

MuleSoft for Salesforce Developers

A practical guide to deploying MuleSoft APIs and integrations

for Salesforce enterprise solutions

Akshata Sawant

Arul Christhuraj Alphonse

MuleSoft for Salesforce Developers

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information

presented. However, the information contained in this book is sold without warranty, either express

or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable

for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and

products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot

guarantee the accuracy of this information.

Portfolio Director: Pavan Ramchandani

Relationship Lead: Alok Dhuri

Program Manager: Divij Kotian

Content Engineer: Nisha Cleetus

Technical Editor: Kavyashree K S

Copy Editor: Safis Editing

Proofreader: Nisha Cleetus

Indexer: Tejal Soni

Production Designer: Vijay Kamble

Growth Lead: Nivedita Singh & Priya Bhanushali

First published: September 2022

Second edition: February 2025

Production reference: 1310125

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83588-232-0

www.packtpub.com

http://www.packtpub.com

To my parents, Arun and Swati Sawant, for their endless efforts and sacrifices, and to my love,
Dan, for being my unwavering support.

-- Akshata Sawant

To the memory of my father, Alphonse, and my mother, Esther RajaRathinam,
for their sacrifices and love.

– Arul Christhuraj Alphonse

Contributors

About the authors

Akshata Sawant is a Senior Developer Advocate at Salesforce based in London. A distinguished

technical speaker, she was named Rising Star of the Year (UK) 2024 by Digital Revolution Awards.

Despite a short career span, she has spoken at top conferences, including Dreamforce, London’s

Calling, Salesforce TDX, Devoxx Belgium, DevOpsDays Geneva, and APIDays. Beyond speaking,

Akshata is a prolific writer, regularly publishing blogs and articles. She also conducts training sessions

and workshops for the Salesforce community. Born in Mumbai, she now shares knowledge globally

through talks, podcasts, blogs, and livestreams. Connect with her on LinkedIn to explore APIs, AI,

and Integration.

I am deeply grateful to my parents for their love and sacrifices, and to my best friend and partner,
Dnyaneshwar Mundhe, for being my constant source of motivation and pillar of support.

My heartfelt thanks to God and my spiritual guru, whose grace and blessings have made
all of this possible.

A special thank you to my brother, Shubham, and my in-laws, family, and friends, mentors; my team
at Salesforce; and the MuleSoft Community for their love and support. Ambadnya!

Arul Christhuraj Alphonse is a senior integration architect based in Singapore with over 20 years of

experience in the integration and API domain. He has worked at Akmin Technologies, Quinnox, IBM,

TCS, and Cognizant, designing over 1,000 integrations. Arul holds a Master of Computer Applications

and an MBA, along with multiple certifications, including MuleSoft Mentor, MuleSoft Certified

Integration Architect, and SoftwareAG webMethods Certified Professional. Passionate about sharing

knowledge, he creates courses on Udemy and runs the Tech Lightning YouTube channel. Born in

Thoothukudi, Tamil Nadu, India, he now lives in Singapore, contributing to the global tech community.

I thank God as none of this would have been possible without him. I would also like to thank my loving
and understanding wife, Sahaya Divya, my son, Rithwin, my daughter, Riya, and my family for their
unwavering support, patience, and encouragement throughout the long process of writing this book.

About the reviewers

Gaurav Kheterpal is a prominent figure in the Salesforce ecosystem. A Salesforce Hall of Fame inductee

and MuleSoft Ambassador, he holds over 50 Salesforce certifications and 5 MuleSoft certifications.

Ranked among the top three globally certified experts in the Salesforce and MuleSoft ecosystems,

Gaurav has been recognized by Salesforce as a Developer Success Story and a Trailblazer. He has

delivered sessions at major events, including Dreamforce, TrailheaDX, Salesforce World Tour, London’s

Calling, and more. Passionate about evangelizing the Salesforce and MuleSoft platforms, Gaurav is

dedicated to fostering growth and innovation within the broader community.

Anurag Sharma is a distinguished technologist renowned for designing secure and scalable systems

across middleware and core technology solutions. With expertise in API design, cloud-native

development, integration strategies, and automation frameworks, he has delivered impactful solutions

in industries such as retail, healthcare, and financial services. Anurag holds certifications in MuleSoft

and leading cloud platforms like AWS and Google Cloud. He specializes in CI/CD pipelines and API

security and is recognized as a MuleSoft Ambassador. Anurag is a mentor, speaker at global industry

events, and a contributor to technical literature, inspiring and guiding the next generation of tech

experts worldwide.

D. Rajesh Kumar is an Enterprise Architect with over 18 years of IT experience, including more than

a decade specializing in MuleSoft and integration technologies. He is an expert in platform setups,

architecture design, and establishing Centers of Excellence (COE) and Centers for Enablement (C4E).

His deep understanding of architectural and integration best practices has enabled him to lead and

successfully deliver complex projects. A Certified MuleSoft Architect and MuleSoft Ambassador,

Rajeshkumar is a thought leader who has authored technical blogs, presented at conferences, and

hosted meetups on advanced MuleSoft topics, integration strategies, and architectural patterns. His

previous professional experience includes roles at Infosys, HCL, and Jamcracker.

Preface xv

Part 1: Getting Started with MuleSoft

1

Introduction to APIs and MuleSoft 3

Understanding the need for an
integration tool 4

Introducing no-code and low-code technologies 4

Analyzing integrations 5

Understanding APIs 7

Reviewing the restaurant analogy 7

Exploring an API example 9

Analyzing API components 10

Listing the benefits of using APIs 11

Introducing MuleSoft 12

Listing MuleSoft’s products 13

Understanding why MuleSoft is useful 15

Analyzing how MuleSoft helps

Salesforce developers 17

Exploring application networks and
the API-led connectivity approach 18

Understanding what application networks are 18

Analyzing the API-led connectivity approach 19

Summary 21

Questions 22

Answers 22

2

Designing Your API 25

Understanding an API life cycle 26

Introducing REST and SOAP 27

REST 27

Introducing HTTP 27

SOAP 29

Getting started with OAS and RAML 29

OAS 30

RAML 30

Getting started with API design 30

URI parameter 38

Table of Contents

Table of Contentsviii

Query parameter 39

API mocking 46

Alternative ways to design your API 52

Designing your API with a guided approach 52

Designing your API in Anypoint Code Builder 53

Best practices and tips 54

API design naming convention 54

Optimizing your API design 55

Summary 56

Practice 56

Questions 57

Answers 57

3

Exploring Anypoint Studio and Anypoint Code Builder (ACB) 59

Technical requirements 60

Downloading and installing
Anypoint Studio 60

Downloading Anypoint Studio 60

Installing Anypoint Studio 61

Launching Anypoint Studio 62

Introducing Mule Palette 64

Exploring the Mule project structure 64

Introducing Mule views
and perspectives 66

Views 66

Perspectives 67

Building, running, and testing
a Mule application 67

Building the Mule application 68

Running the Mule application 78

Testing the Mule application 79

Exporting and importing Mule files 81

Exporting a Mule application as a JAR file 82

Exporting a Mule application as a filesystem 83

Importing a Mule application from a JAR file 84

Importing a Mule application

from the filesystem 85

Updating the theme in
Anypoint Studio 86

Installing software updates in
Anypoint Studio 87

Exploring Anypoint Code
Builder (ACB) 89

Installing Anypoint Code Builder

on the desktop 89

Designing an API using Anypoint

Code Builder (ACB) 90

Publishing an API from Anypoint

Code Builder (ACB) to Exchange 92

Develop an Integration from Anypoint

Code Builder (ACB) 93

Exploring Anypoint Code Builder

in cloud IDE 101

Summary 101

Questions 102

Answers 102

Table of Contents ix

4

Introduction to Core Components 103

Technical requirements 103

Getting familiar with a Mule flow 104

Exploring the types of Mule flow 106

Understanding the Mule event structure 109

Core components 112

Batch 113

Features of the Batch scope 113

The batch processing stages 113

A batch step 113

The batch aggregator 115

The batch job 115

Components 117

Custom Business Event 117

Dynamic Evaluate 118

Idempotent Message Validator 120

Invalidate Cache 121

Invalidate Key 122

Logger 123

Parse Template 124

Set Transaction Id 126

Transform Message 127

Endpoints 127

A Scheduler component 127

Error handling 130

On Error Continue 131

On Error Propagate 132

Raise Error 133

Error Handler 135

Flow control 136

Choice 137

First Successful 138

Round Robin 139

Scatter-Gather 140

Scopes 141

Async 141

Cache 142

Flow 142

For Each 143

Parallel For Each 143

Sub Flow 145

Try 145

Until Successful 146

Transformers 147

Set Variable 148

Remove Variable 148

Set Payload 149

Summary 150

Assignments 151

Questions 151

Answers 151

5

All About Anypoint Platform 153

Technical requirements 153

Introducing Anypoint Platform 154

Getting started with Design Center 154

API Designer 155

Introducing Exchange 159

The public portal 162

Table of Contentsx

Exploring Runtime Manager 164

CloudHub 2.0 166

Deploying a Mule application to CloudHub 168

Managing a Mule application 172

Runtime Manager alerts 176

Anypoint VPC – virtual private cloud 179

Load balancers 180

Introducing API Manager 181

Exploring Anypoint Monitoring 181

Alerts 182

Log Management 183

Introducing Anypoint Visualizer 183

Exploring Access Management 184

Organization and business groups 184

Invite user 184

Roles 185

Environments 186

Audit logs 187

Subscription 188

Summary 188

Questions 188

Answers 188

Part 2: A Deep Dive into MuleSoft

6

Learning DataWeave 193

Technical requirements 193

Introducing DataWeave 194

Analyzing DataWeave 194

Diving into a script’s anatomy 196

Adding comments to your code 197

Understanding data types 199

Understanding data formats 201

Writing DataWeave scripts 202

Using operators 202

Creating and using variables 207

Defining and calling functions 210

Retrieving data with selectors 214

Understanding scopes and flow control 221

Summary 226

Questions 227

Answers 228

7

Transforming with DataWeave 231

Technical requirements 231

Understanding modules
in DataWeave 232

Importing modules and functions 232

Analyzing the existing DataWeave modules 235

Using the DataWeave Core functions 236

Transforming multiple types 238

Transforming numbers 241

Table of Contents xi

Transforming strings 242

Transforming objects 244

Transforming arrays 245

Using the Transform Message
component in Anypoint Studio 253

Exploring the views 253

Defining metadata 257

Creating custom modules 267

Summary 270

Questions 270

Answers 270

8

Building Your Mule Application 273

Technical requirements 273

Exploring different types of
configuration files 274

Mule configuration file 274

Properties file 277

POM 278

Introducing Scheduler 280

Creating a Mule application with

the Scheduler component 280

Generating a flow using
APIkit Router 284

Creating a Mule application

using API Specification 284

Running and testing a Mule application 289

Exploring Object Store Connector 292

Different types of Object Store 292

Creating a Mule application with

Object Store Connector 293

Summary 298

Questions 299

Answers 299

9

Deploying Your Application 301

Technical requirements 301

Getting started with
deployment models 302

Types of deployment models 302

Choosing the right
deployment model 304

Deploying your Mule application
to CloudHub 304

Deploying your Mule application
on an on-premises server 312

Building a CI/CD pipeline
with MuleSoft 317

The Mule Maven plugin 318

Summary 319

Assignments 319

Questions 320

Answers 320

Table of Contentsxii

10

Securing Your API 321

Technical requirements 322

The need for API security 322

API security with MuleSoft 322

Introducing API Manager 324

Understanding the capabilities

of API Manager 324

Understanding the API gateway 325

Policies in MuleSoft 326

Security 326

Compliance 327

Transformation 327

Quality of service 328

Troubleshooting 328

Custom policies 328

Implementing API security
using policy 329

API Autodiscovery 333

Configuring a security policy 336

The security capabilities of MuleSoft 341

Anypoint Security 341

Anypoint Flex Gateway 341

Summary 342

Assignments 342

Questions 342

Answers 343

11

Testing Your Application 345

Technical requirements 345

Introduction to testing 346

Getting familiar with testing tools 347

Postman 348

SoapUI 351

JMeter 353

Introducing MUnit 358

Creating a test suite 360

Exploring the MUnit Test Recorder 364

Creating a test suite using the Test Recorder 365

Summary 371

Assignment 372

Questions 372

Answers 372

Table of Contents xiii

Part 3: Integration with Salesforce and
Other connectors

12

MuleSoft Integration with Salesforce 375

Technical requirements 376

Exploring Salesforce connectors 376

Configuring a Salesforce connector 378

Adding a Salesforce connector 381

Discovering accelerators and
templates for Salesforce 384

Getting started with accelerators 384

Exploring templates 385

Getting Started with
External Services 389

Exploring the Prerequisites for Mule API 389

Exploring MuleSoft’s integration
capabilities with Salesforce 393

The Bulk API 394

CDC events 394

Data analytics tools 395

Summary 396

Assignments 396

Questions 396

Answers 396

13

MuleSoft Connectors and Use Cases 397

Technical requirements 398

Introducing connectors 398

Exploring File Connector, FTP
Connector, and SFTP Connector 400

File Connector 400

FTP Connector 406

SFTP Connector 408

Understanding Database
Connector and watermarking 409

Watermarking 411

Configuring Web Service
Consumer Connector 412

Publishing and subscribing
using VM Connector 416

Operations 416

Publishing and listening to a message 417

Exploring JMS Connector 421

Operations 422

JMS Connector configuration 422

Introducing MuleSoft accelerators 424

Summary 425

Questions 425

Answers 426

Table of Contentsxiv

14
MuleSoft Best Practices, Tips, and Tricks 427

MuleSoft best practices 427

General best practices 428

Mule projects best practices 429

Anypoint Platform best practices 432

Tips and tricks 433

Summary 434

Questions 434

Answers 435

15
Certification and Interview Tips 437

Choosing your career path 438

Getting MuleSoft certified 439

Expanding your knowledge
with official training 442

Developer training 442

Architect training 443

Operations training 443

Contributing to the MuleSoft
Community 444

Expanding your knowledge

with MuleSoft meetups 444

Helping others as a MuleSoft Mentor 445

Becoming a MuleSoft Ambassador 446

Getting help with the MuleSoft forums 447

Passing your interview 447

Summary 449

Questions 450

Answers 450

16
AI and Automations with MuleSoft 453

Automations with MuleSoft
Composer 453

Capabilities of MuleSoft Composer 454

Configuring MuleSoft Composer 454

Introduction to MuleSoft RPA 459

Automating your document
processing with IDP 460

Getting started with IDP 461

Creating your first Document Actions 463

Testing the Document Action 468

Integrating Mule APIs with
Agentforce 475

Introduction to Agentforce 475

Building intelligent integrations 476

Summary 476

Questions 477

Answers 477

Index 479

Other Books You May Enjoy 496

Preface

MuleSoft for Salesforce Developers will help you build cutting-edge enterprise solutions with flexible

and scalable integration capabilities using MuleSoft’s Anypoint Platform and Anypoint Studio. If

you’re a Salesforce developer looking to get started with this powerful tool, this book will get you up

to speed quickly, enhancing your integration developer skills.

Complete with step-by-step explanations of key concepts, practical examples, and self-assessment

questions, this guide begins by introducing the fundamentals of MuleSoft and API-led connectivity.

It then walks you through the API lifecycle and the Anypoint Studio IDE, preparing you to create

Mule applications. You’ll explore the core components of MuleSoft and the Anypoint Platform, gaining

expertise in building, transforming, securing, testing, and deploying applications using a wide range

of components. Finally, you’ll learn how to use connectors to integrate MuleSoft with Salesforce to

address various use cases, as well as receive valuable tips for certification and interviews.

By the end of this book, you will feel confident building MuleSoft integrations at an enterprise scale.

This book will also prepare you to pass the fundamental MuleSoft certification: MuleSoft Certified

Developer (MCD) – Level 1.

Who this book is for

This book is designed for Salesforce developers who want to get started with MuleSoft. As demand

grows for cross-cloud solutions that integrate MuleSoft with Salesforce or its cloud offerings (such as

Service Cloud, Marketing Cloud, and Commerce Cloud), this book will serve as an essential resource.

Salesforce architects will also find the concepts covered useful for designing Salesforce solutions.

Basic knowledge of a programming language and familiarity with integration concepts will be helpful.

Some experience with Salesforce development and Salesforce APIs (SOAP API, REST API, Bulk API,

or Streaming API) is expected.

What this book covers

Chapter 1, Introduction to APIs and MuleSoft, covers no-code and low-code technologies, APIs and

integrations, MuleSoft products, application networks, and the API-led connectivity approach.

Chapter 2, Designing Your API, explores the API lifecycle and how to create API specifications using

RAML, HTTP web services, and API fragments. This chapter also includes adding documentation

to APIs and downloading API specifications from the Anypoint Platform.

Prefacexvi

Chapter 3, Exploring Anypoint Studio and Anypoint Code Builder (ACB), covers how to download

and install Anypoint Studio and Anypoint Code Builder, develop a new Mule application, and run

it in both tools.

Chapter 4, Introduction to Core Components, examines fundamental MuleSoft components, including

flow controls (Choice Router, First Successful, Round Robin, and Scatter-Gather), scopes (Flow, Subflow,

For Each, Parallel For Each, Async, Cache, Try, and Until Successful), and error handling scenarios.

Chapter 5, All About Anypoint Platform, delves into the components of Anypoint Platform, including

Design Center (API Designer), Exchange, API Manager, Runtime Manager, and Anypoint Monitoring.

By the end of this chapter, you’ll understand how to create an API using Design Center, publish the

API in Exchange, create the API in API Manager to enforce policies, utilize Runtime Manager, and

monitor applications on Anypoint Platform.

Chapter 6, Learning DataWeave, introduces DataWeave for beginners. It covers the basics, including

what DataWeave is, how to create scripts, how to add comments, and details on data types, data

formats, operators, variables, functions, selectors, scopes, and conditionals.

Chapter 7, Transforming with DataWeave, delves deeper into DataWeave modules and some of the most

commonly used functions in real-world scenarios. It also covers how to use the Transform Message

component to work with DataWeave in Anypoint Studio.

Chapter 8, Building Your Mule Application, teaches you how to build a Mule application using various

configuration and properties files. It also discusses the Scheduler Endpoint, APIkit router, and

Object Store.

Chapter 9, Deploying Your Application, covers the different deployment options available in MuleSoft.

This chapter explains how to deploy an application to CloudHub, how to download and install a Mule

on-premises server, and how to deploy the Mule application to the on-premises server.

Chapter 10, Securing Your API, focuses on creating and applying policies in Anypoint Platform, securing

configurations, exposing Mule applications via HTTPS, and handling encryption and decryption.

Chapter 11, Testing Your Application, introduces MUnit and MUnitTools, along with different operations.

It demonstrates how to create test suites and test cases using MUnit, and explores how MUnit can

speed up the development process, including the use of the test recorder.

Chapter 12, MuleSoft Integration with Salesforce, explains how to integrate MuleSoft with Salesforce

CRM using the Salesforce connector. It covers two integration approaches: API-based, where you

access Salesforce objects via the API for real-time data, and event-based, where you listen to Salesforce

topics and process the messages synchronously to the required backend system.

Chapter 13, MuleSoft Connectors and Use Cases, explores various MuleSoft modules (File, FTP, SFTP,

Database, Slack, SOAP, VM, and JMS). In the File-based module (File, FTP, SFTP), you’ll learn to

connect to systems and read files, as well as send files via different connectors. The Database module

shows how to configure connectors to specific databases and read/insert records. This chapter also

covers modules such as Slack, Web Service Consumer (SOAP), VM, and JMS connectors.

Preface xvii

Chapter 14, MuleSoft Best Practices, Tips, and Tricks, provides guidelines on MuleSoft best practices,

coding standards, and useful tips and tricks.

Chapter 15, Certification and Interview Tips, explores career paths within the MuleSoft ecosystem. It

discusses MuleSoft certifications, tips for getting certified, available training options, how to contribute

to the MuleSoft community, and interview tips for landing your first MuleSoft position.

Chapter 16, AI and Automations with MuleSoft, covers Automations with MuleSoft Composer, an

introduction to MuleSoft RPA, automating document processing with IDP, and integrating Mule

APIs with Agent Force.

To get the most out of this book

You will need Anypoint Studio 7.x installed on your computer – preferably the latest version. The

examples in this book have been tested using Anypoint Studio 7.17 on macOS, but they should work

with future minor versions as well.

You will also need a web browser to access Anypoint Platform and the DataWeave Playground. The

examples have been tested using Google Chrome on macOS, but other browsers such as Safari or

Firefox should work as well.

Finally, you’ll need a REST client application installed on your computer to make requests to APIs. The

examples have been tested using Postman v9 on macOS and Windows, but other tools like Advanced

REST Client or curl should also work.

Software/hardware covered in the book Operating system requirements

Anypoint Studio 7.17 Windows or macOS

Anypoint Platform and MuleSoft Composer Any browser

Postman or any similar API client tool Postman v9 (Windows 64-bit), Mac (Intel

chip/Apple chip), or Linux (x64)

Google Chrome Windows or macOS

If you are using the digital version of this book, we advise you to type the code yourself or access

the code from the book’s GitHub repository (a link is available in the next section). Doing so will

help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/

PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition.

If there’s an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition

Prefacexviii

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names, filenames,

file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:

"To configure it, you can set the initial state to started or stopped. "

A block of code is set as follows:

asyncapi: '2.0.0'

info:

 title: MusicAsyncAPI

 version: '1.0.0'

channels: {}

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words

in menus or dialog boxes appear in bold. Here is an example: "Provide the path where it needs to be

extracted and click Extract."

Tips or Important Notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@

packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you have found a mistake in this book, we would be grateful if you would report this to us. Please

visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us at

copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts

Once you’ve read MuleSoft for Salesforce Developers, we’d love to hear your thoughts! Please click here

to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://packt.link/r/1835882331
https://packt.link/r/1835882331

Prefacexx

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content

in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83588-232-0

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83588-232-0

Part 1:

Getting Started

with MuleSoft

Part 1 introduces you to MuleSoft, the capabilities of Anypoint Platform, and the process of designing

an API. It also covers the core components of Anypoint Studio and Anypoint Code Builder. We will

explore various components of Anypoint Platform. At the end of this part, we will be familiar with

the features and capabilities of Anypoint Platform, Anypoint Studio, and Anypoint Code Builder. We

will also gain hands-on experience in designing an API.

The part includes the following chapters:

• Chapter 1, Introduction to APIs and MuleSoft

• Chapter 2, Designing Your API

• Chapter 3, Exploring Anypoint Studio and Anypoint Code Builder (ACB)

• Chapter 4, Introduction to Core Components

• Chapter 5, All About Anypoint Platform

1
Introduction to APIs

and MuleSoft

The world is changing. Technologies keep emerging. There is a greater need for technology now than

there used to be, and it’s not a coincidence. In the past, problems were simpler, and the solutions, while

not perfect, were sufficient. Now, we’re overwhelmed with countless technologies offering different ways

to achieve the same goals. We’re constantly introduced to new programming languages, frameworks,

and methodologies. Today, AI-driven tools, such as ChatGPT, Copilot, and Google Gemini, are at

the forefront, while what was popular yesterday quickly becomes obsolete. How can we keep up with

this relentless pace?

Before, it was good enough to just have an engineering or computer science degree to be able to thrive

in the Information Technology (IT) world. Now, you don’t necessarily need a degree, but you do

need to understand the basic terminology or learn the appropriate logic required to create software.

Many people believe that understanding programming algorithms and patterns is a skill you’re born

with—you either have it or you’ll never succeed in IT. This is not true – especially nowadays, in the

no-code/low-code era.

Today, we can find mobile applications that do our work for us. There are tools online to help us write,

design, paint, sing, and build, even if that is not our strongest suit. Why would programming be any

different? This is where technologies such as Salesforce, MuleSoft, SAP S/4HANA, Zoho, Oracle

Cloud, Tableau, Power BI, and JIRA come into play. The simplicity they’re based on helps you to

thrive in this environment even if you don’t come from an IT background.

In this chapter, we’re going to cover the following main topics:

• No-code and low-code technologies

• Integrations

• APIs

• MuleSoft’s products

Introduction to APIs and MuleSoft4

• Application networks

• API-led connectivity approach

Let’s start by understanding the need for an integration tool.

Understanding the need for an integration tool

In today’s complex digital landscape, businesses rely on multiple systems and applications to operate

efficiently. However, these systems often operate in silos, leading to data inconsistencies and workflow

disruptions. An integration tool such as MuleSoft bridges these gaps by seamlessly connecting different

platforms, enabling smooth data flow, and enhancing overall productivity. Understanding the need

for an integration tool is crucial for any organization aiming to streamline operations, improve data

accuracy, and maintain a competitive edge. Before we dive into MuleSoft, let’s first understand why

we need an integration tool and what low-code or no-code technologies are.

Introducing no-code and low-code technologies

Programming and software development have been evolving over the years. At first, programmers

needed to manually translate the behavior they wanted into computer code. You needed to study a

programming language, practice it, and really polish it to be able to create unimaginable programs.

Eventually, this transformed into human-readable words that you could input into the machine and

it would automatically know what you meant.

Fast-forward to the year 2024 and you don’t even have to input words for the computer to know what

you want to do. Computers are now good enough to work with icons, buttons, or drag-and-drop

components. You don’t need to memorize commands; you just need an introduction to the tool and

some practice to be proficient in it. What a blessing!

Of course, there might still be some need to write code in order to have more customized behavior

that fits into more complex needs for the tool; but code in general, or a programming language, is

easier to understand every time.

Let’s now look into both no-code and low-code technologies in more detail.

No-code technologies

There are some applications that you can use that involve no coding whatsoever. A few examples that

come to mind are Trello for project management, Canva for graphic design, and Zapier for integration/

automation. You can use them without needing to know a programming language. It’s all done through

clicks and configurations. For example, Salesforce’s no-code capabilities include Salesforce Flow

for automating complex business processes through a visual interface, Lightning App Builder for

customizing page layouts and creating apps with drag-and-drop functionality, and Process Builder

for automating tasks and workflows based on predefined criteria. These tools enable users to tailor

Salesforce without writing any code.

Understanding the need for an integration tool 5

For example, Zapier and other tools, such as If This Then That (IFTTT), are very popular because

you only need your browser to access them. There’s no need to install an application on your computer

or perform updates to your software. You can simply type the site name into your browser, create an

account, and start using it right away. Of course, there is a learning curve to understanding how to

use them. But this can be overcome in a matter of hours or days, not years of a professional career.

With these kinds of integration tools, there are predefined apps that you can connect to through their

Graphical User Interfaces (GUIs), such as Google Calendar, GitHub, and Philips Hue. You can create

specific triggers to automate your day-to-day work. An example that comes to mind is sending a Slack

message as soon as a commit is pushed in GitHub. You can just click through the flow to sign in to

your accounts from these different services and you don’t even need to understand how their code

works. That is the beauty of no-code technologies.

Low-code technologies

In low-code tools, you can still take advantage of drag and drop, clicks, and configurations, but there

might be some coding involved for more precise functionality. However, programming is not the

majority of the work. The technology does not revolve around the programming language; rather, it

is considered a feature of the overall product. This is the case for Salesforce with Apex and MuleSoft

with DataWeave. You can use Salesforce and MuleSoft without the need to use their programming

languages, but they are available for you in case you need custom functionality.

MuleSoft is considered a low-code technology because, while it provides a user-friendly, drag-and-drop

interface for creating integrations, it still requires some coding for more complex tasks. For example,

if you need to perform custom data transformations, advanced error handling, or connect to legacy

systems, MuleSoft allows you to use DataWeave scripting or custom connectors. These scenarios go

beyond simple configuration, requiring technical knowledge, which is why MuleSoft is categorized

as low-code rather than no-code.

Analyzing integrations

Integration connects various systems or applications, allowing them to communicate and share

data effectively. This process streamlines workflows and ensures that different technologies function

together cohesively.

Let’s now look into a technical example to demonstrate what integration does. If you’re not familiar

with JavaScript Object Notation (JSON), it’s a type of data that is widely used nowadays because of

its simplicity and easiness of reading.

Introduction to APIs and MuleSoft6

Let’s say that system A uses the following JSON object to describe a person. It contains the ID,

FirstName, and LastName fields:

systemA-person.json

{

"ID": 1,

"FirstName": "Alexandra",

"LastName": "Martinez"}

However, system B uses a different JSON structure to describe a person. Instead of the ID field, it uses

id, instead of FirstName, it uses firstName, and instead of LastName, it uses lastName:

systemB-person.json

{

"id": 1,

"firstName": "Alexandra",

"lastName": "Martinez"

}

For a human, this might seem like a pretty straightforward transformation. The fields have the same

names; they just have different uppercase and lowercase letters. However, for a computer program,

these fields are completely different. You need an integration that will help system A and system B to

effectively communicate with each other even though their fields are different.

Of course, this example is simple compared to real use cases. This is just to give you a better idea of why

you would need integration to connect different systems. In the real world, this data can range from

something as brief as what was just demonstrated to as extensive as 2,000 fields at a time. Sometimes,

this data will also involve different data types.

Now, imagine that we not only have to connect different data structures from system A to system B but

also need to connect systems C, D, and E. All of them have their own data structures. Some of them

don’t even use JSON; they use other data types, such as CSV or XML (see Figure 1.1). It would be a

lot of work to manually create code to be able to talk within all of these systems. Instead of creating

a huge, tightly coupled, and hard-to-maintain application to connect them all, you can create small

and easy-to-maintain Application Programming Interfaces (APIs) that will help you to integrate

all of these systems and even leave space for any changes to the integrations that can be easily done.

Understanding APIs 7

Figure 1.1 – Integrating different systems

You’re not stuck with a ton of dependencies within the same project but have different microservices

to manage your whole application network (see Figure 1.7), which brings us to our next topic.

Understanding APIs

The term integration is still an abstract concept without seeing some examples of technology that can

implement it; but don’t worry, we’ll get there. Let’s now switch gears and dive into another popular

term we hear a lot nowadays: API.

If you’re a visual person, we encourage you to watch this video, https://youtu.be/s7wmiS2mSXY,

from MuleSoft to see an animation with a restaurant analogy that is widely used to explain APIs.

This step is optional, but it might help you understand this concept better. We will walk through the

restaurant analogy in the following section.

Reviewing the restaurant analogy

When you go to a restaurant, after you sit down and get yourself comfortable, a server will come to ask

for your order. You order your dish, the server writes it down, and then they proceed to communicate

the order to the kitchen. The kitchen staff works their magic to cook your meal, and then let the server

know when the meal is ready. The server picks up the dish and takes it to your table for you to enjoy.

https://youtu.be/s7wmiS2mSXY

Introduction to APIs and MuleSoft8

Now, let’s break this down into smaller pieces:

1. You order your food.

2. The server writes down your order and sends it to the kitchen staff.

3. The kitchen staff prepares the order and gives it to the server.

4. The server picks up the order and brings it to you.

5. You receive your food.

We can look at this process as if it were API calls:

1. You call the Server API, requesting some food.

2. The Server API forwards your order to the Kitchen API, requesting your food.

3. The Kitchen API processes this information and responds with your food.

4. The Server API takes the food and responds to your order with the food.

5. You receive the food and confirm it is correct.

Figure 1.2 – API calls in restaurant analogy

The important things to understand from this analogy are as follows:

• You don’t know what the server wrote down in their notebook that was sent to the kitchen

• You don’t know all the ingredients that were put into your food or the exact process that the

kitchen staff followed to prepare the order

• You don’t know what the kitchen staff told the server to let them know your order was ready

All that you know is that you ordered what you wanted and you received what you had ordered. APIs

are a lot like that.

Fun fact

In a restaurant, you are the client and the person who brings your food is the server. Guess
what it is called in the API world? In API lingo, the application that calls an API is called the
client application, and the application or API that responds is called the server application.

Understanding APIs 9

Let’s now look at a real-life API to understand it better.

Exploring an API example

There are thousands of APIs that you can use in the real world. An example that we can use to

demonstrate is the Twitter/X API. X (formerly Twitter) is a social network that is popular because of

the maximum number of characters allowed in a single tweet. As of the time of writing, you can only

post 280 characters at a time, which makes it ideal for short thoughts or quick updates about different

topics. Once you have a Twitter/X profile and start following other accounts, you will be able to see

the tweets from those accounts on your home page, or timeline.

If you go to the Twitter/X API documentation (developer.twitter.com/docs/twitter-

api), you will be able to find all the different requests and responses that you can use to communicate

with the API (the menu from the restaurant analogy, if you want to look at it that way).

Figure 1.3 – Twitter/X API documentation site

You can use the Twitter/X API to retrieve your tweets, post new ones, or integrate Twitter/X with

other apps. For instance, social media tools, such as Hootsuite or Later, use the API to schedule posts.

APIs allow you to work with any language or technology, as long as you follow their data format

requirements. You don’t need to know the API’s internal workings—just the data it accepts and returns.

http://developer.twitter.com/docs/twitter-api
http://developer.twitter.com/docs/twitter-api

Introduction to APIs and MuleSoft10

Analyzing API components

Now that we have a better idea of what APIs are, let’s start looking into some components to define

them. We won’t get into the technical details just yet, but it is good for you to start familiarizing

yourself with this terminology.

Implementation

The implementation is the body of the API, that is, the code you choose to build the API with, the

part that does the processing of the request and the response. We will use this term interchangeably

with API throughout the book.

Request

Whatever is sent to the API is called a request. This includes different kinds of information that will

tell the API what needs to be done with the data that is received. In the restaurant analogy, this can be,

for example, a hamburger with no pickles, in a combo, with a large soda, and some fries on the side.

Response

Whatever is received back from the API is called a response. This includes information to describe

what happened in the processing of the requestor, for example, whether the request was successful or

not or whether there was a problem with the request. In the restaurant analogy, this can either be the

food you ordered (a successful response), the server telling you that the dish is no longer available

but you can still order something else (a failed response with a workaround), or the server telling you

that they’re closed for the day (a failed response with no workaround).

Figure 1.4 – API implementation

Understanding APIs 11

API specification

This specification serves as a rule, standard, or contract – however you want to look at it – to tell

the client application (the application that calls the API or sends a request to the API) what kind of

information it needs to send to the API in order to be accepted and processed as needed. For example,

if the API specification says the API only accepts JSON requests and the client application sends

an XML request instead, then an error will be returned stating that this data type is not accepted by

the API. This is also a contract in the sense that it lists what the API may or will return to the client

application, for example, a JSON object containing the id, firstName, and lastName fields.

Listing the benefits of using APIs

We still haven’t talked about the technical aspect of an API, but we’ve seen some examples and an

analogy to help us get a better idea of this concept. Let’s list some of the benefits of using APIs:

• Loosely coupled: Integrating multiple systems through loosely coupled APIs within an application

network offers flexibility and avoids dependency issues compared to tightly coupled systems

(interacting components are interdependent and must be simultaneously present and operational).

• Governance: With the APIs approach, you have a better chance of being able to govern your

network. You can create API gateways, policies, and any sort of security to ensure that no

unwanted intruder can get to your APIs. This can be a challenge with legacy systems sometimes

because you need to create personalized code or external solutions may not be available for

your system.

• Discoverability: APIs are well documented for easy discovery and usage by developers, providing

examples, use cases, and descriptions, unlike legacy systems, which lack such accessibility.

• Easier maintenance: APIs, with their specific functionality and smaller code base, are easier

for developers to understand and maintain compared to complex legacy systems with millions

of code lines and dependencies.

• Efficiency: From a project management perspective, we can also take this point into account.

Because APIs have less code and their functionality is so specific, the time to deliver new features

can be shortened compared to other architecture types or legacy systems.

• Reusability: APIs are designed with reusability in mind, allowing specific functionality to be

easily reused across multiple services or systems without the need for custom code, thanks to

their loosely coupled nature.

Introduction to APIs and MuleSoft12

Figure 1.5 – Benefits of using API

Introducing MuleSoft

Everything comes together. After understanding all of the previous concepts – no-code/low-code

technologies, integrations, and APIs – we can start talking about MuleSoft. In this section, we’ll describe

what MuleSoft is, what some of its products are, how it’s useful, and how it is going to help you in

your career as a Salesforce developer. First of all, MuleSoft is the name of the company that created

the existing suite of products. When people talk about MuleSoft in a development context, they are

referring to all of the products that this company has created. A clearer example of this can be seen now

that Facebook has changed its name to Meta; we can more easily see the difference between the name

of the company (Meta) and its corresponding products (Facebook, Instagram, and WhatsApp). The

same is the case with MuleSoft. The name of the company is MuleSoft; it’s not the name of a product.

But when we refer to MuleSoft, it encompasses all of MuleSoft’s products.

Introducing MuleSoft 13

Listing MuleSoft’s products

Let’s take a look at some of the most popular products that MuleSoft has released so far (up to the

time of writing this book). The suite of technologies can be broken down into three main products:

• Anypoint Platform

• Anypoint Studio

• Composer

Each of these products includes its own products and functionality as well. Let’s review them in detail.

Anypoint Platform

Anypoint Platform can be accessed through your browser. If you go to anypoint.mulesoft.

com, you will see the login screen. You can create a free trial account that will last 30 days. Inside

Anypoint Platform, you will find the following products:

Note

We will talk more about all these products in Chapter 5.

• Anypoint Design Center: This is where you can manage your API specifications with API

Designer and your Async API specifications with AsyncAPI.

• Anypoint Exchange: You can look at this product as an app store of sorts where you can find

a catalog of published assets that you can reuse in your own code.

• Anypoint DataGraph: If you’re familiar with DataGraph, MuleSoft created its own product

to help you use this technology within its suite of products.

• Access Management: This is where mostly only the admins of the account will be able to change

permissions or access for the users of the account.

• Anypoint API Manager: As its name says, you will be able to manage your APIs from here.

You can manage alerts, contracts, policies, SLA tiers, and other settings.

• Anypoint Runtime Manager: The Mule applications are located in Runtime Manager. You can

access logs, object stores, queues, schedules, and settings.

• CloudHub or CloudHub 2.0: If your Mule application is running within MuleSoft’s cloud

provider service, that means you’re using CloudHub. Your Anypoint Platform free account

will use CloudHub by default.

• Anypoint Visualizer: You can use this product to get a visual representation of your systems,

such as autogenerated architectural diagrams or available policies, or perform some general

troubleshooting of your applications.

http://anypoint.mulesoft.com
http://anypoint.mulesoft.com

Introduction to APIs and MuleSoft14

• Anypoint Monitoring: Here, you can generate custom dashboards or use the built-in dashboards

to get a better feel for how your apps are behaving.

• Secrets Manager: Here, you can store sensitive data such as passwords, tokens, certificates, or

keys in secrets manager so they can be accessed and still be secured.

• Anypoint Runtime Fabric: This is not included in your free trial account, but this is where you

would be able to deploy your Mule applications to different cloud providers, such as Microsoft

Azure, Amazon Web Services, Alibaba, Redhat OpenShift, or Google Cloud Platform.

• Anypoint MQ: This is MuleSoft’s message queueing service. It is a built-in solution that includes

its own connectors to use within your code with no extra drivers or settings needed.

• Anypoint Service Mesh: This is not included in your free trial account, but with this product,

you can manage non-Mule applications within the same suite of products, regardless of the

programming language they’re based in.

• Anypoint Flex Gateway: With this lightweight gateway, you can manage Mule and non-Mule

applications. You can install Flex Gateway in Docker, Kubernetes, or Linux. This is included

in your free trial account.

• Anypoint API Governance: Here, you can create standards for your API specifications, Mule or

non-Mule applications, security policies, and more. This is included in your free trial account.

• Anypoint Code Builder (ACB): It’s a new IDE for designing and implementing APIs, available

in desktop and cloud versions, currently in BETA release. Let’s now see the products inside

Anypoint Studio.

Anypoint Studio

Anypoint Studio is MuleSoft’s IDE (based on Eclipse). You install this application on your computer

and this is where you’re able to develop Mule applications. Studio has a nice GUI to find predefined

connectors and use them to develop your Mule flows. Inside Anypoint Studio, you will find the

following products:

• MUnit: MuleSoft’s testing framework. MUnit is optimized to create tests visually. We can

create tests using connectors, such as Mock, Assert, and Spy. We will talk more about MUnit

in Chapter 11.

• APIkit: With this product, you can take your API specification and create a basic structure

for your Mule application instead of doing it from scratch. We will talk more about APIkit in

Chapter 8.

• DataWeave: MuleSoft’s functional programming language, optimized for transformations. We

will do a deep dive into this language in Chapter 6, and Chapter 7.

Introducing MuleSoft 15

Let’s now see an overview of Composer.

Composer

Composer, as opposed to the other MuleSoft products, is a no-code tool. There’s no need to create an

API specification or implementation. Composer was specifically designed to have clicks not code, as

its slogan says. If you’re familiar with some of the no-code tools we mentioned earlier in this chapter,

such as Zapier and IFTTT, Composer follows a similar approach. We will talk more about Composer

in Chapter 12.

Now that we understand the variety of products MuleSoft offers, let’s look into how all of these tools

are useful.

Understanding why MuleSoft is useful

We just learned about the suite of products and functionality that MuleSoft offers. Besides being a

low-code technology with a smaller learning curve than a regular programming language, MuleSoft

can fulfill almost all the requirements you need to cover in the development life cycle. From designing

to implementing and testing to deploying, securing, and monitoring your solutions, MuleSoft most

likely has a product for your needs. The best part is that because you’re using all these products under

the same sphere, they can be easily integrated or moved from one stage to the next.

Let’s review what a Mule application or an API life cycle would look like within MuleSoft’s products.

Design phase – API specification

We’re first going to review what MuleSoft products can be used in the design phase of your API. This

will result in an API specification that you can use as the foundation for the next phase. This phase

takes place in Anypoint Platform:

1. API specification design: Using Design Center, you can start designing your API specification

with the visual API Designer without having to know RESTful API Modeling Language

(RAML) or OpenAPI Specification (OAS).

2. API specification testing: Using the mocking service, which can be found in API Designer, you

can create a mock of your current API specification and make calls to it. This is with the purpose

of getting a feel for how the developers will experience your API before even implementing it.

The idea is that you go back and forth between the design and testing until you feel comfortable

with the specifications you’ve created.

3. API specification publishing and feedback: From API Designer, you can publish your

finished specification to Exchange for others in your organization to discover. Exchange will

automatically generate basic documentation based on your API specification. You can share

this Exchange asset with others in order to gather feedback on your design. If you still need to

adjust things, you can just go back to API Designer and modify what’s needed. After you do

this, you can publish a new version of your API specification in Exchange.

Introduction to APIs and MuleSoft16

We can iterate through these first three steps as long as needed until we feel comfortable that we

have an API specification on which to base our implementation. Once we have the first draft, we can

continue with the next phase.

Implementation phase – Mule application

Now that we have a first draft of the API specification, we can get started with the implementation.

This phase takes place in Anypoint Studio:

1. Mule application implementation: This process is where you would be using the available

connectors or DataWeave to start creating your Mule application’s implementation. After

you’ve finished any number of iterations and feel comfortable with the API specification you

generated in the previous phase, you are now ready to start creating your Mule application.

From Anypoint Studio, you can connect to your Anypoint Platform account and download

the API specification from Exchange. This will generate the basic flows and error handling so

you don’t have to start creating everything from scratch. This process uses APIkit to route the

different types of requests to their corresponding Mule flows. In addition, any request that is

not recognized by the API specification will be routed to the corresponding error handling.

For example, if we refer to our previous restaurant analogy, if you were to order food that was

not available on the menu, the server would respond that what you requested does not exist.

2. Mule application testing: Once you generate the main functionality, you are ready for the next

step, which is where you would start creating your unit testing using MUnit. Nothing is better

than a high-quality application. Here, you can create mocks and use asserts to make sure the

different scenarios for your code are indeed working as expected. A best practice is to aim for

90% of MUnit coverage, if not 100%, but this varies depending on each project.

Same as earlier, we can iterate through these steps as many times as we need to achieve good-quality

code and functionality of the application. Once we’re happy with the first draft of the functioning app,

we can continue with the next phase.

Deployment and managing phase – API

Now that we have a functioning Mule application, we can start the deployment and managing phase.

This phase takes place in Anypoint Platform:

1. API deployment: After testing your Mule application locally, deploy it seamlessly to the cloud

from Anypoint Studio. Monitor the deployment progress via Runtime Manager. While various

cloud providers are available, we’ll concentrate on MuleSoft’s CloudHub for now.

2. API security: Now that your application is running in CloudHub, you are ready to create API

policies, contracts, SLA tiers, and so on. All of this is managed by API Manager.

3. API monitoring: Your API is secured and running. Now, it’s time to lay back and relax. You can

monitor your API from Anypoint Monitoring or create alerts in case something goes wrong

and you want to immediately get notified about it.

Introducing MuleSoft 17

The API life cycle doesn’t stop here; it’s an ongoing process. Once the application is deployed,

developers test it and give feedback on features or bugs. This initiates a new cycle, either at the design

or implementation phase, depending on the case, and the cycle repeats.

Now, we have a better idea of what MuleSoft is and how it’s useful in the API life cycle. This book

was written for Salesforce developers and architects, so let’s now see how MuleSoft is helpful for your

professional career.

Analyzing how MuleSoft helps Salesforce developers

MuleSoft has long been helpful in integrating different technologies, including Salesforce. However,

since Salesforce acquired MuleSoft, we can see more and more integrations between the technologies.

Furthermore, the acquisitions of Slack, Tableau, and Servicetrace have also increased the use of

MuleSoft throughout these platforms and vice versa. For example, there wasn’t an official Slack connector

in MuleSoft before, but one was created after the official acquisition. There is also a new product in

the works called MuleSoft Robotic Process Automation (RPA), and guess what Servicetrace is? Yes,

it’s an RPA technology. We now also have Composer, which is a technology created by mixing both

Salesforce and MuleSoft technologies.

Together, these acquisitions create a cohesive platform where integration, collaboration, and analytics

work seamlessly, leading to improved operational efficiency and a more connected, insightful

business environment.

While it might be true that you don’t necessarily need to know MuleSoft in order to be a Salesforce

developer, the past and the present are the foundation of what we predict the future will be like. What

history’s been telling us is that Salesforce will continue adding to its 360 products from other companies

it acquires. We already have Composer in common with Salesforce and MuleSoft – who knows what

else will be integrated in the future. But it all points to the fact that MuleSoft will be integrated more

and more into the Salesforce suite.

From a professional career perspective, currently, there are not a lot of developers who are proficient

in both MuleSoft and Salesforce – they are either Salesforce developers or MuleSoft developers, or

they may know a little bit about the other but are not experienced developers in both. It wouldn’t be

a surprise if in some years, job postings started requiring proficiency in both technologies.

The following summarizes what we have discussed in this section:

• MuleSoft enhances Salesforce’s ecosystem to connect with other technologies, providing a

more integrated and efficient solution for managing and utilizing data across various platforms

• There is already a product created that combines both Salesforce and MuleSoft: Composer

• Career-wise, it would be smart of you to get ahead of the trend and become proficient in both

technologies before it becomes a requirement

Introduction to APIs and MuleSoft18

Exploring application networks and the API-led

connectivity approach

This is where it all comes together. We understand that MuleSoft is a collection of low-code technologies

that help us to create APIs or microservices based on Mule applications. Integrations are important because

we can connect different services with different data types or structures to create an application network.

Understanding what application networks are

If computers are connected in a network, it’s called a computer network, such as in a computer lab and

office network. Similarly, when applications are interconnected, it’s referred to as an application network.

Why do we create several APIs and connect them instead of creating one single system to do all

of this? Remember the benefits of using APIs: loosely coupled, governance, discoverability, easier

maintenance, efficiency, and reusability. We can’t achieve these with a regular system. All the code is

tightly coupled, it’s hard to maintain, it can’t be reused, and so on. This is why we want to create an

application network to connect all of these different building blocks.

Figure 1.6 – Application network representation

Exploring application networks and the API-led connectivity approach 19

We can connect services or platforms such as Salesforce, Workday, Amazon Web Services, NetSuite,

Dropbox, Google Drive, SAP, and Twitter/X – the options are endless. Even if these don’t have an

API to connect to as easily, MuleSoft’s products offer so many options for customization that you can

really integrate almost anything with MuleSoft. The main vision when MuleSoft was created was to

be able to work together and make more APIs to discover and reuse. This would essentially reduce

time to delivery and IT demands would be easier to meet over time. But how exactly do we plan on

doing this network? This brings us to our next point.

Analyzing the API-led connectivity approach

MuleSoft believes in an architectural approach in which you have a standard to give your APIs a

specific purpose in your application network. This can help you create more reusability around your

APIs so you can easily add new functionality or APIs, modify or upgrade existing ones, or remove

any API that’s no longer being used.

This API-led connectivity approach is based on three different layers in which we’ll categorize our

APIs: Experience, Process, and System.

Figure 1.7 – The three layers of the API-led connectivity approach: Experience, Process, and System

Introduction to APIs and MuleSoft20

Experience layer

This is the top layer. It is where we have the APIs that directly make contact with the client application,

whether that’s a mobile application or a desktop/web application. This is where we put the APIs that

have direct contact with the outside world, that is, the APIs that are public. The sole purpose of these

Experience APIs is to connect to the client application and send the information to the next layer.

The only logic we may add here is any kind of security or filter to make sure the information that is

received is correct and can indeed proceed with the rest of our application network. If anything is

missing or looks suspicious, then it’s the Experience API’s responsibility to not let this data proceed

further and raise this as an error immediately.

Process layer

This is the middle layer. It is where, as its name suggests, the data we receive from the Experience

layer is processed or transformed in order to be sent to the rest of the APIs. Just as we saw earlier

on in this chapter when we talked about integrations, if we have system A, which processes certain

information, and then we have system B with a different data structure, then it’d be the responsibility

of the Process APIs to transform (or translate) these two data types in order to be understandable by

their corresponding APIs.

Going back to our previous example, say now system A is the data that comes from the client application

and system B is the data that we need to send to the server application; we end up with something

like this:

client-application.json

{

"ID": 1,

"FirstName": "Alexandra",

"LastName": "Martinez"

}

server-application.json

{

"id": 1,

"firstName": "Alexandra",

"lastName": "Martinez"

}

Summary 21

It is the Process API’s responsibility to do these two transformations both upstream and downstream.

The Process API would first receive client-application.json as its input, then it would have

to transform it to the server-application.json structure and send it to the corresponding

API. After the downstream API responds, the Process API needs to transform the data from whatever

it received from the server application to whatever data type or structure the client application is

expecting to receive. In this case, the client application would be the Experience API that’s calling the

Process API, and the server application would be the System API.

System layer

This is the last layer. The Experience layer, the topmost layer, is the one that directly connects to the client

application. Now that we’re at the bottom, this is where we directly connect to the server application,

whether that is Salesforce, Facebook, SQL, or Azure, you name it. These APIs are where we store any

tokens, passwords, credentials, or URLs that are needed to connect to the underlying systems.

Since most of the filtering, security, cleanup, and transformations are done in the previous layers, this

layer can focus solely on connecting and sending the data to its target. If there is more data transformation

needed from this response, the Process API is responsible for doing so, not the System API.

We have a better picture now of how the API-led connectivity approach is helpful for our application

network – when we separate the APIs into these three layers, we have a better standard to follow in

our architecture. Now, let’s summarize all we have learned in this chapter.

Summary

In this chapter, we learned how the learning curve for no-code or low-code technologies is smaller

than learning a programming language. You mainly need to learn how to use the GUI, which may

take some hours or days, and almost all the functionality is done through clicks instead of code.

When we have systems that need to exchange pieces of information, but they don’t necessarily use

the same data type or data structure, we create integrations to help translate this data. Using APIs is

better for the developers who create or maintain the code, the developers who want to use a public

API, and the companies behind them. APIs, as opposed to other systems, are loosely coupled, easier

to maintain, discoverable, and reusable.

MuleSoft’s main three products are Anypoint Platform, Anypoint Studio, and Composer. Anypoint

Platform is a tool you can access from your browser to design, deploy, manage, secure, and monitor

your APIs or applications. Anypoint Studio is the IDE you download and install on your local computer

to develop and test your Mule applications. Finally, Composer is a no-code product that was created

by mixing both Salesforce and MuleSoft to help you integrate your systems faster.

The whole reason for creating APIs in the first place is that it makes it easier to have an application

network made of smaller pieces that we can connect as building blocks. We can reuse the functionality

for different purposes, instead of having to create custom code with the same functionality.

Introduction to APIs and MuleSoft22

MuleSoft believes in using the API-led connectivity approach as the architecture pattern to connect

our APIs. We have the Experience, Process, and System layers, which will help us create specific APIs

that can be reused and maintained more easily throughout the application network: the Experience

layer for client application-facing functionality, the Process layer for orchestrating and processing the

information, and the System layer for connecting to external services.

In the next chapter, we will expand our API knowledge from the basics to the technical aspects. We’ll

review some best practices to design a better API specification and understand how exactly APIs

connect with each other.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What’s the difference between no-code and low-code technologies?

2. What are the API components we talked about in this chapter?

3. How do the API components relate to the API analogy we discussed?

4. What are the names of the three main MuleSoft products?

5. List some of the products or functionality that can be found inside those three main

MuleSoft products.

6. What are the three phases we talked about when creating an API within MuleSoft?

7. What are the three API-led connectivity layers?

8. What purpose does each of the API-led connectivity layers serve?

Answers

1. The differences between no-code and low-code technologies are as follows:

No-code technologies provide a user interface for you to use the product and don’t require you

to learn or know any type of programming language in order to use it.

Low-code technologies also provide a user interface, but they do involve some minor programming

in order to create more personalized functionality. Although the use of the technology doesn’t

revolve around the programming language, it is a part of it.

2. The API components are as follows:

 � Implementation: The body of the API, where all the information is processed

 � Request: The data you send to the API with detailed information

Answers 23

 � Response: The data you receive back from the API with detailed information about what

happened with your request

 � API specification: The standard, or contract, so you know what you can ask for in the request

and what you might receive in the response

3. The API components relate to the API analogy as follows:

 � The implementation is like the kitchen staff: they receive your order, cook your food, and

serve your order. You don’t know how they cooked it or exactly what ingredients it has, but

you receive what you requested.

 � The request is what you order, with any specific details, such as a hamburger with no tomatoes,

extra pickles, in a combo, with an orange soda, and fries on the side.

 � The response is what you get back after you make your order, such as a hamburger with no

tomatoes, extra pickles, and so on.

 � The API specification is like the menu when you arrive at the restaurant. You can’t just order

whatever you want; you have to order available dishes from the menu.

4. Anypoint Platform, Anypoint Studio, and Composer.

5. The products or functionality that can be found inside the three main MuleSoft products are

as follows:

 � Anypoint Platform:

 � Anypoint Design Center

 � Anypoint Exchange

 � Anypoint DataGraph

 � Access Management

 � Anypoint API Manager

 � Anypoint Runtime Manager

 � CloudHub

 � Anypoint Visualizer

 � Anypoint Monitoring

 � Secrets Manager

 � Anypoint Runtime Fabric

 � Anypoint MQ

 � Anypoint Service Mesh

Introduction to APIs and MuleSoft24

 � Anypoint Flex Gateway

 � Anypoint Code Builder

 � Anypoint Studio:

 � MUnit

 � APIkit

 � DataWeave

 � Composer

6. Design phase, implementation phase, and deployment and managing phase.

7. Experience layer, Process layer, and System layer.

8. The purposes served by the API-led connectivity layers are as follows:

I. Experience layer: The APIs that are exposed to the calling clients, such as a mobile

application, a web application, or a desktop application. This is where you’d add any

public-facing security, such as appropriate security policies.

II. Process layer: The APIs that are in charge of orchestrating and processing the data. They

receive the data from the Experience APIs, process it, and send it to the System APIs.

Then, they receive the data from the System APIs, process it, and send it back to the

Experience APIs. This is where all the data transformation should take place.

III. System layer: The APIs that connect to any downstream or external systems. Their sole

purpose is to connect with external technologies and send back – to the Process APIs

– the information that was received. This is where all the external systems’ credentials

are stored.

2
Designing Your API

In the previous chapter, we learned about MuleSoft and its capabilities. We also gained some insights

into APIs, API-led connectivity, and what we’re trying to build – an API network.

After having a basic understanding of the fundamental concepts of MuleSoft, in this chapter, we will

learn about the life cycle of an API design, compare various API design modeling languages, and

learn various aspects of API design and API fragments. We will also get hands-on practice designing

an API specification using the RESTful API Modeling Language (RAML).

API design is a primary and crucial step toward building a successful application network; the goal

of this chapter is to enable you to design an API using the best practices and industry standards.

Here is what you can expect to learn about in this chapter:

• The life cycle of an API

• An introduction to REST, HTTP, and SOAP

• Getting started with OAS and RAML

• The basics of API design

• Understanding the Anypoint Platform Design Center

• Designing your first REST API

• Hands-on experience with your API design

• Best practices and guidelines to design an API

Before getting started with the actual API design, let’s first understand the fundamentals of an API

design life cycle.

Designing Your API26

Understanding an API life cycle

To build a complete API, we need to follow a systematic approach. Hence, we shall now learn about

the life cycle of an API. It consists of four stages:

1. Design: This involves architecting the basic skeleton of your API. This is the first and the

most crucial step, as we need to take into consideration all the functional and non-functional

requirements to build a logical structure.

2. Simulate: After having a fair understanding of the initial requirements, we need to implement

the API by using appropriate endpoints, methods, data types, and examples, and following the

API design best practices.

3. Feedback: Once our API model is ready, we can simulate our API using the mocking service.

Also, we can test our API to check whether the response meets the initial requirements.

4. Validate: At this stage, we will share the API with other external/internal developers and

collaborators and take into consideration the feedback received from them. Later, we shall

introspect the received feedback and implement the API design changes accordingly.

Figure 2.1 – API design life cycle

As shown in Figure 2.1, this is an iterative process consisting of four stages until the API design

is finalized.

After understanding the various stages of the API design life cycle, we shall now focus on the key

elements of API design, which are REST, HTTP, and SOAP.

Introducing REST and SOAP 27

Introducing REST and SOAP

REST and SOAP are two different approaches to implementing an API design. In this section, we

shall learn a bit more about them.

While we’re mainly going to focus on the creation of a REST API, it’s equally essential to know the

difference between REST and SOAP APIs so that you can decide wisely what type of API suits your

organization’s requirements.

REST

REST stands for Representational State Transfer. It represents a modern architectural style for

designing an API.

These are the features of a REST API:

• It accommodates stateless client-server architectural models, and the data is transferred over

the HTTP/HTTPS protocol.

• It supports several data types such as XML, JSON, plain text, and HTML, which makes it easily

consumable. JSON is the most widely used data type, a human-readable language.

• It is lightweight and compatible with most of the latest technologies. Let us now learn more

about the HTTP protocol.

Introducing HTTP

HTTP, short for Hypertext Transfer Protocol, is a client-server communication protocol used to

exchange data in a client-server architecture model. HTTP is the data transfer protocol that supports

REST APIs.

HTTPS is identical to HTTP but has a security add-on. It supports the Transport Layer Security

(TLS) protocol, which is a Secure Sockets Layer (SSL) handshake – encryption to exchange data

securely between a client and a server.

Designing Your API28

Figure 2.2 depicts what a typical HTTP request/response looks like:

Figure 2.2 – A snapshot from the Postman tool depicting the HTTP request

Figure 2.2 tells us about the HTTP request triggered from the Postman tool. We shall now look at the

various elements of the HTTP request/response with the help of the preceding figure.

The prime elements of an HTTP/HTTPS request/response are as follows:

• Method: This is a verb that defines what action is to be performed. The most commonly used

methods are GET, POST, PUT, PATCH, OPTIONS, and DELETE.

• URL: The Uniform Resource Locator (URL) is an address to send requests from a client to

get service from a server. It contains all the information related to the host, port, domain,

and endpoint.

• Headers: This is an optional part of an HTTP request, which carries additional data/metadata

related to the request.

• Request body: Methods such as POST, PATCH, and PUT carry data in the form of the body.

HTTP supports various formats such as text, JSON, XML, HTML, and so on.

• Response body: This gives us the response returned by the server. Similar to the request body,

it supports several formats.

• Response status: The status code indicates the state of the API request sent. The following table

indicates the response codes and response statuses of HTTP:

Getting started with OAS and RAML 29

Response Code Response Status

100–199 Informational

200–299 Successful

300–399 Redirection

400–499 Client Error

500–599 Server Error

As we’ve now understood the REST API and HTTP protocol, let’s learn more about the SOAP API.

SOAP

SOAP stands for Simple Object Access Protocol. It’s a protocol widely used to communicate between

different applications. The SOAP API uses Web Service Definition Language (WSDL), which is an

XML-based contract between a client and a server. It contains all the relevant information related to

a web service, endpoints, request/response, security, and so on.

These are the main features of the SOAP API:

• It can handle requests using several protocols such as HTTP, SMTP, and TCP

• SOAP supports only the XML format

• It is more secure compared to REST and complies with atomicity, consistency, isolation, and

durability (ACID) properties

• The structure of the SOAP API is a bit complex and there is an overhead to managing it

• Most of the legacy applications use the SOAP API

After understanding the features of REST and SOAP APIs and the HTTP protocol, we can select the

respective API modeling language, which can be OAS or RAML, as per an organization’s use case.

Let’s now learn more about OAS and RAML.

Getting started with OAS and RAML

Open API Specification (OAS) and RAML are the two most extensively used API description formats.

Anypoint Designer lets you create a REST API using RAML or OAS (previously known as Swagger).

Although they both have a lot in common, it’s essential to understand the capabilities of both OAS

and RAML so that we can choose our API specification language wisely.

Designing Your API30

OAS

OAS is an open source specification language founded in 2010 with huge community support. Its

fundamental purpose is to keep API documentation, libraries, and code in sync:

• It supports both JSON and YAML to design API

• OAS is ideal if your application has response type-only JSON, as it takes a longer time to load

other formats

• It is not feasible in terms of code fragmentation and reusability

• It focuses more on the documentation of an API rather than the implementation.

Let’s move on to RAML.

RAML

RAML was founded by MuleSoft in 2013 to provide all the relevant information pertaining to an API

in one place, thus supporting the entire API life cycle stage:

• It uses YAML, which is a human-readable markup language and thus makes RAML easy to

build and manage

• External files could be imported into RAML, and it supports several data formats with ease

• The reusable and composable nature of RAML makes it an appropriate choice for users who

are working on a large enterprise project and would like to keep their API lightweight

RAML, being released by MuleSoft, supports the basic concept of API-led connectivity and API life

cycle management. Hence, Anypoint Platform is more inclined toward MuleSoft. On the other hand,

if you’re looking for industry-wide used specifications, then you can opt for OAS, as it has a large

community base.

In this book, you will mainly use RAML to design your API. However, you can design API in Anypoint

Design Center using RAML or OAS. You can also switch between RAML and OAS specifications if

you’re using a guided approach to design an API. We will learn more about the guided approach in

this chapter.

After understanding the fundamentals of API design, let’s head toward designing our very first API.

Getting started with API design

In order to get started, go to the Anypoint Platform sign-up page, where you can create a free trial

account for 30 days.

Getting started with API design 31

You can click here to create a free account:

https://anypoint.mulesoft.com/login/signup.

