PowerShell
Fast Track

Hacks for Non-Coders

Second Edition
Vikas Sukhija

APIESS”

PowerShell Fast Track

Vikas Sukhija

Apress’

PowerShell Fast Track: Hacks for Non-Coders, Second Edition

Vikas Sukhija
Waterloo, ON, Canada

ISBN-13 (pbk): 979-8-8688-1156-2 ISBN-13 (electronic): 979-8-8688-1157-9
https://doi.org/10.1007/979-8-8688-1157-9

Copyright © 2025 by Vikas Sukhija

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Desk Editor: Laura Berendson

Editorial Project Manager: Kripa Joseph

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1157-9

Table of Contents

About the AUthOrcccusmmimmminmmenmnssss - vii
About the Technical ReVIEWErccuseesssassssnssssnsssassssnssssssssassssssssassssans ix
Chapter 1: PowerShell BasiCS......uuususeesmmmmmmmmmmssssssssssssssssssssssssssssssssssns 1
Variables and On-Screen Printing......cccovvvvrernnnseniesesessessesessssssessessessssessesaens 4
H/EISE c.vverteerereseseseseesee e s ss e p e e 10
Conditional/Logical OPEratorscoceeeeerrcerenrenersseressesesesesesesessesessesessnns 12
Logical OPEratorscocecrvrnnennsnne s s s 13
837§ 15
0T 0L OO RROSS 16
For Loop and WhHile LOOP.......ccouerereneriserrnsesesesesssse s ssssessssessssesessssesenns 17
FOI LOOP. ..t 17
WHIIE LOOP ...viveerrierisesessesesse s sesse e rs e se s sse e sasssss s s s e ssnsessnsanens 20
T (0] 22
1T304 7 24
Chapter 2: Date and LOGScccerrrsssnmnnmsssssnnsmsssssssssssssssnssssssssnssssssnnnnes 25
Date Manipulation...........cccoreininiinsrsn e 28
Creating Folders Based on @ Date...........c.ccoveenerencrnnenenenennsesessesesesessesesesesenns 29
Ready-Made Date and Log FUNCLIONScccccervernesnnenenese e 30
SUMMANY....eitieetrestre s e e ee e e p e e 4

iii

https://doi.org/10.1007/979-8-8688-1157-9_1
https://doi.org/10.1007/979-8-8688-1157-9_1
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec6
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec7
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec8
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec9
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec10
https://doi.org/10.1007/979-8-8688-1157-9_1#Sec11
https://doi.org/10.1007/979-8-8688-1157-9_2
https://doi.org/10.1007/979-8-8688-1157-9_2
https://doi.org/10.1007/979-8-8688-1157-9_2#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_2#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_2#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_2#Sec4

TABLE OF CONTENTS

Chapter 3: Input to Your Scriptsccccusseemrrmsssnsnnsnssssnnsssssssssssssssnnnnes 43
IMPOIE-CSV ...ttt s 44
Importing from @ TeXt File ..o 48
INPUL FrOM AN AITAY ... s 50
User Input With Prompts ... sessesesnens 51
1] 4= 53

Chapter 4: Interactive Input...........ccocvmmmmmmninmmnmmmsessn—————— 55
REad-HOSE ... 55
INPUL PArameters ... 57
LG0T (0] S 59
Prompt (YES OF NO) ...cveveerreerreser e s 64
SUMMANY....eitieerrestre e r e e e p e 66

Chapter 5: Modules........ccoruissmnnmmmssssnnnmsssssnnsssssssssssssssssnsssssssnnssssssnnnnss 69
POWEISHEIl SNAP-INS.....ccerierererirreriere s sre e saesaees 69
MOGUIES ...t 72
Cheat Module (VSAdMIN)ccceeeernrerriercre s sssseseens 75
SUMIMANY....eieeieeere e e e e r e e s e re e e e 93

Chapter 6: Alerting (Email)cccounnmmmmmmmmmmmmmmmsssssssssssnssmsssssssssssssnnssnes 95
Formatting @ Message Bodycccvveernrererenmsnsmssnsesssssesssesessesessssessssesessesenns 97
SENAING HTML......cooiiiceeircrrncse s s 98
Sending Email—PowerShell Graph SDK..........ccccvvrennnnienienssensensesesessessensens 100
SUMMAIY.c.veiteirierereseesere e sse e e e e s s saese s e saesaese e e saesaesaesessesaesaessesensessens 103

Chapter 7: Error Reportingcccussseensmssssssnsssssssnssssssssnssssssssssnssssnnns 105
Reporting Errors Through Email...........ccccovinninvncnncrsrnsn s 105
Logging Everything InCluding Errors........c.ccovvvnvnininnnsnsenie s e 109
Logging Errors 10 @ TexXt File........coovcvvererenernscsseses e 110

iv

https://doi.org/10.1007/979-8-8688-1157-9_3
https://doi.org/10.1007/979-8-8688-1157-9_3
https://doi.org/10.1007/979-8-8688-1157-9_3#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_3#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_3#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_3#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_3#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_4
https://doi.org/10.1007/979-8-8688-1157-9_4
https://doi.org/10.1007/979-8-8688-1157-9_4#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_4#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_4#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_4#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_4#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_5
https://doi.org/10.1007/979-8-8688-1157-9_5
https://doi.org/10.1007/979-8-8688-1157-9_5#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_5#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_5#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_5#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_6
https://doi.org/10.1007/979-8-8688-1157-9_6
https://doi.org/10.1007/979-8-8688-1157-9_6#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_6#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_6#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_6#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_7
https://doi.org/10.1007/979-8-8688-1157-9_7
https://doi.org/10.1007/979-8-8688-1157-9_7#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_7#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_7#Sec3

TABLE OF CONTENTS

00 (] 1 R 111
31011117 SR 112
Chapter 8: Reportingccccusseerrrsssssnnsessssssnsssssssssssssssssssssssssnsssssssnns 115
CSV REPOM ... et 115

o (eT= 0 To) o 4o ST 120
HTML REPOIING ..cuvvvierreeriresiree s e ss s s s e ses s snses 125
SUMMAIY.c.veitiiriere et s ss e e s e s sae e e e s e s aesae e s e e aesae e e e nannaees 130
Chapter 9: Miscellaneous Keywordsccusesssssssasssssssssnsssassssasssns 131
3] 0] SRR 132
REPIACE ..ot e e s 133
e LT B (1 o 134
ComPare-0DbJECT.........coveemrrrerrese e 135
SUMMANY....ctitierrnerisese e nr e 139
Chapter 10: Gluing It All Together........cccusmmmrmsssnnnnmnsssssnnmnsssssssnssnnns 141
Product Examples (DailY USE)ccvrerererreriererinsenseressssessessessessssessessessssessessenes 147
MiCroSoft EXChanQEccucevveeriiiiniinsin e s se e sse e sesssesnessesneas 147
Clean Database so That Mailboxes Appear in a Disconnected State........... 147

Find Disconnected MailDOXeS.........couoererinernnmsenninessse s 148
Extract Message ACCept From..........cccovrnnnnnnnnsessssse s 148
ACLIVE SYNC STALS.....ccivreierierere st rrrre s s se e snesnens 148
MesSage TracKing.......cccuvererversnnenerses e sa e s n 148
Search Mailbox/Delete MESSAQESccocrererrrrensnmseresssssssssessssssssssesessssans 149
Exchange Quota REpPOr ... e 149

SEE QUOLA.......cecerrrreee 151

https://doi.org/10.1007/979-8-8688-1157-9_7#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_7#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_8
https://doi.org/10.1007/979-8-8688-1157-9_8
https://doi.org/10.1007/979-8-8688-1157-9_8#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_8#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_8#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_8#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_9
https://doi.org/10.1007/979-8-8688-1157-9_9
https://doi.org/10.1007/979-8-8688-1157-9_9#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_9#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_9#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_9#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_9#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_10
https://doi.org/10.1007/979-8-8688-1157-9_10
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec1
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec2
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec3
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec4
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec5
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec6
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec7
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec8
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec9
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec10

TABLE OF CONTENTS

ACHIVE DIFBCIOIY ... eiee et 151
Exporting Group MEMDEIS.......cccvevererierieresesseresessssessessesssssssessessessssessessens 152
Setting Values for AD ALrDULES........ccveerererenierieresessesese s s ssssessessesees 153
Exporting Active Directory Attributes..........ccccvvnvvninininse e 153
Adding Members to the Group from @ TEXt Filecccveerievvierieriernsensersennens 159
Removing Members of the Group from a Text Filecccvvvvrrrierienenseniennens 160

OFfICE 3B5.....cuererrrrrnrrrrrrrrsrrrerere s s a b e e s 161
Exchange Online Mailbox REport.........cccooevvininennsnsnse s sessesennens 164
Exchange Online Message Trackingccooucvverrernnensesesesnnsessessessssessessens 165
Searching a UNified LOgccoeeerrverrenercsrnse e sens 166

AZUFE AD (ENTFA)ceceeeeereeereeesessee e e sse e se e ses e s sessesennsnens 167
Adding Users to an Azure AD Group from a Text File of UPNccccceeuene 167
Removing Users in an Azure AD Group from a Text File of UPN................... 168
Checking If a User Is Already a Member of @ Groupc.ccveveenererennnncncnes 168
Adding Administrators 10 @ ROIEcoecvreererencrrrcserese e 168
Checking for Azure AD User Provisioning Errors...........cocoeeereeerensenerenerennes 169

Microsoft Graph Module............ccocverirnininr s 169

AWS PoWerShell MOdUIE..........ccoveeerrerernesise e srssesssnenens 171

Text/CSV File Operations........cccvveverernerserersnensenesessssessesessesessesessesssssssessesaes 172

3T < S 173

SUMMAIY.. et s e s e a e s p e e s ae e e e e nne s 175

1T - 177

https://doi.org/10.1007/979-8-8688-1157-9_10#Sec11
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec12
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec13
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec14
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec15
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec16
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec17
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec18
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec19
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec20
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec21
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec22
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec23
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec24
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec25
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec26
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec27
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec28
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec29
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec30
https://doi.org/10.1007/979-8-8688-1157-9_10#Sec31

About the Author

Vikas Sukhija, widely recognized as
TechWizard, brings over two decades of
expertise in IT infrastructure, with a deep
specialization in messaging, collaboration, and
IT automation. Leveraging powerful tools like
PowerShell, PowerApps, and Power Automate,
he has successfully designed and implemented

automation solutions across a range of

platforms. Currently serving as Principal
Architect at Boston Scientific, Vikas is a driving force behind modern
IT automation frameworks and best practices. As a Microsoft MVP and
seasoned blogger, he actively shares his knowledge with the global tech
community, guiding enterprises of all sizes in architecting, automating,
and streamlining their Microsoft 365 and Azure environments.

vii

About the Technical Reviewer

Arun Sharma is the CEO of Suri Technologies,
where he spearheads the cloud and Al
business across multiple regions. With over

25 years of experience, Arun has developed

a robust expertise in cloud technologies,
including Microsoft Azure, AWS, and GSuite, as
well as IoT, machine learning, microservices,
and containerization.

His impressive career includes leadership
roles such as AVP of Cloud Solutions at
Click2Cloud, General Manager of Cloud
and Al at Paytm and AliCloud, and Delivery
Manager at Microsoft. He has also served as

a Product Manager at Icertis and held various positions at Infosys and
CMC. Throughout his career, Arun has successfully managed relationships
and sales with medium and enterprise global clients, driving cloud
consumption and consulting services.

Arun thrives on challenges in the Microsoft ecosystem, leveraging his
deep domain knowledge in sectors such as banking, insurance, FMCG,
government, retail, and agritech. He is actively involved in the tech
community as an author of international research papers, a technical
speaker, and a trainer. Recognized as a Microsoft Certified Trainer (MCT),
Arun holds a Doctor of Business Administration, an MBA, and an MTech
in Computer Science.

ix

CHAPTER 1

PowerShell Basics

PowerShell has evolved significantly since the earlier editions of this book.
With the introduction of PowerShell 7, we now have a powerful, cross-
platform scripting language that runs on Windows, macOS, and Linux.
This is a notable shift from the Windows-only constraint of PowerShell
versions up to 5.

PowerShell 7 brings several advancements, including enhanced
performance and a reduced memory footprint. The development focus
has moved to PowerShell 7 and later versions, ensuring that new features
and improvements are continually integrated into the platform.

However, PowerShell 5.1 is far from obsolete. It remains in use, with
many developers continuing to create and maintain scripts in this version.
Most scripts are compatible across both versions, though some may
require minor adjustments to run smoothly in PowerShell 7.

To run PowerShell version 5, you use PowerShell as the keyword in the
run command of Windows.

Refer Figure 1-1.

© Vikas Sukhija 2025
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_1

https://doi.org/10.1007/979-8-8688-1157-9_1#DOI

CHAPTER 1 POWERSHELL BASICS

=

indows PowersShell

opyright (C) Microsoft Corporation. All rights reserved.

ry the new cross-platform PowerShell https://aka.ms/pscoreb
PS C:\Users\Vikas Sukhija>

7 Type the name of a program, folder, document, or Internet

resource, and Windows will open it for you.

Open: ’ PowerShell

Figure 1-1. Running Powershell 5

To run PowerShell version 7, you use pwsh as the keyword in the run
command of Windows.

Do not forget to install it first:

https://learn.microsoft.com/en-us/shows/it-ops-talk/how-to-
install-powershell-7

Refer Figure 1-2.

https://learn.microsoft.com/en-us/shows/it-ops-talk/how-to-install-powershell-7
https://learn.microsoft.com/en-us/shows/it-ops-talk/how-to-install-powershell-7

CHAPTER 1 POWERSHELL BASICS

bowerShell 7.4.4

C:\Users\Vikas Sukhija>

Type the name of a program, folder, document, or Internet
resource, and Windows will cpen it for you.

Open: lm

Figure 1-2. Running PowerShell 7

Let’s begin with the foundational elements of scripting: variables,
loops, if/else statements, switches, and functions. These core components
are the backbone of any scripting language, enabling you to craft scripts
that range from the simplest tasks to the most complex automation.

I won’t delve into the various versions of PowerShell or provide
an extensive definition of what PowerShell is. For the sake of clarity,
PowerShell is essentially a task automation solution comprising a

CHAPTER 1 POWERSHELL BASICS

command-line shell and a scripting language. This book isn’t about the
intricacies of the language or the platforms it supports, nor will it cover
get and set commands in detail. Instead, it’s designed to help you create
scripts efficiently without needing an in-depth understanding of the
underlying mechanics.

My goal is to equip you with the skills to develop scripts through a
hands-on approach. This method has proven effective for many of my
students, who have gradually mastered the language over time.

You don’t need a programming background or coding expertise to
benefit from this book. By following the practical approach laid out here,
you’ll quickly learn to write your own scripts and automate various IT
systems and processes. This way, you can focus on achieving tangible
results without getting bogged down by complex concepts.

Note All source code used in the book can be accessed by clicking
Download Source Code: https://github.com/Apress/
PowerShell-Fast-Track-Second-Edition (follow the listing
numbers).

Variables and On-Screen Printing

First, let’s cover the basics: variables and arrays. In PowerShell, every
variable starts with a dollar sign ($). This helps distinguish variables from
other elements in your script.

Here are a couple of examples:

$a =1
$b = "Vikas"

https://github.com/Apress/PowerShell-Fast-Track-Second-Edition
https://github.com/Apress/PowerShell-Fast-Track-Second-Edition

CHAPTER 1 POWERSHELL BASICS

When you type $a and $b, values will be displayed as shown in
Figure 1-3.

EN Windows PowerShell

Figure 1-3. Variables in PowerShell

Note | have not written 1 in quotes, but when | used string, quotes
are utilized.

PowerShell autodetermines the first value as int.

Let us now print these variables on the screen. You can do that using
write-host and Write-Output.

Input: PS C:\> Write-host $a
Output: 1

Input: PS C:\> Write-host $b
Output: vikas

CHAPTER 1 POWERSHELL BASICS

Write-host also has parameters ForegroundColor and
BackgroundColor which you can use to change colors on print output.

Input: PS C:\> Write-host $a -foregroundcolor green
Output: 1

Input: PS C:\> Write-host $b -backgroundcolor green
Output: vikas

Input: PS C:\> Write-Output $a
Output: 1

Input: PS C:\> Write-Output $b
Output: vikas

Tip Make it a rule to use quotes when assigning values to variables
when you are working with strings, as shown above in the example.

Figure 1-4 shows the results.

EN Windows PowerShell

:\> write-host %b

Write-Host %b green

Write-Host %b B green
Write-Output %a

Write-Output %b

Figure 1-4. Using the Write-Host and Write-Output variable

CHAPTER 1 POWERSHELL BASICS

Arrays and array lists:

In PowerShell, arrays and array lists are two methods for storing
collections of items, each with its own advantages. While both serve
similar purposes, I recommend using array lists whenever possible due to
their superior performance.

Arrays:

Arrays are fixed-size collections of items. When you create an array,
its size is set, and you cannot change it without creating a new array. This
behavior makes arrays less efficient when dealing with large datasets or
when the size of the collection needs to change frequently. When you add
an item to the array, it deletes the existing array and creates a new array
which makes them very slow.

Below are different ways you can create the arrays in PowerShell. You
can create them in the same way as you have created the variable, just
need to separate the elements by a comma.

Here are some examples:
$b = IIAII’IIBII,"CII,IIDII’IIEII

Refer Figure 1-5.

E¥ Windows PowerShell

Figure 1-5. Array illustration

CHAPTER 1 POWERSHELL BASICS

Another approach to defining an array in PowerShell involves using
the @() syntax. This method is intuitive because the syntax itself clearly
indicates that you are creating an array.

$c= @("server1","server2")

This is shown in Figure 1-6

EN Windows PowerShell

Figure 1-6. Array syntax

A dynamic array in PowerShell can be initialized with the @() syntax,
which creates an empty array. This type of array is particularly useful when
you need to add elements to it dynamically as shown in Figure 1-7

$d = @()

How to ADD element to an array:

$c= @("server1","server2")
$c+= "server3"

CHAPTER 1 POWERSHELL BASICS

EX C:\Program Files\PowerShell\T\pwsh.exe

Sukhija>»

Sukhija»
erverl
erver2

as Sukhija>»

s Sukhija>»
cerverl
server2
server3

PS C:\Users\Vikas Sukhija>

Figure 1-7. Add element to array

Array lists:

Array list is type of collection you should always use as a thumb rule
when you are scripting as it is performance rich when dataset is huge.

ArrayLists provide significant performance advantages over
traditional arrays.

Syntax to create array list:

$servers = [System.Collections.ArraylList]@()
How to ADD element to an array list:

$servers.Add("Server1")
$servers.Add("Server2")

Note the Add keyword that is required for adding the element as shown
in below Figure 1-8

CHAPTER 1 POWERSHELL BASICS

EX C:\Program Files\PowerShell\T\pwsh.exe

[Fa R ¥y

Sukhija>

L

Sukhija>

p
p
)
PS
1
P
S

(¥4l

el

C:\Users\Vikas Sukhija>

Figure 1-8. Add element to array list

If/Else

In scripting, conditional processing is fundamental. The if-else statement
allows you to execute different code blocks based on whether a specified
condition is true or false. This concept is universal across scripting
languages and forms the basis of decision-making in your scripts.

Listing 1-1 shows two examples.

First, you define a variable value as 10, and then, you use the
conditional operators and if else statements to check if it’s greater than
9 or if it’s less than 9. Based on the result, you use Write-host to print it to
screen as shown in Figure 1-9.

Note that -gt means greater than and -1t means less than. I will
quickly go through them in the next subsection.

Listing 1-1. Example Code for Greater Than Operator Usage
in If/Else

[int]$a= "10"
if($a -gt "9")
{

10

CHAPTER 1 POWERSHELL BASICS

write-host "True" -foregroundcolor Green
telse {
Write-host "False" -foregroundcolor Red

}

[int]in front of $a means integer. If you use a prefix before the variable,
it means you have exclusively defined its type, like the above [int] has been
prefixed. Setting prefix types is always better, but if you don’t, PowerShell is
intelligent enough to do it implicitly. These are called data types, and they
include [string], [char], [int], [array], etc. Using type casting makes your
code more predictable by explicitly defining the data type of a variable.

EX Windows PowerShell

PS C:\> [int]$a
PS C:\> if(%a -g
>> write-host

>> {Write-host

Figure 1-9. Showing -gt usage in if/else
Listing 1-2 and Figure 1-10 show a less than operator usage snippet.

Listing 1-2. Example Code for the Less Than Operator Usage
in If/Else

[int]$a= "10"
i'F($a ']_t ||9||){
write-host "True" -foregroundcolor Green

11

CHAPTER 1 POWERSHELL BASICS

telse {
Write-host "False" -foregroundcolor Red

}

E¥ Windows PowerShell

PS C:\> [int]$a-
PS C:\> if($a -1t

>> write-host regroundc r Green}else
>> {Write-host yregroundcolor Red}

PS C:\>

Figure 1-10. Showing -It usage in if/else

Conditional/Logical Operators

Below is a list of conditional/logical operators that you will use in your
everyday scripts. Without them, many scripting operations would not be
possible. They will always be used in comparison if else statements
as shown in the above parent section. These operators are crucial for
performing comparisons and making decisions in your scripts.

-eq: Equal

-ne: Not equal

-ge: Greater than or equal

-gt: Greater than

-1t: Less than

-le: Less than or equal

=like: Wildcard comparison

12

CHAPTER 1 POWERSHELL BASICS

-notlike: Wildcard comparison

-match: Regular expression comparison
-notmatch: Regular expression comparison
-replace: Replace operator

-contains: Containment operator
-notcontains: Containment operator

Logical Operators

-and: Logical AND

-or: Logical OR

-not: Logical NOT

!'s Logical NOT

Logical operators allow you to combine multiple conditions in your
scripts. They are essential for more complex decision-making processes. In
PowerShell, you can use logical operators to check if either or both of the
several conditions are true.

Let’s update the above example to the code shown in Listing 1-3. You
will print true if the value of variable $a is less than 9 or equals to 10. Here,
you have combined two conditions. Since it is the OR operator, TRUE will
be returned if one of them matches. Here, the second condition, $a -eq
"10", matches if a value is equal to 10. See the results in Figure 1-11.

Listing 1-3. Example Code Showing Logical -or Operator

[int]$a= "10"

If(($a -1t "9") -or ($a -eq "10")){
write-host "True" -foregroundcolor Green
}else {

Write-host "False" -foregroundcolor Red}

13

CHAPTER 1 POWERSHELL BASICS

E¥ Windows PowerShell
PS C:\> [int]%a
PS C:\> If(($a -1t
>> write-host

>> {Write-host

Irue

PS C:\>

Figure 1-11. Showing logical -or operator

If you use the AND operator, then both conditions should match if you
want to return TRUE, which will not happen in the above case. See Listing 1-4
and Figure 1-12.

Listing 1-4. Code Showing Logical -and Operator

[int]$a= "10"

If((%$a -1t "9") -and ($a -eq "10")){
write-host "True" -foregroundcolor Green
telse {

Write-host "False" -foregroundcolor Red}

EX Windows PowerShell

PS C:\> [int]$a-

PS C:\> If(($a -1 nd ($a -eq N4

>> write-host oregroundcolor Green}else
>> {Write-host oregroundcolor Red}

PS C:\>

Figure 1-12. Showing logical -and operator

14

CHAPTER 1 POWERSHELL BASICS

The -not operator in PowerShell is used for negation, meaning it
inverts the result of a condition. If a condition evaluates to true, -not makes
it false, and vice versa.

While the -not operator is useful for certain scenarios, I typically avoid
using it frequently. In my experience, it can lead to mistakes, especially if
you're working quickly and not paying close attention. Misinterpreting the
results can occur easily, making your script harder to debug.

For more straightforward or less error-prone alternatives, consider
using positive conditions and combining them with logical operators
where possible. This can help you avoid potential pitfalls and make your
code more readable and maintainable.

Switch

Switch case is another type of statement which you can utilize to handle
multiple conditions based on value of single variable. When you are
dealing with a single variable that can have multiple distinct values,
making it easier to handle multiple cases cleanly. Avoid using if else in
this case as otherwise your code will become huge and will look ugly and
difficult to understand.

Syntax for switch case:

switch($variable){

casel { # Code to execute if matches casel }
case2 { # Code to execute if matches case2 }
case3 { # Code to execute if matches case3 }
default { #texecute if none of the cases match }

}

15

CHAPTER 1 POWERSHELL BASICS
Listing 1-5. Showing switch case

$value = 10

switch ($value) {
5 { Write-Host "Value is 5" -ForegroundColor Red }
10 { Write-Host "Value is 10" -ForegroundColor green }
default { Write-Host "Value is something else" }

EX C:\Program Files\PowerShel\T\pwsh.exe

:\Users\Vikas Sukhija> $val
:\Users\Vikas Sukhija> switc
5 { Write-Host "Value is 5
{ Write-Host "Value is 1@
f { Write-Host "

s 1€
\Users\Vikas Sukhija>

Figure 1-13. Showing usage of SWITCH case

Loops

In PowerShell, as in many other scripting languages, loops are essential for
executing a block of code repeatedly. There are two primary types of loops,
with others being variations or combinations of these.

