the game do what is supposed to do?
Security: How secure is our game against hacking, cheating, or

exploitation?
Usability: What is the first-time user experience? Does the game user

experience (UX) flow in a logical and easy-to-follow way?
Fun factor: Is the game fun? Will it meet the player’s expectations?
Scalability: Can the game be updated regularly? Can we add new

features and content?
Performance: How does the game perform under stress? What is a

frame rate? Is there a lag or delay?
Compatibility: Does the game meet all of the platform standards?

Does it work on all target devices and operating systems?
Installability: How easily can updates be installed? What is the game

size? Does the game remove “cleanly”? Where are the game files
stored?

Architecture: Here we look into game architecture as the backbone of
the code and with a wider lens, including any services that run
independently from the game (third-party integrations), non-executable
files, and anything else that is part of the core structure of the digital
product.
Function: This is everything that the game does that would fall into

the category of functional testing.
Interfaces: This includes the user interface (UI) and the UX.

You can learn more about heuristic testing methods on Michael Bolton’s
blog: https://developsense.com/

Another strategic approach to testing we are going to look into here is the
five-fold testing system. It was first described by Kaner, Bach, and
Pettichord in their book Lessons Learned in Software Testing. The core of
this strategy is the idea that every type of testing we do can be described
through five different dimensions. Those dimensions are detailed here:

Platform: We spoke in detail about platforms in Chapter 4, Deeper
Look - Testing on Various Gaming Platforms – Mobile, PC, and
Console.
Operations: While in function, we focus on testing everything that the

game is supposed to do, in operations, we look into the game from the
angle of how the game will be used. Here, it is crucial to put ourselves
in the players’ shoes, and besides optimal use, we focus on testing
unfavorable and extreme usage as well.
Time: This is any relationship between the game and time. Here we

look into things such as installation time, loading time, speeding things
up and slowing them down in the game, doing multiple things at the
same time, and so on.

Testers or who does the testing?: In agile teams, it’s common for the
whole team to be involved in some sort of testing activity. We might use
internal QA or external QA. Are we doing beta testing, and are actual
players testing the game?
Coverage: What is being tested? Games are increasingly complex

ecosystems with many different components. From how many different
angles are we approaching it?
Potential problems: Against which risks are we testing? What is the

impact of a possible failure?
Activities: How do we execute tests? What approach and methodology

do we use?

https://developsense.com/

There are many different approaches we can take when thinking about our
testing strategy. Rather than being a repetitive set of actions, testing is really
about investigation, discovery, and continuous learning. Testers should
make sure that they keep an open mind, are capable of critical thinking, and
build testing models that are flexible enough to be easily changed when the
project requires so.

Summary
In this chapter, we learned about aspects of the waterfall methodology that
are still useful, how to focus testing in live ops, and several different
methods to help us select an appropriate testing strategy. Now, you know
how to approach testing in live ops and have the skills to approach the best
strategy for handling testing in agile game development projects. You can
speak with confidence about the waterfall and agile QA approaches. In the
next chapter, we will dive into more detail about testing methodologies and
learn practical methods that will help us execute the most efficient tests and
secure game quality.

Evaluation: How do we evaluate whether tests passed or failed?
While it may be obvious to the tester, a failure might not be understood
equally by all stakeholders.

Eat, Sleep, Test, Repeat: Test
Methodology
In this chapter, we will cover different methodologies that we can use to
optimize our testing efforts. We will look into methodologies that are most
commonly used in agile teams and help us deal efficiently with fast-paced
development, with frequent updates and introductions of new code. While
these methodologies are frequently used in agile game development, they
are also very useful for more traditional teams.

Besides this deep dive into various methodologies, we will also look at the
best practices when dealing with new code. While every game has a
different architecture and each studio has slightly different processes, there
are some good practices that can be used across the board.

In this chapter, we will learn about the following key topics:

First, let’s start with one of the most important methodologies we can use
when dealing with continuous change and multiple stakeholders: risk-based
testing.

Risk-based testing
Risk-based testing is one of the most valuable tools in any tester’s arsenal,
regardless of which development framework we use. But it’s agile and live

Risk-based testing
Exploratory testing
Equivalence partitioning and boundary value analysis
Decision tables
Strategies for dealing with new code

ops where it really shines, and it’s always a staple of quality assurance
(QA) efforts. We often do risk-based testing without even realizing that we
are using a specific methodology. Whenever we approach the game from a
player-focused angle and ask ourselves, “How will this affect the player?”,
we are doing some sort of risk testing.

Of course, risk-based testing also has its standard rule and best practices.
While we already touched briefly on risk-based testing in Chapter 9, It
Works, but It Hasn’t Been Tested; here, we will dwell a bit longer on this
methodology and how to use it in an optimal manner.

The efficiency of risk-based testing is highly dependent on the initial risk
analysis. For that reason, it is important to do risk analysis in a way that is
optimal for the project and which will give us the most reliable information.

How to do efficient risk analysis? This depends on several factors:

We can see that risk analysis depends a lot on the perspective from which
we are looking at the product. When we do risk analysis in pre-production,
one of the risks can be, for example, that game is too innovative, and we
might not be able to finish it in a given timeframe. In live ops, our risk will
be something along the lines of, “There is a risk that players will not
understand the new feature.” Both of these risks can appear in almost any
game development phase, but the same risk might have different impacts
and probabilities.

It is a good practice to group risks as well. We can do it either at the
beginning of the risk identification process or at a later stage. Grouping
risks early on helps us guide our thinking and ensures that we don’t leave
part of the game or some risks unaddressed. We can group risks in various
ways. Some of the categories we should think about including are as
follows:

In which game development phase are we?
What is the goal of this testing round?
What is a current business goal?

The next step is the risk analysis process, where we estimate the risk,
impact, and probability. This is the most demanding part of the risk
analysis, as it requires us to have deep insight into the game architecture,
design, internal and external studio factors, familiarity with the player
persona, and previous experience from similar game projects. It is rare that
one person has a realistic view from all different aspects. That’s why it’s
always recommended to involve other disciplines when doing risk analysis.
Getting input from coders, artists, designers, and product managers helps us
make the most objective risk assessment, providing a strong foundation for
further testing activities. Let’s look into more detail how to do all aspects of
risk-based testing.

Risk identification
Let’s have a look first at risk identification. We should never rely
exclusively on our own knowledge when doing risk identification. Even if
we have years of experience, there could always be some unknown factor
that we haven’t thought about. Having multiple perspectives helps us not
only to identify all relevant risks but it also helps us make optimal estimates
for risk probability and impact. Let’s have a look at what the risk
identification process looks like.

Code base
Player
Business
Process
Team
Timeline

Figure 10.1 – The risk identification process

Initial risk identification starts with the tester. They use their experience,
knowledge of the product, knowledge of the studio processes, and
knowledge of the technical platform, architecture, and game engine to
prepare an initial risk list.

What is a risk list?

A risk list is usually a spreadsheet document, which lists all identified
relevant risks, but we haven’t identified their probability and potential
impact just yet. This document will be our starting point.

Next, we should read available documentation about the feature that we are
about to test: the Game design document (GDD), use cases, or any other
readily available documentation. We expand our risk list with new things
we have learned. We must keep in mind our time limitations here. If we are
just starting the project and we are in the early phases of development, we
can take more time to study documentation. But, if we are in live ops and
we are talking about a new feature, we should focus on documentation
about that feature only.

After we have added our own input, it’s time to talk to the rest of the team.
Depending on your studio structure and processes, you can do it in either a
formal or informal way.

The formal way would be organizing a risk identification brainstorming
session first, then an analysis workshop, conducting official interviews with
all stakeholders, or having a specific team meetings.

The informal way would be more relaxed interviews with your team
members.

At this stage, if you think there is a need, don’t be afraid to talk to the
experts from different teams or even outside of the company if there is a
need and allowance for that.

Lastly, don’t forget to talk to your player support team! They will have
valuable knowledge about what players are mostly complaining about and
how they interact with the game. Getting all these different perspectives
will allow you to get the most realistic view of the risks and how they affect
the product. With that, you should be able to get solid foundations to
estimate risk probability and impact.

As a final result of risk identification, we will have a list of risks that is well
thought out and exceptionally helpful for the testing focus. Next, we will
use our risk list and analyze it to get more insight into how those risks affect
the product and player perception.

Risk analysis
When we have collected all relevant risks, it’s time to go into deeper
analysis and expand on our risk list.

With that, you should be able to get solid foundations to estimate risk
probability and impact. Probability tells us what the likelihood of the risk
happening is. For example: after discussing with the technical team and
based on your experience with the game backend, you feel fairly confident
that the backend can take over 100,000 concurrent users and can be scaled

up seamlessly. You also know that the development team did extensive load
testing on the servers. The risk of the backend failing is relatively low. It is
common to use a numeric scale to mark the probability and we would
assign a value of 1 or possibly 2 to this risk, indicating that the probability
is at the low end of the scale.

The impact is the effect that risk has on the product and even more
importantly, on players. If we look at the impact of the previous example, it
would be catastrophic. The game would become unplayable, and we would
lose lots of players and lots of money. A similar situation happened in real
life too. Electronic Arts released The Simpsons: Tapped Out mobile game
without properly optimizing servers and underestimated players’ interest in
the franchise. Besides backend issues, the game was also riddled with bugs
that severely affected players. It got so bad that game had to be removed
from the App Store, and it took developers six months to fix all issues and
publish the game again. The second time around, The Simpsons: Tapped
Out became a great success.

This example tells us what can happen if we don’t analyze our risks
correctly. Developers severely underestimated the interest players would
have in a the Simpsons-themed game as well as what impact bugs would
have on players. This mistake cost the studio a staggering amount of
money, with some estimates even going up to $200 million.

You can read more details about this story here:
https://www.cnet.com/tech/mobile/how-electronic-arts-resurrected-its-doa-
simpsons-game/

What is the best way to determine impact? In agile teams, QA’s role is to
represent the player. We should put ourselves in the player’s shoes and see
how each specific risk can affect them. If you are new to the game, make
sure that you check feature requirements and talk to other team members.

Risk prioritization
After we have completed the analysis, we should prioritize risks. This will
help us test the most vulnerable parts of the game, and it will help us choose

https://www.cnet.com/tech/mobile/how-electronic-arts-resurrected-its-doa-simpsons-game/

the correct testing strategy. So, how do we prioritize risks?

At the top of our list, we will put risks that have a high impact and high
probability of happening. Those risks are the most dangerous that can cause
the most damage if not properly addressed, and we want to make sure that
we test against them sufficiently to ensure that they won’t happen. But how
do we prioritize other risks?

If you identify numerous risks and you are unsure how to prioritize them all
correctly, it is useful to use the risk score.

What is a risk score?

A risk score is a number that we get when we multiply probability with
impact numbers. That number is then assigned to each risk, and we use it as
a guideline on how to prioritize risks, starting with the ones that have the
highest numerical value.

When we talk about risk prioritization, we should also mention as low as
reasonably practicable (ALARP). Even if the term is not very often used
in the gaming industry, the idea of ALARP is commonly included in risk-
based testing.

What is ALARP?

ALARP recognizes that it’s not always possible to eliminate all risks. There
could be financial, operational, or project constraints that will not allow us
to do that. ALARP is the principle that weighs the risk against the
constraints and focuses on defining and addressing what is the lowest
acceptable risk.

To get extra assurance, or if you still end up with many risks with the same
risk number, it is good practice to discuss with the team and jointly decide
how to prioritize them.

Developing a test strategy based on
risks

By now, we have ready a risk list with the final analysis and risk score. It is
time to look at our test strategy based on risk. Our priority is to ensure good
coverage for the risks that have been identified with the highest risk score,
meaning having high probability and impact. We can be sure that if we find
a bug related to those risks, it will be taken very seriously.

We also want to ensure that we spend the most time and resources on risks
with the highest score. In risk-based testing, it’s better to spend most of the
time on high-risk items and barely touch the ones at the bottom of the list
than spend testing effort on everything equally. Very often, one bug from a
high-risk item can have a much bigger impact than dozens of bugs found on
the low-score risk items combined.

Our test strategy should include a combination of testing techniques to
ensure comprehensive testing of areas that are considered high risk.
Depending on the type of risk we identify as highest, we should consider
using exploratory testing, equivalence partitioning, and boundary value
analysis and it is highly advisable to do regression testing as well. We will
speak about all of these methods later in this chapter.

Before we start test execution, it is a good practice to set up test objectives
based on our risk analysis. Test objectives should always follow the SMART
framework, meaning they should be the following:

Using test objectives helps us keep testing efforts focused, particularly if we
are using a geographically dispersed or outsourced testing team.

What makes a good test objective? Let’s presume that our highest rated risk
is “Changes to the backend architecture might cause problems with game

Specific
Measurable
Achievable
Relevant
Timely

saves that can lead to a situation where players’ progress can’t be saved
anymore.” A test objective based on this risk would be something like this,
“Ensure that multiple players can save their gameplay progression in any
stage of gameplay.” A test objective like this one fits within the SMART
framework and would be a great guideline for testing team efforts.

Monitoring and managing risks
After we have executed our test plan, our work is still not completely over.
We want to make sure that reported bugs will be fixed and that we do have
some type of contingency plan if the worst-case scenario happens.
Sometimes even with the best testing efforts, we can’t ensure with absolute
certainty that risk will not happen. There are times constraints and often
various technical challenges that will not allow us to test every possible
permutation that can potentially cause problems.

One good example to illustrate this would be releasing a new game update
with a massive new feature that heavily affects the whole game architecture.
For example, something like introducing events to the game or introducing
multiplayer to a single-player game even if Working on something so
massive probably took a while, there were many changes in the code on the
frontend and backend, done by many different people. Even after thorough
testing in the staging environment, we might still have some reservations
about the game’s stability. In cases like this, it is important for the team to
develop a contingency plan.

In our example, we should implement an automatic alert system that will
notify us immediately when something is wrong. Furthermore, our team
should develop a clear process on how to revert changes easily and get back
to the last stable game update, to minimize game downtime and prevent
losing players. While this contingency plan sounds pretty simple, in reality,
it takes quite a bit of time to implement properly. The best practice is to
start thinking about “How can this fail” as early as possible in the project
and include a contingency plan in your development schedule.

We have learned more about risk and how to execute risk-based testing.
Next, we will learn about exploratory testing.

Exploratory testing
Exploratory testing is one of the most used methodologies in agile teams as
well as in live ops. By its nature, exploratory testing relies on testers having
the freedom to explore and discover. It’s about exploring the unknown in
the game we test, and as a result of exploratory testing, we gain insights and
knowledge that will help us in further testing efforts.

We use exploratory testing in situations where we have very limited
documentation or other knowledge about the game we are testing. It is also
an excellent methodology to use when we are testing new code or testing
the game for the first time.

While being an exceptionally valuable testing method, exploratory testing is
a little bit more than that. It’s also about learning about the game we are
testing "and" testing execution and a great way to teach new testers in the
team. In that way, exploratory testing is a unique method that is a valuable
tool for any team:

Figure 10.2 – The benefits of doing exploratory testing

Very often, exploratory testing is used interchangeably with ad hoc testing,
and it is presumed that you just “dive in” and do not care too much about
the planning or style of execution. While unstructured exploratory testing

can be useful and it is sometimes necessary, we can also use this
methodology in a more structured approach that helps us focus testing
efforts and maximize our learnings. Let’s have a look at how to do
structured exploratory testing.

While exploratory testing is a flexible and fast method, in structured
exploratory testing, we have the following steps that make our testing
sessions more focused and efficient. This is particularly helpful when
exploratory testing is done by multiple people and on a wide area of the
game:

1. Firstly, we set up a test charter. A test charter is a short statement that
tells us what our objectives are and what we are trying to achieve
with this testing round. When the testing objective is reached, we can
consider that this round of exploratory testing is over. A test charter
can be something relatively high level such as “Make sure that the
newly implemented event system works well, in single-player as well
as multiplayer mode.” We do want to be careful not to limit testing
efforts too much, as then exploratory testing will lose its advantage of
flexibility. Testers won’t be able to “follow the trail” or explore deep
enough.