Note

In case you’re using your organization’s enterprise Anypoint Platform account, make

sure you have the correct access rights to design, publish, and deploy the API.

Follow these steps to get started:

1. Enter your details and sign up (see Figure 2.3).

Figure 2.3 – The Anypoint Platform sign-up page

https://anypoint.mulesoft.com/login/signup

Designing Your API32

2. Once completed, you’ll be taken to the home page of Anypoint Platform – MuleSoft’s iPaaS

platform. Navigate to Design Center from the three dashes in the left corner of the home page

(see Figure 2.4).

Figure 2.4 – The Anypoint Platform dashboard

You can start writing your API using any simple editor, but it becomes a bit hectic to manage the

API and its dependency. Hence, we will design the API using Anypoint Platform’s Design Center.

Getting started with API design 33

3. When you click on the Create + button in Design Center (see Figure 2.5), it gives you multiple

options to create:

i. New API Specification: This helps you build your API specification using RAML and OAS.

ii. New Fragment: You can build reusable and composable API fragments to avoid redundancy.

iii. New Mule App: You can prototype your integration model similar to your Anypoint

Studio (MuleSoft’s Eclipse-based studio for developing integration). We will be talking

more about this in Chapter 3.

iv. New AsyncAPI: This helps you to design an asynchronous API.

v. Import from File: You can import an existing API specification/fragment or a Mule

app into Design Center.

4. Once done, select the first option – that is, New API Specification – as shown in the following figure:

Figure 2.5 – Creating a new API specification

Designing Your API34

5. On selecting a new API specification, you’ll get a dialog box, as shown in Figure 2.6, where

you can enter the API title following the naming convention. In this case, we’re designing a

system API, which is evident from the title having key33607122word sys, denoting the

system API.

Figure 2.6 – Creating a new API specification dialog box

6. You can select the API specification language from the drop-down list.

If you’re already familiar with the syntax of RAML/OAS, you can choose the first radio button,

which will let you design your API on your own; alternatively, you can opt for the second option,

which will help you navigate through every step while designing an API.

Getting started with API design 35

7. On clicking Create API, you’ll be taken to the API design canvas, as shown in the following figure:

Figure 2.7 – The API design canvas

The API design canvas consists of several components. Let’s learn more about them:

1. API name and branch: This is the same title that you entered previously. You can also click on

the down arrow and create a different branch if you wish to implement a branching strategy

for RAML. By default, it’s the master branch.

2. Editor: This is the space where you can edit the root file and enter the elements of APIs such

as the root, security, methods, and endpoints. You can also edit other file fragments such as

example.raml and datatype.raml here.

3. Suggestion palette: This gives you suggestions about various elements during your API design.

4. Documentation: You can see all the information related to a particular endpoint in the

Documentation section. You can also mock an endpoint from this section.

5. Files: You can access all the newly created or imported files in the Files section.

6. Dependency: In this section, you can import pre-existing APIs or fragments from Exchange.

The imported dependency will be eventually visible in the Files section.

7. Create files/folders: You can create a new file or a folder to reorganize your API into smaller

reusable fragments.

Designing Your API36

8. Publish: Once your API is designed and validated, you can publish it to Exchange using the

Publish button.

9. Share: You can share the project with your team members and other collaborators.

10. Settings: You can import pre-existing APIs; you can also import APIs/fragments from Exchange,

download your API as a ZIP file, and share it with external collaborators, or rename/duplicate/

delete the API (see Figure 2.8).

Figure 2.8 – API Design Center settings

We will now design an API using RAML as the modeling language. The following is the use case.

Music Box is an audio streaming platform that wants to build a mobile application for high-quality

audio streaming, which will include songs as the main entity.

As per the initial requirement phase, design a REST API (system API) to achieve the following goals:

• Retrieve the list of all songs

• Add a new song based on the artist’s code

Now, let’s head to our Editor and start editing our API specification:

Getting started with API design 37

In the root section, as seen in Figure 2.9, along with the title, you can add a description, version, and

other details:

1. To begin with, we’ll start with a basic /songs endpoint and use a GET method. You can also

refer to songs as a resource or an endpoint:

Figure 2.9 – Adding/songs endpoint in the API specification

At every stage, you can see the recommendations in the suggestion palette, which helps you to

design your API quickly. Make sure you’re taking care of indentation while designing your API.

We have described the /songs endpoint and added the GET method (see Figure 2.10). We

have specified the response code and body with an expected response as an example.

Figure 2.10 – Simulate the GET endpoint using Try it

Designing Your API38

2. Similarly, you can try out designing a basic endpoint and later click on the Try it option (see

Figure 2.10) at the top right of your Documentation section to validate the response, if it meets

your requirements.

Note

Here, we’re just simulating the response based on the prototype we design. We will never receive
an actual response from the backend systems, nor will the security validations be performed
at the API design level.

3. Similarly, we’ll add one more endpoint to post a new song based on the artist’s code as a

URI parameter.

Here, it’s important to understand the difference between URI and query parameters, as they

are often misunderstood, and it’s equally important from an interview as well as a MuleSoft

Certified Developer (MCD) Level 1 certification point of view. Let’s explore URI and query

parameters in detail.

URI parameter

A Uniform Resource Identifier (URI), as the name suggests, is responsible for identifying a resource

uniquely. For example, we can use it to search for songs based on the song ID – /song/{songId}:

/songs:

/{songId}: get:

description:Togetallthesongsbasedinthemusic-

box

displayName:GetallsongsgetSongsExample responses:

200:

body:

application/json: example: {

“1”:”HeyBrother.Avicii”,

“2”:”SeeYouAgain(feat.

CharliePuth)Wiz Khalifa”,

“3”: “Wake Me Up. Avicii”, “4”:”Shivers.EdSheeran.”

}

This is what an actual request would look like: http://<host>/song/234. Here, /{songId}

is the URI parameter to fetch a particular song from the records.

Getting started with API design 39

Query parameter

A query parameter is used to query, filter, or sort data based on a particular condition. You can think

of the query parameter as the WHERE clause used in SQL.

It is passed at the end of the URL, followed by ? and separated by &, if there is more than one query

parameter. For example, we can use this to implement pagination and fetch a limited amount of songs

per page that were released in a particular year.

So, here, year and limit are the query parameters:

/songs?year=<year>&limit=<pageLimit>.

This is what an actual request would look like:

http://<host>/songs?year=2020&limit=20.

/songs:

get:

queryParameters: limit:

required: true type: integer

description: Enter the number of songs to be displayed per page

year:

required: true type: date-only

description: Enter the year for which you want

the songs

displayName: Get all songs responses:

200:

body:

application/json:

"2": "See You Again (feat.

Charlie Puth) Wiz Khalifa",

"3": "Wake Me Up. Avicii", "4": "Shivers. Ed Sheeran."

You can add more parameters, such as required, description, to further describe your

query parameter.

type, display name, and

Now that we have learned about the URI and query parameters, let’s progress with our API design.

Designing Your API40

Getting back to our API design (see Figure 2.11), we’ve added a new endpoint, /song/{artistCode},

with the POST method. This is responsible for creating a new record in the backend system.

Figure 2.11 – Adding a new endpoint to post a new song

As it’s a POST method, we also need to provide a request body, as mentioned in the example, and

we can expect a 200 response after it has successfully created a new song entry. You can set multiple

status codes and their corresponding responses.

Currently, in our RAML, we’ve added just two endpoints, and each has a single method; imagine if

we had 20+ endpoints and each endpoint had at least 2 methods. In that case, the RAML would get

pretty bulky.

Hence, to make RAML lightweight, flexible, and easily readable, we will externalize common, recurring

components and then call them explicitly when required.

If you click on the + sign in the left panel of Design Center (see Figure 2.11), you get an option to

create fragments and maintain a file structure.

Some of the commonly used API fragments are as follows:

• Examples: We can exemplify the expected request/response structure or the data type using

example files.

• Data types: These define the properties or data schema of a particular resource.

• Resource types: Some of the resources have a common structure that recurs at multiple

instances. We can group these commonly occurring elements into a resource type and call it

at multiple instances.

• Trait: We can group a particular method whose characteristics are occurring repeatedly.

Getting started with API design 41

• Library: We can club together different fragments in a single library file. This comes in handy

when we’re dealing with a concise API. We can include data types, traits, the security scheme,

and so on in a library file.

• Annotation types: These help us to enhance the definition of endpoints by adding metadata

and describing the API. They are defined in a similar fashion to data types. Annotation types

are restricted by allowedTargets, which limits the usage.

• Overlays: These help to widen the API definition by further extending the details about the

nodes. They focus on the non-behavioral aspects of an API.

• Extension: This is similar to an overlay, but they mainly focus on behavioral aspects of an API.

• User documentation: You can add documentation for your entire API specification or a

particular resource.

• Security scheme: You can regroup all the security parameters and policies that will be applied

throughout the API inside the security scheme.

In order to make it concise, we’ll move the example into an example file and reference it explicitly in

our root file:

1. Click on + in the right panel and create a new folder called musicboxAssets

(see Figure 2.12).

Figure 2.12 – Creating a new folder

Designing Your API42

2. Create a new folder named examples inside musicboxAssets (see Figure 2.13).

Figure 2.13 – Creating a new folder for example

3. Create a new example file with the name get-songs-example.raml inside the examples

folder (see Figure 2.14).

Figure 2.14 – Creating a new example file

Getting started with API design 43

4. Select your API specification type and file type (data type, example, traits, and so on) from the

drop-down list and enter the filename, as shown in the following figure:

 Figure 2.15 – Creating a new example file dialog box

You can now see an empty example file, get-songs-example.raml, where we will transfer

our example from the root RAML file.

Figure 2.16 – The blank example file

Designing Your API44

5. Cut and paste the example from the root RAML file to the get-songs- example.raml file.

Figure 2.17 – The example added from the root file

6. Now, let’s reference our example file in our root RAML.

We can reference any file in root RAML using !include <file-path>.

7. To get an accurate file path, copy the path by clicking on the Copy path option of the respective

file, as shown in the following figure:

Figure 2.18 – A reference example file in the root RAML file

Getting started with API design 45

8. Once the path is copied, reference it in the root RAML file using type.

Figure 2.19 – An example file referenced in the root RAML file

Similarly, we can reference example files for the /song/{artistCode} endpoint with the

POST method.

As we have both request and response examples for the POST method, we will further categorize the

folder structure into requestExamples and responseExamples, save the corresponding files,

and further reference them explicitly in our root RAML (see Figure 2.20):

Figure 2.20 – Referencing the example file for the POST method

Designing Your API46

We can follow a similar file structure for other fragments.

API mocking

As we’re following a design-first approach, API mocking will help you simulate the API before

implementing the API in Anypoint Studio.

Once we are done with the API design, we can simulate the API by mocking the endpoint. Let’s follow

the steps to mock our API:

1. Click on the endpoint you wish to mock on the right-side panel.

Figure 2.21 – Mocking the POST method

Getting started with API design 47

2. You can find all the details related to your endpoint here. Click on the Try it button to mock

the endpoint.

Figure 2.22 – Reviewing the mocking endpoint information

Designing Your API48

3. Next, you can review information about your endpoint and fill in the missing details.

Figure 2.23 – Entering the request details before simulating the endpoint

4. Click on the Send button once you’ve filled in all the missing elements and reviewed the

endpoint. You will need to fill in input details for POST and PATCH methods.

Getting started with API design 49

5. Here, you can validate your response as shown in Figure 2.24. Make any changes in the design

specification if needed.

Figure 2.24 – Validating your API response

Designing Your API50

6. Once your API is finalized, you can publish the API to Exchange, as shown in Figure 2.25.

Figure 2.25 – Publishing your API to Exchange

7. Next, you can select the asset version and API version (if already not mentioned in the root

file). Select a LifeCycle State option and click on Publish to Exchange (see Figure 2.26).

Getting started with API design 51

Figure 2.26 – Publishing your API to the Exchange dialog box

8. Once you’ve published your API, you can view your API in Exchange.

Figure 2.27 – The API successfully published to Exchange

We have successfully designed a simple API, mocked an API, and also published it to Exchange, thus

completing the API design life cycle.

Let us also discover additional ways to design your API.

Designing Your API52

Alternative ways to design your API

Apart from the traditional approach, there are other approaches to designing your API. Let us check

out the guided approach.

Designing your API with a guided approach

If you’re new to API design, then you can leverage the guided approach for a hassle-free API design.

In the guided approach, you need to choose the attributes of the API and fill in the information you

expect to be in your API. While you’re filling in the details, an API will be designed for you. You can

switch between OAS and RAML format and also edit this API in the visual editor.

In this approach, you need not know the semantics, API specification language, or worry about

the indentation.

In order to design API in a guided approach, navigate to Design Center, click Create, select New API

Specification, fill in the project name, and select the Guide me through it icon.

Figure 2.28 – API design guided approach

Alternative ways to design your API 53

You will now see the API design canvas. Select appropriate attributes and fill in the necessary

information. You will also notice that an API is being designed for you simultaneously on the right-

hand side of the screen.

Figure 2.29 – API design canvas in the guided approach

Let us now see how to design your API with Anypoint Code Builder.

Designing your API in Anypoint Code Builder

You can design and simulate your API using the Desktop or Cloud edition of MuleSoft’s newest Studio,

that is, Anypoint Code Builder (ACB).

To access the Cloud edition, navigate to Anypoint Code Builder from Anypoint Platform and launch

your IDE. Further, select the Design an API option to design your API.

Designing Your API54

Figure 2.30 – API design in Anypoint Code Builder

Similarly, you can design your API in the VS Code Desktop IDE of Anypoint Code Builder. Now, we

shall learn about some best practices and tips to standardize our API design.

Best practices and tips

We shall now learn some of the API best practices and tips. In order to get started, let’s learn about

some commonly used API design naming conventions.

API design naming convention

Although every organization may have its own set of guidelines and best practices for API design,

here are a few commonly used naming conventions while designing an API. Adhering to the naming

conventions throughout the API makes it look consistent and standardized:

• Follow standard naming conventions for all the APIs. A commonly used format is

• <project_name><API-led-connectivity-layer>-api – for example, musicbox-

sys-api.

• Folder names should be in lower camel case – for example, dataTypes, examples,

and musicboxAssets.

• Filenames should be in lower snake case for readability purposes – for example,

• post-songs-datatypes.raml and get-songs-example.raml.

Best practices and tips 55

• RAML declarations should be in lower camel case – for example,

• musicDataType and musicTraits.

• Add relevant create, retrieve, update, and delete (CRUD) operations for your endpoints – for

example, POST is equivalent to create, GET denotes retrieve, PATCH is for update, and DELETE

stands for delete in CRUD.

• Use simple and short nouns instead of verbs for your endpoints – for example,

• /songs would be more accurate than /getSongs, as we already have HTTP verbs such as

GET, POST, and PUT.

• Use plural nouns for endpoints, such as /songs rather than /song. The latter could be

correct if we wish to fetch a single object or delete a single object, but it’s advisable to use the

plural form for the endpoint.

Now that we’ve learned about the API design naming conventions, let’s understand howwe can

optimize our API.

Optimizing your API design

APIs are considered an asset of an organization. They not only add technical value but can also be used

for monetization purposes. API monetization is enjoying a boom period. Hence, a perfect API design

is a stepping stone to a successful application network. By ensuring that the API design follows the

best practices and standards, we’re creating a sustainable API network. In order to design an optimized

API, here are some tips, tricks, and best practices:

• First, and most importantly, make sure your design is consistent across the different API layers

and fragments.

• Follow resource-oriented design, which means focusing on resources and using nouns for

endpoints (e.g., /customers rather than /getCustomers).

• Divide your API into smaller fragments, thereby making it reusable and easily consumable. A

concise and lightweight API is easy to read and less bulky, and the changes are saved quickly.

• Follow the naming convention standards throughout your API design. You can refer to

MuleSoft-provided default templates and APIs in Anypoint Exchange to adhere to best practices

and standards.

• Document your API so that it becomes easy for external collaborators and consumers to utilize

it. You can use Anypoint Exchange to document your API or Anypoint API Experience Hub

to create an API portal.

• Add a display name, a description, and examples to your endpoint.

• Make sure security parameters are taken into consideration at the API level. For

Designing Your API56

• example, if you’re going to impose an authentication policy on your API, then

• include it in your API design. This will help the users or the developers consume the API.

• Mock your API service and get your request/response validated at an initial stage to avoid

iterations in the latter stages of application design.

• Be clear with API versioning and use API versioning standards. For example, you can version

the first iteration of your API as 1.0 and the subsequent ones as 1.1, 1.2, …, 2.0, and so on.

• You can also include add versions to your API endpoints – for example,

• /v1/customer for the first iteration.

• Use custom error codes for your endpoints.

We have now learned about the best practices and tips involved in designing the API; let’s make sure

to implement them in our future APIs.

Summary

In this chapter, we learned about the basics of the API life cycle and API designs and navigated through

the REST and SOAP APIs, RAML, and OAS. This chapter also taught us the fundamentals of API

design and the best practices to be followed.

As a MuleSoft developer and architect, I’d suggest you not get overwhelmed by the different aspects

of API design. It gets easier with practice. Make sure you’re following the best practices and the

industry standards. Try to get hands-on with API design, as this chapter is important from a MuleSoft

certification perspective, too.

In the next chapter, we shall learn about MuleSoft’s Anypoint Studio – an Eclipse-based IDE for

designing Mule applications.

You can now try out a practice API and answer a few quiz questions to boost your API design confidence.

Practice

Music Box is an audio streaming platform that wants to build a mobile application for high-quality

audio streaming, which will include songs and podcasts.

As per the initial requirement phase, design a REST API (system and process APIs) to achieve the

following goals:

• Retrieve a list of all songs, podcasts, artists, genres, songs, and collections based on a particular artist

• Simulate a song by changing the artist’s name

• Retrieve a paginated list of songs based on artists’ names

Questions 57

• Delete songs added on a particular date

• Add a new song to the collection

Follow the API best practices and the industry standards. Make your API composable and concise by

dividing it into smaller fragments. Try designing your own API and refer to GitHub for a solution:

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-

Second-Edition

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What are the different stages of the API life cycle?

2. What is the difference between data types, traits, and the library?

3. When should you use the query parameter and URI parameter?

4. How can you reference a file fragment in root RAML?

5. Why do we mock an API?

Answers

1. Design, simulation, feedback, and validation are the different stages of the API life cycle.

2. Data types help us define properties for a particular endpoint. Traits help you to define properties

for a method. The library consists of a mix of all fragments clubbed together.

3. If you want to filter or sort records based on some condition, then you use query parameters;

if you want to fetch a particular resource, then you use the URI parameter.

4. By using !include <filepath>.

5. To simulate the API and validate the request and response of an endpoint.

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition

3
Exploring Anypoint Studio and

Anypoint Code Builder (ACB)

In the previous chapter, we looked at how we can design an API in API Designer. We’ll now look

at Anypoint Studio and Anypoint Code Builder. Anypoint Studio is an Eclipse-based integrated

development environment (IDE) tool used to design and develop Mule applications. We can also

use this tool to test our applications.

Anypoint Studio enables users to drag and drop connectors and modules to create a Mule application.

Many versions of Anypoint Studio are available, and it is recommended to practice in the latest version.

We will see how to download and install Anypoint Studio and what the different views, perspectives,

and menu options available in Anypoint Studio are. Once familiar with the tool, we will learn how to

create a simple Hello World Mule application and test the application using the Postman application.

In addition to Anypoint Studio, we will also briefly discuss Anypoint Code Builder (ACB), a new

IDE recently launched by MuleSoft. ACB is currently available in both desktop and cloud versions.

After reading this chapter, you’ll come away with an understanding of the following topics:

• What is Anypoint Studio?

• How to download and install Anypoint Studio

• Exploring Mule Palette

• Getting familiar with various menu options and settings

• Creating and running a sample Mule application

• Exporting and importing the Mule application

• Exploring Anypoint Code builder (ACB)

Exploring Anypoint Studio and Anypoint Code Builder (ACB)60

Technical requirements

You will need the following software for this chapter:

• Anypoint Studio / Anypoint Code Builder (ACB): https://www.mulesoft.com/lp/

dl/anypoint-mule-studio

• The Postman application: https://www.postman.com/downloads

We will use this tool to test the Mule application project

• The exported JAR file of the first Mule application project, Hello World, is available at the

following GitHub location: https://github.com/PacktPublishing/MuleSoft-

for-Salesforce-Developers-Second-Edition/tree/main/Chapter3

Let’s get started by learning how to download and install Anypoint Studio.

Downloading and installing Anypoint Studio

In this section, we will learn how to download and install Anypoint Studio. The first step begins with

downloading a software file to the computer, which may take a few minutes as the file size is around

2 GB. Afterward, we will install and launch Studio. Let’s begin with the downloading.

Downloading Anypoint Studio

These steps can be followed for simple and easy downloading:

1. Go to https://mulesoft.com/studio. Select a product selection of Anypoint Studio

and Mule and then select the operating system (OS) – Windows, Linux, or macOS – as per

the computer’s OS, and fill in the other required information, such as Email, First Name, and

Last Name.

2. Now, click Download.

After clicking Download, you will receive an email with a download link. Use this link to download

the installation ZIP file. The .zip (Windows/macOS)/.tar.gz (Linux) file of the latest version of

Anypoint Studio will be downloaded to the computer.

The Anypoint Studio file is bundled with the following components:

• Mule runtime engine

• DataWeave

• MUnit

• MUnit Studio Plugin

• Eclipse

https://www.mulesoft.com/lp/dl/anypoint-mule-studio
https://www.mulesoft.com/lp/dl/anypoint-mule-studio
https://www.postman.com/downloads
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/tree/main/Chapter3
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/tree/main/Chapter3
https://mulesoft.com/studio

Downloading and installing Anypoint Studio 61

• Maven

• AdoptOpenJDK

Now that we’ve downloaded the file, let’s start the installation. The application can be simply installed

by extracting the compressed .zip/.tar.gz file.

Installing Anypoint Studio

In this section, we will see how to install Anypoint Studio on the Windows OS. A similar procedure

can be followed while installing it on other OSes, such as macOS and Linux:

1. Right-click the downloaded .zip file and click Extract All.

2. Provide the path where it needs to be extracted and click Extract. This extracts all the files into

the mentioned folder.

Tip

For the Windows OS, do not extract the ZIP file in a large path. Try to place the file directly in
C:/ or D:/. This helps avoid the path is too long error.

3. Once the extraction of the file is complete, check that all the components are in the installation

folder, as shown in Figure 3.1, to confirm that the installation was successful:

Figure 3.1 – Extracting Anypoint Studio for installation

Exploring Anypoint Studio and Anypoint Code Builder (ACB)62

We have extracted the folders to the chosen path. Next, we will see how to launch Anypoint Studio

on our computer.

Launching Anypoint Studio

Follow these steps to launch Anypoint Studio:

1. Right-click on AnypointStudio.exe and select Open. The Anypoint Studio launcher will pop up.

2. Provide the workspace location by browsing the folder path and selecting where to store Mule

projects (see Figure 3.2).

3. Check the Use this as the default and do not ask again checkbox so that the launcher doesn’t

ask for the workspace location the next time you open Anypoint Studio.

Figure 3.2 – Selecting a workspace location

4. After launching, we can change the workspace location anytime by selecting the Switch

Workspace option under the file menu.

Downloading and installing Anypoint Studio 63

Note

A workspace is a location on your computer where all the work you do through Anypoint
Studio is stored as files. It is easier to create one workspace and save it as the default so that the
Anypoint Studio remembers the workspace next time.

5. Next, click Launch to open the welcome screen of Anypoint Studio.

6. Skip the introduction by clicking Continue to Studio. With this, we have launched Anypoint

Studio successfully, as you can see in Figure 3.3:

Figure 3.3 – Anypoint Studio: Home page

Now that Anypoint Studio is all set, let us explore its various components and try building a Mule

project. We will start by getting to know Mule Palette.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)64

Introducing Mule Palette

Mule Palette has modules and connectors that we can use in the flow. We can also download new

modules or connectors from Anypoint Exchange, as shown in Figure 3.4. Core, HTTP, and Sockets

are the default modules in Palette. Based on the project requirements, we can add modules to Palette

by using the Add Modules option. While developing a project, you can drag and drop the required

components from Mule Palette onto the canvas:

Figure 3.4 – Mule Palette

An artist’s palette is a thin board that has a set of colors that enables mixing and painting on canvas.

Similarly, Mule Palette has collections of components that the developer can drag and drop onto the

canvas to design or develop the Mule project.

With this, we have learned about the components available in Mule Palette. Next, let’s move on to

learn about the Mule project structure.

Exploring the Mule project structure

Before getting into creating a Mule project, it is important that we get familiar with the Mule project

structure. Let us see the project structure of a Mule application in Package Explorer. These are the

main folders and files that are important for every Mule project:

• src/main/mule is for Mule configuration files. It is a .xml file that contains application

logic where all the flow components reside. We can store n number of Mule configuration

files to have different application logic, flows, or APIs and there is no limit enforced by Mule

Exploring the Mule project structure 65

on the number of Mule configuration files. For example, we can store our API interface, API

implementation, error handling, and global configuration in separate Mule configuration files.

This folder is for storing all your Mule XML code.

• src/main/resources is for Log4j configuration, any environment-specific properties

files, DataWeave scripts, and API-related documents, such as the API specification and sample

payload examples.

• src/main/java is for all Java programs.

• src/test/resources is for test files such as JSON, XML, and other formats that are

required for testing.

• src/test/munit is for MUnit test cases.

• mule-artifact.json contains the minMuleVersion configuration, which specifies

the minimum Mule runtime version that is required to deploy the application.

• pom.xml contains dependencies, shared libraries, repositories, and other

project-related information.

Figure 3.5 clearly shows the project structure of a Mule application in which helloworld.xml is

the Mule configuration file:

Figure 3.5 – Project structure

Exploring Anypoint Studio and Anypoint Code Builder (ACB)66

Similarly, we can see the other folders, as well as the mule-artifact.json and pom.xml files

in the project structure.

Now that we’ve learned how Mule project folders are structured to store different folders and files,

let’s explore the different views and perspectives available in Anypoint Studio.

Introducing Mule views and perspectives

The views and perspectives of any IDE can be customized based on the user’s preference. Perspective

is nothing but a collection of views. Let’s learn about different views and perspectives.

Views

Views in Anypoint Studio are the graphical representation of project metadata or properties for the

active editor window. We can easily maximize, minimize, and remove views from the active window.

The following are some of the views in Studio:

• Mule Palette: This manages modules and connectors.

• Mule Properties: This allows you to edit the properties of the module that is currently selected

on the canvas.

• Package Explorer: This displays the Mule project folder and files.

• Console: This contains errors and other information about the embedded Mule runtime.

• Problems: This shows a list of issues that occurred in the project.

• Outline: This displays the structure of a Mule flow that is opened in the canvas.

• MUnit: This is a testing framework that helps to test the Mule application:

 � MUnit Coverage: This shows how much of a Mule application has been executed

 � MUnit Errors: This displays the errors that occurred during MUnit testing

• Mule Debugger: While in debug mode, this displays the Mule event structure, which consists

of the payload (message), variables, and attributes.

• Mule Breakpoints: This shows a list of processors that are enabled with a breakpoint.

• Evaluate DataWeave Expression: While in debug mode, we can write any DataWeave expression

to evaluate the results. We will be learning about DataWeave in detail in Chapter 6.

• API Console: This shows the generated API documentation.

Building, running, and testing a Mule application 67

These are the various views that we can see in the Anypoint Studio window. Each view gives information

relevant to the particular view. On the whole, it gives a clear picture of what the user needs to see in

the active window based on their preferences.

Perspectives

As mentioned earlier, a perspective is a collection of views and editors. The default perspective of

Anypoint Studio is the Design perspective. We can create our own perspective and add any of the views.

The different perspectives already available in Studio are as follows:

• Mule Design perspective: This is the default perspective and is used while developing the

Mule project

• Mule Debug perspective: This is the perspective used while testing the Mule project

• API Design perspective: This is the perspective used while writing the API specification

The user can change the perspective based on their role or activities. For example, a developer might

choose the Design perspective, while a tester might choose the Debug perspective to test the application.

By doing so, they can work easily with the required views. Now that we have explored the basics of

Anypoint Studio, let’s try and build our own Mule application.

Building, running, and testing a Mule application

We have explored various components, views, and perspectives of Anypoint Studio. Now it is time to

put all of what we have learned together with a new project. The steps involved in every Mule project

are build, run, and test. Let’s elaborate on each step.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)68

Building the Mule application

In this section, let us learn how to create a new Mule project:

1. Click the Create a Mule Project option from Package Explorer (see Figure 3.6) to create a new

Mule application project, or go to the File menu, click New, and select Mule Project:

Figure 3.6 – Package Explorer

Building, running, and testing a Mule application 69

2. Provide the project name as HelloWorld and leave the remaining settings as they are, then

click the Finish button (see Figure 3.7):

Figure 3.7 – Project Settings

With this, we have successfully created the HelloWorld project.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)70

3. Whenever we create a new project, the HTTP, Sockets, and Core modules automatically get

added to the project. We need to add the remaining required modules to the project manually

from Mule Palette. If the required module or connector is not available in Mule Palette, we can

search for it in Exchange and then add it to the project.

Figure 3.8 – Mule application – home

In Figure 3.8, on the right, we can see Mule Palette with the default Core, HTTP, and Sockets

modules added. At present, the canvas is empty. Once we start building our Mule application,

we will be adding components from Mule Palette to the canvas.

4. Next, select HTTP in Mule Palette and then Listener.

5. Drag and drop Listener onto the canvas.

Building, running, and testing a Mule application 71

6. Select Listener inside the canvas. In the Listener properties, add the connection configuration

by clicking the Add symbol, as shown in the following figure:

Figure 3.9 – Mule properties for HTTP Listener

Exploring Anypoint Studio and Anypoint Code Builder (ACB)72

7. Leave the host and port (8081) values as the default values and click the OK button on the

connector configuration screen (see Figure 3.10):

Figure 3.10 – HTTP connector configuration

Building, running, and testing a Mule application 73

8. Once done, set the Path value as /hello, as shown in Figure 3.11:

Figure 3.11 – Listener properties configuration

9. Next, search for Logger in Mule Palette (see Figure 3.12). Drag and drop Logger onto the

canvas, in the Process section. Logger is a core component that logs messages such as error

messages, status information, requests, response payloads, and other important information.

Figure 3.12 – Searching for Logger in Mule Palette

Exploring Anypoint Studio and Anypoint Code Builder (ACB)74

10. After dropping Logger onto the canvas, set the Message value as Welcome to Hello

world application in the Logger properties (see Figure 3.13).

Figure 3.13 – Logger properties

Building, running, and testing a Mule application 75

11. Click on the Core module in Mule Palette and select the Transform Message option (see

Figure 3.14).

Figure 3.14 – Mule Palette: Core module

12. Drag and drop the Transform Message selection to the canvas after the Logger step.

13. In the output section, change the output to application/json and also change the

response as follows:

%dw 2.0

output application/json

{

"message" : "Hello World"

}

Exploring Anypoint Studio and Anypoint Code Builder (ACB)76

Transform Message converts the structure from one format to another. In this example, we

are converting the output format to JSON (see Figure 3.15).

Figure 3.15 – DataWeave code in Transform Message

Once we add the code in Transform Message, our code should look as in Figure 3.15.

Building, running, and testing a Mule application 77

14. Click File menu | Save or the Save button or press Ctrl + S to save the Mule application (see

Figure 3.16):

Figure 3.16 – Saving the Mule application

With this, we have created the Mule application successfully. The next step is to run the application,

which involves nothing more than deploying the application into Mule Runtime.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)78

Running the Mule application

In this section, we will see how to run the Mule application from Anypoint Studio:

1. Go to the canvas, right-click on the empty space, and select Run project helloworld.

Figure 3.17 – Running the Mule application

2. It starts the embedded Mule Runtime inside Studio and deploys the application.

Figure 3.18 – Console view

Building, running, and testing a Mule application 79

Once the application is deployed successfully, we will be able to see the logs showing the status

as DEPLOYED in the Console view (see Figure 3.18).

3. To terminate the project, we can right-click on Console and select the Terminate/Disconnect

All option.

4. To clear the console log messages, right-click on Console and select the Clear option.

Tip

If the deployed status is FAILED due to (java.net.BindException) or Caused by: java.net.

BindException: Address already in use, then try to use different ports, such as 8083, 8084,
or any other port available in the system that is not used by any other applications.

Now that we have deployed the application in Anypoint Studio, the next step is to test the application.

Testing the Mule application

In this section, let us see how to test the Mule application using the API/web service testing tool (the

Postman application).

Note

Postman is an application used for API/web service testing. It is an HTTP client that tests HTTP
requests (GET, POST, and other methods) and receives the responses. It is not related to Mule
components. If you don’t have a Postman application or any other web service testing tools on
your computer, then install the Postman application by referring to the link that is referenced
in the Technical requirements section of this chapter.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)80

Once the application is deployed, you can follow these steps:

1. Open the Postman application.

2. In the URL box, enter http://localhost:8081/hello, provide the method name as

GET, and then click Send (see Figure 3.19):

Figure 3.19 – Sending a request from the Postman app

We will receive a successful response with the 200 HTTP status code and the HTTP status

description as OK. Also, we will be able to see the response message in JSON format, which

we set in the Transform Message step (see Figure 3.20):

Figure 3.20 – HTTP successful response

Exporting and importing Mule files 81

3. We can also see the message from the Logger step in the console (see Figure 3.21):

Figure 3.21 – Logger message in the console

As you can see in the preceding figure, Logger has printed the required log message in the console. If

the application is deployed into CloudHub, Logger logs the message in the server log.

Good going! We are done with the very first Mule application project. In this Hello World project,

the HTTP listener receives the incoming request, then, in turn, calls the logger to log the message,

and finally, returns JSON output using the Transform Message step. Now, you should be confident

enough to try other simple Mule projects using other components from Mule Palette. As we move

on, we will next explore how Mule files can be exported and imported.

Exporting and importing Mule files

In the previous example, we developed a new Mule project in Anypoint Studio. If we need to share

the project with other developers or deploy this application into CloudHub or another deployment

model, then we have to export the project.

We can export the project using the following options:

• Exporting a Mule application as a JAR file

• Exporting a Mule application as a filesystem

Let us look into each of these in detail.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)82

Exporting a Mule application as a JAR file

Let’s try exporting the Mule application as a .jar (Java Archive) file now:

1. Select the project in Package Explorer.

2. Click on the File menu and then Export.

3. Select Anypoint Studio Project to Mule Deployable Archive under Mule and click Next.

4. Browse the file location on your computer and click Finish (see Figure 3.22):

Figure 3.22 – Exporting settings as JAR

5. It packages the Mule application as a .jar file and exports the file to a given location. A success

message pops up. Click OK.

6. We can see the exported .jar file in the location mentioned and the same .jar file can later

be used to deploy the application directly into CloudHub.

We can share this .jar file with other developers to import into their Anypoint Studio. We can also

use this .jar file to deploy the Mule application into CloudHub.

Now that we have got a clear idea of how to export a Mule application as a .jar file, let’s try exporting

it as a filesystem.

Exporting and importing Mule files 83

Exporting a Mule application as a filesystem

Let’s try exporting a Mule application as a filesystem (as a folder and files) now:

1. Select the project in Package Explorer.

2. Click on the File menu and then Export.

3. Select File System under General and then click Next.

4. Browse the folder location on your computer where the project needs to be exported and then

click Finish (see Figure 3.23):

Figure 3.23 – Export settings: Filesystem

The Mule project is exported to the location specified as a filesystem.

By importing the filesystem into Anypoint Studio, it is easy to create a Mule application in Studio.

This will be very useful when a user wants to share the Mule project with other users.

Now, let’s see how to import a Mule application from a .jar file.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)84

Importing a Mule application from a JAR file

Let’s try importing a Mule application from a .jar file in Anypoint Studio:

1. Click on the File menu and select Import.

2. Under Anypoint Studio, select Packaged mule application (.jar) and click the Next button.

3. Browse the .jar file that we want to import into Anypoint Studio. Provide the project name

and click Finish (see Figure 3.24):

Figure 3.24 – Importing a Mule project

4. As you can see in the following figure, the project is imported into Anypoint Studio:

Figure 3.25 – Imported project from Package Explorer

Exporting and importing Mule files 85

As shown in Figure 3.25, we have imported the .jar file and created our Mule project successfully.

Let’s explore another option to import the Mule project.

Importing a Mule application from the filesystem

Let’s try importing a Mule application from the filesystem (as a folder and files) now:

1. Click on the File menu and select Import.

2. Under Anypoint Studio, select Anypoint Studio project from File System and click Next.

3. Browse the Mule application project from the filesystem that we want to import into Anypoint

Studio. Provide the project name and click Finish (see Figure 3.26):

Figure 3.26 – Importing a Mule project

Note

If you don’t uncheck the Copy project into workspace checkbox, shown in the previous
screenshot, and you’re using a Git repository, your changes won’t be reflected in the original
project folder. Instead, a copy of the project will be created under Anypoint Studio’s current
workspace. If you want to continue using the original project folder from your Git repository,
then make sure you uncheck this option.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)86

Now, the project is imported into Anypoint Studio (see Figure 3.27):

Figure 3.27 – Imported project in Package Explorer

As shown in the preceding figure, we have imported the filesystem and created our Mule project successfully.

With this, we can conclude that we have learned about the concept of exporting and importing

Mule applications.

Let’s move on to learn more about Anypoint Code Builder (ACB).

Updating the theme in Anypoint Studio

Each developer prefers a different user interface. Some may prefer a dark theme, while others like

a light theme. The theme sets the mood for the developer to help them focus. For example, a dark

theme reduces strain on the eyes and makes it easier to notice the different syntaxes as they come

with different colors. The look and feel of Anypoint Studio can be updated based on user preferences.

Let’s learn how to change the theme:

1. Click on the Window menu and select Preferences.

2. Type Theme. Select Appearance under General. In the right pane, choose the desired theme

from the dropdown. In this example, let us select Studio Dark Theme. Now, select Apply and

Close (see Figure 3.28):

Installing software updates in Anypoint Studio 87

Figure 3.28 – Studio appearance

The dark theme is applied to Anypoint Studio. A restart is required for the theme change to

take full effect.

3. If we need to revert the theme to the default theme, again type Theme, then select Appearance

under General, choose Studio Light Theme, and select Apply and Close.

With this, we have learned how to customize the IDE experience by changing the theme in Anypoint Studio.

Now that we’re familiar with multiple concepts and the workings of Anypoint Studio, it is important

to note the importance of updating the software in Anypoint Studio. Let’s see how to do this in the

next section.

Installing software updates in Anypoint Studio

Software updates are mandatory for bug fixing, getting new features, and avoiding performance issues.

Let’s see how to update the software in Anypoint Studio:

1. Click on the Help menu and select Check for Updates.

2. Check the available updates and click Next (see Figure 3.29):

Exploring Anypoint Studio and Anypoint Code Builder (ACB)88

Figure 3.29 – Available Updates

3. Select the radio button for I accept the terms of the license agreement and click the Finish

button (see Figure 3.30):

Figure 3.30 – License agreement

Exploring Anypoint Code Builder (ACB) 89

4. We will be able to see the update progress at the bottom right of Studio. If any popup appears

to trust MuleSoft’s authority, then click the checkbox for the MuleSoft URL and proceed.

5. Click the Restart Now button to restart Studio to apply the changes.

Figure 3.31 – Restart Now

It is always recommended to periodically check for any software updates.

Exploring Anypoint Code Builder (ACB)

In this section, we will learn how to install the Anypoint Code Builder IDE on the desktop and explore

its usage in the cloud version. Let’s begin by installing the desktop version.

Installing Anypoint Code Builder on the desktop

Follow these steps for a simple and easy installation:

1. Go to https://www.mulesoft.com/ty/product-download-anypoint-code-

builder.

2. Install the prerequisite software, such as Visual Studio Code and Git, and create an Anypoint

account. Follow the instructions provided at the preceding link to complete the installation of

the prerequisite software.

3. After installing the prerequisites, click Install to install the Anypoint Extension Pack from the

preceding link.

4. After successful installation, the MuleSoft icon will appear in the left-side navigation of

Microsoft Visual Studio.

https://www.mulesoft.com/ty/product-download-anypoint-code-builder
https://www.mulesoft.com/ty/product-download-anypoint-code-builder

Exploring Anypoint Studio and Anypoint Code Builder (ACB)90

Figure 3.32 – Anypoint Code Builder

Now that the Anypoint Code Builder IDE is all set up on our machine, let’s explore how to design

an API using ACB.

Designing an API using Anypoint Code Builder (ACB)

Let’s learn how to create an API by following these steps:

1. In ACB, click Design an API under Quick Action to create an API specification.

2. Provide the project name as Customer API, set the project location to c:/mule, set API

Specification Language as RAML 1.0, and click Create Project.

Figure 3.33 – Anypoint Code Builder – Design an API

Exploring Anypoint Code Builder (ACB) 91

3. After creating the project, you’ll be prompted to trust the folder location. Choose Yes, I trust

the authors.

Figure 3.34 – Anypoint Code Builder – trust authors

4. Now, the RAML editor will open automatically. Here, we can add the following RAML API

specification content and click API Console. This RAML API specification code includes a

customer endpoint or resource with two methods: get and post. In the get method, we

have defined the memberID field as a mandatory field as part of the specification.

Figure 3.35 – Anypoint Code Builder – RAML editor

#%RAML 1.0

title: customer-api

/customer:

 get:

Exploring Anypoint Studio and Anypoint Code Builder (ACB)92

 queryParameters:

 memberID:

 required: true

 post:

5. Now, it will open the API Console view, displaying available HTTP methods for testing.

Figure 3.36 – Anypoint Code Builder – API Console

With this, we have successfully designed an API using Anypoint Code Builder.

Publishing an API from Anypoint Code Builder (ACB) to Exchange

Let’s discover the process of publishing an API to the Exchange by following these steps:

1. In the ACB search bar, Click Show and Run Commands, click Publish API Specification to

Exchange, select the business group, and fill in Project Name, Artifact ID, Asset version, and

API version. This will publish the API specification to the exchange.

2. Once it’s published, we will be able to see the customerAPI in the Exchange on Anypoint Platform.

Exploring Anypoint Code Builder (ACB) 93

Figure 3.37 – Anypoint Platform – Exchange

Through this process, we learned how to publish an API to Anypoint Exchange.

Now, let’s see how to develop an integration using ACB.

Develop an Integration from Anypoint Code Builder (ACB)

1. Click Develop an Integration from Quick Actions.

Figure 3.38 – ACB – Develop an Integration

Exploring Anypoint Studio and Anypoint Code Builder (ACB)94

2. Enter the Project name, keep the remaining details as default and click on Create Project.

Figure 3.39 – ACB – Create Project

3. Once done, you’ll be navigated to the landing page, where you can start building your Mule

application. You can either start building your project with AI using Einstein for ACB or begin

from scratch. Let’s go ahead and select “Start from Scratch.”

Exploring Anypoint Code Builder (ACB) 95

Figure 3.40 – ACB – Start from Scratch

4. On selecting Start from Scratch, you will be navigated to canvas, where you can design and

build your Mule application. Click on the + icon to add a new component.

Figure 3.41 – ACB – Add Component

Exploring Anypoint Studio and Anypoint Code Builder (ACB)96

5. Search and select Listener

Figure 3.42 – ACB – Add Component – Listener

6. Next, click on the Listener component to configure it. In the General section add Path as test.

Click on the + icon to configure properties of Listener.

Figure 3.43 – ACB –Connector Config

Exploring Anypoint Code Builder (ACB) 97

7. Configure Host to 0.0.0.0 and Port to 8081 and click Add.

Figure 3.44 – ACB – Listener Properties

8. Click on + sign again to add another component. Add Transform Message. Click on the

component to configure it.

9. Select the checkbox Configure Set Payload and add the below dataweave code.

%dw 2.0

output application/json

{

 "id": randomInt(100),

Exploring Anypoint Studio and Anypoint Code Builder (ACB)98

 "name": "Free Night Stay",

 "description": "One free night stay at any of our resorts",

 "pointsRequired": randomInt(1000)

}

Figure 3.45 – ACB – Transform Message

10. Now, add a Logger component to log the payload.

Figure 3.46 – ACB – Logger

Exploring Anypoint Code Builder (ACB) 99

11. Now, Let us go ahead and run the application. Select the three lines on the left hand side of the

screen and go to Run → Select Run Without Debugging

Figure 3.47 – ACB – Run Without Debugging

12. Once you see the status as deployed in the terminal, select Open in browser to trigger

the application.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)100

13. Make sure you add the endpoint /test at the end of your URL, after the hostname. Your final

URL will look like this - https://beijing-qnvey0j--8081.pdx.003.anypoint.

code-builder.platform.salesforce.com/test

Figure 3.48 – ACB – Results in Browser

14. You can also see the output in the terminal of ACB.

Figure 3.49 – Terminal Logs

15. Once you’re done testing your application, you can go ahead and deploy your application to

CloudHub. Click on the rocket icon to deploy your application to CloudHub.

Figure 3.50 – Deploy to CloudHub

We have understood now, how to develop a simple Mule application with ACB. Similarly, you can try

out several connectors, component and integrate seamlessly with Anypoint Code Builder.

https://beijing-qnvey0j--8081.pdx.003.anypoint.code-builder.platform.salesforce.com/test
https://beijing-qnvey0j--8081.pdx.003.anypoint.code-builder.platform.salesforce.com/test

Summary 101

Now, let’s see how ACB works in the cloud now that we’ve figured out how to install it, design APIs,

publish to exchange and also developed the integration using the desktop version.

Exploring Anypoint Code Builder in cloud IDE

To access ACB in the cloud, simply log in to Anypoint Platform, select the Anypoint Code Builder

option, and click Launch to open ACB in the cloud. This serves as an alternative to the desktop IDE

version of ACB. With this cloud IDE, you can design and develop APIs from anywhere in the world.

Figure 3.51 – Anypoint Platform – Anypoint Code Builder (cloud IDE)

Currently, Anypoint Code Builder (ACB) IDE is available on the desktop and in the cloud.

Summary

In this chapter, we explored how to download and install Anypoint Studio. We also had a look into

the various views and perspectives, as well as Mule Palette. We created a Hello World Mule application

using the HTTP connector, after which we tried to run it. Finally, we tested it using an external

Postman application.

Exploring Anypoint Studio and Anypoint Code Builder (ACB)102

We also learned about exporting and importing a Mule application. This is important when we need

to deploy these applications into different deployment models (CloudHub, on-premises, and so on)

and also to share them with other developers.

We also explored Anypoint Code Builder, a new IDE. Using this IDE, we designed an API specification,

published it to Exchange and also we have developed the integration from scratch. On completing

this chapter, you have an elaborate enough knowledge of the Anypoint Studio IDE to feel confident

in developing your own Mule application.

In the next chapter, we’ll explore Core module components within Anypoint Studio to understand

more about flow controls, scope, endpoints, transformers, batches, and error handling.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What’s the default port for an HTTP listener in a Mule application project?

2. Can any other port be used as the HTTP listener port other than the default port?

3. Which file has the dependency details of the Mule application?

4. In which view can we see the Mule runtime startup logs and other logs logged by the Logger step?

5. Why do we use the Postman application?

6. Where can we find the modules and connectors in Anypoint Studio?

7. List some of the perspectives.

Answers

1. 8081.

2. Yes. We can use other ports that are not used by any other application in the machine while

running an application in Anypoint Studio.

3. pom.xml.

4. Console view.

5. We can use the Postman application to test web services.

6. Mule Palette.

7. Mule Design perspective, Mule Debug perspective, and API Design perspective.

4
Introduction to

Core Components

In the previous chapter, we learned about Anypoint Studio, its capabilities, and how to build a Mule

application using it. To utilize Anypoint Studio efficiently and get the most out of it, we need to have

a basic understanding of the core components in MuleSoft.

In this chapter, we will learn about various core components, scopes, and routing strategies. To simplify

integration and leverage the capabilities of Anypoint Studio, it’s essential to study the core components

used. We will also learn about various error-handling strategies, which is also an important topic from

the MCD Certification perspective.

We will cover the following topics in this chapter:

• The flow and structure of a Mule event

• Understanding various flows, flow controls, transformers, routers, and scopes in MuleSoft

• Batch processing

• Error handling

Technical requirements

We need to install the following for this chapter:

• - Anypoint Studio(version 7.x)

• - Anypoint Code Builder

Refer to Chapter 3 for installation guidance.

Introduction to Core Components104

Getting familiar with a Mule flow

Previously, we’ve built a simple Mule application consisting of the following:

• An HTTP Listener as an event source

• A Transform Message component and a Logger as an event processor

Here, the event source and event processor are the key elements of a Mule flow.

The Mule flow is responsible for the sequential execution of logical operations to achieve the desired

outcomes, with the help of several Mule components and connectors.

You can consider it similar to a Salesforce flow.

A Mule flow is divided into two parts (see Figure 4.1):

• Event source:

 � It consists of an inbound endpoint that listens to the incoming request from the client or an

event-based trigger and further forwards the request to event processors. It also receives a

response in the end, which is returned to the client.

 � Some of the commonly used message sources are HTTP, JMS, FTP, and Poller/Scheduler,

based on a new event (for example, using Salesforce Connector on New Object).

• Event processors:

 � They’re mainly Mule-based connectors responsible for performing a logical transformation on

the data or metadata received as a part of the incoming requests or the previous transformer,

enhancing payload, connecting to end systems, and more.

 � DataWeave is mainly responsible for performing complex data transformations in Mule 4.

We shall learn more about it in Chapter 6.

 � Event processors can be published by MuleSoft or third-party organizations. They need not

be Mule-specific and can also be built into different services and languages such as Enterprise

Java Beans (EJB), Spring beans, Plain Old Java Object (POJO), and Python.

Figure 4.1 shows the typical structure of a Mule flow:

Getting familiar with a Mule flow 105

Figure 4.1: A Mule flow

Here is an example of how a typical Mule Flow will look in Anypoint Code Builder (see Figure 4.2).

Figure 4.2: Example of a flow in Anypoint Code Builder

Introduction to Core Components106

Here is an example of how a flow will look in Anypoint Studio (see Figure 4.3).

Figure 4.3: Example of a flow in Anypoint Studio

To summarize, a Mule flow is based on event-driven architecture. Whenever an event is triggered at

the Mule event source, it forwards the request to various event processors, performs tasks, and returns

the response or acknowledgment to the event source.

We shall now learn about different types of Mule flows.

Exploring the types of Mule flow

You can use two types of Mule flow as per your requirements. Let us understand the types of flows

used in Mule:

• Main flow (flow):

 � It consists of source and processor sections. We can trigger the flow using sources such as

HTTP, JMS, FTP, and a Scheduler.

 � Each flow can have its own error-handling strategy.

Getting familiar with a Mule flow 107

 � By default, the flow is executed when the source is triggered. If you want the flow to be

stopped initially or triggered manually, you can disable the flow on start and later trigger

the flow manually from Runtime Manager.

• Subflow:

 � A subflow doesn’t have a source component and hence cannot be triggered by an event. It

is referenced by the parent flow using a flow reference connector.

 � They inherit the exception-handling strategy from the parent flow and do not possess their

own exception scope.

 � A subflow replaces the content main flow.

Figure 4.4 shows us the structure of a flow and subflow:

Figure 4.4: The structure of a flow and subflow

Introduction to Core Components108

In Figure 4.5, we can see the subflowB subflow is referenced by the flowA parent flow. We have

also referenced a flowC main flow from the flowA parent flow.

Figure 4.5: The relation between a flow and subflow

Similarly, we can have a deeper nesting of flows and subflows to optimize the operations. However, it

is always advisable to reference a subflow instead of a flow for better performance.

Getting familiar with a Mule flow 109

The execution sequence here would be the following:

FlowA -> Listener -> FlowA Logger -> Calling subflowB -> SubflowB

Logger -> Calling flowC -> FlowC Logger

If we are dealing with concurrent or multi-threading execution as with batch processing, we should

avoid doing so inside a subflow, as this may lead to the creation of multiple events and thereby give

incorrect results.

Now that we have seen that the Mule event is an atomic part of the Mule flow, let’s understand the

structure of the Mule event.

Understanding the Mule event structure

The Mule event structure is responsible for carrying all the information pertaining to a particular

event. It is immutable, which means that whenever there is a change to an instance of a Mule event,

a new instance is created. You can access all the properties of a Mule event and hence, it’s important

to understand its structure.

A Mule event is mainly divided into a Mule message and variables (see Figure 4.6):

Figure 4.6: A Mule event

Introduction to Core Components110

A Mule message

The message structure in Mule 4 has undergone severe changes compared to Mule 3.

Let us now review the simplified Mule 4 message structure.

The Mule 4 message structure

Figure 4.6 shows us that the Mule 4 message structure primarily consists of attributes and the payload:

• Attributes:

 � Inbound properties from the Mule 3 message structure are now attributes.

 � Attributes consist of metadata and information related to a particular Mule event such as

headers, status codes, error details, and request-response information.

 � You can access an attribute using the attributes keyword. For example, to access a

method in your attribute, use #[attributes.method].

• Payload:

 � The payload consists of the data received as a part of incoming requests or the data set by

the previous processor.

 � The payload can be a file (text or CSV, for example) or data supporting several formats (JSON

or XML, for example) of varying sizes.

 � You can access the entire payload or a part of the payload using the payload keyword. For

example, use #[payload] to access the entire payload.

Now, we understand the Mule message structure and the changes undergone in Mule 4 as far as the

message structure goes. We’ve also learned about its core components: the attributes and the payload.

Now, let’s learn about the next component of a Mule event, which is the variables.

Variables

• Variables are used to store a value. You can define a variable consisting of the key as the variable

name and the value as the value of the variable.

• Variables can be created using the Set Variable component, Transform Message connector,

or by setting the target variable in any connector.

• You can access a variable using the vars keyword. For example, in order to access a particular

variable, you can use #[vars.<variable_name>], where variable_name denotes

the name of the variable.

Getting familiar with a Mule flow 111

Here are a few examples of how to store variables:

 � Example 1: Set payload as variable: variable name: example; value: #[payload]

 � Example 2: Set message as variable: variable name: example; value: #[message]

 � Example 3: Extract data from payload and set as variable: variable name: example;

value: #[payload.firstname]

• Besides storing static values, a variable can also be used to write transformation logic using

the DataWeave scripts.

The following screenshot (see Figure 4.7) of Anypoint Studio while debugging a Mule application

depicts the information carried by a Mule event. You can retrieve all the components of the Mule

event. In order to get better, more hands-on experience, try debugging a Mule component and study

the Mule event structure.

Figure 4.7: A Mule event while debugging a Mule application

In this section, we’ve learned about the Mule flow, the types of Mule flow, and the Mule event structure.

Now that we’ve understood the basics of a Mule flow, in the next section, we will learn about the Core

components and their applications in MuleSoft.

Introduction to Core Components112

Core components

The Core components constitute a large section of the Mule palette. They are responsible for the

logical transformation, routing, and processing of Mule events. You can find Core components by

default in the palette section of Anypoint Studio, which means that you don’t have to download them

explicitly. In order to use these components, simply drag and drop the components from the Mule

palette to the Canvas.

Figure 4.8 depicts the Core components in Anypoint Studio. We will learn more about them in

this section:

Figure 4.8: The Mule palette in Anypoint Studio

We shall now dive deeper into the different Core components, starting with the Batch scope.

Batch 113

Batch

The prime functionality of the Batch scope is to process and synchronize a large number of records

with ease, which makes it one of the most popular and widely used components.

Mule’s batch-processing strategy divides a large number of records into individual records and

processes them asynchronously. By default, Mule’s Batch scope processes 100 records per batch, which

utilizes 16 threads – however, this is configurable.

Features of the Batch scope

A few prime features of the batch-processing strategy are listed here:

• The capability to process large records and files with less processing time

• The parallel processing of records helps us achieve near-real-time transformation

• It has its own error-handling section

• It helps us to reprocess the failed records and hence, achieve the maximum throughput

Now, we shall learn about the batch processing stages in the next section.

The batch processing stages

The batch processing strategy is executed in three stages, namely the following:

1. Load and dispatch: This is an initial and implicit stage in batch processing. It is responsible

for creating batch job instances, converting a payload into a collection of records, and splitting

the collection into individual records for processing.

2. Process: This is a mandatory phase in batch processing wherein all records are processed

asynchronously based on the number of threads and the batch size.

3. On complete: This is the last phase of batch processing. It is also a mandatory or default phase.

It summarizes the execution of batch processing and makes reports available for statistics

See Figure 4.9 to understand the structure of the Batch scope in Mule. The Batch scope comprises

three components in the Mule palette. Let us look into each of these in detail.

A batch step

This is the smallest unit of the Batch scope and is a part of a batch job. It is divided into two sections,

namely the processors and the aggregators. Processors are responsible for processing the records

or carrying out the logical transformation. Once the records in a particular batch step are processed,

their result is aggregated in the aggregator section (see Figure 4.9).

Introduction to Core Components114

Figure 4.9: Illustration of Batch processing flow

We can have multiple batch steps within the Batch scope.

You can configure the acceptance policy of processed records by setting Accept Policy to the following:

• NO_FAILURES: The record that has been executed successfully in the previous steps will be

processed. This is also considered the default acceptance policy.

• ALL: All the records will be processed.

• ONLY_FAILURES: The records that have failed in the previous steps will be processed.

We can see the layout of the Batch scope and batch step in Figure 4.10:

Figure 4.10: A batch step in Anypoint Studio

Now, let’s talk about the batch aggregator.

Batch 115

The batch aggregator

You can aggregate the records processed by the Batch scope using the batch aggregator. You can define

the number of records to be added to form a collection and implement the task defined in the Batch

Aggregator scope:

Figure 4.11: The Batch Aggregator scope in Anypoint Studio

In Figure 4.11, you can see that we’ve set the batch aggregator size to 20. This means that the aggregator

will form a collection of records and update the Salesforce object at once. Now, let’s talk about the

batch job.

The batch job

This is responsible for creating a batch instance for every record that runs through the processors. It

consists of the Batch scope and batch aggregator.

In order to configure it, you can set the following:

• Max failed records: You can set a threshold to allow the maximum permissible number of

failed records. It can have three values:

 � 0: The default value is zero. It states that the execution of records is stopped whenever a

record fails. This is the default value for Max Failed Records.

 � -1: A negative one denotes that the execution will continue even if there are infinite failures.

 � integer: A positive integer denotes the threshold value of the maximum number of

permissible failed records. For example, setting Max Failed Records to 10 denotes that only

10 failed records will be allowed, and post 10 records, the execution terminates.

Introduction to Core Components116

• Scheduling strategy: We can define our scheduling strategy for the batch process as one of

the following:

 � ORDERED_SEQUENTIAL: This is the default strategy. The instances are executed sequentially

based on their timestamps. We follow the First In First Out (FIFO) algorithm.

 � ROUND_ROBIN: In this strategy, the instances are executed using the round-robin algorithm.

• Job instance ID: This is a unique ID (UUID) that gives us information about a batch job. You

can access this ID using the batchJobInstanceId variable. It’s helpful while debugging

and logging the batch job execution.

• Batch block size: This denotes the number of records to be processed in a block by a single

thread. By default, the block size is 100.

• Max concurrency: This defines the concurrent execution we want in our batch processing, as

in, the amount of parallel execution. The default (and maximum) value is 16.

• Target: You can define an explicit variable to store the result of batch execution.

Figure 4.12 shows the configuration of the batch job:

Figure 4.12: A batch job in Anypoint Studio

Components 117

A few examples of batch processing include the following:

• Synchronizing data from Salesforce or any other end system

• Processing or reading records from a large file or end system

However, it is not ideal to use the batch scope if the number of records is small, as it involves a

large overhead.

We have covered all the important aspects of batch processing. Let’s move ahead with the Components

scope in Mule.

Components

Components consist of scopes to enhance your data or metadata of your Mule event. Let us learn

about a few components used in Mule, starting with Custom Business Event.

Custom Business Event

Custom Business Event is used to add metadata and key performance indicators (KPIs) to your flow.

To configure the component, set Event Name and Expression / Value to evaluate the event (see

Figure 4.13):

Figure 4.13: Custom Business Event in Anypoint Studio

Introduction to Core Components118

Figure 4.13 shows us the configuration of Custom Business Event.

In order to enable insights into the metadata (see Figure 4.14), do the following:

1. Go to Runtime Manager.

2. Choose your environment.

3. Select the application deployed, Insights, select the radio button, Metadata, and select Insight

on the left-hand tab.

4. Configure the flow name to view the metrics.

Figure 4.14: The configuration of Insights in Anypoint Platform

We can now configure metadata inside the Insight section, as shown in Figure 4.14.

Let’s move on to the next component, which is Dynamic Evaluate.

Dynamic Evaluate

Dynamic Evaluate is helpful when you want to evaluate a DataWeave file (a .dwl file) dynamically

while running a Mule application.

In Figure 4.15, we can see that we’ve configured a simple DataWeave expression, #[payload.

dataweaveFile], which helps us evaluate a DataWeave file dynamically at runtime:

Components 119

Figure 4.15: The Dynamic Evaluate component in Anypoint Studio

Figure 4.15 shows us the configuration of the Dynamic Evaluate component.

The next component is Flow Reference, which we covered in the Exploring the types of Mule flow

section (see Figure 4.5). So, let’s jump to Idempotent Message Validator.

Introduction to Core Components120

Idempotent Message Validator

Idempotent Message Validator helps you to validate that the flow processes only use unique messages.

It raises an error, DUPLICATE_MESSAGE, if a duplicate message is spotted.

In order to configure it, you need to provide the Id and Value expressions to fetch the unique

identifiers. By default, the Id expression is set to #[correlationId] (see Figure 4.16):

Figure 4.16: Idempotent Message Validator in Anypoint Studio

Figure 4.16 shows how you can configure Idempotent Message Validator.

This component will prevent you from processing duplicate messages/records and it’ll help you to

optimize the flow. The next component is Invalidate Cache.

Components 121

Invalidate Cache

Invalidate Cache helps you to clear the cache entries by resetting the cache. In order to configure it,

you need to fill in the Caching strategy field (see Figure 4.17):

Figure 4.17: The Invalidate Cache component in Anypoint Studio

Figure 4.17 shows the configuration of the Invalidate Cache component. After Invalidate Cache, let’s

take a look at a similar component named Invalidate Key.

Introduction to Core Components122

Invalidate Key

Invalidate Key helps you clear the cached key referenced in your caching strategy. In order to configure

this, select Caching strategy and the key that you wish to invalidate (see Figure 4.18):

Figure 4.18: The Invalidate Key component in Anypoint Studio

Figure 4.18 shows the configuration of the Invalidate Key component. Let’s move on to one of the

most widely used components, Logger.

Components 123

Logger

The Logger component helps you log important messages and errors, as well as the status of an

application. It’s helpful when debugging and monitoring your application.

You can simply drag and drop the Logger component from the Mule palette into any flow or subflow,

as shown in the following figure. To configure Logger, you need to fill in Message, which could be

with a simple String or a DataWeave script. Make sure you do not log any sensitive information,

as it’ll be retained.

You can view the application logs at MULE_HOME/logs/<app-name>.log. You can also configure

the path and customize the logging tools (Splunk or ELF, for example) explicitly in log4j.xml (see

Figure 4.19).