16

CHAPTER 1 POWERSHELL BASICS

For Loop and While Loop
For Loop

There are three iterations of for loops in PowerShell:
o foreach
o foreach-object
o for

Let’s differentiate between the three for loops by looking at the
examples.

foreach: You need to specify a foreach $variablein $collection
foreach ($i in $x).

Note You can combine the if else and comparison operators in
Listing 1-6. You can see the results in Figure 1-14.

Listing 1-6. Code Showing a foreach Loop
$e0("1","2","3",,"4")
foreach ($i in $x) {

if ($i -1t 2) { write-host "$i is Green" -foregroundcolor Green

}

else{ write-host "$i is yellow" -foregroundcolor yellow

}

17

CHAPTER 1 POWERSHELL BASICS

EX Windows PowerShell

r yellow

4 is yellow
PS C:\>

Figure 1-14. Showing a foreach loop

foreach-object: You use a PIPE with the collection to achieve the
same thing (see Listing 1-7 and Figure 1-15):

$x | foreach-object

Listing 1-7. Code Showing a foreach-object Loop
$X=@(II1II’ |l2ll, ll3ll 5 II4II)
$x | foreach-object{

if ($_ -1t 2) { write-host "$ is Green" -foregroundcolor Green

}

else{ write-host "$ is yellow" -foregroundcolor yellow

18

CHAPTER 1 POWERSHELL BASICS

E¥ Windows PowerShell

)

foreach-object{

2) { write-host "$_ -foregroundcolor Green
se{ write-host "$ regre olor yellow

¥
areen
yellow
yellow
4 is yellow
PS C:\>

Figure 1-15. Showing a foreach-object loop

for: This is the one you will remember from your school days. I have
not used it much and see less usage across the community. See the code in
Listing 1-8 and the results in Figure 1-16.

Listing 1-8. Code Showing a for Loop
for($x=1; $x -le 5; $x++){

if($x -1t 2){write-host "$x is Green" -foregroundcolor Green

}

else{ write-host "$x is yellow" -foregroundcolor yellow

}

19

CHAPTER 1 POWERSHELL BASICS

E¥ Windows PowerShell

2){write-host "$x Y i r Green

else{ write-host "$x r i r yellow

yellow
yellow
yellow
yellow

Figure 1-16. Showing a for loop

While Loop

The while loop is different because it lasts until the condition is true. Let’s
go through some examples to get more clarity.
The while loop also has two iterations:

e do-while
e while

For do-while, you do something until some condition is met. In
Listing 1-9, variable x = 0, and inside the variable, you increment its value
until it is not equal to 4. See Figure 1-17 for the result.

Note You are doing the thing first and matching the condition later.

20

CHAPTER 1 POWERSHELL BASICS

Listing 1-9. Code Showing a do-while Loop

$x= 0
Do {$x++
if($x -1t 2){write-host "$x is Green" -foregroundcolor Green

}

else{ write-host "$x is yellow" -foregroundcolor yellow

}
twhile($x -ne 4)

EX Windows PowerShell
C:\> $x= 0
C:\> Do {$x
if($x t 2){write-host "$x
1
]

else{ write-host "$x

2 is yellow
3 is yellow

Figure 1-17. Showing a do-while loop

For while, you are also doing something until some condition is met. In
Listing 1-10, variable x = 0, and inside the variable, you increment its value
until it is not equal to 4.

Note You are checking first and doing the thing after that.

The main difference between the two, as you can see, is the while loop
(an example of which is shown in Listing 1-10) checks the condition before
the loop (iteration) but do-while does the checks after the execution. See
Figure 1-18 for the result.

21

CHAPTER 1 POWERSHELL BASICS
Listing 1-10. Code Showing the while Loop

$x= 0
while($x -ne 4) {$x++
if($x -1t 2){write-host "$x is Green" -foregroundcolor Green

}

else{ write-host "$x is yellow" -foregroundcolor yellow

}

E¥ Windows PowerShell

($x -ne 4) {5x,f

2){write-host

clse{ write-host "$x
1
J

is Greer

3 is yellow

Figure 1-18. Showing a while loop

Functions

Functions are reusable blocks of code that you define once and can call
from anywhere in your script. They help streamline your code by reducing
redundancy and making it more organized.

Functions are designed to encapsulate code into manageable units.
By using functions, you avoid writing repetitive and lengthy code, making
your scripts cleaner and easier to maintain.

22

CHAPTER 1 POWERSHELL BASICS

In Listing 1-11, you create an Add function to add two numbers. The
result is shown in Figure 1-19.

Listing 1-11. Example Code Showing an Add Function of
Two Numbers

Function Add ($a1, $b1)

{
$al1 + $b1

}

Add 5 6 # Call function.

‘ E¥ Windows PowerShell

>> }

PS C:\> Add 5 6
11

PS C:\>

Figure 1-19. Showing an Add function of two numbers

Similarly, you can create this for three or more numbers. See Listing
1-12 and Figure 1-20.

Listing 1-12. Example Code Showing an Add Function of
Three Numbers

Function Add ($a1, $b1, $c1)
{

$a1 + $b1 +$c1

}

Add 569 # Call function.

23

CHAPTER 1 POWERSHELL BASICS

E¥ Windows PowerShell

Figure 1-20. Showing an Add function of three numbers

Summary

In this chapter, you've explored fundamental concepts in PowerShell,
including the following:

e Variables: How to store and manipulate data

e Arrays: Organizing multiple values into a single
collection

o If/Else Switch Statements: Making decisions based on
conditions

e Loops: Repeating actions until a condition is met

These foundational elements are crucial for crafting robust and
effective scripts in any production environment. As you progress to the
next chapters, you'll build on these basics to develop more advanced
scripting skills and techniques.

24

CHAPTER 2

Date and Logs

Creating effective scripts often requires incorporating timestamps to track
various operations. For example, you might need to create a time-stamped
log file to record activities or insert time-stamped entries directly within
the script. Understanding how to work with date and time cmdlets in
PowerShell is crucial for achieving this.

In this section, I'll introduce a handy cheat function that you can use
in your scripts to automatically generate time-stamped logs and entries.
This function will simplify your workflow, ensuring that your logs are both
accurate and easy to read.

Before diving into the Write-Log function (your first real cheat code!),
let’s explore some basic date and time operations. These examples will give
you a solid foundation and help you see the practical application of date
and time cmdlets in action.

The get-date command provides you with the current date and time,
as shown in Figure 2-1.

© Vikas Sukhija 2025 25
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_2

https://doi.org/10.1007/979-8-8688-1157-9_2#DOI

CHAPTER 2 DATE AND LOGS

E¥ Windows PowerShell
PS C:\> get-date

Tuesday, December 3, 2024 11:11:42 AM

PS C:\>

Figure 2-1. Showing the get-date cmdlet

To format it in a manner that will allow it to be used in file names and
other instances, the format keyword can be used as shown in Figure 2-2:

get-date -format d

EX C:\Program Files\PowerShell\T\pwsh.exe
PS C:\> get-date

Saturday, Au
» get-date

ATATATS
YYYY

L1

\> get-date MM

ca

> get-date -f dd
\» get-date

\>» get-date

=}
(&

PS
18
PS
58
P

R LA 0O

(%]

Figure 2-2. Showing date formatting

26

CHAPTER 2 DATE AND LOGS

Common format specifiers include comma:

yyyy for the year

MM for the month

dd for the day

HH for the hour (24-hour clock)

mm for minutes

ss for seconds

Listing 2-1 shows the date and time used in a file name.

Listing 2-1. Code for Date and Time Used in a File Name

$date = get-date -format d # formatting
$date = $date.ToString().Replace("/", "-") # replace / with -
$time = get-date -format t # only show time

$time = $time.ToString().Replace(":", "-") # replace : with -

$time = $time.ToString().Replace(" ", "")
$m = get-date

$month = $m.month #getting month

$year = $m.year fgetting year

Examples: (now gluing them all together)

#based on date

$logl = ".\Processed\Logs" + "\" + "skipcsv " + $date + " .log'

#based on month and year

$log2 = ".\Processed\Logs" + "\" + "Created " + $month +" " +

$year +" .log"
#based on date and time

$output1 = ".\" + "G Testlog " + $date + " " + $time + " .

Note Always define the current working folder.

27

CHAPTER 2 DATE AND LOGS

Date Manipulation

In the previous section, you saw how the Get-Date cmdlet provides the current
date and time. This cmdlet is highly versatile, allowing you to manipulate date
and time data to suit the specific needs of your scripting solution.

In this section, I'll briefly demonstrate how to perform essential
operations, such as determining the first and last day of the month or
generating a midnight timestamp. These operations are common in
automation tasks where date boundaries are significant.

To get the first and last day of the month, use the code shown in
Listing 2-2. This example illustrates how to capture the start and end dates
of the current month. You can refer to Figure 2-3 for the resulting output.

Listing 2-2. Code for Fetching the First and Last Day of the Month

$date= Get-Date -Day 01

$lastday = ((Get-Date -day 01).AddMonths(1)).AddDays(-1)
$start = $date

$end = $lastday

EX Windows PowerShell

= Get-Date -Day 01
((Get-Date 01) .AddMonths (1)) .AddDays (-1)

Sunday, December 1, 2024 11:12:41 AM

PS C:\> $end

Tuesday, December 31, 2024 11:12:41 AM

PS C:\>

Figure 2-3. Showing the first and last day of the month
28

CHAPTER 2 DATE AND LOGS

To get the midnight stamp, simply use this one-liner (and see
Figure 2-4):

Get-Date -Hour 0 -Minute 0 -Second 0O

E¥ Windows PowerShell
PS C:\> Get-Date -Hour

Tuesday, December 3, 2024 12:00:00 AM

PS C:\>

Figure 2-4. Showing how to get the midnight date timestamp

Creating Folders Based on a Date

In real-world scenarios, you may need to organize files by creating folders
based on the current date. For instance, you might want to make daily
backups of a SharePoint configuration, storing each backup in a uniquely
named folder that reflects the date. This practice not only helps with
organization but also ensures that you can easily locate backups from
specific days.

Listing 2-3 demonstrates how you can achieve this by leveraging
PowerShell’s date-handling capabilities to create a folder named with the
current date. Figure 2-5 illustrates the result of running this code.

29

CHAPTER 2 DATE AND LOGS

Listing 2-3. Code for Creating a Folder Structure Based on a Date

$Dname = ((get-date).AddDays(0).toString('yyyyMMdd')) #date
manipulation

$dirName = "ConfigBackup $Dname" #prefix for the folder
New-Item -Path c:\temp -Name $dirName -ItemType directory

X Windows PowerShell
((get-date) .AddDays(9) . toString())

lame = $

PS C:\> New-Item -Patt N jirName -ItemType directory

Directory: C:\temp

LastWriteTime Length Name

ConfigBackup 20241203

Figure 2-5. Creating a folder structure based on a date

Ready-Made Date and Log Functions

Here are three ready-made functions that you can copy and paste inside
your scripts as per your requirements. Toward the end of this book, I will
demonstrate how to create a complete script by using all the ready-made
functions or code shared in this book.

Write-Log function: It uses another function named
New-FolderCreation, which can be used separately if required.
See Listing 2-4.

30

CHAPTER 2 DATE AND LOGS
Listing 2-4. Code for Write-Log Function

function New-FolderCreation
{
[CmdletBinding()]
param
(
[Parameter (Mandatory = $true)]
[string]$foldername
)
$logpath = (Get-Location).path + "\" + "$foldername"
$testlogpath = Test-Path -Path $logpath
if($testlogpath -eq $false)
{

#Start-ProgressBar -Title "Creating $foldername folder"
-Timer 10

$null = New-Item -Path (Get-Location).path -Name $foldername
-Type directory
}
}HiNew-FolderCreation
function Write-Log
{
[CmdletBinding()]
param
(
[Parameter(Mandatory = $true,ParameterSetName
[array]$Name,
[Parameter(Mandatory = $true,ParameterSetName
[string]$Ext,
[Parameter (Mandatory = $true,ParameterSetName
[string]$folder,

'Create')]

"Create')]

"Create')]

31

CHAPTER 2 DATE AND LOGS

[Parameter (ParameterSetName = 'Create',Position = 0)]
[switch]$Create,

[Parameter(Mandatory = $true,ParameterSetName = 'Message')]
[String]$message,

[Parameter(Mandatory = $true,ParameterSetName = 'Message')]
[String]$path,

arameter (Mandatory = $false,ParameterSetName = 'Message

[P ter(Mandatory = $false,P terSetN 'Message')]
[ValidateSet('Information', 'Warning','Error')]
[string]$Severity = 'Information’,

[Parameter (ParameterSetName = 'Message',Position = 0)]
[Switch]$MSG
)
switch ($PsCmdlet.ParameterSetName) {
"Create"
{
$log = @()
$date1l = Get-Date -Format d
$date1l = $datel.ToString().Replace("/", "-")
$time = Get-Date -Format t
$time = $time.ToString().Replace(":", "-")
$time = $time.ToString().Replace(" ", "")
New-FolderCreation -foldername $folder
foreach ($n in $Name)

{$log += (Get-Location).Path + "\" + $folder + "\" + $n + " " +
$dater + " " + $time + " .$Ext"}
return $log

}

"Message"

{
$date = Get-Date

32

CHAPTER 2 DATE AND LOGS

$concatmessage = "I$date"” + "I
switch($Severity){

+ $message +"| + "$Severityl"

"Information"{Write-Host -Object
$concatmessage -ForegroundColor Green}

"Warning"{Write-Host -Object
$concatmessage -ForegroundColor Yellow}

"Error"{Write-Host -Object
$concatmessage -ForegroundColor Red}

}
Add-Content -Path $path -Value $concatmessage

}

}
} #Function Write-Log

To create a log file, you can simply use it as below (it will auto-create
the folders):

$log = Write-Log -Name "Name-Log" -folder "logs" -Ext "log"
To create a CSV file for report purposes, you can use it like so:

$Report1l = Write-Log -Name "MAM-Report" -folder "Report"
-Ext "csv"

To write the information to a log file, you can use the following:
Write-log -Message "Connect to Intune" -path $log
To write a warning to a log file, you can use the following:

Write-log -Message "Connect to Intune" -path $log
-Severity Warning

33

CHAPTER 2 DATE AND LOGS
To write an error to a log file, you can use the following:

Write-Log -Message "Error loading Modules" -path $log
-Severity Error

Figure 2-6 shows the Write-Log operation in the PowerShell console.

E¥ Windows PowerShell
Write-Log

Log_12-3-2024_11-16AM_.log
t Write-Log

nnect to Int

PS C:\> Write-log Warning

112/03/2024 11:17:21] |Connect to Intune| |Warning|
PS C:\> Write-Log 3

Error

PSECZ\>:

Figure 2-6. Write-Log operation

The log file created is under the logs folder and will create a structural

log text as shown in Figure 2-7.

V| ¥

“ Home Share View

< v 4 > ThisPC > OSDisk (C:) > logs
Name . Date modified Tpe Size
s Quick access
| Name-Log_12-3-2024_11-16AM_ 12/3/202411:17 AM Text Document 1K8
[Desktop
J Name-Log_12-3-2024_11-16AM_ - Notepad
File Edit Format View Help
[l12/03/2024 11:17:12| |Connect to Intune| |Information
|12/03/2024 11:17:21| |Connect to Intune| [Warning|
112/03/2024 11:17:28| |Error loading Modules| |Error

Figure 2-7. Log file created after using the Write-Log function
34

CHAPTER 2 DATE AND LOGS

Set-Recyclelogs function: This will delete the files based on a
number of days as input. As logs accumulate over time, there is a need to
recycle them after a certain period to avoid filling up server drives. This is
important for all scripts for which you have enabled logging. Use the code
in Listing 2-5.

Listing 2-5. Code for the Set-Recyclelogs Function

function Set-Recyclelogs

{
[CmdletBinding(

SupportsShouldProcess = $true,
ConfirmImpact = 'High')]

param
(
[Parameter(Mandatory = $true,ParameterSetName = 'Local')]
[string]$foldername,
[Parameter(Mandatory = $true,ParameterSetName = 'Local')]
[Parameter(Mandatory = $true,ParameterSetName = 'Path')]
[Parameter(Mandatory = $true,ParameterSetName = 'Remote')]
[int]$limit,
[Parameter (ParameterSetName = 'Local',Position = 0)]
[switch]$local,
[Parameter(Mandatory = $true,ParameterSetName = 'Remote')]
[string]$ComputerName,
[Parameter(Mandatory = $true,ParameterSetName = 'Remote')]
[string]$DriveName,
[Parameter(Mandatory = $true,ParameterSetName = 'Remote')]
[string]$folderpath,

35

CHAPTER 2 DATE AND LOGS

[Parameter (ParameterSetName = 'Remote',Position = 0)]
[switch]$Remote,
[Parameter(Mandatory = $true,ParameterSetName = 'Path')]
[ValidateScript({

if(-Not ($_ | Test-Path)){throw "File or folder does
not exist"}
return $true

D1
[string]$folderlocation,

[Parameter (ParameterSetName = 'Path',Position = 0)]
[switch]$Path

)

switch ($PsCmdlet.ParameterSetName) {
"Local”

{
$path1l = (Get-Location).path + "\" + "$foldername"

if ($PsCmdlet.ShouldProcess($pathl , "Delete"))
{

Write-Host "Path Recycle - $pathi Limit - $limit"
-ForegroundColor Green

$limitl = (Get-Date).AddDays(-"$limit") #for report recycling

$getitems = Get-ChildItem -Path $pathl -recurse -file | Where-
Object {$.CreationTime -1t $limit1}
ForEach($item in $getitems){

Write-Verbose -Message "Deleting item $($item.FullName)"
Remove-Item $item.FullName -Force

36

CHAPTER 2 DATE AND LOGS

}

"Remote"

{

$path1 = "\\" + $ComputerName + "\" + $DriveName + "$" + "\" +
$folderpath
if ($PsCmdlet.ShouldProcess($pathl , "Delete"))

{

Write-Host "Recycle Path - $pathi Limit - $limit"
-ForegroundColor Green

$limit1 = (Get-Date).AddDays(-"$limit") #for report recycling

$getitems = Get-ChildItem -Path $path1l -recurse -file | Where-
Object {$_.CreationTime -1t $limit1}
ForEach($item in $getitems){
Write-Verbose -Message "Deleting item $($item.

FullName)"
Remove-Item $item.FullName -Force
}
}
}
"Path"
{

$path1 = $folderlocation
if ($PsCmdlet.ShouldProcess($pathl , "Delete"))

{

Write-Host "Path Recycle - $pathi Limit - $limit"
-ForegroundColor Green

$limit1 = (Get-Date).AddDays(-"$limit") #for report recycling

37

CHAPTER 2 DATE AND LOGS

$getitems = Get-ChildItem -Path $path1l -recurse -file | Where-
Object {$_.CreationTime -1t $limit1}
ForEach($item in $getitems){
Write-Verbose -Message "Deleting item $($item.
FullName)"
Remove-Item $item.FullName -Force

}
}
}

}
Ht Set-Recycle logs

To recycle logs older than 10 days inside the logs folder in the current
directory:

Set-Recyclelogs -foldername logs -limit 10

Use confirm:$false to avoid confirmation once you are sure that you
want to delete the files:

Set-Recyclelogs -foldername logs -limit 10 -confirm:$false
Use verbose to check which files are getting deleted:

Set-Recyclelogs -foldername logs -limit 10
-confirm:$false -verbose

You can specify the path as well if your script is in another directory
and you want to delete logs in another folder structure:

Set-Recyclelogs -folderlocation c:\temp\logs -limit 10
To recycle logs on a remote machine, use the following syntax:

Set-Recyclelogs -ComputerName testmachine -DriveName
¢ -folderpath data\logs -limit 10

38

CHAPTER 2 DATE AND LOGS

Set-ProgressBar function: This function is just to show the progress
bar when you want to pause for some time. See Listing 2-6 and Figure 2-8.

Listing 2-6. Code for Start-ProgressBar Function

function Start-ProgressBar

{
[CmdletBinding()]

param
(
[Parameter(Mandatory = $true)]
$Title,
[Parameter(Mandatory = $true)]
[int]$Timer
)
For ($i = 1; $i -le $Timer; $i++)
{
Start-Sleep -Seconds 1;

Write-Progress -Activity $Title -Status "$i" -Percent
Complete ($i /100 * 100)
}

} #Function Start-ProgressBar

Start-ProgressBar -Title “Test timeout” -Timer 30

EX Windows PowerShell
PS C:\> Start-ProgressBar

Test timeout
4
[ooo00

Figure 2-8. Start-ProgressBar with a timer of 30 seconds

39

CHAPTER 2 DATE AND LOGS
You can use a simple timeout as well, which is built in (see Figure 2-9):

timeout 10

E¥ Windows PowerShell
PS C:\> timeout 10

aiting for 6gseconds, press a key to continue ...

Figure 2-9. Built-in timeout cmdlet

To streamline and automate various tasks within your PowerShell
environment, I have developed a custom module named vsadmin. This
module contains a comprehensive set of functions tailored to meet the
needs of IT professionals looking for efficient solutions.

You can easily install the vsadmin module from the PowerShell Gallery
by executing the following command:

https://www.powershellgallery.com/packages/vsadmin

Install-Module -Name vsadmin (Figure 2-10)

In the event that you have already installed the vsadmin module, you
might want to ensure that you are using the latest version. To upgrade the
module to the latest version, use the -Force parameter:

Install-Module -Name vsadmin -Force

40

https://www.powershellgallery.com/packages/vsadmin

CHAPTER 2 DATE AND LOGS

EN Administrator: Windows PowerShell
» Install-Module vsadmin

ntrusted repository
ou are installing the modules from an untrusted repositor
[A] Yes to A1l [M] No [L] Mo to All [5] Suspen

Figure 2-10. Install-Module vsadmin

While this chapter introduces the installation and upgrade process of
vsadmin, I have written a dedicated chapter that thoroughly explains all
the functionalities and usage of the vsadmin module. You can find this
chapter later in the book, where I have provided examples and scenarios to
help you make the most of this powerful tool.

Summary

In this chapter, you explored the powerful capabilities of PowerShell’s

date and log cmdlets, learning how to manipulate and format dates to
generate time-stamped folders and files. These techniques are invaluable
in a variety of real-world scenarios, such as automatically creating daily log
files or organizing data into date-specific folders.

By mastering these skills, you can enhance the automation and
organization of your scripts, ensuring that your files are systematically
named and easily accessible. Whether you're creating backup directories
or logging operational data, incorporating date and timestamps into your
file and folder names will streamline your workflows and improve the

efficiency of your scripts.

41

CHAPTER 3

Input to Your Scripts

In the real world of system administration, it's common to encounter
scenarios where your scripts need to process and act on various types of
input data. For instance, you might need to read a text file containing a list
of users to add them to a specific Active Directory group. Alternatively, you
might have a CSV file that includes user attributes like phone numbers, job
titles, and departments, which need to be updated in Active Directory.

These tasks are not just routine—they are crucial for maintaining the
accuracy and efficiency of your IT infrastructure. The ability to automate
these processes can save you significant time and reduce the risk of
human error.

In this chapter, we’ll explore the different methods available in
PowerShell for feeding your scripts with various types of inputs. Whether
you're dealing with simple text files, structured CSV files, or more complex
data sources, understanding these techniques will empower you to create
more dynamic and flexible scripts.

We will delve into practical examples, guiding you through the process
of reading, processing, and utilizing input data effectively. By the end of
this chapter, you'll be equipped with the knowledge to handle a wide range
of input scenarios, making your automation scripts more powerful and
adaptable to the demands of your system administration tasks.

© Vikas Sukhija 2025 43
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_3

https://doi.org/10.1007/979-8-8688-1157-9_3#DOI

CHAPTER 3 INPUT TO YOUR SCRIPTS

Import-CSV

One of the most common methods for providing a script with structured
input data is by using the Import-CSV cmdlet. This cmdlet is particularly
useful when dealing with bulk operations, as it allows you to easily read
data from a CSV file and process it within a loop.