2. Planning for exploratory testing should be minimal. It’s more about
providing the testing framework: deciding who is going to test, what
tools will be used, and how long the testing round will last. Generally,
we box testing time in blocks of one, two, or four hours. We want to
allow testers to use different approaches and techniques as they find
fit.

3. Lastly, it’s documentation. During exploratory testing, testers should
report bugs but also take testing notes about techniques they used,
observations about the game they are testing, and anything else that
might be useful for the team. We have spoken in more detail about
how to properly report bugs in Chapter 8, I Thought I Fixed That:
How to Write Efficient Bug Reports. At the end of the testing round,
testers should provide a testing report where they note down what
bugs they have found and the most important learnings, including any
new risks they might have discovered. Very often, notes from

exploratory testing can be used as a source document for the creation
of test plans and test cases.

While exploratory testing is an incredibly important and powerful tool, it
also has its disadvantages. Testers who are doing exploratory testing must
have confidence and curiosity to really dive deep into the unknown. Junior
team members or testers who prefer working with clearly defined work
steps and detailed instructions might struggle with loosely defined rules and
minimal guidance. In those situations, it’s wise to pair junior team members
with more senior ones to get the most out of testing sessions.

We learned how to do exploratory testing and its advantages and
disadvantages. Next, we will learn more about equivalence partitioning and
boundary value analysis.

Equivalence partitioning and
boundary value analysis
Equivalence partitioning is a great method when dealing with different data
ranges. It’s not possible to test all possible permutations and values that we
have in the game, but we do want to make sure that they work as intended.
Using equivalence partitioning, we can significantly shorten the testing time
and ensure optimal coverage.

The premise of equivalence partitioning is that we can split testing
conditions into parts that can be considered the same. Testing one value
from each partition is equal to testing each and every value from the same
partition. Let’s look at the following example of this:

Figure 10.3 – Equivalence partitioning

In the example in Figure 10.3, we can see how equivalence partitioning
would work in the case of gun ammunition. Let’s imagine that this specific
gun is designed for our new, sci-fi-themed game and that it can hold 100
bullets. We can see that we have three distinguished partitions. One is a
valid one, with values from 0 to 100. It indicates that this is a valid range
and the gun can contain any number of bullets in this range. Then, we have
an invalid range, which is anything from 101 onward. We know that the
gun is designed to hold only 100 bullets, so it shouldn’t be able to hold
more than that value. This is another partition.

Lastly, we have a partition in which numbers are between -1 and infinite
negative numbers. It means that guns are not designed to have negative
bullets. It is enough to test only one value from those partitions and
consider that all remaining values in the partition are tested as well.

How would we test this? For example, our test case might include steps
where we try to load more bullets into an already full gun. What happens?
Or when we try to shoot even after we have spent all the bullets. What
happens?

This is only one example of how equivalence partitioning can be helpful in
game testing. We can also use it for testing soft currency in the game,
points, or any kind of numerical strings. By using equivalence partitioning,
we can confidently test those ranges in a much shorter period and with high
reliability.

When we talk about equivalence partitioning, we need to talk about
boundary value analysis as both methods go hand in hand. Let’s have a
deeper look into boundary value analysis next.

There are certain statistical indicators that tell us that bugs frequently
happen in borderline areas. Boundary value analysis is a method that allows
us to test boundaries between different partitions:

Figure 10.4 – Boundary value analysis

In Figure 10.4, we can see how boundary value analysis looks when added
to the example in Figure 10.3. Here we see that we should focus on testing
values that are on the border of the partition. Here are some test scenarios
we could use for our gun example: what happens when we only have one
bullet left, but we turn on gun burst mode? What happens when we have 91
bullets left and try to load a new charger of 10 bullets?

This method is also exceptionally useful when we have any data entry
fields. Even if that’s not too common in games, we do often have the option
to enter our email for in-game registration or our age to ensure that the
player is mature enough to be exposed to the content in the game. Those
data entry fields can be successfully tested by using equivalence
partitioning and boundary value analysis.

Benefits of these methods are that they significantly decrease the number of
test scenarios QA needs to run without losing any testing reliability. But,
the success of boundary value analysis very much depends on us doing
equivalence partitioning correctly in the first place. If our equivalence

partitioning is wrong, consequently, boundary value analysis will be wrong
as well, and the test cases will not be valid.

When we deal with multiple permutations in software, sometimes these two
methods are not enough to help us sufficiently decrease the testing load. In
those cases, we can use another method, called a decision table.

Decision tables
A decision table is a testing methodology that helps us when we deal with
numerous permutations in the game. This happens a lot in open-world
games, where players have the option to interact with multiple objects and
have the freedom to combine them or use them in multiple ways. For
example, let’s imagine you are working on an open-world role-playing
game (RPG) game, a game similar to “Diablo 3” or “Skyrim.” As a player,
you have the option to move around in the world, fight enemies, and collect
numerous weapons, different types of shields, and clothing items, among
others. You also have the freedom to combine the items you find as you
wish. While each of these games would have optimal sets for each situation
in the game, as a player, you might not find all the optimal items, or they
might be damaged, or it might take you quite a bit of time to figure out what
works the best! In games like these, it is impossible to test all kinds of item
combinations players could potentially use. Tools such as decision tables
can help us optimize our testing.

What is a decision table? A decision table consists of columns that represent
game logic conditions and rows that consist of actions players can take and
their outcomes. The outcome is marked as either true or false. Of course,
decision tables can be modeled differently as well. We can even say that
any table that helps us model the logic of interactions in the game can be
called a decision table.

Do you remember our hundred bullets gun from earlier in this chapter?
Let’s see what the decision table for our gun would look like:

Wound Daze Kill Enrage

Human True (T) False (F) T F

Alien 1 F T F F

Alien 2 F F F T

Alien 3 F T F T

Figure 10.5 – A decision table for the gun effects example

In the table in Figure 10.5, we can see what different actions a gun can have
depending on different entities that can be shot by the gun. As our game has
a sci-fi theme, besides humans, we also encounter different types of aliens
and guns will have different effects on each of them.

Using a decision table like this one, we can model the behavior in the game
and help validate what would be considered a failed or passed test scenario.

Let’s have a look at another example of the decision table.

Figure 10.6 – A decision table example modeling the outcome of gun
actions

In Figure 10.6, we modeled our logic somewhat differently. Here we have
columns showing us the precondition, the player action, and the outcome of

that action. In this example, we are using a weapon in different scenarios
and mapping what kind of outcomes we have from those actions.

Decision tables have many benefits. They help us understand how items can
interact with each other, they make requirements much clearer, and they can
also help us discover combinations in the game that we hadn’t thought
about earlier. Decision tables also help us discover illogical combinations,
which would be very difficult to spot by only reading a textual description
of the feature. They make a great base for writing test cases, they help us
quickly verify whether something passes or fails in the game, and they are
also a great tool for documenting game design.

Now that we have learned some of the most useful methodologies we can
utilize, let’s wrap up this lesson by learning about a few more strategies on
how to deal with the new code.

Strategies for dealing with new
code
In game development, especially when working with live ops, we deal with
new code relatively often. Depending on the number of changes and,
subsequently, new code that was implemented, we need to adjust our
strategies to be able to successfully test those changes in a fast-paced
environment. Here are some of the tips that will help you pick the right
approach.

Start your testing with mainstream tests first. Those are the tests that cover
basic functionality or optimal player path. These tests are usually simple
and easy to understand, and if they fail, it would be taken as a serious
problem. You want to find those bugs as early as possible in the
development cycle.

At first, test broadly rather than deeply. This is particularly useful when we
have no information about new code and we are unaware of any risks.
Covering a wide area of the game will help us prioritize future testing and
help us find the most risk-prone areas. This approach to testing works like a

reverse funnel: we cover a wide area and slowly focus on the parts of the
game that are most risky and prone to bugs. We should keep in mind that if
we already have knowledge of the code and we performed risk analysis, this
approach is not really useful anymore. We should instead focus on testing
the most risk-prone areas of the game.

When your game passes mainstream tests, look for more powerful tests.
Approach the testing from the angle of “how can I break it?” rather than
“I’ll make sure that it works.” Utilize testing scenarios where you attempt
to do illegal moves or follow less-than-optimal player paths. When
approaching testing from this angle, make sure that the test scenarios you
use are realistic and plausible. While it’s great to explore edge case
scenarios, we don’t want to spend too much time on testing scenarios that
might happen exceptionally rarely.

Make sure that you are using exploratory testing. We spoke about
exploratory testing in length in this chapter. It’s a perfect tool to use when
we handle new code, and it can be used hand in hand with risk-based
testing or as a precursor for any further testing efforts.

Lastly, don’t forget to do regression testing. Even with the most carefully
planned new features, there is always a possibility that new code, as well as
a new design, might affect old features and the code base in unpredictable
ways. By running a solid regression testing round, we ensure that there are
no disasters lurking and that older parts of the game are still working well
and make sense in the overall game ecosystem.

Regression testing

The purpose of regression testing is to ensure that newly implemented
changes in the game don’t break existing code and features or resurface old
bugs. Regression testing is executed by running the same test cases we ran
previously but on the newly updated software. Any bugs found in
regression testing will be treated as new bugs.

Summary

In this chapter, we learned about the different methodologies that will help
us in our testing efforts. We learned in detail about risk-based testing,
equivalence partitioning, boundary value analysis, and exploratory testing,
and we also reminded ourselves about regression testing. While all of these
methodologies are useful tools regardless of how game development is
organized, by now, we know that they are an important part of live ops. In
the next chapter, we will go into the details of how QA works in live ops
and how to organize it optimally.

Part 3: Test Management and
Beyond
In the final part of this book, we will first go in depth about working and
testing in the live ops phase of game development. You will learn practical
tips on how to organize and execute testing activities, keeping in mind the
unique challenges of modern free-to-play games. Next, we will talk at
length about working with the games team, as well as about a career in QA
and where it can potentially lead. Finally, we will learn what the future
might hold for games QA.

This part has the following chapters:

Chapter 11, Are You on the Right Version? Live Ops and QA
Chapter 12, Beyond Testing – Introduction to Test Management
Chapter 13, There Are No BUGS Without U – QA and the Game Team

Are You on the Right Version? Live
Ops and QA
In the last decade, live ops has grown to become a key phase of a game’s
life cycle. Live ops can (and should, if your game is successful!) last for
years, and in the cases of several exceptionally popular games, we can see it
continuing for over a decade. Live ops is a new game development phase
that has become increasingly important with the rise of free-to-play games.
However, although everyone is talking about it, there are almost no
available guidelines on best practices. There is not even a unified
explanation of what live ops means, as different disciplines in the gaming
industry will look at it from different angles.

Throughout this chapter, we will get a bigger picture of what live ops is,
how it fits in the game development process, why is it so important, and
where QA fits in. We will analyze how QA for live ops is different, not only
by the methodology that we use but also by how QA works with the rest of
the team. Testers who work in live ops QA need to have somewhat different
soft skills and preferred ways of working to be able to do their job
efficiently in this phase and work seamlessly with the team.

In this chapter, we will take a deep dive into live ops best practices and
learn the following topics:

How it differentiates from game development
How to deal with a continuous stream of new content and features
What role QA has in live ops submissions
Finally, how live bugs differentiate from “regular” bugs and what the

optimal way to handle them is

The difference between dev and
live ops
There is a lot of misunderstanding about live ops. It’s a relatively new part
of the development cycle, which became increasingly important with the
rise of free-to-play games. Traditional games are made in the following life
cycle, shown in Figure 11.1.

Figure 11.1 – Premium game high-level development cycle

Practically 90 percent of the work is done before the game is published.
After the game is out and released to the target market, there might be some
additional content available for purchase (called DLC) or some major bug
fixes. Of course, there will also be the possibility for player to reach player
support. However, we will consider development work is done when the
game hits the market. The game team that worked on the game is either
redistributed to other game development projects or let go. Premium game
development is somewhat similar to creating feature movies. The team gets
together, spends a couple of years working together on the same project,
and then moves on to the next best thing.

Next, let’s have a look at the F2P mobile game development cycle. We can
see it in Figure 11.2:

Figure 11.2 – F2P mobile game development cycle

The nature of free-to-play games is very different. In Figure 11.2, we can
see how the development cycle looks like for free-to-play games. We can
see that more than 90% of the work is done AFTER the game is released.
Game teams grow after release, and the live ops phase lasts for many years
to come if a game is successful. As live ops can be explained and looked at
from multiple different angles, let’s identify it here first.

What is Live Ops?

Live Ops is a game development phase that happens after a game’s initial
release. Live Ops include all activities that are done on the live game that
contribute to its ongoing operations and success. Activities can be technical,
creative, promotional, supportive, or anything in between. They include
things such as optimizing game architecture and updating technical
components, creating new content and features, ongoing player support,
user acquisition, and continuous testing.

In traditional game development, methodologies such as waterfall can still
work quite well. That means that QA is considered a phase and game builds
are “handed over” when development is considered done. If we approach
game production and QA in the same way in live ops, our project will be in
a lot of trouble.

During Live Ops, players get used to a regular cadence of updates. They
expect a game to be fun and engaging, even after they play it for years. It’s
up to game designers to come up with new features that would fulfill
players’ expectations. Players’ behavior in live ops is carefully measured
through player analytics. We can see how players engage with the game,
how long their playing sessions are, how they spend money, how long they
play the game for, how they engage with other players, and at which point
in the game they stop playing. All this information gives indications to the
game designers and product owners about which parts of the game work
and which ones need improvements. Combined with qualitative player
feedback that a gaming studio receives through Player Support and players
forums, designers can get a solid idea of what kind of changes players
would like to see in the game.

Our business goal as game developers is primarily to keep players playing a
game for as long as possible. This is called “player retention.” Even if it
sounds contradictory, it is even more important to keep a player in a game
than entice them to spend money. There is a strong psychological reason for
it. Players who play our game for a long time get committed to it. They
invest time and often money too, and it becomes harder for them to leave.
They form communities and relationships in our game. Sometimes, it’s
even harder to leave the game community than the game itself. This makes
long-term players more loyal and more likely to spend money, and it also
promotes the game to other potential players. We call this the K factor.

What is the K factor?

The K factor is a number indicating how much “word of mouth” potential
our game has. For example, if our existing player tells five of their friends
to download the game or sends the invite through social media, K expresses
how many new players we will get into the game. We call players obtained
in this way “organic.” The K factor is expressed as a number. A K factor of
1 means that an existing player will attract another player into the game.

Why is this important for QA? In live ops, QA is almost always embedded
in the team. The more QA understands the nature of the gaming business
model, product goals, and players’ behavioral preferences, the easier it is to
prioritize tasks and champion for the player within the game team.

Of course, every game, regardless of the business model or target platform,
has a development phase before entering live ops. In gaming studios that
are already experienced with F2P games and live ops, they usually start
with preparations for live ops while a game is still in development. That
means that QA will be embedded in the team relatively early in the
production phase. However, there are major differences between the
development phase for traditional games and modern F2P games,
particularly on mobile.

Premium games are designed as a closed system – they have a beginning
and an end. As such, there is no live ops phase in traditional development
for premium games; that means that games have to be of very high quality,
with finalized content and minimum bugs on launch already. On the other
hand, in the development phase of free-to-play games, we focus on creating
a minimum viable product (MVP) that will have a limited geographical
release (soft launch) to gather initial player data (game KPIs), before the
future course of game development is decided. On many occasions, if KPIs
are really poor, a game might even be canceled.

In traditional development, the period just before launch is the busiest time
for QA, and most of the work is focused there. For QA in F2P games, while
there is also an increased testing effort, it’s not as overwhelming as for
premium games. As premium games have finite content and no live ops
phase, they have to be thoroughly tested before release from all aspects,
including full platform compliance, game balancing, complete playthrough,
all achievements, and basically, everything else!

