

Mastering Microsoft Power BI
Second Edition

Expert techniques to create interactive insights for
effective data analytics and business intelligence

Greg Deckler
Brett Powell

BIRMINGHAM—MUMBAI

Mastering Microsoft Power BI
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Devika Battike

Acquisition Editor – Peer Reviews: Saby Dsilva

Project Editor: Amisha Vathare

Content Development Editor: Rebecca Robinson

Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Rekha Nair

Presentation Designer: Ganesh Bhadwalkar

First published: March 2018
Second edition: June 2022

Production reference: 1100622

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-148-4
www.packt.com

http://www.packt.com

Contributors

About the authors
Greg Deckler is a Vice President at Fusion Alliance and has been a consulting services profes-

sional for over 27 years. Recognized as an expert in Power BI, Greg is a six-time Microsoft MVP

for the Data Platform and an active member of the Power BI Community site with over 5,000

solutions authored and hundreds of Quick Measures Gallery submissions. Greg founded the Co-

lumbus Azure ML and Power BI User Group in Columbus, OH in 2016 and holds regular monthly

meetings. Greg is also the author of numerous external tools for Power BI available for free on

his gdeckler GitHub repository.

I would like to deeply thank my family, son Rocket, my extended Fusion Alliance family, the dynamic and

vibrant Power BI community as a whole and especially all of the Super Users as well as my user group members.

A special thanks to Brett Powell for all of his support and guidance on this book as well as Power BI Cookbook,

2nd Edition.

Brett Powell is a Microsoft business intelligence consultant and author. Brett has over 12 years

of business intelligence experience across many industries as a developer, architect, and admin-

istrator. Although most known for his Insights Quest blog and the first editions of the Microsoft

Power BI Cookbook and Mastering Microsoft Power BI, Brett primarily focuses on the needs of clients

and project engagements though Frontline Analytics LLC, a Microsoft BI consultancy and Power

BI partner.

I give all glory and praise to my Lord and Savior Jesus Christ. I was alone and lost in sin, but Christ has

forgiven me and granted me a new peace and purpose for my life.

About the reviewer
Eugene Meidinger has been working in business intelligence for over 8 years now, focusing

heavily on business reporting. He speaks regularly at technical conferences, including Pass Summit

and SQLBits. Eugene started his own company in 2018, SQLGene Training, and now produces

training videos for Pluralsight and consults on Power BI.

I would like to thank my husband Miles for supporting me during the nights and weekends I worked on

reviewing this book.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Table of Contents