Figure 4.19: Mule application logs

Introduction to Core Components124

As you can see in the following figure, INFO (default) is the default Level input – the other

levels are DEBUG, ERROR, TRACE, and WARN. Setting log levels will help you to filter out certain

logs while debugging.

You can also club logs into a different category. In order to categorize logs, you can set Category to

String. Figure 4.20 shows the configuration of the Logger component:

Figure 4.20: The Logger component in Anypoint Studio

The next component in our list is Parse Template.

Parse Template

This component helps you to process an embedded Mule expression or an external file.

To configure it, you need to provide content or an external file (see Figure 4.21). As you can see, we’re

getting the user information from Salesforce and later passing it through an HTML template:

Components 125

Figure 4.21: The Parse Template component in Anypoint Studio

Figure 4.21 shows the configuration of the Parse Template component. Let’s go ahead with our next

component, which is Set Transaction Id.

Introduction to Core Components126

Set Transaction Id

This helps you set a Transaction ID value, which helps you keep track of a record when logging,

monitoring, or analyzing data.

You can configure it by adding Set Transaction Id, which could be a string, integer, or DataWeave

expression, as in the following, which helps you generate a universally unique identifier:

 %dw 2.0

output application/json

uuid()

Figure 4.22: The Set Transaction Id component in Anypoint Studio

Endpoints 127

Figure 4.22 helps us configure the Set Transaction Id component. Let’s move on to one of the most

frequently used and powerful components, Transform Message.

Transform Message

Transform Message helps you with the conversion of a data format and with the logical transformation

of data. Transform Message can perform complex data transformations. It uses the DataWeave

expression language in order to perform the transformation.

We shall learn more in depth about Transform Message and DataWeave in Chapter 6.

Now that we have studied the various components, let’s learn more about the Endpoints scope in

the Mule palette.

Endpoints

Endpoints help you to trigger a Mule event to start the execution of a Mule flow. They are present in

the message source part of the Mule flow.

Let us learn more about one of the endpoints in the Mule palette, Scheduler.

A Scheduler component

A Scheduler component is one of the components that can act as a trigger to start a Mule event.

You can use a Scheduler component when you want to poll or synchronize data from Salesforce or

any other end system, poll change data capture events (CDC events), or enable watermarking.

You can schedule an event based on two scheduling strategies:

• Fixed frequency: You can set a fixed frequency, defining the regular interval at which you want

your Mule event to be triggered.

In Figure 4.23, we’ve configured the frequency to every 1000 milliseconds. We have other unit

options, such as minutes, seconds, and so on, under Time unit:

Introduction to Core Components128

Figure 4.23: A Fixed Frequency scheduler in Anypoint Studio

Figure 4.23 shows the configuration of the Fixed Frequency scheduler. The next component

is the Cron scheduler.

• Cron: You can use a cron expression to schedule an event. You can generate it with the free

cron expression tools available online.

As we can see in Figure 4.24, we’ve configured a cron expression to trigger a Mule event every

five minutes and as per the Europe/London time zone. Similarly, we can set Cron schedulers

to be triggered weekly, monthly, or at any time fixed interval, and within any time zone. The

default time zone is UTC:

Endpoints 129

Figure 4.24: A Cron scheduler in Anypoint Studio

Figure 4.24 shows us the configuration of the Cron scheduler with the help of a CRON expression.

You can manage these schedulers from Runtime Manager. Basically, you can run, enable, and

disable the schedulers. This will prevent us from re-deploying the Mule application and making

code changes (see Figure 4.25).

Introduction to Core Components130

Figure 4.25: Schedulers in Runtime Manager

With this, we have learned about the different endpoints in the Mule palette. Let us now study the

Error Handling scope and strategies used in Mule.

Error handling

Error-handling components form an important part of Mule’s exception-handling strategy. Whenever

an error occurs, or an exception is raised, the flow’s execution control is moved to the Error Handling

scope, and the error-handling strategy (On Error Continue or On Error Propagate is executed) is

implemented (see Figure 4.26):

Error handling 131

Figure 4.26: Mule’s error-handling mechanism

Figure 4.26 shows us Mule’s error-handling mechanism. Let us now learn about different Error

Handling scopes, starting with On Error Continue. Apart from On Error Continue, there are On

Error Propagate, Raise Error, and Error Handler.

On Error Continue

If an error occurs and the On Error Continue scope is defined in the Error Handling section, then the

flow’s normal execution is stopped and the processors inside the On Error Continue scope are executed.

A success response is returned in the case of On Error Continue.

As seen in Figure 4.27, if an error occurs at Processor 2, then flow control is moved to the On Error

Continue scope, and Processor 4 is executed. A success message is returned to the source.

The order of execution is as follows: Processor 1|Processor 2|an error occurs|Processor

4.

Introduction to Core Components132

You can also select the error type from the drop-down list in the Type section. ANY includes all

error types:

Figure 4.27: The On Error Continue scope in Anypoint Studio

Figure 4.27 helps us with the configuration of the On Error Continue scope.

On Error Propagate

If an error occurs and the On Error Propagate scope is defined in the Error Handling section, then

the flow’s normal execution is stopped and the processors inside the On Error Propagate scope

are executed.

An error response is returned in the case of On Error Propagate.

In Figure 4.28, if an error occurs at Processor 2, then the flow control is moved to the On Error

Propagate scope, and Processor 4 is executed. A success message is returned to the source.

Error handling 133

The order of execution is as follows: Processor 1|Processor 2|an error occurs|Processor 4.

You can also select the error type from the drop-down list in the Type section. ANY includes all

error types:

Figure 4.28: The On Error Propagate scope in Anypoint Studio

Figure 4.28 shows us the configuration of the On Error Propagate scope. The next Error Handling

scope is Raise Error.

Raise Error

The Raise Error component helps you throw an error deliberately. You can compare it to the throw

keyword in common programming languages such as C++ or Java.

In order to configure Raise Error, we can select the error type in the Type section, but it’s optional.

Introduction to Core Components134

In Figure 4.29, we can see that an error is raised when the #[!isEmpty(payload)] condition

is not met:

Figure 4.29: Raise Error in Anypoint Studio

Figure 4.29 shows the configuration of the Raise Error scope.

We can handle the raised error using any error-handling strategy, such as On Error Continue or On

Error Propagate, in the Error Handling section of the flow.

The next Error Handling scope is Error Handler.

Error handling 135

Error Handler

Whenever an error is raised or an exception occurs, the Mule error event is forwarded to the Mule

Error Handler scope. Error Handler can contain multiple error handlers such as On Error Continue

and On Error Propagate. It matches the raised exception to behave as per the error-handling

strategy mentioned.

By default, it’s an empty scope. We can add one of the error-handling strategies (On Error Continue

or On Error Propagate), as shown in Figure 4.30:

Figure 4.30: A global error handler in Anypoint Studio

You can have a dedicated file for managing all the errors in one place, usually named global-

error-handler.xml.

Introduction to Core Components136

To create a global file for error handling, in the Global Elements section of global-error-

handler.xml, go to Create | Global Configuration | Global Element Properties, set Default Error

Handler as <name of your global error handler file>, and hit OK (see Figure 4.31):

Figure 4.31: A global error handler file in Anypoint Studio

Figure 4.31 shows us how to create a global file for error handling.

We have now studied the different Error Handling scopes and the error-handling mechanism, which

forms an important part of the exception-handling strategy. Now, let’s move ahead with the Flow

Control mechanism.

Flow control

Flow control helps you to control the order of execution of a flow or subflow by routing the message

to the same or different processors. Let us learn about the flow control components used in Mule. We

will be exploring the following components in this section:

• Choice

• First Successful

• Round Robin

• Scatter-Gather

Flow control 137

Let’s get started with the first one, Choice.

Choice

The Choice router helps you select the route based on the condition satisfied. It is similar to the

if-else block or the switch block in common programming languages.

To configure a Choice router, just drag the component from the Mule palette. By default, it consists

of two routes, namely the one that satisfies the criteria and the default route to take if the condition

is not met. You can drag and drop any other processor from the Mule palette to build upon the route

(see Figure 4.32):

Figure 4.32: A Choice router in Anypoint Studio

Introduction to Core Components138

Figure 4.32 shows us the configuration of the Choice router.

First Successful

The First Successful router iterates through all the routes in sequence until one of the routes executes

successfully. If none of the routes execute successfully, it throws an error.

To configure it, you can set the initial state to started or stopped. You can also set the maximum

concurrency to the number of processes to be executed concurrently. Both values are optional.

In Figure 4.33, we can see that there are three routes. Here, the first route throws an error – hence, the

second route is executed. The second route is the first successful route – hence, the flow terminates

here, and the third route is not executed:

Figure 4.33: The First Successful route in Anypoint Studio

Flow control 139

Figure 4.33 shows us the configuration of First Successful.

Round Robin

The Round Robin router helps you to execute each route at a time, in a circular manner, every time

the flow is executed. It keeps track of previously executed flows and executes the next route. If the

currently executed route is the last one, it traverses back to the first route in the next iteration.

In Figure 4.34, we can see that every time the Mule flow is triggered. The order of execution will be

the following:

Processor 1|Processor 2|Processor 3|Processor 1

Figure 4.34: The Round Robin router in Anypoint Studio

Figure 4.34 helps us to understand the configuration of the Round Robin router. The next router

is Scatter-Gather.

Introduction to Core Components140

Scatter-Gather

The Scatter-Gather router routes the Mule event through parallel routes simultaneously. The parallel

execution of the Mule event speeds up the processing.

All three transformers will execute in parallel whenever the Mule event is triggered (see Figure 4.35).

Updating multiple Salesforce objects or end systems simultaneously is one of the applications of a

Scatter-Gather router. To configure it, you can set the Initial State and Max Concurrency values,

but that is optional:

Figure 4.35: The Scatter-Gather router in Anypoint Studio

Figure 4.35 shows us the configuration of the Scatter-Gather router.

We’ve now learned about several Flow Control scopes, which will help us in choosing the right flow

control scope or router when building our integrations.

We shall now study several other Scopes options in the Mule palette and their applications.

Scopes 141

Scopes

Scopes usually represent a block of code that executes several Mule processors, as per the characteristics

of the scope. We shall now learn about the various scopes that are a part of the Core components in Mule.

Async

The Async scope helps you add an asynchronous block of code into your flow.

If the processors in the main flow are taking a long time to execute and there is no dependency on

the response from those processes, we can club them together in the Async scope.

You can configure the scope by simply setting the Max concurrency value as equal to the number of

messages that you wish to be executed concurrently (see Figure 4.36):

Figure 4.36: The Async scope in Anypoint Studio

Figure 4.36 shows us the configuration of the Async scope. The next scope is Cache.

Introduction to Core Components142

Cache

The Cache scope helps you to store frequently recurring data. It helps the processing time of similar

events by reusing the cached event.

You can select a default caching strategy or a customized one (see Figure 4.37):

Figure 4.37: The Cache scope in Anypoint Studio

Figure 4.37 helps us to understand the configuration of the Cache scope. The next scope in our list,

Flow, is another of the most frequently used scopes.

Flow

Flow helps you carry out the sequential execution of Mule processors. You can trigger a flow with the

help of a Message source or invoke it using a Flow Reference component (see Figure 4.5).

Scopes 143

For Each

The For Each scope helps you to iterate over an object. It is similar to the for loop used in basic

programming languages.

To configure the For Each scope, you need to specify a collection over which the loop will iterate, the

name of the counter variable, and the batch size to group the messages (see Figure 4.38):

Figure 4.38: The For Each scope in Anypoint Studio

Figure 4.38 shows us the configuration of the For Each scope. The next scope in our list is the Parallel

For Each scope.

Parallel For Each

Parallel For Each splits the message into smaller batches, processes them concurrently, and aggregates

them later to give a consolidated result.

Introduction to Core Components144

As we can see in Figure 4.39, the configuration of Parallel For Each is similar to that of each scope:

Figure 4.39: The Parallel for Each scope in Anypoint Studio

Figure 4.39 helps us with the configuration of the Parallel For Each scope. Let’s learn about the next

scope in our palette, which is Sub Flow.

Scopes 145

Let us now understand when to use For Each, Parallel For Each, and Batch Job (see Table 4.1)

For Each Parallel For Each Batch Job

Processing Sequential

and Synchronous

Parallel

and Synchronous

Asynchronous

Data Set Small Medium Large

Dependency on

previous records

Yes, process records

only if previous

record is successful

No, will process

records irrespective

of previous records

No, will process

records irrespective of

previous records

Use Case Use in flow or in

batch component

When aggregated

output is needed

When you want to

reprocess failed record,

complex transactions and

large volume of data sets

Table 4.1: Comparison between For Each, Parallel For Each, and Batch Processing

Sub Flow

Sub Flow helps you to execute the sequential execution of Mule processors. It does not consist of a

Message source. It is invoked by a Mule flow (see Figure 4.4).

Try

The Try scope enables you to handle an error that may result while executing a processor inside a

try block. The Try scope supports transactions. It is similar to the Try-Catch block in the basic

programming language.

It is useful when we want a customized error-handling strategy for a particular component.

Introduction to Core Components146

You can configure Transactional action and Transactional type. In Figure 4.40, we’re going ahead

with the default options:

Figure 4.40: The Try scope in Anypoint Studio

Figure 4.40 shows the configuration of the Try scope. Let’s move ahead with our next scope, which

is Until Successful.

Until Successful

As the name suggests, the Until Successful scope lets you retry a processor until it succeeds or the

maximum number of retries is exhausted.

Transformers 147

To configure the Until Successful scope, you need to define the maximum number of retries and

milliseconds between two consecutive retries. You need to ensure that you’re setting valid exit conditions,

or else the flow could run into an infinite loop (see Figure 4.41):

Figure 4.41: The Until Successful router in Anypoint Studio

Figure 4.41 shows us the configuration of the Until Successful scope.

We have now studied the selection of scopes available in Mule, which are helpful from a routing perspective.

Let’s move ahead with learning more about Transformers.

Transformers

Transformers are the processors mainly responsible for enhancing or transforming the Mule event.

They’re responsible for carrying out all the logical transformations. Let us learn about a few transformers.

Introduction to Core Components148

Set Variable

You can configure a new variable in a Mule event with the help of the Set Variable component. To

configure the variable, you need to assign a name and value to the variable (see Figure 4.42):

Figure 4.42: The Set Variable component in Anypoint Studio

Figure 4.42 shows us the configuration of the Set Variable component. The next component is

Remove Variable.

Remove Variable

This component helps you to remove an existing or default Mule variable from the Mule event.

To configure the Remove Variable component, you need to enter the name of the variable that needs

to be removed from the Mule event (see Figure 4.43):

Transformers 149

Figure 4.43: The Remove Variable component in Anypoint Studio

Figure 4.43 shows us the configuration of the Remove Variable component. The next component is

Set Payload.

Set Payload

It helps to override the existing payload and sets a new payload. To configure the Set Payload

component, just drag and drop the connector from the Mule palette and enter the value of the payload.

The value could be a String or DataWeave expression. You can also set the MIME type and

encoding details in the MIME Type section, but that’s optional (see Figure 4.44):

Introduction to Core Components150

Figure 4.44: The Set Payload component in Anypoint Studio

Figure 4.44 shows us the configuration of the Set Payload component.

Note

In this chapter, we’ve mostly used Transform Message as the processor, but you can use any
processor any number of times, as per the use case.

We have learned about the transformers in Mule – now, let’s solve a few assignment problems to get

hands-on experience with the Core components.

Summary

In this chapter, we learned about all the Core components of Mule’s Anypoint Studio. We also covered

the architecture of the Mule event.

Assignments 151

The Core components tell us about various routing strategies, scopes, flow control strategies, event-

processing mechanisms, error handling, and so on. To become a proficient MuleSoft developer or

Architect, it’s essential that we know about these Core components.

Choosing the right component per use case helps you achieve the maximum throughput and optimum

results. Learning about these Core components is also important from a MuleSoft certification perspective.

In the next chapter, we’ll learn about the capabilities of Anypoint Platform, the configuration of the

platform, and the different entities in Anypoint Platform. We will also get a better understanding of

the entire iPaaS tool in the next chapter.

Assignments

1. Create a simple Mule application that logs a UUID every 10 min. Add On Error Continue as

the error-handling mechanism.

2. Create a batch job that processes a file containing 10,000 records (use the file on GitHub). Sort

the records as per account ID and log payload.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What is the difference between For Each and Parallel For Each?

2. What is the difference between the Async scope and a subflow?

3. When should you use batch processing and when should you use Parallel For Each?

4. What is the difference between a Choice router and Scatter-Gather?

Answers

1. For Each splits the collection into records and processes them sequentially in iteration, whereas

Parallel For Each processes them simultaneously.

2. Async flows run parallel with the main flow without obstructing the other operations of the

main, whereas a subflow is a part of the main flow that continues the execution of the main flow.

3. When you have a large number of records to be processed, you should go ahead with batch

processing – otherwise, you can continue using Parallel For Each, as it has less overhead.

4. The Choice router evaluates the condition and routes the request to a particular route that

satisfies this condition, whereas Scatter-Gather processes multiple routes in parallel.

5
All About

Anypoint Platform

The terms Anypoint Studio and Anypoint Platform may sound similar and thus confusing. However,

they’re completely different and serve different purposes. Anypoint Studio is an integrated development

environment (IDE) that we use to build, test, and run Mule applications. We explored it thoroughly

in Chapter 3, and Chapter 4. Anypoint Platform, on the other hand, is a user interface (UI)-based

control plane that manages a variety of components, such as Design Center, Exchange, Runtime

Manager, and others. We’ll learn about this in more depth in this chapter.

After reading this chapter, you’ll know more about the following topics:

• Different components in the Anypoint Platform

• What an API specification, an API fragment, and AsyncAPI are in API Designer

• How to publish assets from an Exchange portal to a public portal

• How to deploy a Mule application from Runtime Manager

• How to create Runtime Manager alerts

• API Manager, Anypoint Monitoring, and Visualizer

• Access Management (organization and business groups)

Technical requirements

In this chapter, we’ll be using the Anypoint Platform, which we already configured in Chapter 2.

Here’s the login link: https://anypoint.mulesoft.com/login/.

https://anypoint.mulesoft.com/login/

All About Anypoint Platform154

The .jar file that will used for deployment later in this chapter, in the Deploying to CloudHub section,

is available at the following GitHub path, under the Chapter3 folder: https://github.com/

PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition.

Introducing Anypoint Platform

Anypoint Platform is a single platform that facilitates designing an API, storing assets, deploying any

application to the cloud/on-premises, getting real-time visibility, and troubleshooting issues. It helps

organizations connect their applications, data, and devices and consists of the following components:

• Design Center

• Exchange

• Runtime Manager (CloudHub 2.0)

• API Manager

• Anypoint Monitoring

• Anypoint Visualizer

• Access Management (organization and business groups)

• Data Group

• Data Gateway

• MQ

• Secrets Manager

In the upcoming sections, we’ll explore some of these components in detail.

Getting started with Design Center

Design Center is a tool that’s used to design and build APIs in Anypoint Platform. Here, we design

and test the API specification first before starting the development process. This is called the API

design-first approach. Using an API design-first approach ensures that business requirements are

captured early in the API life cycle. We can share the API specification with other developers so that

they can consume the API before we even start development. The main component of Design Center

is API Designer.

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition

Getting started with Design Center 155

API Designer

API Designer is a platform for designing, documenting, and testing APIs in RESTful API Modeling

Language (RAML) or OpenAPI Specification (OAS) with code-based or visually guided experience.

It also generates interactive API documentation in the API console, which provides information on

APIs and their methods. Before the actual implementation, an API developer can also test their APIs

in the API console itself.

Important note

RAML is a YAML-based language for describing RESTful APIs. OAS, an open API specification
formerly known as the Swagger specification, is a standard for defining RESTful interfaces.

In API Designer, we can design an API specification, an API fragment, and AsyncAPI. Let’s learn

more about them.

API specification

An API specification is API documentation that helps developers/consumers understand the API.

This specification contains API requests, response structures, methods, endpoints, examples, and

other details that are required for the API to be consumed. This is used in synchronous/real-time

web service integration.

We learned how to design the API specification in Chapter 2. So, let’s move on to API fragments

and AsyncAPI.

API fragment

An API fragment is a reusable component of RAML. It isn’t a complete RAML but a portion of the

RAML specification. It can be created separately as an API fragment in API Designer and can be

reused in multiple API specifications. We explored this in detail in Chapter 2.

AsyncAPI

An AsyncAPI specification is used for creating the specification for a messaging-based interface.

This specification is protocol-agnostic, which means it can support many protocols, such as

amqp, amqps, http, https, ibmmq, jms, kafka, kafka-secure, anypointmq, mqtt,

secure-mqtt, solace, stomp, stomps, ws, wss, and mercure. In a nutshell, AsyncAPI

is protocol-independent. We can use AsyncAPI in any event-driven architecture that deals with

asynchronous/near-real-time integrations.

All About Anypoint Platform156

Follow these steps to create an AsyncAPI specification:

1. Log in to Anypoint Platform and click Design Center. From there, click Create new and

select New AsyncAPI.

2. Set the project’s name. Here, Specification Language can either be YAML or JSON. In this

example, we’ll select YAML as our language, as shown in Figure 5.1, and then click on Create API:

Figure 5.1 – New API specification

Once created, the following code block will appear that describes the AsyncAPI version and

other details:

asyncapi: '2.0.0'

info:

 title: MusicAsyncAPI

 version: '1.0.0'

channels: {}

Getting started with Design Center 157

In this example, to publish the song data to a queue/channel via an external application/

organization, we need a queue name, a payload structure, and server details. These details will be

available in the AsyncAPI specification provided by MuleSoft developers. Using this specification,

external applications or organizations can publish (send) or subscribe to (receive) data from

the required queue/channel. Let’s consider songs-request and songs-response as

channel names (see Figure 5.2).

In the PUBLISH method section, we can define the fields that are required for publishing the

message to the songs-request channel. Similarly, in the SUBSCRIBE method section,

we can define the fields that we expect while subscribing to the message from the songs-

response channel. If we need to reuse any code, then we can use the component object

in AsyncAPI and refer to it using $ref.

The email and name are in the Contact information section. Server details for different

environments can be found in the API servers section:

Figure 5.2 – AsyncAPI specification

Figure 5.2 shows the structure of an AsyncAPI specification, which includes the info, servers,

and channels sections.

All About Anypoint Platform158

3. After successfully creating the AsyncAPI specification, click Publish and select the Publish to

Exchange option. In the dialog box that appears, provide the asset version and click Publish

to Exchange to publish the AsyncAPI specification to Exchange (see Figure 5.3). Versioning

is important because when the API version changes, it gives clients the flexibility to update or

continue with an older version of the API:

Figure 5.3 – Publishing AsyncAPI

As shown in Figure 5.3, there are two states in the life cycle of AsyncAPI. Once the design for AsyncAPI

is complete, its state can be set to Stable, indicating a stable release that can be consumed by anyone. If

the AsyncAPI specification is still being updated, the life cycle state can be marked as Development.

Once published to Exchange, the AsyncAPI specification is available for users in the same organization.

If we need to make it available for external partners/consumers, then we need to publish it to the

public portal from Exchange.

With this, we know how to design the API using an API specification, an API fragment, and an

AsyncAPI specification via Design Center. Once we’ve designed the API, we can share it with other

developers, external partners, and consumers to help them start their development. This way, they

can consume the API before the API is developed.

Introducing Exchange 159

In this section, we explored Design Center in Anypoint Platform. We learned more about API

specifications, API fragments, and AsyncAPI.

Next, let’s learn more about the Exchange component.

Introducing Exchange

Exchange is an online catalog that stores all reusable assets, such as APIs, connectors, templates,

examples, policies, API groups, DataWeave libraries, AsyncAPIs, HTTP APIs, API specifications

and fragments, and custom assets. It’s mainly used for exchanging/sharing assets with others in the

Anypoint Platform within an organization.

From Exchange, we can discover and see the assets available in the organization. We can access these

Exchange assets from different components (both Anypoint Platform and Anypoint Studio) for reuse.

For example, in Anypoint Studio, we can access various connectors, templates, and examples by using

the Search in Exchange option in the Mule palette. Similarly, in API Manager of Anypoint Platform,

we can access the API assets by using the Manage API from Exchange option.

Assets are grouped under Provided by MuleSoft and the respective organization name in Exchange.

This section includes all the assets that are shared by MuleSoft and its partners that are certified

by MuleSoft.

Figure 5.4 shows the assets that are available under Provided by MuleSoft. These assets are publicly

available for all MuleSoft customers:

Figure 5.4 – Exchange assets provided by MuleSoft

All About Anypoint Platform160

Assets that are published/shared within the organization appear in the respective organization section.

These assets can’t be accessed outside the organization. In this example, Packt Publication is an

organization name.

This organization has a musicbox-sys-api REST API asset in Exchange (we designed and

published this earlier in Chapter 2) that can be discovered by other developers in the same organization,

as shown in Figure 5.5:

Figure 5.5 – Exchange assets from the current organization

Upon clicking the musicbox-sys-api asset, the asset page will open, as shown in Figure 5.6.

Let’s try to download, view/edit, and share the API specification.

We can download the API assets either as RAML, OAS, a Mule 3 connector, or a Mule 4 connector

by clicking the Download option, as shown in Figure 5.6.

Introducing Exchange 161

The View code option allows you to view/edit the API specification from Design Center:

Figure 5.6 – Exchange – viewing the asset

We can share these assets with other developers within the organization and also publish them to the

public portal by selecting Share and then Public on the asset page. Check the v1 checkbox for the

version and click Save, as shown in Figure 5.7:

All About Anypoint Platform162

Figure 5.7 – Exchange – sharing assets to the public portal

This feature makes MuleSoft Exchange a powerful collaboration tool for large teams that streamlines

communication, versioning, and access.

Now, let’s learn more about the public portal in Exchange.

The public portal

The public portal is a web-based UI where developers can view the company’s API. It’s mainly used for

enabling developers/consumers to access the assets that have been published by other organizations.

The Exchange public portal is also called the developer portal.

Nowadays, public/developer portals have evolved from basic documentation sites into robust tools

that focus on enhancing developer experience (DX) and API discoverability. Initially, they served

as simple repositories, but today, they prioritize easy onboarding, interactive documentation, and

search functions. These improvements help developers quickly find, explore, and use APIs, making

modern portals essential for collaboration and innovation.

Introducing Exchange 163

We can customize the portal’s appearance by adding a logo, banner image, text, and favicon for the

browser tab.

Open the public portal by selecting the Public portal link in the Exchange section, as shown in

Figure 5.8:

Figure 5.8 – Public portal

All assets that are published to the public portal are available, as displayed in Figure 5.9. Anyone with

an internet connection can view these APIs. Open the public portal in Private/Incognito mode via

your browser. If you open the public portal in a normal browser window, it might use the same login

credentials that you logged in with already. Just to show that the public portal will work without any

credentials, I’ve opened it in Private/Incognito mode. You don’t need to provide any credentials to

see a list of APIs that have been published in the public portal:

All About Anypoint Platform164

Figure 5.9 – Public portals

Previously, we tried to publish the API specification to Exchange (In Chapter 2). From Exchange,

we can publish assets using the Publish new asset option. Try to publish various asset types (REST,

SOAP, HTTP, and AsyncAPI) from Exchange using this option.

In this section, we learned about the assets provided by MuleSoft, as well as assets that are shared by

our organization in Exchange. Then, we learned how to download, view/edit, and share/publish these

assets to the public portal.

Let’s move on and learn more about Runtime Manager.

Exploring Runtime Manager

Anypoint Runtime Manager is the single place to view and manage the Mule applications that are

running in Mule Runtime. Mule Runtime is an integration engine that runs Mule applications. We

can see and manage the application that’s been deployed in on-premises mode, CloudHub (MuleSoft-

managed), and the public cloud from Runtime Manager. We can also deploy a Mule application using

a .jar file via Runtime Manager. A .jar file is a compressed version of an application.

Let’s become familiar with some terms related to Runtime Manager before we deploy the Mule

application to CloudHub using a .jar file:

• Workers: A worker is a dedicated instance that runs the Mule application on CloudHub.

• Worker size: Different types of workers are available based on vCore size. Worker sizes come

with different compute, memory, and storage capacities. A core can be a physical or virtual

core/vCore (a virtual core denotes a virtual CPU and allows the users to choose the physical

properties (number of cores, memory, and storage size) of hardware). In computers, we use a

physical core, but in CloudHub, it’s preferable to use a vCore. A vCore is partitioned from a

Exploring Runtime Manager 165

physical core. For example, one physical core is partitioned into up to 10 virtual small cores

with 10 * 0.1 vCores. 0.1 vCores is the smallest size in CloudHub.

• Increasing the number of workers provides horizontal scaling for the application, whereas

increasing the worker size provides vertical scaling for the application.

Horizontal and vertical scaling

Horizontal scaling means adding additional machines to accommodate new infrastructure
demands. For example, if there’s a Black Friday/Christmas sale, we expect more traffic to go
to our e-commerce server; in that case, we can add an additional server to share the load of
incoming traffic.

Vertical scaling means increasing additional resources to the same machine to get more power
(CPU, memory, and disk). For example, if we need to process more records from a file/database,
then we can add an additional CPU or memory to handle the load.

Let’s explore the pros and cons of vertical and horizontal scaling in detail. Based on this, we can decide

which approach best fits our needs:

Aspect Vertical Scaling Horizontal Scaling

Pros • Easier to implement

• No changes to applications

• Good for smaller workloads

• Increases capacity

• Better fault tolerance

• Can handle very large workloads

Cons • Limited by server capacity

• Can be costly for high specifications

• Single point of failure

• More complex to manage

• Requires load balancing

• May need application adjustments

Use case Suitable for smaller applications or when

scaling up is needed quickly

Ideal for large-scale applications needing

high availability and load distribution

Table 5.1 – Pros and cons of vertical and horizontal scaling

All About Anypoint Platform166

While deploying the Mule application, we can choose the worker size from the available dropdown

(see Figure 5.10). Let’s look at the available worker sizes:

Worker Size Heap Memory Storage

0.1 vCores 500 MB 8 GB

0.2 vCores 1 GB 8 GB

1 vCore 1.5 GB 12 GB

2 vCores 3.5 GB 40 GB

4 vCores 7.5 GB 88 GB

8 vCores 15 GB 168 GB

16 vCores 32 GB 328 GB

Table 5.2 – Worker sizes

Heap memory is memory that’s allocated to our Mule application. When the application runs, it uses

this memory to process the requests that are received.

For example, if we choose 0.2 VCPUs as a worker size, then the heap memory and storage allocated

will be 1 GB and 8 GB, respectively.

CloudHub 2.0

In addition to CloudHub, MuleSoft has recently launched CloudHub 2.0, which offers several enhancements

compared to the current CloudHub option. These enhancements include the following features:

• Multiple trust stores for client certificates for mutual TLS

• The option to download load balancer logs and ingress logs

• A fully managed private space for VPC and VPN

• A fully managed shared space

The following table highlights the key differences in infrastructure behavior between CloudHub 1.0

and CloudHub 2.0 and emphasizes changes in connectivity, deployment, and traffic management:

Exploring Runtime Manager 167

Feature/Behavior CloudHub 1.0 CloudHub 2.0

VPC peering and

Direct Connect

Supported Deprecated; use transit gateway

attachments instead

Deleting a private space

with a transit gateway

Not applicable The transit gateway is preserved and can

be reattached

Private

space association

Limited to a

single environment

Can associate with multiple

environments (sandbox, production)

Moving applications

between regions

Applications can be

moved between regions

Requires redeployment to another

shared/private space in a different region

Traffic ports HTTP and HTTPS use

standard ports

HTTP and HTTPS use port 8081

VPN connections VPCs can establish

VPN connections

Can’t create a VPN connection with a

private space

Table 5.3 – CloudHub 1.0 versus CloudHub 2.0

Replicas

Replicas are similar to workers; however, in replicas, your application runs in CloudHub 2.0, whereas

in workers, your application runs in CloudHub. Replica sizes offer different compute, memory, and

storage capacities compared to workers:

vCore Size Total Memory Heap Memory Storage

0.1 1.2 GB 480 MB 8 GB

0.2 2 GB 1 GB 8 GB

0.5 2.6 GB 1.3 GB 10 GB

1 4 GB 2G B 12 GB

1.5 6 GB 3 GB 20 GB

2 8 GB 4 GB 20 GB

2.5 9.5 GB 4.75 GB 20 GB

3 11 GB 5.5 GB 20 GB

3.5 13 GB 6.5 GB 20 GB

4 15 GB 7.5 GB 20 GB

Table 5.4 – Replica sizes

All About Anypoint Platform168

Private space

In CloudHub 2.0, a private space is a virtual, private, and isolated environment for running your

applications. You have the flexibility to create multiple private spaces, whether in the same region or

different regions.

Shared space

In CloudHub 2.0, a shared space is a dynamic cloud environment comprising Mule instances operating

within a multi-tenant setup. CloudHub 2.0 offers one shared space in each supported region, where

you can deploy your integration applications.

In a shared space, we must consider the following aspects:

• We can’t connect to an on-premises data center

• Our applications need to use the cloudhub.io domain name

• We can’t configure custom certificates

We’re now familiar with the concepts of workers and worker size and CloudHub 2.0 (replicas, private

spaces, and shared spaces) in Runtime Manager. Next, let’s learn how to deploy a Mule application

to CloudHub using a .jar file.

Deploying a Mule application to CloudHub

Now that we have a basic understanding of common terms, let’s deploy the Mule application using

Runtime Manager. In this example, we’re going to deploy the Hello World Mule application that

we developed in Chapter 3. In that chapter, we exported the application as a .jar file. The application

has HTTP Listener with a /hello endpoint, Logger to log the Welcome to Hello world

application message, and a Transform Message to output { message: "Hello World"

}. We’ll use the same .jar file to deploy the application to CloudHub.

Follow these steps to deploy the application:

1. Click Runtime Manager under Management Center.

2. Choose Sandbox as the environment.

3. Click the Deploy application button to deploy the application.

4. Provide a unique application name, select the deployment target, and choose the .jar file. Now,

select the worker size and the workers, and then click Deploy Application (see Figure 5.10):

Exploring Runtime Manager 169

Figure 5.10 – Deploying an application in Runtime Manager

A progress bar will appear on the same page while you’re deploying in CloudHub. At this stage,

it will procure a virtual machine (VM)/system (worker), install a lightweight Mule runtime,

and deploy the application.

5. At this point, we’ll see the following log page, which shows the latest status of our deployment

(see Figure 5.11):

Figure 5.11 – Deployment status – logs

All About Anypoint Platform170

6. Once the Mule application has been successfully deployed, a green mark will appear on the

log page (see Figure 5.12):

Figure 5.12 – Runtime Manager – deploy application status

7. Click on Applications from the left-side navigation bar to view the list of applications. You’ll

see that the application is in a Started state (see Figure 5.13).

8. Click the demo-helloworldapplication application:

Figure 5.13 – Runtime Manager – deployed application status

Exploring Runtime Manager 171

In the Dashboard section, you can see the application URL in a domain column, the number

of Mule messages received, CPU usage, and Memory usage (see Figure 5.14):

Figure 5.14 – Runtime Manager – Dashboard

9. Copy the application URL from the Dashboard section, add the path (/hello) that we specified

in the HTTP listener (refer to Figure 3.14 – Listener properties configuration in Chapter 3, and

send the request from the Postman application. Once we click Send, the application that’s

running in CloudHub will receive the request. Then, it gets processed through various steps

(Logger, Transform Message, and so on) before getting the response. Send a few more requests

from the Postman application to see the number of Mule messages in the Dashboard section

(see Figure 5.14):

All About Anypoint Platform172

Figure 5.15 – A send request from Postman

As shown in the preceding figure, we can see that the status is 200 OK, which means that the application

has received and processed the request successfully.

With this, we’ve successfully deployed the application in CloudHub using Runtime Manager. Now,

let’s learn how to manage a Mule application.

Managing a Mule application

After deploying a Mule application, typically, the operation/support teams need to monitor/manage

the application by checking its logs, the number of Mule messages that have been received, CPU

usage, and memory usage. They must do this to check whether the Mule application is working or not.

Managing the application in this way is facilitated by a list of options in Runtime Manager, including

Dashboard, Insight, Logs, Object Stores, Queues, Schedulers, and Settings.

By clicking the application’s name in Runtime Manager, we can see these options on the left-side

navigation. Let’s learn about these options one by one.

Dashboard

The Dashboard section displays the full details of the application (see Figure 5.14). It shows the

number of Mule messages received, CPU usage, and Memory usage for that worker/application. We

can also view the report for different time ranges, such as the last hour, the last 24 hours, and the last

week. Additionally, we can create a custom dashboard to configure the metrics and data points we

want to view.

Exploring Runtime Manager 173

Logs

In the Logs section, we can see logs related to the application. If an application has a Logger component,

whenever it’s called inside the Mule application, it logs a message:

Figure 5.16 – Runtime Manager – Logs

In demo-helloworldmuleapplication, we logged a Welcome to Hello world

application message using Logger. When this application receives the request, it logs the message

from Logger (see Figure 5.16).

We can push MuleSoft logs to Splunk or external logging tools by adding an appender configuration

to the log4j2.xml file of the Mule application.

Insight

To learn the Status, Processing Time, and Date information for each run or transaction, we can

check out the Insight section:

All About Anypoint Platform174

Figure 5.17 – Runtime Manager – Insight

We’ve called a hello world Mule application three times, so we can see three transactions in

Figure 5.17, including their status, processing time, and date. This helps with efficient monitoring.

To enable Insight, in the Settings tab, click Insight and enable the Metadata option.

Object Store

The Object Store connector is a Mule component that allows you to store a simple key-value pair.

A key-value pair is a combination of two simple values where one is the key and the other is a value.

The key is the unique identifier of the values that have been stored.

If the application uses the Object Store connector, we can view the keys by using the Object Store

option. Let’s look at Figure 5.18 to gain a better understanding:

Figure 5.18 – Runtime Manager – Object Store

Exploring Runtime Manager 175

Here, lastProcessedSongID is a key name. For example, a Mule application processes

songs from one system to another every few minutes. When it runs, it picks the records and stores

lastProcessedSongID in the Object Store. Each time it runs, it checks for lastProcessedSongID

in the Object Store so that it can process the succeeding records.

We’ll learn more about the Object Store in Chapter 8.

Queues

The Queues tab in Runtime Manager shows the queues within the flows of your deployed applications.

For example, if we’re using the VM Connector with a persistent queue enabled, then it will appear

in this Queues tab. We can see the number of messages in the queue and the number of messages

that have been processed in the last 24 hours. We can also clear the messages if they aren’t required.

Schedules

The scheduler is a component that helps schedule jobs. For example, if we need to run a specific

program at 8 P.M. every day, then we can configure it based on a specific time. This is useful if we

need to run a Mule application at a specific time.

The Schedules tab in Runtime Manager shows the scheduler’s details (name, time of the last run, and

frequency of the schedule) of the application. We can use the Enable, Disable, and Run now options

as per our requirements (see Figure 5.19). We’ll learn more about schedulers in Chapter 8:

Figure 5.19 – Runtime Manager – Schedules

All About Anypoint Platform176

In Figure 5.19, the scheduler has been configured to run every 10 minutes; we can see the previous

run details in the Last Run column.

If the scheduler component doesn’t apply to a particular application, then it won’t be displayed.

Settings

From the Settings page (see Figure 5.20), we can perform the following functions:

• For any application changes, we can update the .jar file to redeploy the application

• Change the runtime version of the application

• Add/modify the application properties

• Enable Insight

• Increase/decrease the logging level

• Allocate the static IP for the application

This can be seen in the following screenshot:

Figure 5.20 – Runtime Manager – Settings

In Figure 5.20, the runtime version is 4.8.1:6e. If we need to change the version of the Mule runtime,

then we can change it to the latest or previous version. Similarly, the worker size, the number of

workers, properties, and the logging level can be changed.

With this, we’ve learned about Dashboard, Logs, Insight, Object Store, Queues, Schedules, and

Settings in the Mule application, all of which we can use to manage an application. Now, let’s learn

how to configure alerts in Runtime Manager.

Runtime Manager alerts

Runtime Manager alerts enable you to set up an email alert whenever any event (condition) occurs

in a specific application or all applications.

Exploring Runtime Manager 177

We can set up alerts for CloudHub as well as local servers in Runtime Manager. Let’s look at the various

alert conditions for CloudHub:

• CPU usage – CloudHub

• Custom application alert

• Exceeds event traffic threshold

• Memory usage – CloudHub

• Deployment failed

• Deployment success

• Secure data gateway connected

• Secure data gateway disconnected

• Worker not responding

For applications running on local servers (on-premises), we can configure different types of alert conditions:

• Number of errors

• Number of Mule messages

• Response time

• Application undeployed

• Deployment failure

• Deployment success

Now, let’s learn how to create an alert.

Creating an alert

Let’s create a new alert for the Deployment Success condition:

1. Click Create your first alert if you’re creating an alert for the first time. Otherwise, click

Create Alert.

2. Type the name of the alert and the application type that needs to be monitored, and then specify

the condition. Then, provide the recipient’s email ID in the Recipients field. This is the email

address that the alert will be sent to. Finally, click Submit:

All About Anypoint Platform178

Figure 5.21 – Creating an alert

With this, the alert has been created. Going forward, if an application is deployed successfully,

then an email alert will be sent to the email address you specified (see Figure 5.22):

Exploring Runtime Manager 179

Figure 5.22 – An email alert in our inbox

Alerts can be created for different condition types. Try creating alerts for those different conditions. For

example, create a deployment failure alert to notify you whether there’s any failure in the deployment.

Similarly, you can create an alert if the memory/CPU threshold exceeds the specified limit. Apart from

these, try to create alerts with different condition types.

With this, we’ve learned how to create an alert in Runtime Manager. Next, we’ll explore Anypoint VPC.

Anypoint VPC – virtual private cloud

Virtual private cloud (VPC) is a generic term. Anypoint VPC is the VPC that’s hosted inside

CloudHub. Let’s try to understand VPCs so that we have a clear idea of Anypoint VPC.

A VPC is a set of servers present in a protected environment. Communication with these servers can

only be established through a VPC firewall. In the absence of Anypoint VPC, Mule applications run

in a shared location. This means that the Mule applications in CloudHub that belong to all customers

run in the same location/space. This may raise security concerns among these customers.

Large organizations want their applications to run in a private and protected environment. This

can be achieved by creating a VPC in Runtime Manager. You require specific permission/access to

perform this activity. After creating a VPC, you can connect to an on-premises environment using

a virtual private network (VPN). A VPN ensures secure connectivity to your on-premises network

from your Anypoint VPC:

All About Anypoint Platform180

Figure 5.23 – Anypoint VPC

In Figure 5.23, the Music World Company has a backend system in an on-premises data center and

a MuleSoft application in CloudHub. For security reasons, they run those Mule applications inside

Anypoint VPC in CloudHub. We can group all MuleSoft applications into either one or more VPCs.

Here, the customer has all the non-production MuleSoft applications in one non-production VPC

and their production application in another VPC.

Now that we’ve learned about Anypoint VPC, let’s learn more about load balancers in Runtime Manager.

Load balancers

A load balancer is one of the options available in Runtime Manager that allows you to handle external

HTTP/HTTPS traffic and send it to multiple applications that have been deployed in CloudHub

workers via a VPC. CloudHub provides two types of load balancers:

• Shared load balancer (SLB): This provides a basic load balancing functionally and is shared

across multiple customers

• Dedicated load balancer (DLB): This provides dedicated resources for load balancing, ensuring

consistent performance under high loads

Next, we’ll take a quick look at another component of the Anypoint Platform: API Manager.

Introducing API Manager 181

Introducing API Manager

API Manager facilitates creating, managing, securing, and analyzing APIs. We can create APIs in the

following ways:

• Via Exchange

• By creating a new API from a RAML/OAS/SOAP definition or an HTTP API

• By importing an API from a .zip file

Once we’ve created an API, we can apply policies to secure our APIs. We’ll learn how to apply policies

and custom policies in Chapter 10.

Exploring Anypoint Monitoring

Anypoint Monitoring provides visibility into all the integrations across an application network. From

its built-in dashboard (see Figure 5.24), we can check the following metrics:

• Number of Mule messages received

• Average response time of the API

• Number of errors received

• CPU utilization

• JVM heap memory used

• JVM thread count:

All About Anypoint Platform182

Figure 5.24 – Anypoint Monitoring – Built-in dashboards

This dashboard gives a clear picture of application performance and failure details.

If we need to enable alerts for Mule applications, then we can set an alert in Anypoint Monitoring.

Let’s learn how to do this.

Alerts

From Anypoint Monitoring, we can configure an alert based on the available metrics and send an

email alert to a specific email ID or Anypoint user (see Figure 5.25):

Figure 5.25 – Anypoint Monitoring – Alerts

Introducing Anypoint Visualizer 183

Here, we can monitor the state (success/failure) of the alert. Alerts can be enabled or disabled.

Now, let’s learn how to search the logs from Anypoint Monitoring.

Log Management

Log Management helps us search our log for any text from all applications and different environments

(see Figure 5.26):

Figure 5.26 – Anypoint Monitoring – Log Management

One of the features of Log Management is that our search can be saved for future reference. This

helps the operations team quickly search the logs from the saved search.

Now, let’s learn more about Visualizer, one of the components of Anypoint Platform.

Introducing Anypoint Visualizer

Anypoint Visualizer provides a real-time, graphical representation of our APIs. The data that’s displayed

in the graph gets updated and doesn’t require any specific configuration:

All About Anypoint Platform184

Figure 5.27 – Anypoint Visualizer

From this graphical view, we can easily understand how APIs are connected (see Figure 5.27).

Now that we know how to visualize a Mule application using Anypoint Visualizer, let’s explore Access

Management, one of the components of the Anypoint Platform.

Exploring Access Management

Access Management is used to manage an organization, business groups, users, roles, and environments,

as well as identify providers, client providers, and audit logs in the Anypoint Platform. Let’s see how

each of them is managed.

Organization and business groups

When we create an Anypoint Platform account, a root organization gets created. The root organization

can contain multiple business groups.

A business group is the child of the root organization. It’s a self-contained resource group that contains

resources such as Mule applications and APIs.

Invite user

From the Users link on the left-hand side navigation, we can invite users to our Anypoint Platform,

as shown in Figure 5.28. By default, users are stored in the Anypoint Platform:

Exploring Access Management 185

Figure 5.28 – Anypoint Platform – Invite user

We can also configure identify providers (IdPs), which store and manage digital identities, to store

the users.

Roles

Anypoint Platform comes with various default roles, all of which are assigned to predefined permissions.

We can assign these users to roles (see Figure 5.29) based on their responsibilities. We can also create

a new role and set the required permission for different components.

Specific permissions are required to access each component of Anypoint Platform, such as Design

Center, Exchange, Runtime Manager, Monitoring, and others. Based on the permissions that are

granted to the user, they will only see the components they have access to after logging in:

All About Anypoint Platform186

Figure 5.29 – Anypoint Platform – Roles

A user can also be assigned multiple roles based on their responsibilities.

Environments

The Environments tab (see Figure 5.30) enables you to add a new environment. For example, if we

need more test/non-production environments, then we can create a system integration testing (SIT),

quality assurance (QA), or user acceptance testing (UAT) environment. Other options are available:

Exploring Access Management 187

Figure 5.30 – Anypoint Platform – Environment

Audit logs

Audit logs track user activity by providing date/time, product, action, IP address, and other details

(see Figure 5.31):

Figure 5.31 – Anypoint Platform – Audit Logs

We can download audit logs as a .csv file using the Download CSV option.

All About Anypoint Platform188

Subscription

This option provides validity and subscription information for different environments, static IPs, VPC, and

load balancers in Runtime Manager, as well as Anypoint MQ and Object Store subscription/usage details.

With this, we’ve learned how to manage the access-related functions in Access Management.

Summary

This chapter was all about the Anypoint Platform and its components: Design Center, Exchange,

Runtime Manager, API Manager, Anypoint Monitoring, Anypoint Visualizer, and Access Management

(organization and business groups). We learned about each component’s functionalities. On completing

this chapter, you now have sufficient knowledge of the Anypoint Platform and should feel confident

enough to design, manage, and monitor Mule applications.

In the next chapter, we’ll explore DataWeave, an expression language that’s used for transforming

data from one format into another and performing complex logical transformations.

Questions

Take a moment to answer the following questions. These serve as a recap of what you learned in

this chapter:

1. What is Anypoint Platform?

2. Are Anypoint Platform and Anypoint Studio the same?

3. What is a reusable component of RAML?

4. What is the minimum worker size in CloudHub?

5. What are the components in which we can configure alerts?

Answers

Here are the answers to this chapter’s questions:

1. Anypoint Platform helps organizations to connect applications, data, and devices.

2. No, they’re not the same. Anypoint Studio is an IDE that we use to build, test, and run a Mule

application. Anypoint Platform is a UI-based control plane with which we can manage all the

components of Anypoint Platform.

3. An API fragment is a reusable component of RAML. It isn’t a complete RAML but a portion

of a RAML specification. It can be created separately as an API fragment in API Designer and

can be reused in multiple API specifications.

Answers 189

4. The minimum worker size is 0.1 VCPUs in CloudHub.

5. We can configure alerts from the following components in the Anypoint Platform:

 � Anypoint Monitoring

 � Runtime Manager

 � API Manager

Part 2:

A Deep Dive

into MuleSoft

Part 2 covers the concepts of DataWeave and various stages of the application lifecycle, including

building, deploying, securing, and testing your Mule application. This part emphasizes ensuring

security for your Mule API, selecting the appropriate deployment environment, and performing unit

testing using MUnit.

By the end of this part, you will be familiar with building, transforming, securing, testing, and

deploying applications using different components of Anypoint Studio, Anypoint Code Builder, and

the Anypoint Platform. You will also gain a deep understanding of DataWeave and learn how to apply

security policies to your API.

This part includes the following chapters:

• Chapter 6, Learning DataWeave

• Chapter 7, Transforming with DataWeave

• Chapter 8, Building Your Mule Application

• Chapter 9, Deploying Your Application

• Chapter 10, Securing Your API

• Chapter 11, Testing Your Application

6
Learning DataWeave

DataWeave is a very powerful programming language created by MuleSoft. It’s widely used in Mule

applications to transform the data inside your integrations or APIs. It’s mostly used with the Transform

Message component in Anypoint Studio, but it’s also used with other components, such as Choice

and For Each (inside the #[] syntax).

DataWeave keeps evolving due to its popularity. Earlier, you would only be able to explore DataWeave

inside the Transform Message component in Anypoint Studio, but now, there are more products, such

as the Visual Studio Code (VS Code) extension, the DataWeave command-line interface (CLI),

DataWeave for Apex (from Salesforce), and the very popular DataWeave Playground (which we’ll

use in this chapter).

In this chapter, we’re going to cover the following main topics:

• Introducing DataWeave

• Writing DataWeave scripts

This chapter focuses on getting you started with the very basics of the language so that you can

understand more advanced transformations that will be covered in later chapters (they can also appear

in real life!). If you’re familiar with DataWeave, you could also benefit from this chapter since we’ll

provide some tips and additional information that you may not be aware of.

Technical requirements

You’ll need the following to complete this chapter:

• An internet browser: Google Chrome will be used throughout this chapter for DataWeave

Playground, located at https://developer.mulesoft.com/learn/dataweave/.

To learn how to use the DataWeave Playground, you can follow this guide: https://

developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-

dataweave-with-the-dataweave-playground-getting-started/.

https://developer.mulesoft.com/learn/dataweave/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/

Learning DataWeave194

• GitHub repository: It’s not required for you to open this repository, but it’ll be easier for you to

copy and paste the examples and scripts. You can access it through the following link: https://

github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-

Second-Edition.

Introducing DataWeave

Before we dive into all the DataWeave syntax and start doing some programming, let’s understand

what DataWeave is and how it’s different from other programming languages you may be familiar

with, such as Java or Python. Then, we can start with the basics of the language.

At the time of writing, there are two major versions of DataWeave:

• DataWeave 1.0 is used with version 3 of the Mule runtime (Mule 3)

• DataWeave 2.0 is used in Mule 4

Since Mule 3 is mostly used by companies who haven’t migrated to Mule 4 yet, DataWeave 2.0

(specifically version 2.4, as mentioned previously) is the language that’s used for data transformation

and expression within MuleSoft applications.

Note

The full list of differences between DataWeave 1.0 and DataWeave 2.0 will not be covered in
this chapter since they’re out of scope. However, you can read the following documentation
page to learn how to migrate your code from version 1.0 to version 2.0: https://docs.
mulesoft.com/mule-runtime/latest/migration-dataweave. Converting to
DataWeave 2.0 will provide better performance and enhanced syntax flexibility.

Analyzing DataWeave

DataWeave is a functional programming language created by MuleSoft. While it’s primarily used within

the Transform Message component in Anypoint Studio, it can also be utilized in other components,

such as Choice or Set Variable, through inline expressions (for example, #[]). This flexibility allows

DataWeave to dynamically transform data or set values within various Mule components, making it

a versatile tool across different use cases.

If you come from an imperative programming background, and you haven’t worked with other

functional programming languages before, then this might be a bit strange for you at first. The biggest

difference is that the lines of code aren’t executed sequentially. Certain functions such as for and

while aren’t available in DataWeave. However, similar outcomes can be achieved with other functions,

as we’ll see later in this chapter.

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://docs.mulesoft.com/mule-runtime/latest/migration-dataweave
https://docs.mulesoft.com/mule-runtime/latest/migration-dataweave

Introducing DataWeave 195

These are the most important points to remember when learning DataWeave:

• DataWeave was created as a transformation language. This means that there’s generally some

input data that needs to be transformed into an expected output structure. The goal isn’t to

create applications, run command-line commands, or modify files; the goal is to transform

data. For example, you can transform given data into a different data format (such as XML,

JSON, or CSV) or just a different data structure (for example, from an array into an object).

• The code isn’t executed sequentially. This is the main pain point for developers who are not

familiar with functional programming. You not only need to become familiar with the language’s

syntax, but you also need to change your whole thinking pattern to accept the fact that solutions

in C++, Java, or Python won’t be translated into DataWeave just by modifying the syntax.

• All data is immutable. Even if you use functions or operators to modify the data, you’re only

creating new data, not modifying the existing data.

• Variables can’t be modified. In line with the previous statement, all data is immutable, including

the values that are assigned to the variables. Once you assign a value to a variable, you can’t

reassign a new value. You must create a new variable.

• DataWeave uses the call-by-need strategy. Also called lazy evaluation, this means that

expressions are evaluated only when they’re needed and their result is stored to avoid evaluating an

expression multiple times if the input parameters are the same (https://docs.mulesoft.

com/dataweave/2.4/dataweave-language-guide).

• There are no loops. Some DataWeave functions get the outcomes of a for or for each

operation, but it isn’t the same functionality. However, generating loops with a while operation,

for example, isn’t possible with DataWeave functions.

• There are no classes. Earlier, we mentioned that all data is immutable. If you come from an

object-oriented programming background, you might be used to creating getters and setters

to modify your objects. In this case, since data is immutable, you’re only creating new data.

• DataWeave syntax is not tab or new-line-based. Some programming languages depend on

tabs, spaces, new lines, or other characters to define their functionality. This isn’t the case for

DataWeave. Unless strictly defined (as is the case for some operators and data types), you can

choose to add/remove spaces, continue on a new line, use parentheses, and more.

Taking these facts into account, we can start learning about DataWeave. First, let’s talk about the

anatomy of a DataWeave script.

https://docs.mulesoft.com/dataweave/2.4/dataweave-language-guide
https://docs.mulesoft.com/dataweave/2.4/dataweave-language-guide

Learning DataWeave196

Diving into a script’s anatomy

There are two main parts of a DataWeave script: the header and the body. These two parts are

separated by three dashes (---). The following is an example of a DataWeave script that outputs a

Hello World string in JSON format:

basic-script.dwl

%dw 2.0

output application/json

"Hello World"

Let’s talk about the script’s header to understand what can go in here.

Script header

The following components can go in the header of a DataWeave script:

• DataWeave version: Using %dw, you can define whether the script is for DataWeave 1.0 or

DataWeave 2.0. If this isn’t provided, the default is version 2.0. Even if you’re on a different

minor version (such as 2.4), you have to specify 1.0 or 2.0 since those are the major versions.

• Output MIME type: In DataWeave, output data formats define how data is written during

transformations. DataWeave can write data to various formats, including, JSON, XML, CSV,

and others. We’ll talk more about data formats shortly. If no output is specified, it will be

determined by DataWeave.

• Input MIME type: Using input, you can specify which data format the input for the script

is in. This is rarely needed since DataWeave is very good at analyzing input data. However,

you can use this directive to specify additional details about the input’s format. For example,

when your input is a CSV file, you can specify the separator character, whether the data is using

quotes, whether it has a header, and so on.

• Import modules: Using import, you can choose from a variety of built-in DataWeave modules

and functions to create more complex transformations. You can also use this to import custom

modules that you create within your Mule project.

• Reference elements and attributes: Using ns, you can define the namespaces you want to

import so that you can refer to them in the script. This is mostly used with XML data formats.

• Custom types: Using type, you can define your own data types or data structures for your

data. This helps catch possible errors before they reach the runtime environment.

Introducing DataWeave 197

• Global variables: Using var, you can define any global variables you wish to use in the script.

We’ll talk about variables in more detail later in this chapter.

• Function definitions: Using fun, you can define custom named functions to use in the script.

We’ll talk about functions in more detail later in this chapter.

Now that we have a better understanding of what goes in the header section of a DataWeave script,

let’s look at the body section.

Script body

This section is easier to describe than the header – it’s where you create all your transformation code.

In the header, you define what your script may use, but you don’t use some of this information until

you create a script. For example, you can create variables and function definitions in the header, but

you don’t use them until you call them in the body with some data. It’s like having a factory all ready

to create some products but not having any materials to work with. All the machinery would be the

header and the actual tangible materials to create products would be the body.

All programming languages have ways of adding comments to your code. Let’s see how comments

work in DataWeave.

Adding comments to your code

You can’t always assume that anyone who looks at your code will be able to understand how it works

right away. Over time, even we forget what our code is doing. In a lot of programming languages, it’s

best practice to leave comments in your code for the next person to discover and get a better idea of

what it does. DataWeave isn’t an exception to this rule.

There are two ways you can add comments to your code:

• Single-line

• Multi-line

If you want to add single-line comments, you just need to use // – whatever comes to the right of

these will be a comment. Let’s see an example:

single-comments.dwl

%dw 2.0

output application/json

"Hello World" // this is a comment

Learning DataWeave198

Here, we’re using the same example we saw previously to output a Hello World string in JSON

format. It’s still doing the same thing, but here we’ve added a comment next to the code that says

this is a comment.

For multi-line comments, the first line needs to start with /* right at the beginning, the last line

needs to end with */ after your comment, and any line in-between needs to start with *. Let’s look

at an example to illustrate this better:

multi-line-comments.dwl

%dw 2.0

output application/json

/* This is a comment

 * ...a multi-line comment.

 * And it ends here */

"Hello World"

// this is a single-line comment

Warning

In Anypoint Studio, the Mule configuration files are created in XML format. If you have
DataWeave code inside these files, the multi-line comments may sometimes produce an error.
If this happens, you can either use single-line comments or create an external .dwl file and
refer to it from the Transform Message component. We’ll learn how to do this later in this
chapter. For more information, see the documentation:

https://docs.mulesoft.com/dataweave/latest/dataweave-language-
introduction#dataweave-comments.

Providing comments in the code enhances collaboration in a multi-developer environment by offering

clear explanations of logic and functionality, making it easier for team members to understand each other’s

work. This practice reduces onboarding time for new developers and minimizes misunderstandings,

leading to more efficient and effective teamwork.

Now that we know how to add comments to our code, let’s dive into the available data types in DataWeave.

https://docs.mulesoft.com/dataweave/latest/dataweave-language-introduction#dataweave-comments
https://docs.mulesoft.com/dataweave/latest/dataweave-language-introduction#dataweave-comments

Introducing DataWeave 199

Understanding data types

In DataWeave, data types are separated into three main categories:

• Simple

• Composite

• Complex

The purpose of this book is to get you started with the basics of MuleSoft. We won’t be covering

complex data types in this book because they’re used in more advanced examples, but we’ll look into

simple and composite types. Let’s start with the simple data types.

Note

You can confirm a value’s data type by using the typeOf function, as we’ll learn in the next
chapter (Chapter 7). For example, typeOf(1) will result in Number.

Simple data types

These data types are considered simple because they don’t have any underlying values. These types

are just composed of one single value:

• String: This type is specified by surrounding quotes (for example, "Hello World"). There

can also be empty strings if you just have quotes with no characters inside (that is, "").

• Boolean: This type can only have two values: true or false. It’s mainly used together with

conditions or to define flags (for example, isActive).

• Number: This type includes all the available numbers. In other programming languages, you

can have different number types, such as Integer and Float. In DataWeave, all numbers

fit within this type (for example, 1, 250, 34.7, or 3.14159265359).

• Regex: This type is used to define regular expressions. It’s specified by surrounding forward

slashes (for example, /([A-Z])\w+/). This is mostly used as an input parameter to other

functions to search for specific data. To learn more about regular expressions, visit https://

regexr.com/.

• Null: This type can only have one value: null. Note that the name of the type is specified

with a capital N, whereas the actual value is written in all lowercase. If you’re not familiar with

the null value, it’s used to specify no data. It’s different than 0 or "" because 0 is still of the

Number type and "" is still of the String type. So, null means no data was found, returned,

or specified. Simply put, it’s a different data type than the expected one.

https://regexr.com/
https://regexr.com/

Learning DataWeave200

• Date and time-related types: Different data types are used to define date and time formats and

they’re defined by surrounding vertical bars (||). These are as follows:

 � Date: Includes year, month, and day; no time (for example, |2020-01-01|).

 � DateTime: Includes year, month, day, hours, minutes, seconds, milliseconds, and a given

time zone (for example, |2020-01-01T10:00:00.172144Z|).

 � LocalDateTime: Includes year, month, day, hours, minutes, seconds, and milliseconds in

the current time zone (for example, |2020-01-01T10:00:00.607214|).

 � LocalTime: Includes hours, minutes, seconds, and milliseconds in the current time zone;

no date (for example, |10:00:00.607214|).

 � Time: Includes hours, minutes, seconds, milliseconds, and a given time zone; no date (for

example, |10:00:00.172144Z|).

 � TimeZone: Indicates the time zone for a time (for example, |-04:00|).

 � Period: Indicates a period of date or time. The number of years, months, days, hours, minutes,

seconds, or milliseconds can be included (for example, |P1Y2M30D|).

Now, let’s look into composite types.

Composite data types

As opposed to the simple types, composite types contain other values or are made of other values:

• Array: This type is specified by surrounding square brackets (for example, [1, 2, 3]). It’s

a list or a collection of other data types. The values inside an array don’t have to be of the same

data type and they’re not limited to simple types. There can also be empty arrays if you just

have square brackets with no values inside (that is, []).