Before soft launch in modern games testing, we want to make sure that a
game works well enough to be enjoyed by players, but things such as fine-
tuning and balancing are usually left to be modified, depending on game
KPIs. QA will focus on testing the following:

Early gameplay
First-time user experience (FTUE)
Building internal processes to handle live ops

For QA, that means optimizing bug flow, which can accommodate not only
bugs that come from production but also ones that come from the live
game.

While there are many commonalities in game development, we can see that
there are also some significant differences. Next, we will take a deep dive
into how to test new features in live ops.

How to test new features
We already covered briefly testing new code in Chapter 10, Eat, Sleep, Test,
Repeat: Test Methodology.

Here, we will look at it exclusively from a live ops perspective. In live ops,
we generally have four development tracks, as shown in Figure 11.3.

Figure 11.3 – The different types of game updates in live ops

Testing new content
The first development track is about content production. Every successful
game in live ops has regular content updates. This provides players with
new levels or areas of a game to play. Content usually comes out in

cadence, and players learn to expect it at regular intervals. By adding new
content, we keep our most loyal players engaged, and the game feels fresh
and fun to play. Mature development teams have very well-organized
content pipelines that are planned a couple of months ahead. The QA team’s
job here is to make sure that new content works as it should and can easily
be integrated into existing gameplay, without any difficulties for the player.
However, there are a couple of things we need to take into account when we
test content.

Depending on our game architecture and content pipeline, it can be pushed
out through a submissions process or through something we call “backend
push.” That means that content can be pushed directly to a live game from
our own servers without the need for platform submissions. While this is an
amazing benefit for the team and allows us to quickly control content flow,
it also comes with its own challenges. We will talk about them in more
detail later in this chapter.

The most important thing we test with new content is continuity. Does it fit
as it should be with the content already in the game? Does it meet player
expectations in quality and quantity (i.e., is there enough content for players
to play until a new content drop is available)? Does the new content break
something already existing in the game? When we work with more mature
live games, we should also start to look into how a content update affects
game performance and game size. Usually, well-prepared game architecture
allows for more efficient use of resources and code optimization, but over
time, even the best games might start to experience “bloat,” which might
affect game performance and slow down the frame rate.

The third development track is about dealing with live game bugs. We will
talk about this in more detail later in this chapter.

Next, let’s have a more detailed look into why new features are so
important in live ops and how we handle testing them.

New features

We have now learned how to handle new content, but do we handle new
features in the same way? Even with great new content, every game gets
tired after some time. There are games out there, such as Candy Crush and
Clash of Clans, that have been live for a decade and still going strong!
These games last for so long because developers keep adding not only new
content but also new game features.

To make a game more engaging and interesting, we can also develop new
features. There are numerous reasons why we need to develop new features.
Besides keeping players entertained, we also use new features to optimize
our KPIs. New feature development is mostly focused on features that
would have a positive impact on the player. They will either improve
monetization and player retention or decrease churn. The games analytics
team regularly gathers game KPI, and the product manager, together with
the team, analyzes those numbers and turns them into new features. We can
see this feature flow in Figure 11.4.

Figure 11.4 – Feature flow

How does this work in practice? Let’s imagine that we have a mobile F2P
game of the match 3 genre, and our retention on day 60 is lower than
expected. The product manager, with the help of the team, will make a
hypothesis about why is this happening. QA can also be helpful in these
moments, as testers will have deep insight into all areas of the game and be

very familiar with how players interact with the game. QA can also help to
exclude hypotheses if KPIs are low because of a bug that we are not aware
of. For example, if we presume that we have a bug where late levels often
freeze when matching items explode, it might affect a player’s retention if it
happens frequently enough. However, we might test later levels and read
players’ comments to see that everything seems in order. Our next working
hypothesis is that our current events are too repetitive, and players who are
with us for around two months or more might find them boring. We call this
phenomenon “player fatigue.” That means that our team will respond to
those hypotheses by developing a new feature – a new type of event, which
will be significantly different from the existing one and hopefully keep
players engaged for longer.

In this example, we can see how much more versatile a role QA has in live
ops. It’s not only about testing content before it’s pushed live; it’s also about
giving input about players’ behavior, helping us figure out whether there are
bugs or game issues that affect game KPIs, and doing regression testing to
ensure that new features don’t break anything in the old game.

Regression testing here goes even further. QA will have a chance to
participate in the design process and give a pre-emptive warning if some
new feature will not work out with already existing ones. In live ops,
regression testing doesn’t only mean we will check that a new feature
doesn’t affect the existing code. We also need to check it from a player’s
point of view – will the new feature make an existing feature obsolete? This
can be particularly dangerous when we work on the game with multiple in-
game currencies, for example.

Introducing new currency later in a game might make some of the old in-
game currencies obsolete or decrease their value. That might resonate very
poorly with the players, especially if they invested time (content grind) to
earn that currency or made an in-app purchase. Instead of making the
game more interesting and enticing for the player, we might instead anger
our player base and cause them to leave the game. Of course, game
designers usually take into account this type of thing when they decide on
new major items in the game. But for games that have been live for a long
time and with a multitude of features and events, along with millions of

players in different parts of the game, it’s sometimes difficult to fully model
players’ behavior and predict all the changes in gameplay. This is where
QA support and insight become priceless. QA acts as a representative of the
player, and as testers spend so much time with the game, they usually have
very detailed knowledge of all parts of the game.

Another thing that can help us at this stage is feedback from the player
support. Their role is not only to receive complaints from players and
respond to them. They communicate directly with the players and are very
aware of players’ likes, dislikes, and other game preferences. Players also
like to suggest new features and content themselves. Getting this
information to the development team can help us design a game that players
will truly love and relate to.

Unfortunately, in many teams, player support is kept separated from the
development team, and lots of player insights never reach the game team.
That’s why it’s important to find a way in development processes to include
player support in development work. During my time at Next Games, we
had one member of the player support group join our daily stand-up and
feature planning meeting. That helped us not only to get timely player
feedback but also helped player support to understand the development
process. They could give back to players much more precise and reliable
information, and that helped grow a positive community around our game.

When developing new features in live ops, we almost always work with a
minimum viable feature (MVF). What does that mean? As we have
learned so far, while we get lots of data and information about player
behavior that helps us form a solid hypothesis about how our features will
be received by players, we can’t really know for sure. It’s a huge risk to
develop a new feature and spend months of development time to polish it to
the smallest detail, just to learn that our hypothesis wasn’t exactly right and
players didn’t respond as we expected. Dedicating so much time to one
feature that might or might not work can be also dangerous for a team’s
moral. A team can get attached to a feature and might feel disappointed or
let down if it doesn’t work as expected. They feel that their efforts were
wasted.

After already significant opportunity loss and potential financial loss from
working in development for so long, we will also deal with a team that is
dissatisfied and less motivated. That’s why all our hypotheses are tested on
minimum viable features that are created in the shortest possible period, but
with a quality that is still acceptable for a player. This is the time for QA to
really shine, and rather than following strict checklists and focusing on
ticking boxes, we need to use our own heads and critical thinking. It is
crucial for QA to be embedded in the team in orderto be able to do this job
well.

QA needs to have a good understanding of why we implement a feature and
what its goal is. How is it supposed to affect a player? Is it supposed to
encourage the player to spend a bit more money on a specific pain point or
obtain a highly desirable item? Or is it supposed to increase player
engagement by having more branching narratives or new social features?
When they understand the goal of the feature, QA should put themselves in
the player’s position and think about how the feature at hand affects our
target player.

Next, QA needs to understand that MVF is not a full or perfectly polished
feature but, rather, a first iteration of it. QA needs to develop tests that will
be good enough to find key bugs that can affect the performance of the new
feature but not too rigid to report bugs that are not relevant yet. For
example, a new feature should not crash or freeze a game, and that is
definitively a bug that needs to be fixed before a new feature is pushed to
live. However, changes in the strength balancing of existing characters by
the introduction of a new ones should not be taken necessarily as a bug or
problem, unless a change is really drastic, or it would make existing
premium characters (ones that are bought or very hard to obtain) useless.
We should ask ourselves the following questions when testing:

Is this feature stable enough to be easily playable on a wide range of
devices?
Is this feature going to affect players’ behavior in a desirable way?
Will this feature be able to validate our working hypotheses?
Is this feature going to introduce new risks to the existing game?

In this stage, it’s not helpful to test and report bugs that would be considered
minor, good to fix, or that feature is lacking something that we already
know about. Remember, this is “only” MVF. If the initial reception of the
feature is positive, a team will continue working on iterations of it and add
more polish and elements to it in the future. Right now, the game team
doesn’t need a reminder that the feature is still not perfect or complete.

We also need to keep in mind that development cycles in live ops are short,
between one and three weeks at most. Generally, even simplified features
will take more than one sprint to develop, unless your sprints are
exceptionally long (which is never recommended!). A tester should start
testing the feature before it’s proclaimed “ready.” The best approach is to
use iterative testing as well – test a feature as it’s getting ready and give
meaningful, useful feedback back to the team. Look for key problematic
issues early on – flaws in the game logic, integration risks, and any
inherited technical risks.

Working together with your teammates and discussing openly will help the
tester to focus on the right thing at the right time. We can sometimes even
do early tests in the development environment, as long as it’s done in
collaboration with developers, and we are sure that we are testing the right
build.

Before moving to the next part, let’s briefly discuss what it means to be on
the right build. During development, especially in the live ops phase, we
might deal with multiple game builds at the same time. You will have
multiple daily builds in development environments where developers
commit a range of builds for their own testing and integration purposes.
You will have builds in the testing environment, also sometimes several per
day. Lastly, you will have a live game build. On top of all the game builds,
we also deal with multiple releases. All of these come with some type of
numerical indicator. While game build numbers are controlled by the

Is this feature going to introduce risks to future updates?
Is the feature polished enough that it looks sufficiently like the existing

parts of the game?

development team and are automatic, let’s investigate what we mean by
release.

What is release?

All planned updates to the game are called releases. We usually assign
numerical values to them to be able to differentiate between them. They are
generally ascending – for example, 1.1, 1.2, 1.3, and so on. The release
naming format is usually agreed upon among the team, and they are used in
product road maps, content planning, and other documentation. Release
numbers will also be communicated to other departments to ensure that
everyone understands which content and time period we are talking about.
Releases can be the same as build numbers, but they don’t have to be.
Having specific releases helps us in the long-term planning of game
development.

It is fairly easy to mix up builds, but it’s much harder to mix up releases.
There is usually at least a few weeks’ difference between the current release
and the next one.

It is of utmost importance that we are always on the right build and that it
was forwarded for testing to any outsourced testing partners. If we move to
test a different build, we should inform the outsourced QA company
immediately.

We should always confirm with the development team that this is the build
on which we want to test the agreed items. If you want to test something
that is out of the agreed scope, make sure that you spoke with developers
about it first. Especially early in development, you might work on a branch
that has only limited features or bug fixes ready for testing, and reporting
bugs outside of the scope will be useless, as these areas were not ready to
be tested to start with. Testing on the wrong build or focusing on testing
things that are not ready yet can cause strain on the team relationship and
waste lots of precious time. With clear and precise communication, we can
make sure that these mistakes don’t happen. It’s always better to ask twice,
“Is this the correct build for testing?” than spend hours on something that is
useless and potentially disruptive for the team.

With this type of collaborative, joint effort, QA will be able to identify any
critical issues early enough in the development cycle and decrease the risk
of a new feature being a failure. It will also decrease heavy pressure on a
team just before the release. If we did our job well, testing the final update
should not discover any major unknown bugs.

We have now learned how to approach testing of new features in live ops.
Next, we will talk about one of the staples of live ops that is still practically
unknown outside of the game teams – game build submissions in live ops.

Dealing with submissions
We mentioned submissions a couple of times throughout this book. They
are an incredibly important part of game development in which QA can
play a key role. Before we go further, let’s confirm what we mean by game
submissions.

What are game submissions?

After the development and testing process is finalized, each game and game
update needs to go through the process of submission to the target platform
in order to be published to the stores and become available to the players.
Under submissions, we consider the complete process before and after the
actual act of submission to the platform, and it requires collaboration
between multiple disciplines, including QA, any specialized submission
teams, producers, the marketing team, and player support. The submission
consists of numerous steps and activities that need to be executed before it
can be considered done.

If we don’t fulfill all platform requirements correctly or make omissions in
our submission steps, our game build might fail platform submission. That
means that the platform rejected this particular game build, and a new
update will not be available to the players. Depending on the target
platform, the timeline from submission to being published can be short as a
couple of hours or can take even weeks.

We can see in Figure 11.5, further down in this chapter, an example of a
submissions readiness checklist. This process is detailed and can be
demanding, as we need to combine not only the execution of the steps but
also timely and correct communication with other stakeholders. We can also
see in more detail how different disciplines participate in the submission
process and that communication between different stakeholders is crucial
for success.

QA can play various roles in this process. As a minimum, QA will need to
test the game build we submit to the platform and give some indication of
its submission readiness. In many gaming studios, this process is called
“greenlighting.” It means that QA needs to give a “green light,” just like
we have in traffic lights, to indicate that QA is happy with the game build
readiness. If a team is using this type of signaling, we will use “yellow
light,” which will indicate “proceed carefully – some concerns,” and “red
light,” which means “do not continue with the submission process – there
are critical issues.” Of course, there are other types of readiness indicators.
In some studios, the process can be more casual, and QA can give only a
verbal report or short email describing their recommendations about the
game build.

For an inexperienced tester, this process can be daunting. We already know
that live ops are fast-paced, with frequent updates. It might feel that there is
never enough time for the full regression round and in-depth testing. That
might make the tester hesitant to give a thumbs-up to game builds, as they
might feel that they missed something important.

It is important for testers who work in embedded teams and in live ops to
have the right mindset for this type of work. Testers who work in live ops
will benefit from following characteristics:

Curious
Enjoy collaborative working styles
Feel confident to ask questions and raise concerns if needed
Be open-minded and willing to consider different points of view

While these skills will help testers in many other situations as well, they are
prerequisites to be able to really thrive working in live ops. Being part of the
development team, the tester will be included in or at least promptly
informed about all the major decisions concerning the game and be able to
adjust their testing plans and focus accordingly. That should help QA be
better prepared for the submissions period and rarely face last-minute
surprises.

When we talk about submissions in live ops, we need to keep in mind that
there are some tests that are done specifically during this phase, especially
on mobile platforms. Besides running a Basic Acceptance Test (BAT) and
at least some regression, we need to run tests that are particular to mobile
game updates. Those include the following:

Enjoy fast-paced work with little routine
Be interested in the bigger picture and understand business

requirements, industry trends, and at least the basics of free-to-play
game design
Be interested in the player’s perspective and passionate about

providing the best possible playing experience

The build size (packed and unpacked).
The build installation, with Wi-Fi and a mobile network.
Updating the previous build.
Updating on older builds (if your game updates are not always

mandatory, you want to make sure that players can still update the game
with the most recent update).
Uninstalling – the player should be able to have a “clean” uninstall of

the game, without any leftover files.
Reinstalling – after the game has been deleted, the player is able to

reinstall it without any issues.
Game save – making sure that player progress is saved and that new

update doesn’t erase game progress or previous purchases.

Testers need to keep in mind that games in live ops are fast to adjust, and if
our game architecture is properly optimized for live ops, lots of balancing
and fine-tuning can be done through backend pushes. Live games are
dynamic systems that can be influenced and modified “on the go” to
respond better to players’ behavior. That means that QA doesn’t have to go
through detailed balancing and playthrough tests as we should when we test
premium games. The exception to this rule is if those kinds of changes are a
crucial part of this particular release. In those cases, in agreement with
game designers, we will include more thorough balancing tests as a part of
the release testing.

Balancing tests could be about testing the balance of game difficulty,
character balancing, level balancing, items drop frequency, or something
else that is relevant to the particular game we are testing. All of these
should help testers to feel confident in their decision about validating the
target release ready for submission.