Preface xxi

Chapter 1: Planning Power BI Projects 1

Power BI deployment modes �� 2

Corporate BI • 4

Self-Service Visualization • 5

Self-Service BI • 6

Choosing a deployment mode • 7

Project discovery and ingestion �� 9

Sample Power BI project template • 9

Sample template – Adventure Works BI • 9

Power BI project roles ��� 12

Dataset designer • 13

Report authors • 15

Power BI administrator • 16

Project role collaboration • 17

Power BI licenses ��� 17

Shared capacity • 18

Free • 18

Pro • 20

Dedicated capacity • 21

Premium • 21

Table of Contentsvi

Premium Per User • 23

Embedded • 23

Power BI license scenarios • 24

Dataset design �� 26

Data warehouse bus matrix • 26

Dataset design process • 27

Select the business process • 28

Declare the grain • 29

Identify the dimensions • 30

Define the facts • 31

Data profiling �� 32

Data profiling with Power BI Desktop • 36

Dataset planning �� 38

Data transformations • 38

Import, DirectQuery, Live, and Composite datasets • 40

Import mode • 42

DirectQuery/Live mode • 43

Composite mode • 43

Sample project analysis ��� 44

Summary �� 46

Chapter 2: Preparing Data Sources 47

Query folding �� 48

Partial query folding • 49

Query design per dataset mode ��� 50

Import mode dataset queries • 52

DirectQuery dataset queries • 53

DirectQuery report execution • 54

Composite datasets • 55

Table storage modes • 57

Data sources ��� 58

Table of Contents vii

Authentication • 59

Data source settings • 61

Privacy levels • 63

Power BI as a data source • 65

Power BI Desktop options • 66

Global options • 68

CURRENT FILE options • 68

SQL views ��� 70

SQL views versus M queries • 72

SQL view examples • 74

Date dimension view • 75

Mark as date table • 78

Product dimension view • 80

Slowly changing dimensions • 81

Summary �� 81

Chapter 3: Connecting to Sources and Transforming Data with M 83

Types of Power Query M queries ��� 84

Organizing queries • 85

Data source parameters • 86

Staging queries • 88

DirectQuery staging • 90

Fact and dimension queries • 91

Source reference only • 91

Excel workbook – Annual Sales Plan • 92

Parameter tables queries • 94

Security table queries • 96

Custom function queries • 97

Creating Power Query M queries �� 98

Numeric data types • 98

Item access in M • 99

Table of Contentsviii

Power Query M query examples �� 100

Trailing three years filter • 101

Combining queries • 102

Incremental refresh for fact tables • 103

Customer history column • 105

Product dimension integration • 107

R and Python script transformation • 111

Dataflows �� 112

Power BI Premium dataflow features • 113

Power Query M editing tools �� 114

Advanced Editor • 114

Visual Studio Code • 116

Visual Studio • 117

Summary ��� 118

Chapter 4: Designing Import, DirectQuery, and Composite Data Models 119

Dataset layers ��� 120

Power BI as a superset of Azure Analysis Services • 121

Dataset objectives • 121

Competing objectives • 123

External factors • 124

The Data Model ��� 124

The Model view • 124

The Data view • 128

The Report view • 129

Fact tables • 130

Fact table columns • 131

Fact column data types • 133

Fact-to-dimension relationships • 135

Dimension tables • 138

Hierarchies • 139

Table of Contents ix

Custom sort • 141

Parameter tables • 142

Measure groups • 143

Last refreshed date • 145

Measure support logic • 146

Display folders • 148

Relationships ��� 149

Uniqueness • 149

Ambiguity • 150

Single-direction relationships • 151

Direct flights only • 153

Bidirectional relationships • 154

Shared dimensions • 155

Date dimensions • 156

The CROSSFILTER function • 157

Model metadata ��� 159

Visibility • 159

Column and measure metadata �� 160

Default summarization • 160

Data format • 162

Data category • 162

Description • 164

Optimizing data model performance ��� 165

Import • 166

Query caching • 166

Columnar compression • 166

Memory analysis via DMVs and the VertiPaq Analyzer • 168

DirectQuery • 169

Columnstore and HTAP • 170

Automatic aggregations • 171

Table of Contentsx

Composite • 171

Aggregation tables • 171

Summary ��� 175

Chapter 5: Developing DAX Measures and Security Roles 177

DAX measure basics �� 178

Filter context • 179

SQL equivalent • 181

Measure evaluation process • 182

Row context • 184

Scalar and table functions • 186

Related tables • 187

The CALCULATE() function • 188

The FILTER() function • 190

DAX variables • 191

Base measures ��� 196

Measure support expressions • 198

KPI targets • 199

Current and prior periods • 200

Date intelligence metrics �� 202

Current versus prior and growth rates • 205

Rolling periods • 206

Calculation groups �� 207

Dimension metrics ��� 211

Missing dimensions • 212

Ranking metrics ��� 214

Dynamic ranking measures • 216

Security roles �� 218

Dynamic row-level security • 222

Performance testing �� 225

Performance analyzer • 225

Table of Contents xi

DAX Studio • 227

Summary �� 228

Chapter 6: Planning Power BI Reports 229

Report planning process ��� 229

Identify the audience • 230

Define the business questions to answer • 231

Confirm that the dataset supports the business questions • 231

Determine interactivity • 232

Define access and distribution • 233

Sketch the report layout • 234

Report architecture diagram • 235

Visualization best practices ��� 237

Choosing the right visual ��� 241

Tables and matrices versus charts • 242

Chart selection • 244

Visualization anti-patterns • 246

Visual interactions �� 248

Editing interactions • 249

Drillthrough report pages �� 251

Custom labels and the back button • 253

Multi-column drillthrough • 254

Report filter scopes ��� 257

Report filter conditions • 259

Report and page filters • 261

Relative date filtering • 263

Visual-level filtering • 265

Top N visual-level filters • 266

Bookmarks �� 267

Selection pane and the Spotlight property • 269

Custom report navigation • 271

Table of Contentsxii

View mode • 272

Live connections to Power BI datasets �� 273

Customizing Live connection reports • 275

Switching Live source datasets • 276

Switching between import mode and Live mode datasets • 277

Report design summary �� 278

Summary �� 279

Chapter 7: Creating and Formatting Visualizations 281