• Object: This type is specified by surrounding curly braces. Each object is composed of key-value

pairs separated by a comma. A key is what’s specified before the colon and a value is what’s

specified after the colon. Similar to the array type, the values don’t have to be of the same data

type and they’re not limited to simple types. There can also be empty objects if you just have

curly braces with no values inside (that is, {}). In the following example, we have an object

with two key-value pairs: the first is a key, a, with a value of 1 (of the Number type), while the

second is another key, b, with a value of "Hello World" (of the String type):

{

 a: 1,

 b: "Hello World"

}

Let’s take a quick look at an additional data type that’s important to understand, even though it’s not

a simple or composite type: the range data type.

Introducing DataWeave 201

The range data type

There’s an additional data type that we’ll use later in this chapter called range. This data type isn’t part

of the simple or composite types, but we need to mention it for later concepts. You can look at ranges

as “arrays of numbers” for this book, but a Range isn’t the same as an array. You can create a range by

using the to keyword. For example, 1 to 5 results in [1, 2, 3, 4, 5].

Note

The purpose of this book is to get you started with the basics of MuleSoft. There are more
DataWeave data types that we won’t be covering here because they’re used in more advanced
examples. For a complete list, please visit the following official documentation pages:

https://docs.mulesoft.com/dataweave/latest/dataweave-type-system

https://docs.mulesoft.com/dataweave/latest/dataweave-types

Now that we have a better understanding of the basic DataWeave data types and how they’re used,

let’s talk about data formats.

Understanding data formats

Earlier, we mentioned that DataWeave is a transformation language. It usually takes input data and

transforms it into a different output format or structure. Sometimes, the code is created right from the

script and there may be no input data, but there’s always output data. We talked about the anatomy of

a script and we mentioned the output directive, which can be used in the script’s header to specify

a MIME type. This is the data format of the output data.

Here are some of the most popular data formats in DataWeave:

• CSV: You can refer to this MIME type as application/csv in your script’s header. This

format is translated into an array of objects in DataWeave. Each row represents an object, each

value is separated by a specified character (usually, this is a comma or pipe symbol, but it can

be any character), and each key comes from the header row (if provided).

• DW: You can refer to this MIME type as application/dw in your script’s header. This

format helps you to understand how the information is processed in DataWeave before it’s

transformed into a different format. Please note that this should never be used in production

environments because it will cause performance issues. It’s intended to be used to debug or

for learning purposes only.

• Java: You can refer to this MIME type as application/java in your script’s header. This

format translates DataWeave and Java data types.

https://docs.mulesoft.com/dataweave/latest/dataweave-type-system
https://docs.mulesoft.com/dataweave/latest/dataweave-types

Learning DataWeave202

• JSON: You can refer to this MIME type as application/json in your script’s header.

This format requires minimal transformation since DataWeave’s data types are the same as

JSON’s data types.

• XML: You can refer to this MIME type as application/xml in your script’s header. This

format is translated into DataWeave objects. One difference from the other formats is that there

always has to be one single root key in your script.

Note

For a complete list of all the supported data formats in DataWeave, please visit the official
documentation: https://docs.mulesoft.com/dataweave/latest/dataweave-
formats.

At this point, we understand the basics of the DataWeave language. We know about a DataWeave script’s

anatomy and its parts – that is, the header and the body – and we’ve learned how to add comments

to our code and looked at a list of data types and data formats that can be used in DataWeave. Next,

we’ll learn some more language basics.

Writing DataWeave scripts

Now that we understand the basics of the DataWeave language, let’s start learning how to write

DataWeave scripts. In this section, you’ll learn about operators, selectors, variables, functions, and

scope and flow control. These will give you the basics so that you can start transforming your data.

Using operators

If you come from a different programming language background, you probably already know what

operators are – those characters that help you transform or compare data. Let’s take a look at the

different types of operators in DataWeave and their purpose.

Mathematical operators

These operators transform two values into one. They’re mostly used for numbers but they can also

be used with other data types:

• Addition (+): This operator adds two values. It can be used to add date and time-related types

and numbers or to append a new item to an array (for example, 1 + 2).

• Subtraction (-): This operator subtracts two values. It can be used to subtract date and time-

related types, numbers, and items from an array, or key-value pairs from an object (for example,

1 - 2).

https://docs.mulesoft.com/dataweave/latest/dataweave-formats
https://docs.mulesoft.com/dataweave/latest/dataweave-formats

Writing DataWeave scripts 203

• Multiplication (*): This operator multiplies two numbers (for example, 1 * 2).

• Division (/): This operator divides two numbers (for example, 9 / 3).

The following code shows some examples of the different mathematical operators:

mathematical-operators.dwl

%dw 2.0

output application/dw

{

 Addition: |2020-01-01| + |P2D|, // = |2020-01-03|

 Subtraction: ["a", "b", "c"] - "a", // = ["b", "c"]

 Multiplication: 3 * 3, // = 9

 Division: 9 / 3 // = 3

}

These operations are helpful in cases where we need to multiply quantity by price to get the total price

for the same item. Similarly, we might subtract the discount amount from the overall price, in which

case we would use the subtraction operation.

Now, let’s look at the equality and relational operators.

Equality and relational operators

These operators compare two values and return Boolean values (true or false) with the result of

the comparison:

• Less than (<): This operator compares whether the value on the left is less than the value on

the right. It can be used to compare date and time-related types (except for periods) such as

Booleans, numbers, and strings (for example, 1 > 2 would return false).

• Greater than (>): This operator compares whether the value on the left is greater than the value

on the right. It can be used to compare date and time-related types (except periods) such as

Booleans, numbers, and strings (for example, 5 > 3 would return true).

• Less than or equal to (<=): This operator works the same as the < (less than) operator but

includes values that are equal to each other (for example, 1 < 1 would be false, but 1 <=

1 would be true).

• Greater than or equal to (>=): This operator works the same as the > (greater than) operator

but includes values that are equal to each other (for example, 1 > 1 would be false, but

1 >= 1 would be true).

Learning DataWeave204

• Equal to (==): This operator compares whether both values and data types are equal. It can

be used to compare all simple and composite data types except regex (for example, 1 == 1

would be true, but 1 == "1" would be false).

• Similar to (~=): This operator compares whether both values are equal, regardless of the type.

If the types are different, the operator will attempt to coerce one of the values to be the type

of the other and then compare them. It can be used to compare all simple and composite data

types except regex (for example, both 1 ~= 1 and 1 ~= "1" would be true).

The following code shows some examples of the different equality and relational operators:

equality-and-relational-operators.dwl

%dw 2.0

output application/dw

{

 LessThan: 1 < 2, // true

 GreaterThan: "a" > "b", // false

 LessOrEqualTo: |2020-01-01| <= |2020-01-01|, // true

 GreaterOrEqualTo: 1 >= 1, // true

 EqualTo: 1 == "1", // false

 SimilarTo: 1 ~= "1" // true

}

Now, let’s look at the logical operators.

Logical operators

These operators are used to manipulate or compare Boolean values or expressions. They’re mostly

used together with conditionals (such as if/else) to control the flow of the script and/or modify

the outputs dynamically:

• not: This negates the given Boolean after the operator (for example, not true results in

false). This operator negates the complete logical expression and not just the first value

(for example, not true or true will first execute true or true and then negate the

result; the final result would be false).

• !: This is the same as not but has a different precedence. This operator negates the Boolean next

to it first and then executes the rest of the logical expression (for example, ! true or true

will execute ! true first and then complete the expression; the final result would be true).

• and: This operator compares two Booleans and only returns true if both values are true.

Otherwise, it returns false (for example, true and true would return true but true

and false would return false).

Writing DataWeave scripts 205

• or: This operator compares two Booleans and returns true if either (or both) of the values

are true. Otherwise, it returns false (for example, true or false would return true

but false or false would return false).

The following code shows some examples of the different logical operators:

logical-operators.dwl

%dw 2.0

output application/dw

{

 "not": not 1 == 2, // true

 "!": ! (1 ~= "1"), // false

 "and": (5 > 2) and (4 < 9), // true

 "or": (1 >= 5) or (3 >= 3), // true

 Precedence: {

 not: not true or true, // false

 // not true or true = not (true or true) = not

 // (true) = false

 "!": ! true or true, // true

 // ! true or true = (! true) or true = (false) or

 // true = true

 "!()": ! (true or true) // false

 // ! (true or true) = ! (true) = false

 }

}

Finally, let’s look at some operators that we can use to manipulate arrays and time zones.

The prepend and append operators

These operators take two values to transform them into one. They’re mostly used with arrays but the

Prepend operator can also be used with DateTime and TimeZone:

• Prepend (>>): When used with arrays, the item on the left will be added to the first position

of the array on the right (for example, 1 >> [2, 3] would result in [1, 2, 3]). When

used with DateTime and TimeZone, DateTime must be located on the left-hand side

and TimeZone on the right-hand side. This will transform the given DateTime into a

new DateTime with the given TimeZone (that is, to convert a DateTime value from

Eastern Time into Pacific Time, you can either do |2020-01-01T10:00:00-05:00|

>> "America/Los_Angeles" or >> |-08:00|; both would result in |2020-01-

01T07:00:00-08:00|).

Learning DataWeave206

• Append (<<): This operator can only be used with arrays. The item on the right will be added

to the last position of the array on the left. Note that this is the same behavior as the + operator

(that is, [1, 2] << 3 and [1, 2] + 3 both result in [1, 2, 3]).

The following code shows some examples of the Prepend and Append operators:

prepend-append-operators.dwl

%dw 2.0

output application/dw

{

 Prepend: {

 Array: 1 >> [2, 3], // [1, 2, 3]

 EmptyArray: 1 >> [], // [1]

 TimeZoneWithName: |2020-01-01T10:00:00-05:00| >>

 "America/Los_Angeles", // |2020-01-01T07:00:00-08:00|

 TimeZoneWithNumber: |2020-01-01T10:00:00-05:00| >>

 |-08:00| // |2020-01-01T07:00:00-08:00|

 },

 Append: {

 Array: [2, 3] << 1, // [2, 3, 1]

 EmptyArray: [] << 1 // [1]

 }

}

Reminder

You can use the - operator to remove an item from an array.

There are more operators we could discuss here, but we’ll talk about those later in this chapter due to

their complexity (if/else, do, and using).

Note

For a complete list of all DataWeave operators and to learn more about them, please visit the
official documentation: https://docs.mulesoft.com/dataweave/latest/dw-
operators.

https://docs.mulesoft.com/dataweave/latest/dw-operators
https://docs.mulesoft.com/dataweave/latest/dw-operators

Writing DataWeave scripts 207

We now have a better idea of the different operators that can be found in DataWeave. With these, you

can transform values or create conditionals to dynamically control the flow of your script. Now, let’s

learn about one of the most basic concepts of programming languages: how to create and use variables.

Creating and using variables

Having the ability to create and use variables is needed in programming languages because it helps

us save specific information in them and reuse them in other parts of the script. This is especially

helpful when there are big expressions to retrieve specific data and we don’t want to repeat the same

expensive expression over and over again; instead, we want to reference the value that resulted from

the expression. We can achieve this with variables.

Before we begin talking about the syntax, let’s provide a quick summary of what variables are

in DataWeave:

• Because of DataWeave’s nature, variables behave like functions.

• Lambda (anonymous) functions can be assigned to a variable (we’ll discuss functions after

this section).

• Variables are defined with the var keyword.

• Variables need to have a value. No empty variables can be created.

• Variables are immutable – their value doesn’t change. When multiple threads try to access the

same data, immutability helps us avoid problems such as data conflicts and errors. Since the

value of an immutable variable can’t change, it can be safely read by different threads without

us having to worry about it being changed by another thread.

• Variables can have data types manually assigned to them, although it’s not required.

• Variables can be local or global. We’ll learn about global variables in this section, but we’ll talk

about local variables later in this chapter when we talk about the do keyword.

Now, let’s understand how to use variables by looking at some code examples.

Defining a simple variable

The first thing we need to learn is how to define a variable and how to call it from the rest of the script.

To define a variable in the header of the script, you can use the following syntax:

var variableName = value

Learning DataWeave208

Once you’ve defined your variable in the header, you can reference it in the body of the script. Here’s

an example:

simple-var.dwl

%dw 2.0

output application/dw

var hello = "Hello World"

hello // outputs "Hello World"

In a lot of programming languages, variables need to have a data type assigned to them to avoid mistakes.

While this isn’t necessary for DataWeave, one can be added for extra peace of mind. Let’s see how.

Assigning a data type to a variable

As we mentioned previously, variables can have data types manually assigned to them. This is helpful

when you want to check for mistakes in your script before getting to runtime. It’s an additional layer

of quality you can add to your code. The syntax to assign a data type looks like this:

var variableName: type = value

The type can be any of the predefined data types we’ve learned about (String, Null, Boolean,

Array, and so on) or it can be a custom type that’s been created and defined by you. Custom types

are outside the scope of this book, but you can create them using the type keyword. To learn more

about custom types, please visit the official documentation: https://docs.mulesoft.com/

dataweave/latest/dataweave-type-system.

Here’s an example of a variable with a data type:

var-with-type.dwl

%dw 2.0

output application/dw

var hello: String = "Hello World"

hello // outputs "Hello World"

Now, if you try to assign any other value to this variable that’s not a string, you’ll receive an error

from DataWeave.

You may not see the full picture of how this is useful with this example because we already know

the value is a string. However, when you’re dealing with real-life transformations, variables’ values

tend to be dynamic data that’s been assigned from the input that’s received. You can also have very

big DataWeave scripts with complex logic. In this case, assigning a value to your variables helps you

https://docs.mulesoft.com/dataweave/latest/dataweave-type-system
https://docs.mulesoft.com/dataweave/latest/dataweave-type-system

Writing DataWeave scripts 209

ensure your code is bullet-proof and ready for any kind of data type that’s received. Assigning types

to your variables or functions isn’t always necessary, but it does help to have better-quality code and

also for error prevention.

When you don’t assign a data type in DataWeave, potential errors or issues may arise, including

type mismatch errors, unexpected behavior, reduced readability, debugging difficulty, performance

overhead, and data validation issues.

Now, let’s learn how to assign a lambda to a variable.

Assigning a lambda function to a variable

Finally, let’s learn how to define a variable with a lambda function. We won’t get into the details of

how lambdas work right now because we’ll talk about this in the next section, but it’s good for you to

have the syntax at this point:

var variableName = (params) -> body

Here’s a very simple example that’s taking just one argument and returning it as-is:

var-with-lambda.dwl

%dw 2.0

output application/dw

var hello = (str) -> str

hello("Hello World") // outputs "Hello World"

This might look confusing to you if this is the first time you’ve seen a lambda expression, but don’t

worry – we’ll learn more about them in the following section.

Note

To learn more about variables in DataWeave and find some additional examples of lambdas,
please visit the official documentation: https://docs.mulesoft.com/dataweave/
latest/dataweave-variables.

Writing lambda functions in DataWeave offers several benefits to developers, particularly in terms of

enhancing code efficiency, readability, and flexibility.

Now, let’s talk about functions and the different ways they can be used in DataWeave.

https://docs.mulesoft.com/dataweave/latest/dataweave-variables
https://docs.mulesoft.com/dataweave/latest/dataweave-variables

Learning DataWeave210

Defining and calling functions

Another big part of programming languages is their ability to define pieces of functionality in functions

or methods that can be reused in the rest of the code.

Similar to what we did with variables, let’s provide a quick summary of what functions are in DataWeave:

• There are two ways of defining and calling a function: named functions and anonymous

functions (lambdas).

• Named functions are defined with the fun keyword.

• Lambdas can be assigned to variables.

• Functions need to return a value. No void functions can be created.

• Functions’ parameters and functions themselves can have data types manually assigned to

them, although it’s not required.

• Functions can be local or global. We’ll learn about global functions in this section, while we’ll

talk about local functions later in this chapter (the do keyword).

• Parameters are optional but are encouraged for pure functions.

Now, we can jump into some code examples.

Creating named functions

To define a named function in the header of your script, you can use the following syntax:

fun functionName(arg0, arg1, argN) = body

Once you’ve defined your named function in the header, you can call it from the body of the script

followed by (). If no parameters are needed, leave the parentheses empty. If parameters are required,

provide the values inside the parentheses. Here’s an example without parameters:

simple-fun.dwl

%dw 2.0

output application/dw

fun echo() = "Hello World"

echo() // outputs "Hello World"

Writing DataWeave scripts 211

This isn’t very useful if it’s just returning the same value without parameters. In that case, it’s better to

use a variable. Let’s add some parameters that return the value provided instead of a hardcoded message:

simple-fun-with-args.dwl

%dw 2.0

output application/dw

fun echo(msg) = msg

echo("Hello World") // outputs "Hello World"

Now we’re talking! We’ve created our first named function.

You can also assign default values to the parameters if needed. These are called optional parameters.

However, note that you can only have optional parameters at the end of the function definition; the

rest of the parameters need to be at the beginning. Simply put, optional parameters always have to be

at the right, inside the parentheses:

simple-fun-opt-args.dwl

%dw 2.0

output application/dw

fun echo(msg1, msg2 = "!") = msg1 ++ msg2 // ++ concatenates the
strings

{

 twoArgs: echo("Hello ", "World"), // outputs "HelloWorld"

 oneArg: echo("Hello") // outputs "Hello!"

}

Remember that we can also assign types to the parameters or the function itself. We’ll learn how to

add data types to the named functions later in this section when we talk about function overloading.

Now, let’s learn how lambdas work.

Creating anonymous functions (lambdas)

Why are lambdas called anonymous functions? Because they don’t have a name assigned to them.

In our previous example, we created a function called echo, but with lambdas, there’s no need to

associate the function with a name. Let’s see the syntax:

(arg0, arg1, argN) -> body

Learning DataWeave212

As you can see, you don’t need the fun keyword or the name of the function, just the parameters and

the body of the function. Because of this, you can’t create lambdas in the header of the script as you can

with named functions. You can, however, assign lambdas to variables or use them in the body of the

script. Let’s see how we can create the previously named function as a lambda inside a variable instead:

lambda-in-var.dwl

%dw 2.0

output application/dw

var echo = (msg1, msg2 = "!") -> msg1 ++ msg2 // ++ concatenates the
strings

{

 twoArgs: echo("Hello ", "World"), // outputs "HelloWorld"

 oneArg: echo("Hello") // outputs "Hello!"

}

We also mentioned that you can use lambdas from the body of the script. You can do this directly

in the body or as a parameter to another function. To use a lambda in the script’s body, you can use

the following syntax:

((arg0, arg1, argN) -> body)(arg0Value, arg1Value,

 argNValue)

In DataWeave, lambdas are mostly used as parameters to other functions and not so much in the body

of the script, but here’s an example of having the same functionality as before from the script’s body:

lambda-in-body.dwl

%dw 2.0

output application/dw

((msg1, msg2 = "!") -> msg1 ++ msg2)("Hello ", "World")

// outputs "Hello World"

This looks more complex than the rest of the examples because we aren’t just defining the lambda –

we’re also calling it right after we define it. In the rest of the examples, we defined the functions in the

header and called them in the body. In this example, we do both actions within the same line. This,

and the lack of reuse, is the reason why using lambdas in the body of a script isn’t popular.

Writing DataWeave scripts 213

Lambda functions are best for simple, concise operations that are used inline, while named functions

are preferable for complex logic, reusability, and improved readability. Choosing between the two

depends on the specific needs of your code and the balance you require between clarity and conciseness.

Later, we’ll how to call lambdas in a third way – from within a function. For now, let’s learn about

function overloading in DataWeave.

Using function overloading

In this section, we’ll talk about defining types for parameters and functions since we need them to

make use of function overloading. Let’s look at a quick code example. Then, we’ll analyze it further

to understand this concept:

fun-overloading.dwl

%dw 2.0

output application/dw

fun plus(str1: String, str2: String): String = str1 ++ str2

fun plus(num1: Number, num2: Number): Number = num1 + num2

fun plus(data1, data2): Null = null

{

 Strings: plus("Hello ", "World"), // "Hello World"

 Numbers: plus(1, 2), // 3

 Others: plus(1, "World") // null

}

In this example, we have three overloaded functions. We know they’re overloaded because they share

the same name – that is, plus – but their parameters’ types are different. Let’s take a closer look at

the first overloaded function (the third line from the previous script):

fun plus(str1: String, str2: String): String = str1 ++ str2

This function accepts two parameters: str1 and str2. They’re both of the String type; we know this

because they have a type assigned to them via str1: String and str2: String. The function

itself also has a type assigned to it, which is also String. We can see this after the parentheses and

before the = character:): String =. This function takes two strings and concatenates them as

one. Now, let’s see the second overloaded function:

fun plus(num1: Number, num2: Number): Number = num1 + num2

Learning DataWeave214

This function also accepts two parameters: num1 and num2. Both of these and the function itself are

of the Number type. This function uses the + operator to add the two numbers and return the results.

Finally, here’s the third overloaded function:

fun plus(data1, data2): Null = null

This function also accepts two parameters: data1 and data2. However, they don’t have any specific

type assigned to them. This means that the type they’re accepting is Any. Here, Any is the data type

that’s used to define all the data types. You could also explicitly assign this type to the two parameters

by writing (data1: Any, data2: Any) and it will work the same way. The function itself is

of the Null type, which means that it will always return a null value.

From this, you can see the advantages of using function overloading in your scripts. You can use the

same named function but with different parameters and get different results. In the previous examples,

all three of our functions contained two parameters, but you can add functions with more or fewer

parameters and that also works.

Important

The order in which you define overloaded functions matters. If you define the third function
(using Any) before the other two, this will be the only function that will run every time since
both String and Number are cataloged inside Any.

With that, we’ve learned how to define data types for our parameters and functions.

Note

To learn more about functions in DataWeave and find additional examples, please visit the
official documentation: https://docs.mulesoft.com/dataweave/latest/
dataweave-functions.

At this point, we understand some of the basic concepts of programming languages and how they

apply to DataWeave. However, we still need to understand flow control statements such as if/

else. But before we do that, let’s take a look at what selectors are in DataWeave and why they’re an

important concept.

Retrieving data with selectors

Previously, we mentioned that DataWeave is a transformational language. Often, there’s an input that

needs to be transformed into an output. Sometimes, we need to retrieve specific information from

that input, and we can achieve that with selectors. Let’s take a look at the most popular selectors:

• Single-value: This selector can be applied to data containing key-value pairs and is used to

retrieve the first value that matches the given key in the first level. Its syntax is <data>.key

or <data>."key" – the latter is used reserved characters or keywords are being used in the

https://docs.mulesoft.com/dataweave/latest/dataweave-functions
https://docs.mulesoft.com/dataweave/latest/dataweave-functions

Writing DataWeave scripts 215

name of the key. Here are some examples – pay close attention to SingleValue2 (which

only retrieves "value2", not "value2.1") and SingleValue4 ("key3.1" hasn’t

been found because it’s at a deeper level):

single-value-selector.dwl

%dw 2.0

output application/dw

var objExample = {

 key1: "value1",

 key2: "value2",

 key2: "value2.1", // note this key is repeated (key2)

 key3: {

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2"

 }

 }

}

{

 SingleValue1: objExample.key1, // "value1"

 SingleValue2: objExample.key2, // "value2"

 SingleValue3: objExample.key3,

 // {"key3.1":"value3.1","key3.2":{...}}

 SingleValue4: objExample."key3.1" // null

}

• Multi-value: This selector can be applied to data containing key-value pairs and is used to

retrieve an array with the value(s) that matches the given key in the first level. Its syntax

is <data>.*key or <data>."key" – the latter is used when reserved characters or

keywords are being used in the name of the key. Here are some examples – pay close attention

to MultiValue2 (which retrieves both values, not just one) and MultiValue4 ("key

3.1" hasn’t been found because it’s at a deeper level):

multi-value-selector.dwl

%dw 2.0

output application/dw

var objExample = {

 key1: "value1",

 key2: "value2",

 key2: "value2.1", // note this key is repeated (key2)

Learning DataWeave216

 key3: {

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2"

 }

 }

}

{

 MultiValue1: objExample.*key1, // ["value1"]

 MultiValue2: objExample.*key2, // ["value2","value2.1"]

 MultiValue3: objExample.*key3, // [{"key3.1":"value3.1", ...
}]

 MultiValue4: objExample.*"key3.1" // null

}

• Descendants: This selector can be applied to data containing key-value pairs and is used to

retrieve an array with the value(s) that matches the given key at any level. Its syntax is <data>..

key or <data>.."key" – the latter is used when reserved characters or keywords are being

used in the name of the key. Here are some examples – pay close attention to Descendants2

(which retrieves only the first value if there are two keys with the same name at the same level):

descendants-selector.dwl

%dw 2.0

output application/dw

var objExample = {

 key1: "value1",

 key2: "value2",

 key2: "value2.1", // note this key is repeated (key2)

 key3: {

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2"

 }

 }

}

{

 Descendants1: objExample..key1, // ["value1"]

 Descendants2: objExample..key2, // ["value2"]

 Descendants3: objExample..key3, // [{"key3.1":"value3.1",

 // ... }]

Writing DataWeave scripts 217

 Descendants4: objExample.."key3.1",

 // ["value3.1","value3.2"]

 Descendants5: objExample.."key3.2"

 // [{"key3.1":"value3.2"}]

}

• Key-value pair: This selector can be applied to data containing key-value pairs and is used to

retrieve key-value pairs that match the given key in the first level. Its syntax is <data>.&key

or <data>.&"key" – the latter is used when reserved characters or keywords are being used

in the name of the key. Here are some examples – pay close attention to KeyValuePair4

("key3.1" hasn’t been found because it’s at a deeper level):

key-value-pair-selector.dwl

%dw 2.0

output application/dw

var objExample = {

 key1: "value1",

 key2: "value2",

 key2: "value2.1", // note this key is repeated (key2)

 key3: {

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2"

 }

 }

}

{

 KeyValuePair1: objExample.&key1, // {key1:"value1"}

 KeyValuePair2: objExample.&key2,

 //{key2:"value2",key2:"value2.1"}

 KeyValuePair3: objExample.&key3, // {key3:{...}}

 KeyValuePair4: objExample.&"key3.1" // null

}

• Index: This selector can be applied to data to retrieve the given index (Number) from it.

Indexes start at 0 and can also be counted backward (that is, the last item is -1). Its syntax is

<data>[index]. Here are some examples:

index-selector.dwl

%dw 2.0

output application/dw

Learning DataWeave218

var objExample = {

 key1: "value1", // index 0 or -4

 key2: "value2", // index 1 or -3

 key2: "value2.1", // index 2 or -2

 key3: { //index 3 or -1

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2"

 }

 }

}

var arrExample = [

 1, // index 0 or -6

 "Hello", // index 1 or -5

 key1: "value1", // index 2 or -4

 {key2: "value2"}, // index 3 or -3

 [2, 3], // index 4 or -2

 [4, [5, [6, 7]]] // index 5 or -1

]

{

 Index1: objExample[0], // "value1"

 Index2: objExample[-1],

 //{"key3.1":"value3.1","key3.2":{...}}

 Index3: arrExample[1], // "Hello"

 Index4: arrExample[-1], // [4,[5,[6,7]]]

 Index5: "Hello"[-4] // "e"

}

• Range: This selector can be applied to data to retrieve the given range of indexes (Range) from

it. Indexes start at 0 and can also be counted backward (that is, the last item is -1). Its syntax

is <data>[index to index]. Here are some examples:

range-selector.dwl

%dw 2.0

output application/dw

var arrExample = [

 1, // index 0 or -6

 "Hello", // index 1 or -5

 key1: "value1", // index 2 or -4

 {key2: "value2"}, // index 3 or -3

 [2, 3], // index 4 or -2

 [4, [5, [6, 7]]] // index 5 or -1

Writing DataWeave scripts 219

]

{

 Range1: arrExample[0 to 3], // [1,"Hello",{key1:

 // "value1"},{key2:"value2"}]

 Range2: arrExample[-1 to 0], // [[4,[5,[6,7]]], ... 1]

 Range3: "Hello"[-1 to 0], // "olleH"

 Range4: "Hello World"[0 to 4], // "Hello"

 Range5: "Hello World"[0 to -1] // "Hello World"

}

There are more selectors you can use in DataWeave, but they might be more complex to understand.

For this book, we want to mention the simpler concepts to get you started. However, there are a few

more examples we want to show you so that you’re aware of their existence.

In the following example, we’ve made use of three different variables: objExample, arrExample,

and dynamicKey. First, let’s see the definition of objExample:

additional-selectors-examples.dwl

var objExample = {

 key1: "value1",

 key2: "value2",

 key2: "value2.1",

 key3: {

 "key3.1": "value3.1",

 "key3.2": {

 "key3.1": "value3.2",

 key2: "value2.2"

 }

 }

}

There are several key-value pairs and key3 contains nested key-value pairs. We’ll use these to demonstrate

which selectors work with nested values and which don’t. Next, we have the arrExample variable:

var arrExample = [

 1, // index 0 or -6

 "Hello", // index 1 or -5

 key1: "value1", // index 2 or -4

 {key2: "value2"}, // index 3 or -3

 [2, 3], // index 4 or -2

 [4, [5, [6, 7]]] // index 5 or -1

]

Learning DataWeave220

This is an array of different data types, such as numbers, strings, objects, and arrays. The last array

contains nested values to demonstrate how the selectors behave with them as well. Finally, we have

the dynamicKey variable:

var dynamicKey = "key1"

This will be used to demonstrate how to retrieve values using dynamic data, not just hardcoded data.

Next, we’ve created a function to retrieve a dynamic value to demonstrate this behavior:

fun getDynamicKey(value: Number | String): String =

 "key" ++ value

Now that we’ve defined our variables and functions, let’s see some examples of other selectors. First,

we have Example1:

{

 Example1: {

 MultiValue: objExample.*key2, // ["value2","value2.1"]

 Descendants: objExample..key2, // ["value2","value2.2"]

 Combined: objExample..*key2,

 // ["value2","value2.1","value2.2"]

 "Descendants-KeyValue": objExample..&key2 //

 [{"key2":"value2","key2":"value2.1"},

 {"key2":"value2.2"}]

 },

Here, you can see the differences between using the MultiValue selector and the Descendants

selector and how, by combining them, you can retrieve more values than using them separately. You

can also combine other selectors, such as the Descendants selector and key-value pair, to retrieve

not only the values but also the keys (if needed).

Next, we have Example2:

 Example2: {

 Object: objExample[-1][1][0], // "value3.2"

 Array: arrExample[-1][-1][-1][0], // 6

 },

Here, you can see how the index selector can be combined so that we can dive into the different levels

of the data.

Writing DataWeave scripts 221

Now, let’s see Example3:

 Example3: objExample[-1].."key3.1", //

 ["value3.1","value3.2"]

Here, you can see another example of combining different selectors to get the required data.

Finally, let’s look at Example4:

 Example4: {

 Dynamic1: objExample["key1"], // "value1"

 Dynamic2: objExample[dynamicKey], // "value1"

 Dynamic3: objExample[getDynamicKey(1)], // "value1"

 Dynamic4: objExample[getDynamicKey("1")] // "value1"

 }

}

In Example4, while not mentioned previously, you can see a glimpse of how the dynamic operator

can be used to retrieve data. You can pass different kinds of expressions to get the results you need.

Note

As mentioned previously, the purpose of this book is to get you started with the basic concepts.
There are more DataWeave selectors that we won’t be covering here. For a complete list, please
visit the following official documentation pages:

https://docs.mulesoft.com/dataweave/latest/dataweave-selectors

https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-
extract-data

With that, we’ve covered some of the most used selectors and you now have a better understanding of

how to retrieve specific data from an input source. With this knowledge, you can transform this data

further if needed. Now, let’s take a look at our final basic concept that’s also used in other programming

languages: how to create scopes and how to control the flow of code.

Understanding scopes and flow control

When you’re working on your transformations, you need to be able to control the flow of the code

– whether it goes down one path or another – depending on some conditions. You may already be

familiar with some of these operations from other programming languages. Using if/else is very

popular among the most popular languages and you may also be familiar with match/case (or

switch/case from other languages). We’ll also learn about the do keyword for creating scopes.

Let’s take a look at how to use these in DataWeave.

https://docs.mulesoft.com/dataweave/latest/dataweave-selectors
https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-extract-data
https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-extract-data

Learning DataWeave222

Adding conditions with if/else

Sometimes, you need to create different outputs or code depending on other information you might

receive as inputs. To create conditional statements or different routes for your data, you can use the

if/else operators with the following syntax:

if (condition) expression else expression

An important thing to notice is that an if condition should almost always contain an else expression.

This is because DataWeave knows there must be data being returned at all times. Recall that DataWeave

is a transformational language and there are no void functions. Data must always be returned in

every expression. Let’s take a look at an example:

simple-if-else.dwl

%dw 2.0

output application/dw

var age: Number = 25

if (age >= 21) "Adult"

else "Minor"

// returns "Adult"

Here, we can see that there will always be data being returned. It’s simple: if the age variable is

more than or equal to 21, then it’ll return "Adult"; if not, it’ll return "Minor". There’s a problem

with this example: what would happen if the age variable turns out to be a negative number? We

should return a different string. Let’s learn how to chain several conditions.

Chaining if/else statements

Following the previous example, we also want to verify that the given age is more than 0. Otherwise,

it’s invalid data. Previously, we mentioned that an if condition must include an else expression

to always return data, regardless of the conditions. This also applies to chained statements. Let’s see

the syntax:

if (condition) expression

else if (condition) expression

else

Writing DataWeave scripts 223

See how what previously was an else expression has turned into else if? The same rule applies.

You can keep adding else if statements, so long as there’s a final else expression to take care of

the data that doesn’t match any condition. Let’s see an example:

chained-if-else.dwl

%dw 2.0

output application/dw

var age: Number = -1

if (age >= 21) "Adult"

else if (age >= 0) "Minor"

else "Invalid data"

// returns "Invalid data"

Now, our age variable is -1 to test that our new functionality is working. Here, we can see it returns

"Invalid data" because it’s not greater than or equal to either 21 or 0.

Another important thing to notice is that the order of the conditions matters. If you were to swap

the first and second conditions’ orders, it wouldn’t work as expected. If our age was 25 but the first

condition was if (age >= 0) "Minor", then it would return "Minor" because 25 is greater

than or equal to 0.

Now, let’s see a case where an if operator can be alone without an else condition.

Conditioning key-value pairs with if

Let’s say we want to create an object but we want to dynamically decide to either show or hide certain

key-value pairs from the output object. In this case, we can make use of the if operator without

having to add an else condition. You can use the following syntax to achieve this:

(keyName: value) if condition

You just have to surround the key-value pair in parentheses and then add the if condition. If this

condition is met, then the key-value pair will be returned; otherwise, it won’t be shown. Let’s see

an example:

key-value-pair-if-condition.dwl

%dw 2.0

output application/dw

var value2 = 0

{

 key1: "value1",

Learning DataWeave224

 (key2: value2) if value2 != 0

}

// outputs {key1:"value1"}

Here, the key-value pair for key1 is correctly displayed in the output, but the key-value pair for key2

isn’t because our variable, value2, doesn’t meet the condition.

That’s it for using if/else statements. But that’s not the only way to create conditions or control the

flow. Let’s look at a different statement.

Using match/case for pattern matching

Some say this is a more elegant approach than if/else, but it’s also harder to understand if it’s the

first time you’re seeing syntax like this. The main difference between the two is that if isn’t necessarily

based on data. You can create statements and conditions with the data you choose. But match is

based on data. The conditions you create with match are for the data you first provided. Let’s see the

syntax so that we can look at an example:

data match {

 case condition -> expression

 case condition -> expression

 else -> expression

}

Let’s take our previous age example to understand how to use it with match statements:

simple-match-case.dwl

%dw 2.0

output application/dw

var age: Number = 25

age match {

 case a if a >= 21 -> "Adult"

 case a if a >= 0 -> "Minor"

 else -> "Invalid Data"

}

// outputs "Adult"

Granted, in this case, we’re using the if operator inside the match statement. It might look like

double the work but don’t underestimate the power of match/case statements. Pattern matching

is a more advanced topic with way more examples and other ways to use it that don’t necessarily

include the if operator. However, all these ways are beyond the scope of this book, which is to get

you started with the basics.

Writing DataWeave scripts 225

Note

To learn more and see examples of pattern matching in DataWeave with match/case statements,
please visit the official documentation: https://docs.mulesoft.com/dataweave/
latest/dataweave-pattern-matching.

With that, we’ve caught a glimpse of how pattern matching works in DataWeave and the differences

between using if/else and match/case.

Use if/else statements for straightforward conditions or Boolean checks when there are only a few

possibilities. Choose match/case for scenarios with multiple specific values or complex patterns

to enhance clarity and maintainability. Generally, prefer if/else for binary decisions and match/

case for more extensive, value-based branching.

Let’s finish this section by discovering how to create scopes.

Creating scopes with do

When we were learning about variables and functions, we mentioned we could use both local and global

variables, but we only saw how to use them in a global context (in the script’s header). This is where

we’ll finally learn how to create local scopes with the do operator. First, let’s take a look at the syntax:

do {

 header

 body

}

As you can see, we’ve created a whole new header and body section, but they only live inside this

expression. Any code outside of these curly braces can’t use what we define in this scope. The only

thing visible externally will be the output of what’s generated inside the scope. Let’s see an example:

local-context-do.dwl

%dw 2.0

output application/dw

fun sumtail(number: Number, result: Number = 0):

 Number = do {

 var newNumber = number - 1

 var newResult = result + number

 if (number > 0)

 sumtail(newNumber, newResult)

 else result

https://docs.mulesoft.com/dataweave/latest/dataweave-pattern-matching
https://docs.mulesoft.com/dataweave/latest/dataweave-pattern-matching

Learning DataWeave226

}

sumtail(255) // 32640

Here, we’re creating a local context inside the sumtail function. After adding the do operator

and opening the curly braces, we’re now inside a local context. We created two new variables called

newNumber and newResult, which are used in the body of the local context.

Note

There’s also a using operator that can be used instead of do, but this is an old operator that’s
only supported for backward compatibility, so we don’t recommend you learn about using
unless it’s for a previous Mule runtime version.

You can use not only the do operator inside a function definition, as we just did, but also to create

contexts in several settings. It can be used inside variables, in a script’s body, or inside other functions

you’re calling (which is one of the most used cases).

You can also create more contexts inside contexts if your use case requires it, but we strongly recommend

against it. The cleaner your code looks, the easier it is to maintain for other developers. It can also lead

to the creation of spaghetti code. This is the last thing we want since it can lead to more human error.

Note

To learn more about the do, if, and else operators in DataWeave and to find additional
examples, please visit the official documentation:

https://docs.mulesoft.com/dataweave/latest/dw-operators#scope-
and-flow-control-operators

https://docs.mulesoft.com/dataweave/latest/dataweave-flow-control

With that, we understand the basic concepts of the DataWeave language and how to perform some

basic things, such as creating and using functions and variables, using operators and selectors, creating

local scopes, and making use of flow control operators.

Summary

In this chapter, we learned that DataWeave is a functional programming language and that a script has

two sections: a header and a body. In the header, we keep global variables or functions, and additional

directives to specify input, output, DataWeave version, and other information. In the body, we write

the code that will be executed.

https://docs.mulesoft.com/dataweave/latest/dw-operators#scope-and-flow-control-operators
https://docs.mulesoft.com/dataweave/latest/dw-operators#scope-and-flow-control-operators
https://docs.mulesoft.com/dataweave/latest/dataweave-flow-control

Questions 227

Then, we learned two different ways to add comments to our code: in a single line (with //) or in

multiple lines (with /*…*…*/).

There are simple, composite, and complex data types. However, we only listed the simple (string,

Boolean, number, regex, null, date, and time-related) and composite (array and object) ones to

understand the basic or most used types.

We also listed some of the most popular data formats, such as CSV, DW, Java, JSON, and XML, to

get a better understanding of what these formats look like and how they’re used in DataWeave to

transform data.

Afterward, we learned about several operators and their categories: mathematical, equality and

relational, logical, and prepend and append. We saw different examples of each to see how they can

be used with different data types.

Then, we talked about what variables are in DataWeave and how to define them with the var keyword.

We defined a simple variable, assigned a data type to it, and then assigned a lambda function to it.

Next, we talked about what functions are in DataWeave and how to define them with the fun keyword.

We can create named functions, assign data types to the function itself or its parameters, and define

optional parameters. Following this, we learned what lambdas are (anonymous functions) and how

to create them, and also saw examples of function overloading, before learning about several selectors

and how to use them to retrieve data from an input source.

Finally, we learned how to add conditions and chain them with if/else statements, how to condition

key-value pairs with the if operator, how to use match/case for pattern matching, and how to

create scopes with the do operator.

In the next chapter, we’ll expand our DataWeave knowledge from the basics to learning how to use

DataWeave’s functions and modules while considering practical use cases and understanding how to

use DataWeave in Anypoint Studio.

Questions

Take a moment to answer the following questions, which serve as a recap of what you learned in

this chapter:

1. How do you specify the DataWeave version inside a script if you’re using version 2.4?

2. What operators can you use to add or remove values to/from an array?

3. How can you define and call a global variable named hello of the String type with the

"Hello World" value?

4. How can you define and call a global function named sum of the Number type that accepts

two parameters (both of the Number type) and outputs the addition of both parameters?

Learning DataWeave228

5. Create a function called order of the String type that accepts one parameter of the String

type called original. Open a local context inside the function and create a local variable

called new of the String type that reverses original (hint: use selectors). In the body

of the local context – inside the variable – create some logic to return the following strings:

A. <original> goes after <new>: When the value of new goes first in alphabetical order

B. <original> goes before <new>: When the value of original goes first in

alphabetical order

C. <original> is a palindrome: When it’s a palindrome, meaning the original

value and the reversed value are still the same string

Hint: Use ++ to concatenate values and remember to use operators.

Answers

1. Use %dw 2.0 in the script’s header; only major versions have to be provided, not minor versions.

2. Addition (+), subtraction (-), prepend (>>), and append (<<).

3. It can be defined as follows:

var hello: String = "Hello World"

hello

4. It can be defined as follows:

fun sum(p1: Number, p2: Number): Number = p1 + p2

sum(1,2)

5. Solution 1 – using if/else:

fun order(original: String): String = do {

 var new: String = original[-1 to 0]

 if (original > new) original ++ " goes after " ++ new

 else if (original < new) original ++ " goes before " ++ new

 else original ++ " is a palindrome"

}

order("abc")

Answers 229

Solution 2 – using match/case:

fun order(original: String): String = do {

 var new: String = original[-1 to 0]

 original match {

 case o if o > new -> o ++ " goes after " ++ new

 case o if o < new -> o ++ " goes before " ++ new

 else -> original ++ " is a palindrome"

 }

}

order("kayak")

7
Transforming with DataWeave

In the previous chapter, we learned the very basics of DataWeave, including how to use functions,

variables, conditions, operators, and selectors, but we didn’t see any transformation examples. In this

chapter, we are going to learn about DataWeave modules and some of the most used functions in real

life. We will cover the following topics:

• Understanding modules in DataWeave

• Using the DataWeave core functions

• Using the Transform Message component in Anypoint Studio

We cannot cover absolutely everything that you can do with DataWeave, but we will provide a guide

so you can get familiar with the functions that are widely used by developers in real life. Even if you

are already familiar with DataWeave, maybe there are some popular functions you want to learn

more about, such as map and reduce. This chapter will provide additional tips and tricks for your

development experience.

Remember, DataWeave is a functional programming language. Some of these functions might

look familiar to you if you come from a functional programming background. If you’re new to this

programming paradigm, then this chapter is great for you to get started with DataWeave’s syntax

and use cases.

Technical requirements

You will need the following technical requirements for this chapter.

• An internet browser: Google Chrome will be used throughout this chapter for the DataWeave

Playground, located at https://developer.mulesoft.com/learn/dataweave/.

To learn how to use the DataWeave Playground, you can follow this guide: https://

developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-

dataweave-with-the-dataweave-playground-getting-started/.

https://developer.mulesoft.com/learn/dataweave/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/learn-dataweave-with-the-dataweave-playground-getting-started/

Transforming with DataWeave232

• Anypoint Studio: Make sure you have Studio installed on your computer. We’ll mostly practice

using the DataWeave Playground, but it’s also good for you to know how to use DataWeave

from Studio. Download Studio from https://mulesoft.com/studio. Instructions to

download Studio were already provided, in Chapter 3.

• GitHub repository: It’s not required for you to open this repository, but it’ll be easier for you to

copy and paste the examples and scripts. You can access it through the following link: https://

github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-

Second-Edition/tree/main/Chapter7.

Understanding modules in DataWeave

Some programming languages make use of libraries to import functions or methods from other pieces

of code. This is helpful to reuse complex functionality that was written by someone else instead of

trying to reinvent the wheel and wasting precious development time while trying to develop the code

yourself. In DataWeave, these libraries of code are called modules. You can either use other existing

DataWeave modules or create your own custom modules, which we will see later, in the Using the

Transform Message component in Anypoint Studio section.

Let’s see the syntax to import these modules in DataWeave.

Importing modules and functions

There are several ways of importing modules or functions to your DataWeave scripts, depending on

your preference. But all of them make use of the import keyword and must be located within the

header of your script. Let’s see some examples:

• Import the whole module: You can import the whole module in your script’s header and reference

the function with its specified module from your script’s body. This is the syntax for doing so:

import-example-1.txt

import Module

Module::function()

This is cleaner to look at from the script’s header, but it makes it look busier in the script’s body.

https://mulesoft.com/studio
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/tree/main/Chapter7
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/tree/main/Chapter7
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/tree/main/Chapter7

Understanding modules in DataWeave 233

• Import all functions: Another way is to import all the functions from a module and then

directly reference the function from the script’s body. This is the syntax for doing so:

import-example-2.txt

import * from Module

function()

Now, it might look busier in the script’s header, but the script’s body looks cleaner. However,

this might make it difficult for new developers to understand where your function is coming

from, especially if they are not familiar with the different available DataWeave modules and

you have several modules being imported in the same script.

• Import specific functions: To make things more explicit, you can import specific functions

from each module, like so:

import-example-3.txt

import function from Module

function()

Now, everyone will be able to see where each function comes from. Plus, if you’re working on

a very big and heavy project, making these little adjustments to the code might help with the

performance of the Mule application.

You can also import several functions from the same module by separating them with a comma.

See the following example:

import-example-4.txt

import function1, function2, function3 from Module

function1()

• Precedence: If you have more than one function with the same name but from different modules,

whichever function/module was defined first will take precedence. See the following example:

import-example-5.txt

import function from Module1

import function from Module2

function() // from Module1

Transforming with DataWeave234

If you end up with something like this and want to make things less confusing, you can import

just the module and not the functions. This will help you to clearly see which module the

function is being used from:

import-example-6.txt

import Module1

import Module2

Module2::function()

• Create aliases: Alternately, if you want to create an alias for your functions or modules, you

can use the as keyword followed by the alias. Here’s the syntax:

import-example-7.txt

import Module1 as Mod1 // alias Mod1 for Module1

import function1 as f1 from Module2 // alias f1 for function1

import function2 as f2, function3 as f3 from Module3

 // aliases f2 and f3 for functions from the same

 // module (Module3)

// Mod1::function

// f1()

// f2()

f3()

• Import from folders: Finally, when you have modules separated by :: and you want to import

the whole module, you don’t need to reference the whole path in the script’s body, only the

module name. Here’s what this syntax looks like:

import-example-8.txt

import folder1::folder2::Module

Module::function()

We are done understanding how to import modules or functions in DataWeave. Let’s now talk about

some of the existing modules you can find in DataWeave so you don’t have to create code from scratch.

Understanding modules in DataWeave 235

Analyzing the existing DataWeave modules

In this section, we can get a glimpse of what modules are available so you can have a better idea of

them. Here’s a list of some of the existing DataWeave modules:

• dw::Core: We will talk more about this module in the next section.

• dw::core::Arrays: Here, you can find functions to work with the Array type (defined by

[]). Some functions are countBy, every, join, slice, and splitAt.

• dw::core::Binaries: Here, you can find functions to work with the Binary type.

Its functions are fromBase64, fromHex, readLinesWith, toBase64, toHex,

and writeLinesWith.

• dw::core::Dates: Here, you can find functions to work with the Date type. Some functions

are atBeginningOfWeek, dateTime, today, tomorrow, and yesterday.

• dw::core::Numbers: Here, you can find functions to work with the Number type. Its

functions are fromBinary, fromHex, fromRadixNumber, toBinary, toHex,

and toRadixNumber.

• dw::core::Objects: Here, you can find functions to work with the Object type (defined by

{}). Some functions are divideBy, keySet, mergeWith, takeWhile, and valueSet.

• dw::core::Periods: Here, you can find functions to work with the Period type (defined

by |P<...>|). Some functions are between, days, duration, months, and years.

• dw::core::Strings: Here, you can find functions to work with the String type (defined

by ""). Some functions are camelize, capitalize, dasherize, isAlphanumeric,

isLowerCase, pluralize, substring, and words.

• dw::core::Types: Here, you can find functions to work with data types. Some functions

are arrayItem, functionParamTypes, functionReturnType, isBooleanType,

literalValueOf, and nameOf.

• dw::core::URL: Here, you can find functions to work with URIs. Its functions are

compose, decodeURI, decodeURIComponent, encodeURI, encodeURIComponent,

and parseURI.

• dw::Crypto: Here, you can find functions to encrypt data through common algorithms. Its

functions are HMACBinary, HMACWith, MD5, SHA1, and hashWith.

• dw::Mule: Here, you can find functions to interact with the Mule runtime. Its functions are

causedBy, lookup, and p.

• dw::Runtime: Here, you can find functions to interact with the DataWeave runtime. Some

functions are eval, fail, orElseTry, props, run, try, and wait.

• dw::System: Here, you can find functions to interact with the operating system. Its functions

are envVar and envVars.

Transforming with DataWeave236

• dw::util::Math: Here, you can find functions to make use of mathematical functions.

Its functions are acos, asin, atan, cos, log10, logn, sin, tan, toDegrees,

and toRadians.

• dw::util::Timer: Here, you can find functions to measure time. Its functions are

currentMilliseconds, duration, time, and toMilliseconds.

• dw::util::Tree: Here, you can find functions to handle tree structures. Some functions

are filterArrayLeafs, filterTree, mapLeafValues, and nodeExists.

• dw::util::Values: Here, you can find functions to make changes to certain values. Its

functions are attr, field, index, mask, and update.

Note

At the time this book is being written, the latest DataWeave version is 2.8. If there are more
advanced versions by the time you read this chapter, you may want to take a look at the
release notes to see what changes were implemented. To review this, you can use the following
link: https://docs.mulesoft.com/dataweave/latest/whats-new-in-dw.

To find the complete list of modules and their corresponding functions, please refer to the
official documentation: https://docs.mulesoft.com/dataweave/latest/
dw-functions.

As you can see, there is a wide variety of modules you can take advantage of instead of having to come

up with the most efficient way of doing something. We can’t discuss all the modules, but we will focus

on the Core module and its most used functions.

Using the DataWeave Core functions

These functions come from the dw::Core module but there’s no need to explicitly import it into

your script. All of these functions are added to DataWeave by default so you can make use of them

right away.

We will mention whether the functions are null-safe. This means that you can send a null value as

the input and it won’t result in a DataWeave error. Instead, it will simply give a null value in return

so you can handle the data in further steps.

One important thing for you to understand about calling functions with two parameters is that you

can use two different syntaxes to call them. This only applies to two-parameter functions. The syntaxes

are as follows:

• Prefix notation, which looks like this:

function(arg0, arg1)

https://docs.mulesoft.com/dataweave/latest/whats-new-in-dw
https://docs.mulesoft.com/dataweave/latest/dw-functions
https://docs.mulesoft.com/dataweave/latest/dw-functions

Using the DataWeave Core functions 237

• Infix notation, which looks like this:

arg0 function arg1

You can choose whichever notation or syntax you feel more comfortable with, but most people prefer to

use the infix notation whenever possible because the functions become easier to understand (without

all the parentheses). This is especially helpful when working with functions that make use of lambdas

as one of their parameters, such as map, for example. We will make use of the infix notation only

when we have two-parameter functions.

We talked about lambdas – or anonymous functions – in the previous chapter. However, we haven’t

learned how to use them as another function’s parameter. We will see some examples throughout this

chapter, especially with the functions for objects and arrays. To give you a quick reminder, this is the

syntax to use map (with the infix notation), which we will see later in the chapter in the Transforming

arrays section:

<Array> map ((value, index) -> <code>)

The first parameter is the array we use as input and the second parameter is a lambda with the

value and index parameters. We can then create the transformation code to make use of these

two parameters inside the lambda.

There is another syntax to use lambdas in DataWeave: the dollar-sign syntax. This is helpful with

functionality or functions that may be more straightforward than creating the whole lambda expression.

The number of dollar signs represents the number of the parameter in the lambda. For example,

when using map, we have two parameters in the lambda: value and index. Since value is the

first parameter, it’d be represented with $, while index would be represented with $$. You can now

use these characters in the lambda code instead of having to explicitly declare both parameters in the

lambda expression. This syntax would change to the following:

<Array> map (<code>)

We will see some more examples when talking about the functions to transform objects and arrays.

In the following sections, we will learn how to transform different data types, such as numbers, strings,

objects, and arrays. We will see an overview of some of the most used functions for each specific data

type and brief examples to see how these functions work.

Let’s start with some functions that can be applied to more than two data types.

Transforming with DataWeave238

Transforming multiple types

Let’s first look at some of the functions that can be used with various data types or no parameters as

they are more general:

• ++ (plus plus): This function is used to concatenate two given parameters. It can be used with

Array, String, Object, or some of the Date and Time-related types. For example, [1, 2] ++

[3, 4] results in [1, 2, 3, 4].

• now: This function is used to generate a DateTime data type with the information from today’s

date and time. For example, now() can result in |2024-09-15T15:06:37.953742Z|.

• random: This function is used to generate a random number from 0.0 to 1.0. For example,

random() can result in 0.5071719753789186.

• read: This function is used when DataWeave can’t determine the type of format that is being

parsed. For example, read("[1, 2, 3]", "application/json") results in [1, 2,

3]. Note that the array is first passed as a string and is then transformed into an actual array.

• readUrl: This function is used to retrieve the data from a URL and parse it to the given data

format. For example, readUrl("https://jsonplaceholder.typicode.com/

posts/1", "application/json") results in the JSON data retrieved from the URL.

• sizeOf: This function is used to retrieve a number with the size of the given parameter. It

can be used with Array, String, Object, and Null (null-safe). For example, sizeOf([0, 1,

2, 3]) results in 4.

• typeOf: This function is used to retrieve the type of the given parameter. It can be used with

any data type – which makes it null-safe. For example, typeOf("abc") results in String,

typeOf(typeOf("abc")) results in Type, and typeOf(sizeOf) results in Function.

• uuid: This function is used to generate a Universally Unique Identifier (UUID). For example,

uuid() can result in "ffe58a18-06d9-47f5-be1e-c6fb1e7cf197".

• with: This is a helper function that is used along with other functions, such as replace,

update, or mask. We will see some of these main functions later in this chapter, in the

Transforming strings section. For example, "hello world" replace "world" with

"muley!" results in "hello muley!".

We listed some of the functions previously, but there are more functions that we’ll look at separately

because they are more complex, starting with the isEmpty function.

Using the DataWeave Core functions 239

isEmpty

This function returns a Boolean indicating whether the given parameter is empty or not. It can be

used with Array, String, Object, and Null (null-safe). Let’s see some examples:

isEmpty.dwl

%dw 2.0

output application/dw

{

 Array: isEmpty([]), // true

 String: isEmpty(""), // true

 Object: isEmpty({}), // true

 Null: isEmpty(null) // true

}

If there were at least one item in the array, at least one character in the string, or at least one key-value

pair in the object, the result would be false – indicating the provided parameter is not empty.

Tip

You can use the default keyword to set default values in certain transformations when
a null value is received. For empty values ([], {}, or ""), however, it is better to use
the isEmpty function. To learn more about the default keyword, see the official
documentation: https://docs.mulesoft.com/dataweave/latest/dataweave-
cookbook-defaults#example-of-using-the-keyword-default-to-set-
a-default-value.

log

This function doesn’t affect any values or transform any data. This is used to debug the DataWeave

code and log certain values to a console or the LOG VIEWER tab in the DataWeave Playground. It

is very helpful especially when you have long pieces of code and you want to see what’s happening in

specific steps within it. See the following example:

log.dwl

%dw 2.0

output application/json

[1, 2, 3] map log($)

https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-defaults#example-of-using-the-keyword-default-to-set-a-default-value
https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-defaults#example-of-using-the-keyword-default-to-set-a-default-value
https://docs.mulesoft.com/dataweave/latest/dataweave-cookbook-defaults#example-of-using-the-keyword-default-to-set-a-default-value

Transforming with DataWeave240

In this case, we’re using the map function just to demonstrate (we will talk more about this function

in the Transforming arrays section). This code is iterating through the input array and logging each

item in the console. From the DataWeave Playground, it would look like this:

Figure 7.1: View from the DataWeave Playground

There is not a way to formally debug DataWeave code yet but using this function is a close workaround.

For example, you can use console.log in JavaScript to achieve the same functionality.

then

This is a helper function that is more useful in larger code. It essentially replaces the use of parentheses

for certain use cases. For example, consider the following code:

[1, 2] + [3] // [1, 2, [3]]

You have an array of numbers (1 and 2) and then add a third item [3]. This results in an array

containing both numbers and arrays. Let’s say you wanted to flatten this array to be just an array of

numbers ([1, 2, 3]). To achieve this, you can use the flatten function, which we will see in

detail in the Transforming arrays section, but you need to surround the whole code in parentheses in

order to use it, like so:

flatten([1, 2] + [3]) // [1, 2, 3]

Using the DataWeave Core functions 241

It doesn’t seem like a big deal now because we just have a line of code, but when you have thousands

of lines and lots of other parentheses, it gets harder to identify exactly where to start. This is where

the then function comes in handy:

then.dwl

%dw 2.0

output application/json

[1, 2] + [3] then flatten($) // [1, 2, 3]

The result from the previous execution gets passed after the then function is called and becomes a

lambda. We will learn how to use lambdas as a parameter to another function in the Transforming

objects and Transforming arrays sections. For now, you can see the difference in the syntax and why

using then can be better than adding surrounding parentheses to the code.

Now that we know some of the more general functions, let’s look at the functions that are specifically

for transforming numbers.

Transforming numbers

These functions work specifically for the Number data type. Remember that a number in DataWeave

can be either a decimal or integer number. For example, say you have a decimal number such as 5.6

that you want to round up to the nearest number; so, you’d transform it to 6.

The functions are as follows:

• abs: This function is used to retrieve the absolute value of a given number. For example,

abs(-9) results in 9.

• ceil: This function is used to round up the value of a given decimal number. For example,

ceil(5.1) results in 6.

• floor: This function is used to round down the value of a given decimal number. For example,

floor(7.9) results in 7.

• isDecimal: This function is used to indicate whether a given number is a decimal value or

not. It returns true if the parameter is a decimal number or false if it isn’t. For example,

isDecimal(4.5) results in true and isDecimal(4) results in false.

• isEven: This function is used to indicate whether a given number is an even value or not. It

returns true if the parameter is an even number or false if it isn’t. For example, isEven(4)

results in true and isEven(5) results in false.

Transforming with DataWeave242

• isInteger: This function is used to indicate whether a given number is an integer value or

not. It returns true if the parameter is an integer number or false if it isn’t. For example,

isInteger(5) results in true and isInteger(5.5) results in false.

• isOdd: This function is used to indicate whether a given number is an odd value or not. It

returns true if the parameter is an odd number or false if it isn’t. For example, isOdd(3)

results in true and isOdd(2) results in false.

• mod: This function is used to retrieve the modulo of a given dividend (first parameter) and

divisor (second parameter). This is the remainder of dividing the two parameters. For example,

5.5 mod 5 results in 0.5.

• pow: This function is used to retrieve the result of raising a given base number (first parameter)

to a given power (second parameter). For example, 5 pow 3 results in 125.

• randomInt: This function is used to retrieve a random integer from 0 to the given number

(excluding the given number). For example, randomInt(5) can result in 0, 1, 2, 3, or 4.

• round: This function is used to round up or down the value of a given decimal number into the

nearest whole number. For example, round(4.1) results in 4 and round(4.5) results in 5.

• sqrt: This function is used to retrieve the square root of a given number. For example,

sqrt(100) results in 10.

• to: We mentioned this function briefly in the previous chapter when we talked about ranges.

This function is used to retrieve a range that falls within the two given numbers (including

both numbers). For example, 1 to 5 results in [1, 2, 3, 4, 5]. Note that this result

is not an array of numbers but a Range type.

We now know some of the functions we can use to transform numbers. Let’s continue with the

functions for strings.

Transforming strings

These functions work specifically for the String data type. Remember that, in DataWeave, a string is

conformed by using quotes around it. For example, say you have a string such as "hello" that you

want to transform into all uppercase to be "HELLO".

The functions are as follows:

• contains: This function is used to indicate whether a given string (first parameter) contains

a given string or a regular expression (second parameter). It returns true if it does or false

if it doesn’t. For example, "Hello world!" contains "hi" results in false and

"Hello world!" contains /\w+ \w+!/ results in true. This is a null-safe function

– null contains "a" returns false.

Using the DataWeave Core functions 243

• endsWith: This function is used to indicate whether a given string (first parameter) ends

with a given string (second parameter). It returns true if it does or false if it doesn’t. For

example, "Hello world!" endsWith "orld!" results in true. This is a null-safe

function – null endsWith "a" returns false.

• find: This function is used to find the indexes of a given string or regular expression (second

parameter) from the given string (first parameter). If no match is found, it returns an empty

array. For example, "Hello world!" find "o" results in [4, 7]. This is a null-safe

function – null find "o" returns [].

• indexOf: This function is used to find the first index of a given string (second parameter) from

the given string (first parameter). If no match is found, it returns -1. For example, "Hello

world!" indexOf "o" results in 4. This is a null-safe function – null indexOf "o"

returns -1.

• isBlank: This function is used to indicate whether a given string is blank (including empty

spaces or null values). It returns true if it is or false if it isn’t. For example, isBlank

(" ") results in true but isBlank(" a") is false.

• lastIndexOf: This function is used to find the last index of a given string (second parameter)

from the given string (first parameter). If no match is found, it returns -1. For example,

"Hello world!" lastIndexOf "o" results in 7. This is a null-safe function – null

lastIndexOf "o" returns -1.

• lower: This function is used to transform the given string to lowercase. For example,

lower("Hello") results in "hello". This is a null-safe function – lower(null)

returns null.

• match: This function is used to retrieve the matches of a given regular expression (second

parameter) from the given string (first parameter). If no match is found, it returns []. Note

that you will receive more items if your regular expression is separated into capture groups.

For example, "Hello world!" match /\w+ \w+!/ results in ["Hello world!"]

and "Hello world!" match /(\w+) (\w+)!/ results in ["Hello world!",

"Hello", "world"]. This is a null-safe function – null match /\w+/ returns null.

• matches: This function is used to indicate whether a given string (first parameter) matches

a given regular expression (second parameter). It returns true if there is a match or false

if there isn’t. For example, "Hello world!" matches /\w+ \w+!/ results in true.

This is a null-safe function – null matches /\w+/ returns false.

• replace: This function is used to replace a given string or regular expression (second parameter)

from the given string (first parameter). If no match is found, it returns the original string. The

with function is used along with replace. For example, "Hello world!" replace

"world" with "team" results in "Hello team!". This is a null-safe function – null

replace "a" with "b" returns null.