Of course, sometimes, we encounter circumstances that are out of our
control, and we are in situations where we won’t feel fully confident that
the release candidate is as ready as we would like. In most game teams, we
would have a “cut off” or “code freeze” time, when no new changes can be
made to the build, besides agreed bug fixes (we will talk more about
handling live bugs later in this chapter). However, sometimes, we might get
a late requirement from management or even from the platform and have to
make those last-minute changes. Those situations can affect QA plans, and
even if we work with a fluid schedule and understand that the only constant
is change, we might simply not have enough time or resources to

Localization testing for any new localized content.
Any platform requirements (make sure that you check regularly with

the platforms, as this changes frequently).
Game compatibility with any new flagship devices that might have

been released.
Keeping an eye on battery consumption – as the game becomes bigger,

it can start causing a high energy drain. This can seriously affect
players.

confidently validate a release candidate. If so, QA will generally cautiously
recommend going forward, unless critical or blocker bugs have been found.
In situations like this, it is particularly important to do testing on a live
game as soon as the update is live, allowing you to be able to react quickly
if there are any major issues with the game.

In some gaming studios, QA would have additional duties in the submission
process and can take care of submissions themselves. In order to submit a
release candidate to the platform, the checklist from Figure 11.5 would need
to be completed, all stakeholders informed about the imminent release, and
all required items for submission will need to be delivered to QA (who
takes care of submission in this scenario).

ACTIVITY WHO READINESS STATUS

Release candidate Development

Localization QA Producer

Release date confirmed Producer

UA scheduled Marketing

SoMe campaign SoMe team

Player support informed QA

RC testing QA

RC approval Executive producer

Appstore text Copywriter

Keywords Marketing

Game icon Marketing artist

New screenshots Marketing artist

Submission form QA

Figure 11.5 – Submissions checklist

We are primarily talking about submissions to mobile platforms, and to be
able to have successful submission, you would need at least the following:

Submission to platforms requires some experience, as there is more detailed
information that would need to be filled in order for submission to be
successful. That’s why in a big studio, submissions are usually handled by
specialized teams.

Now that we have learned more about submissions to the platform, let’s
have a more thorough look at direct updates to the game – so-called
“backend pushes.”

Backend pushes
Game teams that are experienced with F2P games and live ops will usually
design their technology stack to be able to update significant portions of the
game without submissions to the platform. This is an exceptionally useful
feature, as it allows us to release content faster, adjust things quickly, and
even commit quick bug fixes. However, being able to do so doesn’t mean
that these changes shouldn’t go through at least some QA.

As we don’t go through the platforms, direct pushes to the game are much
faster, but we still need to stick to the same rules. The game should still
work as intended, new content needs to fit with the existing content without
breaking anything, and the player should not experience any crashes,
freezes, or significant lag. With backend pushes, QA is in a peculiar

A game name
A properly packaged game build
Platform-specified marketing materials (game icon, screenshots, and

app store text)
A list of devices that we want to blacklist (for Google Play) or

operating systems versions we don’t support (the App Store)

situation: we still need to test and validate the release, but if we take too
long or a process is highly bureaucratic, we will lose all the advantage of
being able to do fast changes.

What is the best setup to handle content pushes? This will depend a lot on
your game architecture and team structure, but generally, good rules are as
follows:

A bigger challenge is ad hoc changes, such as smaller tweaks and
adjustments to the game. It can easily happen that the game designer or
product manager decides to make a change on their own, but as it’s
considered small, they don’t involve QA, and they commit the change
directly to the live game.

This is a very dangerous practice that can create lots of issues for the team.
Let’s presume that the game designer decided that a new character we
recently introduced to our game is not strong enough, and they increase the

Have a dedicated server environment that is a realistic copy of the live
one. Make sure that you test all the changes you do here first. It is
usually called “staging.”
Develop a process for the backend push to the live game. It doesn’t

need to be as detailed or strict as the one for the platform submissions,
but make sure that it’s well defined and that everyone on the team is
familiar with it.
Implement live game testing practices. As soon as the game is in a live

environment, spend some time testing it. Running a quick BAT and
checking how new content looks are recommended focused areas.
The QA process for backend pushes should be much lighter,

especially for non-scheduled, ad hoc changes. If our game architecture
allows for new content or event pushes through the backend, QA should
schedule testing for those updates in the testing environment as soon as
possible and take time to test it properly. As content updates are
scheduled to go live regularly, QA can adjust their time to follow the
content update cadence in a timely manner.

character strength to 20% in the game management system. They are happy
with how numbers look and push the change directly to the game, believing
that this will make a new character become more desirable to the player,
and hence, it will increase monetization. A couple of hours after that, the
player support starts to receive messages from the players, complaining
about balancing and broken UI. When QA checks the live game, they can
see that the new character is too overpowered and made some other
premium characters obsolete. Players who spent money on those characters
are now very angry. To make things worse, it seems like increasing strength
points to the character added another character to a UI field, and now UI
field looks messy and is overflowing outside of the boundaries of the box.
We can see, in this example, how one small, well-conceived, and perceived
innocent change can cause havoc to a game very quickly.

For that reason, it is important to have a quick validation system for any
change made to the game. QA should be reasonable and not demand in-
depth tests for every change. The ideal process should be that changes are
committed to the test environment first, QA is informed about what was
changed (and potentially how it could affect other areas of the game), and
the urgency with which this adjustment needs to go live. QA focuses on
testing only the area affected by that change and signs off the update as
soon as possible. Remember that these changes are supposed to be
relatively small and quick. If QA holds on to them without action for too
long, it is going to become tempting to the rest of the team to just skip QA
altogether as “it takes too long.”

Another thing we should keep in mind is whether we do have a proper,
reliable rollback procedure for backend pushes as well. We should be able
to quickly restore the game back to the previous stage and with minimum
disturbance to the players. This is generally easier to do with backend
pushes because it won’t require submission to the platform. However, we
need to build technical capacity in our systems to do so in the first place and
make sure that the rollback process itself is determined. We will talk in
more detail about that process a bit later in this chapter.

Now that we have learned more about how to do updates and release
submissions in live ops, we will next look into how we handle bugs from

live games.

Working with live bugs
Live bugs happen even to the best of QA teams. The nature of work in live
ops is so fast-paced that speed and critical thinking are much more
important than thorough reviews and iron-clad testing practices. We also
work with many different game components and various stakeholders. It is
normal that, occasionally, something unpredictable will happen, and we will
encounter a bug in a live game.

Bugs in live games are most often reported by players themselves.
Unfortunately, not enough game studios take live game testing seriously,
although it might save up lots of time and money if we find the bug in the
live game first. Besides players, live bugs are also found by game teams and
QA, other people in the company, and people who are related to the game
studio in some way – vendors, consultants, investors, partners, and so on.

Firstly, let’s address live bugs that come from player support, as we will
encounter those the most.

There are many things to take into consideration here. We should analyze
the relationship between player support and the game team first. Player
support can be the following:

Internal: Player support is part of the company and the same people
work in it on a regular basis
Outsourced: Player support is outsourced to a professional company,

and it’s handled in a separate location
Partially outsourced: For example, when we have a new major

release coming out, we might want to add more seats to player support
quickly and temporarily, or when we provide player support in different
languages, that part of the support might be outsourced

In a studio organizational setting, player support usually falls under the
jurisdiction of marketing, while QA is a part of the game development
team. Player support will not be by default included in the game
development team, as their role becomes important only in live ops. For
that reason, it is really important to update the team setting for live ops and
design ways to work efficiently with player support. The optimal way to
work with player support is to include them in key game team activities and
train them to do at least some basic QA. That way, player support can
validate issues reported by the player themselves and escalate them
appropriately. Unfortunately, we are not always in a position to do so, but
one thing that is definitively key to handling live bugs quickly is to have
open channels of communication with player support. That can be either
chat channel, such as Slack or Discord, email, or something more
automated. There are player support tools that can be linked to bug
databases, and player support tickets can automatically show up as a bug
report in your team’s JIRA or other bug management tool.

When we get information about the bug from player support, we need to
ask them the following questions to really understand its impact:

Answering yes to most of the preceding questions will tell us that we face a
serious issue that needs to be addressed immediately. On the other hand, if
we have one player complaining very loudly, it might just be an
inconvenience and not indicate a major problem.

In Figure 11.6, we can see a typical live bug flow in live ops and how QA
and player support work together to bring issues to the development team.

How many people reported this bug?
Does it seem like the amount of player reports is escalating?
On which platform does it happen?
Does it happen on multiple devices?

Figure 11.6 – A high-level live bug flow

When dealing with live bugs, we must keep in mind a sense of urgency.
These bugs already affect our players, and consequently, they might affect
game retention and monetization, which will ultimately hurt the studio’s
bottom line. That’s why we need to take live bugs seriously and address
them as soon as possible. It is also QA’s role to represent the player in the
team and convince the team that bug fixes need to take priority. In some
studios, there are even small “bug teams” within the team that focus
primarily on handling live bugs. This type of setting allows the team to
handle bugs without delay but also without affecting the content and feature
production pipeline.

Live bugs, just like any other bug we encounter, can have different root
causes. Sometimes, they don’t necessarily happen because of an error in
code, but they might be related to server issues or possibly game engine
issues. For some bugs, it might take time to find the root cause, and it might
require investigation and exploration by several people. In cases like this, it
is important to understand the complexity of the task and make sure that
information flows between different stakeholders.

When a developer informs us that this issue needs to be investigated first
and might take a couple of days before we can get a first attempt at a fix, it
is crucial to inform player support and the marketing team about it,
especially when we deal with a serious bug that affects a big portion of our
players. They will develop a joint strategy on how to handle player
expectations.

Not all live bugs are made equal. While we need to make sure that we
checked quickly how widespread and impactful a bug is, we might come to
the realization that some bugs are not necessarily worth fixing. How do we
decide about that? Math can help – if it costs more to fix the bug than the
damage the bug is causing, we are better off focusing on more impactful
issues at hand. While this might sound tough and not really player-friendly,
conversely, making tough decisions like this will free the team’s hands and
make them focus on something that can serve players better.

For example, let’s presume that player support reported a frequent crash
bug. Upon QA validation, we can confirm that the bug really happens with
a high frequency, which would make it a critical bug. However, it happens
only on the oldest supported version of the operating system. After
discussing the issue with developers, it’s agreed that this will be a quite
tricky fix that might take up to a week to implement, and it might work only
temporarily until the next new release. In situations like this, we need to
check how many players we actually have playing on that version of OS. It
seems like only 3% of players are on this OS, and from them, only 0.5% are
buyers. After team discussion, it is decided that instead of spending time on
fixing this bug, we will cut off support for the lowest supported operating
system moving forward in the next release. We inform player support and
marketing about it so that they can do timely actions to communicate with
players about this. While we will still upset some players, the cost of fixing
this bug and maintaining old operating system compatibility has become
too labor-intensive to maintain in the future.

Now that we have learned a bit more about how we handle live bugs, let’s
have a look at a possible worst-case scenario, when we need to handle
situations when bugs are exceptionally destructive and a bug fix is not a
quick solution.

While these situations don’t happen often, when they do, they cause
immense damage to the games business and can lead to serious problems
for the whole studio. Even with the best QA efforts, there could be
unpredictable server bugs that were out of the scope of manual QA, or some
forgotten legacy code could trigger serious issues. It could even happen that
it was completely beyond QA control, as the wrong build was submitted by
mistake. What can we do in situations like this?

To address this type of urgency situations, studios develop a “rollback”
procedure. This is an internal studio procedure that triggers after it is
decided that the current live build is unplayable or too damaging for the
game, and it needs to be reverted to the previous, stable state. While this
sounds relatively simple, it’s not always so. Before we develop the technical
ability to do rollback, we need to decide the following:

An efficient rollback procedure should include some kind of “alarm”
system that will also include automatic triggers. If we have issues, let’s say,
with server capacity, a bug might not occur immediately after a new release
but only when a sufficient number of players start to download and play the
game. If most of our players are in different time zones, we might
experience a situation where a game stops working for players outside our
core working hours. Having an automated system informing the designated
person in the team can save us precious hours.

Another rule of thumb is that we never do submissions on a Friday unless
we have a core team working weekends. If something happens with the new
build, it might be much harder to get a team together outside of working
hours.

Under which circumstances we will do a rollback
Which person in the team makes the final call
Who we need to inform about the rollback (you should always inform

player support!)
How we will communicate with the players
How will we prioritize rollback and issues

Lastly, we want to make sure that we have a rollback procedure for platform
submission as well as for backend pushes. QA’s role in this situation is to
help validate that rollback changes will work and not cause additional
issues. Due to the urgency of the situation, any testing has to be very quick,
and it is expected that the rollback version is an older version that we have
confidence in. After every situation like this, it is a great practice to have a
“post-mortem” meeting and analyze the root cause of this situation. These
meetings should focus on practices on how to avoid this situation in the
future, not on pointing fingers and finding who was to blame in the team.

Summary
In this chapter, we learned the ins and outs of live ops QA as well as some
of the practices that are specific for this game phase. We learned how it
differentiates from game development, how to handle continuous flow of
new content and features, how submissions and releases work in live ops,
and lastly, strategies on how to handle live bugs. We now know how to
approach live ops testing, handle testing of different types of updates, and
have skills to handle releases green-lighting process. We are now skilled in
recognizing who is best to work in live ops, and we know how to handle
emergencies in a live game.

In the next chapter, we will learn more about test management, what the
purpose of a test plan is, and how to organize and lead QA teams.

Beyond Testing – Introduction to
Test Management
It is impossible to have testing without test management. The discipline of
test management goes deeper than just managing the testing team. Working
in this role, you will get the opportunity to build a robust and supportive
working environment for the testing team, which will help your team not
only do an excellent job but also feel content and accomplished in their
work. You will get the chance to advocate for QA as a discipline, but also
support your team and advocate for bugs and testability. In this chapter, you
will learn from practical examples how you can leverage various test
reports in order to do so. We will also learn about test planning and methods
in depth that can support us in our work with testing estimations.

In this chapter, we will cover the following in detail:

By the end of this chapter, you will have a good idea of everything that goes
into test management and how it relates to testing activities. You will learn
more about test planning and arguably the most difficult part of it, which is
testing estimations. But first, let’s take a deep dive into what the test
management role is.

The test management role
While the focus of this book is primarily on games testing activities, it is
important to mention test management as well. Test management is an
important part of testing and it affects everything we do as testers.

A test management role
A test plan
Methods to help you estimate testing efforts
Test planning and execution coverage

Furthermore, it sets up the testing framework and decides on the key points
of how QA is done.

What is test management?

Test management is the process of planning and managing the overall
testing efforts. Test management decides on the approach, strategy, tools,
and execution processes that are utilized in testing activities. Furthermore,
test management also includes people management: leading teams of
testers, reviewing performance, and hiring and training new testers.

When we look at the definition of test management, we can clearly see how
the deep impact it can have on QA activities. Unfortunately, if our test
management is poor, even if you have the best testers on your team, the
results will be sub-optimal. While test management is usually decided and
run by QA managers, it also affects the work of everyone on the QA team.
We will talk in more depth about QA careers in the next chapter, Chapter
13, There Are No BUGS Without U – QA and the Game Team, where we
will go into more detail on what the structure of a QA team can look like
and how QA roles relate to each other.

Another thing that test management takes ownership of is representing QA
as a discipline to the rest of the company. Unfortunately, not all gaming
studio leaders have the same level of understanding of the importance and
intricacies of QA. It would be test management’s job to ensure that key
stakeholders understand the high-level QA principles and their importance
and needs. Only then can QA as a discipline get sufficient support and
consideration to be able to do its job well.

Although all aspects of test management are equally important, the biggest
part of the test management’s time will be dedicated to test planning and
test management.

When we talk about test planning, we are talking beyond immediate testing
activity planning, such as creating test cases and planning what to test next.
Here we talk about more high-level planning: looking into tools that can
serve us better in the future, making staffing plans, planning long-term
testing resources, selecting outsourced partners, and making other long-

term estimations. For this type of planning, we will need to have a different
vantage point and use different tools than when we plan for our daily or
weekly activities. We will cover those later in this chapter.