The Visualizations pane �� 282

Slicers ��� 283

Slicer synchronization • 285

Custom slicer parameters • 287

What-if parameters • 289

Page filter or slicer? • 291

Single-value visuals �� 294

The Card visual • 294

The KPI visual • 295

Gauge visual • 296

Map visuals ��� 297

Bubble map • 298

Filled map • 300

Waterfall chart �� 301

Power Platform visuals ��� 302

Power Apps for Power BI • 303

Power Automate for Power BI • 305

Premium visuals ��� 308

Scorecard • 308

Paginated reports • 309

Elements ��� 310

Formatting visualizations �� 312

Table of Contents xiii

Tooltips • 312

Report page tooltips • 313

Column and line charts • 315

Column and line chart conditional formatting • 316

Table and matrix visuals • 319

Custom format strings • 321

Table and matrix conditional formatting • 323

Sparklines • 326

Values as rows • 327

Scatter charts • 328

Summary �� 330

Chapter 8: Applying Advanced Analytics 331

AI visuals �� 331

Key influencers • 332

Decomposition tree • 336

Q&A • 338

Smart narrative • 341

R and Python visuals ��� 342

R visual • 344

Python visual • 347

ArcGIS Maps for Power BI ��� 348

Custom visuals ��� 351

Adding a custom visual • 352

Animation and data storytelling ��� 355

Play axis for Scatter charts • 355

Pulse chart • 356

Analytics pane ��� 358

Trend line • 359

Forecasting • 362

Quick insights/Analyze ��� 364

Table of Contentsxiv

Explain the increase/decrease • 366

Mobile-optimized report pages �� 368

Summary �� 370

Chapter 9: Designing Dashboards 373

Dashboards versus reports �� 373

Dashboard design ��� 376

Visual selection • 380

Layout • 382

Navigation pane • 383

Fullscreen mode • 383

Supporting tiles • 384

Dashboard architectures ��� 386

Single-dashboard architecture • 386

Multiple-dashboard architecture • 388

Organizational dashboard architecture • 389

Multiple datasets • 392

Dashboard tiles ��� 393

Tile details and custom links • 394

Real-time data tiles • 396

Dashboard themes • 398

Paginated reports • 399

Excel workbooks • 403

Live report pages ��� 405

Mobile-optimized dashboards ��� 408

Summary �� 410

Chapter 10: Managing Workspaces and Content 411

Workspaces ��� 412

Workspace roles and rights • 414

Viewer role • 416

Table of Contents xv

Contributor role • 418

Member role • 419

Admin role • 419

Datasets across workspaces • 420

My workspace • 421

Staged deployments �� 422

Workspace datasets • 424

Power BI REST API and PowerShell module • 425

Power BI REST API • 425

Power BI PowerShell module • 428

Workspace and content identifiers • 428

PowerShell sample scripts • 429

Power BI deployment pipelines • 430

Content sensitivity and protection �� 433

Information protection • 433

Data loss prevention • 436

Version control �� 439

OneDrive for Business • 439

Source control for M and DAX code • 441

MSHGQM • 443

Metadata management ��� 444

Field descriptions • 445

Creating descriptions • 446

View field descriptions • 447

Metadata Mechanic • 449

Metadata reporting ��� 450

Standard metadata reports • 451

Server and database parameters • 452

Querying the DMVs from Power BI • 452

Integrating and enhancing DMV data • 454

Metadata report pages • 455

Table of Contentsxvi

Summary �� 455

Chapter 11: Managing the On-Premises Data Gateway 457

On-premises data gateway planning ��� 458

Top gateway planning tasks • 461

Determining whether a gateway is needed • 462

Identifying where the gateway should be installed • 463

Defining the gateway infrastructure and hardware requirements • 464

Defining gateway roles and permissions • 466

Planning for recovery keys • 467

Standard versus personal mode • 468

Gateway concepts ��� 469

Gateway clusters • 469

Gateway architectures • 471

Gateway security • 474

Gateway installation and configuration �� 476

The gateway service account • 478

TCP versus HTTPS mode • 479

Connectors • 480

Recovery Keys • 481

Managing gateway clusters ��� 482

Gateway administrators • 483

Gateway data sources and users • 484

PowerShell support for gateway clusters • 485

Troubleshooting and monitoring gateways �� 486

Restoring, migrating, and taking over a gateway • 487

Gateway diagnostics • 488

Gateway monitoring reports • 489

Data refresh �� 490

Scheduled data refresh • 490

DirectQuery datasets • 492

Table of Contents xvii

Live connections to Analysis Services models • 493

Dashboard cache refresh • 494

Summary �� 495

Chapter 12: Deploying Paginated Reports 497

Paginated reports in the Power BI service ��� 498

Planning paginated reports • 498

Building and publishing paginated reports • 499

Identifying and interacting with paginated reports • 508

Printing, exporting, subscribing, and sharing • 509

Migrating reports to the Power BI service ��� 510

Inventory • 511

Assess • 512

Plan • 514

Migrate • 514

User Acceptance Testing and final deployment • 515

Planning the Power BI Report Server (PBRS) ��� 516

Feature differences with the Power BI service • 518

Parity with SQL Server Reporting Services • 519

Data sources and connectivity options • 521

Hardware and user licensing • 521

Pro licenses for report authors • 522

Alternative and hybrid deployment models • 522

PBRS reference topology • 524

Scale PBRS • 525

Installing and upgrading PBRS ��� 526

Retrieve the PBRS product key • 527

Upgrade cycles • 529

PBRS client applications ��� 530

Running desktop versions side by side • 531

Power BI mobile applications • 532

Table of Contentsxviii

Summary �� 533

Chapter 13: Creating Power BI Apps and Content Distribution 535

Content distribution methods �� 536

Power BI apps ��� 538

Licensing apps • 538

App deployment process • 540

User permissions and security • 542

Publishing apps • 545

Installing apps • 549

App updates • 551

Apps on Power BI mobile • 552

Sharing content �� 554

Sharing scopes • 558

Sharing versus Power BI apps • 558

Embedding ��� 559

Licensing embedding • 559

Publish to web • 560

Secure URL embedding • 562

Microsoft 365 apps • 563

Teams • 563

SharePoint Online • 564

Custom applications • 566

Data alerts �� 570

Power Automate integration • 572

Email subscriptions �� 574

Analyze in Excel ��� 575

Self-service BI workspaces ��� 577

Self-service content distribution • 578