To illustrate this, let’s start by creating a small CSV file that we’ll name
samplecsv.csv. This file will contain sample data in the format shown in
Figure 3-1. Once we have the file, we'll use PowerShell to import the data
and print its contents to the console by utilizing code in Listing 3-1

@ Autosave @ off) v & 5 Bookl - Excel @ Nolabel

File Home Insert Draw Page Layout Formulas Data Review View Automate Help

[& cut [ptosharow <1 VA A = =[] v 2 wepTe

pase (B ~ B I U-H-|O0-Av EEZ(EE EMegetCemer ~

¥ < Format Painter

Clipboard 5] Font 5] Alignment |
G5 v i S
A B €

1 |User email title
2 Vikas Sukhija svikas@techwizard.cloud blogger
3 |Pradip Sukhija sukhijap@techwizard.cloud sysadmin
4
5 |
6
7

Figure 3-1. Example CSV file

Listing 3-1. Code for Import-CSV

$data = import-csv c:\temp\samplecsv.csv

#Import CSV in variable data

foreach ($i in $data) {

Write-host $i.user -foregroundcolor green #printing
column user

44

CHAPTER 3 INPUT TO YOUR SCRIPTS

Write-host $i.email -foregroundcolor yellow #printing
column email

Write-host $i.title -foregroundcolor magenta #printing
column title

Figure 3-2 shows the Import-CSV operation in PowerShell. If you're
working within the same directory as your CSV file, you can simplify the
command by using a relative path. Instead of specifying the full path
to the file, you can use a dot (.) to represent the current directory, as

shown below:

$data = import-csv .\samplecsv.csv # .\ means current directory

E¥ Windows PowerShell

C:\temp> $data = .\samplecsv.csv

C:\temp> f $i){

write-host - or green

write-host $i.email r yellow

write-host $i.title -F r magenta

} .
/ikas Sukhlja
svikas@techwizard.cloud

jap@techwizard.cloud

PS C:\temp>

Figure 3-2. Showing the Import-CSV operation by dot sourcing (.\)

There are various practical examples of importing CSV files in
PowerShell. For instance, you might need to import data from a CSV file to
update Active Directory user attributes or transfer information to a third-
party system.

45

CHAPTER 3 INPUT TO YOUR SCRIPTS

A common scenario in organizations is receiving a daily CSV feed
containing user attributes that need to be updated in Active Directory.
These attributes could include details such as state, city, country, job
codes, addresses, phone numbers, and more.

By combining the Import-Csv cmdlet with Active Directory or other
module cmdlets, you can efficiently pipe the imported data to update user
attributes, as illustrated below in Listing 3-2.

Listing 3-2. Practical Example of Importing CSV Feed into Active
Directory

Csv file fortmat:
SamAccountName,City,State,Country,JobTitle
jdoe,New York,NY,USA,Manager

asmith,Los Angeles,CA,USA,Developer
bjones,Chicago,IL,USA,Analyst

Import the Active Directory module
Import-Module ActiveDirectory

Import the CSV file

$users = Import-Csv ".\UserData.csv"

Iterate through each user in the CSV and update the
attributes in AD
foreach ($user in $users) {
Update the user attributes in Active Directory
Set-ADUser -Identity $user.SamAccountName °
-City $user.City °
-State $user.State °
-Country $user.Country °
-Title $user.Title

46

CHAPTER 3 INPUT TO YOUR SCRIPTS

Output the updated user details
Write-Host "Updated attributes for user: $($user.
SamAccountName)"

Instead of using write host, you can combine the Write-Log function
that we have learned in the last chapter and create log.
Here is the updated version of the script in Listing 3-3.

Listing 3-3. Update the Script in Listing 3-2 with Log Function from
Previous Chapter

#Create log variable (either import write-log #fundtion or
install vsadmin module)

$log = Write-Log -Name "ADattributes-Log" -folder "logs"
-Ext "log"

Import the Active Directory module

Import-Module ActiveDirectory

Import the CSV file

$users = Import-Csv ".\UserData.csv"

Iterate through each user in the CSV and update the
attributes in AD
foreach ($user in $users) {
Update the user attributes in Active Directory
Set-ADUser -Identity $user.SamAccountName °
-City $user.City °
-State $user.State °
-Country $user.Country °
-Title $user.Title

47

CHAPTER 3 INPUT TO YOUR SCRIPTS

Output the updated user details
Write-Log -message "Updated attributes for user: $($user.
SamAccountName)" -path $log

With this enhanced version, you'll have a persistent log of all activities
performed by the script. This is crucial for auditing, troubleshooting,
and maintaining a record of changes made to user attributes in Active
Directory.

As you progress through the book, you can gradually enhance this
script by incorporating advanced features such as error handling, alerting,
and more. These additions will not only make the script more robust but
also provide readers with a comprehensive understanding of building
powerful and reliable PowerShell scripts.

Importing from a Text File

In some scenarios, you may receive data in a simple text file, such as a
server list or a user list, with each entry on a new line. You might need to
perform specific operations on this data, such as iterating through the list
and executing commands for each entry.

For example, let’s say you have a file named servers.txt that contains a
list of server names, one per line.

Figure 3-3 illustrates the content of this file.

48

CHAPTER 3 INPUT TO YOUR SCRIPTS

:] servers - Notepad

File Edit Format View Help
serverol
servere2
serveres
serveroe4

Figure 3-3. Example text file contents

Listing 3-4. Code for Reading from a Text File

$servers = Get-content .\servers.txt
$servers | foreach-object {
Write-host $_

}

To read the contents of this file and print each server name to the
screen, you can use the Get-Content cmdlet. This cmdlet reads the
contents of the file and stores it in a variable. You can then use a foreach-
object loop to iterate through each line of the file. The following script
demonstrates this process (Figure 3-4).

49

CHAPTER 3 INPUT TO YOUR SCRIPTS

E¥ Windows PowerShell

PS C:\scripts> .\importtxt.psl

PS C:\scripts>

Figure 3-4. Reading from a text file operation in PowerShell

Save the Listing 3-4 as importtxt.ps1 and then run in powershell
console.

In practical scenarios where you need to perform actions on a list of
servers, such as sending shutdown or restart commands, you can use a
similar approach to what we’ve discussed. By leveraging PowerShell’s
capabilities, you can automate these tasks efficiently.

Input from an Array

You can perform similar operations with arrays as you did with text files.
For instance, if you have an array of server names and want to print each
one to the screen, you can use the ForEach-Object cmdlet. See Listing 3-5.

Listing 3-5. Code for Reading from an Array and Printing It

$servers = @("serverol
#farray of servers
$servers | foreach-object {
Write-host $ -foregroundcolor yellow

}

non non non Il)

, server02 , serverO3 , serverO4

50

CHAPTER 3 INPUT TO YOUR SCRIPTS

Running this script will show the results as shown in Figure 3-5.

E¥ Windows PowerShell

PS C:\scripts> rs = @(
PS C:\scripts> | foreach-object {

>> Write-host $_ undcolor yellow

PS C:\scripts>

Figure 3-5. Showing the printing of an array

Each server name is printed in yellow text, demonstrating how you can
handle and display array data in PowerShell.

This approach is straightforward and works well for scenarios where
data is already available in an array, allowing you to quickly iterate and

perform operations on each item.

User Input with Prompts

In PowerShell, you can use the Read-Host cmdlet to prompt the user for
input. This method allows you to interactively gather information from the
user and use it within your script.

Listing 3-6. Code for Prompting User Input and Printing It

Prompt the user to enter server names, separated by commas
$input = Read-Host "Enter server names, separated by commas"

Split the input string into an array of server names
$servers = $input -split ",\s*"

51

CHAPTER 3 INPUT TO YOUR SCRIPTS

Iterate through each server in the array and print it to

the screen
$servers | ForEach-Object {
Write-Host $_ -ForegroundColor Cyan

Save Listing 3-6 as inputfromprompt.ps1 and run in powershell; output

will be as shown in Figure 3-6.

E¥ Windows PowerShell

PS C:\scripts> $serve
> > Write-Host $_
>> }

serverel

servero2

servero3
servere4
PS C:\scripts>

Figure 3-6. Showing the printing of user input

In a similar fashion, you might need to obtain a password for running a
process securely. To ensure that the password is not exposed in plain text,
you can use the -AsSecureString parameter with Read-Host to collect the

password as a secure string.

$securePassword = Read-Host "Enter your password"
-AsSecureString

We will cover more on interactive inputs in our next chapter which is

dedicated to it.

52

CHAPTER 3 INPUT TO YOUR SCRIPTS

Summary

In this chapter, we explored various methods for providing input to
PowerShell scripts, focusing on practical and commonly used techniques
in system administration. Specifically, you learned how to

Use Text Files: Read and process data from a text
file using Get-Content, which allows you to handle
simple lists of items, such as server names.

Work with CSV Files: Import and manipulate
data from CSV files with Import-Csyv, enabling you
to update attributes or perform actions based on
structured data, such as user details for Active
Directory.

Use of Arrays as Input: Manage arrays to store and
iterate over data directly within scripts, making it
easy to process a predefined list of items.

Prompt for User Input: Securely gather sensitive

information, such as passwords, using Read-Host

with the -AsSecureString parameter, ensuring that
credentials are handled securely.

These methods provide a strong foundation for scripting and
automation tasks. While there are more advanced techniques for feeding
scripts with input, the approaches covered in this chapter are essential for
everyday system administration and offer practical solutions for a variety
of common scenarios.

53

CHAPTER 4

Interactive Input

In this chapter, we’ll delve into how to add interactive input capabilities
to your PowerShell scripts. Interactive input allows your script to engage
with the user, prompting them for necessary details during execution.
This is particularly useful for scenarios where dynamic or user-specific
information is required.

Read-Host

The most fundamental method for interactive input in PowerShell is Read-
Host. This cmndlet prompts the user to enter information and captures the
input as a string.

To illustrate how Read-Host works, consider the following example:

$x =Read-host "input your Name"

In this example, Read-Host displays the prompt “Input your Name” on
the screen. The user types their name, and the entered value is assigned
to the variable $x. You can then use this variable for further processing in
your script (Figure 4-1).

© Vikas Sukhija 2025 55
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_4

https://doi.org/10.1007/979-8-8688-1157-9_4#DOI

CHAPTER 4 INTERACTIVE INPUT

EN Windows PowerShell

PS C:\scripts> $x =Read-host
input your Name: Vikas Sukhija
PS C:\scripts> $x

Vikas Sukhija

PS C:\scripts>

Figure 4-1. Read-Host operation

You can explicitly use -prompt parameter as well while writing Read-
Host command as shown in Figure 4-2. It helps make your script more
readable and the prompt message more explicit.

$Age =Read-host -prompt "input your Age."

E¥ Windows PowerShell

PS C:\scripts> $Age =Read-host -pi
input your Age.:

PS C:\scripts> §

31

PS C:\scripts>

Figure 4-2. Read-Host operation specifying the -prompt

As mentioned in the previous chapter, you can use the -AsSecureString
parameter with Read-Host to securely capture sensitive information, such
as passwords (Figure 4-3). This ensures that the input is encrypted and not
exposed as plain text, enhancing the security of your script.

56

CHAPTER 4 INTERACTIVE INPUT

E¥ Windows PowerShell

PS C:\scripts> $p ~d = Read-Host -AsSecureString
Enter your Password: *#kkkdkkk

PS C:\scripts> $p ~d
System.Security.SecureString

PS C:\scripts>

Figure 4-3. Read-Host operation for a password as an input

In this example, the password entered by the user is stored in the
$Password variable as a secure string. This secure string can then be used
in your script for various purposes, such as authentication to services like
Office 365.

Using Read-Host, you can prompt the user or administrator to input
the path to CSV file or text file that you want to process further.

As covered in the previous chapter, you learned how to read data
from files, such as CSV or text files, and process it by piping the data to
other commands. Instead of hardcoding file paths into your script, you
can enhance its flexibility by prompting users to provide the file path
interactively.

Input Parameters

In PowerShell, commands, functions, and scripts often rely on parameters
as shared in Listing 4-1 example, which allow users to enter values or select
options to customize the script’s behavior. In this section, we’ll briefly
touch on basic parameterization, providing you with the foundational
knowledge to use parameters in your scripts. (Note that advanced
parameters are outside the scope of this book.)

57

CHAPTER 4 INTERACTIVE INPUT

Listing 4-1. An Example of How to Define and Use Parameters in a
PowerShell Script

Param(

[string]$firstname,

[string]$lastname,

[string]$title
)
Write-host "First Name: $firstname" -ForegroundColor Yellow
Write-host "Last Name: $lastname" -ForegroundColor Yellow
Write-host "Title: $Title" -ForegroundColor green

In this example:

e Param Block: The Param block at the beginning of the
script defines three parameters: $firstname, $lastname,
and $title, all of which are of the type [string].

o Parameter Usage: The script uses Write-Host to output
the values of these parameters, with each output line in
a specified color.

Save this as a .ps1 file and run it as follows (and see Figure 4-4):

Ascript.ps1 -firstname Vikas -lastname sukhija -title blogger

!1‘ E¥ Windows PowerShell

PS C:\scripts> .\script.psl -firstna -lastname Sukhija -title blogger
First Name: Vikas

Last Na Sukhija

-

PS C:\scripts>

Figure 4-4. Script execution with parameters

58

CHAPTER 4 INTERACTIVE INPUT

Tip Make sure you define the parameters at the beginning of

your script; otherwise, the script will not work. Placing the Param
block at the top not only organizes your code but also ensures that
PowerShell correctly recognizes and processes the parameters when
the script runs.

GUI Button

If you want to create a more interactive and visually appealing way to
gather input from users, you can use a graphical user interface (GUI)
button. While not as commonly used as the Read-Host command, a GUI
button can be a “fancy” way to get input from the user, making your script
more engaging.

Here’s a cheat code—a function—that you can use to create a GUI
button in your PowerShell script. This function, shown in Listing 4-2,
allows users to input data through a Windows form, which can then be
used to perform other desired operations in your script.

Listing 4-2. Code for Input from a GUI Button

function button ($title,$mailbx, $WF, $TF)
{

HHHAHHH AR Load Assembly for creating form &
button##HHt

[void][System.Reflection.Assembly]::LoadWithPartialName(
"System.Windows.Forms")

[void][System.Reflection.Assembly]::LoadWithPartialName(
"Microsoft.VisualBasic")
#####Define the form size & placement

59

CHAPTER 4 INTERACTIVE INPUT

$form.StartPosition = [System.Windows.Forms.FormStartPosition]:

:C

60

$form = New-Object "System.Windows.Forms.Form";
$form.Width = 500;

$form.Height = 150;

$form.Text = $title;

enterScreen;

I #DeTine text labell

$textLabell = New-Object "System.Windows.Forms.Label";
$textLabell.Left = 25;

$textlabel1l.Top = 15;

$textlLabel1l.Text = $mailbx;

A Define text label2

$textLabel2 = New-Object "System.Windows.Forms.Label";
$textlLabel2.left = 25;

$textlLabel2.Top = 50;

$textlabel2.Text = $WF;

HHHHH A HHHDefine text label3

$textlLabel3 = New-Object "System.Windows.Forms.Label";
$textlLabel3.left = 25;

$textLabel3.Top = 85;

$textlLabel3.Text = $TF;

A #IDefine text box1 for input

$textBox1 = New-Object "System.Windows.Forms.TextBox";
$textBox1.Left = 150;

$textBox1.Top = 10;

$textBox1.width = 200;

#HHHH A #Define text box2 for input

$textBox2 = New-Object "System.Windows.Forms.TextBox";
$textBox2.Left = 150;

$textBox2.Top = 50;

$textBox2.width = 200;

HHHHH A Define text box3 for input

CHAPTER 4 INTERACTIVE INPUT

$textBox3 = New-Object "System.Windows.Forms.TextBox";
$textBox3.Left = 150;

$textBox3.Top = 90;

$textBox3.width = 200;

HHHH A Define default values for the input boxes
$defaultValue = ""

$textBox1.Text = $defaultValue;

$textBox2.Text = $defaultValue;

$textBox3.Text = $defaultValue;

HHHHHHHHHEHH define OK button

$button = New-Object "System.Windows.Forms.Button";
$button.Left = 360;

$button.Top = 85;

$button.Width = 100;

$button.Text = "0k";-

HHHHHHHHHHH This is when you have to close the form after
getting values
$eventHandler = [System.EventHandler]{
$textBox1.Text;
$textBox2.Text;
$textBox3.Text;
$form.Close();
};
$button.Add Click($eventHandler) ;
HHHEHAH I ADD controls to all the above objects defined
$form.Controls.Add($button);
$form.Controls.Add($textLabell);
$form.Controls.Add($textLabel2);
$form.Controls.Add($textLabel3);
$form.Controls.Add($textBox1);
$form.Controls.Add($textBox2);

61

CHAPTER 4 INTERACTIVE INPUT

$form.Controls.Add($textBox3);

$ret = $form.ShowDialog();

A return values

return $textBoxi.Text, $textBox2.Text, $textBox3.Text
} #button

Load this function into your script, and then, you can perform the
operations on the inputs as shown:

$return= button "Enter Folders" "Enter mailbox

Folder" "Target Folder"

Working

You can choose different names or parameters for your GUI input
according to your requirements. Figure 4-5 illustrates the Windows form
with the input textbox and button:

By integrating this function into your script, you can enhance user
interaction by providing a simple and intuitive way to input data through
a GUI, which can be especially useful for those who are less comfortable
with command-line inputs.

o
PS C:\scripts> $return= button

Bl Enter Folders

Enter mailbox

Working Folder

Target Folder

Figure 4-5. GUI button input

62

CHAPTER 4 INTERACTIVE INPUT

After you press the OK button, the $return variable contains all these
values in the array (see Figure 4-6):

$return[0] — Enter mailbox value
$return[1] — Working folder value
$return[2] — Target Folder value

E¥ Windows PowerShell

PS C:\scripts> button
PS C:\scripts> { o]
mailboxe@1l

PS C:\scripts> $return[1]

test

PS C:\scripts> $return[2]

test2
PS C:\scripts>

Figure 4-6. Showing values returned from the user input

You can also print to the screen in the same manner as shown
previously (see Figure 4-7):

Write-host "Enter mailbox : $($return[0])" -ForegroundColor Yellow
Write-host "Working folder : $($return[1])"

-ForegroundColor Yellow

Write-host "Target Folder : $($return[2])" -ForegroundColor green

E¥ Windows PowerShell

PS C:\scripts> Write-host $($return[@])" -ForegroundColor Yellow
Enter mailbox : mailbox@1l

PS C:\scripts> Write-host $($return[1])"” -ForegroundColor Yellow
Working folder : test

PS C:\scripts> Write-host $($return[2])" -ForegroundColor green

Folder : test2
scripts>

Figure 4-7. Printing the values from the input using Write-host

63

CHAPTER 4 INTERACTIVE INPUT

Prompt (Yes or No)

As a system administrator, there are many practical situations where you
might need to prompt users for a simple Yes/No response. Whether you're
asking for confirmation before proceeding with an action or offering users
a choice, having a clear and user-friendly method for gathering these
responses is essential.

PowerShell provides a straightforward way to achieve this using a GUI
prompt, which can be particularly useful when you want to ensure users
clearly understand the choices available. The cheat code in Listing 4-3
demonstrates how to create a Yes/No prompt using PowerShell.

Listing 4-3. Code for a Yes/No Operation

$overwrite = New-Object -comobject wscript.shell
$Answer = $overwrite.popup("Do you want to Overwrite AD
Attributes?",0,"Overwrite Attributes",4)

If ($Answer -eq 6) {Write-Host "you pressed Yes"
-ForegroundColor Green}

else{Write-Host "you pressed Yes" -ForegroundColor Red}

Copy and paste the code into the PowerShell console or save the script
asa .pslfile and runiit.
See Figure 4-8.

64

CHAPTER 4 INTERACTIVE INPUT

PS C:\scripts> .\script.psil

Overwrite Attributes

Do you want to Overwrite AD Attributes?

No

Figure 4-8. Showing a Yes/No operation in PowerShell

If you press Yes, you get the result shown in Figure 4-9.

¥ Windows PowerShell

PS C:\scripts> .\script.psil
you pressed Yes
PS C:\scripts>

Figure 4-9. Showing the Yes operation

65

CHAPTER 4 INTERACTIVE INPUT

If you press No, you get the result shown in Figure 4-10.

E¥ Windows PowerShell

PS C:\scripts> .\script.psl
you pressed Yes
PS C:\scripts> .\script.psl

PS C:\scripts>

Figure 4-10. Showing the No operation

Instead of just Write-host, you can perform different operations inside
your script based on the response selected by the user.

This method not only ensures that users are making informed
decisions but also adds a layer of confirmation to your scripts, reducing the
risk of accidental actions. Whether you're deploying updates, deleting files,
or executing critical tasks, a simple Yes/No prompt can be an effective tool
in your PowerShell scripting arsenal.

Summary

In this chapter, you learned about interactive inputs, an essential strategy
for making scripts more user-friendly, especially when they are intended
for use by end users. By incorporating interactive prompts, you can create
scripts that guide users through a series of questions, allowing them to
provide necessary input without needing to modify the script directly.

66

CHAPTER 4 INTERACTIVE INPUT

This approach enhances the usability of your scripts, as end users can
simply run the script and respond to the prompts that appear. Whether it’s
entering a password securely, selecting a file path, or confirming an action
with a Yes/No response, interactive inputs make the script execution
process more intuitive and efficient. As a result, users can perform
meaningful tasks with minimal effort, while the scripter ensures that the
script operates as intended with the correct input.

67

CHAPTER 5

Modules

Microsoft and various third-party vendors have developed PowerShell
snap-ins (which are now mostly outdated) or modules for their respective
products. To leverage the PowerShell cmdlets designed for these
technologies, you would need to either add the snap-ins or import the
modules into your scripts.

Snap-ins are considered a legacy approach, as the PowerShell
ecosystem has largely shifted toward using modules. Modules are more
versatile and easier to manage, effectively serving as “batteries” that
power your scripts. Each module is essentially a package that can contain
cmdlets, providers, functions, aliases, and other resources necessary to
automate or interact with a product.

Although snap-ins are no longer common, it’s still valuable to briefly
touch on them to understand their role and the products that historically
relied on them. Many older technologies, particularly those from earlier
versions of PowerShell, used snap-ins to extend PowerShell’s functionality
before modules became the standard.

PowerShell Snap-Ins

A classic example of PowerShell snap-ins is Microsoft Exchange Server,
specifically versions 2007 and 2010, which both utilized snap-ins for their
PowerShell integration.

© Vikas Sukhija 2025 69
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_5

https://doi.org/10.1007/979-8-8688-1157-9_5#DOI

CHAPTER5 MODULES

To add an Exchange snap-in to your script, you could use the following
code (see Listings 5-1 and 5-2 for examples of Exchange 2007 and 2010
snap-ins, respectively).

Since these versions of Exchange have reached their official end-of-
support status, their usage is rare today, primarily limited to organizations
that have not yet upgraded to newer versions of Exchange Server, which
use PowerShell modules instead.

Note Exchange management binaries should be installed first on
the machine or the snap-in will not work.

Listing 5-1. Code to Add the Exchange 2007 Management Shell

If ((Get-PSSnapin | where {$.Name -match "Exchange.
Management"}) -eq $null)

{

Add-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin
}

Listing 5-2. Code to Add the Exchange 2010 Management Shell

If ((Get-PSSnapin | Where-Object { $_.Name -match "Microsoft.
Exchange.Management.PowerShell.E2010" }) -eq $null) {
Add-PSSnapin Microsoft.Exchange.Management.PowerShell.E2010

After the snap-in has been added to the session or the script, it can run
the Exchange commands inside the window, as shown in Figure 5-1.

70

CHAPTER5 MODULES

| 2 Administrator: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
PS C:\> If ((Get-PSSnapin | Where-Object { S_.Name -match "Microsoft.Exchange.Management.PowerShell.E2010" }) -eq Snull) {
>>) Add-PSSnapin Microsoft.Exchange.Management.Powershell.E2010

>>

>>
PS C:\> Get-Mailbox test* | ft Name, Alias, ProhibitSendQuota -AutoSize

Name Alias ProhibitSendquota
[Test Mailbox 2016 TestMailbox2016 unlimited
Test Mailbox2 test.mailbox2 un'l1m1ted

test1DMZ testl1DMZ unlimited

‘test2DMZ test2DMZ 2 KB (2, 048 bytes)
testaccoun't testaccountt unlimited

[Testing Mailbox2010 testingmailbox2010 unlimited
Mailbox, Test test.mailbox unlimited

PS C:\> o

Figure 5-1. Exchange Management Shell

You can also use the Get-PSSnapin cmdlet within a PowerShell session
to check which snap-ins are currently available. This can be helpful
when working with legacy systems to verify the snap-ins loaded into your
environment.

For example, in Figure 5-2, I demonstrate using the Get-PSSnapin
cmdlet within the Quest AD shell to take advantage of the Quest snap-in.
Running Get-PSSnapin in the Quest Active Directory shell allows you to
identify the specific snap-in name and confirm it’s properly loaded for use

in your scripts.