Another major part of test management is managing the testing efforts. This
process includes creating reporting practices, supervising the workflow and
performance, as well as troubleshooting. In every QA team, we should have
some type of reporting practice. For example, when I used to run my own
testing company, we always prepared a default daily testing report, which
we sent to all our clients, even if they didn’t specifically ask for it. You can
see an example of that report in Figure 12.1:

Figure 12.1 – An example of a daily testing report

This report had a high-level breakdown of testing activities, platforms,
testers, and the number of bugs, with their severity levels. This daily report

provided an overall snapshot of the testing activity to the customer, and they
got confidence that testers had done their job and found valuable insights.

Of course, there are other type of reports as well. If you use some of the
more sophisticated testing tools, you can get great insights into overall
testing efficiency as well as the possibility to recognize testing bottlenecks
early. During my work at Rovio as a QA manager, I often used Jira-
generated reports, which helped me recognize issues with outsourced
testers. In one of these reports, I could see that we had a very high
percentage of bugs that were in invalid status; it was over 6%. Upon
checking up on those bugs, I realized that bugs were difficult to understand.
Some of the language was convoluted and many bugs were missing
attached screenshots of issues. By enforcing an obligatory screenshot policy
and asking testers to use simpler, more straightforward sentences, the
number of invalid bugs soon decreased to under 2%.

Similarly, these types of reports helped me prove my QA point when I was
speaking to people outside my immediate team. For example, one of our
projects had over 10,000 active bugs and it was obvious that we wouldn’t
be able to meet the release deadline and have the game quality that we were
looking for. I managed to get my request for extended testing rounds
approved by using the testing report to support it.

Supervising the workflow is an activity that can take very little time in more
independent teams that have worked together for a long time. In those
teams, everyone is familiar with the processes, teams already work
efficiently together, and there is little need to get involved or fix anything.
On the other hand, when we are working with new teams or teams with a
high staff rotation, there might be much more work with fixing and
updating the workflow. If there are constant interruptions in a workflow and
team members are struggling to keep up, it’s a good time to have a look at
your processes and see whether they are serving the team in the best
possible way. Even the best-thought-out process can grow old, especially if
there are lots of changes in team dynamics or the tools and methods that we
are using. Rather than forcefully implement processes in the team, it’s a
much better and long-lasting strategy to look at the process itself first and
see whether it still serves the team in the best way.

Troubleshooting is one of those work practices that can be challenging to
exactly define. Even with the best planned and optimally staffed teams,
there will always be some challenges. It falls under test management to
troubleshoot anything QA-related. Usually, those challenges are either one
of the following:

Even if we think that those challenges are pretty rare, they do occur
surprisingly often. Once we had the whole testing round canceled as our
testing partner in Poland was affected by floods. Another time, there was a
military coup in Thailand and it prevented our development partners from
getting into the office for a few days. With good risk planning and
mitigation plan, we can prepare ourselves for at least some of these
occurrences.

Now that we have learned what test management is and what it entitles, we
will look next into the test plan, one of the main tools in test planning.

A test plan
A test plan is one of the key components of test planning and test
management. While a test plan as a document is precisely described in
official testing documentation, in ISTQB material, and by testing standards,
in games, the test plan is often very different.

Personnel-related (unplanned sicknesses, resignations, conflict, a new
employee not working out, etc.)
Tool-related (a tool breaks, becomes unavailable, or is insufficient for

the workload)
Product-related (previously unknown co-dependencies, significant

scope changes, etc.)
Schedule-related (dates are moved and the timeline is much shorter)
Extraordinary circumstances (natural disasters, partner bankruptcy,

etc.)

What is a test plan?

A test plan is a document that outlines all the aspects of the testing and it’s
prepared before testing activities start. The test plan, at minimum, includes
information about who is doing the testing, what is being tested, how is it
going to be tested, when is going to be tested, and where it is going to be
tested.

We can see that a test plan can be quite an intricate document with lots of
detailed information. In more traditional development, it used to be like that
– a long document with lots of details. But, when we work with agile game
development and a short development cycle, having exceptionally detailed
documents that extend far into the future is counterproductive. Things
change almost daily in modern games, especially on mobile. The test plan
we need is the one that is useful to the team, contains the information we
need, and can be easily updated as required

Traditionally, test plans were aimed at management. They could see
everything that was planned and then the plan was either rejected or
accepted and implemented. But, in modern game testing, test plans are
primarily aimed at QA team members. They give us the important
information that we require to do our job and help new team members as
well as outsourced partners to onboard onto our project much faster. As the
target audience of the test plan has changed, the format has changed as well.
In modern games teams, the test plan is a living, collaborative document
that contains the following:

Project intro – The game name, target platform, and any history or
“good to know” stuff should be listed here.
Testing tools – Here, we will list all the tools we are using, ideally

with links to bugs, databases, test case repositories, reporting tools,
build distribution tools, and any other tools we might use.
Test environment – Are we using any specific environment for testing

and how do we access it, any specific hardware, network configurations,
and so on?

You might have noticed that I didn’t list test cases here. There has been
some debate on whether test cases should be part of the test plan. As
modern game testing is an everchanging activity, listing all of the test cases
in a test plan would make it an unnecessarily long document. Instead, we
can add links to our test case repository under the Testing tools section. That
way, test cases will be easy to find for any testers, and if anyone from
management is interested in more details, they can follow the link and
always find the most updated list. At the same time, the only time when we
need to update the test plan is if we actually change the link to the test case
repository, which is much less work than keeping track of all changes in yet
another document.

In what format you should keep your test plan? There are no strict rules
about it. It can be anything from a document, spreadsheet, presentation, or
even a wiki page. Whatever will work best for your team and for the test
plan’s intended purpose. However, please keep in mind that the test plan is a
living document, especially in live ops, and it’s recommended to put it in a
format that is easy to update, share, and collaborate on with others.

Lastly, I would like to mention the length of the test plan as a document. I
have seen traditional test plans that were over fifty pages long. In modern
game testing, our test plan can be only one page long if that’s sufficient to
meet the testing team’s needs. We should ensure that document scalability
and practicability are your guiding thoughts: create a document that can
develop and grow together with the team and that is easy to keep relevant.

Now that we have learned more about the test plan, next, we will focus on
one of the more demanding aspects of test planning, which is testing

Testing schedule – Depending on the project, this is usually a high-
level estimate, especially early in the project. As game development is
going forward, we can give a more precise testing schedule. In live ops,
this will highly depend on the cadence of updates.
Test deliverables – Here we list all the reports that QA is going to

provide throughout the testing period, spanning test coverage reports,
daily testing reports, bug reports, and anything else that QA will
provide.

work/effort estimations.

Methods to help you estimate
testing efforts
Test effort estimation is one of the more demanding parts of test
management, especially when we are dealing with a new game and we
don’t have much information about it. Getting to know where to even start
can be daunting, and to top this off, there are also numerous different ways
and methods of how to estimate your testing efforts. The estimation
methods will depend on the following:

Let’s start with one simple example. One tester works 40 h per week. The
average amount of uninterrupted testing per day is 3 intervals of about 90
minutes. The rest of the time goes to setup, reporting, communication, and
interruption. That means we have the actual time spent on testing in a week,
15 x 90 minutes, which is about 22.5 h. That’s the real testing time you
have available per tester.

Next, look at the game under test. Using your experience and skills, roughly
estimate how many hours of testing you require (we will cover some

The perceived risk
The methodology your QA team is using
The testing team
The game stage
The testing focus
The complexity of game under test
Code codependencies
Studio, team, and QA processes
Budgets

helpful methods later in this chapter).

Lastly, look at the game release deadline. When you take into account all of
this information, you will have an estimate of how many testers you will
need in order to QA the game on time. Of course, there are many unknowns
here: if you are at the beginning of a new game, nobody can tell with any
certainty when all of the planned features will be ready to test. Nobody can
even confirm with absolute certainty that all features will make it to the
game at all!

The earlier in the project we make an estimate, the more likely we are going
to be off. That’s why the healthiest way to approach estimation is to go
broad with your estimations early on, and as the project progresses, re-
evaluate your estimation to be more precise.

The Delphi technique
One of my favorite techniques to start making estimates for a new project is
the Delphi technique. With this technique, we run multiple rounds of
interviews and surveys with team members and gather information that is
further refined in each round. The success of this process will very much
depend on who you are interviewing. Here, you should go broad: talk to the
whole team that works on the game but also with other experts, who can
give you valuable insights. After each round of information-gathering,
consolidate the feedback you got and analyze it. Find the areas where you
see the most disputes or discrepancies and focus on them next. In this way,
you will find out where is the root cause of disagreement and eventually
come to a consensus.

The Delphi technique is a great tool for gathering valuable information
early in the project and making estimates that are informed and well
thought out. It can be used not only to help estimate testing efforts but also
to gain valuable insight into any complex issue.

Work Breakdown Structure (WBS)

In games, we often work with complex features with many different facets.
Estimating big tasks or the whole game can be extremely difficult, as we
don’t really have an insight into all of the small components that make up
the whole. That means we can easily miss something or underestimate its
importance. A methodology such as WBS is extremely helpful in these
cases. Using WBS, we break down a big structure into smaller sub-
modules, which will be divided further into smaller functions. One way to
control the granularity of WBS is to break it down into tasks that can be
completed during one sprint, for example.

When we use WBS, it is important to review the final result and make sure
that we haven’t missed some co-dependency or functionality. After that, we
can move forward with estimations. The idea behind this method is that it’s
much easier to estimate the effort for smaller, individual components than
estimate an overall game in one shot. WBS can be also used to estimate
budgets and personnel as it gives us a much more detailed picture of the
work at hand.

One negative side of WBS is that when we are in the process of breaking
down tasks, we come to the smallest allocation we use that makes sense.
That can be something like 1 person hour or even smaller. But, in reality,
there are lots of smaller tasks that often take less than our minimum
allocation. Due to that, WBS sometimes has overly generous time
allocation, especially if we do it at a very detailed level.

3-point estimation
This method shares lots of similarities with WBS, as we also start by
splitting work into smaller, more manageable parts. After that, we will
make not one but three different work estimations for each part. The idea
behind doing this is that by taking possible different scenarios into account
statistically, we will get the most probable estimation value. How do we do
those estimates?

Firstly, we will do something we call an “optimistic estimate.” This is the
estimate in which everything will go exactly as planned, there will be no

major distractions or challenges in the project, and all conditions will be
optimal. Let’s call this estimate A.

After that, we will do the “most likely” estimate. We will acknowledge that
some things could go wrong, but most of the things will happen as planned.
This is an estimate M.

Lastly, we will make the most “pessimistic estimate.” Here, we consider
that everything goes wrong, and all risks materialize. We will call this
estimate B.

The formula to get a 3-point estimate is E = A + (4*M) + B / 6. We give
more weight to the most likely estimate as it is more probable that it will
happen. Using this method, we will get a fairly precise estimate that takes
into account different types of scenarios.

A functional point measure
Unlike other methods we have previously discussed, a functional point
measure is focused on the player’s point of view. This method is based
primarily on available documentation, such as a Game Design Document
(GDD), features list, product backlog, or any other available form of
documentation about the game we aim to test. Somewhat similar to WBS,
we will also give estimates for each function of the feature that goes into
the game, rather than the whole game in one go.

Each function of the feature will be put in one of the three categories:
simple, average, or complex, depending on the complexity of the feature.
We can see in an example in Figure 12.2 what this type of categorization
looks like.

Figure 12.2 – Functional point measure example

To each category, we will assign a specific “weight”. The more important
the function is, the higher weight it will get.

Besides weight, we will add a function point to each feature. The more
complex and difficult to implement a feature is, the higher the function
point will be. There are usually set rules on how to decide a function point,
to avoid project discrepancies and misunderstandings. It should be some
sort of standard way to recognize the complexity of the feature (such as the
number of interfaces it requires, frequency of user interactions, etc.), and
numerical values will need to be on a set scale. The scale will be set based
on similar projects and studio standards, but each point should equal a
specific number of person hours. When we multiply the weight by the
function point, we will get the total functional point.

As we see in our example, each functional point corresponds to 2.25 person
hours. When we multiply the total number of points by 2.25 h, we will get
the number of hours required to test this feature.

This method is particularly useful when we are just starting with the project
and we don’t have much development ready yet, but we do have ample
documentation. It will give us a good long-term estimate of the efforts, but
also help us think more analytically about the features we are looking to
develop. Another benefit of the functional point measure is that if we
realize that the hours allocated to functional points are wrong, we just need

to change it once to automatically update all of our estimations, which saves
us lots of time and effort.

Now that we have learned several useful methods on how to estimate
working efforts, let’s investigate test planning and execution coverage next.

Test planning and execution coverage
When we talk about test planning in this context, rather than thinking about
what the optimal way to approach testing a particular feature or update is,
we think from a much higher perspective. We make decisions on how we
will approach testing of the game as a whole and set the optimal working
framework for the testing team.

It is important not to get too granular in the test planning. This type of high-
level planning is done early in the game life cycle, and throughout
development, we will encounter many unknowns, and as a consequence,
numerous changes. Creating detailed, rigid plans not only prevents testers
from using their skills and initiative to the full but will also fail to meet the
requirements of ever-changing development. At the same time, we do want
to have high-level decisions made early on, as they will allow testers to
focus on testing, rather than being boggled by administrative and
managerial tasks that are not in their domain. Not only would they occupy a
large part of the testing time, but they also might make testers feel stressed
as they don’t necessarily have the skills and experience needed to make
those types of decisions.

So, what type of test planning we will do as a part of test management? We
already spoke at length about the test plan document, which will contain
most of the high-level test planning information that testers need. But how
does the process of making those decisions go? This will depend on several
things:

The studio’s policies and ways of working
The available budgets and resources
The perceived importance of the game we are working on

Let’s briefly look into each of them and how they can affect our plans.

Studio policies and ways of working
Each studio has its own unique processes, working culture, and accepted
practices. QA as a discipline is not excluded from this and this will affect
your test planning immensely. This will include lines of communication
(who needs to know what and when), reporting practices, and overall
responsibilities. Does QA as a discipline fall under operations or product?
To whom would the QA director report and how? Does that person take an
active interest in QA and have strong input or just need to be “in the
know”? These are some of the things that we don’t necessarily think about
when we go about daily testing tasks, but they can leave a big mark on how
things are done as well as on the overall atmosphere within the team.

The available budgets and resources
This one is easy to understand. Every project has a set budget and that’s a
set of restraints we need to work with. That means that the tools we use and
the number of people we can have on the project will also be restricted by
the amount of money that is given to the team. In some circumstances, the
QA director can dispute those budgets with company management if they
can confirm that they are not sufficient for QA to do its job effectively, but
those decisions are never made lightly.

The perceived importance of the game
we are working on

Existing contracts and other contractual dependencies
Development methodology
The game’s complexity and genre
The perceived importance of QA in the team

This is very specific to the gaming industry. Almost any medium-sized or
large studio usually works on several games at a time. Depending on the
internal setup and game studio strategy, some games will always be
considered “more important” than others. There could be multiple reasons
for this. For example, the game might be based on significant intellectual
property (IP), be part two of an already successful gaming franchise,
belong to a “current” genre, be the brainchild of senior team members with
notable previous successes, be highly believed in by investors, and so on.

When we work with a game that is considered important, there will be
always more attention put on that game, which will affect all activities that
relate to this game, including QA. That means that we might get bigger
budgets, but also more strict reporting, deadlines, and communication
guidelines.

Existing contracts and other
contractual dependencies

If we are working in an established studio, when we start working on a new
game, previous games will have come before us. That means that the studio
has already bought licenses for specific tools and rendered services from
QA suppliers. There might be pressure to use existing tools and providers,
especially if the signed contracts are for long-term usage.

It is also considered more efficient to use the same tools between teams as it
makes people transition between teams much easier. For example, if you
want to “borrow” a tester from another game team during a quiet period, if
you use a different test repository and bug reporting tools, it might take
several days, if not weeks, for that team member to become proficient at
working with the new tools.