Risks of self-service BI • 579

Summary �� 579

Table of Contents xix

Chapter 14: Administering Power BI for an Organization 581

Power BI administrator role �� 582

Data governance for Power BI ��� 584

Implementing data governance • 586

Azure Active Directory �� 587

AAD B2B collaboration • 588

Licensing external users • 590

Conditional access policies • 591

Power BI admin portal �� 594

Tenant settings • 595

Usage metrics • 600

Users and Audit logs • 601

Premium Per User • 602

Capacity settings • 603

Embed codes • 603

Organizational visuals • 604

Azure connections • 607

Workspaces • 608

Custom branding • 609

Protection metrics • 610

Featured content • 610

Usage metrics reports �� 611

Audit logs ��� 615

Audit log monitoring solution • 619

The Power BI REST API for admins �� 620

Summary ��� 621

Chapter 15: Building Enterprise BI with Power BI Premium 623

Power BI Premium �� 624

Power BI Premium capabilities • 625

Table of Contentsxx

Premium capacity nodes ��� 627

Frontend versus backend resources • 629

Premium capacity estimations ��� 631

Premium capacity administration and allocation ��� 633

Capacity allocation • 634

Corporate and Self-Service BI capacity • 637

Create, size, and monitor capacities • 639

Changing capacity size • 641

Monitoring Premium capacities • 642

Workspace assignment • 644

Premium capacity resource optimization ��� 647

Data model optimizations • 647

Report and visualization optimizations • 649

Workloads • 650

Life cycle management with Premium �� 652

ALM Toolkit deployment • 652

Dataset management with SSMS • 655

Backing up Premium capacities • 658

Summary �� 660

Other Books You May Enjoy 663

Index 667

Preface

Microsoft Power BI is a leading business intelligence and analytics platform that supports both

self-service data visualization and exploration as well as enterprise BI deployments. Power BI

consists of cloud services, mobile applications, a data modeling and report authoring application,

and other utilities, including the on-premises data gateway. Additionally, organizations can

deploy Power BI reports on-premises via the Power BI Report Server and scale their deployments

with Power BI Premium capacity.

This revised and expanded edition provides an end-to-end analysis of the latest Power BI tools

and features, from planning a Power BI project to distributing Power BI apps to large groups of

users. You’ll be familiarized with all the fundamental concepts and see how Power BI datasets,

reports, and dashboards can be designed to deliver insights and rich, interactive experiences.

You’ll also become knowledgeable about management and administration topics such as the

allocation of Power BI Premium capacities, Azure Active Directory security groups, conditional

access policies, and staged deployments of Power BI content. This book will encourage you to take

advantage of these powerful features and follow thoughtful, consistent practices in deploying

Power BI for your organization.

Who this book is for
This book is intended for business intelligence professionals responsible for either the development

of Power BI solutions or the management and administration of a Power BI deployment. BI

developers can use this as a reference guide to features and techniques to enhance their solutions.

Likewise, BI managers interested in a broad conceptual understanding, as well as processes

and practices to inform their delivery of Power BI, will find this a useful resource. Experience in

creating content using Power BI Desktop and sharing content on the Power BI service is helpful.

Prefacexxii

What this book covers
Chapter 1, Planning Power BI Projects, discusses alternative deployment modes for Power BI, team

and project roles, and licensing. Additionally, an example project template and its corresponding

planning and dataset design processes are described.

Chapter 2, Preparing Data Sources, explains foundational concepts such as query folding, query

design, data source preparation and important Power BI Desktop settings.

Chapter 3, Connecting to Sources and Transforming Data with M, depicts the data access layer

supporting a Power BI dataset, including data sources and fact and dimension table queries.

Concepts of the Power Query M language, such as parameters, are explained and examples of

custom M queries involving conditional and dynamic logic are given.

Chapter 4, Designing Import, DirectQuery, and Composite Data Models, reviews the components of the

data model layer and design techniques in support of usability, performance, and other objectives.

These topics include relationship cross-filtering, custom sort orders, hierarchies, and metadata.

Chapter 5, Developing DAX Measures and Security Roles, covers the implementation of analysis

expressions reflecting business definitions and common analysis requirements. Primary DAX

functions, concepts, and use cases such as date intelligence, row-level security roles, and

performance testing are examined.

Chapter 6, Planning Power BI Reports, describes a report planning process, data visualization

practices, and report design fundamentals, including visual selection and filter scopes. In addition,

it covers drillthrough report pages, visual interactions, bookmarks, and Live connections.

Chapter 7, Creating and Formatting Visualizations, reviews many standard visuals including slicers,

single-number visuals, maps, waterfall charts, scatter charts, Power Platform visuals and Premium

visuals, as well as how to format visuals, including the use of tooltips, conditional formatting,

custom format strings, and sparklines.

Chapter 8, Applying Advanced Analytics, examines powerful interactive and analytical features,

including AI visuals, R and Python visuals, ArcGIS Maps, custom visuals, animation, and the

Analytics pane. Additionally, it covers Quick Insights and mobile optimized report pages.

Chapter 9, Designing Dashboards, provides guidance on visual selection, layout, and supporting tiles

to drive effective dashboards. Alternative multi-dashboard architectures, such as an organizational

dashboard architecture, are reviewed, as well as the configuration of dashboard tiles and mobile

optimized dashboards.