Transforming with DataWeave244

• scan: This function is used to retrieve all the matches of a given regular expression (second

parameter) from the given string (first parameter). If no match is found, it returns []. Note

that you will receive more items if your regular expression is separated into capture groups. For

example, "Hello world!" scan /\w+/ results in [["Hello"], ["world"]].

This is a null-safe function – null scan /\w+/ returns null.

• splitBy: This function is used to split a given string (first parameter) into an array of strings,

separated by the given string or regular expression (second parameter). For example, "a b c"

splitBy " " results in ["a","b","c"]. This is a null-safe function – null splitBy

" " returns null.

• startsWith: This function is used to indicate whether a given string (first parameter) starts

with a given string (second parameter). It returns true if it does or false if it doesn’t. For

example, "Hello world!" startsWith "Hello" results in true. This is a null-safe

function – null startsWith "a" returns false.

• trim: This function is used to remove blank spaces at the beginning or the end of a given

string. For example, trim(" Hello world ") results in "Hello world". This is a

null-safe function – trim(null) returns null.

• upper: This function is used to transform the given string to uppercase. For example,

upper("Hello") results in "HELLO". This is a null-safe function – upper(null)

returns null.

We now know some of the functions we can use to transform strings. Let’s continue with the functions

for objects.

Transforming objects

These functions work specifically for the Object data type. Remember that, in DataWeave, an object

is made up of key-value pairs and it’s surrounded by curly brackets. For example, in {a: "b", c:

"d"}, a and c are keys and "b" and "d" are values.

The functions are as follows:

• -- (minus minus): This function is used to remove key-value pairs (second parameter) from

the given object (first parameter). As the second parameter, you can send a key-value pair, an

array of strings, or an array of keys. For example, considering the same input (first parameter)

{a: "b", c: "d"}, you can achieve the same output {c: "d"} with both -- {a:

"b"} and -- ["a"]. This is a null-safe function.

• distinctBy: This function is used to remove duplicate key-value pairs from the given object.

The second parameter of this function is a lambda with the value and key parameters. For

example, {a: "b", c: "d", a: "b"} distinctBy $ results in {a: "b", c:

"d"}. This is a null-safe function.

Using the DataWeave Core functions 245

• entriesOf: This function is used to describe the key-value pairs from a given object.

For example, entriesOf({a: "b"}) results in [{ key: "a", value: "b",

attributes: {} }]. This is a null-safe function.

• filterObject: This function is used to filter the key-value pairs from the given object. The

second parameter of this function is a lambda with the value, key, and index parameters.

For example, {a: "b", c: "d"} filterObject $$ ~= "a" results in {a: "b"}.

This is a null-safe function.

• keysOf: This function is used to retrieve the keys from a given object. Note that this returns

an array of keys. For example, keysOf({a: "b", c: "d"}) results in ["a", "c"].

This is a null-safe function.

• mapObject: This function is used to transform the key-value pairs from the given object. The

second parameter of this function is a lambda with the value, key, and index parameters.

For example, {a: "b", c: "d"} mapObject {($): $$} results in {b: "a", d:

"c"}. This is a null-safe function.

• namesOf: This function is used to retrieve the names of the keys from a given object. Note

that this returns an array of strings. For example, namesOf({a: "b", c: "d"}) results

in ["a", "c"]. This is a null-safe function.

• pluck: This function is used to transform the key-value pairs from the given object into an

array. The second parameter of this function is a lambda with the value, key, and index

parameters. For example, {a: "b", c: "d"} pluck upper("$$:$") results in

["A:B", "C:D"]. This is a null-safe function.

• valuesOf: This function is used to retrieve the values from a given object. For example,

valuesOf({a: "b", c: "d"}) results in ["b", "d"]. This is a null-safe function.

We now know some of the functions we can use to transform objects. Let’s continue with the functions

for arrays.

Transforming arrays

These functions work specifically for the Array data type. Remember that, in DataWeave, an array

is conformed by using square brackets around it. For example, [1, 2, 3] is an array of numbers

and ["a", "b", "c"] is an array of strings.

The functions are as follows:

• -- (minus minus): This function is used to remove items (second parameter) from the given

array (first parameter). As the second parameter, you can send an array containing the items

you want to remove from the original array. For example, [1, 2, 3] -- [1, 2] results

in [3]. This is a null-safe function.

Transforming with DataWeave246

• avg: This function is used to retrieve the average of the given array of numbers. For example,

avg([1, 2, 3]) results in 2.

• contains: This function is used to indicate whether a given array (first parameter) contains

a given item (second parameter). It returns true if it does or false if it doesn’t. For example,

[1, 2, 3] contains 1 results in true. This is a null-safe function.

• distinctBy: This function is used to remove duplicate items from the given array. The second

parameter of this function is a lambda with the item and index parameters. For example,

[1, 2, 1] distinctBy $ results in [1, 2]. This is a null-safe function.

• filter: This function is used to filter the items from the given array. The second parameter

of this function is a lambda with the item and index parameters. For example, [1, 2, 3]

filter isEven($) results in [2]. This is a null-safe function. Note that this function can

also be used with strings instead of arrays, although it’s not very popular to use it with strings.

• find: This function is used to find the indexes of a given item (second parameter) from the

given array (first item). If no match is found, it returns an empty array. For example, [1, 2,

1] find 1 results in [0, 2]. This is a null-safe function.

• flatten: This function is used to flatten nested subarrays into one array. Note that it only

works with the first level of subarrays. For example, flatten([1, [2], [3, [4]]])

results in [1, 2, 3, [4]]. This is a null-safe function.

• indexOf: This function is used to find the first index of a given item (second parameter) from

the given array (first parameter). If no match is found, it returns -1. For example, [1, 2,

1] indexOf 1 results in 0. This is a null-safe function.

• joinBy: This function is used to join a given array of strings (first parameter) into a new string,

separated by the given string (second parameter). Note this is the opposite of splitBy. For

example, ["a","b","c"] joinBy " " results in "a b c". This is a null-safe function.

• lastIndexOf: This function is used to find the last index of a given item (second parameter)

from the given array (first parameter). If no match is found, it returns -1. For example, [1,

2, 1] lastIndexOf 1 results in 2. This is a null-safe function.

• max: This function is used to find the highest-value item from the given array. For example,

max([8, 3, 5]) results in 8. Note that you can also use the maxBy function if you want

to create custom mappings by using a lambda.

• min: This function is used to find the lowest-value item from the given array. For example,

min([8, 3, 5]) results in 3. Note that you can also use the minBy function if you want

to create custom mappings by using a lambda.

• orderBy: This function is used to reorder the items from a given array. The second parameter

of this function is a lambda with the item and index parameters. For example, ["c", "b",

"d", "a"] orderBy $ results in ["a","b","c","d"]. This is a null-safe function.

Note that this function can also be used with objects.

Using the DataWeave Core functions 247

• sum: This function is used to sum the items from the given array of numbers. For example,

sum([1, 2, 3]) results in 6.

We listed some of the functions previously, but there are three more complex functions that we’ll look

at separately, starting with the groupBy function.

groupBy

This function is used to group the given items by specific criteria. The second parameter of this

function is a lambda with the item and index parameters. This is a null-safe function. Note that

this function can also be used with strings or objects instead of arrays, although it’s not very popular

to use it this way.

Let’s see an example that is used a lot in real-life scenarios. Consider the next variable that we’ll use

as the input array in our groupBy function:

groupBy.dwl

var arrayObject = [

 {

 id: 1,

 name: "alex",

 email: "alex@fakeemail.com"

 },

 {

 id: 2,

 name: "akshata",

 email: "akshata@fakeemail.com"

 },

 {

 id: 3,

 name: "arul",

 email: "arul@fakeemail.com"

 }

]

It’s an array of objects containing data such as id, name, or email. Say we want to retrieve the

information from a specific email, for example, arul@fakeemail.com. There are two main ways

to achieve this: one with the filter function and one with the groupBy function. The filter

approach is more straightforward: you can just filter the data by the email that matches the string,

as follows:

arrayObject filter $.email == "arul@fakeemail.com"

Transforming with DataWeave248

However, if you were to do this operation (filter data by email) several times within the same script, it

would cost you more resources because every time you use filter, the function reads the complete

array to return the filtered data. To avoid this, you can group the data by email and then just retrieve

the data you need with a selector. For example, let’s create another variable with the grouped data:

var groupedByEmail = arrayObject groupBy $.email

Now, instead of having an array of objects, we have an object containing the emails as the first key

and the value of each key would be the corresponding data, such as the following:

{

 "alex@fakeemail.com": [

 {

 id: 1,

 name: "alex",

 email: "alex@fakeemail.com"

 }

],

 "akshata@fakeemail.com": [

 {

 id: 2,

 name: "akshata",

 email: "akshata@fakeemail.com"

 }

],

 "arul@fakeemail.com": [

 {

 id: 3,

 name: "arul",

 email: "arul@fakeemail.com"

 }

]

}

Now, we can refer to this groupedByEmail variable and extract the specific data with a selector.

Instead of having to filter the array n times, we just grouped the data once.

Note

To see more examples of the groupBy function, you can refer to this developer tutorial: https://
developer.mulesoft.com/tutorials-and-howtos/dataweave/groupBy-
function/.

https://developer.mulesoft.com/tutorials-and-howtos/dataweave/groupBy-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/groupBy-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/groupBy-function/

Using the DataWeave Core functions 249

For example, doing groupedByEmail["arul@fakeemail.com"] would result in the

following output:

[

 {

 id: 3,

 name: "arul",

 email: "arul@fakeemail.com"

 }

]

Let’s now look into the next function: map.

map

This function is used to iterate through and transform the items in the array. The second parameter

of this function is a lambda with the item and index parameters. This is a null-safe function. This

is one of the most used functions to work with arrays because of the freedom to transform the given

data structure into something very different. A simple example would be the following:

map.dwl

%dw 2.0

output application/json

["a","b","c"] map {

 ($$): $

}

The output of this function would be the following:

[

 {

 "0": "a"

 },

 {

 "1": "b"

 },

 {

 "2": "c"

 }

]

This example transforms the input array of strings into an array of objects where the key is the index

of the item and the value is the actual item.

Transforming with DataWeave250

Note

To see more examples of the map function, you can refer to this developer tutorial: https://
developer.mulesoft.com/tutorials-and-howtos/dataweave/map-
function/.

You can use map to transform input arrays into a different array structure. However, you will always

end up with an array as the output. If you want to process and transform the given array into a different

data type, you can use the reduce function, which we’ll see next.

reduce

This function is used to iterate through and completely transform the given array (or a given string)

into a different data type or structure. The second parameter of this function is a lambda with the

item and accumulator parameters. This is a null-safe function. This is one of the most used

functions to work with arrays because of the freedom to transform from an array to a different data

type. A simple example would be the following:

reduce-simple.dwl

%dw 2.0

output application/json

(1 to 10) as Array reduce ($$ + $) // output is 55

First, we generate a Range data type from 1 to 10. Then, we coerce Range into Array to use it as the

input array for the reduce function. Finally, we sum item (or $) and accumulator (or $$) to

get the output of 55. There is a total of 9 iterations being made here instead of 10. If you add the log

function to accumulator, you will be able to see how this value changes on each iteration, as follows:

reduce (log($$) + $)

This will output the values in the LOG VIEWER tab at the bottom of the online DataWeave Playground,

or in the console if you’re in Anypoint Studio.

Here’s a screenshot of what the results would look like from the DataWeave Playground once the log

function is added to the code:

https://developer.mulesoft.com/tutorials-and-howtos/dataweave/map-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/map-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/map-function/

Using the DataWeave Core functions 251

Figure 7.2: Preview from the DataWeave Playground

You might be wondering why the first value is 1 instead of 0. This happens when you don’t assign a

specific value for the accumulator to start with, so DataWeave assigns the first value from the input

array as the initial accumulator’s value. This functionality works perfectly when the output data type

you want is the same for all the items – in this case, Number. Let’s now see a more complex example.

Consider the following variable:

reduce-complex.dwl

var arr = [

 {

 code: "ABC",

 isNewGroup: false

 },

 {

 code: "DEF",

 isNewGroup: true

 },

 {

 code: "GHI",

 isNewGroup: true

 },

Transforming with DataWeave252

 {

 code: "JKL",

 isNewGroup: false

 },

 {

 code: "MNO",

 isNewGroup: true

 }

]

Based on this data structure, we want to end up with the following array:

[

 "ABC",

 "DEF",

 "GHI,JKL",

 "MNO"

]

Every time the isNewGroup field is true, we want to add a new item to the array containing the

value of the code field. If the isNewGroup field is false, we want to keep concatenating code

into the previous item and separate each item with a comma. Let’s see how we can solve this using

the reduce function:

arr reduce (item, acc=[]) -> do {

 var previousItem = acc[-1]

 var previousItemIndex = acc find previousItem

 if (item.isNewGroup or previousItem ~= null)

 acc + item.code

 else

 acc update previousItemIndex with

 "$previousItem,$(item.code)"}

Here, we make use of several other concepts we learned about in this and the previous chapter, such

as the do keyword, selectors, the find function, if/else conditionals, operators, and the update

function, which we didn’t see in detail but learned is a part of the dw::util::Values module.

First, we evaluate whether the isNewGroup field is true or whether this is the first item (as is the

case with "ABC") to add a new item to the existing accumulator. If this is not the case, then we update

the previous item from the accumulator to now include the current item’s code.

Using the Transform Message component in Anypoint Studio 253

This is why reduce is one of the most complex functions in DataWeave. This is the only function

that can perform iterations in a line-by-line order, much like how forEach would work.

Note

To see more examples of the reduce function, you can refer to this developer tutorial: https://
developer.mulesoft.com/tutorials-and-howtos/dataweave/reduce-
function/.

We now have a better understanding of how some of the core functions work and some real-life

transformations. Remember, you can also make use of some of the existing modules. There might already

be a function that performs the functionality that you’re trying to implement with just core functions.

Note

To find the complete list of core functions, including more details and examples, please refer to
the official documentation: https://docs.mulesoft.com/dataweave/latest/
dw-core.

So far, we’ve talked about these examples and how to learn DataWeave using the online DataWeave

Playground. Now that we have a basic understanding, it’s time we learn more about the Transform

Message component or connector in Anypoint Studio.

Using the Transform Message component in Anypoint

Studio

So far, we have been learning how to use DataWeave to transform data and we’ve been focusing on the

use of the online DataWeave Playground to try out these concepts without having to install anything.

However, the playground is used only to learn or experiment. To use DataWeave in Mule applications,

we’d have to use Anypoint Studio – specifically, the Transform Message component. Let’s explore this

component in more detail.

Exploring the views

Go to Anypoint Studio and create a new Mule project. After you have it, drag and drop the

Transform Message component from Mule Palette onto the canvas to create a new empty flow with

Transform Message.

https://developer.mulesoft.com/tutorials-and-howtos/dataweave/reduce-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/reduce-function/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/reduce-function/
https://docs.mulesoft.com/dataweave/latest/dw-core
https://docs.mulesoft.com/dataweave/latest/dw-core

Transforming with DataWeave254

Figure 7.3: A flow with a Transform Message component in Anypoint Studio

If you double-click on the component in the flow, the component’s configuration view will appear at

the bottom of the screen with the predefined view.

Figure 7.4: The Transform Message component’s configuration view

Let’s start by exploring the views you can use for your DataWeave scripts (or the Transform Message

configuration). These are located at the top right of the Transform Message configuration window.

Using the Transform Message component in Anypoint Studio 255

Figure 7.5: A closer look into the Transform Message component’s configuration view

There are three different views you can use for this configuration:

• Graphics : The default view is the first icon: the Graphics view. This view includes the

inputs, a graphical mapping that you can use to drag and drop fields from the input into the

output, the expected output, and the DataWeave script. Here’s an example of what this view

looks like when there is some data to map.

Figure 7.6: The Transform Message component’s Graphics view

You can also click the Preview button to show how the output would look given the sample

input that was given.

Transforming with DataWeave256

Figure 7.7: The Graphics view with the output’s preview

• Source with Trees : The second view is the Source with Trees view. This one shows the

same information as the previous one but without the graphical mapping. You can still drag

and drop from the input structure into the output structure, but the mappings won’t show in

this view. The same as before, you can turn on or off Preview in order to see the sample output.

Figure 7.8: The Source with Trees view with a preview of the output

Using the Transform Message component in Anypoint Studio 257

• Source Only : The third view is the most used one by experienced developers: the Source

Only view. This one shows only the input and the script. You can’t drag and drop data with this

view. The same as before, you can turn on or off Preview in order to see the sample output.

Figure 7.9: The Source Only view with a preview of the output

We will work with this last view in the rest of the chapter. The first two views are useful for drag-

and-dropping purposes, but that functionality is mainly used for very simple data structures or

one-to-one mappings.

Let’s now explore how we generated the sample data in the first place.

Defining metadata

When you first drag and drop the Transform Message component onto the canvas, it may or may

not contain some metadata in either the input or the output structure. This depends on what other

components are used before or after Transform Message. For example, if you first have a SOAP

call, then Transform Message, then a REST call, Transform Message might be able to read the data

structures from both the SOAP and REST calls and auto-populate the input and output metadata

accordingly. Let’s see a simple example of this in the following screenshot:

Transforming with DataWeave258

Figure 7.10: Transform Message’s auto-populated input based on HTTP request

Here, we have an HTTP request connector before Transform Message. Because of this, the attributes

structure was auto-populated based on the metadata from the HTTP request connector. We can receive

a statusCode number, a reasonPhrase string, and a headers object. However, it was not

able to recognize the payload.

Note

Payload, variables, and attributes are concepts we learned about back in Chapter 4, when we
talked about the Mule event structure. These variables are not the same variables we use inside
DataWeave (with the var keyword). DataWeave variables are only visible from the DataWeave
script, while Mule variables are visible within the Mule application’s components.

There are some connectors that will automatically return the output payload’s structure and you will be

able to see it from Transform Message’s input structure. If this doesn’t happen, you can also populate

your own metadata to see a preview of the data. You just have to click on the Define metadata link

that appears next to the data structure you want to populate.

Using the Transform Message component in Anypoint Studio 259

Figure 7.11: A closer look at Transform Message’s input

Let’s see this step by step:

1. Click on the Define metadata link next to Payload to generate the payload’s metadata and

sample data. You will see a new window to select your metadata type.

Figure 7.12: Window to select the metadata type

Transforming with DataWeave260

2. Click on the green Add button and add a new type ID, for example, authorsInput.

Figure 7.13: Window to create a new type

3. Click on Create type. Now, we have to select the type of this data. Let’s select the JSON type

and select Example instead of Schema from the dropdown.

Using the Transform Message component in Anypoint Studio 261

Figure 7.14: Window to modify the new type

You will be able to select the three-dots button next to the textbox in order to choose a file with

your metadata example. We are going to use the following file, which you can get from our

GitHub repository, linked in the Technical requirements section at the beginning of this chapter:

authorsInput.json

[

 {

 "id": 1,

 "firstName": "Akshata",

 "lastName": "Sawant"

 },

 {

 "id": 2,

 "firstName": "Arul",

 "lastName": "Alphonse"

Transforming with DataWeave262

 },

 {

 "id": 3,

 "firstName": "Alex",

 "lastName": "Martinez"

 }

]

4. Click the three-dots (…) button and select this file from your computer. Once you see the

structure with the fields and their data types, you can click on Select.

Figure 7.15: Window to finish creating the new type

Now your input payload contains metadata describing the data types of each field. Payload

is an array of objects, id is a number, and firstName and lastName are strings.

Using the Transform Message component in Anypoint Studio 263

5. Add the following script and click on Preview. You will be able to see the sample data in the

preview window:

payloadScript.dwl

%dw 2.0

output application/json

payload

It will look like this:

Figure 7.16: Payload preview in the output

6. Edit the sample data by right-clicking on the input payload and selecting Edit Sample Data.

Figure 7.17: Payload options after right-clicking on it

Transforming with DataWeave264

This will open a new tab called payload that is located next to the Context tab (Figure 7.18). Here,

you can modify the sample data for the input payload to test different scenarios for your script and

generate different output previews:

Figure 7.18: Sample data from the payload tab

You can continue generating metadata for other fields, such as the attributes or output structure, if

needed. For now, we just demonstrated the steps to generate new metadata for the payload structure.

The Mule variables should also appear automatically within the context. Here is an example of what

that would look like:

Using the Transform Message component in Anypoint Studio 265

Figure 7.19: Prepopulated Mule variables within the context

The same as before, you can right-click on each variable from the input structure to change the

sample data. If you need additional variables that were not auto-populated, you can also right-click

on Variables and select New Variable.

Figure 7.20: The New Variable option after right-clicking on the Variables context

Transforming with DataWeave266

This will open the same window where we created our input payload type. We just need to repeat the

same process as previously but add the variable’s name.

Figure 7.21: Creating new variable metadata

Whenever you want to reference the payload’s data, you use the payload keyword. To use any of

the Mule variables, you use the vars keyword. To use the attributes, you use the attributes

keyword. Something that doesn’t always appear in the context but is good to know is, to reference an

exception, you use the error keyword.

It is also worth noticing that any example file you use to create metadata will be stored under src/

main/resources/examples and any sample data will be stored under src/test/resources/

sample_data. If you chose to upload a schema instead of an example file, the schemas would be

generated under src/main/resources/schemas. You can see a preview of the folder structure

in the following screenshot:

Using the Transform Message component in Anypoint Studio 267

Figure 7.22: View from Package Explorer

That is all we needed to learn about how the metadata works and how we can set it up to test our

transformations and get a preview of the data. Let’s now quickly get a glimpse at how we can create

and use custom DataWeave modules in our Mule applications.

Creating custom modules

Earlier, we saw some modules we can use in DataWeave to get more functions that are not included

in the core module, for example, dw::core::Binaries or dw::Crypto. But we can also create

our own modules within a Mule application and reuse them in several scripts. Let’s see the steps to

create a custom module in Anypoint Studio:

1. Create a new Mule project in Studio.

2. Create a new folder called dw under src/main/resources. Then, create a new file under

this new folder called Utilities.dwl.

Transforming with DataWeave268

Figure 7.23: New Utilities file under src/main/resources

3. Paste the following code into this new file and save it:

Utilities.dwl

%dw 2.0

fun getAuthorsNames(authors: Array): Array =

 authors map (

 ($.firstName default "")

 ++ " " ++

 ($.lastName default "")

)

This function will get an array of objects with the authors’ information and return an array of

strings with the authors’ full names. Our module would be dw::Utilities and our function

would be getAuthorsNames.

Let’s go back to our flow and add a Transform Message component.

4. Drag and drop the Transform Message component from Mule Palette onto the canvas.

5. Create the metadata for the payload using the authorsInput.json file we previously used

to create the payload’s metadata.

6. Paste the following code into Transform Message’s script:

UtilitiesMapping.dwl

%dw 2.0

output application/json

import getAuthorsNames from dw::Utilities

getAuthorsNames(payload)

Using the Transform Message component in Anypoint Studio 269

You should end up with something like this:

Figure 7.24: Transform Message using a custom module

Here, we can see the input metadata, the script we used to import the getAuthorsNames function

from the dw::Utilities module, and a preview of the output based on the input payload’s

sample data.

Note

If you want to share DataWeave modules outside of your Mule application with other applications,
you can create a DataWeave library and publish it in Anypoint Exchange. Other Mule applications
can pull your library from Exchange and use it in their own scripts. To learn how to do this,
refer to the following developer tutorials: https://developer.mulesoft.com/
tutorials-and-howtos/dataweave/dataweave-libraries-in-exchange-
getting-started/

We now know how to use DataWeave in Anypoint Studio with the Transform Message component.

We explored the different views you can use to visualize your transformations, how to define metadata,

which will be helpful if you want to see a preview of the output data, and how to create custom modules

to reuse in your application.

https://developer.mulesoft.com/tutorials-and-howtos/dataweave/dataweave-libraries-in-exchange-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/dataweave-libraries-in-exchange-getting-started/
https://developer.mulesoft.com/tutorials-and-howtos/dataweave/dataweave-libraries-in-exchange-getting-started/

Transforming with DataWeave270

Summary

In this chapter, we learned different ways to import a module or a function in DataWeave using the

import directive. We listed some of the modules you can find in DataWeave with some of their

functions so you can get a better idea of what is already available for you to use.

We learned how to use some of the most used core functions depending on the data type they’re used

with. We also reviewed multi-type, numbers, strings, objects, and array functions that you can use to

transform the different data types.

Finally, we learned how to use the Transform Message component in Anypoint Studio. We explored

the three views we can use depending on our needs or our personal preferences. We learned how to

use Preview and sample data (metadata) to generate a sample output of our transformation. We also

learned how to create and reuse custom modules within our Mule application.

In the next chapter, you’ll learn more about building Mule applications and applying best practices

to your projects.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. List at least three different ways to import a module or a function in DataWeave.

2. Name at least five existing DataWeave modules.

3. Name at least two functions that are used with multi-type, numbers, strings, objects, and arrays.

4. Under which folder should custom DataWeave modules be created?

Answers

1. The different ways to import a module or a function in DataWeave:

 � import Module // Module::function()

 � import * from Module // function()

 � import function from Module // function()

 � import Module as Mod // Mod::function

 � import function as f from Module // f()

Answers 271

2. The DataWeave modules are:

 � dw::Core

 � dw::core::Arrays

 � dw::core::Binaries

 � dw::core::Dates

 � dw::core::Numbers

 � dw::core::Objects

 � dw::core::Periods

 � dw::core::Strings

 � dw::core::Types

 � dw::core::URL

3. Functions that are used with multi-type, numbers, strings, objects, and arrays:

 � Multi-type: ++, now, random, read, readUrl, sizeOf, typeOf, uuid,

with, isEmpty, log, and then.

 � Numbers: abs, ceil, floor, isDecimal, isEven, isInteger, isOdd,

mod, pow, randomInt, round, sqrt, and to.

 � Strings: contains, endsWith, find, indexOf, isBlank, lastIndexOf,

lower, match, matches, replace, scan, splitBy, startsWith,

trim, and upper.

 � Objects: --, distinctBy, entriesOf, filterObject, keysOf, mapObject,

namesOf, pluck, and valuesOf.

 � Arrays: --, avg, contains, distinctBy, filter, find, flatten,

indexOf, joinBy, lastIndexOf, max, min, orderBy, sum, groupBy,

map, and reduce.

4. Under src/main/resources. You can then create another folder to keep your modules

as a best practice.

8
Building Your Mule Application

In the previous chapter, we learned how to use DataWeave to transform data from one format to another.

In this chapter, let us explore the different configuration files available in a Mule application and try

using different components, such as Schedulers, APIkit Router, and Object Store Connector, to build

a Mule application. In Chapter 3, we created and tested a simple Mule application called HelloWorld.

In this chapter, we will be learning how to build a Mule application with different components in detail.

After reading this chapter, you’ll come away with more knowledge on the following topics:

• Different configuration files in a Mule application

• How to create a Mule application with Schedulers

• How to create a Mule application with APIkit Router

• How to use the Object Store Connector

Technical requirements

The prerequisites for this chapter are as follows:

• Anypoint Platform, which we already configured in Chapter 2, is a must-have.

The link to log in is https://anypoint.mulesoft.com/login/.

• The musicbox-sys-api.raml RAML file required to create a Mule application is available

on GitHub at the following link, under Chapter2:

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-

Developers-Second-Edition

https://anypoint.mulesoft.com/login/
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition

Building Your Mule Application274

Exploring different types of configuration files

There are a few types of files that we will come across while developing a Mule application. Each file

has its own purpose. The files are as follows:

• Mule configuration file

• Properties file

• Project Object Model (POM) – a pom.xml file

• API Specification file (Open API Specification and RAML)

We already learned about API Specification in Chapter 2.

Let’s begin by exploring the Mule configuration file.

Mule configuration file

A Mule configuration file is an .xml file that contains all the information related to Mule flows and

connector configurations. Whenever we create a new Mule application project, a Mule configuration

file is generated in the /src/main/mule folder in the Package Explorer. When you open the Mule

configuration file, it opens in the editor, where you can see the following three tabs:

• Message Flow

• Global Elements

• Configuration XML

Message Flow contains the canvas, which helps with designing various flows. The canvas visually

displays Mule flows, allowing you to easily drag and drop the required components from the Mule

Palette. Generally, a flow consists of two sections – Source and Processor – as you can see in the

following figure:

Exploring different types of configuration files 275

Figure 8.1 – Message Flow

The HTTP Listener component is available in the Source area. HTTP Listener is the way to listen

for incoming HTTP requests to any application. The Logger and Transform Message components

are available inside the Processor section.

Global Elements is the place where we maintain all the configuration elements that are required for

the particular Mule project. In this tab, we can add, edit, and delete the required configuration data

for different connectors (see Figure 8.2):

Figure 8.2 – Global Elements

Building Your Mule Application276

Figure 8.2 shows HTTP Listener config in the Global Elements tab. This configuration will have details

about the HTTP or HTTPS URL, port, and other required configurations for HTTP Listener. We can

click the Create button to add other connector configurations, such as Salesforce and other systems.

Configuration XML, as shown in the following figure, is an XML file that contains the details of all

the flows. In simple terms, the flow, which we design in the canvas, and the configuration in the global

elements tab are written in XML:

Figure 8.3 – Configuration XML

Figure 8.3 shows all the details of the flow, the HTTP Listener configuration, and the Transform

Message configuration in XML format. These components are represented by the <flow>, <http-

listener-config>, and <ee:transform> tags/elements, respectively.

We can also directly edit the configuration .xml file to reflect the changes in the canvas. When

updating the configuration XML file, debug any issues by following these steps:

1. Check syntax: Ensure XML tags and attributes are correctly formatted.

2. Review logs: Look for error messages in MuleSoft logs.

3. Schema validation: Use Anypoint Studio to validate against Mule’s schema.

4. Roll back changes: Revert to a working version and reintroduce changes gradually.

5. Test locally: Run the application locally to identify and fix issues.

With this, we have understood the list of tabs that are available in a Mule configuration file. Let’s move

on to the properties file, where we define the environment-related configurations.

Exploring different types of configuration files 277

Properties file

We can store configurations in .properties or .yaml files. To avoid hard-coding (keeping the

values directly in the program), we can store the values such as URLs, ports, credentials, and any

application-specific configurations in properties files. It is located under the src/main/resources

folder. We can also store specific entries or the entire file in encrypted format instead of plain text

in order to secure the configuration. For instance, while connecting to Salesforce, we have different

URLs and credentials for development, test, and production environments. In this case, it is always

best practice to keep the configuration separate instead of having it in the code. We can have the

development environment configuration in dev-properties.yaml, Quality Assurance (QA)

environment configuration in qa-properties.yaml, and production environment configuration

in prod-properties.yaml. So, in the future, if there are any changes to the URL or credentials,

it will be easy to update them in the properties file directly.

We can define the configuration in two different file formats:

• The .properties file, where the key and values are on the same line

• The .yaml file, which follows indentation (syntax with a few spaces) to store the key and values

The configuration data can be either plain or encrypted text. Let’s see a few examples for better

understanding. We can use the Secure Properties tool to generate the data in an encrypted format

(part of or the entire file). We will be learning more about the Secure Properties tool in Chapter 10.

Let us see a few examples of .properties files.

Let’s look at the first example.

In the following sample, the entire data is encrypted in the .properties file:

salesforce_encrypted.properties

74wwCGyD/vw+eqVpwJ8M+bdfKMH08DbvcF+2mK9FwUZIOookgMDA7MVJh0+

dt0IIoVzpP0C5kNI8zBCaPItSIf7HwEGyDkKHDJepH6p/3DamZlKpfyDJWX

MGuq6+I951r8LG5JhXkAcuHvTeJaAGxz2L7dWRj/8fIfBCoBMIhAw=

Now let’s consider a second example. In this sample, the username is not encrypted. The password

and token values are secured and encrypted. Encrypted values are stored in the ![] format. Here,

salesforce.username is the key and mulesoft.book@gmail.com is the value of this key:

salesforce_partialencrypted.properties

salesforce.username=mulesoft.book@gmail.com

salesforce.password=![0+dCWnJ1QPg7/I6FpIGSEQ==]

salesforce.token=![2NjutvTeNH4tUfL/gC9V4bOnz1YFwdqDQ8tJRD3T

 N/c=]

Building Your Mule Application278

Here’s a third example. In the following sample, the key and values are not encrypted or secured and

are stored in plain text format:

salesforce_plain.properties

salesforce.username=mulesoft.book@gmail.com

salesforce.password= B5SQZmHV4p5s5367

salesforce.token= iMoltMlDvfS5HlPIP3Vm12345

In this next sample, none of the key values are encrypted. As it is a .yaml file, follow the indentation

(syntax with a few spaces) in order to store the configuration values:

salesforce_plain.yaml

salesforce:

 username: "mulesoft.book@gmail.com"

 password: "B5SQZmHV4p5s5367"

 token: "iMoltMlDvfS5HlPIP3Vm12345"

We have now seen multiple ways to create the .properties file. As we move forward, we will

become comfortable with generating encrypted data using the Secure Properties tool.

Now, let’s move on to look at the last file type, POM.

POM

POM is an XML file that contains the project name, configuration details, runtime version, build,

dependency, and repository details. Maven uses this pom.xml file to build and deploy the project.

In Package Explorer, we can locate pom.xml under the Mule project.

Maven

Maven is a popular open source software (free software that anyone can modify) developed by
the Apache Group, embedded in Anypoint Studio, to build and deploy projects. Based on the
information available in pom.xml, Maven can manage a project build.

Exploring different types of configuration files 279

Here is a sample POM file:

Sample pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http: //maven.apache.org/POM/4.0.0"

 xmlns:xsi="http: //www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http: //maven.apache.org/POM/4.0.0

 https: //maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany</groupId>

<artifactId>helloworld</artifactId>

<version>1.0.0-SNAPSHOT</version>

<packaging>mule-application</packaging>

<name>helloworld</name>

<dependencies>

 <dependency>

 <groupId>org.mule.connectors</groupId>

 <artifactId>mule-http-connector</artifactId>

 <version>1.6.0</version>

 <classifier>mule-plugin</classifier>

 </dependency>

</dependencies>

In pom.xml, the <artifactId> element contains the project name and the <dependencies>

section contains all the dependencies, including all the connector details and their versions. In our

project, we included an HTTP connector, so the dependencies related to the HTTP connector are

available in the dependencies section. It also contains plugin details. Maven reads this POM file in

order to build and deploy the project.

Building Your Mule Application280

Dependency management is key in MuleSoft’s pom.xml because it ensures that all necessary libraries

and connectors are correctly versioned, compatible, and available for the project to run smoothly.

Proper dependency management helps do the following:

1. Prevent compatibility issues: By specifying exact versions, you avoid conflicts and ensure all

dependencies work well with Mule runtime and each other

2. Reduce project size: Only required libraries are included, which optimizes application size

and speeds up deployment

3. Enhance maintainability: Organized dependencies make it easy to manage upgrades, troubleshoot

issues, and maintain a stable application over time

In summary, effective dependency management in pom.xml maintains compatibility, optimizes

project resources, and simplifies future maintenance.

We have now learned about the different types of files that are available in the Mule application.

Let’s move on to learning how to trigger or call our Mule application at a specific time using Scheduler.

Introducing Scheduler

Scheduler is a component that helps to schedule jobs at specific times. For example, if we need to run

a specific program at 8 P.M. every day, then we can configure it to run at that time.

We covered the basics of Scheduler and its scheduling strategies in Chapter 4.

Let us explore how to create a Mule application with the Scheduler component.

Creating a Mule application with the Scheduler component

In this section, we will be creating a new Mule project with the Scheduler component using the Fixed

Frequency scheduling strategy. To do so, follow these steps:

1. Go to Anypoint Studio. Choose the Create a Mule Project option in Package Explorer to

create a new Mule application.

2. Provide the project name as SchedulerDemo, leave the remaining settings as they are, and

click the Finish button.

3. Next, select the Core module and drag and drop the Scheduler component from Mule Palette

to the canvas.

4. Click on Scheduler inside the canvas. Go to the Scheduler properties and set the Scheduling

Strategy value to Fixed Frequency and the Time unit value as MINUTES. Set the Frequency

value as 2, as shown in the following figure:

Introducing Scheduler 281

Figure 8.4 – Scheduler properties

In Figure 8.4, we have configured our Scheduler to run every two minutes. If we need to change

the Time unit to DAYS, HOURS, MILLISECONDS, or SECONDS based on the requirements,

then we can configure the Scheduler timings accordingly.

Note

We can achieve similar Fixed Frequency scheduling using the Cron scheduling strategy. Cron
is a job scheduler in the UNIX operating system that follows a specific syntax to define the
scheduling frequency/timing. It is used for scheduling specific tasks at a fixed time or specific
intervals. If you are familiar with the cron expressions, then you can use the Cron scheduling
strategy. For more information about cron, refer to https://en.wikipedia.org/
wiki/Cron.

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Building Your Mule Application282

5. Next, select the Core module and drag and drop the Logger from Mule Palette to the canvas.

6. In the Logger properties, specify Message as Scheduler invoked, as shown in the following figure:

Figure 8.5 – Logger properties

In Figure 8.5, we have configured the Logger properties with the Scheduler invoked setting

for Message for our demo in order to understand whether a Scheduler flow has been triggered

or not at a specific time. In a real use case, instead of Logger, we would use other components

or connectors to process the files or messages from one system to another at a specific time.

7. Click Save, or press Ctrl + S, to save the Mule application.

8. Go to the canvas, right-click, and select Run project schedulerdemo.

9. Now, the embedded Mule runtime starts inside Anypoint Studio and deploys the application.

Once the application is deployed successfully, you will see the logs with the DEPLOYED status.

10. Watch the console for a few minutes. You will be able to see the Scheduler getting invoked

every two minutes.

Introducing Scheduler 283

Figure 8.6 – Console

In Figure 8.6, the Console view shows that the Scheduler was running every two minutes and

printing the Scheduler invoked message, which we specified in the Logger properties.

With this, we have learned how to trigger or call a Mule application using the Scheduler component.

Scheduler is used mainly when there is a requirement to handle or process the message in an

asynchronous manner. For example, if we need to sync or send the sales order information from a

CRM to an ERP system, we can use the Scheduler component to run at a specific time to pick up the

records from Salesforce and send them to the other system.

In scheduling strategies, we can use either Fixed Frequency or CRON, depending on the requirements.

Choosing Fixed Frequency over CRON in MuleSoft is often preferred when you need a straightforward,

interval-based schedule without the complexity of specific timing requirements. Here’s why you might

choose Fixed Frequency:

1. Simplicity: Fixed Frequency is easier to set up for repetitive tasks that need to run at consistent

intervals (e.g., every 10 minutes), without specific timing requirements

2. Lower maintenance: It’s easier to understand and adjust intervals directly in Fixed Frequency,

as opposed to the CRON format, which requires specific knowledge of CRON syntax and may

need adjustments with each timing change

3. Use case fit: Fixed Frequency is ideal for continuous polling scenarios where tasks are time-

sensitive and must execute consistently, such as checking a data source every few seconds

or minutes

In contrast, CRON is better when tasks need to run at exact times, on specific days, or according to

complex schedules.

Let’s move on to learning how to generate flows automatically using API specifications and route

them through APIkit Router.

Building Your Mule Application284

Generating a flow using APIkit Router

APIkit Router generates the whole flow based on the API specification file. It receives the incoming

request, validates it, and routes the incoming request to the flow.

If you have already created an API Specification (or an API design) and you want to start developing

the actual implementation, you can import your API Specification into Anypoint Studio and APIkit

will create the basic flows and error handling for your API based on the specification. By doing this,

we need not create all the code from scratch.

It is best practice to create the API specification first in API Designer. Once it is created, we can start

building the Mule application based on that API specification. This is called an API design-first

approach. There is also the code-first approach, which mandates having an API specification but

does not emphasize starting with the API design (specification). In the API design-first approach, the

developer can consume the API to develop in parallel, which shortens the time to market. Hence,

the API design-first approach is recommended over the code-first approach.

Now, let’s create a Mule application using the API design specification.

Creating a Mule application using API Specification

Let’s learn how to create a Mule application using API specification to understand how APIkit Router

will auto-generate the flows and route the request to different flows:

1. Go to Anypoint Studio. Click the Create a Mule Project option from Package Explorer to

create a new Mule application.

2. Provide the project name as APIkitRouterDemo, select the Import RAML from local

file option, and browse for the RAML file that we created in Chapter 2. Leave the remaining

settings as they are and click the Finish button. This RAML file is also available on GitHub in

the Chapter2 folder, which is linked in the Technical requirements section.

Generating a flow using APIkit Router 285

Figure 8.7 – Creating a Mule project using API Specification (RAML)

In Figure 8.7, musicbox-sys-api.raml is the RAML file that we will be using to create

the Mule application.

Now, it will automatically generate all the required flows in our Mule application. It consists

of flows such as main and console and also flows for each HTTP method, such as get

and post.

Building Your Mule Application286

When our application runs, the main flow is the one that actually receives the request.

Figure 8.8 – The main flow

In Figure 8.8, we can see that the main flow has HTTP Listener with the path as /api/* to receive the

request and APIkit Router to validate and route the request to the get/post flow. If any validations

fail, an exception is thrown, which is handled by the error handler defined in the main flow. Error

handling can handle the following error types:

• BAD_REQUEST

• NOT_FOUND

• METHOD_NOT_ALLOWED

• NOT_ACCEPTABLE

• UNSUPPORTED_MEDIA_TYPE

• NOT_IMPLEMENTED

Now, let’s see the different components that are auto-generated as a part of the API console flow.

Generating a flow using APIkit Router 287

Figure 8.9 – Console flow

In Figure 8.9, the console flow has HTTP Listener with the path as /console/* to receive the

request and APIkit Console to validate and route the request. A console flow is primarily used for API

documentation, allowing you to test the API locally using interactive documentation.

Figure 8.10 – API console documentation

Building Your Mule Application288

Once we’ve run the Mule application, we can access the API documentation by navigating to http://

localhost:8081/console/ from the browser, as shown in Figure 8.10. Using this API console,

we can explore the API documentation and test the API using different methods such as get and post.

Now, let us see the components that are auto-generated as a part of the get and post HTTP methods.

Figure 8.11 – Autogenerated HTTP methods

Our API specification only had two methods, get and post. Hence, it has generated two flows. Each

HTTP method (get and post) has one flow with the Transform Message component, which sends

the song sample response as defined in the API specification, which is highlighted in Figure 8.11. Now,

we have seen different auto-generated flows for main, console, get, and post.

This way, we can easily create a Mule application using RAML, which automatically generates all

the flows and error handling. Now, our job is only to make minor changes to accommodate our

requirements. For example, in our implementation of a get or post flow, if we need to fetch or

create, respectively, the song data from the backend application, we just replace Transform Message

with the required connectors.

Generating a flow using APIkit Router 289

With this, we have created a Mule application using an API Specification (RAML) file. Now, let us see

how to run and test the application.

Running and testing a Mule application

In this section, let us run and test the Mule application using Postman. While testing, we’ll use different

methods, such as get, put, and post, to check different scenarios:

1. Go to the canvas and right-click on Run project apikitrouterdemo.

Once the application has deployed successfully, we will be able to see the logs with the status

as DEPLOYED in the Anypoint Studio Console view.

2. Go to Postman, select the method as GET, provide the URL as localhost:8081/api/

songs, and click Send.

Figure 8.12 – Sending a request from a Postman application with the get method

In Figure 8.12, we can see that we have sent the request from Postman to our Mule application

using the get method. On receiving the request, the Mule application processes the request

and sends the response back.

Building Your Mule Application290

Our APIkitRouterDemo Mule application receives the request in the HTTP Listener

main flow and sends the request to APIkit Router, where it is validated. If the validation is

successful, then it identifies the HTTP method and routes it to the appropriate flow. In our

case, we have sent the request using the GET method from Postman. Hence, it invokes the get

flow to process the incoming request.

A high-level sequence of processing will look as follows:

Figure 8.13 – High-level processing sequence

1. Now, let’s try to send the request from the Postman application using the put method. We

will get a response such as "message": "Method not allowed". We are receiving

this response because our main flow doesn’t have a flow for the put method. This invokes

error handling, matches with the corresponding METHOD_NOT_ALLOWED error type, and

sends the response.

2. Next, send a request from the Postman application using the post method to localhost:8081/

api/songs/1.

Generating a flow using APIkit Router 291

Figure 8.14 – Sending a request from the Postman application with the post method

In Figure 8.14, we have sent the song data in the request body from Postman to our Mule application

with the post method. The Mule application receives the request, and after processing it, it sends

the response back.

While sending the request, we are passing a value of 1 in the URL, which is nothing more than

the URL parameter value. The post flow processes the request that we passed in the body of the

request and sends the response back. In our example, the response, "Message": "Song added

successfully", comes from the Transform Message setting of the post flow.

However, in the actual implementation, the Mule application extracts the value that comes in the

URL parameters along with the request payload and sends it to the backend applications. Finally, the

backend application generates the success or failure response message based on the data provided.

In this test, we passed a value of 1, which is a songsid. When the application receives the request

payload with 1, the Mule application creates the song data in the backend application with a songsid

with the value of 1 and sends the success response back. If there is any failure while creating the song

data in the backend system, it sends a failure response back. For a successful response, we will send

200 OK. Here, 200 is the HTTP status code and OK is the HTTP status description.

For a failure response, based on the error type, the Mule application will send a different HTTP status

code and status description. For example, if we pass the put method, which is not there in our flow,

then it will send a status code of 405 Method Not Allowed.

Now, we have understood how to build and run a Mule application using APIkit Router.

Let’s move on to explore how to use Object Store Connector in a Mule application.

Building Your Mule Application292

Exploring Object Store Connector

Object Store Connector is a Mule component that allows you to store simple key-value pairs. A

key-value pair is a combination of two simple values where one is the key and the other is a value.

The key is the unique identifier of the values stored.

The following are the operations of Object Store Connector. We can use these operations in order to

manage our key-value pair:

• Store: To store the value using the key

• Retrieve: To retrieve the value stored using a specific key

• Retrieve All: To retrieve all the key-value pairs from the object store

• Retrieve All Keys: Lists all the keys that are available in the object store

• Contains: To check whether any value against the key is available in the object store or not

• Remove: To remove the value for a specific key from the object store

• Clear: To remove all the keys from the object store; in turn, all values will also be removed

Different types of Object Store

There are three types of Object Store:

• Object Store v2: This is only supported in CloudHub and this is a cloud service. Use the Object

Store v2 option while deploying the application in CloudHub. Otherwise, based on the runtime

version, the runtime manager will choose either Object Store v2 or Object Store v1. Here,

key-value pairs are stored externally in the Mule application. The Time to Live (TTL) is 30

days and after that, the key-value pair will be removed from the object store. The maximum

size for a key value is 10 MB. The standard version supports 10 Transactions Per Second (TPS)

and the premium version supports 100 TPS as the API request limit. Object store v2 is not

recommended for multi-worker configurations, because the Store operation will overwrite the

key values in case of concurrent requests.

• Object Store v1: This is only supported in CloudHub and is currently deprecated. The End of

Life (EOL) is not confirmed. It is encouraged to use the latest version, Object Store v2. TTL

is not configurable. The maximum size for a key value is 1 MB. There is no API request limit.

Mule 4 does not support Object Store v1.

• Object Store: This is used in an on-premises environment and is a part of the Mule runtime.

We can store the keys and values in memory for faster performance or disk (persistent) for

reliability. There is no limit to the key-value size.

Let’s apply some of these operations in a Mule application.

Exploring Object Store Connector 293

Creating a Mule application with Object Store Connector

Let’s learn how to create a Mule application with Object Store Connector to understand how the

object store uses the key to store and retrieve the data. We will be creating two different flows in this

project. One is StoreFlow, which is used to store the key in the object store, and another one is

RetrieveFlow, which is used to retrieve the key from the object store:

1. Go to Anypoint Studio. Choose the Create a Mule Project option in Package Explorer to

create a new Mule application.

2. Provide the project name as ObjectStoreDemo.

3. Next, select HTTP in Mule Palette and then select Listener.

4. Drag and drop Listener onto the canvas.

5. Select Listener from the canvas. In the Listener properties, add the connection configuration

by clicking the Add symbol, as shown in the following figure:

Figure 8.15 – Mule properties for HTTP Listener

Building Your Mule Application294

6. Leave the host and port (8081) values at the default values and click the OK button on the

connector configuration screen.

7. Once done, set the Path value to /store.

8. Click Add Module from Mule Palette and drag and drop ObjectStore onto the Module panel,

as shown in the following figure:

Figure 8.16 – Adding the object store to Project | Mule Palette

9. Click ObjectStore from Mule Palette and drag and drop Store onto the canvas. Configure the key as

lastProcessedSongID with the 5 value and the object store name as SongsObjectStore

by clicking the plus symbol, as shown in Figure 8.17:

Exploring Object Store Connector 295

Figure 8.17 – Store configuration

10. Change the name of the flow to StoreFlow and save the Mule application. Now we have

created a flow that stores the value in the object store. Let’s create another flow in the same

project to retrieve the value from the object store based on the key.

Building Your Mule Application296

11. In the same project, create another flow with HTTP Listener, with the path as /retrieve

and the flow name as RetrieveFlow.

Figure 8.18 – Retrieve flow

As in Figure 8.18, provide the key as lastProcessedSongID in the Retrieve operation and

set the object store name as SongsObjectStore, which we already specified in StoreFlow.

12. Add TransformMessage after the Retrieve operation and add the DataWeave coding in the

Output tab, as shown in the following figure:

Exploring Object Store Connector 297

Figure 8.19 – Transform Message

13. Click Save, or press Ctrl + S, to save the Mule application.

14. Run the Mule application from the canvas. Once the application has deployed successfully, you

should see the logs with the status as DEPLOYED.

15. Open the Postman application. In the URL box, enter http://localhost:8081/store,

and then click Send.

Figure 8.20 – Sending the request to the Store flow

Building Your Mule Application298

In the preceding figure, we can see that the response received is 200 OK, which means that our

application has received the request and stored the key (lastProcessedSongID with the value

5) in the object store successfully.

Let us now try to retrieve the stored value from the object store.

16. In the URL box, enter http://localhost:8081/retrieve, then click Send.

Figure 8.21 – Sending the request to the Retrieve flow

In Figure 8.21, we can see the response received is 5 with the HTTP status code and description of

200 OK. This indicates that we are able to successfully retrieve the lastProcessedSongID value

stored in the object store.

For example, if we are synchronizing the song data from one system to another, then we would need

to store the last processed record value (lastProcessedSongID) in the object store. This way, the

next time the interface runs, it can fetch the record from the system that has not yet been processed,

using the last processed record value (lastProcessedSongID) as a reference.

With this, we have learned how to create an object store and store and retrieve values to and from

the object store.

Summary

In this chapter, we had a look at various types of configuration files in the Mule application.

We created a Mule application using Scheduler, after which we tried to run it. Finally, we tested it

using an external Postman application.

Questions 299

We also learned about creating a Mule application using the API specification. We saw how APIkit

Router helps create flows automatically and routes the flows into different HTTP methods. We tested

methods such as get, put, and post to see the success and failure scenarios.

Additionally, we examined how to use the Object Store Connector in a Mule application, covering

operations such as storing and retrieving the key-value pairs.

On completing this chapter, you have an elaborate knowledge of how to build a Mule application

using Scheduler, API Specification, and Object Store Connector and should feel confident enough to

develop your own Mule application.

In the next chapter, Chapter 9, we’ll explore further different ways to deploy our application.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. Which .xml file will have project dependencies information in a Mule application?

2. What are the different types of scheduling strategies?

3. What is APIkit Router?

4. What is an Object Store Connector?

Answers

1. pom.xml

2. There are two types of scheduling strategies:

 � Fixed Frequency

 � CRON

3. APIkit Router is a tool for creating a Mule application. It auto-generates the flow using a RAML

file. It receives the incoming request, validates the URL, query parameters, and URI parameters

based on the API specification, and also routes the incoming request to the Mule flow.

4. Object Store Connector is a Mule component that allows you to store a simple key-value pair.

9
Deploying Your Application

In the previous chapter, we learned how to build a Mule application using Anypoint Studio and

Anypoint Code Builder, as well as the different aspects of Studio, various types of property files, and

their configurations.

An optimized Mule application is the building block of a successful application network. We’ve

previously built a simple Mule application by scaffolding RAML and learned about the different

components and capabilities of Anypoint Studio.

MuleSoft has several alternatives to offer when it comes to deployment environments. Choosing the

right deployment model is crucial, as it involves investment cost and architectural strategy.

In this chapter, we’ll learn how to deploy a Mule application on CloudHub and On-premise.

We will also learn about the steps involved in CloudHub and on-premises deployment. We shall

also learn about the Continuous Integration/Continuous Deployment CI/CD deployment process

with MuleSoft.

Here’s what you can expect from this chapter:

• Getting started with deployment models

• Deploying your Mule application on CloudHub

• Deploying your Mule application on an on-premises server

• Building a CI/CD pipeline with MuleSoft

Technical requirements

• Anypoint Studio installation (see Chapter 3, for Studio installation guidance)

• An Anypoint Platform account (see Chapter 2, to create a 30-day free trial account)

Deploying Your Application302

Getting started with deployment models

A deployment model tells you about the environment in which you’ll be hosting your Mule application.

In the previous chapter (Chapter 8), we deployed a Mule application to CloudHub.

We will study different types of deployment models in this chapter. Before getting started with the

deployment models, let’s understand some common terminologies.

The topology of Mule capabilities is divided into two fragments, namely the control plane and runtime

plane (see Figure 9.1):

• Control plane: This consists of the components that are responsible for building and managing

the Mule applications. Anypoint Exchange, Anypoint Design Center, and Anypoint Management

Center are part of the control Plane.

• Runtime plane: This consists of the components mainly responsible for the deployment of

your Mule applications. The Mule runtime engine, Anypoint connectors, and runtime services

are part of the runtime plane.

Figure 9.1 – The control plane and the runtime plane

Now that we’ve understood the control plane and the runtime plane, let’s understand the different

deployment models.

Types of deployment models

MuleSoft has several deployment models to offer. Let’s learn about the various deployment options available.

Getting started with deployment models 303

CloudHub

Let us now learn about CloudHub in brief:

• In this model, all the applications are hosted on MuleSoft’s Anypoint Platform

• You can leverage the Integration Platform as a Service (iPaaS) capabilities of Anypoint

Platform, such as troubleshooting, logging, monitoring, and so on

• Under the hood, your Mule application will be hosted on AWS infrastructure on EC2 instance

Anypoint Runtime Fabric (RTF)

Let’s understand the basics of RTF:

• RTF is a container-based service in which you can manage the deployment and scaling of

Mule apps

• You can install Mule apps on customer-hosted infrastructures such as Integration as a Service

(IaaS) platforms (AWS, Azure, and so on), virtual machines, bare metal (Microsoft Hyper-V,

Citrix XenServer, and VMware ESXi), and so on using RTF

• It internally uses Docker containers and Kubernetes for orchestration on Mule apps

• You can leverage the capabilities of Anypoint Platform to manage apps deployed on RTF

Anypoint Platform Private Cloud Edition (PCE)

We shall now learn about PCE:

• Anypoint PCE allows you to manage Mule applications locally

• You can host Mule applications on a customer-hosted infrastructure

• With Anypoint PCE, you can have a control plane locally on your own network

• It helps you to leverage the capabilities of MuleSoft’s Anypoint Platform combined with

local infrastructure

Standalone Mule Runtime

Let us understand the concept of Standalone Mule Runtime:

• In this model, all the applications are hosted on the customer’s infrastructure

• You may or may not leverage the capabilities of the cloud or Anypoint Platform, depending

on your deployment environment (we shall learn more about the deployment environment

further on in this chapter)

All these deployment models require a different subscription; therefore, it’s essential to know the factors

to be considered when choosing a deployment. We shall learn more about them in the next section.

Deploying Your Application304

Choosing the right deployment model

In order to efficiently execute your integration strategy, it’s important to choose an accurate environment

to host your applications. Let’s understand the factors to be considered when choosing the right

deployment environment:

• Cost involved: The organizational budget for implementing and maintaining the infrastructure

• Security and compliance: Organizational level security and regulation pertaining to

the data/metadata

• Existing infrastructure: We need to analyze the existing network and IT infrastructure

• Cloud-based approach: The ability or willingness to adopt a cloud-based infrastructure

• Size of the ecosystem: We need to analyze and determine the current and futuristic applications

and the number of APIs that we will have to host on the server

We have now taken into consideration the many factors involved when deciding on a correct

deployment model.

In the next section, we will learn how to deploy our Mule application to CloudHub.

Deploying your Mule application to CloudHub

We have previously seen how to deploy a Mule application using a JAR file (see Chapter 5).

There are several ways to deploy your Mule application on CloudHub:

• Anypoint Studio

• Anypoint Code Builder

• Anypoint CLI

• Uploading an executable JAR file in Runtime Manager

• CI/CD deployment

We will now deploy our application on CloudHub using the most commonly used and easiest method,

which is Anypoint Studio.

Deploying your Mule application to CloudHub 305

Let’s follow some basic configuration steps in order to deploy our Mule application to CloudHub:

1. Configure your Anypoint Platform credentials by going to Anypoint Studio | Preferences (for

Mac users) or Windows | Preferences (for Windows users). Once inside Preferences, navigate

to Anypoint Studio | Authentication | the Add button (see Figure 9.2).

Figure 9.2 – Adding authentication in Anypoint Studio

2. Sign in to Anypoint Platform from Anypoint Studio by clicking Add and then Configure. Add

your Anypoint Platform credentials and sign in (see Figure 9.3).

Deploying Your Application306

Figure 9.3 – The Anypoint Platform sign-in page through Studio

3. Go to Anypoint Platform from the browser, click on Organization, and then the organization

group (which is Packt Publication in Figure 9.4).

Deploying your Mule application to CloudHub 307

Figure 9.4 – Access Management in Anypoint Platform

Once inside your organization, you will see Organization info. Note the client ID and the

client secret (see Figure 9.5).

Figure 9.5 – Organization info in Access Management

Deploying Your Application308

4. Configure the API manager details by going to Anypoint Studio | Preferences (for Mac users)

or Windows | Preferences (for Windows users). Once inside Preferences, navigate to API

Manager. Enter the client ID and client secret, which you noted earlier. Click Apply | Apply

and Close (see Figure 9.6).

Figure 9.6 – Configuring the client ID and client secret in Anypoint Studio

Important Note

All the steps till Step 4 are one-time activities. You only need to configure it once before your
first deployment. For every subsequent deployment, your configuration will be retained.

You can skip all the previous steps (Step 1 to Step 4) if you want to deploy to CloudHub just
once or don’t wish to save Anypoint Platform credentials.

Deploying your Mule application to CloudHub 309

5. To deploy your application, follow these steps:

I. Right-click on any application in Anypoint Studio that you wish to deploy to CloudHub

| Anypoint Platform | Deploy to CloudHub (see Figure 9.7).

Figure 9.7 – Deploying to CloudHub from Anypoint Studio

II. Choose a deployment environment – Sandbox, in our case (see Figure 9.8).

Figure 9.8 – Choosing Sandbox as a deployment environment

Deploying Your Application310

III. Review the configurations and click Deploy Application (see Figure 9.9).

Figure 9.9 – Reviewing the deployment configurations

Note

Every time you wish to redeploy an application, follow Step 5.

Deploying your Mule application to CloudHub 311

You will see the application is successfully deployed on CloudHub (see Figure 9.10).

Figure 9.10 – Application successfully deployed on CloudHub

Let’s now review our deployed application in Anypoint Platform’s Runtime Manager.

You can review and update the configurations as per your needs (see Figure 9.11).

Figure 9.11 – The Anypoint Platform dashboard

You can see all the properties in the Properties tab auto-populated because we have configured the

API Manager’s configuration in the studio, which is the client ID and the client secret (see Figure 9.12).

Deploying Your Application312

Figure 9.12 – Properties in Runtime Manager

We have now successfully deployed our Mule application to CloudHub. This is also considered the

easiest way to deploy your application on CloudHub.

In the next section, let us now learn how to deploy it on standalone Mule runtime, also called an

on-premises server.

Deploying your Mule application on an on-premises

server

In an on-premise deployment, you host a Mule Runtime on your infrastructure. You have total control

over the applications deployed on your network.

Let’s understand how to set up an on-premises server and deploy a Mule application over it with

some easy steps:

To download and unzip the Mule runtime, click on the following link: https://www.mulesoft.

com/lp/dl/mule-esb-enterprise. Fill in the details as shown in Figure 9.13 and click Download.

https://www.mulesoft.com/lp/dl/mule-esb-enterprise
https://www.mulesoft.com/lp/dl/mule-esb-enterprise

Deploying your Mule application on an on-premises server 313

Figure 9.13 – Downloading the Mule runtime

Extract the folder and review all the files in the package (see Figure 9.14).

Figure 9.14 – The Mule standalone runtime’s folder structure

Deploying Your Application314

To add a server, in Anypoint Platform, navigate to Runtime Manager | Servers | Add Server. Enter

the server name of your choice and click Copy command (see Figure 9.15).

Figure 9.15 – Adding an on-premises server in Anypoint Platform

We can control and monitor our Mule servers with the help of a Mule agent. Open the terminal or

Command Prompt (in a Windows OS). Paste the command copied in Step 2 and execute (see Figure 9.16).

Figure 9.16 – Executing the command to install the Mule agent

Deploying your Mule application on an on-premises server 315

You can see in Figure 9.17 that the command is executed and the Mule agent is installed successfully.

Figure 9.17 – The Mule agent configured successfully

You can also check the status of your server by logging in to Runtime Manager.

On logging into Runtime Manager | Servers, you can see that the status of the server is Created (see

Figure 9.18).

Figure 9.18 – A server created in Runtime Manager

Deploying Your Application316

To start the Mule standalone server, execute mule.bat under the /bin directory downloaded

package. You can see the status as DEPLOYED on the terminal/Command Prompt (see Figure 9.19).

Figure 9.19 – The on-premises server started

You will also see the server in Running status in Runtime Manager (see Figure 9.20).

Figure 9.20 – The server in a Running state in Runtime Manager

To deploy the Mule application, go to Runtime Manager | Deploy the application. Select the

Deployment Target to the server that you’ve recently set up. Choose the Mule application JAR file

that you wish to deploy. Click Deploy Application (see Figure 9.21).

Building a CI/CD pipeline with MuleSoft 317

Figure 9.21 – Deploying a Mule application

Once the application is deployed successfully, you will see the status as Started (see Figure 10.22).

Review the configuration of the application that is being deployed on your on-premises server.

Figure 9.22 – Reviewing the deployed on-premises application in Anypoint Platform

We know now how to deploy an on-premises application. In the next section, we’ll learn more about

the CI/CD process.

Building a CI/CD pipeline with MuleSoft

In the previous sections, we learned about the steps involved with manual deployment. In order to

make deployment hassle-free and enable a faster release, we can automate the deployment process

with the help of CI and CD.

Deploying Your Application318

This involves building a pipeline with predefined tasks to continuously build, test, and deploy

our Mule application (see Figure 9.23). It automates the deployment process with or without any

manual interventions.

Figure 9.23 – The CI/CD process

To enable the CI/CD pipeline with a Mule application, we need to configure the Mule Maven plugin

in pom.xml.