[PS] C:\COOREPO\PF0jeCts>Get-PSsSnapin

ame : Microsoft.Powershell.Core

psversion : 5.1.18362.1714

pescription : This Windows Powershell snap-in contains cmdlets used to manage components of Windows Powershell.
ame : Quest ActiveRoles.ADManagement

psversion 2.0

pescription : This windows Powershell snap-in contains cmdlets to manage Active Directory and Quest One ActiveRoles.

[PS] C:\CodRepo\Projects>

Figure 5-2. Quest AD Management Shell

Listing 5-3 shows how to add the snap-in to the PowerShell script or
session using the same technique as for the Exchange product.

71

CHAPTER5 MODULES

Listing 5-3. Code to Add the Quest AD Management Shell

If ((Get-PSSnapin | where {$.Name -match "Quest.ActiveRoles"})
-eq $null)

{
Add-PSSnapin Quest.ActiveRoles.ADManagement

Note The above code to add a snap-in first checks to see if the snap-in
already exists. If so, it does nothing. If not, it adds the required snap-in.

Modules

Now, let’s shift our focus to PowerShell modules, as they are integral to
your day-to-day work. According to Microsoft, “a module is a package
that contains PowerShell members, such as cmdlets, providers, functions,
workflows, variables, and aliases. These members can be implemented in
a PowerShell script, a compiled DLL, or a combination of both. Typically,
these files are grouped together in a single directory.

Modules are essential for interacting with a wide range of products and
services, such as Azure, Office 365, Exchange Online, Microsoft Teams,
Sharepoint Online, Amazon Web Services, and many other products.
Instead of relying on legacy snap-ins, modern PowerShell heavily utilizes
modules to provide access to the cmdlets required for automating and
managing these technologies.

The PowerShell Gallery (available at www.powershellgallery.com)
serves as the central repository for nearly all publicly available PowerShell
modules. It is the de facto resource where you can find and install modules
to expand PowerShell’s capabilities, whether you're working with cloud
services, on-premises systems, or third-party tools.

72

https://www.powershellgallery.com/

CHAPTER5 MODULES

To install a module on your machine from PowerShell gallery, use
this code:

Install-Module -Name AzureAD

Enter yes (as shown in Figure 5-3) when you receive the prompt to
install the module.

EX¥ Windows PowerShell

C:\temp> Install-Module -Name AzureAD
Untrusted repository

ou are installing the modules from an untrusted repository. If you trust this repository, change its Installatiq
bu sure you want to install the modules from 'PSGallery'?

[Y] Yes [A] Yes to A1l [N] No [L] No to All [S] Suspend [?] Help (default is "N"):

Figure 5-3. Installing a module from PowerShell Gallery

When you install the module on your machine, it will get stored in C: \
Program Files\WindowsPowerShell\Modules as depicted in Figure 5-4.

ard Organize New Open

> ThisPC > OSDisk (C:) > Program Files > WindowsPowerShell

~
A

ms Name Date modified Type Siz
ms Configuration 3/18/2019 11:52 PM File folder

Modules 6/21/2021 11:54 A.. File folder

Scripts 9/7/2020 7:17 PM File folder

Figure 5-4. Module path on the computer

There may be a situation where a developer has developed a new
version of the module and you want to update your machine with this
newer version. Use one of the following commands to upgrade the
existing module:

Update-Module -Name AzureAD

73

CHAPTER5 MODULES
or

Install-Module -Name AzureAD -force (this will also upgrade the
module to latest version)

With update, you can also update the module to a specific version:
Update-Module -Name AzureAD -RequiredVersion 1.0.1

Removing the module is a simple operation and can be done as shown
in the following cmdlet:

Remove-Module AzureAD

After you have installed the module, which is a one-time task, and
you want to utilize that module in your scripts, you can do so by using the
Import-Module command.

Note After PowerShell V3, modules are loaded automatically when
the first cmdlet from that module is run from the script.

You can still follow the practice of importing the modules in your script
before running a command:

Import-Module AzureAD

To get all of the modules installed on your machine, you can use the
following code (the results are shown in Figure 5-5):

Get-Module -ListAvailable

74

CHAPTER5 MODULES

B¥ Select Windows PowerShell

Directory: C:\OneDrive\OneDrive - TechWizard.cloud\Documents\WindowsPowershell\Modules

ModuleType Version Name ExportedCommands

Script 1.4.7 PackageManagement {Find-Package, Get-Package, Get-PackageProvider, Get-

Directory: C:\Program Files\WindowsPowerShell\Modules

voduleType Version Name ExportedCommands

Script 1.0.1 Microsoft.Powershell.Operation.V... {Get-Operationvalidation, Invoke-Operationvalidation}
3inary 1.0.0.1 PackageManagement {Find-Package, Get-Package, Get-PackageProvider, Get-
Script 3.4.0 Pester {Describe, Context, It, Should...}

Script 1.0.0.1 PowerShellGet {Install-Module, Find-Module, Save-Module, Update-Mod
Script 2.0.0 PSReadline {Get-PSReadLineKeyHandler, Set-PSReadlLinekKeyHandler,

Script 87/ vsadmin {Convert-CSV2Excel, Get-ADUserMemberOf, Get-ADGroupMel

Directory: C:\WINDOWS\system32\WindowsPowerShell\vl.@\Modules

voduleType Version Name ExportedCommands
vanifest 1.0.0.0 AppBackgroundTask {Disable-AppBackgroundTaskDiagnosticLog, Enable-AppBa
Vanifact+ 2 000 Annl arlban fRot _Annl arlbanEilaTnfanmatian Got _Annl arbanDaliscv M

Figure 5-5. Showing a list of available modules on the computer

Cheat Module (vsadmin)

Since this book is all about providing cheat codes to help you create
complex scripts, here’s a powerful resource: a cheat module packed with
functions designed to streamline complex operations in your scripts.

I have developed this module for the PowerShell community, aiming
to simplify scripting by offering ready-made functions that can be
adapted to a variety of use cases. As products evolve and new features are
introduced, I regularly update the module to ensure it stays current and
continues to provide relevant, practical solutions.

Current version of this module as of writing this book is 3.7.

Module name: vsadmin

Installing the module (see Figure 5-6):

Install-Module -Name vsadmin

75

CHAPTER5 MODULES

EX Windows PowerShell

C:\temp> Install-Module -Name vsadmin

Untrusted repository

lYou are installing the modules from an untrusted repository. If you trust this repository,
ou sure you want to install the modules from 'PSGallery'?

[Y] Yes [A] Yes to A1l [N] No [L] No to All [S] Suspend [?] Help (default is "N"):

Figure 5-6. Installing the vsadmin module

Once installed, you will find files created inside your module’s
directory (C:\Program Files\WindowsPowerShell\Modules) as depicted
in Figure 5-7.

Program Files > WindowsPowerShell > Modules > vsadmin > 1.1

A

Name Date modified

|=] GeneralFunctions.ps1 7/18/2020 3:30 PM
|=] 0365.ps1 7/18/2020 3:30 PM
8 vsadmin.psd1 7/18/2020 3:30 PM
@ vsadmin.psm1 7/18/2020 3:30 PM

Figure 5-7. Showing files inside the vsadmin module

As stated, you can import the module into the session using import-
module like so:

import-module vsadmin

Figure 5-8 shows the commands that are available inside the vsadmin
module. You can use the following command to check functions and
cmdlets in any module:

Get-Command -Module vsadmin

76

CHAPTER5 MODULES

EN Administrator: Windows PowerShell
PS C:\> Get-Command - = vsadmin

Get-ADGroupMembersRecursive
Get-ADUserMemberOf
Get-Auth
Get-FailedScheduledTasks
Get-IniContent
Group-Validate
LaunchAzureAD
LaunchCOL

LaunchEOL
LaunchEXOnprem

Launch

Launch

LaunchTeams
New-FolderCreation
New-RandomPa
Out-IniFile

Remov

Remove

RemoveEXOnprem

Remove

Remove

Save-CSV2Excel
Save-EncryptedPassword
Send-Email
Set-IniContent
Set-Recyclelogs
Start-Maintenance
Start-ProgressBar
Test-vsadmin

Write-Log

DR I R TR

Figure 5-8. Available vsadmin module commands

Let’s explore each of the function of the module to that you can utilize

it in your scripts.

1.

Convert-CSV2Excel

The Convert-CSV2Excel function is designed to
help you convert a CSV file to an Excel file without
requiring Microsoft Excel to be installed on your
machine. This is especially useful in environments
where Excel isn’t available or where you need to

automate the conversion process as part of a script.

77

CHAPTER5 MODULES

Usage:

Convert-CSV2Excel -CSVFile c:\csvfilepath\csvfile.
csv -ExcelFile c:\excelfilepath\excelfilepath.xlsx

Parameters:

o -CSVFile: Specifies the path to the CSV file that you

want to convert

o -ExcelFile: Specifies the path where the resulting
Excel file will be saved

2. Get-ADGroupMembersRecursive

The Get-ADGroupMembersRecursive function
allows you to extract Active Directory group
memberships recursively, meaning it can retrieve
not only direct group members but also members
of nested groups. This function can handle multiple
groups simultaneously and retrieve specific user
properties if needed, making it a powerful tool for
managing and auditing AD group memberships.

Usage:

Get-ADGroupMembersRecursive -Groups “Test
Nested Groupl” ,"Test Nested Group2”
Get-ADGroupMembersRecursive -Groups “Test
Nested Groupl” " Test Nested Group2” -Properties
Employeeid

Parameters:

e -Groups: Specifies one or more Active Directory
groups to retrieve members from. Supports
multiple group names.

78

CHAPTER 5

o -Properties: Optional. Specifies which properties
of the users or objects to retrieve. By default,
it retrieves standard properties such as Name,
SamAccountName, etc.

3. Get-ADUserMemberOf

The Get-ADUserMemberOf function is a simple
and effective way to check whether a specified user
is a member of a particular Active Directory group.
It returns True if the user is a member of the group
(directly or indirectly) and False if they are not. This
is useful for verifying user group memberships in
automation scripts or access control processes.

Usage:
Get-ADUserMemberOf -User “User” -Group “Group”
Parameters:

o -User: Specifies the username or the Distinguished
Name (DN) of the user you want to check

e -Group: Specifies the name or Distinguished Name
(DN) of the group you want to verify

4. Get-Auth

The Get-Auth function simplifies the process

of securely handling credentials within your
PowerShell scripts. It retrieves a user’s credentials
from either an encrypted password file or an already
encrypted password string, returning credentials in
two formats: plain text and as a PSCredential object.
This is particularly useful when working with APIs or
PowerShell functions that require credential input,
offering both security and flexibility.

MODULES

79

CHAPTER 5

80

MODULES

Usage:
Option 1: Using encrypted password file

$cred = Get-Auth -Userld “sukhija@techwizard.
cloud” -PasswordFile “C:\data\password1.txt”
$pwd = $cred[0] ### Plain text password for use in
APIs or CSOM calls. $pscredential = $cred[1] ###
PSCredential object for PowerShell functions.

Option 2: Using encrypted password string

$cred = Get-Auth -Userld “sukhija@techwizard.
cloud” -Password “encryptedpassword” $pwd =
$cred[0] ### Plain text password for use in APIs
or CSOM calls. $pscredential = $cred[1] ###
PSCredential object for PowerShell functions.

$cred[0] stores the plain text password, which can
be used for CSOM (Client-Side Object Model) or
API calls that require basic authentication.

$cred[1] stores the credentials as a PSCredential
object, useful for PowerShell functions that accept
the PSCredential type.

Get-FailedScheduledTasks

The Get-FailedScheduledTasks function is designed

to assist in monitoring and identifying failed tasks
within the Windows Task Scheduler. It enables you
to specify certain task paths (or folders) to focus
on, providing a clear and concise way to track the
health of scheduled tasks in your environment.
This function is particularly useful for maintaining
automated workflows and ensuring that critical
scheduled tasks are running as expected.

CHAPTER5 MODULES

Usage:

Get-FailedScheduledTasks -includepaths
“Scheduled’, “DevSolutions”

Parameters:

¢ -IncludePaths: Specifies the paths (or folders)
within the Task Scheduler where you want to check
for failed tasks. You can include multiple paths.

Get-IniContent/Set-IniContent/Out-IniFile

These three functions allow you to seamlessly

read, modify, and write INI configuration files. By
combining them, you can read INI data, update or
add new values and then write the updated content
back to the INI file in a structured, readable format.

Usage: Reading from an INI File
$readini = Get-IniContent $inifile
$vartest = $readini[“initable”].value

o Sinifile: Specifies the path to the INI file you
want to read

e S$readini: This variable holds the content of the INI
file in a structured format, usually as a hashtable or
similar object that you can easily access

Usage: Writing to an INI File

The Set-IniContent function allows you to modify
or set values within specific sections of an INI file. It
works by passing the section(s) and key-value pairs
that need to be added or updated.

81

CHAPTER 5

82

MODULES

Set-IniContent -FilePath $configfile -Sections
$Sections -NameValuePairs @
{$PasswordKey=$getencpassword}

Parameters:
o -FilePath: Specifies the path to the INI file

e -Sections: Specifies the section (or sections) within
the INI file to modify

¢ -NameValuePairs: A hashtable containing key-
value pairs where the keys are the INI keys and the

values are the new values to be written
Writing Changes Back to the INI File (Out-IniFile)

Once you have made modifications to the INT
content, the Out-IniFile function is used to write the
changes back to the INI file. This function allows you
to control the format, encoding, and structure of the
output file.

$ini = Set-IniContent -FilePath $configfile -Sections
$Sections -NameValuePairs @
{$PasswordKey=$getencpassword}

$ini | Out-IniFile $configfile -Pretty -Force -Encoding "ASCII’

$ini: This holds the modified INT content after using
Set-IniContent.

Out-IniFile: Writes the content back to the
specified file.

e -Pretty: Formats the INI file in a readable way with
proper indentation and spacing

CHAPTER 5

« -Force: Ensures that the file is overwritten if it
already exists

+ -Encoding: Specifies the encoding of the file. In this
example, it’s set to ASCII

7. Group-Validate

The Group-Validate function is designed to validate
whether the provided user objects are valid groups
within a given domain. It accepts a list of users,
checks if they belong to a specific domain, and then
tries to validate whether they are actual groups. Any
invalid groups are logged to a report file.

Usage:
Group-Validate -User “domain\groupl” -dom
“domain” -greport “C:\logs\invalidGroups.txt”

Parameters:

o $User: A mandatory parameter, expects the user or
group to be validated

e $dom: A mandatory parameter, representing the
domain to be used in group validation

e $greport: Optional parameter, a file path where the
invalid groups are logged

Launch/Remove functions

The Launch functions are designed to connect you
to various Office 365 services (e.g., Exchange Online,
SharePoint Online, etc.) by importing the required
PowerShell modules or establishing a session.

MODULES

83

CHAPTER 5

84

MODULES

The Remove functions, on the other hand, help to
clean up or disconnect the sessions after you're
done working with these services.

Each pair of functions (e.g., LaunchEOL/
RemoveEOL) is dedicated to a specific service and
is prefixed with a name that differentiates it from
similar on-premise commands to prevent conflicts

in hybrid environments.

e LaunchEOL/RemoveEOL (Exchange Online)—
prefixed as EOL

LaunchEOL
Get-EOLMailbox #Fetches mailboxes
RemoveEOL

e LaunchCOL/RemoveCOL (Security and Compliance)—
prefixed as COL

o LaunchEXOnprem/RemoveEXOnprem (for on-premise
Exchange Server)

¢ LaunchMSOL/RemoveMSOL (MSonline Azure Active
Directory)

e LaunchSPO/RemoveSPO (SharePoint online)

Why Prefix Functions for Office 3652

In hybrid environments, where both on-premise
and cloud services are used, there can be command
conflicts. For example, Get-Mailbox is used for

both Exchange Online and on-premise Exchange,
but the commands may differ in their behavior or

CHAPTER5 MODULES

requirements. By prefixing the commands (e.g., Get-
EOLMailbox for Exchange Online), the functions
avoid conflicts and make it clear which environment
you're working with.

Note The following native Office 365 modules are necessary for the
Office 365 functions in the vsadmin module to work, or it will ask
you to install them.

o ExchangeOnlineManagement: www.
powershellgallery.com/packages/
ExchangeOnlineManagement

o Sharepoint Online: https://www.microsoft.com/
en-ca/download/details.aspx?id=35588

e MSOnline Module (depreciated): www.
powershellgallery.com/packages/MSOnline

For example, you can use LaunchEOL if you just

want to connect to Office 365 Exchange online.

It will prompt you for authentication and, once
authenticated, you will get connected. It will check if
the Exchange Online Management Shell is installed
on your computer or not. If not, it will provide you
with a hint. See Figure 5-9.

85

http://www.powershellgallery.com/packages/ExchangeOnlineManagement
http://www.powershellgallery.com/packages/ExchangeOnlineManagement
http://www.powershellgallery.com/packages/ExchangeOnlineManagement
https://www.microsoft.com/en-ca/download/details.aspx?id=35588
https://www.microsoft.com/en-ca/download/details.aspx?id=35588
http://www.powershellgallery.com/packages/MSOnline
http://www.powershellgallery.com/packages/MSOnline

CHAPTER5 MODULES

/ERBOSE
VERBOSE

Sign in to your account

B* Microsoft
Sign in

admirJ@techwizard.cloud

Mo account? Create one!

Can't access your account?

Sign-in options

Figure 5-9. Authentication prompt by Office 365

Figure 5-10 shows that you are connected and can

use the Exchange commands.

X Windows PowerShell

C:\temp> LaunchEOL

Name

Amit.Maurya

PmarcFailures
DmarcReports
GGaba

info

Jgaba

PGaba
SukhijaPradip
rohit.singla
SGaba
TKhetarpal
sukhijavikas

C:\temp> Get-EOLMailbox

PiscoverySearchMailbox. . .

Alias Database

Amit.Maurya NAMPR10DGO86-dbo88

DiscoverySea... NAMPR1ODGO55-dbo84
DmarcFailures NAMPR1@DG194-db@67
DmarcReports NAMPR10DGO@4-dbe25
GGaba NAMPR10DGO@8-dbo69
info NAMPR10DG020-db020
Jgaba NAMPR10DG139-db134
PGaba NAMPR10DG131-dbe97
ps4cloud NAMPR10DG264-dbo41

rohit.singla NAMPR16DGO64-db107
SGaba NAMPR10DGO@9-dbo67
TKhetarpal NAMPR10DG271-db112
sukhijavikas NAMPR16DG194-dbo51

ProhibitSendQuota

99 GB (106,300,44...
50 GB (53,687,091...
49.5 GB (53,150,2...
49.5 GB (53,150,2...
99 GB (106,300,44...
49.5 GB (53,150,2...
99 GB (106,300,44...
99 GB (106,300,44...
99 GB (106,300,44...
99 GB (106,300,44...
99 GB (106,300,44...
99 GB (106,300,44...
99 GB (106,300,44...

Figure 5-10. Exchange Online Management Shell prefixed
Get-MailBox command

86

CHAPTER5 MODULES

If you want to use these commands in a script
without entering a password every time (a
technique you will learn after finishing this book),
LaunchEOL -Credential can be used by passing PS
credentials.

In this latest vsadmin, LaunchEOL has also been
updated to use clientid/certificate to do the APP
authentication.

Similarly, you can use other functions because they
are designed in a similar manner. For example, use
this code and see the results in Figure 5-11:

LaunchSPO -orgName techwizard

E¥ Windows PowerShell

C:\temp> LaunchSPO -orgName tcs
Enter Sharepoint Online Credentials
C:\temp> Get-SPOSite

Url Owner Storage Quota
https://tcs.sharepoint.com/portals/Channell 1048576
https://tcs.sharepoint.com/sites/TechWizardTraining 1048576

Figure 5-11. Showing a connection to SharePoint Online using
LaunchSPO

Tip Pressing Tab on a keyboard after pressing the hyphen will show
you the parameters available for any function in PowerShell.

To disconnect the session, you can use the following
functions:

RemoveEOL/RemoveSOL/RemoveSPO, etc.

87

CHAPTER 5

MODULES

Other good functions that system administrators
really like are the LaunchEXOnprem/RemoveEXOnprem
functions as they are for on-premise Exchange
Servers. To connect to an Exchange on-premise
server from your network, use this code:

LaunchEXOnprem -psurl http://exchangeserver.techwizard.
cloud/Powershell

or

LaunchEXOnprem -ComputerName exchangeserver.
techwizard.cloud

To disconnect, use the same technique you used for
Office 365 functions:

RemoveEXOnprem -computername exchangeserver.
techwizard.cloud

Generic functions

Let’s now discuss generic functions inside this
module. In Chapter 2, Write-Log, Set-recyclelogs,
start-progressbar, and other cheat function were
shared. These functions are part of this module as
well, so you do not have to copy and paste them in
your scripts if you are importing this module in the
script. See Listing 5-4 and Figure 5-12.

Listing 5-4. Importing vsadmin and Using the Write-Log Function

Import-Module vsadmin

$log = Write-Log -Name "log file" -folder logs -Ext log
Write-Log -Message "Information.......... Script" -path
$log #default will log as information

88

https://doi.org/10.1007/979-8-8688-1157-9_2

CHAPTER5 MODULES

Write-Log -Message "warning.........Message" -path

$log -Severity Warning #you can display warning using the
severity

Write-Log -Message "error.........Error" -path $log -Severity
error #you can display error using the severity

| |Information..........Script| Information

11:32:23| |warning Message| |Warning|

M = | logs - [
File Home Share View (2]
y = =, —]
l’\i] L‘ A [{Moveto~ X Delete ~ 2 ﬂ < B select al
= = Til= Select none
Pinto Quick Copy Paste . ® o> = New Properties '8 :
access [# Copyto ~ | =f Rename folder o © O Invert selection
Clipboard Organize New Open Select
« v 4 > ThisPC > OSDisk (C:) > temp > logs v O L Searchlo...
_# 3D Objects ~ Name Date modified Type
DEskiop 5] log_file_8-23-2021_11-32AM_ 8/23/2021 11:32 AM Text Documen
5] Documents
& Downloads |) log_file_8-23-2021_11-32AM_ - Notepad - O
D Music File Edit Format View Help
= Pictures ||68/23/2021 11:32:23] |Information.......... Script| |Information]
= |08/23/2021 11:32:23] |warning. .o Message| |warning|
& videos |@8/23/2021 11:32:23| |error......... Error| |error|
£ % OSDisk (C)

Figure 5-12. Showing the result of executing Listing 5-4

In a similar fashion, you can create a CSV file:

$report = Write-Log -Name "log Enable" -folder
reports -Ext csv

I will not get into the other functions that have been

shared in previous chapters. I just wanted to show
that they can all be used in this manner as well.

89

CHAPTER5 MODULES

10. Save-EncryptedPassword

To securely store a password for later use in
PowerShell scripts, such as for connecting to online
services like Office 365 or Azure, you can use the
Save-EncryptedPassword function. This function
encrypts the password and saves it to a specified file,
ensuring that sensitive credentials are not stored

in plain text. Once the password is saved, it can be
easily retrieved and used in your scripts to establish
connections to various services. (see Figure 5-13 for
the result):

Usage:

Save-EncryptedPassword -password "testpassword" -path
c:\temp\password1.txt

C:\temp> Save-EncryptedPassword -password "testpassword" -path c:\temp\passwordl.txt
C:\temp>

View

1a~ < Select all
«Moveto~ X Delete ~ 8 v)-
1~ — Select none
) ftov = Ney Properties)
Copy to Ji Rename fold“:r Op. ! ° 25 Invert selection
Clipboard Organize New Open Select
« v o « OSDis.. > temp v O L Search temp
dataexposure Name Date modified Type
Documents | password1.txt 9/7/20211:09PM Text Document

=N

| password1.txt - Notepad

File Edit Format View Help
b1000000d08c9ddf0115d1118c7a00c04fc297eb01000000beaa5b5578786b4286d1d5f088a7e8580000000082000€

Figure 5-13. Encrypting a password using the save-encrypted
command

90

CHAPTER5 MODULES

Parameters:
o -Password: The password you want to encrypt

e -Path: The file path where the encrypted password
will be stored

Let’s use a small cheat code snippet to connect to Office
365 using the PS credentials saved in the file and export
a CSV report on mailboxes. (This can be modified

and scheduled as per your needs.) See Listing 5-5 and
Figure 5-14.

Listing 5-5. Code Showing Use of PS Credentials from Saved File

Import-Module vsadmin

$cred = get-auth -userId sukhija@techwizard.cloud -passwordfile
"c:\temp\passwordi.txt" #getcredentials that you created using
Save-EncryptedPassword

$pscredential = $cred[1] ##t#credentials that can be used for
functions that supports ps credentials.

LaunchEOL -Credential $pscredential

$data = Get-EOLMailbox -ResultSize unlimited | Select Name,Windo
wsEmailAddress, IssueWarningQuota, ProhibitSendQuota,ProhibitSen
dReceiveQuota #fetch the required data from exchange online
$data | Export-Csv "c:\temp\mailboxes.csv" -NoTypeInformation
#export the data in csv format

RemoveEOL #disconnect the exchange online session

91

CHAPTER5 MODULES

Removed the PSSession ExchangeOnlineInternalSession_2 connected to outlook.office365.com
Disconnected successfully !