Preface xxiii

Chapter 10, Managing Workspaces and Content, features the role and administration of workspaces

in the context of Power BI solutions and staged deployments. Additionally, the Power BI REST

API, content management features, and practices are reviewed, including field descriptions and

version history.

Chapter 11, Managing the On-Premises Data Gateway, covers top gateway planning considerations,

including alternative gateway architectures, workloads, and hardware requirements. Gateway

administration processes and tools are described, such as the manage gateways portal, gateway

log files, and PowerShell gateway commands.

Chapter 12, Deploying Paginated Reports, explains how to deploy and migrate paginated reports

to the Power BI service and compares and contrasts the Power BI Report Server with the Power

BI service and provides guidance on deployment topics such as licensing, reference topology,

installation, upgrade cycles, and client applications.

Chapter 13, Creating Power BI Apps and Content Distribution, walks through the process of publishing

and updating apps for groups of users. Additionally, other common distribution methods are

covered, such as the sharing of reports and dashboards, email subscriptions, data-alert-driven

emails, and embedding Power BI content in SharePoint Online, Teams, and custom applications.

Chapter 14, Administering Power BI for an Organization, highlights data governance for self-service

and corporate BI, Azure Active Directory features such as Conditional Access policies, and the

Power BI admin portal. Details are provided about configuring Power BI service tenant settings

and the tools available to monitor Power BI activities.

Chapter 15, Building Enterprise BI with Power BI Premium, reviews the capabilities of Power BI

Premium and alternative methods for allocating premium capacity. Additionally, administration

and optimization topics are discussed as well as lifecycle management using the ALM Toolkit

and SQL Server Management Studio.

To get the most out of this book
A Power BI Pro license and access to the Power BI service is necessary to follow many of the topics

and examples in this book. The assignment of the Power BI Service Administrator role within the

Microsoft 365 admin center, as well as administrative access to an on-premises data gateway,

would also be helpful. It’s assumed that readers are familiar with the main user interfaces of

Power BI Desktop and have some background in business intelligence or information technology.

Prefacexxiv

The primary data source for the examples in this book was the AdventureWorks data warehouse

sample database for SQL Server 2019. A SQL Server 2019 Developer Edition database engine

instance was used to host the sample database. For the import mode dataset, an Excel workbook

stored the sales plan data. For the DirectQuery dataset, the sales plan data was stored in the

sample SQL Server database.

The original AdventureWorksDW2019 was customized by adding a schema and multiple views.

The customized version of this database is included in the code bundle for this book as are the

Power BI Desktop files and specific queries and scripts used.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/-

Mastering-Microsoft-Power-BI-Second-Edition. We also have other code bundles from our

rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://static.packt-cdn.com/downloads/9781801811484_

ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; “Mount the

downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

let CalculateAge = (BirthDate as date) =>

 Date.Year(CurrentDayQuery) - Date.Year(BirthDate)

in CalculateAge

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are highlighted:

let CalculateAge = (BirthDate as date) =>

https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition
https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801811484_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801811484_ColorImages.pdf

Preface xxv

 Date.Year(CurrentDayQuery) - Date.Year(BirthDate)

in CalculateAge

Any command-line input or output is written as follows:

Install-Module MicrosoftPowerBIMgmt -Force

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in

menus or dialog boxes, also appear in the text like this. For example: “All workspaces and content

within those workspaces are provided a globally unique identifier (GUID).”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book we would be grateful if you would report this

to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are

interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Prefacexxvi

Share your thoughts
Once you’ve read Mastering Microsoft Power BI, Second Edition, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your

feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://www.packtpub.com/

1
Planning Power BI Projects

Power BI is a robust, flexible business intelligence platform enabling organizations to deploy data

analysis and reporting solutions according to their individual policies and use cases. Organizations

can utilize Power BI to enable self-service data analytics and visualization for business analysts, as

well as deploying enterprise-grade solutions involving technical expertise and advanced security

and scalability features. Likewise, Power BI fully supports both cloud and on-premises data sources

as well as all primary types of reports, ranging from interactive visualizations to pixel-perfect

paginated reports to Excel-based reports.

While specific organizational goals, the data landscape, and specific resource responsibilities

can vary greatly, the underlying concepts, deployment choices, roles, and planning processes for

business intelligence projects remain the same. The long-term success or failure of most Power

BI projects is most highly correlated to the planning, organization, and effective collaboration

of the different stakeholders. Solutions that deliver the most value to the business over time are

the result of thoughtful decisions around the people and processes involved in data governance,

data quality, data modeling, and finally data visualization and distribution.

This chapter explores the various project planning decision topics, roles, and processes critical

to the success of all Power BI projects.

In this chapter, we review the following topics:

• Power BI deployment modes

• Project discovery and ingestion

• Power BI project roles

• Power BI licenses

• Dataset design

Planning Power BI Projects2

• Data profiling

• Dataset planning

To begin, we first explore the different deployment modes for Power BI.