Usually, unless there are some valid reasons (such as making the game on a
different platform, the game being significantly technically different, or an
existing QA service provider not having bandwidth), we will probably stick
with pre-existing tools and contracts.

The development methodology
There are big differences in how we will do QA depending on whether we
use waterfall or agile methodologies. We covered those in detail throughout
this book. As it makes such a significant difference in how games are done,
it will definitely affect QA as well.

The game’s complexity and genre
Not all games are made alike. When we talk about mobile games, there are
huge differences in how we make hyper-casual versus 4X strategy games or
RPGs. A hyper-casual game can be made by literally a handful of people
within a couple of weeks. 4X strategy games or RPGs will take a year to
make and take dozens of people. We must take this into account when we
are planning testing.

The perceived importance of QA in the
team

QA is by no doubt an exceptionally important part of any game
development, but there are still studios where it’s not given enough credit
for the meaningful and hard work it does. Doing test management and
planning in those circumstances might be more challenging and will require
lots of advocating to the company leadership, in order to get enough budget
and resources to do optimal work.

Now that we have learned about high-level test planning, let’s have a look
at how we could plan test coverage.

How to plan test coverage
As before, here we are talking primarily about high-level coverage
planning, which will be different from granular, daily-work planning.
Firstly, we want to set a framework for how we will measure coverage. Is it

going to be measured solely by test case execution? And as such, how will
test cases be planned? An alternative way to monitor test coverage is to
monitor the execution of use cases or requirements. That is a particularly
good strategy if our team does not necessarily use test cases.

Test coverage’s primary importance is that it gives us an insight into
product readiness. But, especially in more complex games, just having
information about how many test cases have been executed or which
requirements have been tested with them might not give us the sufficient
information that we need to get an idea of how ready the game really is.
There is a very useful method we can use to improve the visibility of game
readiness, which is called level-3 testing (not to be confused with
integration testing, which is also sometimes called the same thing). Level-3
testing means that we will classify our tests into three different categories:

Separating tests into those three categories allows us to have a better insight
into what is working and what is still unknown. This information can be
particularly useful when we are planning a soft launch, for example. While
it’s a must to have all tests in Category 1 executed and passed, we can
probably live with some unclarity in Categories 2 and 3. When moving on
to a global launch though, we will want tests from all three groups to be
covered. Even if we can live with some ambiguity about Category 3 tests, if
not addressed, they can cause us lots of problems in the long term and make
the live ops phase exceptionally challenging.

Summary

Category 1: The game can be installed and the key game functions (the
game core loop) work
Category 2: The major and minor functions work well together in a

variety of scenarios and the UX is not broken
Category 3: The game consists of long-term reliability, wide coverage,

and good performance, error handling, and recovery

In this chapter, we learned more about test management work and
challenges and how it fits into overall studio operations. We learned about
how to create a test plan and became familiar with several different methods
that help us make test estimations. We also learned more in depth about test
coverage. In the next chapter, we are coming to the end of our journey
together into the world of modern game testing. We will learn more about
the organization and structure of QA teams and the overall future of QA in
games.

There Are No BUGS Without U –
QA and the Game Team
We have reached the final chapter of this book, thank you for reading so
far! For the end, I left some of the most interesting and up-and-coming
things in game QA.

In continuation of Chapter 12, Beyond Testing – Introduction to Test
Management, we will first talk about how to build great QA teams. While
QA management has a major role in this, depending on your studio
structure, almost everyone in QA will have an influence and their own role
in the team-building process. We will learn more about different types of
QA team organizations, why we would choose one over another, and how
to work within them.

Outsourced QA is a norm in today’s testing, but it’s not necessarily as easy
and straightforward as it might seem. To be able to really make the best of
the collaboration between gaming studios and outsourced partners, and
avoid downtime and expensive mistakes, we will learn in depth how to set
up our joint work, how to monitor it, and troubleshoot it as well.

Before this chapter, we talked about all the different aspects of QA, but we
didn’t properly touch upon game QA as a career. Here we will learn more
about what roles we have in QA, what type of career trajectory we can
potentially have, and even some tips on how to excel in job interviews for
game QA testing positions.

Test automation has been around for a while and it’s getting more
sophisticated by the day. While this book is solely focused on manual
testing, it wouldn’t seem fair not to at least mention the significant role
testing automation has and explain high-level guidelines on how to perform
it.

We will wrap up this chapter and this book with a look into the future. We
will learn about trends and advancements in technology that affect existing

QA practices, but they are expected to exponentially grow. In this chapter,
we have the following topics:

Next, let’s start by taking a deep dive into learning how to build great QA
teams.

Building QA teams
In small and even medium-sized gaming studios (sized up to fifty people),
it’s not uncommon to have only one dedicated QA employee. But when a
studio starts to work on multiple games or a game goes to live ops and
becomes very successful, the QA department usually starts to grow. There
are several different ways to plan your QA team. Let’s have a closer look at
them:

Building QA teams
Working with remote QA teams
A career in game QA
Automated testing
The future of game testing

Adding more embedded QA to the game development teams. A QA
team is usually hired to work specifically on this game, and it will have
its own structure within the team, with one of the QA team members
acting as the QA lead. Each game team will have its own QA team that
will work primarily within the game team rather than with the QA
teammates from different games. This approach is great in teams and
companies that favor flat organizational structures and collaborative
working practices. QA can get really deep insight into the product and
participate in decision-making about the games.
Increasing embedded QA in teams and building QA as a disciplinary

structure. With this approach, we hire people to work in specific teams,
but they will report to a QA structure outside of their own game. That

Every gaming studio is different and there are other ways to organize the
QA team structure. For example, one of the most efficient QA teams I
have seen is presented in Figure 13.1:

Figure 13.1 – QA team structure example

Here we can see that QA is embedded into the teams and has its own
independence. The studio also had QA management, which mostly made
QA-related decisions that influenced all teams: tools, partnership contracts,
representing QA at the highest company level, QA budgeting, and

means that the company will have a QA director or QA manager who
will work across game teams and will have the responsibility to lead
and support QA efforts in all of the teams. In this type of QA
organization, testers can be moved between teams.
Building QA as a stand-alone organization within the company. This is

the most traditional way to build a QA team, where we build QA as a
department within the company rather than as part of each game team.
In this type of organization, testers are rarely embedded into the team,
and most of the time, they are assigned to the game in a specific phase
for a specific task, almost acting as an outsourced QA team.

supporting recruitment efforts. But this studio also had an independent QA
unit that wasn’t permanently assigned to any team. Its members were
considered top-level testing experts and had lots of unique specializations,
among other things. They acted as “testing ninjas” – they would be assigned
to any project that needed extra help, specialized services, or encountered
problems.

This example shows how by combining different approaches to team
building, we might find the optimal solution. Of course, this type of
approach worked as the studio was large, with multiple high-profile games
in production and live ops. In smaller studios with only one or two active
game projects, this structure might be too heavy and inefficient.

How do we start building QA teams? Depending on the type of
organization, the first QA team members will either be the game testers
who will work on the particular game or the QA manager, who will take
charge of building QA as a discipline across the whole company, eventually
assigning people to the game teams.

When we are hiring people to work in QA, we need to consider what kind
of structure we have already, as this will affect what type of people we want
to hire. For example, if you hire a highly skilled tester who is used to
working in a flat team structure, even if they have exceptional skills, they
will not thrive in a highly hierarchical organization. The same goes for
testers who used to work in hierarchical organizations. They might struggle
to deal with the levels of independence and decision-making that go hand in
hand with work in self-organized teams. While many people can re-learn to
work in different working environments, we need to understand that this
might take time and that some people have working preferences that they
are unwilling to change.

Another important point that we need to consider when building effective
QA teams is a willingness to learn. Games are ever-changing. Technology
is constantly updated, player preferences change, genres evolve, and even
your own company’s organizational structure might change. Something that
we consider a fact today might become obsolete only a few months down
the road. To be able to really excel in this type of industry, especially

working on the front lines of the product as a QA does, we will need to
have a passion for continuous learning.

When we build QA teams, it’s more important to select the right type of
personality and soft skills for our company, than what are considered “hard
skills.” But that doesn’t mean that our team should be very uniform and all
of the team members should be alike. Quite the contrary, the more diverse
are our testers, the more efficient a team we will build. Having the
possibility to include different experiences and vantage points will allow for
making better-informed decisions that take more facts into account.

Of course, testing skills are important too, especially if you need someone
who can jump hands-on into the game QA immediately. But hard skills are
easier to learn than soft skills, or convincing someone to change their
approach to work. For that reason, it is important that during job interviews,
we don’t test only for QA skills but also ask insightful questions about
preferred ways of working, communication styles, and other values that are
important in our organization.

Now that we have learned the basics of how to build efficient internal QA
teams, let’s have a more thorough look into how to effectively include
outsourced QA in our teams.

Working with remote QA teams
Remote QA teams have been part of game testing for a very long time.
When we talk about remote QA teams, we can consider them as follows:

In this chapter, we will focus on the first type and how to work with
outsourced professional QA companies.

Outsourced professional QA companies
Freelancers and collaborators (outsourced QA professionals)
Internal employees working from home

Almost all gaming studios will at some stage use outsourced QA. For
example, localization QA is almost always done by outsourced, specialized
QA companies. Sometimes, we also use them for other specialized kinds of
testing, such as compliance testing. We already spoke about this in Chapter
3, A Deeper Look – Types of Testing in Games. Besides those, we also often
use outsourced QA to support daily testing tasks.

While it is generally accepted that you don’t need any specific skills to
work with remote, outsourced teams, that’s not the case. In order to have a
good working relationship and get the most out of the outsourced testers,
we need to learn how to do so. When we are starting to work with
outsourced QA, we should first ask the following:

With this basic information, you will gain a backbone for organizing your
high-level work with outsourced partners. Next, you can start planning how
to organize daily operations with your testing partners.

As a first step, you should specify what part of the testing you want the
outsourced team to cover. If you don’t give them specific guidelines, they
will test what they think is the right thing to test. Keep in mind that
outsourced testers only have the information that you provide them with.
They don’t participate in your team meetings, they can’t overhear
discussions between coders and designers, and they will not see emails

What is the agreed quantity of outsourced testing? Is it 1 tester per day
or more? For how long? Can we increase or extend testing resources?
What is the agreed way of booking resources? Are they prebooked for

your project already? Do you have to make a request to someone to get
resource allocation?
How will you deliver your game builds to the testers? Are there any

security protocols? Does your outsourced partner need builds delivered
at certain times?
 What are the partners’ working hours? Are they in the same time

zone?
To whom you can escalate any issues that might arise?

where the producer is explaining why priorities have shifted for this release.
Outsourced testers know only what you tell them and can only access the
information you send them. While they can be very skilled testers, they
could easily focus on the wrong thing simply because they don’t have
sufficient information.

Another problem that can arise from this situation is that you duplicate
work. If you have internal testers and outsourced testers working
simultaneously on the same build and if you don’t give them guidelines,
they might all end up testing the same things, while some areas of the game
won’t be covered at all.

In order to get the most out of your outsourced teams, before the testing
round starts, you should prepare the following information for them:

In my experience, it has been shown to be the best practice to have a
kickoff meeting prior to the start of testing. In the kickoff meeting, there
should be not only test managers but also the testers who will mostly work
on the game during this project round. If we work with a large group of
testers, we can instead invite only the test leads or senior testers to the call.
During this meeting, we have the opportunity to present all the intricacies of
our game that are relevant to QA, and outsourced partners have the chance
to ask direct questions and ask for the support they need. Doing this before
testing starts can resolve lots of potential problems in later stages.

Test outsourcing process

Test scenarios or test cases that you expect them to cover during the
testing period.
Confirm the priority for this testing round, as it changes depending on

the phase of the game or the content of the update. This could be
something such as confirming a new feature is working, or regression
due to several complex bug fixes.
Specify the testing order priority – which test cases must be run first.
 Any known project risks, dependencies, and deadlines.

Besides testing instructions, we also need to make sure that we have set
common processes for the outsourced testers, so they can seamlessly work
with our team. Our processes should include the following:

While it might take some time to set all of these up, especially when
working for the first time with an outsourced partner, it is a necessity for
smooth collaboration. If these parameters are not set early on, each side is
going to presume that their approach will work, but that might not be the
case. Then, we encounter situations where outsourced testers are on the
wrong builds, key people don’t get reports, reports don’t include the
information we need, developers don’t see crucial bugs on time, as well as a
slew of other potential problems. Not only might we waste lots of money
and effort but we also jeopardize our relationship with our testing partner.

Communication: What channels we are using and how. Chat
programs such as Slack and Discord are good for resolving any ad hoc
issues, but we want to have email communication for any major
changes. We also need to specify who needs to be informed about what,
who speaks up for the team, and who has access to the communication
channels.
Schedule: What is the overall testing (or testing project) schedule

(when testing starts and when it ends) and the lead time to increase or
decrease testing efforts and what are the daily working hours, expected
delivery times, expected build delivery times, and so on?
Hardware: What devices are we using for this testing round and in

which priority?
Software: What bug reporting tool is used, who is setting up the bug

flow, how do we assign bug severity levels, and how do we handle bugs
from external QA?
Deliveries: What reports are expected from the testers, as well as any

other documentation or deliveries?
Task management: How do we deliver builds, what information

needs to accompany builds, and how do we request changes in testing?
Troubleshooting practices: How to escalate any potential issues.

Spending a couple of days ahead of the project to organize it properly can
save us weeks of wasted efforts and mutual frustrations.

After we set up common ways of working, it is always advisable to give
clear guidelines to outsourced testers on how to report bugs. There is a big
chance that they work also for other gaming studios, but each one of them
has slightly different preferences. If you would like an outsourced team to
report bugs according to your own internal standards, you should give them
clear instructions. You should specify exactly what you want bug reports to
look like. The easiest way to do that is to have a sample bug report, which
your partner can use as an easy guideline. But besides the format, it’s
crucial to have an understanding of how bugs will be handled.

Sometimes, QA partners will have their own internal control and one senior
person will review all bugs before they are sent to a client. While this
approach assures a standard quality of bug reports, it requires additional
resources and time. There is also the issue of timing: receiving all the bugs
at the end of the day means that a developer won’t have a chance to look at
them before the next day unless they stay overtime.

Another approach is that someone internally reviews all the bugs from an
outsourced partner. We are not only looking for quality of reporting but also
for potential duplicates, missing information, or wrong priority or severity
level. It might be harder for outsourced testers to get these aspects right,
especially early in the project. While this approach ensures that we get
excellent bug reports that will be taken seriously, it might require lots of
internal resources to handle the load, especially when there is a significant
volume of bugs.

Lastly, we can just allow external bug reports to be assigned directly to
developers. This is a good approach after we have worked with the partner
for some time, but early on, there might be quite a few irrelevant bugs.
Developers will start ignoring them and then we can get into a situation in
which there is an actual blocker bug that is ignored, as the general quality of
bugs coming from the outsourced partners hasn’t been great.

As we can see, each approach has its own benefits and risks. It’s up to the
internal test lead or game producer to decide which approach is the best

for our team and our game.

Even with the best planning and organization, there is always the chance for
something to go wrong. Misunderstandings and mistakes easily happen
when we work with ever-changing products and environments and limited
resources. What do we do in those cases?

Outsourced QA companies want you to be happy with their work. If you are
happy with their performance, there is a good chance that you will hire
them again and that means more business. While they try to do their best,
sometimes, we do encounter problems. In these cases, it is important to
understand first what happened and stop any actions that are either
damaging or wrong. For example, if testers are on the wrong build or
focusing on testing the wrong feature, we should stop testing immediately.
After that, we should provide them with the correct build or instructions as
soon as possible. In the meantime, it’s important to understand why this
happened. Was it a lack of communication? Or was it because a certain tool
was broken? Our course-correcting action will depend on finding the root
cause of the problem that occurred.