The Mule Maven plugin

This helps you to build and deploy a Mule application in various deployment environments. You can

leverage the capabilities of Maven to perform different operations. The Mule Maven plugin has mainly

three goals, namely package, deploy, and mule:deploy/mule:undeploy.

You need to enter deployment details in pom.xml pertaining to a specific environment. The following

code snippet shows the configuration of the Mule Maven plugin in pom.xml for CloudHub deployment.

We can similarly configure for other deployment models:

<plugin>

 <groupId>org.mule.tools.maven</groupId>

 <artifactId>mule-maven-plugin</artifactId>

 <version>3.5.4</version>

 <extensions>true</extensions>

 <configuration>

 <cloudHubDeployment>

 <uri>https://anypoint.mulesoft.com</uri>

 <muleVersion>${app.runtime}</muleVersion>

Summary 319

 <username>${username}</username>

 <password>${password}</password>

 <applicationName>${cloudhub.application.name}

 </applicationName>

 <environment>${environment}</environment>

 <region>${region}</region>

 <workers>${workers}</workers>

 <workerType>${workerType}</workerType>

 <properties>

 <key>value</key>

 </properties>

 </cloudHubDeployment>

 </configuration>

</plugin>

Also, you can integrate MuleSoft with different CI/CD tools, such as Jenkins, Azure DevOps, Bamboo,

Bitbucket, GitLab, and so on.

We have learned about CI/CD configuration with MuleSoft and the Mule Maven plugin. It’s essential

to know about the basics of Maven before configuring the CI/CD pipeline with Mule.

Summary

In this chapter, we have studied different deployment models such as CloudHub, RTF, PCE, and

standalone runtime. We have also learned about different deployment environments such as fully

cloud-hosted, fully customer-hosted, and hybrid. We have explored the pros and cons of the deployment

environment and when to opt for a particular environment and a model. Apart from this, we have

also seen how to deploy a Mule application on CloudHub and on-premises systems.

We have also learned the basics of CI/CD integrations with the help of the Mule Maven plugin. We

have seen the importance of the Mule Maven plugin while deploying a Mule application.

In order to automate and make your deployment process hassle-free, it’s essential to be aware of the

basics of deployment.

In the next chapter, we shall learn about API security and how to implement API security using MuleSoft.

Let’s get some hands-on practice by solving an assignment and doing a quiz.

Assignments

Deploy a Mule Application from Anypoint Studio on a CloudHub and standalone Mule runtime

server (on-premises).

Deploying Your Application320

Questions

1. What are the different ways to deploy an application on CloudHub?

2. What is the purpose of the Mule Maven plugin?

3. Where should you host your application if there are restrictions on your data/metadata leaving

an organization?

Answers

1. You can deploy an application on CloudHub using Anypoint Studio, by uploading an executable

JAR file in Anypoint Platform, using the Anypoint CLI, or using a CI/CD tool.

2. To enable the management of building and deployment of a Mule application in different

deployment environments.

3. On a customer-hosted deployment environment.

10
Securing Your API

In the previous chapter, we learned how to deploy a Mule application, explored different deployment

environments are, and how to choose your deployment environment.

There are several factors that need to be considered while choosing a deployment model; hence, it’s

an important decision while building your application network.

We are also aware that APIs are responsible for carrying data/metadata and communicating with

several end systems and, hence, are at a potentially high risk of being attacked. It’s important to secure

your API and thereby protect your integration ecosystem. In this chapter, we shall learn about API

security and the need for securing your API and Mule application.

We shall also focus on how to implement API security using MuleSoft and study several techniques

with which you can secure your APIs.

We will cover the following topics in this chapter:

• The need for API security

• API security with MuleSoft

• Introducing API Manager

• Policies in MuleSoft

• Implementing API security using policy

• Security capabilities of MuleSoft

Securing Your API322

Technical requirements

• Anypoint Studio installation (see Chapter 3, for Studio installation guidance)

• An Anypoint Platform account (see Chapter 2, to create a 30-day free trial account)

The need for API security

As we’re aware, APIs are responsible for carrying data and critical information back and forth in an

integrated system. Hence, it is essential for us to have control over the information being processed

and transferred by the APIs.

Let’s now understand the need for API security:

• To protect our APIs, applications, API network, and end systems from malicious attacks

• Prevent unauthorized use of APIs or data that is being processed by APIs

• To standardize rules and regulations across an API network

• To follow company-wide security protocols and standards

• Comply with government-laid security protocols and standards such as FedRAMP, FIPS 140,

CIS Benchmarks, and so on

• To have control over incoming and outgoing data and metadata

We now know the need for and the importance of API security. Let’s now see how we can secure API

and applications that, in turn, will secure our application network.

API security with MuleSoft

In this section, let’s simplify how we can achieve API security using MuleSoft.

In Figure 10.1, we can see that the application network is formed using reusable building blocks, such

as Mule applications, end systems, and non-Mule applications. Here, the outer dotted line depicts the

periphery of the Mule application, and the inner dotted line shows the integration between a Mule

application and an external end system/non-Mule application.

API security with MuleSoft 323

Figure 10.1 – A snapshot of Anypoint Platform depicting application networks

In order to achieve total security, you can apply security regulations on any of the following:

• On the periphery of the Mule application

• On one or more Mule applications and end systems

• On one or more non-Mule applications and end systems

• On an individual Mule/non-Mule and end system

You can implement the preceding security mechanism in any permutation and combination as per

your organizational security needs. This is also called the layered security approach in MuleSoft. It

helps us to achieve zero-trust security. It means trusting no one and verifying every incoming and

outgoing request.

We’ve now understood how to achieve total security in MuleSoft. Let’s now learn about the prime

component responsible for securing our APIs, API Manager.

Securing Your API324

Introducing API Manager

In Chapter 5, we’ve seen a glimpse of the API Manager. Let’s now understand the prime capabilities

of API Manager.

API Manager is mainly responsible for API governance, which includes tasks such as managing, securing,

and governing the API. It’s a place to manage all kinds of APIs and, in turn, our Mule applications

under one roof. It is in sync with other Anypoint Platform components such as the Design Center,

Exchange, Runtime Manager, and the Anypoint Studio.

Figure 10.2 represents the default dashboard of API Manager.

Figure 10.2 – Anypoint Platform depicting the API Manager dashboard

Let’s now understand the core capabilities of API Manager.

Understanding the capabilities of API Manager

From Figure 10.2, we can see the navigation menu on the left-hand side of the dashboard. Let’s learn

in brief about each component in the menu:

• API Administration: It’s mainly responsible for adding/importing a new/existing API into API

Manager. It creates an API instance on which we can apply security policies. We shall learn

about applying security policies in the upcoming section.

• API Groups: The main functionality is to consolidate the APIs into groups and apply security

configuration to the whole group. The security configuration laid on a particular group will be

applicable for all the applications in that group.

• Automated Policies: There are a few predefined policies pertaining to logging and monitoring.

You can apply the same set of policies across all the APIs in the particular environment. They’re

known as automated policies. It saves time and makes your security configuration consistent,

as you’re applying the same set of common policies throughout the environment (a design, a

sandbox, or any other).

Introducing API Manager 325

• Client Applications: These are external services or applications that consume APIs.

• Custom Policies: You can publish your customized policy in this section. You can design your

policy in Anypoint Studio and configure it to match your organizational needs. Later, you can

publish this policy and apply it over the API/APIs.

Now that we’ve understood the capabilities of API Manager, let’s move ahead and understand the

underlying security architecture by learning about a secure API gateway.

Understanding the API gateway

An API gateway acts as a gatekeeper to keep a check on incoming and outgoing requests and responses.

Learning about the secure API gateway will give you an idea of how security mechanisms are enforced

in MuleSoft.

We can see the architecture of the API gateway in Figure 10.3. Let’s look at the flow of activities involved.

Figure 10.3 – The security architecture of the API gateway

With reference to Figure 10.3, let’s understand the activities involved in implementing security with

the help of the API gateway.

1. Whenever a request is sent to the basic endpoint or a proxy endpoint, the request is redirected

to API Manager.

2. API Manager has a list of configurations enforced on a particular endpoint (security, performance,

and so on).

Securing Your API326

3. The API gateway checks whether the configured parameters on API Manager and Anypoint

Runtime Manager meets the requirements with the help of an API Autodiscovery ID. It’s a

number that helps to bind the activities of API Manager with Anypoint Runtime Manager. (We

shall learn more about this in further sections.)

4. If all the conditions are satisfied, only then is the request allowed to reach the backend API. If

the conditions are not satisfied, the API gateway rejects the request.

5. Once the request reaches the backend API, it continues the normal execution flow.

We have now learned about the API gateway and the steps involved in securing the APIs with the

API gateway.

Now, let’s learn about the most fundamental and easiest approach to securing your APIs, which are

policies in MuleSoft.

Policies in MuleSoft

Policies help you to impose security regulations, control traffic, transform data, and improve the

usability of an API. It’s important to know about policies, as they are quite easy and efficient to apply.

They are predefined and can also be tailored as per your organizational needs.

Let’s now learn about the out-of-the-box policies in MuleSoft. The following policies are sorted

as per their categories – that is, Security, Compliance, Transformation, Quality of Service, and

Troubleshooting. We will also study in brief custom policies in MuleSoft.

Security

In this category, the policies mainly emphasize securing the API by means of authentication and

authorization. Security policies protect an API from various security threats and attacks. Let’s learn

about them in brief:

• Basic Authentication – Simple: This is the simplest of all the security policies, which helps

you authenticate your application using a username and password.

• Basic Authentication – LDAP: This is similar to simple authentication. Here, you can authenticate

using LDAP (which stands for Lightweight Directory Access Protocol) credentials.

• IP Blocklist/Allowlist: You can allow or restrict IP addresses from accessing your APIs.

• JSON/XML Threat Protection: In the case of bulky and nested JSON or XML data, you

can use this policy to limit the level of nesting. This way, you’re protecting your API from a

malicious payload.

• JWT Validation: JSON Web Token (JWT): helps you authenticate and authorize with the

help of a valid JWT token. The token consists of claims, signature, a JSON payload, and so on.

Policies in MuleSoft 327

• OAuth 2.0 Access Token Enforcement Using Mule OAuth Provider: You can implement

OAuth 2.0 as your security protocol to help you authorize your application. You can only use it

with Mule OAuth 2.0 Provider. There are other provisions for using a different identity provider

(for example, Okta or Salesforce).

• OAuth 2.0 Token Introspection: This policy will help you enable OAuth with a third-party

Identity Provider(IdP) such as AWS, Okta, GCP, and so on.

• Tokenization/Detokenization: This helps you securely transform/de-transform sensitive

information such as Personal Identifiable Information (PII) and bank credentials.

We have now studied several security policies that will help us to enhance API security. Let’s now

learn about the different policies in the compliance category.

Compliance

In this category, we mainly focus on the API being compliant with an environment and obeying the

regulations. Let’s learn about the policies in the compliance category:

• Client ID Enforcement: This secures access to a resource by validating a client ID and secret.

It ensures that only a request with a valid client ID and secret gets access to the resource. On

registering an application in the Anypoint Platform, a client ID and client secret are generated.

• Cross-Origin Resource Sharing (CORS): This is also known as a CORS policy. As the name

suggests, it helps to access resources from web applications that are in a different domain.

We have now learned about compliance-based policies. In the next section, let’s learn about the

transformation policies.

Transformation

Transformation policies help in modifying or enhancing metadata information:

• Header Injection/Removal: If you want to add/remove any data/metadata as a part of an

inbound header, you can use the Header Injection/Removal policy.

• External Processing: This policy will help you forward incoming HTTP requests to an external

gRPC service for further processing.

We now understand the transformation policies. In the next section, let’s learn about the Quality

of Service.

Securing Your API328

Quality of service

As the name suggests, Quality of Service (QoS)-based policies help you to enhance the API experience.

They also help with API performance optimization. Let’s check out a few of the QoS-based policies.

• HTTP Caching: This helps you cache the API response for reusability purposes.

• Rate Limiting: This puts a limit on the number of requests that can be processed by an API

during a particular duration. Once it reaches the maximum threshold value, all the other requests

are rejected. This can prevent a Distributed Denial-of-Service(DDOS) attack.

• Rate Limiting SLA: This is similar to Rate Limiting, but with this policy, you limit the number

of requests based on a Service Level Agreement (SLA).

• Spike Control: This puts a limit on the number of requests that can be processed by an API

during a particular duration. Once it reaches the maximum threshold value, it queues the

requests and attempts a retry mechanism.

Troubleshooting

This set of policies will assist you in troubleshooting and inspecting your application.

• Message Logging: You can log the information from an incoming/outgoing request/response.

Apart from these out-of-the-box policies, if your organization has any other different security

regulations, you can design your own custom policy.

Now, let’s learn in brief about custom policies in Mule.

Custom policies

As is quite evident from the name itself, you can customize a security policy to match your organizational

security needs.

You can write your custom policy in Anypoint Studio, package it using Maven, and publish the policy

on Anypoint Exchange. The following code snippet represents the structure of a custom policy:

 <?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:http-policy="http://www.mulesoft.org/schema/mule

 /http-policy">

 <http-policy:proxy name="custom-policy-template">

 <http-policy:source>

 <http-policy:execute-next/>

 </http-policy:source>

Implementing API security using policy 329

 </http-policy:proxy>

</mule>

Once published, you can apply the policy to your APIs using API Manager. Along with basic transformation

logic, you can also add form elements such as a text box or radio button to get user input.

Apart from this, we can also combine our custom policy with the out-of-the-box Mule policies. Custom

policies give you better control if you have any particular requirements.

In the next section, let us learn how to implement API security policy.

Implementing API security using policy

We have learned about policies, types of policies, and categories of policies. Now, let’s understand how

to achieve security by applying a policy.

In this walkthrough, we shall apply a simple basic authentication policy:

1. Import any Mule application into Anypoint Studio or use your pre-existing Mule application.

2. Log in to the Anypoint Platform. Go to API Manager | API Administration | Add new API

(as shown in Figure 10.4).

Figure 10.4 – Adding a new API instance on API Manager

3. In order to add a new API, we’ll first configure Runtime (see Figure 10.5). Select Mule Gateway

as the runtime, as we’re connecting to a pre-existing application. You can also connect to a new

Mule application as a proxy.

Securing Your API330

4. Select Mule 4 as the Mule version. Click Next.

Figure 10.5 – Configuring runtime while adding the API instance

5. We will now configure the API. Select API from Exchange, the one we have already published,

which is musicbox-sys-api (see Figure 10.6).

Figure 10.6 – Configuring the API while adding the API instance

6. Once you’ve selected the API from Exchange, details such as Asset type, API version, and

Asset version will be auto-populated (see Figure 10.7). Review the information and click Next.

Implementing API security using policy 331

Figure 10.7 – Configuring the API from Exchange

7. We will now configure the endpoint. If you wish to have a customized URL for your endpoint,

you can configure it; it’s completely optional (see Figure 10.8). Click Next.

Figure 10.8 – Configuring the endpoint while creating the API instance

8. In this step, we will review all the information pertaining to our API instance (see Figure 10.9).

Click Save in order to finalize our API instance.

Securing Your API332

Figure 10.9 – Reviewing the API instance

You will now see a new API instance created. You can monitor and review your API performance

metrics on this dashboard (see Figure 10.10).

Figure 10.10 – The API instance dashboard

We have learned about how to create an API instance in API Manager. In Figure 10.10, we can see

Autodiscovery and the API ID. Let’s learn more about API Autodiscovery.

Implementing API security using policy 333

API Autodiscovery

API Autodiscovery binds the application deployed in Runtime Manager with the API instance created

on API Manager.

The API Autodiscovery ID is a unique ID that helps you to connect and synchronise the applications

deployed on Runtime Manager to API instances on the API Manager. All the policies and other

configurations that we apply on our API instance will be reflected on applications deployed in

Runtime Manager.

Let’s now understand how to configure API Autodiscovery.

Configuring API Autodiscovery

To configure API Autodiscovery, follow these simple steps:

1. Go to your Anypoint Studio or Anypoint Code Builder, and open any of the previously built

Mule applications or create a simple new Mule application on which you wish to configure

API Autodiscovery (see Figure 10.11)

2. Inside your Mule application, go to global.xml (where you manage all configurations) or

any .xml file (if you don’t have global.xml) | Global Elements | Create, search for API

Autodiscovery, select API Autodiscovery, and click OK.

Figure 10.11 – Creating a new API Autodiscovery component

Securing Your API334

3. Copy and paste the Autodiscovery ID from the API instance in API Manager and select your

main flow, which has an APIkit router in order to apply configuration across all the flows that

are being routed (see Figure 10.12).

4. In this case, the API ID is 18095230 and the flow name is musicbox-sys-api-main.

Once configured, click OK.

Figure 10.12 – Configuring the API Autodiscovery component

5. Deploy your application to CloudHub, as shown in Figure 10.13. (Refer to Chapter 8, to learn

more about deploying the Mule application.)

6. Right-click on your project, hover over Anypoint Platform and select Deploy to CloudHub.

Implementing API security using policy 335

Figure 10.13 – Deploying your application to CloudHub

7. Once your application is successfully deployed to CloudHub, go to Runtime Manager, select

your application, and click on Logs.

Securing Your API336

You can see in Logs that your API key ID is being logged, which is the same as the Auto Discovery

ID (see Figure 10.14).

Also, the status of your API instance in API Manager will be changed to Active.

Figure 10.14 – API Autodiscovery logs in Runtime Manager

In this section, we saw how to configure the API Autodiscovery ID. In the next section, let’s see how

to configure a security policy.

Configuring a security policy

In the previous sections, we saw how to create an API instance and configure API Autodiscovery. Let’s

now configure a security policy using API Manager with the following simple steps:

1. In order to configure a policy, go to API Manager in Anypoint Platform, select the API instance,

go to Policies, and click Add policy (see Figure 10.15).

Implementing API security using policy 337

Figure 10.15 – Adding a new policy

2. You’ll see a list of policies. Select the Basic authentication - Simple policy, which is the simplest

policy (see Figure 10.16).

Figure 10.16 – Selecting the Basic authentication - Simple policy

3. Configure User Name and User Password. Click on Advanced options to configure further

(see Figure 10.17).

Securing Your API338

Figure 10.17 – Policy configuration

4. In the Advanced options section, select the latest policy version.

You can apply the policies across all the methods and endpoints, or you can choose a particular

endpoint over which you wish to apply the policy. Currently, we’re applying it across all the

API methods and resources. Once done, click Apply.

Check the configuration in Figure 10.18.

Figure 10.18 – Advanced policy configuration options

Implementing API security using policy 339

You will see that your policy was successfully created (see Figure 10.19).

If you have multiple policies, you can rearrange the order of execution.

Figure 10.19 – The Policies dashboard

5. You can go to the application logs in Runtime Manager to check the policy details and logs

related to the policy (see Figure 10.20).

Figure 10.20 – Policy details in logs in Runtime Manager

6. Go to Postman or any other similar app and try triggering the endpoint on which you’ve applied

the policy. You’ll get an authorization error, as shown in Figure 10.21.

Securing Your API340

Figure 10.21 – A snapshot of Postman depicting an authentication error

7. Go to the Authorization tab, select Basic Auth, and add a username and password (as defined

in the policy). See Figure 10.22 for reference.

You’ll get a successful response, which means that the credentials have been validated successfully

and you’re authenticated.

Figure 10.22 – A snapshot of Postman depicting a successful response

The security capabilities of MuleSoft 341

This is a simple demonstration of how we can leverage the security capabilities of MuleSoft by applying

policies. We can further extend these capabilities to achieve zero-trust security.

Let’s now learn more about the security capabilities of MuleSoft.

The security capabilities of MuleSoft

MuleSoft has a wide range to offer when it comes to security. In order to leverage the security capabilities

of MuleSoft, let’s learn about several security capabilities, starting with Anypoint Security.

Anypoint Security

Anypoint Security offers a layered security approach in order to protect your APIs. It comprises

the following:

• Edge policies: These are similar to the out-of-the-box MuleSoft policies.

• Secrets Manager: This provides you with a secure vault to safeguard your security certificates

and keystores

• Tokenization service: You can use this service to protect sensitive information like PII details,

bank details, and so on.

Anypoint Security helps us to secure apps deployed on Runtime Fabric. Let’s now learn more about

Anypoint Flex Gateway, which is a capability from MuleSoft to level up API security.

Anypoint Flex Gateway

MuleSoft offers three types of gateway – namely, a Mule gateway, Anypoint Flex Gateway, and Anypoint

Service Mesh.

Anypoint Flex Gateway is an ultra-fast gateway for managing the security capabilities of Mule and

non-Mule applications.

You can extend the security capabilities of MuleSoft beyond Anypoint Platform with the help of

Anypoint Flex Gateway.

You can configure Flex Gateway in one of two ways:

• Connected mode: Use Anypoint Platform as a visual UI to secure, manage, and monitor

your APIs.

• Locally: You can configure Flex Gateway on your local machine instead of connecting it to

your Anypoint Platform account using YAML configuration files. You might need third-party

providers if you want to have a UI to read logs.

Securing Your API342

In order to get started, you can create a free trial account with Anypoint Platform or you need to have

an Anypoint Flex Gateway subscription. You can install Flex Gateway as a Linux service, in a Docker

container, or as a Kubernetes Ingress controller. There is a predefined set of instructions that you

can find in Runtime Manager that makes the installation and setup of Flex Gateway easy. For more

information, see this article: https://developer.mulesoft.com/tutorials-and-

howtos/understanding-anypoint-flex-gateway-overview-introduction/.

We have gone through several API security techniques. You can refer to the Assignments, Questions,

and Answers sections at the end of this chapter to get more hands-on with API security.

Summary

In this chapter, we’ve learned about the security capabilities of MuleSoft. We have learned about

different types of policies in MuleSoft and implemented a basic authentication policy. You can extend

these security capabilities of MuleSoft to Mule and non-applications and APIs.

We have also studied the API gateway, the security architecture of the API gateway, Anypoint Security,

and Anypoint Flex Gateway.

To make your API network reliable and secure, it’s essential to have a fair understanding of API

security. It is also essential to have an understanding of various ways to achieve zero-trust security,

which we have learned in this chapter.

In the next chapter, we’ll learn how to test our Mule application and what the different testing tools

are. We shall also study what MuleSoft has to offer when it comes to API testing.

Assignments

Apply Header Injection and Message Logging policies on an API instance. Add header values as key

= book and value = MuleSoft for Header Injection policy. Log header using Message Logging

policy. Verify logs in application logs on Runtime Manager.

Questions

1. What is the difference between Rate Limiting and Spike Control?

2. What is the purpose of using Anypoint Autodiscovery?

3. Which policy can we use to mask sensitive data?

https://developer.mulesoft.com/tutorials-and-howtos/understanding-anypoint-flex-gateway-overview-introduction/
https://developer.mulesoft.com/tutorials-and-howtos/understanding-anypoint-flex-gateway-overview-introduction/

Answers 343

Answers

1. Whenever a maximum threshold value is reached, Rate Limiting rejects all further incoming

requests, whereas Spike Control controls queues of a request.

2. Anypoint Autodiscovery binds an application in Runtime Manager with an API instance in

API Manager.

3. Tokenization

11
Testing Your Application

In previous chapters, we learned how to build and deploy a Mule application. The next step is to test

our application, which is important to ensure we deliver bug-free projects.

In this chapter, let us explore testing, types of testing, different testing tools, and ways to test a Mule

application using MUnit and MUnit Test Recorder. In Chapter 3, we created and ran a simple Mule

application called HelloWorld. Here, we will be learning how to test the HelloWorld Mule

application using MUnit and MUnit Test Recorder.

After reading this chapter, you’ll gain knowledge about the following topics:

• Different types of testing

• Different types of testing tools

• Commonly used testing tools, such as Postman, SoapUI, and JMeter

• How to create and run a test suite using MUnit

• How to create and run a test suite using MUnit Test Recorder

Technical requirements

The prerequisites for this chapter are as follows:

• The .jar file used for creating a Mule application in the Creating a test suite section is available

on GitHub, at the following link, in the Chapter3 folder:

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-

Developers-Second-Edition/

• Go to https://www.postman.com/downloads to download and install Postman

• Go to https://www.soapui.org/downloads/soapui/ to download and install SoapUI

• Go to https://archive.apache.org/dist/jmeter/binaries/?C=M;O=D to

download and install the latest version of JMeter (download the .zip file and extract it in C:/)

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition/
https://www.postman.com/downloads
https://www.soapui.org/downloads/soapui/
https://archive.apache.org/dist/jmeter/binaries/?C=M;O=D

Testing Your Application346

Introduction to testing

Testing is primarily conducted to ensure whether the software product is working as expected based

on the requirements. The tester verifies the product, module, or code of the software product by

running some test cases manually or automatically. This process helps to identify bugs at the early

stages of the product life cycle.

Before starting the actual testing, the tester writes the test cases and test suites. A test case is a sequence

of steps that the tester wants to test and verify against the functionality to ensure the system is working

properly. A test suite is a collection of test cases.

There are many types of testing available to test the software. Some of them are as follows:

• Unit testing: This helps to validate the smallest portion of the software product, for example,

testing a specific program in an entire software product.

• Functional testing: This verifies the functionality of the product and whether it is working as

expected or not based on the functional requirements.

• Performance/load testing: This validates the functionality by sending lots of requests (huge

workloads) at the same time and at different intervals, for example, testing e-commerce platforms

or websites with a large number of users (1,000+) at the same time to check the performance

of the product.

• Regression testing: This is used to check whether any recent functionalities added to the product

break the project functionality. When we are short on time to perform all the test cases again,

this type of testing is preferred.

• Stress testing: This is used to check what the maximum volume or stress the system can

accept is. For example, say we start testing with 500 concurrent users on an e-commerce

platform. Assume it is working well with 500 users. Then, we will try a higher limit, such as

600 concurrent users, to verify whether the system can accept 600 requests at the same time.

If the system goes down, then we will know that the maximum volume that our system can

accept is 500 and not 600 users.

• Integration testing: This is used to verify whether the different software products or components

are functioning together or not. For example, our Mule application picks the data from the

database and sends it to the partner system’s web service. This testing ensures end-to-end

functionality from the database to the partner’s systems. Integration testing capabilities include

the following:

 � Interface and API testing: Ensures seamless communication between subsystems and

external systems

 � End-to-end data flow validation: Confirms that data is correctly transferred and processed

across all integrated systems

Getting familiar with testing tools 347

 � Functional verification: Tests the combined functionality of all integrated components

against requirements

 � Error handling and recovery testing: Evaluates the system’s response to failures and its

ability to recover

• User acceptance testing: This testing is done to check whether the system works as per

user requirements.

• Vulnerability testing: This is used to check whether any security-related issues are present in

the software product.

We will use these types of testing while working on Mule projects.

Performing different types of testing provides us with the following benefits:

• Cost-effectiveness and savings

• Customer satisfaction because of the quality of the product

• Addressing any design issues and poor design decisions at an early stage

• Improved security

• Better performance of the software product

With this, we have understood the basics of testing, its types, and its benefits.

Let’s move on to learn about different testing tools.

Getting familiar with testing tools

There are many testing tools available to perform both manual testing and automated testing. Manual

testing is used for manually executing test cases. In automated testing, we script the test cases and

execute them automatically.

Testing tools can be grouped as follows:

• Test management tool: To track test cases and execution

• Defect/bug tracking tool: To log the defects

• Mobile testing tool: To test different mobile devices that run on iOS, Android, and other

operating systems (OSs)

• Integration testing tool: To test two or more modules together in order to verify whether all

the modules are working together or not.

• API testing tool: To test web services

• Load/performance testing tool: To check the performance of the system

• Security testing tool: To check any security vulnerability in the software product

Testing Your Application348

These tools help to reduce the time taken by the testers in their day-to-day testing activities. There are

many useful tools on the market to perform both manual and automated testing. Some of the most

commonly used testing tools are as follows:

• Selenium (automation)

• Postman and Newman (API testing)

• JMeter (load testing)

• Gatling (load testing)

• HP ALM (test management)

• Jira and Bugzilla (test, defect, and bug tracking)

• Appium (mobile automation)

• Tricentis Tosca (automated testing) and Katalon Studio (licensed automation tool)

• BrowserStack (websites and mobile testing) and SeeTest (mobile testing)

• Load runner (load testing)

With this, we have understood the different types of testing tools and seen a few examples of tools

that are commonly used by testers.

Let’s deep dive into a few tools that are used in Mule projects, such as Postman, SoapUI, and JMeter.

Postman

Postman is an application used for API testing. It acts as an API/HTTP client to send a request to any

web service endpoint. While sending the request, we can send the required standard or custom HTTP

headers, such as Content-Type or Accept. We can also configure different types of authorization,

such as basic authentication, a bearer token, OAuth, and an API key.

As this tool is related to API testing, we can send the required value in the query parameters and URI

parameters of the URL. This tool supports the testing of all types of HTTP methods, such as get,

post, put, patch, delete, and head. If it is a post or put method, we can include the required

payload in the body of the request.

After we have sent the request to the API URL, we will receive the response payload, the HTTP

response status code, and the status description from the API. We can also check the response time

to understand how much time it has taken to receive the response.

We can save each API request and group the related APIs into collections for future testing.

After configuring the API URL for testing, we can extract the code snippet in different programming

languages (For example, PHP, Javascript, NodeJs, or Python) to share it with the developer for development.

Getting familiar with testing tools 349

Postman also enables configuring environments in order to test the API using the DEV, SIT, and QA

endpoints. For any values specific to an environment, define them in the environment variable. Create

the new environment variable in the Environments section for each environment.

While calling the API for each environment, the username and password differ. In that case, we can

set the variables for username and password in the environment variable to specify their values. We

can use those variables to call the API using the {{ }} syntax.

Figure 11.1 – Postman – environment variable

Figure 11.1 shows the Postman Environments section with two environment details, DEV and TEST.

In DEV, it shows the username and password environment variables with their respective values.

After adding variables and values, click Save.

While calling APIs, we can substitute the username and password variables by using {{username}}

and {{password}}, as shown in Figure 11.2:

Figure 11.2 – Postman – authorization

As shown in Figure 11.2, we need to select the appropriate environment to call the API. Here, we are

calling the DEV environment API with its username and password.

Testing Your Application350

Let us look at the Postman application home screen, which shows more options and features from

the screenshot.

Figure 11.3 – Postman application

Figure 11.3 shows the Postman home screen, which shows the endpoint details, method, HTTP request,

response, HTTP status code, code snippets, and other information.

To change any settings in Postman, click the settings icon and select Settings, as shown in Figure 11.4:

Figure 11.4 – Postman – settings

Getting familiar with testing tools 351

In the settings, we can set the request timeout value, set SSL certificate verification to on or off,

configure certificates, configure proxy details, export data, and so on.

With this, we have understood the essentials of the Postman application.

Let us next explore how to create test cases in SoapUI.

SoapUI

SoapUI is an open source testing application, and it is commonly used for both API manual and load

testing. Using this tool, we can test SOAP, REST-based APIs, JMS, and other components.

Creating a SOAP project

In this section, let us create a SOAP project using the WSDL specification. A Web Service Definition

Language (WSDL) file will be in .xml format. This specification file has a request and response

structure and endpoint details. Using a WSDL file, any developer can design, develop, and test their

SOAP-based APIs.

Let’s follow these steps to create a SOAP project:

1. Open the SoapUI application, click the File menu option, and select New SOAP Project.

2. Provide the project name, browse the WSDL file location, and click OK.

Figure 11.5 – SoapUI – New SOAP Project

We can browse the WSDL from a local file location or an HTTP/HTTPS URL. Once we click

the OK button, it creates the SOAP project with all the operations, along with sample requests

and endpoint details based on the information available in the WSDL file specification. In

Figure 11.6, toward the left of the screen, AddInteger, DivideInteger, and the other operations

that we can see under the project are SOAP operations:

Testing Your Application352

Figure 11.6 – SoapUI – SOAP project

As shown in the preceding figure, we can see the sample request structure and click on the Run

button to send the request to the endpoint URL. Clicking Run invokes the actual endpoint

URL and provides the response in SoapUI.

We can also create the test suite and test case by selecting the options from the sample request.

3. Select the Request option and choose Add to TestCase to create the test suite and test cases.

Figure 11.7 – SoapUI – Add to TestCase

Upon clicking Add to TestCase, it will create Test Suite with Test case. Using these test cases,

we can execute these cases to verify whether our functionalities are working as expected or not.

4. If you want to perform load testing for a specific API to measure the performance, then right-

click on TestCase and select Load Tests, then click New LoadTest.

The load test cases will be created now. We can specify the limit of transactions that we want

to run within the specified time, and then we can execute the load testing.

Getting familiar with testing tools 353

Figure 11.8 – SoapUI – load testing

As shown in Figure 11.8, we have tested sending 100 transactions to our API endpoint, a

maximum of five messages at a time with a 1,000 millisecond (one second) delay or interval

after every five messages. This load test started at 12:57:50 P.M. and was completed at around

12:58:12 P.M. This means we were able to complete 100 transactions within 22 seconds. In this

test, the API response minimum, maximum, and average times were 254 milliseconds, 1,169

milliseconds, and 317 milliseconds, respectively.

We can change the values of Limit, Total Runs, and Test Delay to test more transactions to

understand the API response and failure rates from the load testing.

With this, we have understood how to create a SOAP project, test case, and load test case, and also

how to test using SoapUI.

Now, let’s move on to learning how to perform load testing using JMeter.

JMeter

Performance is an important factor for any web- or mobile-based applications, as well as other

applications. In order to measure the performance of the application, we need to send different

workloads to our application so that we can measure the performance of our application. We use the

JMeter tool to perform load testing and measure the performance. Apache JMeter is an open source

application built on the Java platform. It is platform-independent and works in Windows, Linux, and

any other OS. It is mainly used for load, stress, and web service testing. This helps to ensure that our

application performs well with different workloads.

Testing Your Application354

Using JMeter, we can perform load testing for HTTP, FTP, JDBC, JMS, Java, and other components.

Let’s follow these steps to create and execute a test plan:

1. If your OS is Windows, then open JMeter from the installation path, C:\apache-

jmeter-5.4.3\bin\jmeter.bat, as shown in Figure 11.9:

Figure 11.9 – Launching JMeter

It opens the Apache JMeter GUI in a new window.

Figure 11.10 – Apache JMeter – home window

When the JMeter GUI opens, it displays Test Plan on the left side of the user interface.

2. Change the name of Test Plan to Test Plan Hello World in the Name field.

Getting familiar with testing tools 355

3. Right-click Test Plan Hello World, then select Add | Threads (Users) | Thread Group.

Figure 11.11 – JMeter – adding a thread group

A thread group in JMeter simulates concurrent requests to the API endpoint. After the execution,

we can view the results in various formats, such as a graph, a table, a tree, or logs.

4. On the Thread Group screen, set Action to be taken after a Sampler error to Continue,

Number of Threads to 5, Ramp-up period to 1 second, and Loop Count to 4. Then, click Run.

Figure 11.12 – JMeter – Thread Group configuration

Testing Your Application356

This configuration makes sure that JMeter posts five requests, waits for one second, and then

continues the loop four times in total. Overall, it calls the API endpoint 20 times.

Setting Continue in the Thread Group configuration means it will continue testing even when

some test fails.

5. Right-click on Thread Group and select Add | Sampler | HTTP Request.

Figure 11.13 – JMeter – Sampler | HTTP Request

Here, we choose HTTP Request as we are going to invoke an HTTP-based web service for our

testing. To test with a database, we would choose JDBC request.

6. On the HTTP Request screen, provide the HTTP URL, method, and path details of our

Mule application.

Figure 11.14 – JMeter – HTTP Request configuration

Getting familiar with testing tools 357

• Right-click HTTP Request and select Add | Listener | View Results in Table.

Figure 11.15 – JMeter – adding a listener

Here, we select View Results in Table. We can choose one of the other options to view results

in graph or tree format, based on our preferences.

7. Click the Save button and choose the file location to save the test plan file.

8. Click the Start button to start the test plan execution.

Figure 11.16 – JMeter – start the test

Testing Your Application358

Now, we will be able to see that the test execution started and executed 20 times as per our

Thread Group configuration.

Figure 11.17 – JMeter – test execution results

In Figure 11.17, we can see that the overall execution was completed and each request took

approximately a few milliseconds to get the web service response. This ensures our application

is working fine with the workload of five concurrent requests for four loops. We can increase the

workload by increasing the number of threads in our configuration to check the performance

of our application.

With this, we have learned how to use JMeter to create and execute the test plan for load/performance testing.

Now, let’s explore MUnit in Anypoint Studio.

Introducing MUnit

MUnit is a unit testing framework to test a Mule application. It provides complete unit testing capabilities

within Anypoint Studio. MUnit has two modules, MUnit and MUnit Tools.

The MUnit module has the following operations:

• Set Event: To add a payload, variable, or attribute required for testing

• Set null payload: To add a null value for a payload during testing

• After Suite: This runs after all the test executions are completed; for example, if a test suite has

10 tests, then it gets executed just once after all 10 test executions are completed

Introducing MUnit 359

• After Test: Runs after each test

• Before Suite: Runs only once before executing all the tests

• Before Test: Runs before each test

• Test: Used to create a new test

The MUnit Tools module has the following operations to validate whether it is working as expected

or not:

• Assert equals: This checks whether the payload value is equal to a specific value or not.

• Assert expression: This checks an evaluation based on a DataWeave expression.

• Assert that: This checks whether a payload value is equal to a specific value by using DataWeave

functions. For example, MUnit matchers have a set of DataWeave functions to validate the

conditions. The #[MunitTools::withMediaType('text/xml')] condition checks

whether the expression’s media type is text/xml.

• Clear stored data: This clears all stored data.

• Dequeue: This removes the last event from the queue.

• Fail: This fails the test with an assertion error.

• Mock when: This mocks the data when the flow calls the external system.

• Queue: This is to store the value in a queue during testing. The queue gets cleared after the

test execution is complete.

• Remove: This is to remove the value of the specific key that is stored using the Store operation.

• Retrieve: This is to retrieve the value of the specific key that is stored using the Store operation.

• Run custom: This is to run the custom assertion.

• Sleep: This creates a delay during a test.

• Store: This stores value against key during a test. It is used for temporary storage. After the

test, it is cleared.

• Store OAuth token: This stores the OAuth token during the test.

• Verify call: This is to verify whether the processor is called or not.

• Spy: This is to see what happens before and after the processors.

Using MUnit, we can perform the following actions:

• Create test suites and test cases

• Perform testing

• Check the code coverage after testing

Testing Your Application360

Let’s try to create a test suite to execute our test cases.

Creating a test suite

As we have learned, a test suite is a collection of test cases. In order to create a test suite, we need to

create a Mule application first. Instead of creating a Mule application from scratch, we will use the

HelloWorld Mule application, which we developed in Chapter 3. The application has HTTP Listener

with the /hello endpoint, Logger to log the Welcome to Hello world application message, and

Transform Message to output { message: "Hello World" }. If you did not create this Mule

application earlier, then you can use the .jar file to import the application into Anypoint Studio

using the File menu option. Select Import and then click Packaged mule application (.jar) to create

the Mule application.

Now, let us create the test suite using MUnit:

1. Open the Mule application, right-click on Flow, select MUnit, and choose Create blank test

for this flow.

Figure 11.18 – MUnit – creating a blank test

This creates a new test suite in /src/test/munit/. The test suite contains Behavior,

Execution, and Validation. In the test suite, Behavior sets the input for the test suite. The

Execution step calls the actual flow in the Mule application. In the Validation step, we can write

any kind of condition to validate the Mule application output. We can also see two different

modules (MUnit and MUnit Tools) added in Mule Palette, as shown in Figure 11.19:

Introducing MUnit 361

Figure 11.19 – MUnit – test suite

2. Drag and drop the Asset equals operation from the MUnit Tools module into the Validation

section. Provide the actual and expected values, as shown in Figure 11.20:

Figure 11.20 – MUnit – test suite validation

Testing Your Application362

What will happen is, when the test suite is run, the Execution section calls the HelloWorld

flow and provides a result of { message: "Hello World" }. At this time, the Validation

section compares the flow result with the expected value of Hello World, as mentioned in

the Assert equals condition. If the value matches the actual result, then it will give a valid

output response.

3. In the canvas, right-click and select Run MUnit test suite. The application runs and is compared

to the assert condition provided. If the condition matches, then it will show the success result,

as shown in Figure 11.21:

Figure 11.21 – MUnit – test suite coverage report

If all the flow steps are executed in a Mule application, then it will show 100% coverage. As our

test suite is successful, the Failures count is 0. This coverage report is also very useful when we

have continuous integration (CI) and continuous deployment (CD) set up in MuleSoft. It

checks the coverage report percentage to decide whether to continue with deployment to the

target environment. For example, if the coverage is around 40%, then it will not proceed with

deployment to the target environment. If the coverage is more than 80%, then it will proceed

with deployment to the target environment. In this scenario, we assume that we have set an

80% coverage threshold in our CI/CD pipeline.

Introducing MUnit 363

4. The previous scenario is for a successful test case. Now, let us try a failure scenario. In the

Validation section, set the expected value to Hello World1 and try to run the test suite

again. It fails as our expected value does not match the actual output of Hello World.

Figure 11.22 – MUnit – test suite MUnit Errors

Also, here, it will show 100% coverage as it has executed all the steps in the Mule application.

As this test suite failed, it shows the Failures count as 1 and it also shows more details about

the error in the MUnit Errors view.

In the preceding example, we saw a Mule application with just one flow. If we have two flows

in the same Mule application, then the test suite file will have two different flows to handle the

unit test cases, as shown in Figure 11.23:

Testing Your Application364

Figure 11.23 – MUnit – test suite with multiple flows

With this, we have understood how to create and run a test suite in Anypoint Studio.

Next, let’s explore the MUnit Test Recorder in Anypoint Studio.

Exploring the MUnit Test Recorder

It is time-consuming to write each and every test suite manually. Hence, we will use MUnit Test

Recorder to create automated test suites and capture the input.

In a Mule application, we can use the Record test for this flow option in the flow to create the required

test suites and also start the recording to capture the inputs. The input can be query parameters, URI

parameters, or the request payload.

The MUnit Test Recorder only automatically creates the test suite for successful scenarios. For any

failure test scenarios or additional conditions, we need to create additional test cases manually. We

can debug the test suites by adding breakpoints.

Exploring the MUnit Test Recorder 365

Let’s create a test suite using the Test Recorder.

Creating a test suite using the Test Recorder

In this section, we will learn how to create test suites in a Mule application using the MUnit Test Recorder:

1. Open the HelloWorld Mule application, right-click on the flow, select MUnit, and then

select Record test for this flow.

It starts the Mule runtime in Anypoint Studio and deploys the application. Once the application

is deployed, it shows the DEPLOYED status. A dialog box titled Test Recorder with the Waiting

for input data message appears, as shown in Figure 11.24:

Figure 11.24 – MUnit – Test Recorder Waiting for input data…

In order to capture the input, let us send a request from Postman to our Mule application endpoint.

2. Open the Postman application, set the URL endpoint as localhost:8081/hello, and

click Send.

Testing Your Application366

Figure 11.25 – Postman – sending a request to a Mule application

Once you send the request, it reaches the Mule application and executes all the steps there.

We can see the Logger message in the console, which confirms the execution of the Mule

application. Finally, it saves or records the input/output, as shown in the Test Recorder pop-up

dialog box in Figure 11.26:

Figure 11.26 – Test Recorder – Input recorded

3. Click Configure test to create the test suites.

Once we click Configure test, the Welcome dialog box for New Recorded Test appears.

Exploring the MUnit Test Recorder 367

4. On the Welcome screen, leave File name and Test name as they are and click Next.

Figure 11.27 – New Recorded Test Welcome screen

In Figure 11.27, we have given the default values for the test suite’s filename and test name,

but we can change it to any name as per our naming convention. Upon clicking Next, the

Configure Test dialog box appears.

Figure 11.28 – New Recorded Test Configure Test

Testing Your Application368

It shows the name of the Mule application and its flow steps. The Set input and assert output

section shows the input and output captured and recorded during an earlier run from Postman.

The Flow Input tab captures the input received through attributes and the payload. As we have

sent the request as a get method, we don’t have any input payloads in the Flow Input section.

Figure 11.29 – Flow Input

We can use these as test suite input. Now, let us see what information is available in the Flow

Output tab.

The Flow Output tab captures the output (Attributes and Payload) received after the execution

of the Mule application.

Figure 11.30 – Flow Output

We can use these output values for validation in our test suite.

Exploring the MUnit Test Recorder 369

5. Click the Next button on the New Recorded Test | Configure Test screen (see Figure 11.28).

6. Click Finish on the Test Summary screen (see Figure 11.31) to complete the test suite creation

using the Mule Test Recorder:

Figure 11.31 – New Recorded Test Test Summary

Now our test suite is created successfully with all the supported test suite .xml and .dwl files.

The test suite has three steps: Behavior, Execution, and Validation.

The Behavior step sets the inputs that we captured earlier using the MUnit Test Recorder. This input

data will be taken from the set-event-attributes.dwl and set-event-payload.dwl

files, as shown in Figure 11.32.

set-event-attributes.dwl and set-event-payload.dwl have all the attributes data

and payload data, respectively. As it is a get method, the set-event-payload.dwl file will be

empty. If it were a post method, then it would have input data in JSON or XML or any other format

captured in a .dwl file.

Testing Your Application370

Figure 11.32 – MUnit test suite Behavior

The Execution step calls the flow and passes all the values received from the behavior step.

The Validation step compares the Mule application output against the captured output that is

available in the recorded file (assert_expression_payload.dwl).

Figure 11.33 – Recorded output payload

Summary 371

If validation fails, then the Validation step in the test suite will throw an error with the The

payload does not match message.

Figure 11.34 – MUnit test suite Validation

With this, we have understood how to record input and output in a Mule application and use those

captured inputs and outputs in our tests using Mule Test Recorder.

Summary

In this chapter, we had a look at the basics of testing and the various types of testing tools that are available.

We created a Mule application using a .jar file, tried to create a test case using the MUnit framework,

and carried out tests using MUnit.

We also saw how MUnit Test Recorder helps to create test cases automatically.

On completing this chapter, you expanded your knowledge of how to test a Mule application using

the MUnit testing framework and I am sure that you are now confident enough to test your own

Mule application.

In the next chapter, Chapter 12, we’ll explore how to integrate with Salesforce using the Salesforce connector.

Testing Your Application372

Assignment

Try the following assignments to explore more on MUnit:

• Download the Examples asset (Testing APIKit with MUnit and Unit Testing with MUnit – Tutorial)

from Anypoint Exchange in Anypoint Platform (https://anypoint.mulesoft.com/

exchange/), import it into Studio, and practice MUnit testing with this asset

• Explore different MUnit Tools operations that are available in your test cases

• Explore the limitations of MUnit

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What are the different tools available for load/performance testing?

2. What is MUnit?

3. What is the MUnit Test Recorder?

4. When would we use Mock When operations in MUnit Tools?

5. What are Sleep operations in MUnit Tools?

6. In which path are MUnit test cases stored?

Answers

1. There are many tools available in the market for load/performance testing. Some examples

include JMeter, SoapUI, LoadRunner, and Gatling.

2. MUnit is a unit testing framework to test a Mule application.

3. MUnit Test Recorder is a tool to record inputs and outputs in a flow. It also creates automated

test suites and those captured inputs and outputs can be used for your tests.

4. Mock When is used to mock the data when the flow calls the external system. When unit

testing, we cannot expect the external system to be available for our tests. Instead of calling

the external system, we must mock the data to continue our testing. To achieve this, we need

to use Mock When MUnit Tools operations.

5. Sleep operations help to create a delay during a test. For example, during test execution, to

wait 10 seconds before proceeding with the next step, we can use a Sleep operation. Here, 10

is the time value and seconds is the time unit, which are configurable in the Sleep operation.

6. MUnit test cases are stored in /src/test/munit/ under the Mule application package.

https://anypoint.mulesoft.com/exchange/
https://anypoint.mulesoft.com/exchange/

Part 3:

Integration with Salesforce

and Other connectors

Part 3 covers integrating with Salesforce and explores various MuleSoft connectors, certification paths,

interview tips, AI, and automation.

By the end of this part, you will be familiar with integrating with Salesforce and using different

connectors. You will also explore MuleSoft accelerators and templates for streamlined integrations.

Additionally, we will delve into AI and automation with MuleSoft and review MuleSoft API integrations

with Agentforce.

After completing all the chapters, you will have a solid understanding to pass the fundamental

certification exams, excel in interviews, and work confidently on MuleSoft-based projects.

This part includes the following chapters:

• Chapter 12, MuleSoft Integration with Salesforce

• Chapter 13, MuleSoft Connectors and Use Cases

• Chapter 14, MuleSoft Best Practices, Tips, and Tricks

• Chapter 15, Certification and Interview Tips

• Chapter 16, AI and Automations with MuleSoft

12
MuleSoft Integration

with Salesforce

In the previous chapter, we learned how to test your Mule application. We also studied several testing

tools and a few testing mechanisms and explored MUnit and how to create an MUnit test suite. In

addition, we explored the MUnit test recorder, which automates and eases the creation of test case jobs.

Testing is an integral part of an application development life cycle, hence it’s important to understand

the fundamentals of testing your Mule applications.

In this chapter, we’ll mainly focus on integrating your third-party applications and Salesforce with the

help of MuleSoft. We will study the different connectors and accelerators to speed up your integration.

You will gain insights on how to unlock the data from silos and speed up your integration using the

out-of-the-box connectors and accelerators. We will learn how to leverage External services and

import Mule APIs into Salesforce.

Apart from the basics, we’ll focus on some of the Salesforce capabilities with MuleSoft. As a Salesforce

developer/architect, this chapter will help you to integrate Salesforce and MuleSoft. It’ll also help you

explore all the capabilities of integrating MuleSoft with Salesforce.

MuleSoft Integration with Salesforce376

Here’s what you can expect to cover in this chapter:

• Exploring Salesforce connectors

• Discovering accelerators and templates for Salesforce

• Getting started with External Services

• Exploring MuleSoft’s integration capabilities with Salesforce

• Quiz and practice

Technical requirements

We’ll need the following for working with this chapter:

• Anypoint Studio installation (see Chapter 3, for Studio installation guidance)

• An Anypoint Platform account (see Chapter 2, to create a 30-day free trial account)

• Sign up for a Salesforce Developer trial account: https://developer.salesforce.

com/signup

Exploring Salesforce connectors

Ever since the acquisition of MuleSoft by Salesforce in 2018, there has been a major advancement

in terms of Integrating MuleSoft and Salesforce. Several connectors and templates are offered to the

users that help to ease Salesforce and MuleSoft integration. This also helps us to unlock data present

in silos and benefits in retrieving, transforming, and analyzing the data. We can pair MuleSoft with

several Salesforce Clouds and components such as Data Cloud, Tableau, Slack, Einstein Analytics,

Service Cloud, Sales Cloud, and so on. This enables us to solve complex transformations. We can also

receive Platform Events and publish Platform Event messages with Salesforce Connector. This helps

us to stream API events.

Let us understand the different types of Salesforce connectors and how to use them.

Connectors, by far, are the most used and easiest means of integrating Salesforce with MuleSoft.

Let’s have a look at the connectors in the Mule Palette, which are confined mainly to Salesforce

integration. By default, you will have the Salesforce Connector module available in your Mule Palette,

which will help you perform operations on your Salesforce APIs (see Figure 12.1).

https://developer.salesforce.com/signup
https://developer.salesforce.com/signup

Exploring Salesforce connectors 377

Figure 12.1 – Salesforce connectors in Mule palette

To use these connectors, drag and drop the suitable connector in your Mule flow. These connectors

are most commonly used for retrieving data from Salesforce or sending updates to Salesforce objects.

Hover over these connectors to learn more about their functionality. We have seen different Salesforce

connectors in the Mule palette. Let’s understand how to configure a Salesforce connector.

Note:

 To ensure smooth integration, verify that the MuleSoft connector version aligns with the
Salesforce API version being used. You can learn more about out the latest versions of Salesforce
connectors on MuleSoft Documentation page: https://docs.mulesoft.com/
salesforce-connector/latest/ on Anypoint Exchange.

https://docs.mulesoft.com/salesforce-connector/latest/
https://docs.mulesoft.com/salesforce-connector/latest/

MuleSoft Integration with Salesforce378

Configuring a Salesforce connector

Let’s configure one of these connectors from the Salesforce Connector module. The configuration

for all the Salesforce connectors is similar. Let’s follow these simple steps to configure a Salesforce

connector in Anypoint Studio:

Note

In order to use these connectors, you need access to a Salesforce Developer account.
You will also require valid credentials, a connected app, a security token, and an
authentication/authorization token.

1. Choose any connector as per your requirements. We will select the Get user info connector

from the Salesforce connector module. Drag and drop the connector in your Mule flow (see

Figure 12.2).

Figure 12.2 – Choosing a Salesforce connector

Exploring Salesforce connectors 379

2. Click on the + symbol as shown in Figure 12.2. Fill in the Username, Password, Security

token, and Authorization URL fields (see Figure 12.3). Test your connection and click OK.

Figure 12.3 – Configuring the Salesforce connector

Note

You can extract the configuration details from your Salesforce Developer account. Before moving
ahead with integrations, it is advisable to test connection to check potential connectivity issues.

MuleSoft Integration with Salesforce380

3. Once you’ve entered all the credentials, click Test Connection… and OK (see Figure 12.4).

Figure 12.4 – Salesforce connector configured successfully

Note:

 If you’re facing any errors while adding a new connector, check the Salesforce and MuleSoft
version compatibility.

4. Now complete the flow by adding HTTP Listener (as the event source), Transform Message

(to convert payload to JSON), and Logger (to log the payload).

5. Now run the Mule project: Right-click on the project and choose Run As| Mule Application.

Once you see the status as Deployed, trigger the application from Postman or any web browser

and you should see the response as User info from the Salesforce account (see Figure 12.5).

Exploring Salesforce connectors 381

Figure 12.5 – User info from the Salesforce Developer account

We have now understood how to configure a default Salesforce connector. Try other connectors in

the palette to get more hands-on experience with Salesforce connectors.

In the next section, we will learn how to add a Salesforce connector explicitly to match your particular

use case.

Adding a Salesforce connector

In this section, we’ll learn how to add a Salesforce connector to your Mule palette.

Apart from the default Salesforce connectors, you can also add connectors specific to your use case.

These connectors will help you integrate with specific Salesforce components or tools.

In order to add these connectors to your Mule palette, follow these steps:

1. Click on the Search in Exchange option in your Mule palette.

2. Log in to your MuleSoft Anypoint Platform account and add your account if you haven’t already.

3. Search Salesforce or any specific service for which you want to use the connector.

4. Select the connector you want to add to your Mule palette.

5. Click on the Add button. You can add and remove multiple connectors.

MuleSoft Integration with Salesforce382

6. Once done finalizing the connectors you wish to add to the Mule Palette, click on the Finish

button (see Figure 12.6).

Figure 12.6 – Adding Salesforce connectors to the Mule palette

We have now understood how to add a Salesforce connector explicitly to the Mule palette. Let us now

review the list of connectors that are available in MuleSoft’s Anypoint Exchange:

• Salesforce Connector

• Salesforce Data Cloud Connector

• Salesforce Pu/Sub API Connector

• Salesforce Commerce Cloud Connector

• Salesforce Composite Connector

• Salesforce Einstein Analytics Connector

• Salesforce Marketing Cloud Connector

• Salesforce Marketing Cloud Connector

Exploring Salesforce connectors 383

• Salesforce B2C Commerce Cloud Data Connector

• Commerce Cloud B2C Shop Connector

And there will be a few more added to the list in the future. Similarly, there are connectors available

to integrate Slack and Tableau with MuleSoft.

Salesforce has added Data Cloud connectors that will help you integrate external APIs, and end-systems

with Data Cloud (see Figure 12.7). You can access and learn more about all the Salesforce connectors

on Anypoint Exchange.

Figure 12.7 – Data Cloud Connectors in Mule

We have now learned about different types of Salesforce connectors and how to add Salesforce

connectors. Connectors are primarily used to get started with integration and to build integration.

Accelerators and Templates further help developers understand the use cases, different domains, and

integration patterns.

In the upcoming section, let’s learn about MuleSoft accelerators and templates that are available for

Salesforce integration with MuleSoft.

MuleSoft Integration with Salesforce384

Discovering accelerators and templates for Salesforce

Accelerators and templates helps developers with API Specifications, Implementation templates,

architectural diagrams, use-cases and more much time. They give developers a gist of how their final

integration would turn out. In this section, we’ll mainly learn about accelerators and templates for

Salesforce. We will also understand how to leverage these templates for easy integrations.

Getting started with accelerators

As the name suggests, accelerators are ready-to-use and predefined use cases with end-to-end

implementation. They provide you with detailed use cases, low-level and high-level designs, API

specifications, implementations, documentation, and so on. Accelerators speed up integration time.

They also exemplify what an actual integration use case would look like.

You can access these accelerators from Anypoint Exchange. One such instance, where a developer

wants to automate customer service workflow with Service Cloud, they can refer MuleSoft Accelerator

for Salesforce Service Cloud (see Figure 12.8): https://www.mulesoft.com/exchange/

org.mule.examples/mulesoft-accelerator-for-salesforce-service-cloud/

minor/1.5/pages/home/

Note:

Please ensure that you read the documentation before using the contents of accelerators.

Figure 12.8 – MuleSoft Accelerator for Salesforce Service Cloud

You should review all the use cases in Anypoint Exchange mentioned on the MuleSoft page to get a

fair understanding of accelerators. In order to get hands-on, you can download and import the use

cases in Anypoint Studio.

https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://www.mulesoft.com/exchange/org.mule.examples/mulesoft-accelerator-for-salesforce-service-cloud/minor/1.5/pages/home/
https://www.mulesoft.com/exchange/org.mule.examples/mulesoft-accelerator-for-salesforce-service-cloud/minor/1.5/pages/home/
https://www.mulesoft.com/exchange/org.mule.examples/mulesoft-accelerator-for-salesforce-service-cloud/minor/1.5/pages/home/

Discovering accelerators and templates for Salesforce 385

We have learned about accelerators in MuleSoft and their functionality. Now let’s deep dive into

templates and learn how to use them.

Exploring templates

MuleSoft provides out-of-the-box templates available on Anypoint Exchange such as Flow Designer

template, Database to Salesforce Contact Migration template, and so on. Templates are pre-built

integrations that provide you with a skeleton for your integration. They are readily available

implementations. Templates can be considered a subset of accelerators as the latter has a lot more to offer.

You can download these templates, configure them, and get started without having to build the

integration from scratch.

Note:

Please check the compatibility of templates with specific Mule runtime versions. You can learn
more about the latest updates on MuleSoft Release Notes here: https://docs.mulesoft.
com/release-notes/

Let’s now learn how to access and configure templates with simple steps:

1. In order to access templates, go to MuleSoft’s Anypoint Exchange, then go to the Provided

by MuleSoft tab and select Templates. You can find all the templates on Anypoint Exchange

(see Figure 12.9).

Figure 12.9 – Templates provided by MuleSoft

https://docs.mulesoft.com/release-notes/
https://docs.mulesoft.com/release-notes/

MuleSoft Integration with Salesforce386

If you have a particular use case, then you can search for a specific template. For instance, if you want

to integrate NetSuite with Salesforce, you can simply search for NetSuite to Salesforce and

you’ll get a list of templates available (see Figure 12.10).

Figure 12.10 – NetSuite to Salesforce templates

Out of all these templates, you can review them, go through the information documented, and choose

the template that is relatable to your use case.

1. Once you’ve chosen the template, click Download. A .jar file will be downloaded (see

Figure 12.11).

Figure 12.11 – Reviewing and downloading the template

2. After downloading the .jar file, import the file into Anypoint Studio (see Figure 12.12).

Go to File | Import and click Packaged mule application(.jar), then navigate to the file

directory and click Finish.

Discovering accelerators and templates for Salesforce 387

Figure 12.12 – Importing a .jar file into Anypoint Studio

3. Once the file is imported into Anypoint Studio, review all the files, flows, configurations, and

so on (see Figure 12.13). You can make changes to the flow and the transformation logic as

per your requirements.

Figure 12.13 – Reviewing the template in Anypoint Studio

MuleSoft Integration with Salesforce388

4. You can navigate to the .properties file in the src/main/resources folder and

configure your end systems – NetSuite and Salesforce, in this case (see Figure 12.14).

Figure 12.14 – Connector credentials in the properties file

Before importing and using the accelerators and templates, ensure that you’re reviewing files, flows, and

configurations to ensure the template meets specific project requirements. We have now successfully

reviewed and added the template to Anypoint Studio.

Note

The configuration of accelerators and templates implementation-wise is similar.

Let’s now review a few advantages of accelerators and templates:

• As they consist of pre-built implementations, it reduces development time as you don’t have

to build everything from scratch.

• If you’re new to MuleSoft, you can use them as a reference if you’re not already aware of the

best practices and coding standards.

Getting Started with External Services 389

• You can focus more on the transformation logic and building new integrations.

• You can reuse, extend, and customize them as per your needs.

We have now learned and understood how to utilize accelerators and templates efficiently to simplify

our integrations and reduce our development time.

In the next section, we will learn how to seamlessly integrate MuleSoft APIs with your Salesforce org

without writing a single line of code with the help of External Services.

Getting Started with External Services

You can leverage the capabilities of Salesforce External Services to connect your Salesforce org with any

external API. In this section, we will mainly focus on connecting your Salesforce org with a Mule API.

If you’ve already published your MuleSoft API in Anypoint Exchange or other any other external

platform, you can import them as External Services on the Salesforce Platform. Once you import

your Mule or non-Mule API as external services, you can see a list of all the methods, and input and

output parameters. These are your MuleSoft actions. You don’t have to generate a separate schema

or any mapping as your API is built with OAS specifications.

Let us now learn what are the prerequisites that need to be taken care before building a Mule API

ready for consumption.

Exploring the Prerequisites for Mule API

We need to ensure that our MuleSoft API is ready for consumption. There are a few things that we

need to keep in mind:

• You need to build an API with OAS or RAML Specification (OAS is preferred for smooth

Salesforce integrations)

• Publish your API to Anypoint Exchange to make it discoverable

• Ensure your Mule App is HTTPS-enabled

Let us now learn how to set up External services and import MuleSoft APIs.

Once your Mule API is ready and your Mule application is deployed, you need to create a named

credential for your application. This will contain your credentials and the URL of your API. For this

example, we’ve used a basic non-authenticated named credential, but make sure to use next-generation

secure named credentials for production implementations.

1. Log into your Salesforce org. Go to Named Credentials from Setup and click Create New Legacy

2. Add the API Endpoint URL of your application and fill in the relevant details (see Figure 12.15).

You can find this information in the Runtime Manager for MuleSoft API deployed on CloudHub.

MuleSoft Integration with Salesforce390

Figure 12.15: Setting up Named Credentials

3. Go to External Services from Setup and click on Add an External Service (see Figure 12.16).

Figure 12.16: Adding an External Service

4. Further, go ahead and select Reroute to MuleSoft Services UI option to set up external services.

Click Confirm (see Figure 12.17).

Getting Started with External Services 391

Figure 12.17: Reroute to MuleSoft Services UI

5. Log into Anypoint Platform account and grant access to authorize APIs published on Anypoint

Exchange (see Figure 12.18).