Power BI deployment modes
Prior to the existence and adoption of BI tools capable of supporting self-service scenarios,

business analysts were effectively relegated to the role of “end user” of solutions developed and

maintained from end to end by their information technology department. While this top-down

approach helped ensure that the solution would be secure, accurate, and resource-efficient, it

was also relatively slow and inflexible to adjust to changing requirements.

As a consequence, business analysts commonly utilized the IT-owned solutions as merely a

starting point or data source to their own MS Office-based solutions that business analysts could

maintain. The perceived lack of flexibility and extended timelines sometimes associated with IT-

owned solutions often frustrated business teams, resulting in a lack of adoption and “shadow IT”

scenarios in which business users created their own solutions via Excel and other tools.

Modern business intelligence platforms such as Power BI provide increased opportunities for

the business to participate in the creation and deployment of data assets for the organization.

Organizations can deliver Power BI solutions that require the resources and technical expertise

of a Corporate BI approach, as well as empowering business teams to leverage the self-service

capabilities of the platform. This “self-service” can range widely from enabling teams to access and

analyze certain certified Power BI datasets to empowering business analysts to create their own

end-to-end solutions including their own data transformation workflows and semantic models.

In many scenarios, a combination of corporate IT resources, such as the on-premises data

gateway and Power BI Premium capacity, can be combined with the business users’ knowledge

of requirements and familiarity with data analysis and visualization in order to increase the

velocity of data asset development. More experienced organizations may even utilize multiple

deployment modes depending on the distinct requirements and use cases for Power BI across

different teams and projects.

For example, solutions involving highly sensitive data or targeted at executive leadership are

generally owned from end to end by Corporate BI/IT personnel. However, in scenarios involving

rapidly changing requirements where deep business knowledge is essential, business analysts

familiar with the data are often empowered with sufficient Power BI licenses and resources to

develop their own datasets and reports.

Chapter 1 3

We refer to standard deployment mode as Corporate BI, a deployment mode where the IT department

controls all aspects of the business intelligence platform. Alternative approaches are called self-

service, where the business controls some or all aspects of the business intelligence platform.

Self-service approaches can benefit both IT and business teams, as self-service can reduce IT

resource constraints and project timelines, and provide the business with greater flexibility

and control as analytical needs change. Additionally, Power BI projects can be migrated across

deployment modes over time as required skills and resources change. However, greater levels of

self-service and shared ownership structures generally increase the risk of miscommunication

and introduce issues of version control, quality, and consistency.

These deployment modes are summarized in Figure 1.1:

Figure 1.1: Power BI deployment modes

A Power BI dataset is a semantic data model primarily comprised of data source queries,

relationships between fact and dimension tables, and measure calculations. A semantic data

model adds meaning to the physical, underlying data by adding relationships between data

entities, allowing organizations to extract truth and understanding from their data.

Datasets often contain hierarchies, row-level security roles, and often other metadata such as

calculation groups, detailed row expressions, and other metadata that supports usability and

analysis. Power BI datasets share the heritage and concepts of Analysis Services tabular mode

models and are generally developed using Power BI Desktop, a Windows application.

Microsoft has now positioned Power BI Premium-hosted datasets as their flagship semantic

modeling tool and a “superset” of Analysis Services models. As the “superset” term implies, Power

BI Premium-hosted datasets now support all of the enterprise-grade modeling features of Analysis

Services and there are a number of powerful modeling features, such as composite models and

incremental refresh policies, that are only available via Power BI datasets. Chapter 15, Building

Enterprise BI with Power BI Premium, covers Power BI Premium in more detail.

Now that deployment modes are understood at a high level, let’s take a look at each of the three

deployment modes in greater detail.

Planning Power BI Projects4

Corporate BI
The Corporate BI delivery approach in which the BI team develops and maintains both the Power

BI dataset (sometimes called a data model) and the required report visualizations is a common

deployment option, particularly for large-scale projects and projects with executive-level sponsors

or stakeholders. This is the approach followed in this chapter and throughout this book, as it

offers maximum control over top BI objectives, such as version control, scalability, usability, and

performance.

Corporate BI can be visualized as shown in Figure 1.2:

Figure 1.2: Corporate BI

As shown in Figure 1.2, all data and Power BI assets are owned by corporate IT and business users

simply consume reports and dashboards published by corporate IT to the Power BI service.

Again, with the Corporate BI approach, business users are solely consumers of corporate business

intelligence assets. Next, we compare this approach with self-service approaches where business

users are more engaged with the creation and deployment of business intelligence assets.

Chapter 1 5

Self-Service Visualization
In the Self-Service Visualization approach, the dataset is created and maintained by the IT

organization’s BI team, but certain business users with Power BI Pro licenses create reports and

dashboards for consumption by other users. In many scenarios, business analysts are already

comfortable with authoring reports in Power BI Desktop (or, optionally, Excel) and can leverage

their business knowledge to rapidly develop useful visualizations and insights.

With ownership of the dataset, the BI team can be confident that only curated data sources and

standard metric definitions are used in reports and can ensure that the dataset remains available,

performant, and updated or refreshed as per business requirements.

Self-Service Visualization is shown in Figure 1.3:

Figure 1.3: Self-Service Visualization

As shown in Figure 1.3, dataset designers within corporate IT still create and manage the Power BI

datasets but business users author and publish reports and dashboards to the Power BI service.