C: \temp>
M v [temp - O X
m Home Share View g (
/ D o & Move to X Delete ~ C'ﬁjlv ﬂ = BESQIEG 2l
o JEI Select none
Iatciecsz:id COPyjtacte [Copy to I Rename fl:lfjvelr Prop'er‘ties © £H invert selection
Clipboard Organize New Open Select
- L | > ThisPC > OSDisk (C)) > temp v O L Search te..
extra ~ Name a Date modified Type
Ine £ Listing 5.5 8/24/202112:34PM PST File
Microsoft Teams mailboxes 8/24/202112:36 PM Microsoft Excel C
Microsoft Teams 5] password1 8/24/2021 12:25PM Text Document
Newsweaver
Notebooks M S

Figure 5-14. Exporting the mailboxes data in a CSV file

11. New-RandomPassword

The New-RandomPassword function is a handy
tool for generating complex passwords directly
from PowerShell, making it easier for system
administrators to create secure passwords without
relying on external tools or websites.

See this example in Figure 5-15:
New-RandomPassword - NumberofChars 9

You can add any number of chars to generate the
password.

New-RandomPassword - NumberofChars 50

92

CHAPTER5 MODULES

58

LPX) (gBUabki"1Cu, 20! :g@sY*8

Figure 5-15. Showing the generation of a random password

Summary

In this chapter, you explored the crucial role of modules in PowerShell
scripting. Modules are essential components that extend the functionality
of PowerShell, making it easier to manage and automate tasks across
different products and systems. Without modules, scripting can be
significantly limited.

You also introduced a specific cheat system administration module
called vsadmin. This module includes a variety of functions and cmdlets
that are commonly used in daily administrative tasks, helping streamline
and automate routine activities.

Key Takeaways:

e Modules as Essential Tools: Modules are likened
to batteries in PowerShell, providing the necessary
functionality to script effectively across different
environments.

93

CHAPTER5 MODULES

¢ vsadmin Module: This module includes useful
functions such as New-RandomPassword, Save-
EncryptedPassword, and various Launch/Remove
functions for managing Office 365 services. These
tools are designed to simplify and enhance system
administration tasks.

This chapter provides a foundation for understanding how to leverage

PowerShell modules to boost productivity and efficiency in system
administration and automation tasks.

94

CHAPTER 6

Alerting (Email)

Sending email notifications is a critical aspect of scripting, especially in
automation scenarios where alerts need to be sent when errors occur or
tasks complete. For instance, if you want to send an alert when your script
encounters an error, or if you need to send bulk emails without relying on
third-party email tools, PowerShell provides an easy-to-use cmdlet for this
purpose: Send-MailMessage.

Introduced in PowerShell version 2, Send-MailMessage is a built-in
cmdlet for sending emails. Below is an example of how it works:

Send-MailMessage -SmtpServer “smtpserver”

-From “DoNotReply@labtest.com” *
-To “sukhija@techwizard.cloud”
-Subject “Error exception occurred” *
-Body “body of the message”

-SmtpServer: This is the address of your SMTP server, through which
the email will be sent.

-From: The sender’s email address.

-To: The recipient’s email address. Multiple recipients can be added by
separating addresses with commas.

-Subject: The subject line of the email.

-Body: The content of the email message.

You can also expand this basic example to add more advanced
features, such as including attachments, setting priorities, or using SSL for
secure transmission. Here’s an updated version:

Send-MailMessage -SmtpServer “smtpserver”

© Vikas Sukhija 2025 95
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_6

https://doi.org/10.1007/979-8-8688-1157-9_6#DOI

CHAPTER 6 ALERTING (EMAIL)

-From “DoNotReply@labtest.com” *

-To “sukhija@techwizard.cloud”

-Subject “Error exception occurred”

-Body “body of the message” *

-Priority High

-Attachments “C:\Logs\errorlog.txt” *

-UseSsl

If you are still using PowerShell 1.0 (which is highly unlikely given
its age and the availability of newer versions), you can use the code in
Listing 6-1. This method works on all versions of PowerShell, including
vl, and utilizes the .NET System.Net.Mail namespace for sending emails.
This approach was commonly used before PowerShell introduced native
cmdlets like Send-MailMessage.

Listing 6-1. Sending a Message with Powershell v1

$smtpserver = "smtp.lab.com"

$to = "sukhija@techwizard.cloud"

$from = "DonotReply@labtest.com"

$file = "c:\file.txt" #for attachment
$subject = "Test Subject”

$message = new-object Net.Mail.MailMessage
$smtp = new-object Net.Mail.SmtpClient($smtpserver)
$message.From = $from

$message.To.Add($to)

$att = new-object Net.Mail.Attachment($file)
$message.IsBodyHtml = $False
$message.Subject = $subject
$message.Attachments.Add($att)
$smtp.Send($message)

96

CHAPTER 6 ALERTING (EMAIL)

Formatting a Message Body

In many scenarios, sending a well-formatted email body is essential

for better readability and professionalism, especially when conveying
important information such as reports, error logs, or multiline messages.
Instead of sending a simple one-liner email, you can format the body to
include multiple lines and structured content.

Listing 6-2 demonstrates how to send a properly formatted email
body and Figure 6-1 shows the resulted output. This approach allows you
to create multiline messages using the here-string (@“” @) format, which
makes your script cleaner and easier to modify.

Listing 6-2. Sending a Formatted Message Body

$smtpserver = "smtp.lab.com"

$to = "sukhija@techwizard.cloud"
$from = "DonotReply@labtest.com”
$subject = "Test Subject”
$message = @"

Hello,

Send-MailMessage -SmtpServer $smtpserver -From $from -To
$to -Subject $subject -Body $message

97

CHAPTER 6 ALERTING (EMAIL)

TIVE B~

File Message Help Q Tell me what you want to do

[I_‘—“ngnore @ E é)'V_J %g] E E‘ ﬁaNewMeeting E‘L-IVIATAG

- To Manager X Team Email

v
<

Delete Archive Reply Reply Forward
%Junk X Py ATIy EnD . v Done @ Reply & Delete
Delete Respond | Quick Steps N

Test Subject

donotreply
To @ Sukhija, Vikas (he/him/his)

Retention Policy Delete Emails after 730 days (2 years)

Hello,

Lt smssmssismin 1
Lin@sssssssssssm 2
LiN€..coviriinieeieniennene 3

Figure 6-1. The result of Listing 6-2

Sending HTML

If you're looking to send more visually appealing emails with colors, fonts,
and tables, but you're not familiar with HTML, there’s a handy cheat tip
you can use. Instead of manually writing the HTML, you can leverage an
online HTML editor to easily design and generate the HTML code for you.

One such tool is the HTML Online Editor, which simplifies the process
of creating professional HTML emails. You can access it at https://html-
online.com/editor/ (as shown in Figure 6-2). This editor allows you to
visually design your email content and copy the generated HTML code
directly into your PowerShell script.

98

https://html-online.com/editor/
https://html-online.com/editor/

CHAPTER 6 ALERTING (EMAIL)

2~

() @ https://html-online.com/editor/
HTML css
Editor Tags Cheat Sheet Characters Generators Templates Blog Links

f[]inksle]s) T
[1t Lice | sare | A
(o CRER EEEEETEETT El

File Edit View Insert Format Tools Table Source: 417
ome~o ESE0 ¢ CIEENK
Al M u E = 5 o

3]
o
g
3
5
&

@

N

'S
YAV IAM THE SOURCE EDITOF
5e9ca0;">You can edit <spai

Jor #262301>this demos /span> text!

Ll
il
S
3]
s |
9
i}
>
53
©
i

#2ef s 80 How\ ethe d(o /2>
ditor m Iﬂ oryou HTML od in the editor
dses the cal e anbs p Ip>

You can edit this demo text!

How to use the editor:

Paste your documents in the visual editor on the left or your HTML code in the
source editor in the right.
Edit any of the two areas and see the other changing in real time.

Figure 6-2. The HTML Online Editor

Create some HTML content and use the code in Listing 6-3. You can
see the result in Figure 6-3.

Listing 6-3. Sending HTML-Formatted Email

$smtpserver = "smtp.lab.com"

$to = "sukhija@techwizard.cloud"

$from = "DonotReply@labtest.com”

$subject = "Test Subject”

$message = @"

<!-- ####H# YAY, I AM THE SOURCE EDITOR! ####f#####-->

<h1 style="color: #5e9ca0;">You can edit <span style="color:
#2b2301;">this demo text!</h1>

<h2 style="color: #2e6c80;">How to use the editor:</h2>
<p>Paste your documents in the visual editor on the left or
your HTML code in the source editor in the right.
Edit
any of the two areas and see the other changing in real
time.8 </p>

<p> </p>

iC

99

CHAPTER 6 ALERTING (EMAIL)

Send-MailMessage -SmtpServer $smtpserver -From $from -To
$to -Subject $subject -Body $message -BodyAsHtml

EX Windows PowerShe

C:\temp> &
P LB B -
File Message Help Q Tell me what you want to do
;] .2
K Ignore @ E lv_] <1V_| |_V1 =B | [New Meeting Y Move to: 7 i
e A ? : :)] : %d (3~ | |~ ToManager ™ Team Email) E
£ Junk > elete Archive eply t:\;ljly orwars - 7 Do Reply & Delete |= A
Delete Respond Quick Steps I~
Test Subject

donotreply
To @ Sukhija, Vikas (he/him/his)

Retention Policy Delete Emails after 730 days (2 years)

You can edit this demo text!

How to use the editor:

Paste your documents in the visual editor on the left or your HTML code in the source editor in the right.
Edit any of the two areas and see the other changing in real time.

Figure 6-3. The result of executing Listing 6-3

Sending Email—PowerShell Graph SDK

If you're working in a Microsoft 365 environment and want to send emails
programmatically, the Microsoft Graph SDK provides a powerful and
modern way to do so. The Microsoft Graph API allows you to interact with
various Office 365 services, including Outlook, making it easy to send
emails securely via PowerShell, even with rich features like attachments
and HTML formatting.

100

CHAPTER 6 ALERTING (EMAIL)

By using the PowerShell Graph SDK, you gain several benefits over
traditional email-sending methods:

e No need to configure SMTP servers.
e You can send emails using your Office 365 account.

o Leverage enhanced security features like OAuth 2.0 for
authentication.

Install the graph SDK module from PowerShell Gallery.

Install-Module Microsoft.Graph

Register an Azure AD (Entra)Application: Set up an Azure AD
application and configure the necessary API permissions (Mail.Send) for
Microsoft Graph. This allows the script to authenticate and send emails on
behalf of the account.

This should be application permission not delegated permission.

For authentication, type I recommend certificate-based authentication
instead of client ID and client secret.

You can generate self-signed certificate using below powershell code.

New-SelfSignedCertificate -Subject'CN=AutomationCert'
-KeyLength 2048 -KeyUsageProperty All -KeyAlgorithm ‘RSA’
-HashAlgorithm 'SHA256' -Provider 'Microsoft Enhanced RSA and AES
Cryptographic Provider' -NotAfter (Get-Date).AddYears(2)

Certificate will be generated under local machine context as shown in
Figure 6-4.

& Consolel - [Console Root\Certificates (Local Computer)\Personal\Certificates]
@ File Action View Favorites Window Help

e | 2nFE 4 RXE R BE

Console Root Issued To - Issued By Expiration Date Intended Purposes |
v 5 Certificates (Local Computer)
v [Personal
_ Certificates
Trusted Root Certification Authorities
| Enterprise Trust
* Intermediate Certification Authorities
 Trusted Publishers
Untrusted Certificates
Third-Darhs Rant Certificatinn Autharitiec

5 AutomationCert AutomationCert 9/22/2026 Client Authenticati...

2;1£32ca353-280b-4ce7-bab-2ae7... MS-Organization-P2P-Access [20... 9/15/2024 Server Authenticati.. -
2;1£32ca353-289b-4ce7-0bab-2ae7... MS-Organization-Access 4/2/2032 Client Authentication -

Figure 6-4. Generated certificate from PowerShell

101

CHAPTER 6 ALERTING (EMAIL)

You can then export this certificate including private key and delete
this certificate from the certificate store.

Save the certificate in some safe location.

You can import this certificate to the machine from where you want to
use this graph SDK.

Import it in current user store so that only that user is able to access it
and none of the admins of the machine is able to access.

You can further secure it on that machine by clicking export and select
delete the private key so it is not exportable again from there (delete the
exported certificate).

After that, just export the certificate (.cer) and upload it to the
registered Azure APP.

Now connect the Graph SDK module on the machine where you
installed it and send email as shown in Listing 6-4.

Listing 6-4. Sending Email from PowerShell SDK

Connect-MgGraph -ClientId $MgGClientID -CertificateThumbprint
$ThumbPrint -TenantId $TenantName -NoWelcome #
connection command
$message = @f
message = @{
subject = "Automation Script”
body = @{
contentType = "Text"
content = "Testing"
}
toRecipients = @(
o
emailAddress = @{
address = "SVi@techwizard.cloud"

102

CHAPTER 6 ALERTING (EMAIL)

)
ccRecipients = @(
o{
emailAddress = @{
address = "SV2@TechWizard.cloud"

saveToSentItems = "false"

}

Send-MgUserMail -UserId $From -BodyParameter $message

Summary

In this chapter, you learned various ways to send emails using PowerShell.

Whether you're working with simple, one-liner emails or crafting complex

HTML-formatted messages, these techniques are essential for automating

communication in real-world scenarios. You also explored both traditional

methods, like Send-MailMessage, and modern approaches, such as

leveraging the Microsoft Graph SDK for Office 365 environments.

Key Takeaways

Basic Email Sending: You learned how to send a
simple email using the Send-MailMessage cmdlet and
the legacy approach for PowerShell v1.

Formatted Emails: You saw how to send properly
formatted, multiline email messages using here-
strings and how to generate HTML emails for more
sophisticated, visually appealing communications.

103

CHAPTER 6 ALERTING (EMAIL)

PowerShell Graph SDK: By leveraging the power of
Microsoft Graph, you can send emails securely and
flexibly in Office 365 environments without worrying
about SMTP server configuration.

You can use this knowledge in real-world scenarios to

Send Bulk Emails: Automate communication by
sending bulk emails for newsletters, notifications,
or updates without needing third-party email
marketing tools.

Send Email Alerts: Incorporate email notifications

into your scripts and automation workflows to alert you
when a task or process fails. This is particularly useful
for monitoring systems and error reporting, ensuring

you stay informed without manual oversight.

With the skills covered in this chapter, you're now equipped to

automate email communication efficiently using PowerShell, whether it’s

for day-to-day operations or critical system alerts.

104

CHAPTER 7

Error Reporting

For successful scripting, error reporting is a must-have. When errors
occuy, it’s essential to notify the administrator or owner of the automation
process so they can address the issue quickly. PowerShell provides several
ways to handle error reporting, and one of the most common is by using
the $Error variable. This variable stores all the errors that have occurred in
the current session, allowing you to access and log them effectively.

In addition to logging errors, it’s often necessary to send alerts or
notifications, such as via email, to ensure someone is informed when an
issue arises. Below are some cheat code examples to show how you can
implement error reporting using PowerShell. These examples demonstrate
both logging errors and sending them via email.

Reporting Errors Through Email

Error reporting is crucial for ensuring that script failures are caught and
dealt with in a timely manner. Below, I have provided a method to send
errors via email when they occur in a PowerShell script.

In PowerShell, $Error is a default variable that stores all errors
encountered during the session.

In Listing 7-1, we are checking if $Error is not null, and if so, send the
latest error by email. After sending the email, $Error.Clear() is used to
clear the error array, ensuring that if the script runs in a loop or multiple
iterations, old errors won’t be repeatedly sent if no new ones occur.

© Vikas Sukhija 2025 105
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_7

https://doi.org/10.1007/979-8-8688-1157-9_7#DOI

CHAPTER 7 ERROR REPORTING

Listing 7-1. Sending Errors via Email

$from = "donotreply@lab.com"
$to="vikas@lab.com"
$subject = "Error has occured"
$smtpServer="smtp.lab.com"
if ($error)

{
Send-MailMessage -SmtpServer $smtpserver -From $from -To
$to -Subject $subject -Body $error[0].ToString()
$error.clear()

}

Explanation:

e $error[0] sends the most recent error from the
$Error array.

e $error.Clear() ensures that old errors are cleared,
preventing them from being sent again in case the
script loops or reruns.

However, Listing 7-1 only sends the last error, and $Error is actually an
array containing all errors in the session. If you need to send the full error
log, you can’t directly use Send-MailMessage because it doesn’t handle
arrays or multiple error messages effectively.

To overcome this, you can utilize the Send-Email function from the
vsadmin module (covered in the modules chapter of this book). The
Send-Email function has been designed to handle arrays and format them
properly for email content. This allows you to send the complete error list
or multiple errors in a readable format.

106

CHAPTER 7 ERROR REPORTING

Listing 7-2. Send-Email Function to Send an $error Array

function Send-Email
{
[CmdletBinding()]
param
(
[Parameter (Mandatory = $true)]
$From,
[Parameter(Mandatory = $true)]
[array]$To,
[array]$bcc,
[array]$cc,
$body,
$subject,
$attachment,
[Parameter (Mandatory = $true)]
$smtpserver
)
$message = New-Object System.Net.Mail.MailMessage
$message.From = $From
if ($To -ne $null)
{
$To | ForEach-Object{
$to1 = $_
$to1
$message.To.Add($to1)
}
}
if ($cc -ne $null)

{
$cc | ForEach-Object{

107

CHAPTER 7 ERROR REPORTING

$cc1 = $_
$cca
$message.CC.Add($cc1)
}
}
if ($bcc -ne $null)
{
$bcc | ForEach-Object{
$bcc1 = $_
$bcc1
$message.bcc.Add($bcc1)
}
}

$message.IsBodyHtml = $true

if ($subject -ne $null)

{$message.Subject = $subject}

if ($attachment -ne $null)

{
$attach = New-Object Net.Mail.Attachment($attachment)
$message.Attachments.Add($attach)

}

if ($body -ne $null)

{$message.body = $body}

$smtp = New-Object Net.Mail.SmtpClient($smtpserver)

$smtp.Send($message)

Once you've imported the Send-Email function from Listing 7-2, you
can use it to send the entire $Error array via email. This method ensures
that all errors encountered during the script execution are properly
captured and reported, improving visibility of potential issues.

108

CHAPTER 7 ERROR REPORTING

The code in Listing 7-3 is nearly identical to Listing 7-1, but instead
of using the built-in Send-MailMessage, it leverages the more flexible
Send-Email function from the vsadmin module to handle sending the full

error array.

Listing 7-3. Sending $error Array in an Email

$from = "donotreply@lab.com"
$to="vikas@lab.com"

$subject = "Error has occured"
$smtpServer="smtp.lab.com"

if ($error)

{

Send-Email -smtpserver $smtpServer -From $from -To
$to -subject $subject -body $error
$error.clear()

}

By utilizing the Send-Email function, you can ensure that all errors
are sent in one email, providing more comprehensive error reporting and
reducing the risk of missing important issues during script execution.

Logging Everything Including Errors

To enhance your script with better logging, PowerShell offers transcript
logging through the built-in cmdlets Start-Transcript and Stop-Transcript.
This approach captures the output, commands, and errors that occur
during script execution and logs them into a file. By default, the transcript
is stored in the user’s My Documents folder, but you can customize the
location using the -Path parameter.

109

CHAPTER 7 ERROR REPORTING

Transcript Logging Overview:

o Start-Transcript: Begins recording everything that
happens in the script, including commands and output

e Stop-Transcript: Stops the recording and saves the
transcript to a specified location or the default folder

Start-transcript # at the beginning of the script
Stop-transcript # at the end of the script

Example: Using Transcript Logging
Here’s how you can include transcript logging in your script, with a
custom path to store the log as shown in Figure 7-1.

E¥ Windows PowerShell

C:\temp> $log = "c:\data\log.txt"

C:\temp> Start-transcript -path $log

Transcript started, output file is c:\data\log.txt
C:\temp> Stop-transcript

Transcript stopped, output file is C:\data\log.txt
C:\temp>

Figure 7-1. Showing the transcript log in PowerShell

$log = "c:\data\log.txt"
Start-transcript -path $log # at the beginning of the script
Stop-transcript # at the end of the script

Logging Errors to a Text File

Logging errors to a text file is a simple yet effective way to keep a record
of issues encountered during script execution. I'll show you how to
implement a Write-Log function that can be reused across scripts to log
errors or other important information in a structured manner.

110

CHAPTER 7 ERROR REPORTING

The function allows you to customize the log file’s name, folder, and
extension, while also controlling the severity of the messages logged. This can
be particularly useful for separating informational, warning, and error logs.

Below Write-Log function from vsadmin module can be utilized as
shown below in Figure 7-2 to log errors.

$log = Write-Log -Name "Errorlog" -folder "logs" -Ext "log"
write-log -message "error is $error" -path $log -Severity error

C:\temp> $log = Write-Log -Name "Errorlog" -folder "logs" -Ext "log"
C:\temp> write-log -message "error is $error" -path $log -Severity error

_| Errorlog_9-7-2021_2-26PM_.log - Notepad =

File Edit Format View Help

109/07/2021 14:27:06| |error is Could not authenticate to SharePoint Online
https://techwizard-admin.sharepoint.com/ using OAuth 2.0 The remote server returnec
(401) Unauthorized. One or more errors occurred. The term 'l1' is not recognized as
of a cmdlet, function, script file, or operable program. Check the spelling of the
if a path was included, verify that the path is correct and try again. Could not fi
"C:\samplecsv.csv'. Could not find file 'C:\temp\samplecsv.csv'.| |error]|

Figure 7-2. Showing the error logging in a text file

Try Catch

Using Try and Catch blocks in PowerShell is a more structured way to
handle exceptions compared to relying solely on the $error variable. It
allows for precise control over error handling, making scripts more robust
and flexible. Here’s how you can enhance error handling with Try/Catch,
logging, and notifications.

The Try block contains the code that might throw an error, and if
an error occurs, the Catch block is triggered to handle that error. This
approach is especially useful when you want to log or handle specific types
of errors.

111

CHAPTER 7 ERROR REPORTING

Example is shown in Listing 7-4.

Listing 7-4. Try Catch Exception Handling

$smtpserver = "smtpserver"

$erroremail = "reports@labtest.com"

$from = "DoNotRespond@labtest.com"

try {
Code that might throw an error
Get-Item "C:\InvalidPath"

} catch {
$exception = $.Exception.Message
Handling the error if an exception occurs
Write-Error "An error occurred: $ "
Send-MailMessage -SmtpServer $smtpserver -From $from -To

$erroremail -Subject "Error -Message" -Body $exception

You can add Send-MailMessage or send-mail cmdlet under catch to
send exception on email.

Summary

In this chapter, you learned various methods for error reporting in
PowerShell, helping ensure that issues are properly captured, logged, and
communicated:

1. Reporting Errors: We explored how to handle
errors using the $error variable and send them via
email using the built-in Send-MailMessage cmdlet
or a custom Send-Email function.

112

CHAPTER 7 ERROR REPORTING

2. Logging Errors to a File: You learned how to utilize
the Write-Log function to create detailed logs,
allowing you to store error messages in text files,
complete with timestamps and severity levels.

3. Email Notifications: We covered how to
automatically notify administrators or process
owners by sending error details via email when

something goes wrong.

4. Session Capture with Start-Transcript: Finally, we
demonstrated how to capture the entire PowerShell
session using the Start-Transcript and Stop-
Transcript cmdlets, providing a complete record of

script execution for later review.

These techniques, when combined with Try/Catch for exception
handling, make your scripts more reliable, ensuring that any errors
encountered are appropriately logged, reported, and handled.

113

CHAPTER 8

Reporting

Reports are essential tools in the day-to-day life of a system administrator.
They not only help in presenting information to stakeholders, such
as managers, but also serve as valuable resources for evaluating and
improving work processes. Reports come in various formats like CSV,
HTML, Excel, and more.

The CSV (comma-separated values) format is the most commonly
used because of its versatility. CSV files can easily be imported into
applications such as Excel, making it a universal reporting option.

CSV Report

PowerShell provides the Export-CSV cmdlet, a powerful and flexible tool
for exporting data to a CSV file. Using this cmdlet, administrators can
create custom reports by piping output from other commands like Get-
Mailbox or Get-ADUser. The Export-CSV cmdlet makes it easy to take
information from the system and save it in a structured way.

Below is an example showing how to export attributes of users’
mailboxes from Exchange Server. This script selects key properties such
as Name, Identity, WindowsEmailAddress, Database, ProhibitSendQuota,
ProhibitSendReceiveQuota, and IssueWarningQuota and exports them
into a CSV file.