Note

Please select the US region if you’re using Anypoint Platform’s trial account.

Figure 12.18: Logging into your MuleSoft services

MuleSoft Integration with Salesforce392

6. Click on Import to bring your MuleSoft services into Salesforce (see Figure 12.19).

Figure 12.19: Importing external services

7. You will now see a list of all Mule APIs that you can import. Select all the MuleSoft APIs that

you want to import (see Figure 12.20). Here, we will select musicbox-sys-api

Figure 12.20: Select MuleSoft API as an External Service

8. Enter the external service details like Name and Description and choose Named Credential

that we’ve just created (see Figure 12.21).

Figure 12.21: Set External Service details

Exploring MuleSoft’s integration capabilities with Salesforce 393

9. Select the API operations that you want to import. Click Finish (see Figure 12.22).

Figure 12.22: MuleSoft API operations

You can now see the MuleSoft API imported as an External service (see Figure 12.23).

Figure 12.23: API imported as an External Service

Salesforce automatically creates Apex classes that contain invocable methods to use your MuleSoft actions.

You can further invoke MuleSoft Actions with Flows and Apex class and create an action with

Agentforce. You can learn more about Agentforce here: https://www.salesforce.com/

agentforce/

Let us now take a look into MuleSoft’s other integration capabilities with Salesforce.

Exploring MuleSoft’s integration capabilities with Salesforce

We have previously studied connectors, accelerators, templates, and so on to integrate with Salesforce.

These are the most commonly used mechanisms. Let’s now explore other integration capabilities such

as Bulk APIs, Platform events, and so on, that can be leveraged with MuleSoft and Salesforce.

https://www.salesforce.com/agentforce/
https://www.salesforce.com/agentforce/

MuleSoft Integration with Salesforce394

The Bulk API

In order to process voluminous data efficiently, you can make use of the Bulk API v2.

You can perform operations such as create, get, delete queries, and so on using the MuleSoft connectors

for the Bulk API v2 (see Figure 12.24). This helps you to easily integrate Salesforce objects and process

large volumes of records asynchronously. You can process these records in one go and thus optimize

your integration. For instance, if we want to retrieve and process the personal details of all customers,

we can use the Create job bulk api v 2 connector from the Mule Palette.

Figure 12.24 – Bulk API v2 connectors

We have now learned about the Bulk API. Let’s explore more about CDC events.

CDC events

Change Data Capture events (CDC events) are used to keep external end systems in sync. As the

name suggests, they keep track of event changes and hence are useful in real-time integration such as

real-time synchronization between different end systems.

With the help of MuleSoft and Salesforce, you can publish an event change in a Salesforce object.

Exploring MuleSoft’s integration capabilities with Salesforce 395

We can use the MuleSoft connector from the Salesforce module Replay channel listener (see

Figure 12.25). In this case, we can use the publish-subscribe pattern. We can subscribe to the event

published by the Salesforce object to capture the data change. For instance, in the case of the Order

Management system, as soon as the status changes from Processing to Shipped, the customer should

receive communication via email and SMS. This change should be reflected across all end systems

involved. In such situations, using CDC would be appropriate to keep all the end systems in sync.

Note:

Please ensure that a high availability and failover mechanisms in CDC implementations would
highlight enterprise-grade best practices.

Figure 12.25 – Replay channel listener

By using this pattern, we can avoid polling and hence optimize the integration by confining it to

change events.

We have now studied CDC events. Let’s learn more about the data analytics tools.

Data analytics tools

Data analytics and visualization tools such as Salesforce Analytics, Salesforce Einstein Analytics,

and Tableau can be easily integrated with MuleSoft. These tools help us to get real-time results with

customized dashboards and visual reports.

We can extract, transform, and process data from several end systems and perform transformation

logic. Further, we can send such processed data to analytics tools with the help of connectors present

in the Mule Palette. Analytical tools will help us to portray the information in the form of metrics,

charts, reports, customized dashboards, and so on.

For instance, if we have our data residing in several end systems such as NetSuite, Salesforce, and

several other legacy end systems, we can transform this data and send it to Einstein Analytics. Further,

we can create a customized dashboard to study the data and generate leads for our marketing team.

We have now understood several out-of-the-box integration capabilities of MuleSoft. In order to

further understand them and get hands-on experience, review and try out these connectors.

MuleSoft Integration with Salesforce396

Summary

In this chapter, we have learned about Salesforce integration with MuleSoft. We have studied different

approaches to tackle integration such as the use of connectors, accelerators, and templates. We have

learned about Salesforce External Services and how to import MuleSoft APIs as actions with Salesforce.

We have also studied other integration capabilities such as connecting with a topic listener, the Bulk

API, CDC events, and so on.

Learning about various integration techniques with Salesforce will help you to choose the best

integration approach.

In the next chapter, we’ll learn more about commonly used MuleSoft connectors such as file-based

modules, SOAP connectors, VM queues, and so on. We will also understand some industry-based

use cases and how to optimize integrations. In order to ace industry-based integration challenges, it’s

essential to learn about frequently used connectors and some best practices.

Assignments

1. Download the Salesforce accelerator, review it, and import the implementation into Anypoint

Studio. Go through the Integration logic and best practices.

2. Integrate Salesforce’s Einstein Analytics with MuleSoft using the connector available in the

Mule palette.

3. Try out the Bulk API v2 connectors and process data using Salesforce and MuleSoft.

Questions

1. What are the details you need to know before configuring Salesforce with MuleSoft?

2. What are templates and accelerators?

3. What is the purpose of using MuleSoft Composer?

Answers

1. We need to be aware of the username, password, security token, authorization token (if

authorization is enabled), and valid access.

2. Templates consist of built-in implementation code and accelerators consist of end-to-end use

cases, API specifications, and implementation code.

3. It helps to build no-code integrations inside the Salesforce ecosystem.

13
MuleSoft Connectors

and Use Cases

In the previous chapter, we learned how to build and deploy a Mule application using a Salesforce

connector. We know that a connector is a resource that helps connect different systems. In general,

each system will have its own way to connect. For example, to connect SAP, we need to use the tRFC

protocol. Similarly, while connecting to databases (such as Oracle, MSSQL, and MySQL), we need to

use the JDBC protocol. In order to simplify the connectivity across different systems, MuleSoft provides

connectors. So, we need not worry about underlying protocols or methods used to connect different

systems. Using these connectors, we can simply configure the connection details, such as the system

hostname and URL, username and password, and other required details to connect different systems.

There are many connectors in MuleSoft that can talk to different systems, databases, software as a

service (SaaS) applications, cloud infrastructure services, and protocols.

In this chapter, let us explore the different connectors available to connect different systems.

After reading this chapter, you’ll come away with knowledge of the following topics:

• File-based modules – File Connector, File Transfer Protocol (FTP) Connector, and Secure

File Transfer Protocol (SFTP) Connector

• Database connector and watermarking

• Web Service Consumer Connector (SOAP)

• Messaging – Virtual Machine (VM) Connector and JMS Connector

• MuleSoft accelerators

MuleSoft Connectors and Use Cases398

Technical requirements

The prerequisites for this chapter are as follows:

• The supported file (Math.wsdl) used in this chapter is available on GitHub in the Chapter13

folder: https://github.com/PacktPublishing/MuleSoft-for-Salesforce-

Developers-Second-Edition

• Go to https://www.postman.com/downloads to download and install Postman

Introducing connectors

Connectors are stored in Exchange, which is an online catalog that stores all the reusable assets, such

as APIs, connectors, templates, and examples. To learn more about Exchange, refer to Chapter 5.

Connectors are divided into the following four categories:

• Select: There are 167 connectors available in Mule 3 and Mule 4 under this category. MuleSoft

provides standard support for these types of connectors. They are available to anyone who

has a subscription to Anypoint Platform. Some examples are Salesforce Connector and

Workday Connector.

• Premium: There are 34 connectors available in Mule 3 and Mule 4 under this category. MuleSoft

provides standard support for these types of connectors. They are available to licensed users

only. Some examples are AS2 Connector and SAP Connector.

• MuleSoft-certified: There are 96 connectors available in Mule 3 and Mule 4 under this category.

These types of connectors are developed by MuleSoft partners and reviewed and certified by

MuleSoft. In order to get support for these types of connectors, the customer has to contact the

partner who created the connector. Some examples are AS400 Connector and SMB Connector.

• Community: There are 37 connectors available in Mule 3 and Mule 4 under this category. These

types of connectors are developed by community developers and reviewed and certified by

MuleSoft. If any issues arise, MuleSoft professional services can be engaged or the customer can

reach out to the developer who developed the connectors. Some examples are Slack Connector,

Twitter Connector, and PayPal Connector.

Some of these connectors are as follows:

• File Connector, FTP Connector, and SFTP Connector

• Database Connector

• Web Service Consumer Connector

• VM Connector and JMS Connector

https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://github.com/PacktPublishing/MuleSoft-for-Salesforce-Developers-Second-Edition
https://www.postman.com/downloads

Introducing connectors 399

• SAP Connector

• Salesforce Connector

• AWS Connector

• Workday Connector

• Apache Connector

• LDAP Connector

• HDFS Connector

• MQTT Connector

• Object Store Connector

If we need to connect different systems, then we need to download the appropriate connector from

Exchange in Anypoint Studio.

A list of all the connectors is available in Exchange (Exchange | All assets | Provided by MuleSoft).

Figure 13.1 – Connectors

In Figure 13.1, we can see the Connectors asset type selected to list the connectors that are available

in Exchange. Similarly, we can choose other asset types, such as templates, examples, policies, REST

APIs, SOAP APIs, and API spec fragments, to see the list of available assets in Exchange, which are

contributed by MuleSoft, MuleSoft partners, and community developers.

MuleSoft Connectors and Use Cases400

We can check the category of connectors from Exchange by searching for the category level, for

example, category:"level" = "Premium".

Let us start exploring some of the connectors now. To begin with, we will see file-related connectors.

Exploring File Connector, FTP Connector, and SFTP

Connector

File Connector, FTP Connector, and SFTP Connector are related to file processing.

Using file-related connectors, we can read and process files from one location to another, as well as

create directories and lists and copy, move, rename, and delete files. Additionally, we can also fetch

files using specific file patterns.

For example, if we need to find a file that starts with purchase, then we can use the purchase*

file naming pattern in the connector configuration.

In order to handle or process files, we have three types of connectors in MuleSoft. They are as follows:

• File Connector: This processes the files from the same system where the Mule application

is running.

• FTP Connector: This helps to connect to the FTP server. Using this connector, we can get the

files from the FTP server for processing and also send the files to the FTP server folder path.

• SFTP Connector: Similar to FTP Connector, this connector helps to connect to the SFTP server

in a secure way. Using this connector, we can get the files from the SFTP server for processing

and also send the files to the SFTP server folder path.

Let’s see each connector in more detail.

File Connector

File Connector provides the capabilities to process files either from the same system or which are

mounted/shared to that system. Let’s see the different operations that are available in File Connector.

File operations

In order to perform a specific action in a file, we will use operations. We have similar operations

available in FTP Connector and SFTP Connector.

These operations are as follows:

• On New or Updated File: This triggers a Mule flow whenever a file is created or modified.

• Copy: This copies a file from one directory to another.

Exploring File Connector, FTP Connector, and SFTP Connector 401

• Create directory: This creates a directory.

• Delete: This deletes a file from the mentioned path.

• List: This lists all the files from the specific directory based on a file-matching pattern. If we set

the Recursive property to true, then it lists all the files from the subfolders as well.

• Move: This moves a file from one directory to another.

• Read: This reads a file from a specific path and returns file content as a payload, as well as file-

related information in the attributes. It sets the MIME type from the file extension. If we need

to override it to different MIME types (such as application/json, application/xml,

or application/csv), then we can set it from the Properties section.

• Rename: This renames a file.

• Write: This writes file content to the specific path. We can create a new file to write the file

content, overwrite file content in the existing file, or append the file content to an existing file

using the Write Mode option.

File attributes

Whenever we receive a file for processing in a Mule application, we can get all metadata of a particular

file from the Attributes section of the Mule event. It includes the file creation time, filename, last

modified time, full path of the filename, size of the file, and other information related to the file. Let

us look at the following screenshot to get a clear idea:

Figure 13.2 – File attributes

As shown in Figure 13.2, we can see the metadata of file information and use these attributes in the

Mule application.

MuleSoft Connectors and Use Cases402

With this, we have understood the different file operations and attributes. Let’s see how to use the On

New or Updated File operation in a Mule application.

Creating a Mule application with File Connector

In this section, we will see how to create a Mule application with File Connector. Mainly, we are going

to explore the On New or Updated File operation in this exercise.

We are going to add On New or Updated File as a source, which will help pick up the file whenever

it arrives in the input folder. After completing all the steps in the Mule application, it will move the

file to the output folder.

Let’s follow these steps to create a Mule application with File Connector:

1. In Anypoint Studio, go to the File menu, click New, and select Mule Project. Provide the

project name as FileConnectorDemo and leave the remaining settings as is, then click

the Finish button.

2. Drag and drop the File module from Add Modules to the Mule palette.

3. Drag and drop On New or Updated File from the Mule palette onto the canvas.

Figure 13.3 – File Connector – On New or Updated File

As shown in Figure 13.3, On New or Updated File gets added to the source section of the flow.

Exploring File Connector, FTP Connector, and SFTP Connector 403

4. Create the demo folder in C:\ and inside it, create two more folders with the names input

and output.

5. Add the connector configuration to On New or Updated File. In the connector configuration,

select the checkbox for Connection and provide the working directory as C:\demo, then

click OK.

Figure 13.4 – File Connector – configuration

In Figure 13.4, we have selected the demo folder as a working directory. Similarly, we can use

any directory from the filesystem to process the files. For example, in the Linux system, we will

specify the path in the /Users/myFolder format.

MuleSoft Connectors and Use Cases404

6. Provide C:\demo\input as the directory name (Directory) and C:\demo\output for

Move to directory. Frequency should be set to 10 and Time unit should be set to SECONDS.

Figure 13.5 – File Connector – General

We have set the configuration to poll the files every 10 seconds by setting Fixed Frequency

for Scheduling Strategy (refer to Figure 13.5). This means our Mule application monitors the

files every 10 seconds and whenever a file arrives, it picks up the file and provides it to the next

steps in the same application. Once the entire flow is complete, it deletes the file from the source

folder (input) based on the Auto delete configuration and moves the file to the output folder.

7. Add a Logger step after On New or Updated File. Set the Message value to payload in

expression mode.

Exploring File Connector, FTP Connector, and SFTP Connector 405

8. Place any sample file in the input folder.

Figure 13.6 – File Connector – input file

In this example, we have placed the .json file, as shown in Figure 13.6. However, we can use

any format of file (.xml, .txt, or .csv).

9. Run the project from the canvas.

Figure 13.7 – File Connector – run project

MuleSoft Connectors and Use Cases406

When the application is deployed, the file gets picked up and received by the Mule application.

Then, it calls the Logger step to print the payload content in the console, as shown in Figure 13.7.

10. Go to the C:/demo/output folder. We can see the mySample.json file, which has been

moved from the input folder as a part of the postprocessing action.

Figure 13.8 – File Connector – output path

11. Check the C:/demo/input folder. We will not find the file in the input folder as it got

deleted due to us setting Auto delete to true.

In this example, we processed only one file for our testing. Try to place a few more files in the

input folder at the same time and see the results in the console. We will be able to see all the

files processed in the output folder.

Try to explore other operations from File Connector, such as Copy, Create directory, Delete, List,

Move, Read, Rename, and Write.

We can also set a watermark of the timestamp of when the file was created or last modified. It helps

to filter the file after the execution of the last poll. With this, we have understood how to process files

using File Connector. Let us explore FTP Connector now.

FTP Connector

FTP Connector is similar to File Connector. In File Connector, we process the files from the local

system or mounted filesystem, but in FTP Connector, we will process the files from the FTP server

using the FTP protocol. This connector is useful when we need to process files from another server.

FTP Connector has operations such as On New or Updated File, Copy, Create directory, Delete,

List, Move, Read, Rename, and Write.

Let us see the details required to configure FTP Connector. It requires the FTP hostname, port (the

default port is 21), username, password, and working directory from where we pick up the files.

Exploring File Connector, FTP Connector, and SFTP Connector 407

Figure 13.9 – FTP Connector configuration

In addition to FTP server configuration details, we can configure the file-matching pattern, watermarking,

scheduling strategy (Fixed or Cron), and postprocessing actions, such as Auto delete, Move to

directory, and Rename to.

We can trigger a flow based on On New or Updated File, HTTP Listener, and Scheduler. In that

flow, we can use different operations to process the files from the FTP server. To process the files

from the FTPS (FTP over SSL/TLS) server, we can use another connector called FTPS Connector.

With this, we have understood how to configure FTP Connector. Let us explore SFTP Connector now.

MuleSoft Connectors and Use Cases408

SFTP Connector

SFTP Connector helps process files from the SFTP server.

Similar to FTP Connector, we can trigger a flow based on On New or Updated File, HTTP Listener,

and Scheduler. We can use different operations to process the files from the SFTP server.

Let us see the details required to configure SFTP Connector. It requires the SFTP hostname, port

(the default port is 22), username, password, identity file, passphrase, and working directory from

where we pick up the files.

Figure 13.10 – SFTP Connector configuration

This is how we configure SFTP Connector to process the files from the SFTP server.

With this, we have completed exploring different file-related connectors, such as File Connector, FTP

Connector, and SFTP Connector, to process files.

Let us get familiar with how to connect a database using Database Connector in order to retrieve

records from the database table.

Understanding Database Connector and watermarking 409

Understanding Database Connector and watermarking

Database Connector provides the capabilities to connect any relational databases, such as Oracle,

MSSQL, MySQL, and Derby.

In this section, let us try connecting an Oracle database. In this demo, let’s select a specific record

from the employee Oracle database table and filter specific employee information based on the ID

column in the table:

1. Create a Mule application project with the name databaseconnectordemo.

2. Add HTTP Listener to the canvas and provide the default configuration with port 8081 and

the path value as /dbdemo.

3. Drag and drop Database connector to the Mule palette.

4. Drag and drop the Select operation to the canvas after HTTP Listener.

5. In Select, add the database connection configuration and provide the connection name as

Oracle Connection. Download the required .jar file (https://www.oracle.

com/sg/database/technologies/appdev/jdbc-downloads.html) for the

specific database version and browse for it in Required Libraries. Once it is downloaded, it

shows a green tick mark. Now, fill in the database connection details, such as the hostname,

port, username, password, and instance name.

Figure 13.11 – Database Connector configuration

https://www.oracle.com/sg/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/sg/database/technologies/appdev/jdbc-downloads.html

MuleSoft Connectors and Use Cases410

In Required Libraries, we have uploaded ojdbc8.jar, which is related to the Oracle database,

as shown in Figure 13.11. For other databases, we have to upload the respective .jar files. We

have mentioned the instance name as orcl, which is the database name.

6. In the Select properties, provide the SQL query details for employee with the where condition.

The value that we need to pass through the where condition should be passed in the Input

Parameters section. Finally, it returns the output as application/java.

Figure 13.12 – Database Connector – select properties

In this SQL query, we get all the field values from the table using an asterisk (*) symbol, as

shown in Figure 13.12. If we need a specific field value, then we can mention that column name

in the query instead of (*).

7. Drag and drop Transform Message after Select.

8. In order to convert the Java output to JSON, provide the output value as application/

json along with the payload.

Figure 13.13 – Database Connector – Transform Message

Understanding Database Connector and watermarking 411

9. From the canvas, click on Run project.

10. Once the project is deployed, send a request from the Postman application to trigger the

Mule application.

Figure 13.14 – Database Connector – select response

Once the application receives the request, it executes the select query and retrieves the result set

that has the value 1034 for the ID column field in the database table, as shown in Figure 13.14.

With this, we have understood how to use a Select SQL query in a Select operation.

Other than Select, we can also use the Insert, Update, Delete, OnTableRow, Query single, Execute

script, Execute DDL, Stored procedure, Bulk insert, Bulk update, and Bulk delete operations in

Database Connector to execute a different query in a database table.

Watermarking

Database Connector provides an out-of-the-box watermarking feature in the On Table Row operation.

We can configure a watermark column in the On Table Row properties. A watermark stores the

latest processed record ID and, based on that, fetches the remaining records from the table. In this way,

whenever there is synchronization between the table and the system, we can fetch only the records

that are yet to be processed.

With this, we have learned how to use Database Connector to fetch the records from the database table.

Let us begin to explore Web Service Consumer Connector.

MuleSoft Connectors and Use Cases412

Configuring Web Service Consumer Connector

Web Service Consumer Connector is a connector that helps to call a SOAP-based web service using

the Consume operation.

Let us see the configuration details that are required in the Consume operation. We mainly need a

Web Service Definition Language (WSDL) file. This is the specification file containing SOAP web

service details, such as the endpoint, request, and response structure, and a list of all its operations.

In this example, we will call a SOAP-based web service that is running on the same machine. But in

real time, we will call the actual web service URL to perform a specific operation.

Let us see the steps involved in calling the SOAP web service:

1. Create an HTTP listener with /soapdemo to trigger the Mule application.

2. Drag and drop the Consume operation from Web Service Consumer Connector.

3. In the Consume properties, provide the WSDL location and click the refresh icon in Service.

It loads the remaining information of Service, Port, and Address from the WSDL specification

file. Now, click OK.

Figure 13.15 – Web Service Consume Connector – configuration

In Figure 13.15, we have provided the HTTP URL path of the WSDL file. However, we can also

provide the local system path of the WSDL file:

Configuring Web Service Consumer Connector 413

Sample WSDL (Math.wsdl):

 <?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="Math" targetNamespace="http://host.
docker.internal/TestPackage.ws:Math" xmlns:wsdl="http://schemas.
xmlsoap.org/wsdl/" xmlns:soapjms="http://www.w3.org/2010/
soapjms/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://host.docker.internal/TestPackage.ws:Math"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:http="http://
schemas.xmlsoap.org/wsdl/http/" xmlns:soap12="http://schemas.
xmlsoap.org/wsdl/soap12/" xmlns:soap="http://schemas.xmlsoap.
org/wsdl/soap/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/">

 <wsdl:types>

 <xsd:schema targetNamespace="http://host.docker.internal/
TestPackage.ws:Math" xmlns:tns="http://host.docker.internal/
TestPackage.ws:Math" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">

 <xsd:element name="addTwoNos" type="tns:addTwoNos"/>

4. Click the refresh icon next to Operation and it will list all the operations available in the WSDL

specification, as shown in Figure 13.16:

Figure 13.16 – Web Service Consumer Connector – consume properties

MuleSoft Connectors and Use Cases414

As shown in Figure 13.16, we have two operations: addTwoNos and multiplyTwoNos.

5. Choose multiplyTwoNos for Operation.

Now, we have to map the required input (number1 and number2) for the multiplyTwoNos

operation. Hence, we need the Transform Message component to map the input fields.

6. Add the Transform Message component before the Consume operation.

Figure 13.17 – Web Service Consumer Connector – Transform Message

In Figure 13.17, we have mapped the number1 and number2 fields from the query parameters.

7. From the canvas, click Run project.

Configuring Web Service Consumer Connector 415

8. Once the DEPLOYED message is displayed in the console, send the request from Postman to

our Mule endpoint.

Figure 13.18 – Postman – send request

In Figure 13.18, look at the URL; there are two query parameters, such as number1 and

number2. We have provided number1 and number2 values as 13 and 3, respectively. As

these inputs are passed to the multiplyTwoNos SOAP web service operation, it multiplies

these numbers and responds with the value in the output field.

In this integration, the Consume operation calls the SOAP endpoint, which is also running

on the same machine in order to calculate and provide the required response. In real-time use

cases, we will be calling the SOAP web service running on different servers.

With this, we have understood how to call the SOAP-based web service using Web Service

Consumer Connector.

Let us now explore VM Connector and JMS Connector, which provide us with the capabilities to

publish and subscribe to a message.

MuleSoft Connectors and Use Cases416

Publishing and subscribing using VM Connector

VM Connector helps us exchange messages in intra- and inter-app communication using queues:

• Intra-app communication: Exchanging messages from one flow to another within the same

application using queues

• Inter-app communication: Exchanging messages from one application to another using queues

We have two types of queues:

• Persistent queues: This is the more reliable type of queue, where data gets persisted or retained

even though the application crashes/restarts. This is slower than transient queues.

• Transient queues: This is the more volatile type of queue, where data will not be persisted or

retained if the application crashes/restarts. This type of queue is faster than persistent queues.

The following are some benefits of VM Connector:

• It distributes messages across the cluster to provide load-balancing capabilities

• It queues messages to process incoming data in an asynchronous manner

Operations

There are four operations available in VM Connector that help to exchange the data or messages using

the point-to-point and publish-subscribe patterns:

• Publish: It publishes data to the queue.

• Consume: It consumes all the data from the queue. This is useful when we need to schedule

the interface to pull all the messages from the queue.

• Listener: It listens to the queue and immediately picks it for processing.

• Publish consume: It publishes the message and waits for the response from the subscribing flow.

Let’s move on to see how to publish and listen to a message asynchronously using VM Connector.

Publishing and subscribing using VM Connector 417

Publishing and listening to a message

In this example, let us publish a message to the queue and subscribe to the same message using a listener:

1. Create a new Mule application project called vmconnectordemo with the flow name

publishFlow, then add HTTP Listener with a default port of 8081 and provide the path

as /publish.

2. Drag and drop VM Connector from Add Module onto the Mule palette.

3. Drag and drop Publish onto the canvas.

4. In Publish, add the connector configuration, click Queues, and change it to Edit inline, then

provide a queue name of mytestqueue and set the queue type to PERSISTENT.

5. Click Finish and then the OK button.

Figure 13.19 – VM Connector – configuration

MuleSoft Connectors and Use Cases418

6. In the Publish properties, click the refresh icon to get the queue name.

Figure 13.20 – VM Connector – queue name

With this, the publishFlow configuration is complete. This helps us publish the message

to the queue, mytestqueue.

Figure 13.21 – VM Connector – publishFlow

Publishing and subscribing using VM Connector 419

Let’s create another flow to subscribe to the message from the queue, which is published

from publishFlow.

7. Create another flow, with the name subscribeFlow, then add Listener and Logger with

a message of payload.

Figure 13.22 – VM Connector – subscribeFlow

In the VM Listener config (see Figure 13.22), we need not specify any configuration as it gets

auto-populated based on the VM configuration that we mentioned earlier in publishFlow.

With this, the subscribeFlow configuration is complete and helps to subscribe/listen to

the messages from the queue, mytestqueue.

Now the configurations of both flows are complete. Let us move on to test the application

from Postman.

8. Go to the canvas and select Run Project.

MuleSoft Connectors and Use Cases420

9. Once deployed successfully, send the request from Postman to our Mule application

endpoint, http://localhost:8081/publish.

Figure 13.23 – VM Connector – testing from Postman

In Figure 13.23, we have specified a sample JSON message in the request body before sending

the request.

10. Go to Anypoint Studio and check the console.

Figure 13.24 – VM Connector – Console

Here, we can see subscribeFlow logging the payload that we have sent from Postman, as

shown in Figure 13.24.

Exploring JMS Connector 421

With this, we have understood that when we send a message to a Mule application, the HTTP

listener in the application receives it. Then, the application publishes the message to the queue

using the Publish operation. Now, the message is published and is available for the consumer

to subscribe to the message. After this, the VM listener subscribes to the message from the

queue and logs the payload in the console using Logger.

This is how VM Connector works in MuleSoft. Let us move on to JMS Connector now.

Exploring JMS Connector

JMS Connector provides capabilities to connect, publish, and subscribe from queues and topics.

It supports the following two models for messaging:

• Point-to-point queues: For one-to-one communication. Here, the sender sends the messages

to the queue that is specified. The receiver/subscriber subscribes to the messages from the

same queue. This message pattern is carried out asynchronously. Even though the subscriber

is disconnected from the queue, it will still be able to subscribe to the message from the queue

once connected.

• Publish and subscribe topics: For one-to-many communication. Here, the sender sends the

message to the topic. Multiple subscribers can subscribe to the same message from the topic.

Each subscriber will receive a copy of the message.

If the subscriber is enabled with a durable subscription, it will not lose the message even though

the subscriber is not connected. The subscriber can consume the message once the connectivity

to the topic is re-established.

There are a few JMS providers available that can connect using JMS Connector. Some are as follows:

• ActiveMQ: This is an open source JMS provider from Apache

• WebSphere MQ: This is a messaging platform from IBM

• Solace MQ: This is a messaging middleware from Solace that supports all forms of publish

and subscribe patterns

• WebLogic JMS: This is a messaging system that supports JMS from Oracle

MuleSoft Connectors and Use Cases422

Operations

There are six operations in JMS Connector that help to exchange the data/message:

• Publish: This publishes the message to the queue or topic

• Consume: This consumes all the messages from the queue or topic. This is useful when we

need to schedule the interface to pull all the messages from the queue or topic.

• On New Message: This listens to the queue or topic and immediately picks it when it arrives

for processing.

• Publish consume: This publishes the message to the queue or topic and waits for the response

from the subscribing flow.

• Ack: This acknowledges the message while consuming it.

• Recover session: This automatically redelivers all the consumed messages that had not been

acknowledged earlier before the recovery session.

• The following screenshot shows a list of operations of JMS Connector:

Figure 13.25 – JMS Connector – operations

Now that we have explored all the operations of JMS Connector, let us learn how to configure

JMS Connector.

JMS Connector configuration

In order to connect to different JMS providers, we have to configure the required plugin, the plugin

version for that particular JMS provider, and also the JMS-related plugins. In addition to plugins,

we also have to configure the required repository and dependencies in pom.xml for that specific

JMS provider.

Exploring JMS Connector 423

Let us see how JMS Connector configuration looks for Solace MQ.

Figure 13.26 – JMS Connector – configuration

In Figure 13.26, we have configured Connection factory jndi name, Jndi initial factory, jndi

provider properties, Jndi provider url, Username, and Password, in order to connect Solace MQ

via JMS Connector.

So far, we have seen the connector configuration for Solace MQ. To connect other JMS providers,

such as ActiveMQ, WebSphere MQ, and WebLogic JMS, we need to configure the connection

details accordingly.

MuleSoft Connectors and Use Cases424

There are predefined templates available to speed up the development of a project. Let us learn more

about them.

Introducing MuleSoft accelerators

Accelerators are predesigned Mule applications, API specifications, and documentation that help speed

up the implementation life cycle of a project. These predesigned applications are stored in Exchange

as a template that can be downloaded as a .jar file in order to create a Mule application project.

When we develop an interface, we can take related templates from Exchange and customize them

based on the requirements to speed up the development.

There are different accelerators available in Exchange to support different use cases for different businesses.

Try to download the SAP ECC Products System API SAP accelerator from Exchange as a

.jar file and import it into Anypoint Studio.

It creates a Mule application with all the implementation details, as shown in Figure 13.27:

Figure 13.27 – Mule application created using SAP accelerator

Once created, we can customize and configure SAP ECC server details to fetch the product details using

the Business Application Programming Interface (BAPI) from the SAP system. This is convenient,

avoiding the pain of starting from scratch.

Let us see how MuleSoft accelerators can provide benefits during the project’s implementation.

Summary 425

Here are the benefits:

• Accelerated time to market: Pre-built assets minimize development effort, enabling

faster implementation

• Cost efficiency: Reduce resource overhead by leveraging ready-made templates and connectors

• Improved design alignment: Ensure that the integration solutions align with MuleSoft’s

architectural principles, promoting a robust and scalable ecosystem

• Enhanced innovation: Free up resources to focus on unique business needs rather than

reinventing the wheel for standard use cases

Try to explore other MuleSoft accelerators, such as for retail, insurance, healthcare, banking,

manufacturing, Salesforce, Coupa, SAP S/4HANA, Jira, ServiceNow, Slack, and PIM, from Exchange

and use them in a project.

Summary

In this chapter, we looked at the basics of connectors, connector categories, and different connectors

available in Exchange.

We have understood how File Connector, FTP Connector, and SFTP Connector help to process files

across the file system/servers. We learned how to use Database Connector to connect a database and

explored watermarking too. We used Web Service Consumer Connector to consume a SOAP-based

web service. We also went through VM Connector and JMS Connector to publish and consume a

message asynchronously.

Finally, we saw how accelerators help to reduce the work.

On completing this chapter, you have enough knowledge of different connectors to connect various systems.

In the next chapter, Chapter 14, we’ll explore the best practices that we need to follow while designing

and developing MuleSoft integrations and APIs.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. How do you read the files from the SFTP server?

2. What is the use of watermarking in File Connector?

3. What connector do you use to call SOAP-based web services?

4. How do you process a message asynchronously in a Mule application?

MuleSoft Connectors and Use Cases426

Answers

1. We can use SFTP Connector and perform read operations to fetch files from the SFTP server

based on the configuration of SFTP Connector.

2. It helps to filter the file after the execution of the last poll based on the file created or the last-

modified date timestamp.

3. We can use Web Service Consumer Connector to call SOAP-based web services.

4. We can use VM Connector or JMS Connector to process a message asynchronously.

14
MuleSoft Best Practices,

Tips, and Tricks

In the previous chapters of this book, we’ve learned different aspects of designing, developing, and

deploying Mule applications. We’ve learned about the different products found in the MuleSoft suite

and their purpose. We learned about Anypoint Platform, Anypoint Studio, Anypoint Code Builder,

Composer, and so on. However, there are still some best practices we’d like to compile for you. This

way, you can take these into account when you’re working on your future applications.

In this chapter, we’re going to cover the following main topics:

• Best practices

• Tips and tricks

Let’s start by listing some of the best practices you can apply to your future projects.

MuleSoft best practices

These are a set of rules you don’t necessarily have to follow for your applications to work properly

but are a huge help to guide you through what you can do to make your projects better. We will list

different best practices ranging from design and development to some security and architecture tips.

As previously mentioned, you are not required to apply these rules to your projects or applications,

but they will help you to be more successful with your projects. Feel free to take the ones that apply

to you or modify some of them to better fit your needs. The purpose of this list is to help you build

your own best practices based on these.

Let’s start with some general best practices.

MuleSoft Best Practices, Tips, and Tricks428

General best practices

Here are some best practices that you can apply to your projects in general.

• Add a health-check endpoint: Create a specific endpoint, such as /ping, to get the API’s

running status. This is helpful to monitor the API from an external tool if needed. You can

simply create a new endpoint using the HTTP Listener connector and return a short payload

that states this application is up. If the application is not available when you try to call it, it will

not return the OK payload. This way, you’ll know there’s something wrong with the deployed

application and you need to double-check it. You can also return more details, such as the name

of the host or the time it took to process the response, depending on what you want to see when

you send the request to this endpoint to ensure the status of the application.

• You can also enable functional monitoring with the help of Anypoint Platform. Besides, you

can check the live status of all the Mule products and capabilities here: https://status.

salesforce.com/products/Mulesoft

• Follow naming conventions: You can create a set of naming conventions with your team so

that APIs, files, flows, properties, and so on share the same standards and can be found more

easily. For example, if you’re using an API-led connectivity approach, you can add eapi, papi,

or sapi to the name of the API in order to easily identify whether it’s an Experience, Process,

or System API. It can be as simple as naming your project something such as pshopping or it

can be more complex if you have many APIs and want to be able to differentiate between them.

• Create unit tests: Follow the best practice of creating unit tests in MUnit as part of the

development cycle. Each developer should be responsible for creating their own set of unit

tests to ensure their code works as expected in different scenarios. Of course, you can have a

specialized Quality Assurance (QA) team that can take care of other types of testing, such as

regression or performance, but developers are the ones that are closer to the code, so it should

be an expectation for them to create the unit tests for their specific code.

• Create a CI/CD pipeline: Whenever the code is pushed to specific branches, a Continuous

Integration/Continuous Delivery (CI/CD) pipeline should be in place to release the new

code in the specified environment. For example, when pushing code to the dev branch, a new

deployment will be done to the dev environment. This should be created by the operations

team (or DevOps), but if your company doesn’t have the roles, then the responsibility can be

that of the developers or architects.

• Create separate VPNs: It’s a best practice to create a separate VPN for non-production

environments (dev, QA, staging, and so on) and the production environment. This is added as

a security measure in case anything goes wrong with the non-production environments’ VPNs

so your production VPN is intact.

https://status.salesforce.com/products/Mulesoft
https://status.salesforce.com/products/Mulesoft

MuleSoft best practices 429

• Do not log sensitive data: In some cases, the information the API is handling is sensitive data,

for example, credit card or social security numbers. It is best not to log these fields for security

reasons. You can use other fields to log the information if you need, but make sure they don’t

contain sensitive data, for example, first name or gender.

• Use standard logging and error handling: It’s best to use the same standard for all your APIs

as much as possible. When developers already know how the logging and error handling

works in the whole project, they won’t have an issue with working on a different API since the

standards are the same. This also helps to keep all logging as secure as possible by not logging

sensitive data or masking information. This helps to reduce development time and human error.

As you can see, the previous list was intended for projects or architectures in general. Let’s now go a

bit deeper and list some of the best practices that you can apply to your Mule projects – the ones you

create in Anypoint Studio to create Mule applications.

Mule projects best practices

When you start a new project in Anypoint Studio or Anypoint Code Builder in order to create a Mule

application, you’re creating a Mule project. You have a pom.xml file, a main configuration file where

your flows will be, some Log4j configuration, and so on. We will now list some of the best practices

to create better Mule projects:

• Separate global elements: For easy access, create a file called global.xml or whichever

naming convention your company has to keep all the global elements in this one file. This

will reduce development time when trying to find a specific element and it also serves to not

duplicate elements since they’re all listed in the same place. You can either create global elements

in this file directly or move global elements from other files into this one. For a step-by-step

guide, visit the following tutorial: https://developer.mulesoft.com/tutorials-

and-howtos/getting-started/global-elements-properties-files/.

• Separate common flows: For easy access, create a file called common.xml or whichever

naming convention your company has to keep all the common flows, logic, or functionality in

one file. Same as the previous point, this will reduce development time when trying to find a

specific common component since they’re all located in the same place. When we say common,

we mean pieces of code (can be flows, sub-flows, or error-handling pieces) that are used in a

number of flows or files across the project. For example, if you have an authorization flow that

has to be used before calling an external API, you can consider this authorization flow a common

piece since it’s referenced by several other flows scattered across different configuration files.

• Create a folder for each resource: Under src/main/resources, make sure you create a

separate folder for each type of resource to find them more easily, for example, dataweave,

wsdl, and examples. The same applies to the src/test/resources folder to keep your

testing files. This is especially useful in bigger projects because you can get lost in so many files.

But if you have the correct folders, following intuitive naming conventions, then it won’t be

that hard to find the files you need by navigating to these folders.

https://developer.mulesoft.com/tutorials-and-howtos/getting-started/global-elements-properties-files/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/global-elements-properties-files/

MuleSoft Best Practices, Tips, and Tricks430

• Never hardcode data. Use properties instead: When you hardcode certain things in the

connectors, it’s harder to find and change them later, for example, credentials or URLs. When

you use properties to keep this information, there is a single place where the data can be changed.

It’s also better-looking in your repository at the time of reviewing a pull request. Instead of

having to go through the different configuration files, you can just review the properties files.

• Separate properties files by environment: When you create properties files (either .properties

or .yaml), make sure you create a separate file per environment to change the values of the

properties depending on the environment the application is deployed in, for example, local.

properties, dev.properties, qa.properties, and prod.properties. You can

also separate the secured properties into different files and still separate them by environment,

for example, local.sec.properties or dev.secure.properties, depending

on your team’s naming conventions. To do this, you need to define a global property to know

which environment you’re in. This property will change in each environment, which will tell

the Mule application to take one file over the other ones. Note that this also applies to .yaml

files if they are your preference over .properties files. For a step-by-step guide, visit the

following tutorial: https://developer.mulesoft.com/tutorials-and-howtos/

getting-started/global-elements-properties-files/.

• Encrypt secured properties: Make sure the sensitive properties you add to your Mule

projects are securely encrypted . You can encrypt your properties using the Secure Properties

Tool from MuleSoft and the application will be able to decrypt them at runtime with the

Mule Secure Configuration Properties module, using the encryption key with which you

encrypted the properties in the first place. To learn more about this, visit the following

documentation page: https://docs.mulesoft.com/mule-runtime/latest/

secure-configuration-properties. For a step-by-step guide, visit the following

tutorial: https://developer.mulesoft.com/tutorials-and-howtos/

getting-started/how-to-secure-properties-before-deployment/.

• Keep the encryption key separate: Never add the key you used to encrypt the properties (see

the previous point) in your Mule application. This can lead to hackers easily decrypting all your

properties. Instead, you can pass the key as an environment variable inside Run Configurations

section to run it locally and add it directly to the properties in Runtime Manager for each

environment in CloudHub. For a step-by-step guide, visit the following tutorial: https://

developer.mulesoft.com/tutorials-and-howtos/getting-started/

how-to-secure-properties-before-deployment/.

• Hide your secured properties in Runtime Manager: Open your Mule application’s mule-

artifact.json file and make sure you add the properties you want to hide to the

secureProperties field. This will mask the properties in Runtime Manager so no one can

see them from the UI. It won’t make a change for your properties in your local machine, but it is

helpful from the UI’s perspective. For a step-by-step guide, visit the following tutorial: https://

developer.mulesoft.com/tutorials-and-howtos/getting-started/

how-to-secure-properties-before-deployment/.

https://developer.mulesoft.com/tutorials-and-howtos/getting-started/global-elements-properties-files/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/global-elements-properties-files/
https://docs.mulesoft.com/mule-runtime/latest/secure-configuration-properties
https://docs.mulesoft.com/mule-runtime/latest/secure-configuration-properties
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/how-to-secure-properties-before-deployment/

MuleSoft best practices 431

• Externalize DataWeave scripts: When you use the Transform Message component in your Mule

applications, the DataWeave script is automatically added to the XML file (or configuration

file) where the component is located. It’s a best practice to keep an external .dwl file for your

script instead of embedding it in the XML file. For this, just click on the Edit button inside

your Transform Message component, select File (instead of Inline), add your folder name

and filename (for example, dataweave/myscript.dwl), and click OK. Your files will be

created under src/main/resources. If you have many Transform Message components

and you notice it’s hard to find the dwl files, it’s best you create more folders to separate the

script files by folder and find them more easily.

• Indent DataWeave scripts: In DataWeave, it’s not required to indent properly for the script to

work, but it’s a best practice to keep the indentation when needed. For example, if you open a

parenthesis and then create code on a new line, that new line should be indented to know it’s

inside the parentheses. The same thing applies to new lines inside a function or a variable even

though you might not have opening parentheses or curly brackets.

• Use data types in DataWeave: In DataWeave, it’s not required to assign data types; however,

your code will have better quality if you get used to doing this on a daily basis. You can assign

data types to variables, functions, parameters, and so on. This is also helpful to see the potential

errors you might have at runtime before even getting to that point. To learn more about this,

visit the documentation: https://docs.mulesoft.com/dataweave/latest/

dataweave-type-system.

• Create a Mule project template: Create a Mule project that can be used as a template with

the required structure, configurations, or dependencies. This way, the developers don’t have

to create a new project from scratch but they can use this template as a foundation to create a

new one with the needed structure already added.

• Use different workspaces: It’s good to keep different kinds of projects in different workspaces,

especially if you work with a lot of Mule projects. This is also helpful to save separate settings

in your workspaces, for example, personalize your own debug view or create a custom view.

It’s also worth noticing that cache is stored by workspace (at least in Anypoint Studio). We will

see why when we cover tips and tricks later in this chapter.

Now we have a better idea of what best practices are good to apply to your Mule projects. Some are

more critical because of security issues that may arise, while others just provide a more comfortable

solution to reduce development time.

Let’s now jump into some best practices when working in Anypoint Platform and the different products

we can find there.

https://docs.mulesoft.com/dataweave/latest/dataweave-type-system
https://docs.mulesoft.com/dataweave/latest/dataweave-type-system

MuleSoft Best Practices, Tips, and Tricks432

Anypoint Platform best practices

Anypoint Platform is where most of MuleSoft’s products are located. We start by designing APIs in

Design Center, we deploy Mule applications in Runtime Manager, we secure our APIs in API Manager,

and so on. Let’s list some of the best practices we should be using for some of these products:

• Apply automated policies: In API Manager, instead of applying policies to one API at a time,

you can apply automated policies that will be added to all the APIs you select. This helps to

reduce human error and keep a standard across all APIs.

• Enhance Exchange’s documentation: When you publish a resource to Anypoint Exchange,

make sure you add clear descriptions, required images, and supported authentication in the

API documentation. This will be helpful for other people who want to use your API.

• Define common API specification fragments: When creating the API specification in Design

Center, make sure you create fragments for the repeating blocks and reuse them across the

specification. This way, you don’t have to copy and paste the code every time you need it in a

different place, reducing time and human error.

• Use common headers in the API specification: When creating the API specification in Design

Center, you can use common headers to include the correlation ID, transaction ID, and so on.

This way, similar information will be used across all APIs, which is helpful for the development

team. This will help to improve tracing and correlation across different APIs.

• Use nouns for the API specification’s resources: When creating the API specification in Design

Center, make sure you use nouns instead of verbs for the names of the resources, for example,

/members instead of /getMembers. You can read more about best practices for your API

specifications in this article: https://developer.mulesoft.com/tutorials-and-

howtos/getting-started/best-practices-first-api-spec/.

• Use versioning in the API’s URL: It’s a best practice to add the version number to the API’s

URL. There are different ways of doing this, but we recommend using the version before the

resource path, like so: /v1/members.

• Create an API specification template: Create an API specification that can be used as a template

with the standardized resources and shared fragments. This way, the developers don’t have to

create a new API specification from scratch but they can use this template as the foundation

to create a new one with the needed resources already added.

Most of these best practices apply to Mule projects in Anypoint Studio and Anypoint Code Builder

because it’s where most of the coding happens. The second place where we do most of the coding is

when creating the API specification. As you just saw, most of the best practices for Anypoint Platform

come from Design Center at the time you’re designing your API specifications.

Now that we know some general, Mule project, and Anypoint Platform best practices, let’s take a look

at some tips and tricks for when working with MuleSoft’s products.

https://developer.mulesoft.com/tutorials-and-howtos/getting-started/best-practices-first-api-spec/
https://developer.mulesoft.com/tutorials-and-howtos/getting-started/best-practices-first-api-spec/

Tips and tricks 433

Tips and tricks

The following list of tips and tricks is not the same as the best practices list. Best practices are rules or

standards that you can choose to follow to create a better developer experience or to avoid common

mistakes. The following list gives you some advice that you may or may not be aware of but will help

you to troubleshoot your applications more easily:

• Switch workspaces when needed: If you notice some weird behaviors with Anypoint Studio, for

example, if the breakpoints aren’t working properly or the debugger does not work as expected,

you can switch to a different workspace and import your project there. This works sometimes

because the cache in Anypoint Studio is saved within each workspace. So, if the problem you’re

experiencing is because of cache, once you switch to a different workspace, the cache is brand

new. This might help to resolve your issue with the IDE.

• Run more than one Mule project at a time: In Anypoint Studio, go to Run and then select

Run Configurations. Here, you can create a new Mule application configuration and select

more than one Mule project to launch at the same time. This will help you when you need to

run the three API layers (Experience, Process, and System) in your local machine. You can use

this configuration to either debug or run all applications. Just make sure all the applications

you want to run are open in the same workspace.

• Monitor certificates: If your Mule application is using certificates, make sure you monitor the

expiration date and renew the required certificate before it expires. Otherwise, your application

will stop working because of security issues. This is good to keep in mind to avoid any future

troubleshooting and save development time.

• Use the latest version of the connectors: When you browse for a connector in Exchange, make

sure you use the latest stable version of it in your Mule applications. Sometimes there are bugs

in previous versions that were fixed in the newest versions, so it’s best to keep up to date. If

you already have a connector and you want to update it to the latest version, you have to make

sure it’s a minor version and not a major version. Otherwise, you risk your code breaking or

the functionality changing. If your code is compatible with the newest major version, then you

can update the connector.

• Create custom error types when needed: It’s good to use the default error handling, but

sometimes you need to provide more details to know what failed in your code. You can create

custom error types to handle different scenarios, such as data errors, validation errors, or

connectivity errors.

• Use error codes when needed: If you create custom error types for your applications and you

have different errors for different scenarios, it’s useful to use the error code instead of the error

description. This way, the calling application knows how to handle the given exception based

on the error code, which should be unique.

MuleSoft Best Practices, Tips, and Tricks434

We hope this list of tips and tricks is useful for your MuleSoft journey and your future projects. These

are some things that have helped us in our career and we wanted to share them with you. You can

create your own list with more things that have helped you and share it with others to expand the

general knowledge on MuleSoft’s line of products.

Summary

In this chapter, we listed some best practices and tips and tricks that you will be able to apply to your

future MuleSoft projects.

We talked about general best practices that may apply to different projects, such as integrations or

APIs, as well as ones that are more high level. Then, we zoomed into actually talking about the things

that are implemented in the Mule projects in Anypoint Studio. Finally, we discussed some of the best

practices you can apply to your API specifications and other Anypoint Platform products, such as

API Manager.

We also provided a list of some tips and tricks that have been helpful for us in our MuleSoft career.

We encourage you to take this list and enhance it with your own tips, especially after trying out the

new Mule products such as Anypoint Code Builder.

In the next chapter, we will learn about the no-code and low-code MuleSoft automations tools like

MuleSoft Composer, Flow, RPA, and so on.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter:

1. What is a health-check endpoint and why is it useful?

2. What is an example of sensitive data that you shouldn’t log in your application?

3. What is the global.xml file used for?

4. What is the best practice to separate your properties?

5. What is the best practice to keep your properties’ encryption keys?

6. What is the file you can use in your Mule project to hide your secured properties in

Runtime Manager?

7. In Anypoint Studio, where is the cache for your Mule project saved?

Answers 435

Answers

1. A health-check endpoint is one that you create in your API to get the API’s running status. It

is helpful to monitor the API when needed to make sure it’s up and running.

2. Credit card information or social security numbers.

3. To separate all the global elements into this one file to reduce development time when trying

to find a specific element.

4. Separate them by environment, for example, local.properties, dev.properties,

qa.properties, or prod.properties.

5. Never add the keys to your Mule application’s code. You can pass the key as an environment

variable in Anypoint Studio for local runs or using Runtime Manager for CloudHub.

6. mule-artifact.json.

7. In each workspace.

15
Certification and Interview Tips

You have learned everything we had to teach you on the technical aspects of using MuleSoft’s products.

After a long journey of understanding best practices and following how-to guides, you might now

feel ready to start your career in the MuleSoft ecosystem. You could also try attempting the MuleSoft

Developer Level 1 certification. But where to start?

In this chapter, we’re going to cover the following main topics:

• Choosing your career path

• Getting MuleSoft certified

• Expanding your knowledge with official training

• Contributing to the MuleSoft Community

• Passing your interview

When we say MuleSoft ecosystem, we mean that you don’t necessarily have to work at MuleSoft to

have a MuleSoft career. You could work for a number of MuleSoft’s partners or customers. MuleSoft’s

customers are those who pay for its products and benefit from generating Mule applications or

architectures. While MuleSoft’s partners are companies that work to implement solutions for customers,

partners don’t necessarily benefit from the final product but from providing consultancy services.

They work alongside MuleSoft to make sure the products are being utilized to their maximum and

that customers are happy with the solutions. You could also work as an independent professional

and lend your services on an hourly basis, although this option is not that popular in real life. Most

professionals work with either partners, customers, or MuleSoft directly.

Let’s start by understanding the different roles you could have and choosing your preferred one.

Certification and Interview Tips438

Choosing your career path

When you want to start a career in the MuleSoft ecosystem, there are different career paths and

certifications that you can follow to achieve a specific role. Each company defines its own roles to

work with MuleSoft products, the biggest ones being developer and architect. However, how do these

roles differ and what would you prefer to be? If you come from a Salesforce role, it might be easier

to choose where to go from there – for example, if you’re a Salesforce architect, you might want to

become a MuleSoft architect as well. Let’s take a look at the most popular career paths in the MuleSoft

ecosystem and what they mean:

• Developer: This covers almost everything we see in this book:

 � Developers transform the business requirements into a solution.

 � They are hands-on in creating the code, ensuring quality testing (unit tests), and troubleshooting

any issues.

 � As a developer, you’ll learn how to write DataWeave scripts and develop integrations.

 � If you’re a Salesforce developer, or if you’ve worked with any other integration tool, you can

aim to be a MuleSoft developer. If you’re someone who is just getting started with MuleSoft,

you can also aim to be a MuleSoft developer.

Some companies leave the responsibility for deployment to developers instead of operations.

• Architect:

 � Architects work with clients to gather requirements and understand the required solution

 � They create diagrams and documentation as an agreement of how the solution will work

 � They decide on security protocols and recommend technology stacks and best practices.

They work with developers and other team members to build and deliver the solution.

 � If you’re a Salesforce architect or if you’ve worked on any other integration platform as an

architect, you can go ahead and try out the architect-level certifications

Some companies leave the responsibility for the API specification (creation/maintenance) and

the deployment to architects instead of developers or operations.

• Operations – widely known as DevOps (a combination of software development and IT operations):

 � The operations team creates automated pipelines to reduce development time – also known

as Continuous Integration / Continuous Delivery (CI / CD). Jenkins and GitLab are

commonly used in MuleSoft projects.

Getting MuleSoft certified 439

 � The operations team ensures code is successfully deployed to the required environments, running

automated tests to validate the deployment. They are also responsible for troubleshooting

issues if the deployment fails.

 � Following and operations career path is mainly recommended for Salesforce administrators.

• Business user (this is not an official career path): Since MuleSoft’s acquisition by Salesforce,

a new product combining the two technologies has emerged: MuleSoft Composer. This role

creates integrations with this no-code tool using clicks instead of code. A great difference from

the three previous roles is that you don’t necessarily need an IT background. You can be in a

business position and still learn how to use Composer to create integrations. For example, you

can use MuleSoft Composer to automate lead routing in Salesforce.

There are some variants from the previous list of roles depending on the company and the size of

the project. For example, if it’s a very small project (around one month of development), they might

decide to only use an architect and a developer, but if it’s a huge project (more than three years of

development), they might use more specific roles such as a designer who specializes in creating and

maintaining the API specifications.

Choosing a specific career path doesn’t necessarily mean you’ll have to stay on that path forever. A lot

of people start as developers and become architects later on, or feel more interested in the operations

side. There is plenty of training and resources out there to learn what you need to in order to switch to

a different path. If you just need a place to start and you have no previous experience, we recommend

you start as a developer. If you find yourself in a confused situation, make sure you speak with someone

from the MuleSoft Community or ask questions over the MuleSoft forum.

You might have a better idea of what career path you’re looking for after seeing this list. Now let’s talk

about how to get more knowledge and prove it in your resume with a certification.

Getting MuleSoft certified

There are currently several certifications you can get with MuleSoft to prove your knowledge (at the

time this book was written). Some companies may have a requirement to hold at least one certification

in order to apply for a position. While not a rule, it might be helpful for your resume to have more

certifications (at least one).

There is one associate-level certification:

• MuleSoft Associate: This certification tests your fundamental knowledge about API-led

connectivity and the capabilities of Anypoint Platform. We have covered all the concepts

required for this certification in this book.

Certification and Interview Tips440

There are three certifications for developers:

• Hyperautomation Specialist

• MuleSoft Developer 1

• MuleSoft Developer 2

They each test your knowledge of the different products we have looked at in this book. Level one is

the entry certification (or the most basic one) and level 2 is for advanced roles. The second one was

released in June 2022, so not a lot of people hold this certification yet. It might be a great differentiator

when looking for a new position.

The other certifications are for architects:

• MuleSoft Platform Architect 1

• MuleSoft Integration Architect 1

• Catalyst Specialist

While they are all architect certifications, they have different specializations. MuleSoft defines a Platform

Architect as a person who lead[s] cross-project design decisions and focus[es] on visibility across

systems and clouds to identify issues before they impact the business. While an Integration Architect

is a person who make[s] project design decisions and [is] the bridge between architect managers and

developers […] value[s] architectural repeatability and ensure[s] project quality. Catalyst Specialist

is designed for a person who can apply the fundamentals of catalyst methodology while building

architectural solutions.

(https://trailhead.salesforce.com/en/credentials/mulesoftoverview/)

Here are some tips to get certified:

• Follow the requirements: If you go to trailhead.salesforce.com/en/credentials/

mulesoftoverview/, you can see the details of each path. Read them carefully and follow

them as much as you can to really be prepared for the exam. All of the following details can be

found on each certification’s page.

• Take the training: Each certification is linked to its own training. For example, to get the

MuleSoft Certified Developer – Level 1 certification, it is recommended you take the Anypoint

Platform Development: Fundamentals training. You can find all the training information

here: https://trailheadacademy.salesforce.com/products/mulesoft#f-

products=Mulesoft

• Finish the do-it-yourself exercises: The MCD certifications have their own DIY exercises so you

can practice. Practice is one of the fundamental things to pass the developer exams more easily.

https://trailhead.salesforce.com/en/credentials/mulesoftoverview/
http://trailhead.salesforce.com/en/credentials/mulesoftoverview/
http://trailhead.salesforce.com/en/credentials/mulesoftoverview/
https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft
https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft

Getting MuleSoft certified 441

• Take the practice exam: Once you feel ready, take the practice exam listed on each certification

page. As ready as you feel, make sure you take this exam first. Aim to get 90% or more correct

answers. If your score is lower than this, it may mean you’re not ready to take the real exam

yet. Review your incorrect answers to identify the modules that need attention.

• Review the topics: Make sure you read all the topics that will be included in the exam. If there’s

any topic you don’t feel comfortable taking, make sure you spend extra time on it. A lot of times,

people don’t pass the exam because of that one topic they left out. Creating a study checklist

for the exam topics will provide a structured preparation method.

• Take the first attempt: If you purchase the training for each certification (or take the free self-

paced one for MCD – Level 1), it will include two attempts to pass the exam. When you take

the first attempt, don’t take it assuming you’re going to pass. Rather, take the first attempt as

another practice. You will get a better feeling of what the exam is like and discover things you

didn’t know. Take this opportunity to absorb the information you will need to learn for the

second attempt.

• Manage your time: You will have 2 hours to finish and there are 60 questions. You have to

manage your time effectively or you will run out of time. The exam’s platform lets you flag a

question to go back to at the end if you still have time. It is better if you skip questions that are

too hard and focus on the ones you can answer more easily than spending too much time on

the harder questions. Mock tests can help you with time management.

• Take notes afterward: You cannot have any notebooks nearby while you are taking the exam.

However, as soon as the exam is done, you can take notes of all you need to study for the second

attempt. The quicker you write down this information, the fresher it will be in your mind, so

try to do this immediately after you’re done with the first attempt.

• Find a quiet room: Someone will have access to your screen, webcam, and microphone while

you take the exam to make sure you’re not cheating. You can’t look away from your screen or it

might be misinterpreted as cheating. You can’t have your phone or smartwatch nearby and you

can’t listen to music. In other words, there must be no distractions whatsoever. This environment

might be stressful for some people, so make sure you make arrangements to be in a quiet room

where you can’t get distracted easily. Make sure no one will enter the room while you’re taking

the exam, otherwise, the exam will be suspended immediately and you will fail your attempt.

Each certification exam is different, but they all consist of multiple-choice questions. The developer

exams have more practical/technical questions, while the architect ones have more of a use case basis

or are theoretical. You will notice the differences when you take the practice exams. Apart from that,

the previous tips apply to all certification exams.

So, you’ve chosen your career path and your certifications, now let’s see how you can learn more

things with some training.

Certification and Interview Tips442

Expanding your knowledge with official training

You can find the complete list of courses at https://trailheadacademy.salesforce.

com/products/mulesoft#f-products=Mulesoft. At the time this book was written,

there were 14 courses available for you to take. Some of these are free and self-paced, and some are

paid and instructor-led.

Let’s separate the training by career path to make things easier, starting with the developer training.

Most of the training courses align with certifications.

Developer training

Let’s take a look at the different types of developer training available:

• If you’re a business analyst or in a non-technical role and want to see a quick overview of the

tools but also get some hands-on experience, you can take the Getting Started with Anypoint

Platform training. This will give you an overview of the main products in Anypoint Platform

and guide you through some exercises so you can see them in action. This training is not

aligned with any certification.

• If you want to get started with MuleSoft products (both Anypoint Platform and Anypoint Studio),

especially from a developer perspective, you should take the Anypoint Platform Development:

Fundamentals training. This is more in-depth training that will get you started as a MuleSoft

developer. It teaches you all the basics to get an idea of how to use the different tools to develop

applications. This training is aligned with the MuleSoft Developer – 1 certification.

• If you want to get more knowledge on RAML and learn some best practices to design your

API specifications, you can take the Anypoint Platform Development: API Design with RAML

training. Even if you’re new to designing API specifications, this will help you to get started

and understand some more advanced topics to create RAML files. This training can help you

troubleshoot common transformation challenges in real-world projects. There used to be a

certification for this training but there isn’t anymore.

• If you want to learn more about DataWeave, but still on a basic-intermediate basis, you can

take the Anypoint Platform Development: DataWeave training. This is especially useful if you

have some specific DataWeave questions that you want to clear with an instructor. This training

is not aligned with any certification, but it is useful to take it before attempting the MuleSoft

Certified Developer – Level 1 certification.

• If you want to learn more about operations and how to get production-ready, you can take

the Anypoint Platform Development: Production-Ready Development Practices and Anypoint

Platform Development: Production-Ready Integrations training. This is helpful if it is your first

time deploying your applications to production and you want to be familiar with the best

practices. This training is not aligned with any certification but this training can help you if

you’re responsible for DevOps and deployment in your team.

https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft
https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft

Expanding your knowledge with official training 443

Now let’s jump to the next path: architecture.

Architect training

As we previously saw when discussing the two different architect certifications, MuleSoft separates

architects into Platform Architect and Integration Architect. There is training for each role:

• Anypoint Platform Architecture: Application Networks for Platform Architects, which focuses on

different capabilities of Anypoint Platform. It also helps architects with a better understanding

of the deployment environment, cloud and on-premises infrastructure, Mule Runtime engines,

vCores, clusters, VPC peering, VPNs, and so on.

• Anypoint Platform Architecture: Integration Solutions for Integration Architects, which focuses

on integration patterns and how to optimize your integrations.

Each of them will help you to get ready for the architect certifications.

You can find more training details here: https://trailheadacademy.salesforce.com/

products/mulesoft#f-products=Mulesoft

Tip

Taking the architect training is not enough to get the certifications because there is so much
knowledge required to pass the exams. However, they will give you the resources you need to
study on your own even after the training is done. You should spend around 3-4 weeks studying
the content in detail before attempting the exams. Refer to the MuleSoft documentation and
MuleSoft Community forum for further help.

Now let’s look at the last path: operations.

Operations training

One of the great things about MuleSoft’s products is that you can choose between deployment options

for the control and runtime planes, as we saw in Chapter 9. With this training, you can learn more

about how to achieve different deployment options and learn best practices for different scenarios.