In the next section, we explore the Self-Service BI approach driven entirely by the business.

Planning Power BI Projects6

Self-Service BI
In the Self-Service BI approach, the BI organization only contributes essential infrastructure and

monitoring, such as the use of an on-premises data gateway and possibly Power BI Premium

capacity to support the solution. Since the business team maintains control of both the datasets

and the visualization layer, the business team has maximum flexibility to tailor its own solutions

including data source retrieval, transformation, and modeling.

This flexibility, however, can be negated by a lack of technical coding skills and a lack of technical

knowledge such as the relationships between tables in a database. Additionally, business-

controlled datasets can introduce version conflicts with corporate semantic models and generally

lack the resilience, performance, and scalability of IT-owned datasets. Self-Service BI can be

visualized as shown in Figure 1.4:

Figure 1.4: Self-Service Visualization

As shown in Figure 1.4, with a completely self-service approach to business intelligence with Power

BI, the business, and not IT, performs all of the functions of dataset design and report authoring.

Now that the three different deployment modes are understood in greater detail, next we cover

choosing between them.

Chapter 1 7

Choosing a deployment mode
Organizations generally choose a standard deployment mode used throughout the business or

choose a particular deployment mode based upon the unique requirements and goals of each

individual Power BI project.

It’s usually necessary or at least beneficial for Corporate BI organizations to own the Power BI

datasets or at least the datasets that support important, widely distributed reports and dashboards.

This is primarily due to the value of providing a single source of truth built on top of a curated

data source such as a data warehouse as well as the technical skills involved in developing and

managing large or complex datasets.

Additionally, BI organizations require control of datasets to implement security and to maintain

version control. Security and version control often factor into corporate governance policies

or are necessary to maintain compliance with regulations imposed by government agencies.

Therefore, small datasets initially created by business teams are often migrated to the BI team

and either integrated into larger models or rationalized given the equivalent functionality from

an existing dataset.

Larger organizations with experience in deploying and managing Power BI often utilize a mix of

deployment modes depending on the needs of the project and available resources. For example, a

Corporate BI solution with a set of standard IT-developed reports and dashboards distributed via

a Power BI app may be extended by assigning Power BI Pro licenses to certain business users who

have experience or training in Power BI report design. These users could then leverage the existing

data model and business definitions maintained by IT to create new reports and dashboards and

distribute this content in a separate Power BI workspace and/or app.

A workspace is simply a container of datasets, reports, and dashboards in the Power BI cloud

service that can be distributed to large groups of users. A Power BI app represents the published

version of a workspace in the Power BI service and workspace. Members can choose which items

in the workspace are included in the published Power BI app. See Chapter 10, Managing Application

Workspaces and Content, and Chapter 13, Creating Apps and Content Distribution, for greater detail

on app workspaces and apps, respectively.

Another common scenario is a Proof of Concept (POC). A POC is a small-scale self-service solution

developed by a business user or a team designed to be transitioned to a formal, IT-owned, and

managed solution. Power BI Desktop’s rich graphical interfaces at each layer of the application

(query editor, data model, and report canvas) make it possible and often easy for users to create

useful models and reports with minimal experience and little to no code.

Planning Power BI Projects8

It’s much more difficult, of course, to deliver consistent insights across business functions (that is,
finance, sales, and marketing) and at scale in a secure, governed environment. The IT organization
can enhance the quality and analytical value of these assets, as well as providing robust governance
and administrative controls to ensure that the right data is being accessed by the right people.

The following list of fundamental questions help guide a deployment mode decision:

1. Who will own the data model?

Experienced dataset designers and other IT professionals are usually required to support

complex data transformations, analytical data modeling, large data sizes, and security rules,

such as RLS roles, as described in Chapter 5, Developing DAX Measures and Security Roles.

If the required data model is relatively small and simple, or if the requirements are unclear,

the business team may be best positioned to create at least the initial iterations of the model.

The data model could be created with Analysis Services or Power BI Desktop.

2. Who will own the reports and dashboards?

Experienced Power BI report developers with an understanding of corporate standards
and data visualization best practices can deliver a consistent user experience.

Business users can be trained on report design and development practices and are well
positioned to manage the visualization layer, given their knowledge of business needs

and questions.

3. How will the Power BI content be managed and distributed?

A staged deployment across development, test, and production environments, as described
in Chapter 8, Managing Application Workspaces and Content, helps to ensure that quality,
validated content is published. This approach is generally exclusive to Corporate BI projects.

Sufficient Power BI Premium capacity is required to support distribution to Power BI free
users and either large datasets or demanding query workloads.

Self-Service BI content can be assigned to Premium capacity, but organizations may wish
to limit the scale or scope of these projects to ensure that provisioned capacity is being

used efficiently.

As covered in this section, deployment modes represent the overall manner in which Power BI
is used within an organization. Now that the different deployment modes for Power BI are fully
understood, we next move on to covering the processes and roles for implementing individual
Power BI projects.

Chapter 1 9

Project discovery and ingestion
An organization’s business intelligence assets are the result of individual projects designed to

accomplish a specific set of goals or answer a specific set of business questions. Thus, the successful

initiation and execution of business intelligence projects is vital to all organizations.