© Vikas Sukhija 2025 115
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_8

https://doi.org/10.1007/979-8-8688-1157-9_8#DOI

CHAPTER 8 REPORTING

Get-Mailbox -ResultSize unlimited | Select Name,identity, Windows
EmailAddress,Database,ProhibitSendQuota,ProhibitSendReceiveQuota,
IssuelWarningQuota | export-csv c:\mailboxes.csv -notypeinfo

This example can be run in the Exchange Management Shell, and
it exports the selected mailbox properties to a CSV file located at C:\
mailboxes.csv.

Complex CSV Reports

Sometimes, the requirements for a report can be more complex. You
might need to combine data from multiple sources, such as combining
attributes from both Active Directory and Exchange Server. In such cases, a
simple Get, Select, and Export-CSV approach is not enough.

For instance, consider a scenario where you have a list of users in a text
file, and you want to export their Active Directory and Exchange attributes
into a single CSV report. Here, additional scripting is required to gather
and format the data appropriately before exporting.

Scenario: Exporting User Attributes from Active Directory and
Exchange

In this example, we want to export the following attributes:

o Exchange Server: Name, Identity,
WindowsEmailAddress, Database, ProhibitSendQuota,
ProhibitSendReceiveQuota, and IssueWarningQuota

e Active Directory: EmployeelD, City (1), and Country (c)

We'll begin by reading the list of users from a text file, fetching their
properties from both Active Directory and Exchange, and then combining
that information into a CSV file. This is shown in Listing 8-1 and result in
Figure 8-1.

Note The Exchange and AD modules are both required. You need to
connect to them. The script will fail if they are not loaded.

116

CHAPTER 8 REPORTING

To load them, use your knowledge from previous chapters.
Load the Exchange on-premise shell using vsadmin launchexonprem:

LaunchEXOnprem -ComputerName ExchangeServer
For Active Directory, you can use the following:

Import-Module Activedirectory

Listing 8-1. Exporting to CSV When Fetching from Multiple Sources

$collection=@() #array to collect report data

$data = get-content .\users.txt #read samaccountname from
text file

$data | foreach-object{

$coll = "" | Select Name,identity,WindowsEmailAddress,Database,
ProhibitSendQuota,ProhibitSendReceiveQuota,IssueWarningQuota,
employeeid, 1,C #values needed in report
$getmbx = get-mailbox -identity $_
$getaduser = get-aduser -identity $ -properties
employeeid, 1,C
$coll.Name = $getmbx.Name
$coll.identity = $getmbx.identity
$coll.WindowsEmailAddress = $getmbx.WindowsEmailAddress
$coll.Database= $getmbx.Database
$coll.ProhibitSendQuota = $getmbx.ProhibitSendQuota
$coll.ProhibitSendReceiveQuota = $getmbx.ProhibitSend
ReceiveQuota
$coll.IssueWarningQuota = $getmbx.IssueWarningQuota
$coll.employeeid = $getaduser.employeeid #note difference
here
$coll.l = $getaduser.l
$coll.c = $getaduser.c

117

CHAPTER 8 REPORTING

$collection+=$coll #add the collected values to the
collecttion array

}
#now export to CSV file

$collection | Export-Csv .\report.csv -NoTypeInformation

2C > Boot(C:) > temp

Name Date mod\i/fied Type Size
@ report.csv 8/30/2021 4:35 PM Microsoft Excel C...
|24 Listing 8.1.ps1 8/30/20214:11PM Windows PowerS...
D users.bxt 8/30/2021 4:08 PM Text Document
E Admin te 1 PowerShell
testlDMZ
test2DMZ
PS C:\temp>
AutoSave D)=
File Home Insert Draw Page Layout Formulas Data Review
D6 v J<
‘ A | B ‘ C D E ‘ F G ‘ H

1 |Name identity 'WindowstDatabase ProhibitSe¢ ProhibitSe IssueWarr employeel
2 |testlDMZ labtest.co testlDMZ LabDAGM Unlimited Unlimited Unlimited

3 [test2DMZ labtest.co test2DMZ LabDAGM 2 KB (2,04i2 KB (2,04:2 KB (2,048 bytes)
A

Figure 8-1. Showing the execution result of Listing 8-1

Another important aspect of CSV reporting is the ability to export
multivalued attributes. Multivalued attributes contain multiple entries
or values in a single field. This is particularly common when working with
attributes like distribution groups, email recipients, or security groups in
systems like Exchange Server or Active Directory.

118

CHAPTER 8 REPORTING

When exporting such attributes, it is important to handle them
correctly so that the data remains readable and usable. In PowerShell, we
can use custom expressions within Select-Object to format multivalued
attributes as needed.

Example: Extracting Multivalued Recipients from Exchange
Tracking Logs

In Exchange, the recipients field is a multivalued attribute in the
message tracking logs. When querying the logs, this field can contain one
or more email addresses per message and exporting it directly may result
in values that are difficult to parse in a CSV file.

To handle this, we can create a custom expression that joins the
multivalued attributes into a readable format. The following expression
ensures that recipients are extracted and formatted as a single string, with
each recipient separated by a comma (you can use any other separator as
well instead of comma).

@{Name="Recipients" ;Expression={$_.recipients -join ","}}

See Listing 8-2 for an example of extracting recipient values from
Exchange transport logs.

Listing 8-2. Example Code Showing How to Export Multivalued
Attributes

Get-transportserver | Get-MessageTrackinglog -Start"03/09/2015
00:00:00 AM" -End"03/09/2015 11:59:59 PM" -sender "vikas@lab.
com" -resultsize unlimited | °

select-object Timestamp,clientip,ClientHostname,ServerIp,
ServerHostname, sender,EventId,MessageSubject, TotalBytes ,
SourceContext,ConnectorId,Source, °

InternalMessageId , MessageId ,@{Name="Recipents";Expression=
{$_.recipients -join ","}} I °

export-csv c:\track.csv

119

CHAPTER 8 REPORTING

Excel Reporting

While CSV reports are sufficient for most purposes, there are situations
where more polished and user-friendly formats are required—especially
when sharing data with management or nontechnical stakeholders. Excel
provides a highly versatile and visually appealing format for presenting
data, offering features like formatting, charts, and pivot tables that make it
easy to analyze and present information.

Converting data from PowerShell to Excel directly can be a more
efficient and professional way of generating reports. Below, we will explore
two methods for creating Excel reports from PowerShell scripts.

The first method exists in the vsadmin module that was shared in the
modules chapter.

Note Excel should be installed on the machine to use this method.

Listing 8-3 shows the code of the Save-CSV2Excel function in case you
do not have the vsadmin module installed or do not want to use it.

Listing 8-3. Cheat Code for the Save-CSV2Excel Function

Function Save-CSV2Excel

{
[CmdletBinding()]

Param(
[Parameter(Mandatory = $true,Position = 1)]
[ValidateScript({

if(-Not ($_ | Test-Path)){throw "File or folder does
not exist"}

if(-Not ($_ | Test-Path -PathType Leaf)){throw "The Path
argument must be a file. Folder paths are not allowed."}

120

CHAPTER 8 REPORTING

if($_ -notmatch "(\.csv)"){throw "The file specified in the
path argument must be either of type csv"}
return $true
D]
[System.I0.FileInfo]$CSVPath,
[Parameter(Mandatory = $true)]
[ValidateScript({

if($_ -notmatch "(\.xlsx)"){throw "The file specified in the
path argument must be either of type x1lsx"}
return $true

D]
[System.I0.FileInfo]$Exceloutputpath

)

###HHH# Borrowed function from Lloyd Watkinson from script
galleryi#
Function Convert-NumberToA1
{
Param([parameter (Mandatory = $true)]
[int]$number)
$a1Value = $null
While ($number -gt 0)
{
$multiplier = [int][system.math]::Floor(($number / 26))
$charNumber = $number - ($multiplier * 26)
If ($charNumber -eq 0) { $multiplier-- ; $charNumber = 26 }
$a1Value = [char]($charNumber + 64) + $aiValue
$number = $multiplier

}

Return $ai1Value

121

CHAPTER 8 REPORTING

HHHAHHH STt converting excel##HHHHHHHHHHHHHHAHHHH#
$importcsv = Import-Csv $CSVPath
$countcolumns = ($importcsv

Get-Member

Where-Object{$.membertype -eq "Noteproperty"}).count
HHHEH A call Excel com object #t##HHH##HHHIHH
$x1 = New-Object -comobject excel.application
$xl.visible = $false
$Workbook = $x1.workbooks.open($CSVPath)
$Workbook. SaveAs ($Exceloutputpath, 51)
$Workbook.Saved = $true
$x1.Quit()
HHHEHHHHHEHINOW format the Excel##tHHHHHHHHHMHHHHHE
timeout.exe 10 #wait for 10 seconds before saving
$x1 = New-Object -comobject excel.application
$x1l.visible = $false
$Workbook = $x1.workbooks.open($Exceloutputpath)
$worksheet1 = $Workbook.worksheets.Item(1)

for ($c = 1; $c -le $countcolumns; $c++) {$worksheet1.Cells.
Item(1, $c).Interior.ColorIndex = 39}
$colvalue = (Convert-NumberToA1l $countcolumns) + "1"
$headerRange = $worksheet1.Range("a1", $colvalue)
$null = $headerRange.AutoFilter()
$null = $headerRange.entirecolumn.AutoFit()
$worksheet1.rows.item(1).Font.Bold = $true
$Workbook. Save()
$Workbook.Close()
$x1.Quit()

$Null = [System.Runtime.Interopservices.Marshal]::Release
ComObject($x1)

122

CHAPTER 8 REPORTING

HEHHH R R R A R
HAHHHFHH AR
HiWrite-CSV2Excel

Let’s use the CSV report from Listing 8-1 and convert it to Excel using
Save-CSV2Excel. See Figure 8-2.

Save-CSV2Excel -CSVPath c:\temp\report.csv -Exceloutputpath
c:\temp\report.xlsx

sPC > Boot(C:) > temp

Name Date modeied Type Size
@ report.xlsx 8/30/2021 4:38 PM Microsoft Excel W... 11 KB
@ report.csv 8/30/20214:38PM Microsoft Excel C... 1KB
|24 Listing 8.1.ps1 8/30/20214:11PM Windows PowersS... 2KB
‘ EX Administrator: Windows PowerShe
= th c:\temp\report.csv -Exceloutputpath c:\temp\report.xlsx
Waiting for 0 seconds, press a key to continue ...
PS C:\temp>
AutoSave D) reportxisx v £ Search
File Home Insert Draw Page Layout Formulas Data Review View Help
A2 M - fe testlDMZ
S—ia— 8 L I) S — —
1 |Name ~ identity ~ | WindowsEmailAdd v | Datab ~ | ProhibitSendQuota - |Pi
2 _testlDMZ_IIabtest.com/testlDMZ testiDMZ@labtest.com labDAGMO01_DBO1 Unlimited 0]
3 |test2DMZ labtest.com/test2DMZ test2DMZ@labtest.com labDAGMO1_DBO1 2 KB (2,048 bytes) 2
4l

Figure 8-2. Showing a CSV-to-Excel conversion

One of the most popular and powerful PowerShell modules available in
the PowerShell Gallery is the ImportExcel module. This module allows you to
create and manipulate Excel files without needing to have Excel installed on
the machine. This is a significant advantage when running scripts on servers
or environments where installing Excel is not feasible or recommended.

The ImportExcel module simplifies the process of converting
data directly into Excel files, allowing you to export variables,

123

CHAPTER 8 REPORTING

tables, or other forms of structured data into neatly formatted Excel
spreadsheets.

Installing the ImportExcel Module

To use the ImportExcel module, you first need to install it from the
PowerShell Gallery. You can do this by running the following command:

Install-Module -Name ImportExcel

Let’s use the same report and use this new module to convert it into
Excel. The advantage of using this module is that it does not require Excel
to be installed on the machine. See Figure 8-3.

Import-Module -Name ImportExcel
$data = Import-Csv .\report.csv
$data | Export-Excel -Path c:\temp\report.xlsx

PC > Boot(C:) > temp

Name Date mod\i/fied Type Size
E3:] report.xlsx 9/1/20218:37AM Microsoft Excel W... 3
£33 report.csv 8/30/20214:38PM Microsoft Excel C... 1
AutoSave ®~ = report.xlsx ~ £ Search
File Home Insert Draw Page Layout Formulas Data Review
Al v fe Name
A | B | ¢ | Db | E | F | 6 | H |
1 |[Name identity WindowstDatabase ProhibitS¢ ProhibitSe¢ IssueWarr employeel
2 |testlDMZ labtest.co test1DMZ labDAGM¢ Unlimited Unlimited Unlimited
3 |test2DMZ labtest.co test2DMZlabDAGM<S2 KB (2,04:{2 KB (2,04:2 KB (2,04t
4 | E¥ Administrator: Windows PowerShell
SHPS C: temp> I Name ImportExce
6 PS C:\temp> § Import-Csv .\report.csv
PS C:\temp> § 1 | Export-Excel -Pa c:\temp\report.xlsx
yAPS C:\temp> _
8

Figure 8-3. Using the ImportExcel module

124

CHAPTER 8 REPORTING

There are lot of other parameters inside that function like the
formatting of Excel, which I leave to you to explore!

HTML Reporting

HTML dashboards can be an effective way to visually represent the status
of system services or infrastructure components. By using PowerShell, it’s
possible to generate real-time dashboards that display traffic light-
style indicators: red when a service is down and green when it’s running
smoothly. This approach simplifies monitoring, enabling IT administrators
to assess system health at a glance.

See Figure 8-4.

RTCCPS Running
RTCDATAMCU Running
RTCIMMCU Running
RTCMEDSRV. Running
RTCMEETINGMCU Running
RTCRGS Running
RtcSrv Running
REPLICA [stopped
RTCASMCU [stopped |
RTCATS [stopped |
RTCAVMCU [stopped |
RTCCAA [stopped |
RTCCAS [stopped |
RTCCPS [stopped |

Figure 8-4. An HTML table report

Listing 8-4 is a template for HTML coding that you can use inside
scripts and do traffic light-type operations based on conditions.

Listing 8-4. Template for HTML Coding

$report = $reportpath

Clear-Content $report
S #HT) Report
ContentH#H#H##fHHHHHHHHHHHH
Add-Content $report "<html>"

1

\"]

5

CHAPTER 8 REPORTING

"<head>"
"<meta http-equiv='Content-Type'
charset=is0-8859-1">"
"<title>Exchange Status Report</title>’
"<STYLE TYPE="text/css">'
ey
"td ("
"font-family: Tahoma;"
"font-size: 11px;"
"border-top: 1px solid #999999;"
"border-right: 1px solid #999999;"
"border-bottom: 1px solid #999999;"
"border-left: 1px solid #999999;"

Add-Content $report
Add-Content $report
content="text/html;
Add-Content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report

add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
Add-Content $report
Add-Content $report

126

"padding-top: Opx;"
"padding-right: opx;"
"padding-bottom: opx;"
"padding-left: opx;"

nyn

"body {"

"margin-left: 5px;"
"margin-top: 5px;"
"margin-right: opx;"
"margin-bottom: 10px;"

"table {"

"border: thin solid #000000;"
nyn

"-->
"</style>"
"</head>"
"<body>"

add-content $report
add-content $report
add-content $report
align="center'>"

add-content $report
size="4">DAG
add-content $report
add-content $report
add-content $report
add-content $report
Add-Content $report
Add-Content $report

CHAPTER 8 REPORTING

"<table width="100%">"
"<tr bgcolor="Lavender'>"
"<td colspan="7"' height="25"

"<font face='tahoma' color='#003399"
Active Manager"
"</td>"

"</tr>"

"</table>"

"<table width="100%">"

"<tr bgcolor="IndianRed'>"

"<td width="10%"

align="center'>Identity</td>"

Add-Content $report

"<td width="5%" align="center'>PrimaryA

ctiveManager</td>"

Add-Content $report

"<td width="20%" align='center'>Operati

onalMachines</td>"

Add-Content $report

"</tr> n

HHH A R Repor T
Template it HHHHHHE A

add-content $report
add-content $report
align="center'>"

add-content $report
size="4">DAG
add-content $report
add-content $report
add-content $report
add-content $report
add-content $report
Add-Content $report

"<tr bgcolor="'Lavender'>"
"<td colspan="7"' height="25"

"<font face='tahoma' color='#003399'
Database Backup Status
"</td>"

"<t

"</tr>"

"</table>"

"<table width="'100%">"

"<tr bgcolor="IndianRed"'>"

127

CHAPTER 8 REPORTING

Add-Content $report "<td width='10%"
align="center'>Database</td>"
Add-Content $report "<td width='5%'
align="center'>BackupInProgress</td>"
Add-Content $report "<td width='10%' align="center'>Snapsho
tLastFullBackup</td>"
Add-Content $report "<td width='5%"' align='center'>Snapshot
LastCopyBackup</td>"
Add-Content $report "<td width='10%"' align='center'>LastFul
1Backup</td>"
Add-Content $report "<td width='5%' align='center'>RetainDe
letedItemsUntilBackup</td>"
$dbst= Get-MailboxDatabase | where{$.MasterType -like
"DatabaseAvailabilityGroup"}
$dbst | foreach{$st=Get-MailboxDatabase $ -status

$dbname = $st.Name

$dbbkprg = $st.BackupInProgress

$dbsnpl = $st.SnapshotLastFullBackup

$dbsnplc= $st.SnapshotLastCopyBackup

$dblfb = $st.LastFullBackup

$dbrd = $st.RetainDeletedItemsUntilBackup

Add-Content $report "<tr>"

Add-Content $report "<td bgcolor= 'GainsBoro'
align=center> $dbname</td>"

Add-Content $report "<td bgcolor= 'GainsBoro'
align=center> $dbbkprg</td>"

Add-Content $report "<td bgcolor= 'GainsBoro'
align=center> $dbsnpl</td>"

Add-Content $report "<td bgcolor= 'GainsBoro'

128

CHAPTER 8 REPORTING

align=center> $dbsnplc</td>"
if($dblfb -1t $hrs)
{

Add-Content $report "<td bgcolor= 'Red’
align=center> $dblfb</td>"
}

else

{

Add-Content $report "<td bgcolor= 'Aquamarine’
align=center> $dblfb</td>"

}

Add-Content $report "<td bgcolor= 'GainsBoro'
align=center> $dbrd</td>"
Add-Content $report "</tr>"
}
R
Add-content $report "</table>"
Add-Content $report "</body>"
Add-Content $report "</html>"

See examples at the following links where this template has been
successfully utilized for the Exchange Health Check, AD Health Check, and

Monitor Remote services:

https://techwizard.cloud/exchange-2010-health-check/
https://techwizard.cloud/adhealthcheck/
https://techwizard.cloud/monitor-windows-services-status-
remotely/

129

CHAPTER 8 REPORTING

As mentioned, you can use the HTML Online Editor to create HTML
and use it in your PowerShell scripts (https://html-online.com/
editor/).

Summary

In this chapter, you explored the essential topic of reporting in PowerShell.
You learned how to generate reports in three common formats: CSV,
HTML, and Excel, which are widely used across various systems for
presenting data in a clear, accessible manner. CSV is a universal format,
suitable for most reporting needs, while HTML allows you to create
interactive and visually rich dashboards. The ImportExcel module further
extends reporting capabilities, enabling you to generate Excel reports
without needing Excel installed on the system.

By mastering these reporting techniques, you can provide valuable,
actionable data to managers and stakeholders, ensuring that the
information is presented in a format that’s both professional and easy to
understand.

130

https://html-online.com/editor/
https://html-online.com/editor/

CHAPTER 9

Miscellaneous
Keywords

In this chapter, we will dive into some key PowerShell keywords that
enable efficient data manipulation—a fundamental aspect of scripting
and automation. Mastering these commands will allow you to perform
tasks such as string manipulation, data comparison, and pattern matching,
which are vital for processing information in scripts.

We will explore the following keywords:

o Split: Breaks a string into an array of substrings based
on a specified delimiter, making it easier to handle and
analyze data chunks

« Replace: Substitutes occurrences of one value within a
string with another, an essential function for cleaning

or transforming data

o Select-String: Searches for text patterns within files or
strings, allowing you to locate specific information, like
how you might use grep in other languages

o Compare-Object: Compares two sets of objects,
highlighting differences or similarities, which is crucial
for tracking changes or comparing datasets

© Vikas Sukhija 2025 131
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_9

https://doi.org/10.1007/979-8-8688-1157-9_9#DOI

CHAPTER9 MISCELLANEOUS KEYWORDS

These keywords are powerful tools for manipulating data and
searching within files or collections. They are commonly used in real-
world automation tasks, such as text parsing, log analysis, or comparing
configuration states.

Split

The Split keyword is incredibly useful for extracting data from strings.
Whether you're pulling out an email address or parsing other structured
text, Split allows you to break the string at a specified character and convert
itinto an array. Let’s look at an example to see this in action.

In this example, we’ll extract the first name and last name from an
email address. You'll split the email string at the dot (.) to isolate the first
name, then further split at the @ symbol to extract the last name.

$email = "Vikas.Sukhija@labtest.com"
$emsplit = $email.split(".")
$firstname = $emsplit[o0]

$lastname = ($emsplit[1] -split "@")
$lastn = $lastname[0]

$emsplit[0] and $lastname[0]

In this example, the email string is first split at the dot (.), resulting in
an array where the first element ($emsplit[0]) holds the first name. To get
the last name, we split the second part of the email ($emsplit[1]) at the @
character, and the first element of that split becomes the last name.

Figure 9-1 illustrates this step-by-step process, helping you visualize
how the Split operation works.

132

CHAPTER9 MISCELLANEOUS KEYWORDS

EN Windows PowerShell

C:\temp> $email = "Vikas.Sukhija@labtest.com"
C:\temp> $emsplit = $email.split(".")
C:\temp> $emsplit

Vikas

Sukhija@labtest

com

C:\temp> $firstname = $emsplit[0]

C:\temp> $firstname

Vikas

C:\temp> $lastname = ($emsplit[1l] -split "@")
C:\temp> $lastname

Sukhija

labtest

C:\temp> $lastn = $lastname[0]

C:\temp> $lastn

Sukhija

C:\temp>

Figure 9-1. Showing the Split operation

Replace

Another useful keyword is Replace. Instead of splitting a string, Replace
allows you to substitute specific parts of a string with new content. This
can be particularly useful when you need to update or modify the structure
of text data.

For example, imagine you need to replace the dot (.) in an email
address with an underscore (_) to create a modified version, such as for a
secondary address.

Here’s the PowerShell code to achieve this:

You can use this code and see the result in Figure 9-2:

$email = "Vikas.Sukhija@labtest.com"
$emreplace = $email.replace("."," ")

133

CHAPTER9 MISCELLANEOUS KEYWORDS

EX Windows PowerShell
C:\temp> $email = "Vikas.Sukhija@labtest.com"

C:\temp> $emreplace = $email.replace(".","_")
C:\temp> $emreplace
Vikas_Sukhija@labtest_com

C:\temp>

Figure 9-2. Showing a Replace operation

Select-String

The Select-String keyword is an incredibly powerful tool for searching
within files. You can use it to locate specific strings in one or more files,
making it ideal for tasks such as searching through logs or large datasets.

One practical use I have relied on many times is finding the exact date
and time of an operation from a large set of log files. While others may
spend hours manually scanning files, Select-String makes this process
quick and efficient.

For instance, say you have a folder full of log files, and you need to find
only the files where the word “Error” appears. The following one-liner will
do just that:

Get-ChildItem c:\data\logs | Select-String -Pattern "Error"

This command retrieves all the files from the logs folder and searches
each file for the word “Error” When found, it displays the file name along
with the matching string.

You can see how this Select-String operation extracts the file name
containing the error in Figure 9-3.

-}
C:\temp> Get-ChildItem c:\data\logs | Select-String -Pattern "Error"

C:\data\logs\ADDtoAirwatchSmartGroup-Log_8-29-2021_10-01AM_.log:5:|08/29/2021 10:02:01| |exception occured| |Error|

Figure 9-3. Showing a Select-String operation

134

CHAPTER9 MISCELLANEOUS KEYWORDS

Compare-0bject

The Compare-Object keyword (or its alias Compare) is highly efficient
for comparing two sets of data, whether they are files or arrays. It
provides a faster and more reliable alternative to looping through arrays
manually. One common use is comparing members of Active Directory
groups with entries in a file or another group, identifying differences, and
synchronizing the two sets.

For instance, you can fetch members from one group and compare
them with a list of user IDs from a text file. This way, you can add only the
missing members instead of processing all members. Below is an example
demonstrating how to add members from one group to another (Listing 9-1).

Note The Active Directory module is required for this to work.