If you want to learn more about Mule-hosted runtime and control planes, you can take the Anypoint

Platform Operations: CloudHub training for the runtime plane part and Anypoint Platform Operations:

API Management for the control plane part.

https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft
https://trailheadacademy.salesforce.com/products/mulesoft#f-products=Mulesoft

Certification and Interview Tips444

If you want to be more proficient in Runtime Fabric (customer-hosted runtime plane and Mule-

hosted control plane) or your organization has a hybrid cloud setup, you can take one of the two

available types of training, depending on which scenario you want to learn more about: Anypoint

Platform Operations: Runtime Fabric on Self-Managed Kubernetes or Anypoint Platform Operations:

Customer-Hosted Runtimes.

There are other products to achieve customer-hosted deployments without having to necessarily have

a Mule-hosted control plane. You can learn more about this in the Anypoint Platform Operations:

Customer-Hosted Runtimes training.

Finally, if you want to learn more about universal API management, then you can explore Anypoint

Platform Operations: Universal API Management training.

The list of available training is always growing to include more up-to-date information. If you want to

work for a MuleSoft partner or customer, make sure they offer a budget for official MuleSoft training so

you can keep up with the latest technologies and products. An alternative way of learning new things

about MuleSoft is to participate in the MuleSoft Community, which we will look at next.

Contributing to the MuleSoft Community

The MuleSoft Community is supported by the community team at MuleSoft but is completely run by

community members (not working at MuleSoft directly). There might be some MuleSoft employees

attending or speaking at meetups from time to time, but the focus is on all the developers and

architects using MuleSoft in their day-to-day and sharing their knowledge and experience with the

rest of the community.

There are several ongoing initiatives within the community that you can take advantage of. Let’s start

with meetups.

Expanding your knowledge with MuleSoft meetups

This is one of the biggest (if not the biggest) initiatives of all. For years, professionals have been organizing,

attending, and speaking at these meetups around the world. MuleSoft meetups are structured events

where you can expect technical presentations, Q&As, and networking. There are in-person and online

meetup groups that you can join. In the beginning, all meetups happened in person, until health

restrictions were applied in 2020. At that point, all groups were switched to online meetups. Some

groups have returned to in-person meetups now and some others are doing hybrid (in-person and

online) events. You can join any meetup of your preference; it doesn’t have to be your local meetup

group. Meetups are a great way of networking and learning from professionals.

The first step you can take is to join your local meetup group or online meetup groups to keep posted

about when there’s a new meetup. Then, attend more meetups to gain knowledge. Once you feel ready

with a topic, you can apply to be a speaker at one of the meetup groups by contacting the organizers

of the group. This could be beneficial for you because you might get free training or certification

Contributing to the MuleSoft Community 445

vouchers when you are a speaker. You can apply to speak at a meetup here: meetups.mulesoft.

com/speak-at-a-mulesoft-meetup.

Find the complete list of meetup groups here: meetups.mulesoft.com/chapters. Some

examples of meetup groups are the following:

• Online Group – English

• Online Group – Spanish

• Online Group – Portuguese

• Women Who Mule AMER

• Women Who Mule JAPAC

• Women Who Mule EMEA

• MuleSoft for Java Developers

• New York City, United States

• Buenos Aires, Argentina

• Paris, France

• Mumbai, India

• Sydney, Australia

There are more than 120 groups around the world. But that is not all: if your local meetup group is

inactive or one has never existed, you can take the initiative and become a MuleSoft meetup group

leader to organize the meetups for a specific chapter. You can apply to become a leader here: meetups.

mulesoft.com/become-mulesoft-meetup-leader. As an active meetup leader, you are

expected to host at least one MuleSoft Meetup quarterly, either virtual or in-person. You are expected

to collaborate and work with other Meetup leaders, Community managers, and partners/sponsors.

Becoming a meetup leader comes with very special perks such as getting free training/certification

vouchers, access to special community events, free access to some MuleSoft conferences, and more.

However, the best perks of the community are awarded to MuleSoft Ambassadors. To become a

MuleSoft Ambassador, first, you have to become a MuleSoft Mentor. Let’s learn more about this.

Helping others as a MuleSoft Mentor

You can apply to become a MuleSoft Mentor once you feel ready to start contributing in a more formal

role to the community. There are quarterly requirements that you’ll need to meet to continue being

part of this program, such as writing a blog, hosting a Meetup/webinar, creating video tutorials, and

so on. You also get great benefits in return, such as free training, special swag, and coaching with one

of the MuleSoft Ambassadors.

http://meetups.mulesoft.com/speak-at-a-mulesoft-meetup
http://meetups.mulesoft.com/speak-at-a-mulesoft-meetup
http://meetups.mulesoft.com/chapters
http://meetups.mulesoft.com/become-mulesoft-meetup-leader
http://meetups.mulesoft.com/become-mulesoft-meetup-leader

Certification and Interview Tips446

This is the first step you can take to become a more recognized member of the community if you

don’t want to become a meetup leader right away. Being a meetup leader and a MuleSoft Mentor are

not correlated. You can be a leader and a mentor or you can apply to be a mentor without having to

be a leader. The more you do for the community, the more points you’ll get in your favor to reach the

MuleSoft Ambassador title.

You can find the complete list of requirements and benefits here: developer.mulesoft.com/

community/mentors. Note that the full list of MuleSoft Mentors is not available yet. There are

more than 100 mentors currently.

Once you become a mentor and have been a mentor for a while, depending on your level of contributions,

you might look into becoming a MuleSoft Ambassador next. Let’s learn a bit more about that.

Becoming a MuleSoft Ambassador

MuleSoft Ambassadors are the top-tier experts in the community. They each specialize in a different

area, which is very helpful for the rest of the people trying to learn MuleSoft. Some create high-quality

videos on YouTube, some write articles, some help in the forums, and some speak at events and

meetups. There’s not just one characteristic of being an ambassador that you can copy and apply to

yourself since everyone’s so different. The thing they all have in common is their passion for helping

others and answering questions. You can get in touch with an ambassador for specific questions you

may have and they’ll be happy to help you.

If you want to become an ambassador and don’t know where to start or what specialty to take, you

can follow the current ambassadors on social networks and see what they’re up to. Maybe you like

creating videos or maybe you prefer helping in the forums. You can try a bit of everything until you

find what you’re more passionate about.

As mentioned before, you first have to be a MuleSoft Mentor in order to have a chance of being a

MuleSoft Ambassador. Once you’ve spent some months or years helping the community, you might

have the chance to become an ambassador. MuleSoft Ambassadors are not normally nominated. There

is a separate special process for selection. This is why you get coached by an actual ambassador when

you’re a mentor – to understand the process better and get a plan to become one.

You can find the complete list of MuleSoft Ambassadors here: developer.mulesoft.com/

community/ambassadors

There are still more things to do even if you don’t want to be part of the meetups or the mentors/

ambassadors program. Let’s now talk about the MuleSoft forums.

http://developer.mulesoft.com/community/mentors
http://developer.mulesoft.com/community/mentors
http://developer.mulesoft.com/community/ambassadors
http://developer.mulesoft.com/community/ambassadors

Passing your interview 447

Getting help with the MuleSoft forums

The forums are primarily run by community members. People in the community can ask a question

there and it will get answered in less than a day by – at least – one of the community members who

are dedicated to helping others solve their questions. MuleSoft forums can also help you prepare for

certification exams.

A lot of the current MuleSoft Mentors and Ambassadors are active contributors in the forums. It’s a

specialty for some of them to answer technical questions or clear up some doubts about the products.

This is one of the biggest sources of information for the community.

If you want to take advantage of this site, you can access https://issues.salesforce.com/

and create an account to start posting questions/answers. Please note that it is best to create an account

with a personal email instead of your work email. If you change emails, you will no longer have access

to your previous account’s points and you’ll have to start from scratch.

You can use an Anypoint Platform free trial account, and even if it expires, you’ll still have access to

your profile.

Now that we know where we can go with questions we may have and who we can look to for advice,

let’s look at some interview tips to nail your first MuleSoft job.

Passing your interview

You chose your career path, you got the training, you got the certification, and you know where to go

for help. Now, the only thing missing is getting your first MuleSoft job.

There is no magic formula that you can follow to nail technical interviews, especially since there are

different roles and each company focuses on its own priorities. Maybe some companies are more

interested in knowing that you can learn new technologies and not so much on your actual MuleSoft

knowledge, or maybe they just ask specific MuleSoft questions.

For example, if you’re applying for an entry job as a MuleSoft developer, they might already know that

you will only answer the questions you saw in your training but you don’t have practical experience in

real-life projects. You need to learn how to troubleshoot and the basics of coding. So, their questions

will be more focused on your understanding of basic topics instead of real-life complex projects.

However, if you’re applying for a senior MuleSoft developer role, they’ll probably expect you to be an

expert on MuleSoft’s products and have lots of hands-on experience. They won’t ask the same questions

of a recent graduate and an experienced developer. Also, the architect will be expected to know about

different infrastructure, integration patterns, MuleSoft overall, and integration best practices. There

are some tips that we can give you so you can take these things into account.

https://issues.salesforce.com/

Certification and Interview Tips448

Most of the questions people generally ask are related to what you saw/will see in the fundamentals

training. Some of these are even part of the MCD – Level 1 certification exam. Besides finishing the

training or passing the exam, we also recommend that you do some personal projects so you can get

more familiar with the products and troubleshoot on your own.

Some general questions you may be asked in your interview may be the following:

1. What is the Mule Runtime?

2. What are some differences between Mule 3 and Mule 4?

3. What is API-led connectivity?

4. What’s the difference between a RESTful and a SOAP web service?

5. What are the differences between a flow and a sub-flow?

6. What’s the Mule message structure in Mule 3 versus Mule 4?

7. What is MUnit?

8. What is a domain project?

9. What are the different ways to deploy an application into CloudHub?

10. What are the differences between CloudHub, On-Prem, and Runtime Fabric?

As mentioned before, the questions will be different depending on the type of role you are interviewing

for and the total years of experience you already have. The previous questions were some general/

basic questions you may get asked for any role, but some examples for a senior or architect position

might be the following:

1. When can you use the Object Store connector and when should you use the Object Store

REST APIs?

2. How can you use streaming in connectors such as File or HTTP?

3. What is the threading model in Mule 4?

4. How do you set up a CI/CD pipeline (such as Jenkins) for automated deployments?

5. What are the different encryptions you can achieve in Mule 4?

6. How can you create a custom policy and deploy it to Exchange?

7. What is the difference between a Dedicated Load Balancer (DLB) and a Shared Load

Balancer (SLB)?

8. What’s the difference between a keystore and a truststore?

9. What’s the difference between a worker and a vCore?

10. How can you set up a different identity provider for Anypoint Platform?

Summary 449

Most of these questions are answered in the different types of training we previously listed. Some

are found in the fundamentals training, some in the operations training, and some in the architect

training. Depending on the role you’re applying for, we recommend you take a look at the specific

training and study as if you were going to have a certification exam.

You should also self-reflect on how you learn best. Some people learn more when doing hands-on,

practical exercises. Some people learn more by watching videos. Some people learn more by reading

documentation. It is important that you figure out how to absorb this information so you really

understand it and don’t just memorize it. This will help you in both your exams and your interviews.

Depending on the company, you may be able to ask them to provide a guide for the topics they’re going

to go through in the interview. This will help you get a better idea of what the questions are going to

be about so you can prepare days in advance. Don’t take your interviews lightly; always prepare and

re-read tutorials/documentation or re-watch videos to give yourself a refresher. Even if they’re basic

topics, you might forget the details sometimes.

Finally, you can use the networking side of LinkedIn or similar social networks to connect with

professionals who work at the company you’re applying to. You can get in touch with them and

schedule a meeting to get a better sense of what the interview will be like. Maybe they have some

specific pointers about their interview process that will be helpful for you to know beforehand. You

can also get in touch with some MuleSoft Community members to ask for their help in having mock

interviews. This is especially helpful if you haven’t been in interviews for a while and don’t quite

remember the feeling of being in an interview. Having several mock interviews with others might

help you be less nervous in the actual interview and you’ll get to practice some technical questions.

Summary

In this chapter, we learned about the different roles you can work in in the MuleSoft ecosystem. The

official ones are architect, developer, and operations. We learned that there are some variants of these

roles depending on the company, for example, designer.

We reviewed the four available certifications and why they might be important for your resume. There

are two developer certifications: MuleSoft Certified Developer – Level 1 and Level 2. There are also

two architect certifications depending on your specialization: MuleSoft Certified Platform Architect

or Integration Architect. Both are just Level 1 for now. We also mentioned some tips to get certified,

such as taking the training and the practice exams.

We talked about the different official training you can find to expand your knowledge. There is specific

training depending on your career path and/or specialization. Some of it comes with free vouchers

to try the certification exam and some is just to show you more best practices or give you experience

in certain products.

Certification and Interview Tips450

We gained an understanding of a bit more about the MuleSoft Community and how you can be a part

of it. We discussed how MuleSoft meetups work, how you can become a mentor or an ambassador,

and how to take advantage of the forums to either ask questions or help others with theirs.

Finally, we listed some example questions you might get in your interview, depending on the role or

experience level you’re looking for. We also talked about how each company is different and there’s

no one-size-fits-all guide to guarantee you pass the interview. But you can get a better feeling of what

kind of questions you might expect.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter.

1. What are the four available certifications?

2. List at least three types of training for developers.

3. List at least two types of training for architects.

4. What are the three different official roles you can achieve in the community?

5. What is the URL to access the MuleSoft forums?

6. What is the best practice to create a new account for the forums?

Answers

1. The four available certifications are:

 � MuleSoft Certified Developer – Level 1

 � MuleSoft Certified Developer – Level 2

 � MuleSoft Certified Platform Architect – Level 1

 � MuleSoft Certified Integration Architect – Level 1

Note:

For more details: https://trailhead.salesforce.com/en/credentials/
mulesoftoverview/

2. The types of training for developers are:

 � Getting Started with Anypoint Platform

 � Anypoint Platform Development: Fundamentals

https://trailhead.salesforce.com/en/credentials/mulesoftoverview/
https://trailhead.salesforce.com/en/credentials/mulesoftoverview/

Answers 451

 � Anypoint Platform Development: API Design with RAML

 � Anypoint Platform Development: DataWeave

 � Anypoint Platform Development: Production-Ready Development Practices

 � Anypoint Platform Development: Production-Ready Integrations

3. The types of training for architects are:

 � Anypoint Platform Architecture: Application Networks

 � Anypoint Platform Architecture: Integration Solutions

The types of training for operations are:

 � Anypoint Platform Operations: CloudHub

 � Anypoint Platform Operations: API Management

 � Anypoint Platform Operations: Runtime Fabric on Virtual Machines

 � Anypoint Platform Operations: Runtime Fabric on Self-Managed Kubernetes

 � Anypoint Platform Operations: Customer-Hosted Runtimes

 � Anypoint Platform Operations: API Community Manager

4. The different official roles you can achieve in the community are:

 � MuleSoft Meetup Group Leader

 � MuleSoft Mentor

 � MuleSoft Ambassador

5. The URL to access the MuleSoft forums is help.mulesoft.com

6. To only use personal emails and not work emails.

http://help.mulesoft.com

16
AI and Automations

with MuleSoft

You have learned all the concepts you need to get started with MuleSoft, gain your level 1 certification,

and to prepare your Mule interviews. Building on this foundational knowledge, this chapter will dive

into how MuleSoft leverages AI and automation to deliver smarter, faster integrations.

We are living in the era of artificial intelligence (AI), and it is clear that AI is here to stay. The sooner

we familiarize ourselves with its potential and master the fundamentals, the better prepared we will

be to harness its power.

You’ll discover how to unlock the AI-driven automation capabilities of MuleSoft to enable faster,

smarter, and more efficient integrations.

In this chapter, we’re going to cover the following main topics:

• Automations with MuleSoft Composer

• Introduction to MuleSoft RPA

• Automating your document processing with IDP

• Integrating Mule APIs with Agentforce

We have already transitioned to low-code integration with MuleSoft. MuleSoft connectors, accelerators,

and other components make integration easy. It allows us more time to focus on integration patterns

and optimizing integrations. MuleSoft automations further help us with daily mundane tasks. With AI,

MuleSoft automations handle routine tasks intelligently, allowing users to focus on strategic priorities.

Automations with MuleSoft Composer

As a Salesforce developer, you are already aware of how essential it is to unlock the data present in

silos. MuleSoft Composer is a tool available in the Salesforce ecosystem that helps you to connect,

transform, and integrate various end systems.

AI and Automations with MuleSoft454

It’s a no-code platform that is accessible from a Salesforce developer account. It has several in-built

connectors to connect with different end systems directly, such as Workday, NetSuite, Slack, JIRA,

Stripe, Asana, and so on. This list will continue to grow over time.

Before deep diving into the configuration of MuleSoft Composer, let’s understand its capabilities.

Capabilities of MuleSoft Composer

Let us now review the capabilities of MuleSoft Composer, in order to leverage it better:

• Connects different end systems easily

• You can synchronize, retrieve, and transform data from different end systems

• No-code data transformation with if-else blocks, routers, and filters

• Manage the application life cycle (build, test, debug, deploy, and so on) with the help of flows

We’ve seen the capabilities of MuleSoft Composer, let’s learn when we can leverage it:

• When you want to map/transform data from different systems (such as NetSuite, SAP, and

legacy systems) without implementing complex logic

• When polling data from one end system, adding logical conditions, and transforming the data

• For data migration and data transformation

We have now understood the capabilities of MuleSoft Composer and when to use it. Let’s get some

hands-on practice and set up MuleSoft Composer with some easy steps.

Configuring MuleSoft Composer

In order to configure MuleSoft Composer, you need to have valid admin access. Let’s assume you have

the required access and get started with installing and configuring MuleSoft Composer.

In this use case, we will poll the data from Salesforce every 15 minutes. Based on the information

retrieved from Salesforce, we will apply conditional logic and fetch data from Slack.

Let’s follow these steps to get started with MuleSoft Composer:

1. Log in to your Salesforce org. Go to Setup | Enter MuleSoft Composer in the Quick Find search,

and click on Install the Managed Package for MuleSoft Composer. You will be automatically

granted permission to access MuleSoft Composer (see Figure 16.1).

As a first-time user and an admin, you can also change the required permission set and configure

OAuth authorization and IP address restrictions by clicking Change the Type of Permitted

Users and Relax IP Restrictions.

Automations with MuleSoft Composer 455

Figure 16.1 – Installing MuleSoft Composer

2. Once the installation is complete, you’ll be redirected to MuleSoft Composer’s home page. Click

on the Create New Flow option in order to create a new flow (see Figure 16.2).

• The flow consists of triggers and a series of events that show the execution of the process.

Figure 16.2 – Creating a new flow

AI and Automations with MuleSoft456

3. To start the execution flow, we need to define flow triggers. The flow can either be started by

an event triggered from any of these predefined end systems or you can poll the flow using a

scheduler. In this case, we’ll select Scheduler (see Figure 16.3).

Figure 16.3 – Choosing flow trigger

4. Configure the end system. As we have selected a scheduler here, you can choose the frequency

of events (see Figure 16.4).

Figure 16.4 – Configuring Scheduler

Automations with MuleSoft Composer 457

Note

The configuration of any other end system is similar and easy, provided you have valid access to it.

5. You can add the next step by clicking the + sign (see Figure 16.5).

Figure 16.5 – Adding the next step

6. Similar to flow trigger selection, you can select the next action. This action will be responsible

for the execution or processing of the flow (see Figure 16.6).

Figure 16.6 – Selecting the next action

7. In this case, we’re choosing Salesforce as the actionable end system. Authorize Salesforce and

select the connection that you wish to integrate (see Figure 16.7).

AI and Automations with MuleSoft458

Figure 16.7– Configuring the Salesforce end system

8. Once you’re done selecting and configuring system events, you can select the next step. Here,

along with pre-defined end systems, you also get an option to select a flow control out of two

flow controls, namely If/Else Block and For Each loop. You also have an option to connect to any

other end system that is not mentioned in the list using an HTTP connection (see Figure 16.8).

Figure 16.8 – Selecting routers in the next step

Introduction to MuleSoft RPA 459

9. Once you’re done selecting all the steps, you’ll have a flow outline describing the activity of the

flow. Click Test to test the flow. Once you’re done testing and are satisfied with the integration

result, you can activate the flow by clicking Activate (see Figure 16.9).

Figure 16.9 – Flow overview

We have studied MuleSoft Composer and its features. We have also learned how to install and configure

MuleSoft Composer and create a flow.

In the next section, we’ll further look into the automation capabilities of MuleSoft RPA.

Introduction to MuleSoft RPA

MuleSoft Robotic Process Automation (RPA) simplifies business process automation by using bots

to handle repetitive tasks. This saves time and reduces the risk of human error.

With MuleSoft RPA, you can automate tasks that need human interaction or work with systems that

lack APIs. Bots can quickly and accurately interact with apps, extract data, read images, and manage

inputs more consistently and accurate than manual processes

MuleSoft RPA seamlessly integrates with the Anypoint Platform to share and reuse automation assets

through Exchange and connects to MuleSoft Composer for streamlined app and data integration in

your automation projects.

You can access MuleSoft RPA from Anypoint Platform as shown in Figure 16.10.

AI and Automations with MuleSoft460

Figure 16.10: Landing page of MuleSoft RPA

In this section, we have studied briefly about RPA. If you’d like to get your hands on RPA, you can check

out the RPA module on Trailhead: https://trailhead.salesforce.com/ or Build Salesforce

Hyperautomation Solutions with MuleSoft on Trailhead Academy: https://trailheadacademy.

salesforce.com/

In the next section, we will learn more about MuleSoft’s newest automation capabilities that’ll help

you process your documents.

Automating your document processing with IDP

MuleSoft’s newest AI and Automation tool, Intelligent Document Processing (IDP), for end-to-

end Document processing and automation helps you to extract information from the document and

perform further analysis with the help of Einstein AI capabilities.

https://trailhead.salesforce.com/
https://trailheadacademy.salesforce.com/
https://trailheadacademy.salesforce.com/

Automating your document processing with IDP 461

Under the hood, it uses AWS textract extract information from the document. You can further integrate

the data extracted from IDP with Anypoint Platform, Flow and RPA to speed up your integrations.

(see Figure 16.11).

Figure 16.11: Intelligent Document Processing on Anypoint Platform

Let us now understand how to get onboard with IDP and start document processing.

Getting started with IDP

In this section, you will learn how to get started with IDP, manage permissions and access.

Firstly, you need to have valid access rights.

1. Navigate to Access Management → Users → Select the user you want to permit → Permissions

→ Add Permissions.

2. Under the Document Actions tab, select all the permissions you want to give to the user (refer

Figure 16.12)

AI and Automations with MuleSoft462

Figure 16.12 : IDP Permissions

3. Also, select your Business Group, refer Figure 16.13.

Figure 16.13: Select your business group

4. Further review and add permissions.

Once you’ve given all the necessary permissions to the user, hop on to IDP’s page to get started with

Document Actions. In the next section, you will learn how to create your first document action.

Automating your document processing with IDP 463

Creating your first Document Actions

In order to extract and process information from the document, we will first create a Document Action.

Document actions involve a series of steps from uploading a document, to running the IDP engine,

extracting data fields, adding prompts, and so on.

Let us now go ahead and create our first Document Action.

1. Click Create New to create your first Document Action(see Figure 16.14).

Figure 16.14: Document actions with IDP

2. Select the type of Document Action. Add name and description to your Document Action and

click Create (see Figure 16.15).

Note:

As of the Spring’24 release, you can process 3 documents with IDP: Generic, Invoice, and
Purchase Order

AI and Automations with MuleSoft464

Figure 16.15: Creating new document action

3. Further, you’ll be prompted to select files that you want to be processed by IDP. Upload the

document and click on Run to process the document (see Figure 16.16).

Figure 16.16: Run your document action

Automating your document processing with IDP 465

4. Here, AWS textract is doing the magic under the hood. Relevant information from your

document will be extracted and assigned to standard fields. You can click on the scan icon next

to a particular field and trace the field value on the document (see Figure 16.17).

5. Further, you can also see the confidence percentage to help you trust the information.

The field can be also marked as required if you always want it to be included. If the required field is

not extracted by IDP then the document will be sent for a review.

You can also hide/unhide a particular field by clicking on the eye icon next to the field to avoid a null

value or sensitive information in the response payload.

Figure 16.17: Check document action field values

Further, you can add custom fields and use Prompts to get information from the document with the

help of AI.

In the Prompts section, give an appropriate prompt name and description and re-run the document

action and IDP will fetch the information for you. You can further choose to view, hide, edit and

delete the information.

For example, here I want the PAN Number of the customer(see Figure 16.18).

AI and Automations with MuleSoft466

Figure 16.18: Prompts in IDP

After adding the prompt for PAN Number, make sure you run the document action.(see Figure 16.19).

This will help Einstein to evaluate the document again and process the result for PAN Number

Figure 16.19: Output of prompts in IDP

Automating your document processing with IDP 467

Further, you need to add at least one reviewer to review and approve your Document. Human

intervention helps you to validate the results, build trust and ensure reliability(see Figure 16.20).

Figure 16.20: Adding reviewers for document action

1. Once you’re done adding the reviewer, you can go ahead and save the Document Action. Further,

publish the Document Action to Anypoint Exchange and RPA (see Figure 16.21).

Figure 16.21: Publishing your document action to Anypoint Exchange

AI and Automations with MuleSoft468

In this section, we’ve learned how to create and new Document Action and how to publish it on

Anypoint Exchange.

In the upcoming section, we will learn how to test your document action to extend it further with

Mule Apps and RPA.

Testing the Document Action

Let us now learn how to connect your Document Action with the IDP server and test it over Anypoint

Exchange. Follow the given steps to test your document action.

1. To get started with testing the document action, head over to Anypoint Exchange, where you

can find our published document as a REST API.

You can see the newly created POST and GET endpoints(see Figure 16.22).

Figure 16.22: Testing your document actions

2. Let us now go ahead and test the POST method. Select the POST method → Choose the

Server(see Figure 16.23).

Automating your document processing with IDP 469

Figure 16.23: Selecting IDP servers

3. Further, go ahead and upload the document in the Body section(see Figure 16.24).

Figure 16.24: Upload document to test

AI and Automations with MuleSoft470

4. Next, in order to generate security credentials go to Access Management in Anypoint Platform

to build a Connected App(see Figure 16.25).

Figure 16.25: Creating a new connected app

5. Add scopes in the Document Actions and select your Business Group(see Figure 16.26).

Automating your document processing with IDP 471

Figure 16.26: Connected app configuration

6. Once your Connected App is ready, save ID and Secret. We will use them for testing out

Document Action API in Anypoint Exchange.

7. Add the Client ID and Client secret. Select Advance settings. Choose Credential location as

Authorization Header, generate a token, and hit Send (see Figure 16.27).

AI and Automations with MuleSoft472

Figure 16.27: Add IDP credentials

8. You will receive a response as 200 OK along with Document Id and Document name in the

response payload(see Figure 16.28).

Automating your document processing with IDP 473

Figure 16.28: Document action response

9. Save the Document Id to further test the GET endpoint.

10. Now let us go ahead and test out the GET endpoint based on the execution Id.

Select the GET method. Enter Exceution Id and enter the security credentials similar to post endpoint.

Hit Send(see Figure 16.29).

Figure 16.29: Get IDP execution ID

You will get a 200 OK response and a payload containing the extracted information from the

document(see Figure 16.30).

AI and Automations with MuleSoft474

Figure 16.30: IDP document action response

In this section, you’ve learned about IDP and automations with IDP. We’ve also learned how to create

your first document action and testing your first document action. Further, you can go ahead and

integrate IDP with RPA and Anypoint Platform for end-to-end automation.

In the next section, you’ll learn about Agentforce and how to integrate Mule APIs with agentforce

for seamless integrations.

Integrating Mule APIs with Agentforce 475

Integrating Mule APIs with Agentforce

Before getting into Agentforce, let us learn about Agents

AI agents are made possible through the emergence of large language models (LLMs).

But LLMs alone are not sufficient to implement agents. They have a number of limitations, including:

• Lack of access to private data

• No built-in ability to take action

For example, they can’t open a support ticket, change the shipping address of an order, update an

opportunity record, or change the price of a product.

Hence, a new software paradigm, Agents.

Let us now learn capabilities of an agent:

• Agents bridge the gap between LLMs and practical business use cases

• With this new paradigm, software is no longer built as full-fledged applications but as a collection

of granular building blocks these building blocks are referred to as actions (for example, “Locate

Order” and “Change Order Address”)

• And these actions are clubbed under functional areas called topics (for example,

“Order Management”).

• Agents have access and knowlegde of your Enteprise Data

• but at the same time these agents are bounded by guardrails which defines what an agent can

do or cannot do

• And most importantly, these agents are secured by Einstein Trust Layer.

In other words, an agent is a software system that uses an LLM’s language and reasoning abilities to

orchestrate a collection of actions within a specific domain.

Introduction to Agentforce

Salesforce Agentforce brings humans together with autonomous agents that are powered by AI, data,

and action.It provides the features and tools you need to create, customize, and deploy trusted agents

which are Integrated, Easy to deploy, customizable, trusted and scalable and hosted in open ecosystem.

Agentforce also supports other innovative AI applications, complete with the right guardrails

and supervision

AI and Automations with MuleSoft476

Building intelligent integrations

To invoke a MuleSoft API as a Agent Action, the easiest method is through External Services. However,

as of Salesforce Release Spring 2024, Agent actions can be triggered via Flow, Apex Classes, and Prompt

Builder. Future updates will introduce more Agent action options, such as directly invoking external

services from Agentforce.

Now, let’s go through a step-by-step procedure for building intelligent integrations(see Figure 16.31):

1. Get your MuleSoft API ready

2. Create your Named Credentials

3. Import MuleSoft APIs as External Services

4. Trigger External Services with Flow/Apex

5. Create Agent Actions

Figure 16.31: Flow of Mule APIs with Agents

Summary

This chapter explores the power of AI and automation with MuleSoft, focusing on tools like Composer,

RPA, and IDP. MuleSoft Composer enables no-code integrations for syncing and transforming data

across systems. RPA automates repetitive tasks, while IDP uses AI to extract and process document

data seamlessly.

Agentforce bridges AI and business use cases, enabling secure, intelligent integrations. It orchestrates

MuleSoft APIs as agent actions through flows or Apex, enhancing automation. With these tools, you can

simplify processes, optimize productivity, and build scalable, AI-driven solutions for smarter workflows.

Questions 477

Throughout this book, you’ve explored MuleSoft, APIs, Integration, and AI—key concepts that form

the foundation of your MuleSoft journey. While these ideas provide a strong starting point, excelling

in this field requires hands-on experience with these tools and capabilities. Starting out might feel

overwhelming, but with persistence and a solid grasp of the fundamentals, you’re sure to succeed.

Questions

Take a moment to answer the following questions to serve as a recap of what you just learned in

this chapter.

1. What is MuleSoft Composer, and how does it simplify integrations?

2. What are the primary benefits of using MuleSoft RPA?

3. How does Intelligent Document Processing (IDP) enhance automation?

4. What is Agentforce, and how does it utilize AI for integration?

5. How do Agentforce guardrails ensure secure automation?

Answers

1. MuleSoft Composer is a no-code platform in the Salesforce ecosystem that connects and integrates

systems like Slack, NetSuite, and Workday. It simplifies data synchronization, transformation,

and integration by using pre-built connectors and intuitive flow-building tools.

2. MuleSoft RPA automates repetitive tasks, saving time and reducing human error. It integrates

with Anypoint Platform and MuleSoft Composer, allowing automation assets to be reused

across applications, streamlining data and app integration.

3. IDP extracts and processes information from documents using AI tools like AWS Textract and

Einstein AI. It automates data capture, integrates results with MuleSoft and RPA, and allows

customization with prompts and reviews for end-to-end document automation.

4. Agentforce is a Salesforce platform that combines AI, data, and actions to create secure,

autonomous agents. It integrates with MuleSoft APIs to trigger actions like updating records

or managing orders, using flows, Apex classes, or external services.

5. Guardrails are natural language instructions that set limits on agents behaviour. They ensure

that the agent do no hallucinate or cross it’s boundaries, give vague answers or ask any

sensitive information

Index

A
accelerators 384

advantages 388

Access Management

audit logs 187

business groups 184

environments 186

exploring 184

invite user 184

organization 184

roles 185, 186

subscription 188

actions 475

ActiveMQ 421

Agentforce 475

agents

capabilities 475

aggregators 113

alerts, Runtime Manager

setting up 177-179

anonymous functions

creating 211-213

Anypoint CLI 304

Anypoint Code Builder (ACB) 53, 59, 429

API, designing 53, 90-92

API, publishing to Exchange 92, 93

Develop an Integration 94-99

exploring 89

exploring, in cloud IDE 101

installing, on desktop 89

Anypoint Flex Gateway 341

configuring, ways 341

reference link 342

Anypoint Monitoring

alerts 182, 183

exploring 181, 182

Log Management 183

Anypoint Platform 13, 154

Access Management 13

Anypoint API Governance 14

Anypoint API Manager 13

Anypoint Code Builder (ACB) 14

Anypoint DataGraph 13

Anypoint Design Center 13

Anypoint Exchange 13

Anypoint Flex Gateway 14

Anypoint Monitoring 14

Anypoint MQ 14

Anypoint Runtime Fabric 14

Anypoint Runtime Manager 13

Index480

Anypoint Service Mesh 14

Anypoint Visualizer 13

best practices 432

CloudHub 13

CloudHub 2.0 13

dashboard 32, 33

Secrets Manager 14

sign-up page 31

Anypoint Platform Private Cloud

Edition (PCE) 303

Anypoint Runtime Fabric (RTF) 303

Anypoint Security 341

features 341

Anypoint Studio 14, 59, 429

APIkit 14

components 60

DataWeave 14

downloading 60, 61

installing 60-62

launching 62, 63

MUnit 14

perspective 67

software updates, installing 87-89

theme, updating 86, 87

Transform Message component, using 253

views 66, 67

Anypoint Visualizer 183

Anypoint VPC 179, 180

Apache JMeter 353

Apex 5

API Autodiscovery 333

configuring 333-335

API Autodiscovery ID 326

API components

analyzing 10

API specification 11

implementation 10

request 10

response 10

API design 25

canvas 35, 36

naming convention 54, 55

optimizing 55, 56

query parameter 39-45

URI parameter 38

with guided approach 52, 53

API Designer 155

API specification 155

AsyncAPI 155

AsyncAPI, publishing 158

AsyncAPI specification, creating 156, 157

fragment 155

API design-first approach 154, 284

API design life cycle 25, 26

design 26

feedback 26

simulate 26

validate 26

API discoverability 162

API fragments 40

annotation types 41

data types 40

examples 40

extension 41

library 41

overlays 41

resource types 40

security scheme 41

trait 40

user documentation 41

API gateway 325

activities, involved in implementing

security 325, 326

architecture 325

Index 481

API key 348

APIkit 14

APIkit Router 273, 284

used, for generating flow 284

API-led connectivity approach

analyzing 19

Experience layer 20

Process layer 20, 21

System layer 21

API life cycle, MuleSoft 15

deployment and managing phase 16

design phase 15

implementation phase 16

API Manager 181, 324

API Administration 324

API Groups 324

Automated Policies 324

Client Applications 325

Custom Policies 325

default dashboard 324

API mocking 46-51

API security

implementing, with policy 329-332

need for 322

with MuleSoft 322, 323

API specification 34

editing 37, 38

API Specification file

used, for creating Mule application 284-288

API testing tool 347

Append operator, DataWeave 206

examples 206

application networks 18, 19

Application Programming

Interfaces (APIs) 6, 7, 322

benefits 11

components, analyzing 10

example 9

restaurant analogy, reviewing 7, 8

using, benefits 11

architect training 443

Async scope 141

atomicity, consistency, isolation,

and durability (ACID) 29

automated testing 347

B
basic authentication 348

basic endpoint 325

batch aggregator 115

batch job 115-117

batch processing stages

load and dispatch 113

on complete 113

process 113

batch-processing strategy 113

Batch scope 113

batch aggregator 115

batch job 115-117

batch step 113, 114

features 113

processing stages 113

bearer token 348

best practices, MuleSoft 427

general best practices 428, 429

projects best practices 429-431

Boolean 199

Bulk API 394

Bulk API v2 394

Business Application Programming

Interface (BAPI) 424

business groups 184

Index482

C
Cache scope 142

career path

architect 438

business user 439

developer 438

DevOps 438

official training 442

selecting 438, 439

certifications 439

associate-level certification 439

MuleSoft Associate 439

Change Data Capture events

(CDC events) 127, 394

Choice router 137, 138

CI/CD pipeline

building, with MuleSoft 317

client application 8

CloudHub 303

Mule application, deploying

to 168-172, 304-309, 311

CloudHub 2.0 166

features 166

private space 168

replicas 167

shared space 168

versus CloudHub 1.0 166, 167

code-first approach 284

comments, DataWeave

adding, to code 197, 198

multi-line comments 198

single-line comments 197

compliance policies, MuleSoft

Client ID Enforcement 327

Cross-Origin Resource Sharing (CORS) 327

components 117

Custom Business Event 117, 118

Dynamic Evaluate 118, 119

Idempotent Message Validator 120

Invalidate Cache 121

Invalidate Key 122

Logger 123, 124

Parse Template 124, 125

Set Transaction Id 126, 127

Transform Message 127

Composer 15

composite data types, DataWeave 200

array 200

object 200

computer network 18

configuration files

Mule configuration file 274

Project Object Model (POM) 278-280

properties file 277, 278

types 274

connectors 397-399

community 398

examples 398

MuleSoft-Certified category 398

premium category 398

select category 398

continuous deployment (CD) 362

continuous integration (CI) 362

Continuous Integration/Continuous

Delivery (CI/CD) 428, 438

control plane 302

Core components 103, 112

Core functions, DataWeave

arrays, transforming 245, 246

groupBy function 247, 248

infix notation 237

isEmpty function 239

log function 239, 240

Index 483

map function 249, 250

multiple types, transforming 238

numbers, transforming 241, 242

objects, transforming 244, 245

prefix notation 236

reduce function 250-253

strings, transforming 242-244

then function 240, 241

using 236, 237

create, retrieve, update, and

delete (CRUD) 55

Cron scheduling 281

reference link 281

CSV data format 201

Custom Business Event 117, 118

custom modules, Transform

Message component

creating 267-269

custom policies, MuleSoft 328, 329

custom types 208

D
data analytics tools 395

Database Connector 409-411

watermarking 411

data formats, DataWeave

CSV 201

DW 201

Java 201

JSON 202

reference link 202

XML 202

data types, DataWeave 199

composite data types 200

range data type 201

simple data types 199, 200

DataWeave 5, 14, 16, 104, 194, 431

analyzing 194, 195

comments, adding to code 197, 198

Core functions, using 236, 237

data formats 201, 202

data types 199

functions, importing 233

modules 232

versions 194

DataWeave scripts

anatomy 196

body 197

data, retrieving with selectors 214

functions 210

header 196, 197

operators, using 202

scopes and flow control 221

variables, using 207

writing 202

date and time-related data types 200

dedicated load balancer (DLB) 180

defect/bug tracking tool 347

deployment models 302

Anypoint Platform Private Cloud

Edition (PCE) 303

Anypoint Runtime Fabric (RTF) 303

CloudHub 303

selection considerations 304

Standalone Mule Runtime 303

descendants selector 216

Design Center

API Designer 155

working with 154

Design perspective 67

developer experience (DX) 162

developer portal 162

developer training 442

DevOps 438

Index484

Distributed Denial-of-Service

(DDOS) attack 328

Docker containers 303

Document Actions

creating 463-467

testing 468-473

document processing

automating, with IDP 461, 462

dollar-sign syntax 237

do operator

used, for creating scopes 225, 226

DW data format 201

Dynamic Evaluate 118, 119

dynamic operator 221

E
End of Life (EOL) 292

endpoints 127

Scheduler component 127-130

Enterprise Java Beans (EJB) 104

equality and relational operators,

DataWeave 203

examples 204

greater than (>) 203

greater than or equal to (>=) 203, 204

less than (<) 203

less than or equal to (<=) 203

similar to (~=) 204

error handling 130, 131

Error Handler 135, 136

On Error Continue scope 131

On Error Propagate scope 132

Raise Error component 133

event processors 104

event source 104

Exchange component 159-162

public portal 162-164

External Services 389

F
File Connector 400

file attributes 401, 402

file operations 400, 401

used, for creating Mule application 402-406

First In First Out (FIFO) 116

First Successful router 138, 139

flow control 136, 221

Choice router 137

First Successful router 138

Round Robin router 139

Scatter-Gather router 140

Flow scope 142

For Each scope 143

FTP Connector 400, 406

configuring 406

FTPS Connector 407

functional testing 346

functions, DataWeave

aliases, creating 234

anonymous functions, creating 211, 212

defining 210

function overloading, using 213, 214

importing 233

named functions, creating 210, 211

precedence 233

reference link 214

G
Graphical User Interfaces (GUIs) 5

Graphics view 255

groupBy function 247, 248

Index 485

H
header, DataWeave script

custom types 196

DataWeave version 196

function definitions 197

global variables 197

import modules 196

input MIME type 196

output MIME type 196

reference elements and attributes 196

heap memory 166

horizontal scaling 165

pros and cons 166

HTTP/HTTPS request/response

headers 28

method 28

request body 28

response body 28

response status 28

Uniform Resource Locator (URL) 28

Hypertext Transfer Protocol (HTTP) 27

I
Idempotent Message Validator 120

identify providers (IdPs) 185

if/else

chaining 222, 223

conditions, adding with 222

if operator

key-value pairs, conditioning with 223, 224

If This Then That (IFTTT) 5

index selector 217

integration 5

analyzing 5-7

Integration as a Service (IaaS) 303

Integration Platform as a

Service (iPaaS) 303

integration testing 346

integration testing tool 347

need for 4

Intelligent Document Processing (IDP) 460

document processing, automating 461, 462

intelligent integrations

building 476

inter-app communication, VM

Connector 416

interview tips 447-449

intra-app communication, VM

Connector 416

Invalidate Cache 121

Invalidate Key 122

isEmpty.dwl 239

isEmpty function 239

J
Java data format 201

JavaScript Object Notation (JSON) 5, 202

JMeter 353

using 354-358

JMS Connector

configuration 422

configuration, for Solace MQ 423

exploring 421

point-to-point queues 421

publish and subscribe topics 421

JMS Connector operations 422

ack 422

consume 422

On New Message 422

publish 422

Index486

publish consume 422

recover session 422

JMS providers

ActiveMQ 421

Solace MQ 421

WebLogic JMS 421

WebSphere MQ 421

JSON Web Token (JWT) 326

K
key performance indicators (KPIs) 117

key-value pairs selector 217

Kubernetes 303

L
lambda function

assigning, to variables 209

lambdas 237

creating 211-213

large language models (LLMs) 475

layered security 323

lazy evaluation 195

Lightning App Builder 4

Lightweight Directory Access

Protocol (LDAP) 326

load balancer 180

dedicated load balancer (DLB) 180

shared load balancer (SLB) 180

types 180

load/performance testing tool 347

log.dwl 239

log function 239, 250

Logger component 123, 124

logical operators, DataWeave 204

! 204

and 204

examples 205

not 204

or 205

low-code technologies 5

M
manual testing 347

map.dwl 249

map function 249

match/case

used, for pattern matching 224, 225

mathematical operators, DataWeave 202

addition (+) 202

division (/) 203

examples 203

multiplication (*) 203

subtraction (-) 202

Maven 278

meetups

reference link 445

message

publishing to queue, VM

Connector used 417, 418

subscribing with listener, VM

Connector used 419-421

metadata, Transform Message component

defining 257-267

microservices 7

mobile testing tool 347

modules, DataWeave 232

aliases, creating 234

analyzing 235, 236

importing 232

Index 487

importing, from folders 234

precedence 233

Mule 4 message structure

attributes 110

payload 110

Mule API

prerequisites 389-393

Mule application

building 68-77

creating, with API Specification file 284-288

creating, with File Connector 402-406

creating, with Object Store

Connector 293-298

creating, with Scheduler

component 280-283

dashboard section 172

deploying, into CloudHub 168-172

deploying, on on-premises server 312-316

deploying, to CloudHub 304-311

event processor 104

event source 104

exporting, as filesystem 83

exporting, as JAR file 82

importing, from filesystem 85, 86

importing, from JAR file 84, 85

Insights tab 173

Logs section 173

managing 172

Object Store connector 174, 175

Queues tab 175

running 78, 79, 289-291

Schedules tab 175, 176

Settings page 176

testing 79-81, 289-291

Mule capabilities, topology

control plane 302

runtime plane 302

Mule configuration file 274

Configuration XML tab 276

Global Elements tab 275, 276

Message Flow tab 274, 275

Mule event

Mule message 110

structure 109

variables 110, 111

Mule files

exporting 81

importing 81

Mule flow 104

event processors 104, 106

event source 104

types 106

Mule flow types 106-109

main flow 106

subflow 107

Mule Maven plugin

goals 318

using 318, 319

Mule message 109, 110

Mule Palette 64

Mule products, live status

reference link 428

Mule project structure 64, 65

Mule runtime

download link 312

Mule Secure Configuration

Properties module 430

MuleSoft 5, 12

API life cycle 15

API security 322, 323

benefits 15

best practices 427

CI/CD pipeline, building with 317

Index488

for Salesforce developers 17

general best practices 428, 429

policies 326

project best practices 429-431

security capabilities 341

MuleSoft Accelerator for Salesforce

Service Cloud

reference link 384

MuleSoft accelerators 424

benefits 425

MuleSoft actions 389

MuleSoft Ambassador

reference link 446

MuleSoft Associate certifications

for architects 440

for developers 440

tips 440, 441

MuleSoft Certified Developer

(MCD) -Level 1 certification 38

MuleSoft Community 444

MuleSoft Ambassador 446

MuleSoft forums 447

MuleSoft meetups 444, 445

MuleSoft Mentor 445

MuleSoft Composer 439

capabilities 454

configuring 454-459

MuleSoft Mentor

reference link 446

MuleSoft products

tips and tricks 433

MuleSoft Robotic Process

Automation (RPA) 17

MuleSoft’s products 13

Anypoint Platform 13

Anypoint Studio 14

Composer 15

multi-line comments 198

multi-value selectors 215

MUnit 14, 16, 358

actions 359

operations 358

test suite, creating 360-364

MUnit Test Recorder

exploring 364

used, for creating test suite 365-371

MUnit Tools module

operations 359

N
NetSuite 386

no-code technologies 4, 5

null data type 199

null-safe 236

number data type 199

O
OAuth 348

Object Store 292

Object Store v1 292

Object Store v2 292

Object Store Connector 273

exploring 292

operations 292

used, for creating Mule application 293-298

official training 442

architect training 443

developer training 442

operations training 443, 444

On Error Continue scope 131, 132

On Error Propagate scope 132, 133

on-premises server

Mule application, deploying on 312-316

OpenAPI Specification (OAS) 15, 29, 30, 155

Index 489

operations training 443, 444

operators, DataWeave 202

append operator 206

equality and relational operators 203

logical operators 204, 205

mathematical operators 202

prepend operator 205

optional parameters 211

P
Parallel For Each 143, 144

Parse Template 124, 125

pattern matching

match/case, using 224

performance/load testing 346

persistent queues 416

Personal Identifiable Information (PII) 327

Plain Old Java Object (POJO) 104

point-to-point pattern 416

policies, MuleSoft 326

compliance 327

custom policies 328, 329

Quality of Service (QoS) 328

security 326, 327

transformation 327

policy

used, for implementing API

security 329-332

Postman 79, 348-350

download link 398

Prepend operator, DataWeave 205

examples 206

Process Builder 4

processors 113

Project Object Model (POM) file 278-280

sample 279

properties file 277

examples 277, 278

protocol-agnostic 155

proxy endpoint 325

publish-subscribe pattern 395, 416

Q
Quality Assurance (QA) 186, 277, 428

Quality of Service (QoS)-based

policies, MuleSoft

HTTP Caching 328

Message Logging 328

Rate Limiting 328

Rate Limiting SLA 328

Spike Control 328

query parameter 39, 40

R
Raise Error component 133, 134

range data type, DataWeave 201

range selector 218-220

reduce-complex.dwl 251, 252

reduce function 250

using 252, 253

reduce-simple.dwl 250

regex data type 199

regression testing 346

Remove Variable component 148, 149

Representational State Transfer (REST) 27

request 10

response 10

REST API

features 27

RESTful API Modeling Language

(RAML) 25, 15, 155

Index490

Round Robin router 139

Runtime Manager

alert conditions, for CloudHub 177

alert conditions, for local servers 177

alerts 176

alerts, creating 177-179

Anypoint VPC 179, 180

exploring 164, 165

load balancer 180

runtime plane 302

S
Salesforce connector

adding 381-383

configuring 378-381

exploring 376

reference link 377

Salesforce Flow 4

Scatter-Gather router 140

Scheduler component 127-130, 280

used, for creating Mule application 280-283

Schedulers 273

scheduling strategies

cron 128

fixed frequency 127

scopes 221

Async scope 141

Cache scope 142

creating, with do operator 225, 226

Flow 142

For Each scope 143

Parallel For Each 143-145

Scatter-Gather router 141

Sub Flow 145

Try scope 145, 146

Until Successful scope 146, 147

Secure File Transfer Protocol (SFTP) 400

Secure Properties Tool 430

Secure Sockets Layer (SSL) 27

security capabilities, MuleSoft 341

Anypoint Flex Gateway 341

Anypoint Security 341

security policies, MuleSoft

Basic Authentication - LDAP 326

Basic Authentication - Simple 326

configuring 336-340

IP Blocklist/Allowlist 326

JSON/XML Threat Protection 326

JWT Validation 326

OAuth 2.0 Access Token Enforcement,

with Mule OAuth Provider Policy 327

Tokenization/Detokenization 327

security testing tool 347

selectors, DataWeave

descendants 216

examples 220

index 217

key-value pair 217

multi-value 215

range 218, 219

single-value 214

used, for retrieving data 214

server application 8

Servicetrace 17

Set Payload component 149, 150

Set Transaction Id 126, 127

Set Variable component 148

SFTP Connector 400, 408

configuring 408

shared load balancer (SLB) 180

simple data types, DataWeave

Boolean 199

date and time-related types 200

null 199

number 199

Index 491

regex 199

string 199

Simple Object Access Protocol (SOAP) 27

single-line comments 197, 198

single-value selectors 214

Slack 17

SOAP API

features 29

SOAP project

creating 351-353

SoapUI 351

Solace MQ 421

Source Only view 257

Source with Trees view 256

Standalone Mule Runtime 303

stress testing 346

string data type 199

Sub Flow 145

Swagger 29

system integration testing (SIT) 186

T
Tableau 17

templates 385

advantages 388

configuring 385-388

test case 346

testing 346

benefits 347

functional testing 346

integration testing 346

performance/load testing 346

regression testing 346

stress testing 346

tools, using 347, 348

unit testing 346

user acceptance testing 347

vulnerability testing 347

test management tool 347

test suite 346

creating, with MUnit 360-364

creating, with MUnit Test Recorder 365-371

theme, Anypoint Studio

updating 86, 87

then.dwl 241

then function 240

Time to Live (TTL) 292

time to market 284

tips and tricks, MuleSoft products 433

topics 475

Transactions Per Second (TPS) 292

transformation policies, MuleSoft

Header Injection/Removal 327

transformers 147

Remove Variable component 148, 149

Set Payload 149

Set Variable component 148

Transform Message 127

Transform Message component,

in Anypoint Studio

custom modules, creating 267-269

metadata, defining 257-267

using 253

views, exploring 253-257

transient queues 416

Transport Layer Security (TLS) 27

Try scope 145, 146

Twitter/X API documentation

reference link 9

type system

reference link 201

Index492

U
Uniform Resource Identifier (URI) 38

Uniform Resource Locator (URL) 28

unit testing 346

Universally Unique Identifier (UUID) 238

Until Successful scope 146, 147

URI parameter 38

User Acceptance testing 186, 347

V
value constructs for types

reference link 201

variables 109, 110

variables, DataWeave 207

data type, assigning 208, 209

lambda function, assigning 209

reference link 209

simple variable, defining 207

syntax 207

vertical scaling 165

pros and cons 166

views, Transform Message component

exploring 253, 254

Graphics 255

Source Only 257

Source with Trees 256

virtual core / vCore 164

virtual machine (VM) 169

Virtual Private Cloud (VPC) 179

virtual private network (VPN) 179

VM Connector

benefits 416

inter-app communication 416

intra-app communication 416

operations 416

persistent queues 416

transient queues 416

used, for publishing and subscribing 416

VM Connector operations

consume 416

listener 416

publish 416

publish consume 416

vulnerability testing 347

W
watermark 406

watermarking 411

WebLogic JMS 421

Web Service Consumer Connector

configuring 412-415

Web Service Definition Language

(WSDL) 29, 351, 412

WebSphere MQ 421

X
XML data format 202

XML request 11

Z
zero-trust security 323

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For more

information, please visit our website.

Why subscribe?

• Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.

com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

ChatGPT for Accelerating Salesforce Development

Andy Forbes, Philip Safir, Joseph Kubon, Francisco Fálder

ISBN: 978-1-83508-407-6

• Masterfully craft detailed and engaging user stories tailored for Salesforce projects

• Leverage ChatGPT to design cutting-edge features within the Salesforce ecosystem, transforming
ideas into functional and intuitive solutions

• Explore the integration of ChatGPT for configuring Salesforce environments

• Write Salesforce flows with ChatGPT, enhancing workflow automation and efficiency

• Develop custom LWCs with ChatGPT’s assistance

• Discover effective testing techniques using ChatGPT for optimized performance and reliability

https://packt.link/1835084079

495Other Books You May Enjoy

MuleSoft Platform Architect’s Guide

Jitendra Bafna, Jim Andrews

ISBN: 978-1-80512-618-8

• Understand Anypoint Platform’s integration architecture with core components

• Discover how to architect a solution using Catalyst principles

• Explore best practices to design an application network

• Align microservices, application networks, and event architectures with Anypoint Platform’s
capabilities

• Identify non-functional requirements that shape the architecture

• Perform hassle-free application deployment to CloudHub using the Mule Maven plugin, CLI,
and Platform API

• Understand how to manage the API life cycle for MuleSoft and non-MuleSoft APIs

https://www.amazon.in/dp/1805126180

496

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you’ve finished MuleSoft for Salesforce Developers, we’d love to hear your thoughts! If you purchased

the book from Amazon, please click here to go straight to the Amazon review page for this book and

share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835882331

497

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content

in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83588-232-0

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83588-232-0

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
Getting Started
with MuleSoft
	Chapter 1: Introduction to APIs
and MuleSoft
	Understanding the need for an integration tool
	Introducing no-code and low-code technologies
	Analyzing integrations

	Understanding APIs
	Reviewing the restaurant analogy
	Exploring an API example
	Analyzing API components
	Listing the benefits of using APIs

	Introducing MuleSoft
	Listing MuleSoft’s products
	Understanding why MuleSoft is useful
	Analyzing how MuleSoft helps Salesforce developers

	Exploring application networks and the API-led connectivity approach
	Understanding what application networks are
	Analyzing the API-led connectivity approach

	Summary
	Questions
	Answers

	Chapter 2: Designing Your API
	Understanding an API life cycle
	Introducing REST and SOAP
	REST

	Introducing HTTP
	SOAP

	Getting started with OAS and RAML
	OAS
	RAML

	Getting started with API design
	URI parameter
	Query parameter
	API mocking

	Alternative ways to design your API
	Designing your API with a guided approach
	Designing your API in Anypoint Code Builder

	Best practices and tips
	API design naming convention
	Optimizing your API design

	Summary
	Practice
	Questions
	Answers

	Chapter 3: Exploring Anypoint Studio and Anypoint Code Builder (ACB)
	Technical requirements
	Downloading and installing Anypoint Studio
	Downloading Anypoint Studio
	Installing Anypoint Studio
	Launching Anypoint Studio

	Introducing Mule Palette
	Exploring the Mule project structure
	Introducing Mule views and perspectives
	Views
	Perspectives

	Building, running, and testing a Mule application
	Building the Mule application
	Running the Mule application
	Testing the Mule application

	Exporting and importing Mule files
	Exporting a Mule application as a JAR file
	Exporting a Mule application as a filesystem
	Importing a Mule application from a JAR file
	Importing a Mule application from the filesystem

	Updating the theme in Anypoint Studio
	Installing software updates in Anypoint Studio
	Exploring Anypoint Code Builder (ACB)
	Installing Anypoint Code Builder on the desktop
	Designing an API using Anypoint Code Builder (ACB)
	Publishing an API from Anypoint Code Builder (ACB) to Exchange
	Develop an Integration from Anypoint Code Builder (ACB)
	Exploring Anypoint Code Builder in cloud IDE

	Summary
	Questions
	Answers

	Chapter 4: Introduction to
Core Components
	Technical requirements
	Getting familiar with a Mule flow
	Exploring the types of Mule flow
	Understanding the Mule event structure

	Core components
	Batch
	Features of the Batch scope
	The batch processing stages
	A batch step
	The batch aggregator
	The batch job

	Components
	Custom Business Event
	Dynamic Evaluate
	Idempotent Message Validator
	Invalidate Cache
	Invalidate Key
	Logger
	Parse Template
	Set Transaction Id
	Transform Message

	Endpoints
	A Scheduler component

	Error handling
	On Error Continue
	On Error Propagate
	Raise Error
	Error Handler

	Flow control
	Choice
	First Successful
	Round Robin
	Scatter-Gather

	Scopes
	Async
	Cache
	Flow
	For Each
	Parallel For Each
	Sub Flow
	Try
	Until Successful

	Transformers
	Set Variable
	Remove Variable
	Set Payload

	Summary
	Assignments
	Questions
	Answers

	Chapter 5: All About
Anypoint Platform
	Technical requirements
	Introducing Anypoint Platform
	Getting started with Design Center
	API Designer

	Introducing Exchange
	The public portal

	Exploring Runtime Manager
	CloudHub 2.0
	Deploying a Mule application to CloudHub
	Managing a Mule application
	Runtime Manager alerts
	Anypoint VPC – virtual private cloud
	Load balancers

	Introducing API Manager
	Exploring Anypoint Monitoring
	Alerts
	Log Management

	Introducing Anypoint Visualizer
	Exploring Access Management
	Organization and business groups
	Invite user
	Roles
	Environments
	Audit logs
	Subscription

	Summary
	Questions
	Answers

	Part 2:
A Deep Dive
into MuleSoft
	Chapter 6: Learning DataWeave
	Technical requirements
	Introducing DataWeave
	Analyzing DataWeave
	Diving into a script’s anatomy
	Adding comments to your code
	Understanding data types
	Understanding data formats

	Writing DataWeave scripts
	Using operators
	Creating and using variables
	Defining and calling functions
	Retrieving data with selectors
	Understanding scopes and flow control

	Summary
	Questions
	Answers

	Chapter 7: Transforming with DataWeave
	Technical requirements
	Understanding modules in DataWeave
	Importing modules and functions
	Analyzing the existing DataWeave modules

	Using the DataWeave Core functions
	Transforming multiple types
	Transforming numbers
	Transforming strings
	Transforming objects
	Transforming arrays

	Using the Transform Message component in Anypoint Studio
	Exploring the views
	Defining metadata
	Creating custom modules

	Summary
	Questions
	Answers

	Chapter 8: Building Your Mule Application
	Technical requirements
	Exploring different types of configuration files
	Mule configuration file
	Properties file
	POM

	Introducing Scheduler
	Creating a Mule application with the Scheduler component

	Generating a flow using APIkit Router
	Creating a Mule application using API Specification
	Running and testing a Mule application

	Exploring Object Store Connector
	Different types of Object Store
	Creating a Mule application with Object Store Connector

	Summary
	Questions
	Answers

	Chapter 9: Deploying Your Application
	Technical requirements
	Getting started with deployment models
	Types of deployment models

	Choosing the right deployment model
	Deploying your Mule application to CloudHub
	Deploying your Mule application on an on-premises server
	Building a CI/CD pipeline with MuleSoft
	The Mule Maven plugin

	Summary
	Assignments
	Questions
	Answers

	Chapter 10: Securing Your API
	Technical requirements
	The need for API security
	API security with MuleSoft
	Introducing API Manager
	Understanding the capabilities of API Manager
	Understanding the API gateway

	Policies in MuleSoft
	Security
	Compliance
	Transformation
	Quality of service
	Troubleshooting
	Custom policies

	Implementing API security using policy
	API Autodiscovery
	Configuring a security policy

	The security capabilities of MuleSoft
	Anypoint Security
	Anypoint Flex Gateway

	Summary
	Assignments
	Questions
	Answers

	Chapter 11: Testing Your Application
	Technical requirements
	Introduction to testing
	Getting familiar with testing tools
	Postman
	SoapUI
	JMeter

	Introducing MUnit
	Creating a test suite

	Exploring the MUnit Test Recorder
	Creating a test suite using the Test Recorder

	Summary
	Assignment
	Questions
	Answers

	Part 3:
Integration with Salesforce
and Other connectors
	Chapter 12: MuleSoft Integration
with Salesforce
	Technical requirements
	Exploring Salesforce connectors
	Configuring a Salesforce connector
	Adding a Salesforce connector

	Discovering accelerators and templates for Salesforce
	Getting started with accelerators
	Exploring templates

	Getting Started with External Services
	Exploring the Prerequisites for Mule API

	Exploring MuleSoft’s integration capabilities with Salesforce
	The Bulk API
	CDC events
	Data analytics tools

	Summary
	Assignments
	Questions
	Answers

	Chapter 13: MuleSoft Connectors
and Use Cases
	Technical requirements
	Introducing connectors
	Exploring File Connector, FTP Connector, and SFTP Connector
	File Connector
	FTP Connector
	SFTP Connector

	Understanding Database Connector and watermarking
	Watermarking

	Configuring Web Service Consumer Connector
	Publishing and subscribing using VM Connector
	Operations
	Publishing and listening to a message

	Exploring JMS Connector
	Operations
	JMS Connector configuration

	Introducing MuleSoft accelerators
	Summary
	Questions
	Answers

	Chapter 14: MuleSoft Best Practices,
Tips, and Tricks
	MuleSoft best practices
	General best practices
	Mule projects best practices
	Anypoint Platform best practices

	Tips and tricks
	Summary
	Questions
	Answers

	Chapter 15: Certification and Interview Tips
	Choosing your career path
	Getting MuleSoft certified
	Expanding your knowledge with official training
	Developer training
	Architect training
	Operations training

	Contributing to the MuleSoft Community
	Expanding your knowledge with MuleSoft meetups
	Helping others as a MuleSoft Mentor
	Becoming a MuleSoft Ambassador
	Getting help with the MuleSoft forums

	Passing your interview
	Summary
	Questions
	Answers

	Chapter 16: AI and Automations
with MuleSoft
	Automations with MuleSoft Composer
	Capabilities of MuleSoft Composer
	Configuring MuleSoft Composer

	Introduction to MuleSoft RPA
	Automating your document processing with IDP
	Getting started with IDP
	Creating your first Document Actions
	Testing the Document Action

	Integrating Mule APIs with Agentforce
	Introduction to Agentforce
	Building intelligent integrations

	Summary
	Questions
	Answers

	Index
	Other Books You May Enjoy