Occasionally, we encounter different types of problems. We are all people,
and it might happen that our ways of working and communicating just
clash. Sometimes, problems that occur might be of a more personal nature.
In those cases, it’s important to escalate the issue to your supervisor and not
get involved in conflict. Be factual (take notes or screenshots of the
conversation) and explain to your supervisor how this affected you and your
work. In situations such as these, sometimes, a simple apology and clearing
out communication will help, but in some rare cases, differences are just too
much, and a working relationship simply doesn’t work. In those cases, the
outsourced tester will be removed from the project.

Measuring outsourcing effectiveness
Before we wrap up this part of the chapter, it is important to talk about
different ways to measure outsourced testers’ effectiveness. Very often, this
is approached in a very simplified manner, where we only look at the speed
of test execution and the number of bugs. Those metrics on their own

though won’t give us a complete picture of the quality of our outsourced
testing partner. While these are important indicators of how work is done,
there are other parameters we should consider when we work with
outsourced testers:

Responsiveness – Changes happen and sometimes we need to ask our
partners to stop what they are doing and focus on something else
instead. In those cases, the responsiveness of outsourced partners will
be very important. The same goes for other crucial communication – if
we need quick confirmation or answers to an inquiry, it should not take
hours to get an answer. Waiting too long to respond makes the client
feel insecure about testing partner work. Because when we look at these
situations from the outsourced QA company view, your gaming studio
client has no visibility in your work. They presume that you are doing
your job, but the longer they don’t hear from you, the more doubtful and
concerned they’ll become. Responsiveness is also an indicator that we
have a relationship where outsourced partners listen to our requests and
are less likely to make mistakes.
Troubleshooting – We all make mistakes, but how we handle them

makes a huge difference. If our testing partner owns their mistakes and
doesn’t try to hide them, but instead analyzes them and uses them as an
opportunity to learn, this is a much better approach than hiding them
and hoping they won’t be noticed. An even worse scenario is that when
a mistake is noticed, they try to shift the blame and avoid responsibility.
If we notice a pattern of problematic behavior around any issues that
arise, we are better off not working with that provider, as they become a
liability to our project.
Skills – Are the testers skilled enough to do their job with minimum

guidance and without unnecessary mistakes? Are they familiar with the
testing methodology and testing approaches? Do they understand the
platform ecosystem and how comparable games in this genre work?
Having reliable, professional, and experienced testers will make a big
difference in how fast testing can be done with confidence.
Ease of working – Even if we work with the most skilled people, if

they are difficult to work with, it might not be the right match. Difficult

We have learned how to organize outsourced testing and how to ensure that
we work effectively with our outsourced partners. Next, it’s time to learn
more about careers in game QA and where they can take us.

A career in game QA
For a long time, QA was considered an entry position in the gaming
industry. It was presumed that people starting in QA used it only as a
stepping stone to move toward game design or production. That is still true
in many cases. It is considered a “natural” transition to move from QA to
production and then possibly further up the management path.

But with more modern ways of working and independent teams with flat
hierarchies, the need to move up the ladder is not necessarily there.
Embedded QA in a games team often has a range of responsibilities and
duties that far exceed traditional QA. It often gets involved with game
design and product management, and depending on the individual skills,
with coding or art. That makes QA as a job far more exciting, and it can
lead to better salaries and work appreciation.

But let’s look at the traditional breakdown of QA roles. We can see it in
Figure 12.2.

to work means different things for different teams. In general, if your
partner is not willing to adapt to your way of handling testing, bugs, and
communication, it will be quite hard to work with them long-term. It
might also require additional internal resources just to correct and adjust
outsourced testing. In those cases, it will make more sense to focus only
on internal testing and drop outsourced help, or alternatively, look for
another partner.

Figure 13.2 – Overview of traditional QA roles

We can see that in this type of hierarchy, we have the QA director at the top
and then junior testers several steps below. Please note that not all gaming
studios use the same nomenclatures. I’ve seen testers being called test
analysts and test leads being called coordinators and many other titles. To
better understand what job responds to which level, let’s have a better look
into what each title entails:

QA director – The ultimate authority in the QA department. They
usually work with the company’s top management, own the QA budget,
represent QA as a discipline at the highest level, and participate in
strategy sessions and recruitment plans.
QA manager – Usually leads either a particular section of QA (such

as localization or automation, for example) or acts on a more
operational level than the QA director. For example, they decide on
testing tools; oversee QA processes; approve hires; approve QA
discipline training plans, hardware purchases, and software purchases;
participate in the decision-making process for testing partners; have HR
responsibilities for test leads; and own the recruitment process.
Test leads – Test leads have the responsibility of running QA for a

specific game. They will own internal QA processes, advocate for the

In some larger studios, testing teams can also be organized by specialty.
You might encounter jobs such as validation tester, functional tester,
development tester, and others.

A career in QA can also lead to a career in other disciplines or careers in
game management. Most often, a QA career in games will lead into
production, as you can see in Figure 12.3:

game team’s needs, request tools and resources, troubleshoot issues,
organize and distribute work, review internal and external testers’ work,
and may participate in the recruitment processes.
Senior testers – These are on the same hierarchy level as test leads,

but they don’t have the same responsibilities. While test leads are
primarily managers who sometimes test as well, senior testers are
skilled experts with lots of experience, that focus mostly on improving
and optimizing testing practices. They act as mentors and coaches for
other team members, and they might have HR responsibilities as well.
Sometimes, they also participate in the recruitment process, but always
advise on it, as well as on other practical aspects of QA. They are
usually highly respected team members, not only in QA, and their word
and recommendation hold a lot of weight, even if they are not decision-
makers themselves.
QA/Testers – The most numerous category, this is the workforce

behind QA. Testers focus on creating and maintaining test cases,
prepare devices for testing, execute testing tasks, report bugs, and report
to test leads. Depending on the type of organization and methodology
used for game development, testers might have more or less
responsibilities and ownership of their work.
Junior testers – The first step in a professional QA career is becoming

a junior tester. In this role, you will get a chance to execute test cases,
but usually under guidance or supervision. You might be paired with a
more experienced tester for some time to help you learn faster. Junior
testers are rarely in decision-making positions but can occasionally
contribute to test planning efforts. They are expected to know how to
write bug reports, but when they start, their first reports will usually be
checked by a more senior tester before being assigned for fixes.

Figure 14.3 – Possible career trajectory in QA

In Figure 12.3, we can see that after starting your career in QA, besides
going the QA management route, you can also have a path through
production, which can potentially lead to studio management. It is
considered a somewhat “natural” transition to production, as game
producers’ job is to oversee the overall development of the game. Working
in QA, you become very familiar with all aspects of game development,
product risks, and scheduling. That gives you a great foundation to continue
working in production, and if interested, in product management.

We spoke at length about the possibilities and career pathways in QA, but
how difficult is it to get a job in QA teams in the gaming industry? Usually,
it’s somewhat easier to get your first chance in the gaming industry through
QA than through other disciplines. On average, there are more junior QA
openings than those for associate producers, for example. The gaming
industry is well known for preferring employing people with previous
gaming experience, so making your first step can be challenging. Here are
some of the things that might help you get your job in game QA:

Any previous testing experience. If you don’t have a background in
QA, try joining beta testing groups, playtests, and so on. Even if it’s not
considered professional experience, it will help you get an insight into

We have learned what kind of career we can have in game QA and got
some practical tips on how to go about getting a job in game QA for the
first time. Next, we will look into automated testing and how it affects
manual game testing.

Automated testing
We can’t finish this book without touching upon automated testing. This is
a huge topic, and as such, it’s not the focus of this book. It is important to
mention it though and explain how it affects manual testing in game teams.

When we talk about testing automation in games, we split it into two
different groups.

the world of professional QA and it will work to your benefit when
applying for jobs.
Attending gaming conferences and events. While some gaming

conferences are for professionals only, there are many events that are
friendly to people who are not in the industry yet. It’s worth checking if
you have a local IGDA chapter, as they might have open local events
and open learning sources. Lots of jobs in the gaming industry are not
advertised, and building your own network of industry contacts can help
you.
Student groups and work placement programs help. In some countries

where the gaming industry is particularly strong, such as the UK and
Finland, there are programs that help you get internships or work
placements in gaming studios. Check locally whether such schemes
exist in your area.
Learn about games and play games. While it’s not necessarily a pre-

requisite for the job, it will help showcase your passion for the product,
and your learning curve once you get a job will be shorter. I was
literally asked to name my five favorite games when I was interviewed
in the gaming industry first time! Even if I was already a very
accomplished professional in QA, I probably wouldn’t get that job if I
couldn’t name any games.

The first is load testing on our game’s backend. Here, testing automation is
a must, as we will simulate different types of player load on the backend.
For example, we will test how our backend behaves when we have a sudden
surge in downloads, an increased number of calls to the server, and similar
scenarios. We are not only looking to find bugs or performance issues with
servers. We are also looking for breaking points: under which load, our
backend starts to break. Having this information helps us understand when
we need to start to plan to enhance our backend capacity. For example, if
we are planning to do a huge marketing campaign for our next update,
which includes guild systems and three weekly events, you definitely want
to know whether your servers are up for the test. Not only that we can
expect more players than usual but they will also put more pressure on the
servers due to the new features, which are very backend-dependent.

This type of testing is usually done by development teams themselves and
QA doesn’t participate in the process.

The second group is client-side testing automation. This type of testing is
done by specialized automated testers. Here we test the functionality of the
game; its UI, UX, and performance; and other player-facing parts of the
game. In order to execute testing automation properly, we need to do the
following steps:

1. Just like with manual testing, we would need to determine the scope
of testing. What are we planning to test by using automation?

2. After that, develop test scenarios that will cover your targeted scope.
3. The next step is to write a test automation script based on the test

scenarios. When we run the script, it will emulate player behavior.
4. When the test automation script is ready, we will need to execute it on

a predetermined set of different devices and operating systems. Test
automation scripts are executed mostly automatically, and we need
minimum human involvement.

5. Analyze the results and assign bugs that need to be fixed.
6. Verify bug fixes and run regression tests.

As we can see, the process of testing very much follows similar steps that
we would do when we do manual testing. The major difference here is that
to prepare test automation scripts, the tester will need to have at least some
coding skills. We use specialized test automation tools to run our test
automation scripts, and depending on the tool, we will need to have
scripting skills to be able to create automation scripts from test scenarios.
Some of the most popular tools are Appium, Unity Test Runner,
Selenium, and Robot Framework, but there are others too. Some studios
who take automation as a crucial part of their QA efforts even develop their
own proprietary automation tools.

One of the main challenges of test automation is the maintenance of the test
scripts. Every time we change something in the game, we need to change
the script accordingly; otherwise, we will get fake fails. It is important to
prepare robust and well-thought-out scripts the first time around to ensure
that they are easily maintained in the future.

We can see that in automation testing, we don’t really need a human
executing test cases. Does this mean that automation will replace human
testers? The answer is no. We should not be afraid of automation taking
away testing jobs or making testing positions obsolete. There are several
reasons for that:

Time – To do test automation effectively, it takes time to set up
operations, hire the right profile of people, and put automation tools to
use. It takes much more time to put automation to use compared to
manual QA, which we can start much quicker. Also, test scripts need to
be regularly updated to reflect changes made in the game.
Price – To be able to start using test automation, the game studio needs

to frontload most of the cost before testing can even start. Furthermore,
test engineers who work with the automation tool usually have higher
pay grades than manual game testers. That can make automation testing
seem pricier than manual testing.
Maintenance – Testing scripts need to be regularly maintained and not

only does that take more time than maintaining manual test cases, but it
can also be done only by test engineers.

Test automation can be a reliable ally in testing efforts, and I hope we will
see it more in game QA in the future. This brings us to the last part of this
book, where we will talk exactly about that: the future of game testing.

The future of game testing
We have arrived at the last part of this book. There is no better way to end
this story than by providing the seeds for future ones. We will investigate
the latest trends in technology, team organization, and the gaming industry
in general, and analyze how they will affect the future of game testing.

These days, it looks like everyone is talking about AI. We can already use it
for game art, marketing texts, game narration, and even coding. In the near
future, we will probably see games out on the market that have been almost
completely created by AI. With the growth of AI technology and the wide
adoption of AI tools, we can expect that this is going to have a strong effect
on test automation as well. The test automation of the future will become
more sophisticated and be able to execute some of the tasks that right now,
only humans can do. AI will be able to learn from testing experiences on its
own and continuously improve its performance. With the advancements in

Out-of-the-box thinking – Even the best scripts are just that: scripts.
They can’t change their approach if they see something unusual or
awkward. Scripts can never fully replace the heuristic approach of
seasoned QA professionals.
Some things can only be tested by humans – Is a new feature fun? How

will a player feel when encountering a specific problem or story? Does
the new IAP feel like a good value when we look at the gameplay?
Those questions can only be answered by humans.
Automation testing is a great tool that can replace humans doing very

repetitive and dull tasks or tasks that would simply require too many
resources to be executed efficiently. It also opens a whole new branch of
QA at the intersection of testing and coding, which can provide exciting
career opportunities.

AI tech, we might look into the future where test scripts will be fully
developed by tools such as ChatGPT.

Will we be able to use AI in manual testing too? Probably yes. One obvious
task would be writing the test cases. While humans would still need to
prepare the test focus, with adequate prompts for AI, we will be able to
create a wide range of tests very quickly.

Another interesting technology that is a big part of the gaming industry is
AR and VR. Every year, both the hardware and software are getting better
and providing more and more immersive, realistic experiences to gamers
and other audiences. While we have seen the adoption of this technology
among players already, especially with AR games where we have a couple
of great successes such as the Pokemon Go game, VR hasn’t reached as
much popularity yet. Enthusiasts and early adopters have been excited
about the possibilities of VR for some time, but we haven’t seen large-scale
adoption among players.

Testing VR has its own challenges – whether a limited pace of testing due
to the time that a person can spend wearing a VR set without side effects,
the physical space requirements for testing VR, or specific VR game
mechanics that are experienced differently due to full immersion
(teleporting, falling, bouncing, etc.). Due to the relatively small amount of
released VR games compared to the games on traditional platforms, VR
testing is still in its infancy. With wider adoption of the hardware among
players, we can expect an increase in creative content too. That would also
affect demand for VR testing and we will probably encounter it more
frequently in the future.

Besides only technical advancements, we can also see that the methodology
behind how we make games is changing. Traditional game development
with huge teams, narrow specialization, and rigidly defined milestones is
becoming rarer. Many European mobile gaming studios, especially in
Scandinavia, utilize agile or hybrid agile methodology and base their work
on relatively small game teams. Those teams have significant independence
in how they run operations. That makes the decision-making process fast
and more adaptive. This type of approach works great in live ops and gives
a competitive advantage to the companies who utilize it: they can react

much faster to the demands of players and iterate with less pressure and
higher speed. Gaming studios from Scandinavia have been exceptionally
successful using this approach. If you look at the companies such as King,
Supercell, Small Giant Games, Mojang Studio, and Rovio, they have been
incredibly successful. I believe that we will see more changes toward flat
hierarchies and increased team independence in other parts of the world as
well. Not only do we have proof of success that it works but it also goes
hand in hand with working in live ops for years, even decades to come. This
of course also affects how QA is done. We will see QA growing to become
a more multidisciplinary role, where testers will actively participate in
product and process-making decisions.

We will also see live ops becoming an even more predominant phase of
work. The F2P business model is spreading on PC and consoles, and there
is a demand for people who are familiar with live ops and its way of
working. We spoke about testing in live ops at length in Chapter 11 – Are
You on the Right Version? Live Ops and QA. As we have already seen
several games in live ops for over a decade and counting, we can
confidently predict that live ops will become a dominant phase of work.

With the post-pandemic adoption of a working from home model, we will
also see changes in how we work internally and with external partners. As
more and more game teams are now 100% remote by design,
communication and way of working are adapting to accommodate remote
setups. This brings a better understanding of the requirements of distant
work that will spill over into working with external QA partners as well. We
will be able to work more efficiently, with better mutual understanding and
with already established, smooth lines of communication.