Listing 9-1. Cheat Code for Adding Members Using
Compare-Object

HHHHHH A et ching groupl #HHEHHHHHHHHHH#HI
$collgroupl = Get-ADGroup -id "groupl" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
HHHHHHH AR et ching group2 #HHHHHHHHHHHHHHAHH
$collgroup2 = Get-ADGroup -id "group2" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
A compar e two groupsHtHHHEHHEHEHH T
$change = Compare-Object -ReferenceObject
$collgroupl -DifferenceObject $collgroup2

135

CHAPTER9 MISCELLANEOUS KEYWORDS

$Addition = $change
Where-Object -FilterScript {$_.SideIndicator -eq "<="}
Select-Object -ExpandProperty InputObject
###HHHH#adding only members that are missing in
group 2ttt
$Addition | ForEach-Object{
$sam = $_
Add-ADGroupMember -identity "group2" -Members $sam

}
HHHH A

Similarly, you can do a remove operation by using Compare-0Object, as
shown in Listing 9-2.

Listing 9-2. Cheat Code for Removing Members Using
Compare-Object

HHERHHH AR A etching groupl ###HHRHHHHHHHHHAHH
$collgroupl = Get-ADGroup -id "groupl" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
HHHEH A et ching group2 #HHHHHHH R
$collgroup2 = Get-ADGroup -id "group2" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
A A compare two groupsHHHHEHHEHEHHEHHHHEH
$change = Compare-Object -ReferenceObject
$collgroupl -DifferenceObject $collgroup2
$Removal = $change
Where-Object -FilterScript {$.SideIndicator -eq "=>"}
Select-Object -ExpandProperty InputObject

136

CHAPTER9 MISCELLANEOUS KEYWORDS

####Removing members that are in group2 but not in
group 1ttt
$Removal | ForEach-Object{
$sam = $_

Remove-ADGroupMember -identity "group2" -Members
$sam -confirm:$false

}
HHHH A

You can combine both operations in one script and synchronize two
groups based on groupl as the anchor. Listing 9-3 shows this operation.

Listing 9-3. Cheat Code for Synchronizing Two Groups Using
Compare-Object (Based on groupl as the Anchor)

HHERHHH AR A etching groupl ###HHRHHHHHHHHHAHH
$collgroupl = Get-ADGroup -id "groupl" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
HHHEH A et ching group2 #HHHHHHHH R
$collgroup2 = Get-ADGroup -id "group2" -Properties member
Select-Object -ExpandProperty member
Get-ADUser
Select-Object -ExpandProperty samaccountname
A A compare two groupsHHHHEHHEHEHHEHHHHEH
$change = Compare-Object -ReferenceObject
$collgroupl -DifferenceObject $collgroup2
$Addition = $change
Where-Object -FilterScript {$.SideIndicator -eq "<="}
Select-Object -ExpandProperty InputObject
$Removal = $change

137

CHAPTER9 MISCELLANEOUS KEYWORDS

Where-Object -FilterScript {$.SideIndicator -eq "=>"}
Select-Object -ExpandProperty InputObject
###HHHH#adding only members that are missing in group2####HHHt
$Addition | ForEach-Object{
$sam = $_
Add-ADGroupMember -identity "group2" -Members $sam
}
####Removing members that are in group2 but not in
group 1ttt
$Removal | ForEach-Object{
$sam = $_

Remove-ADGroupMember -identity "group2" -Members
$sam -confirm:$false

}
HHH R R R R A AR

You can also use the other approach, so instead of removing from
group2, you just use ADD-Groupmember for group1 so you can truly
synchronize both groups. Any user object that is not present in group2 but
is in group1 should be added to group2, and any user object not present in
groupl but in group2 should be added to group1:

ADD-ADGroupMember -identity "groupi" -Members $sam
instead of

Remove-ADCGroupMember -identity "group2" -Members
$sam -confirm:$false

There are other nice tricks you can perform with Compare-0Object. Say
you have two CSV files. One just has email addresses of users; the other has
email addresses and other properties. You want all details from CSV file 2
for the users in CSV file one.

138

CHAPTER9 MISCELLANEOUS KEYWORDS

Listing 9-4 shows an example for OneDrive properties. There are two
CSV files. One contains user email addresses and the other contains email
addresses and other properties in other columns.

Listing 9-4. Cheat Code for Merging Two CSV Files Using
Compare-Object

$importallonedrivesites = import-csv "c:\importonedrives.csv"
onedrive file with other attributes

$importspofile = import-csv "c:\users.csv" #users email
addresses

$change = Compare-Object -ReferenceObject
$importallonedrivesites -DifferenceObject

$importspofile -Property owner -IncludeEqual -PassThru #owner
is the column name for users email addreses

$change | where{$.SideIndicator -eq "==" -or

$.SideIndicator -eq "=>"}

select Owner, Title, url, StorageUsageCurrent, StorageQuota,
StorageQuotaWarninglevel

Export-Csv "c:\newfile.csv" -NoTypeInformation

Summary

In this chapter, you explored several powerful keywords in PowerShell
that are essential for data manipulation and transformation tasks. These
keywords—Split, Replace, Select-String, and Compare-Object—enable
you to efficiently manage and modify data. Whether you need to extract
specific details from strings, search for patterns in files, or compare

and synchronize large datasets, these tools streamline the process. By
mastering these commands, you can automate operations even when
the input data comes in unexpected formats, making your scripts more
dynamic and adaptable to real-world scenarios.

139

CHAPTER 10

Gluing It All Together

Welcome to the final chapter of this book! In this chapter, I will guide
you through creating a practical script that applies the knowledge
and techniques you've learned so far. Additionally, I will share some
valuable cheat codes from various products that can simplify your daily
automation tasks.

Scenario Overview

Imagine this scenario: You receive a text file from your HR system (see

Figure 10-1), which contains a list of account names. Your task is to add
these accounts to an Active Directory (AD) group. By doing so, you will
grant them access to a file share that has permissions for that AD group
or push an application to their devices based on their membership in
the group.

urganize

"his PC > OSDisk (C:) > temp

~

Name

=] users.txt

] users.txt - Notepad

File Edit Format View Help
userl
user2
user3
user4

Figure 10-1. Showing the example users text file

© Vikas Sukhija 2025
V. Sukhija, PowerShell Fast Track, https://doi.org/10.1007/979-8-8688-1157-9_10

141

https://doi.org/10.1007/979-8-8688-1157-9_10#DOI

CHAPTER 10 GLUING IT ALL TOGETHER

This is a common administrative task, but with automation, you can
streamline the process and eliminate manual effort. We'll walk through
creating a script that automates adding users to the AD group, ensuring
that you can handle this task efficiently and with minimal risk of errors.

Step 1: Add headers to the script (see Figure 10-2)

<#
.NOTES
Created with: ISE
Created on: 9/6/2021 1:46 PM
Created by: Vikas Sukhija
Organization:
Filename: ADDUserstoGroupfromText.ps1
.DESCRIPTION

This will add the users from text file to AD group
#>

<#

.NOTES

Created with: ISE

Created on: 9/6/2021 1:46 PM

Created by: Vikas Sukhija

organization:

Filename: ADDUserstoGroupfromText.psi

.DESCRIPTION

This will add the users from text file to AD group
#>

Figure 10-2. Showing headers in ISE

Step 2: Import all modules that you will utilize for this script

1. The vsadmin module will make your life easy for the
scripting operations.

142

CHAPTER 10 GLUING IT ALL TOGETHER

2. Active Directory modules.

If you do not want to use the vsadmin module, then just use the
functions instead.

import-module vsadmin
import-module Activedirectory

Step 3: Add some variables and logs for your script

$log = Write-Log -Name "ADDUser2Group-Log" -folder "logs"
-Ext "log"

$users = get-content "c:\temp\users.txt"

$Adgroup = "ADgroup1"

$logrecyclelimit = "60" #to recycle the logs after 60 days

Step 4: Start the actual operation

Write-Log -Message "Start............... script"” -path $log
$users | foreach-object{

$user = $.trim() #triming fro any whitespace

Write-Log -Message "Processing.......... $user" -path $log

$getusermemberof = Get-ADUserMemberOf -User $user -Group
$Adgroup #checking if user si already member

if($getusermemberof -eq $true){ #if users is already mebe rjust
write it to log

Write-Log -Message "$user is already member of $Adgroup”
-path $log
}
else{
Write-Log -Message "ADD $user to $Adgroup” -path $log
Add-ADGroupMember -identity $Adgroup -members $user
if($error){ #error checking, if error occurs add in log

143

CHAPTER 10 GLUING IT ALL TOGETHER
Write-Log -Message "Error - ADD $user to $Adgroup” -path $log

$error.clear() # clearing the error as it has already been
captuire for this iteration

}

else{

Write-Log -Message "Success - ADD $user to $Adgroup" -path $log

}
}
}

Step 5: Recycle logs or clean up the sessions (see Listing 10-1)

Listing 10-1. Cheat Code Script Template Example

HHHHH A A ERecy cle log s HHHHHHRHEHHHHEH R
Set-Recyclelogs -foldername "logs" -limit

$logrecyclelimit -Confirm:$false

Write-Log -Message "Script Finished" -path $log

Glue it all together to form a nice script as shared in
Listing 10-1

<#
NOTES
Created with: ISE
Created on: 9/6/2021 1:46 PM
Created by: Vikas Sukhija
Organization:
Filename: ADDUserstoGroupfromText.ps1
.DESCRIPTION

This will add the users from text file to AD group

144

CHAPTER 10 GLUING IT ALL TOGETHER

#>
HHHE A Import modules and
functions#itiHHHHHHHHHHHHHHHHHE
import-module vsadmin
import-module Activedirectory
HHHHHHHH#H#ADD logs and
variables##HtHHHHHHHHHEHHEHHHEHHEHH
$log = Write-Log -Name "ADDUser2Group-Log" -folder "logs"
-Ext "log"
$users = get-content "c:\temp\users.txt"
$Adgroup = "ADgroup1”
$logrecyclelimit = "60" #to recycle the logs after 60 days
HHHHH
#
Write-Log -Message "Start............... script" -path $log
$users | foreach-object{

$user = $.trim() #triming fro any whitespace

Write-Log -Message "Processing.......... $user" -path $log

$getusermemberof = Get-ADUserMemberOf -User $user -Group
$Adgroup #checking if user si already member

if($getusermemberof -eq $true){ #if users is already mebe rjust
write it to log

Write-Log -Message "$user is already member of $Adgroup”
-path $log
}
else{
Write-Log -Message "ADD $user to $Adgroup" -path $log
Add-ADGroupMember -identity $Adgroup -member $user
if($error){ #error checking, if error occurs add in log

Write-Log -Message "Error - ADD $user to $Adgroup” -path $log

145

CHAPTER 10 GLUING IT ALL TOGETHER

$error.clear() # clearing the error as it has already been
captuire for this iteration

}
else{

Write-Log -Message "Success - ADD $user to $Adgroup" -path $log
}

}
HHHH S EH ERecy cle log s HHHHHHHHEHHHHEH I

Set-Recyclelogs -foldername "logs" -limit
$logrecyclelimit -Confirm:$false
Write-Log -Message "Script Finished" -path $log

Let’s run this cheat code by changing the variable adgroup and adding
users in the text file as per the production environment. See Figure 10-3.

i Organize New Open Select
hisPC > Boot (C:) > temp
Name Date modified Type Size
|y Listing 10.1.ps1 Windows PowerS... 2KB
U users.txt Text Document 1KB
logs File folder

File Edit Format View Help

109/06/2021 10:53:00| |SEERE: 2.5 0 s sumars script| |Information|
109/06/2021 10:53:00| |Processing.......... userl| |[Information|
109/06/2021 10:53:00| |ADD sukhijv to messaging offshore| |Information|
v |]09/06/2021 10:53:00| |Success - ADD userl to messaging offshore| [Information]|
109/06/2021 10:53:00| |Processing.......... user2| |Information]|
109/06/2021 10:53:00| |user? is already member of bsc messaging offshore| |Information|

109/06/2021 10:53:00| |Script Finished| |Information|

Figure 10-3. Showing execution of the script ADDUserstoGroup
FromText.psl1

146

CHAPTER 10 GLUING IT ALL TOGETHER

In a similar manner, you can create numerous scripts tailored to
various production needs. Over the past decade, I have contributed
hundreds of scripts to the community, many of which are available for you
to access and adapt to your specific requirements. You can find them at the
following link: https://techwizard.cloud/downloads/.

These scripts are built upon the same core principles we've explored
throughout this book. Feel free to modify them as necessary to suit your
use cases, whether it’s automating tasks, improving efficiency, or ensuring
consistent workflows in your environment.

Product Examples (Daily Use)

In this section, I'm sharing some handy snippets that you can use as-is
or incorporate into your own scripts for daily administrative tasks. Given
my passion for Microsoft Exchange, I've focused on providing useful
Exchange-related examples. These script excerpts are designed to simplify
common Exchange management tasks, and you can easily integrate them
into your automation routines.

Here are some Exchange script snippets you can use in your day-to-
day operations.

Microsoft Exchange

Clean Database so That Mailboxes Appear
in a Disconnected State

Get-MailboxServer | Get-MailboxDatabase | Clean-MailboxDatabase

147

https://techwizard.cloud/downloads/

CHAPTER 10 GLUING IT ALL TOGETHER

Find Disconnected Mailboxes

Get-ExchangeServer | Where-Object {$.IsMailboxServer -eq $true}
| ForEach-Object { Get-MailboxStatistics -Server $.Name
Where-Object {$.DisconnectDate -notlike ''}}

Extract Message Accept From

Get-distributiongroup "dl name" | foreach {
$.AcceptMessagesonlyFrom} | add-content "c:/output/abc.txt"

Active Sync Stats

Get-CASMailbox -ResultSize unlimited | where {$.
ActiveSyncEnabled -eq "true"} | ForEach-Object {Get-
ActiveSyncDeviceStatistics -Mailbox:$.identity} | select
Devicetype, DevicelD,DeviceUserAgent, FirstSyncTime,
LastSuccessSync, Identity, DeviceModel, DeviceFriendlyName,
DeviceOS | Export-Csv c:\activesync.csv

Message Tracking

Get-transportserver | Get-MessageTrackinglog -Start "03/09/2015
00:00:00 AM" -End "03/09/2015 11:59:59 PM" -sender "vikas@
lab.com" -resultsize unlimited | select Timestamp,clientip,Client
Hostname, ServerIp,ServerHostname,sender,EventId,MessageSubject,
TotalBytes , SourceContext,ConnectorId,Source, InternalMessageld,
Messageld ,@{Name="Recipents";Expression={$.recipients}}
export-csv c:\track.csv

148

CHAPTER 10 GLUING IT ALL TOGETHER

Search Mailbox/Delete Messages

Search only:

import-csv c:\tmp\messagesubject.csv | foreach {Search-Mailbox
$.alias -SearchQuery subject:"Test SUbject" -TargetMailbox
"Exmontest" -TargetFolder "Logs" -LogOnly -LoglLevel Full} >c:\
tmp\output.txt

Delete:

import-csv c:\tmp\messagesubject.csv | foreach {Search-
Mailbox $.alias -SearchQuery subject:"Test Schedule"
-DeleteContent -force} >c:\tmp\output.txt

Delete and log:

import-csv c:\tmp\messagesubject.csv | foreach
{Search-Mailbox $.alias -SearchQuery Subject:"test
Story",Received:>'5/23/2018"' -TargetMailbox "Exmontest"
-TargetFolder "Logs" -deletecontent -force} >c:\tmp\
testlog-23-29-left.txt

Exchange Quota Report

This example is found under Export-CSV as well.

#format Date

$date = get-date -format d

$date = $date.ToString().Replace("/", "-")
$output = ".\" + "QuotaReport " + $date + " .csv
Collection = @()

Get-Mailbox -ResultSize Unlimited | foreach-object{
$st = get-mailboxstatistics $.identity

$TotalSize = $st.TotalItemSize.Value.ToMB()

149

CHAPTER 10 GLUING IT ALL TOGETHER

$user = get-user $.identity

$mbxr = "" | select DisplayName,Alias,RecipientType,Totalltem
SizeinMB, QuotaStatus,
UseDatabaseQuotaDefaults,IssueWarningQuota,ProhibitSendQuota,
ProhibitSendReceiveQuota,

Itemcount, Email,ServerName,Company,Hidden, OrganizationalUnit,
RecipientTypeDetails,UserAccountControl, Exchangeversion
$mbxr.DisplayName = $.DisplayName

$mbxr.Alias = $.Alias

$mbxr.RecipientType = $user.RecipientType
$mbxr.TotalItemSizeinMB = $TotalSize

$mbxr.QuotaStatus = $st.StorageLimitStatus

$mbxr .UseDatabaseQuotaDefaults = $_.UseDatabaseQuotaDefaults
$mbxr.IssueWarningQuota = $_.IssueWarningQuota.Value
$mbxr.ProhibitSendQuota = $.ProhibitSendQuota.Value

$mbxr .ProhibitSendReceiveQuota =
$_.ProhibitSendReceiveQuota.Value

$mbxr.Itemcount = $st.Itemcount

$mbxr.Email = $_.PrimarySmtpAddress

$mbxr.ServerName = $st.ServerName

$mbxr .Company = $user.Company

$mbxr.Hidden = $.HiddenFromAddressListsEnabled
$mbxr.RecipientTypeDetails = $.RecipientTypeDetails
$mbxr.OrganizationalUnit = $.OrganizationalUnit
$mbxr.UserAccountControl = $.UserAccountControl
$mbxr.ExchangeVersion= $_.ExchangeVersion

$Collection += $mbxr

}

#export the collection to csv , define the $output path
accordingly
$Collection | export-csv $output

150

CHAPTER 10 GLUING IT ALL TOGETHER

Set Quota

1GB mailbox limit (must have the $false included):

set-mailbox testmailbox -UseDatabaseQuotaDefaults
$false -IssueWarningQuota 997376KB -ProhibitSendQuota
1048576KB -ProhibitSendReceiveQuota 4194304KB

2GB mailbox limit (must have the $false included):

set-mailbox "testmailbox" -UseDatabaseQuotaDefaults
$false -IssueWarningQuota 1.75GB -ProhibitSendQuota
2GB -ProhibitSendReceiveQuota 4GB

3GB mailbox limit (must have the $false included):

set-mailbox "testmailbox" -UseDatabaseQuotaDefaults
$false -IssueWarningQuota 2.75GB -ProhibitSendQuota
3GB -ProhibitSendReceiveQuota 5GB

Active Directory

Active Directory (AD) is the backbone of every Microsoft product, and with
PowerShell, you can automate a variety of AD components to streamline
management. Fortunately, Microsoft has developed a native Active
Directory module specifically for this purpose.

There are several methods available for Active Directory scripting
through PowerShell, including

e Active Directory Module
¢ Quest Management Shell for Active Directory
o ADSI (out of scope for this book)

In the past, my personal favorite was the Quest Management Shell
when it was freely available, but over time, Microsoft’s Active Directory

151

CHAPTER 10 GLUING IT ALL TOGETHER

Module has caught up—and, in my opinion, even surpassed it in terms of
functionality.

One key reason the Microsoft AD module has become my go-to is that
the Quest AD module is no longer free. While you can still find older
versions online, such as version 1.5.1 (see Figure 10-4), it’s important
to check if any licensing is required before using it in a production
environment. If you'd like to explore the older Quest AD module, you can

download it here: Quest AD Management Shell v1.5.1.

Download Quest ActiveRoles Mangement Shell Version 1.5.1

Here are download links for the x64 and x86 versions of the Quest ActiveRoles AD Management Shell version 1.5.1 (last free version).
NB! Before installing, you will be able to see that the file is signed by Quest, so the files are legit.
They're wrapped in zip files since I already added that file type as an allowed file type to upload. Inside there's an MSI file with the same name (signed by Quest).

= 64-bit version: Quest ActiveRolesManagementShellforActiveDirectoryx64 151.zip
= 32-bit version: Quest ActiveRolesManagementShellforActiveDirectoryx86 151.zip

Figure 10-4. Showing the Quest AD module

That said, I highly encourage you to use the Microsoft Active
Directory Module. However, I understand that some admins and
organizations continue to use the Quest AD module, either with the free

version or a purchased license.

Exporting Group Members

Just a single line of code will work.
Using Quest:

Get-QADGroupMember "group Name" | select Name, Type | Export-Csv
.\members.csv

Using the AD module:

Get-ADGroup -identity "group Name" -Properties member | Select-
Object -ExpandProperty member | Get-ADUser -Properties DisplayN

ame, Samaccountname,mail,employeeid | export-csv c:\exportgroup.

csv -notypeinfo

152

http://www.powershelladmin.com/wiki/Quest_ActiveRoles_Management_Shell_Download

CHAPTER 10 GLUING IT ALL TOGETHER

Setting Values for AD Attributes

Here is the example code that can be used to set AD attributes.
Using Quest:

Set-QADUser -identity samaccountname -ObjectAttributes
@{extensionattribute10 = "IntuneCommCompleted"}

Using the AD module:

Set-ADUser -identity samaccountanme -replace
@{"extensionattribute10” = "IntuneCommCompleted"}

Exporting Active Directory Attributes

This example is for calling Excel as well as using Quest ©:

call excel for writing the results

$objExcel = new-object -comobject excel.application
$workbook = $objExcel.Workbooks.Add()
$worksheet=$workbook.ActiveSheet

$objExcel.Visible = $False # true or false to set as visible on
screen or not

$cells=$worksheet.Cells

define top level cell

$cells.item(1,1)="UserId"
$cells.item(1,2)="FirstName"
$cells.item(1,3)="LastName"
$cells.item(1,4)="Employeeid"
$cells.item(1,5)="email"

$cells.item(1,6)="0ffice"
$cells.item(1,7)="Department"
$cells.item(1,8)="Title"

$cells.item(1,9)="Company"

153

CHAPTER 10 GLUING IT ALL TOGETHER

$cells.item(1,10)="City"

$cells.item(1,11)="State"

$cells.item(1,12)="Country"

#intitialize row out of the loop

$row = 2

#import quest management Shell

if ((Get-PSSnapin -Name Quest.ActiveRoles.

ADManagement -ErrorAction SilentlyContinue) -eq $null)

{
Add-PsSnapin Quest.ActiveRoles.ADManagement

}

$data = get-gaduser -IncludedProperties "CO",
"extensionattribute1” #-sizelimit 0

#loop thru users

foreach ($i in $data){

#initialize column within the loop so that it always loop back
to column 1

$col = 1

$userid=$i.Name

$FisrtName=$i.givenName

$LastName=$i.sn
$Employeeid=$i.extensionattributel
$email=$i.PrimarySMTPAddress
$office=$i.0Office

$Department=%i.Department

$Title=$i.Title

$Company=$i.Company

$City=9$i.1

$state=$i.st

$Country=$i.CO

Write-host "Processing.....oeeeeeeeiiiiiineeeennnnnanns $userid”

154

$cells.

$col++

$cells.

$col++

$cells.

$col++

$cells.

$col++

$cells.

$col++

$cells.

$col++

$cells.

$col++

$cells.

$col++
$cells
$col++

$cells.

$col++

$cells.