Working from home will also affect how we hire people. We will be able to
hire talent from anywhere in the world, without worrying about the cost of
relocation, the adaptation time, or whether an international employee will
feel welcome enough in a new country. In return, this will make our teams
more diverse and therefore more successful.

Working with remote employees from other countries comes with its own
challenges. Even if our employee doesn’t need to physically move, they
need to get adjusted to different cultural norms, ways of working, and

communicating. That can sometimes be more challenging to do only online.
It can also be harder to form new friendships and find mentors and
champions at work. It will be up to company management to take these new
realities into account when making operative and strategic decisions, to
ensure that they are building robust, supportive, equitable, and inclusive
working environments.

Working from home brings another challenge as well – working with
devices. Unfortunately, testing on consoles is practically impossible to do at
home, and testers who work primarily on that platform will be required to
spend at least some time in the office. Mobile testing brings another
challenge, which is that we might want to test on several different devices
and we can’t expect that each tester has their own, large hardware portfolio.
This will require occasional trips to the office to exchange your devices, but
it doesn’t require the tester to be there full-time. Studios will need to
organize a very sturdy and reliable HW management system that provides
instant visibility into devices’ availability and traceability. We learned about
the importance of testing hardware in Chapter 5, It Must Be Hardware:
Testing Hardware in Modern Game QA.

The future might hold another type of solution for this problem though and
that is virtualization. We already have some great results using cloud-
based tools that simulate testing environments, including a range of
devices, operating systems, and configurations. Using fully virtual testing
environments, combined with advances in test automation, will allow us to
do testing more efficiently and reliably than ever.

Summary
In this final chapter, my goal was to give you an overview of the parts of
QA that, while already important, might become even more significant in
the future of game development. First, we learned about QA team
structures. We learned how to organize them and how to build them into a
reliable, efficient, and indispensable part of game development. Next, we
learned about how to work with outsourced QA companies as an extended
part of our own testing teams. We investigated how QA is organized and
what type of QA career trajectory you might have. We touched down on

testing automation, an important part of QA, the significance of which is
going to increase tremendously in the future. And lastly, we spoke about the
future of game QA and trends that might shape our industry in the future.

I sincerely hope that you find this book insightful and that it helps you in
your work. It has been an amazing experience putting decades of my QA
experience into one concise and organized guide, which will hopefully
serve you well for years to come.

Index
As this ebook edition doesn't have fixed pagination, the page numbers
below are hyperlinked for reference only, based on the printed edition of
this book.

A

acceptance testing 51

ad hoc changes 165

ad hoc testing 52

Agile

best practices 31

agile approach 124, 125

agile methodology 7, 32, 33, 90

Kanban methodology 35, 36

reference link 33

Scrum methodology 33, 34

Android (Google Play) 57

Android phone

configurations, comparing 73

App Store

testing 60

as low as reasonably practicable (ALARP) 139, 140

automated testing 196-198

B

backend pushes 164, 165

balancing tests 162

Basic Acceptance Testing (BAT) 15, 50, 51, 123, 162

beta testing 52

boundary value analysis 144, 145

benefits 145

breaking points 196

bug database 92

bug flow 44, 91

importance, in game teams 91-93

setting up 94, 95

with multiple transitions 96

bug flow status 95, 98-103

canceled 97

can’t reproduce 97

duplicate 97

fixed 98

in progress 96

invalid 97

more info 97

new 96

not a bug 97

open 96

reopened 98

verified 98

bug flow transitions 95, 99-103

bug life cycle 91, 92

bug priority 103

bug reports, methods for writing

assigning, to fix issue 112

Comment field 112

bug reporting

best practices 116

bug reporting, best practices 116

clarity 118

objectivity 117

practical example 118-120

reliability 116, 117

timeliness 118

bug reports 105

significance, reasons 105

bug reports, methods for writing 106-109

games, testing on platform and operating system (OS) 111, 112

issue, describing 110

naming convention 109

reproduction rate 111

screenshot/video, attaching 110

versions, testing 111

bugs 91

bug severity 40

C

casual gamer behavior pattern

versus core gamer behavior pattern 128

cheat mode 39

churn 128

client-side testing automation 196

closed beta 52

cloud-based tools 200

code strategies 147, 148

collaborative approach 50

compliance testing 41

for gaming consoles 42

for Google Play store and App Store (iOS) 41

for PC and Mac 42, 43

console hardware testing 74, 75

consoles 57

achievements 63

Gameplay testing 62

legal compliance 63

testing 61-65

content production 155

D

daily testing report 172

example 172, 173

decision table 145-147

benefits 147

Delphi technique 177

development phase 154

developsense

reference link 134

dev ops

versus live ops 151-154

E

embedded QA 124, 125

benefits 124

end-to-end testing 48

English, French, Italian, German, and Spanish (EFIGS) 48

equivalence partitioning 143

example 144

exploratory testing 90, 141-143

benefits 142

disadvantages 143

F

feature test 155

content, testing 155, 156

handling 156-160

first-time user experience (FTUE) 154

five-fold testing system 134

flat team structure 187

free-to-play (F2P) 4, 7, 19, 123

functional point measure 178, 179

functional testing 38

carrying out 38-41

versus regression testing 49

functional testing, versus regression testing

testing approach 49

testing cases 49

timing 49

function point 179

G

game bugs 7

game business model 126, 127

game community 52

Game Design Document (GDD) 39, 86, 138, 178

game development stage 125, 126

game documentation 44

game elements, categories

architecture 133

function 133

interfaces 133

operations 133

platforms 133

time 133

game environment 132

game KPIs 128, 129

game QA

AI behavior 18

best practice 26

core game loops 15, 16

first-time user experience (FTUE) 15

game logic 17

level progression 16, 17

physics 17

post-launch phase 26

pre-launch phase 26

stability 14, 15

testing 13, 14, 24, 25

testing cycle 27

usability flow (UX) 18

game QA challenges 28

development team, working with 29

entry-level role requisites considering 29

limited time 29

live bugs 30

platform guidelines and regulation change 28, 29

prioritization 29

technology change 28

games

for working on specific devices 72

games as a service (GaaS) 31, 122

game teams

bug flow, importance 91-93

game tester 5

game testing

future 198-200

versus software testing 5-7

Google Play

testing 58-60

H

hardware

importance, in modern game QA 70, 71

hardware testing

console hardware testing 74, 75

PC hardware testing 75, 76

heuristic methods 123

heuristic testing model 132

hot fixes 93

I

in-app purchases (IAPs) 56, 126

integration testing 123

intellectual property (IP) 181

iOS (App Store) 57

J

JIRA 95, 107

Jira-generated reports 173

K

Kanban methodology 35, 36

key performance indicators (KPIs) 26, 122

K factor 153

L

level-3 testing 182

live bugs

working with 166-169

live game bugs 156

live operations (live ops) 7, 26, 93, 129, 151, 153

testing strategies 129, 131

versus dev ops 151-154

load testing 51, 196

localization QA 43, 44

basic localization 45

considerations 45

cultural awareness 47

full game localization 45

functional bugs 48

internationalization 45

levels 45

text spoken, translating 46

translation consistency 46

translation quality 46

translations/text, missing 47

wrongly displayed text 47

localization testers 48

M

milestones in game development 122

minimum viable feature (MVF) 122, 158

minimum viable product (MVP) 154

mobile platform

testing 61

modern game QA

hardware, importance 70, 71

modern game testing

evolution 4

N

negative testing 40

non-disclosure agreement (NDA) 63

non-playable characters (NPCs) 18

O

one-on-one playtesting 51

open beta 52

P

pairwise testing technique 90

PC

testing 65, 66

PC hardware testing 75, 76

platform 55-57

playtesting 51

porting 56

positive testing 40

principal device 72

priority 115, 116

versus severity 113

product readiness 182

Q

QA game career 193, 195

Junior Testers 194

QA Director 194

QA Manager 194

QAs/ Testers 194

Senior Testers 194

Test Leads 194

QA in development

versus QA in live ops 130

QA teams

building 186, 187, 188

QA team structure 186

QA testing, for games

agile methodology 9

criteria, for performing 8, 9

in agile environment 9, 10

performing 10-12

waterfall model 8

quality assurance (QA) 3, 91, 121, 136

importance, for games 7

quality criteria 132, 133

quick regression 50

R

regression testing 48, 148

approaches 49

collaborative approach 50

quick regression 50, 51

thorough regression 50

versus functional testing 49

remote QA teams 188

outsourcing effectiveness, measuring 192

outsourcing process, testing 190, 191

working with 188-190

risk analysis 138, 139

risk-based testing 136, 137

efficiency 136

risk analysis 138, 139

risk identification 137, 138

risk prioritization 139, 140

risks, managing 141

risks, monitoring 141

test strategy, developing based on risks 140

risk-based testing strategy

risk analysis 131

risk handling 131

risk identification 131

risk monitoring 131

risk focused 131

risk identification 137, 138

risk, impact, and probability 137

risk list 138

risk prioritization 139, 140

risk score 139

role-playing games (RPGs) 15, 145

S

Scrum methodology 33, 34

severity 113-115

versus priority 113

smoke testing 51

soft launch 123

software localization 43

software testing

versus game testing 5-7

Steam hardware & software survey

reference link 75

Steam Store 65

stress testing 51

submission 56

backend pushes 164, 165

dealing with 160-164

system testing 123

T

target markets 127, 128

test automation script 196

test automation tools 197

test case 11, 39, 79-82, 175

alternatives 89

bugs, reporting from 82

contents 88

creating requisites 81

designing 80

real-world test cases 83, 84

writing 85-88

test case alternatives

test charter 90

test scenarios 89

use cases 90

test charter 11, 142

test coverage

planning 182, 183

test design phase 86

test effort estimation 176, 177

test effort estimation, methods

3-point estimation 178

available budgets and resources 181

Delphi technique 177

development methodology 181

execution coverage 180

existing contracts and contractual dependencies 181

functional point measure 178, 179

game’s complexity and genre 182

perceived importance, of game 181

perceived importance, of QA in team 182

studio policies 180

test planning 180

Work Breakdown Structure (WBS) 177

testing approach 121

testing environment 39

testing focus

development stage 125, 126

game business model 126, 127

game KPIs 128, 129

selecting 125

target markets 127, 128

testing, in gaming industry 51

acceptance testing 51

ad hoc testing 52

basic acceptance testing (BAT) 51

beta testing 52

load testing 51

playtesting 51, 52

smoke testing 51

stress testing 51

testing skills 188

testing strategies

in live ops 129, 131

testing strategy 132

diversified 132

practical 132

product specific 132

risk-focused 132

selecting 132

test management 171, 172

test management tools 81

test objectives 140

test oracle 11

test plan 11, 172, 174-176

project intro 175

test deliverables 175

test environment 175

testing schedule 175

testing tools 175

test sets 72, 87

building 72- 74

test strategy 121

thorough regression 50

timeline priorities 24

total functional point 179

troubleshooting 174

U

unit testing 123

usability flow (UX) 18

achievements 22

audio 20

compliance testing 22

consistency testing 22

factors 23

hardware compatibility 23

legal requirements testing 22

multiplayer 20, 21

platform compatibility 19

playthrough 21

purchasing 19

rules 23

third-party integrations 22

visuals 19

user acceptance testing (UAT) 123

user experience (UX) 133

user interface (UI) 19, 109

V

virtualization 200

W

waterfall methodology 31

waterfall model 122

white-box testing 11

Work Breakdown Structure (WBS) 177

work in progress (WIP) 36

Y

YouTrack (YT) 108

Why subscribe?
Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packtpub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercare@packtpub.com
for more details.

At www.packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

https://packtpub.com/
https://customercare@packtpub.com/
https://www.packtpub.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

API Testing and Development with Postman

Dave Westerveld

https://packt.link/9781800569201

ISBN: 9781800569201

Find out what is involved in effective API testing
Use data-driven testing in Postman to create scalable API tests
Understand what a well-designed API looks like
Become well-versed with API terminology, including the different

types of APIs
Get to grips with performing functional and non-functional testing of

an API
Discover how to use industry standards such as OpenAPI and mocking

in Postman

Software Test Design

Simon Amey

https://packt.link/9781804612569

ISBN: 9781804612569

Packt is searching for authors like
you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Share Your Thoughts
Hi,

I Nikolina Finska, author of Modern Game Testing, really hope you enjoyed
reading this book and found it useful for increasing your productivity and
efficiency in games QA.

Understand how to investigate new features using exploratory testing
Discover how to write clear, detailed feature specifications
Explore systematic test techniques such as equivalence partitioning
Understand the strengths and weaknesses of black- and white-box

testing
Recognize the importance of security, usability, and maintainability

testing
Verify application resilience by running destructive tests
Run load and stress tests to measure system performance

https://authors.packtpub.com/

If you found this book valuable, it would really help us (and other potential
readers!) if you could leave an honest review on Amazon sharing your
thoughts. Go to the link below to leave your review:

https://packt.link/r/1803244402

Your review will help me to understand what’s worked well in this book,
and what could be improved upon for future editions, so it really is
appreciated.

Best Wishes,

Nikolina Finska

Download a free PDF copy of this
book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere?

https://packt.link/r/1803244402

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803244402

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email

directly

https://packt.link/free-ebook/9781803244402

	Cover Page
	Table of Contents
	Preface
	Part 1: Game Testing Foundation
	Chapter 1: Setting the Stage – Introduction to QA for Modern Games
	Understanding the evolution of modern game testing
	Exploring the differences between software and game testing
	Why is QA important for games, especially within the agile process?
	When and how should QA testing for games be performed?
	Summary

	Chapter 2: All Engines Go – The Basics of Game QA
	What is tested in games?
	What is the most important thing to test?
	Game QA in practice
	Game QA challenges
	Agile practices and game QA
	Summary

	Chapter 3: A Deeper Look – Types of Testing in Games
	Functional testing
	Compliance testing
	Localization QA
	Regression testing
	Other types of testing
	Summary

	Chapter 4: Deeper Look – Testing on Various Gaming Platforms – Mobile, PC, and Console
	Platform relevance
	Testing on Google Play
	Testing on the Apple App Store
	Testing on other mobile platforms
	Testing on consoles
	Testing on PC and other platforms
	Summary

	Chapter 5: It Must Be Hardware: Testing Hardware in Modern Game QA
	Is hardware important in modern game QA?
	Test sets – how to build one
	Hardware testing beyond mobile
	Summary

	Part 2: Test Strategy and Execution
	Chapter 6: Friend or Foe – Test Cases
	What are test cases, and do we need them?
	How to write great test cases
	Test case alternatives
	Summary

	Chapter 7: It Works on My Machine: Bug Flow
	The importance of bug flow in game teams
	How to set up a good bug flow
	Bug flow statuses and transitions
	Summary

	Chapter 8: I Thought I Fixed That: How to Write Efficient Bug Reports
	Why bug reports matter
	How to write excellent bug reports
	Severity versus priority
	Bug reporting best practices
	Summary

	Chapter 9: It Works, but It Hasn’t Been Tested: Testing Approach
	Lessons learned from the waterfall model
	Agile approach – embedded QA
	How to pick the right testing focus?
	Types of testing strategies
	Summary

	Chapter 10: Eat, Sleep, Test, Repeat: Test Methodology
	Risk-based testing
	Exploratory testing
	Equivalence partitioning and boundary value analysis
	Decision tables
	Strategies for dealing with new code
	Summary

	Part 3: Test Management and Beyond
	Chapter 11: Are You on the Right Version? Live Ops and QA
	The difference between dev and live ops
	How to test new features
	Dealing with submissions
	Working with live bugs
	Summary

	Chapter 12: Beyond Testing – Introduction to Test Management
	The test management role
	A test plan
	Methods to help you estimate testing efforts
	Summary

	Chapter 13: There Are No BUGS Without U – QA and the Game Team
	Building QA teams
	Working with remote QA teams
	A career in game QA
	Automated testing
	The future of game testing
	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