$col++
$cells
$col++

CHAPTER 10

item($row,$col) = $userid
item($row,$col) = $FisrtName
item($row,$col) = $LastName
item($row,$col) = $Employeeid
item($row,$col) = $email
item($row,$col) = $office
item($row,$col) = $Department
item($row,$col) = $Title
.item($row,$col) = $Company
item($row,$col) = $City
item($row,$col) = $state

.item($row,$col) = $Country

$row++}
#formatting excel

$range
$range
$range
$range
$range

= $objExcel.Range("A2").CurrentRegion
.ColumnWidth = 30

.Borders.Color = 0

.Borders.Weight = 2
.Interior.ColorIndex = 37

GLUING IT ALL TOGETHER

155

CHAPTER 10 GLUING IT ALL TOGETHER

$range.Font.Bold = $false
$range.HorizontalAlignment = 3

Headings in Bold
$cells.item(1,1).font.bold=$True
$cells.item(1,2).font.bold=$True
$cells.item(1,3).font.bold=$True
$cells.item(1,4).font.bold=$True
$cells.item(1,5).font.bold=$True
$cells.item(1,6).font.bold=$True
$cells.item(1,7).font.bold=$True
$cells.item(1,8).font.bold=$True
$cells.item(1,9).font.bold=$True
$cells.item(1,10).font.bold=$True
$cells.item(1,11).font.bold=$True
$cells.item(1,12).font.bold=$True
#save the excel file

$filepath = "c:\exportAD.x1lsx" #save the excel file
$workbook. saveas($filepath)
$workbook.close()
$objExcel.Quit()

Same example using the native Active Directory module:

call excel for writing the results

$objExcel = new-object -comobject excel.application

$workbook = $objExcel.Workbooks.Add()
$worksheet=$workbook.ActiveSheet

$objExcel.Visible = $True # true or false to set as visible on
screen or not

$cells=$worksheet.Cells

define top level cell

$cells.item(1,1)="UserId"

156

CHAPTER 10 GLUING IT ALL TOGETHER

$cells.item(1,2)="FirstName"

$cells.item(1,3)="LastName"

$cells.item(1,4)="Employeeid"

$cells.item(1,5)="email"

$cells.item(1,6)="0ffice"

$cells.item(1,7)="Department"”

$cells.item(1,8)="Title"

$cells.item(1,9)="Company"

$cells.item(1,10)="City"

$cells.item(1,11)="State"

$cells.item(1,12)="Country"

#intitialize row out of the loop

$row = 2

#import AD management Shell

Import-module Activedirectory

$data = Get-ADUser -Filter {Enabled -eq $True} -Properties
extensionattributei,mail,physicalDeliveryOfficeName,Department,
title,Company,1l,st,co -ResultSetSize 1000 #define the size
#loop thru users

foreach ($i in $data){

#initialize column within the loop so that it always loop back
to column 1

$col =1

$userid=$i.Name

$FisrtName=$i.givenName

$LastName=$i.surname

$Employeeid=$i.extensionattributel

$email=$i.mail

$office=$i.physicalDeliveryOfficeName
$Department=$i.Department

$Title=%i.Title

157

CHAPTER 10 GLUING IT ALL TOGETHER

$Company=$i.Company
$City=$i.1
$state=$i.st
$Country=$i.CO

Write-host "Processing......cooeeeiiiiiiiiiiiiieennnenn. $userid”
$cells.item($row,$col) = $userid
$col++

$cells.item($row,$col) = $FisrtName
$col++

$cells.item($row,$col) = $LastName
$col++

$cells.item($row,$col) = $Employeeid
$col++

$cells.item($row,$col) = $email
$col++

$cells.item($row,$col) = $office
$col++

$cells.item($row,$col) = $Department
$col++

$cells.item($row,$col) = $Title
$col++

$cells.item($row,$col) = $Company
$col++

$cells.item($row,$col) = $City
$col++

$cells.item($row,$col) = $state
$col++

$cells.item($row,$col) = $Country
$col++

$row++}

#formatting excel

158

$range
$range
$range
$range
$range
$range
$range

CHAPTER 10

= $objExcel.Range("A2").CurrentRegion
.ColumnWidth = 30
.Borders.Color = 0
.Borders.Weight = 2
.Interior.ColorIndex
.Font.Bold = $false
.HorizontalAlignment

37

I}
w

Headings in Bold

$cells

$cells.
$cells.
$cells.
$cells.
$cells.
$cells.
$cells.

$cells

$cells.
$cells.
$cells.

.item(1,1).font.bold=$True
item(1,2).font.bold=$True
item(1,3).font.bold=$True
item(1,4).font.bold=$True
item(1,5).font.bold=$True
item(1,6).font.bold=$True
item(1,7).font.bold=$True
item(1,8).font.bold=$True
.item(1,9).font.bold=$True
item(1,10).font.bold=$True
item(1,11).font.bold=$True
item(1,12).font.bold=$True

#save the excel file

GLUING IT ALL TOGETHER

$filepath = "c:\exportAD.x1lsx" #save the excel file
$workbook.saveas($filepath)
$workbook.close()
$objExcel.Quit()

Adding Members to the Group from a Text File

Using the Quest Management Shell:

$users

= Get-Content C:\Users.txt # samccountnames of users
in text file

159

CHAPTER 10 GLUING IT ALL TOGETHER

$groupname = "Group Name"

$users | ForEach-Object{

$user = $_

Write-host "adding $user to $groupname" -foregroundcolor green
Add-QADGroupMember -Identity $groupname -Member $user

}

Similarly, in the native Active Directory module:

$users = Get-Content C:\Users.txt # samccountnames of users
in text file

$groupname = "Group Name"

$users | ForEach-Object{

$user = $_

Write-host "adding $user to $groupname” -foregroundcolor green

Add-ADGroupMember -id $groupname -members $user

}

Removing Members of the Group from a Text File

Using the Quest Management Shell:

$users = Get-Content C:\Users.txt # samccountnames of users
in text file

$groupname = "Group Name"

$users | ForEach-Object{

$user = $_

Write-host "adding $user to $groupname" -foregroundcolor green

Remove-QADGroupMember -Identity $groupname -Member

$user -confirm:$false

}

160

CHAPTER 10 GLUING IT ALL TOGETHER
Similarly, using the native Active Directory module:

$users = Get-Content C:\Users.txt # samccountnames of users
in text file

$groupname = "Group Name"

$users | ForEach-Object{

$user = $_

Write-host "adding $user to $groupname” -foregroundcolor green

Remove-ADGroupMember -id $groupname -members

$user -confirm:$false

}

Office 365

Office 365 is everywhere so connecting is important in day-to-day activities
for admins. You can use vsadmin or separate functions.
Operations: https://techwizard.cloud/2016/12/18/all-in-one-
office-365-powershell-connect/
LaunchEOL/RemoveEOL (Exchange Online)
LaunchSPO/RemoveSPO (SharePoint online)
LaunchCOL/RemoveCOL (Security and Compliance)
LaunchMSOL/RemoveMSOL (MS Online Azure Active Directory)—
This is being retired by Microsoft and they want user to use Microsoft
graph module

HHHHH A EXchange Modern Online#t#iHHt#iHHHHHHHH
Function LaunchEOL {
[CmdletBinding()]
param
(
[Parameter(Mandatory = $false)]
$Credential

161

https://techwizard.cloud/2016/12/18/all-­in-­one-office-­365-­powershell-­connect/
https://techwizard.cloud/2016/12/18/all-­in-­one-office-­365-­powershell-­connect/

CHAPTER 10 GLUING IT ALL TOGETHER

)

Import-Module ExchangeOnlineManagement -Prefix "EOL"

Connect-ExchangeOnline -Prefix "EOL" -Credential
$Credential -ShowBanner:$false
}
Function RemoveEOL {
Disconnect-ExchangeOnline -Confirm:$false
}
HHHHHHHH Sharepoint Online###fHHHHHHHHHHHHHHHHHAH
function LaunchSPO

{

param

(
[Parameter(Mandatory = $true)]
$orgName,
[Parameter(Mandatory = $false)]
$Credential

)

Write-Host "Enter Sharepoint Online Credentials”
-ForegroundColor Green

Connect-SPOService -Url "https://$orgName-admin.sharepoint.com"
-Credential $Credential
} #LaunchSPO
Function RemoveSPO
{
disconnect-sposervice
} #RemoveSPO
####Secuirty and
CompliancettitHHHt#HHHHHHHHEH R

162

CHAPTER 10 GLUING IT ALL TOGETHER

Function LaunchCOL {

[CmdletBinding()]

param

(
[Parameter(Mandatory = $false)]
$Credential

)

Import-Module ExchangeOnlineManagement

Connect-IPPSSession -Credential $Credential

$s=Get-PSSession | where {$.ComputerName -like "*compliance.

protection.outlook.com"}

Import-Module (Import-PSSession -Session $s -AllowClobber)
-Prefix col -Global
}
Function RemoveCOL {
Disconnect-ExchangeOnline -Confirm:$false

}

HHHEHHEHHEHHHE M S on L1 nefHHHHHHHEHHEHHHEHHEHHE

function LaunchMSOL {
[CmdletBinding()]
param
(
[Parameter (Mandatory = $false)]
$Credential
)
import-module msonline
Write-Host "Enter MS Online Credentials"
-ForegroundColor Green
Connect-MsolService -Credential $Credential

163

CHAPTER 10 GLUING IT ALL TOGETHER
Function RemoveMSOL {

Write-host "Close Powershell Window - No disconnect available"
-ForegroundColor yellow

}
HHEHH

Exchange Online Mailbox Report

Now use the above function to launch the Exchange Online shell. In
PowerShell, type LaunchEOL and supply the Exchange Online admin
userid/password. Once you are connected to Exchange Online, run the
following command to extract a mailboxes report from Office 365, which

you can see in Figure 10-5:

E¥ Administrator: Windows PowerShell . [m] X
PS C:\> LaunchEOL A

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

Credential

WARNING: The names of some imported commands from the module 'tmp_ye2u3wrc.g21' include unapproved verbs that might
make them less discoverable. To find the commands with unapproved verbs, run the Import-Module command again with the
Verbose parameter. For a list of approved verbs, type Get-Verb.

ModuleType Version Name ExportedCommands

Script 1.0 tmp_ye2u3wrc.g21 {Add-EOLAvailabilityAddressSpace, Add-EOLDistributionGroup...

PS C:\>

Figure 10-5. Showing the connection to the Exchange shell

Get-EOLMailbox -ResultSize unlimited | Select Name,Recipient
TypeDetails,PrimarySMTPAddress,UserPrincipalName,litigationhold
enabled,LitigationHoldDuration,PersistedCapabilities,Retention
HoldEnabled,RetentionPolicy,RetainDeletedItemsFor,ArchiveName,
Archivestatus,ProhibitSendQuota,ProhibitSendReceiveQuota,
MaxSend

Size,MaxReceiveSize,AuditEnabled | export-csv c:\auditmbx.

csv -notypeinfo

164

CHAPTER 10 GLUING IT ALL TOGETHER

If you have a large tenant, use this code instead as this will not
throttle easily even with more than 50,000 users:

$allmbx=Invoke-Command -Session (Get-PSSession | Where-
Object{$_.computerName -eq "outlook.office365.com"})
-scriptblock {Get-Mailbox -ResultSize unlimited | Select-
object Name,RecipientTypeDetails, PrimarySMTPaddress,UserPrincipal
name,
AuditEnabled,litigationholdenabled,LitigationHoldDuration,
PersistedCapabilities,RetentionHoldEnabled,RetentionPolicy,
RetainDeletedItemsFor,ArchiveName,Archivestatus,ArchiveGuid,
ProhibitSendQuota,ProhibitSendReceiveQuota,MaxSendSize,Max
ReceiveSize,WhenMailboxCreated,WhenCreated,HiddenFromAddress
ListsEnabled }

$allmbx | export-csv c:\data\auditmbx.csv -notypeinfo

Exchange Online Message Tracking

In Exchange Online, extracting message tracking is not the same as it is in
Exchange on-premise, because if the results are more in number, then it
cannot be extracted using a result size unlimited parameter. The following
is a small script that will do the trick:

$index = 1
while ($index -le 1001)
{

Get-EOLMessageTrace -SenderAddress "VikasS@techWizard.cloud"
-StartDate 09/20/2019 -EndDate 09/25/2019 -PageSize 5000 -Page
$index | export-csv c:\messagetracking.csv -Append

$index ++

sleep 5

}

165

CHAPTER 10 GLUING IT ALL TOGETHER

Searching a Unified Log

Office 365 uses unified audit logging, and you can audit all of the activities
using the Exchange Online shell (whether it is SharePoint Online or Teams
or any other product within Office 365). Here is the link for more details:

https://docs.microsoft.com/en-us/microsoft-365/
compliance/search-

the-

audit-

log-

in-

security-

and-

compliance?WT.mc_id=M365-

MVP-5001317

Example of extracting Microsoft Teams activity:

Search-EOLUnifiedAuditlLog -StartDate 1/8/2019 -EndDate
4/7/2019 -RecordType MicrosoftTeams -UserIds VikasS@
sycloudpro.com -ResultSize:5000 lexport-csv
c:\VikasS.csv -notypeinfo

Example of extracting Exchange mailbox audit activity:

Search-EOLUnifiedAuditLog -StartDate 10/24/2019 -EndDate
10/25/2019 -UserIds VikasS@syscloudpro.com -recordtype "Exchange

ItemGroup”,

ExchangeItem","ExchangeAggregatedOperation" -Result
Size:5000 lexport-csv c:\VikasS.csv -notypeinfo

Example of adding or removing a role member:

Search-EOLUnifiedAuditlLog -StartDate 4/16/2019 -EndDate
7/15/2019 -UserIds VikasS@syscloudpro.com -operations "Add

166

CHAPTER 10 GLUING IT ALL TOGETHER

role member to role" -ResultSize:5000 lexport-csv c:\VikasS.
csv -notypeinfo

Azure AD (Entra)

While we've covered practical examples of managing traditional Active
Directory, it's important to recognize that in today’s landscape, Azure
Active Directory (Azure AD) is becoming increasingly common. Below,
I've provided some examples from the Azure AD world to help you get
started.

To work with Azure AD in PowerShell, you'll need to use Connect-
AzureAD to establish a connection. For Microsoft Online Services (MS
Online), you can use Connect-MsolService to connect.

Once you're connected, simply update the variables in the following
examples to suit your environment, and you'll be ready to automate tasks
within Azure AD.

Adding Users to an Azure AD Group from a Text
File of UPN

$groupl = "93345231-7454-4629-943b-e4245426bf" #

Get-Content C:\users.txt | ForEach-Object{$user=$_.
trim();$user;$upn= $user

$getazureaduser = Get-AzureADUser -Filter "userprincipalname eq

"$($upn)""

Add-AzureADGroupMember -ObjectId $groupl -RefObjectId
$getazureaduser.ObjectId

}

167

CHAPTER 10 GLUING IT ALL TOGETHER

Removing Users in an Azure AD Group
from a Text File of UPN

$groupl = "93345231-7454-4629-943b-e4245426bF" #

Get-Content C:\users.txt | ForEach-Object{$user=$.
trim();$user;$upn= $user

$getazureaduser = Get-AzureADUser -Filter "userprincipalname eq
'$(Supn) "

Remove-AzureADGroupMember -ObjectId $groupi -MemberId
$getazureaduser.ObjectId

}

Checking If a User Is Already a Member
of a Group

$groupl = "93345231-7454-4629-943b-e4245426bf" #
$getazmembership = Get-AzureADUserMembership -ObjectId
"UserObjectId"

if($getazmembership.objectId -contains $group1){
write-host "User is already member of the group groupi"

}

Adding Administrators to a Role

Get-MsolRole | Sort Name | Select Name,Description #check
role name

$roleName = "Lync Service Administrator"

Get-content c:\users.txt | foreach-object{$_;

Add-MsolRoleMember -RoleMemberEmailAddress $ -RoleName

$roleName

}

168

CHAPTER 10 GLUING IT ALL TOGETHER

Checking for Azure AD User Provisioning Errors

Get-MsolUser -HasErrorsOnly | ft DisplayName,UserPrincipalName,
@{Name="Error";Expression={($_.errors[o0].ErrorDetail.
objecterrors.errorrecord.ErrorDescription)}} -AutoSize

In a similar fashion, you can connect to any Microsoft product by
checking their documentation. As for other Azure products, there is a
command named Connect-AzAccount for a connection to Azure. Just
make sure that the modules are installed on your machines for whichever
product you want to connect to in the cloud.

Microsoft Graph Module

As both the AzureAD and MSOL modules are becoming obsolete,
Microsoft is now strongly encouraging everyone to transition to the
Microsoft PowerShell Graph SDK. This shift is important to stay aligned
with modern management practices, as the PowerShell Graph SDK
provides a more comprehensive and future-proof way to manage Azure
resources.

The Graph SDK offers a unified API for managing not only Azure AD
but also a wide range of Microsoft services, from Office 365 to Microsoft
Teams, SharePoint, and beyond. By adopting the Graph SDK, you'll gain
access to an even broader set of tools and capabilities that go far beyond
what AzureAD and MSOL modules offer.

Here are some key reasons to make the switch:

o Unified Access: With the Graph SDK, you can manage
multiple Microsoft services from a single interface,
eliminating the need to juggle separate modules for
each service.

169

CHAPTER 10 GLUING IT ALL TOGETHER

o Regular Updates: Microsoft is actively enhancing the
Graph AP], ensuring it remains the most up-to-date
and secure way to interact with Microsoft services.

e Broader Scope: The Graph SDK enables you to
automate workflows across Azure AD, Exchange,
Teams, and many other services, providing a more
integrated automation experience.

To get started with the Microsoft PowerShell Graph SDK, you will need
to install the module via the following:

Install-Module Microsoft.Graph

Now you need to register the APP in Azure AD, ADD the required API
permissions, for example, user.read.all, directory.read.all, etc.

Create a certificate and add the thumbprint to the Registered AzureAD
application.

See Figure 10-6 showing azure AD app registration API permissions.

- Powershell-MgGraph | APl permissions =

O refresh | & Got feedback?
B Oveniew :
SR Outien @ Successfully granted admin consent for the requested permissions.

4 Quickstart

Integration assistant

K Diagnose and solve problems A\ Granting tenant-wide consent may revoke permissions that have aiready been granted tenant-wide for that application. Permissions that users have already granted on their own behalf aren’
v Manage
8randing & properties €11 Kciev comerit reamed colier showe the deiault vakue Togan onganization However st carsent car be clsionrieed pex petriissson tmes or opps |6 colarae may notrellect the ya

D Authentication
CotinE s Configured permissions
111 Token configuration Applications are authorized to call APIs when they are granted permissions by users/admins as part of the consent process. The lst of configured permissions should include
all the permissions the application needs. Learn more about permissions and consent

- API permissions
Add a permission /" Grant admin consent for TechWizard.cloud
@ Expose an AP

W i API/ Permissions name Type Description Admin consent requ... Status
5 role:
28 owners
jcation Read direct Granted for TechWizard., +++
&, Roles and administrators Application Read directory data Yes © Granted for TechWizard.
Application Read all groups Yes

I8 Manifest

> Support + Troubleshooting Application Read all group memberships Yes

Application Read all users’ full profiles Yes

To view and manage consented permissions for individual apps, as well as your tenant's consent settings, try Enterp

Figure 10-6.

170

CHAPTER 10 GLUING IT ALL TOGETHER

Connect to Microsoft Graph:

Connect-MgGraph -Clientld $MgGClientID -CertificateThumbprint
$ThumbPrint -Tenantld $TenantName

Disconnect from Microsoft Graph:

Disconnect-MgGraph

Get user properties:

Get-MgUser -userid svikas@techwizard.cloud | Format-List ID,
DisplayName, Mail, UserPrincipalName

Get all users:

Get-MgUser -All | Format-List ID, DisplayName, Mail,
UserPrincipalName

AWS PowerShell Module

When it comes to managing and automating tasks in Amazon Web
Services (AWS), PowerShell is a highly versatile and efficient tool that
provides seamless integration with AWS’s powerful suite of services. By
combining the capabilities of AWS CLI (command-line interface) with
PowerShell, users can unlock a wide range of functionalities that simplify
operations, automate processes, and offer greater control over AWS
infrastructure.

Run the following command in an elevated PowerShell session to
install the module:

Install-Module -Name AWSPowerShell

Configure AWS credentials:

Set-AWSCredentials -AccessKey $AccessKey -SecretKey $SecretKey

Now you can utilize Get-Ec2Instance, Get-Ec2Volume, and hundreds
of other commands.

171

CHAPTER 10 GLUING IT ALL TOGETHER

Text/CSV File Operations

Remove the header line from a CSV file
Method 1:

Get-Content .\abc.csv | select -skip 1 | Set-Content .\abcl.csv
Method 2:

$a = import .\abc.csv
$a IForEach-Object{
$Con_string = $null
$Con_string = $.ID, $.GrpName -join ','
Write-Host $Con_string
Add-Content .\abc6.csv $Con string
}

Method 3 (avoids CRLF):

$text = [System.IO.File]::ReadAllText("$pwd\file.csv") -replace
"AIM\r\n]*\r?2\n'
[System.I0.File]::WriteAllText("$pwd\newFile.csv", $text)

Method 4 (avoids CRLF):

$file = Get-Item .\example test.csv

$reader = $file.OpenText()

discard the first line

$null = $reader.Readline()

Write the rest of the text to the new file
[System.I0.File]::WriteAllText("$pwd\newFile.csv", $reader.
ReadToEnd())

$reader.Close()

172

CHAPTER 10 GLUING IT ALL TOGETHER

Adding a header line to a text file:
For example, you have list of employee IDs in a text file:

14562
67578
65888
$filep = "c:\file.txt"
$getNetworkID = Get-Content $filep | where { $ -ne "" }

@("Employeeid") + $getNetworkID | Set-Content $filep -Force
#add emplyeeidheader

Regex

There are situations where you need to use regex for performing certain
match operations inside your scripts.

Tip Youcanuse https://regex101.com/ to test any regex
before using it.

This is how you use it in PowerShell, and it will be used mainly with
match operators. See Figures 10-7 and 10-8.

REGULAR EXPRESSION
[[aEzoRol#Ng%& *+X=24_~{ | }~-TH(2: ; N$%& *+NE2~ " {[3~-TF)*@(?: a8 gm

zoHoJI(?:[ak lafze=9])?

o -T¥[aEzeRol)?N) +

TEST STRING SWITCH TO UNIT TESTS »

sukhija@techwizard.cloud

Figure 10-7. Showing regular expression testing

173

https://regex101.com/

CHAPTER 10 GLUING IT ALL TOGETHER

:\> $regexemail =

\>
rue

\>

indows PowerShe

-match $regexemail

Figure 10-8. Showing a regular expression operation in PowerShell

$regexemail = "M\w+([-+." J\w+)*@\w+([-. \w+)*\ A\w+([-.]\w+)*$"
"sukhijav@techwizard.cloud" -match $regexemail

S. no.

Regex cheat

Comments

1

© o0 N o o

Receipt_[0-9][0-9][0-9][0-9]
[0-9][0-9][0-9]\.doc

(Tickets issued to)(.*)(for
travel)

(.*)Aborted payment (.*)
(-*)(\([A-2][0-9][0-9][0-9]
[0-9][0-9][0-9])\)
(.*)[0-9]{2}[A-Z]{1}[0-9]{6}
(2<=V0) (.*)(?=a)

"\d+$

AO+$

M [+ 1w) k0w ([- 1\
W)\ Aw (-2] \we) *$

Contains Reciept_7didgit
number .doc

Tickets issued to Vikas Sukhija
for travel

Tell Aborted_payment_(Y075958)
(Y782714)

Critical_alert_-_36B881478
V01234a

For finding an integer

For finding an integer with 000000

For email

174

CHAPTER 10 GLUING IT ALL TOGETHER

Summary

This final chapter has been all about showing you how to combine
different snippets of PowerShell code to create powerful scripts that
can handle bulk administrative tasks efficiently. Throughout this book,
I've shared practical examples from various products that system
administrators can use in their daily operations to automate repetitive
work, streamline workflows, and increase productivity.

For even more scripts and hundreds of additional examples, feel free to
visit https://techwizard.cloud/downloads/, where I've provided a vast
collection of ready-to-use solutions that you can customize to suit your
environment.

175

https://techwizard.cloud/downloads/

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: PowerShell Basics
	Variables and On-Screen Printing
	If/Else
	Conditional/Logical Operators
	Logical Operators

	Switch
	Loops
	For Loop and While Loop
	For Loop
	While Loop

	Functions
	Summary

	Chapter 2: Date and Logs
	Date Manipulation
	Creating Folders Based on a Date
	Ready-Made Date and Log Functions
	Summary

	Chapter 3: Input to Your Scripts
	Import-CSV
	Importing from a Text File
	Input from an Array
	User Input with Prompts
	Summary

	Chapter 4: Interactive Input
	Read-Host
	Input Parameters
	GUI Button
	Prompt (Yes or No)
	Summary

	Chapter 5: Modules
	PowerShell Snap-Ins
	Modules
	Cheat Module (vsadmin)
	Summary

	Chapter 6: Alerting (Email)
	Formatting a Message Body
	Sending HTML
	Sending Email—PowerShell Graph SDK
	Summary

	Chapter 7: Error Reporting
	Reporting Errors Through Email
	Logging Everything Including Errors
	Logging Errors to a Text File
	Try Catch
	Summary

	Chapter 8: Reporting
	CSV Report
	Excel Reporting
	HTML Reporting
	Summary

	Chapter 9: Miscellaneous Keywords
	Split
	Replace
	Select-String
	Compare-Object
	Summary

	Chapter 10: Gluing It All Together
	Product Examples (Daily Use)
	Microsoft Exchange
	Clean Database so That Mailboxes Appear in a Disconnected State
	Find Disconnected Mailboxes
	Extract Message Accept From
	Active Sync Stats
	Message Tracking
	Search Mailbox/Delete Messages
	Exchange Quota Report
	Set Quota

	Active Directory
	Exporting Group Members
	Setting Values for AD Attributes
	Exporting Active Directory Attributes
	Adding Members to the Group from a Text File
	Removing Members of the Group from a Text File

	Office 365
	Exchange Online Mailbox Report
	Exchange Online Message Tracking
	Searching a Unified Log

	Azure AD (Entra)
	Adding Users to an Azure AD Group from a Text File of UPN
	Removing Users in an Azure AD Group from a Text File of UPN
	Checking If a User Is Already a Member of a Group
	Adding Administrators to a Role
	Checking for Azure AD User Provisioning Errors

	Microsoft Graph Module
	AWS PowerShell Module
	Text/CSV File Operations
	Regex
	Summary