Power BI projects often begin with answering a set of standard questions within a project template

form. Business guidance on these questions informs the BI team of the high-level technical needs

of the project and helps to promote a productive project kickoff. By reviewing the project template,

the BI team can ask the project sponsor or relevant Subject Matter Experts (SMEs) targeted

questions to better understand the current state and the goals of the project.

A sample Power BI project template is provided in the following section.

Sample Power BI project template
The primary focus of the project planning template and the overall project planning stage is on

the data sources and the scale and structure of the Power BI dataset required. The project sponsor

or business users may only have an idea of several reports, dashboards, or metrics needed but,

as a Corporate BI project, it’s essential to focus on where the project fits within an overall BI

architecture and the long-term Return on Investment (ROI) of the solution. For example, BI

teams would look to leverage any existing Power BI datasets or Analysis Services tabular models

applicable to the project and would be sensitive to version control issues.

The following section provides a completed template for a Power BI project.

Sample template – Adventure Works BI
The template is comprised of two tables. The first table, Table 1.1, answers the essential who and

when questions so that the project can be added to the BI team’s backlog. The BI team can use this

information to plan their engagements across multiple ongoing and requested Power BI projects

and to respond to project stakeholders, such as Vickie Jacobs, VP of Group Sales, in this example:

Date of Submission 6/6/2022

Project Sponsor Vickie Jacobs, VP of Group Sales

Primary Stakeholders
Adventure Works Sales

Adventure Works Corp

Power BI Author(s) Mark Langford, Sales Analytics Manager

 Table 1.1: Project sponsors, stakeholders, and participants

Planning Power BI Projects10

Identifying stakeholders is critical to the success of business intelligence projects. Stakeholders

define the goals and requirements of the business intelligence project and ultimately determine

success or failure in meeting identified goals. There are often multiple stakeholders for business

intelligence projects and these stakeholders may even span multiple business domains. Start by

identifying the business domains as stakeholders for the business intelligence project and then

identify specific individuals within those domains who can provide the goals and requirements

for the project.

It is always advantageous to identify a single individual as a special kind of stakeholder, a project

sponsor. Project sponsors secure the funding and assist in the prioritization of resources for

business intelligence projects.

The following table, Table 1.2, is a list of questions that describe the project’s requirements and

scope. It is critical to discover and answer as many of these questions as possible early on in a

business intelligence project in order to set expectations in terms of the cost and duration of the

project. For example, the number of users who are read-only consumers of Power BI reports and

dashboards and the number of self-service users who need Power BI Pro licenses to create Power

BI content largely impact the total cost of the project. Likewise, the amount of historical data to

include in the dataset (2 years, 5 years?) can significantly impact performance scalability:

Topic # Question Business Input

Data sources 1

Can you describe the required

data? (For example, sales, inventory,

shipping)

Internet Sales, Reseller Sales, and

the Sales and Margin Plan. We

need to analyze total corporate

sales, online and reseller sales, and

compare these results to our plan.

Data sources 2

Is all of the data required for

your project available in the data

warehouse (SQL Server)?

No.

Data sources 3

What other data sources (if any)

contain all or part of the required

data (for example, Web, Oracle,

Excel)?

The Sales and Margin Plan is

maintained in Excel.

Security 4
Should certain users be prevented

from viewing some or all of the data?

Yes, sales managers and associates

should only see data for their

sales territory group. VPs of sales,

however, should have global access.

Chapter 1 11

Security 5
Does the data contain any PCII,

HIPAA, GDPR, or other sensitive data?
No, not that I’m aware of.

Scale 6
Approximately, how many years of

historical data are needed?
3-4.

Scale 7

Is it necessary to track the history

of certain dimensions such as

customers or products? For example,

if a customer’s address changes, is

it necessary to store and report on

both the prior address and the new

address?

Yes, it would be helpful to track

product history.

Data refresh 8
How often does the data need to be

refreshed?
Daily.

Data refresh 9
Is there a need to view data in real

time (as it changes)?
No.

Distribution 10
Approximately, how many users will

need to view reports and dashboards?
200.

Distribution 11

Approximately, how many users

will need to create reports and

dashboards?

3-4.

Distribution 12

Will the users be viewing the reports

and dashboards on mobile devices

such as phones or tablets?

Yes, users need the ability to access

the information on their phones.

Version

control
13

Are there existing reports on the

same data? If so, please describe.

Yes, there are daily and weekly

sales snapshot reports available on

the portal. Additionally, our team

builds reports in Excel that compare

actuals to the plan.

Version

Control
14

Is the Power BI solution expected to

replace these existing reports?

Yes, we would like to exclusively use

Power BI going forward.

Version

Control
15

Is there an existing Power BI dataset

that targets the same business

processes (fact tables)?

Not to our knowledge.

Table 1.2: Project questions regarding project’s scope

Planning Power BI Projects12

A business analyst inside the IT organization often partners with the business on completing the

project ingestion template and reviews the current state in order to give greater context to the

template. Prior to the project kickoff meeting, the business analyst usually meets with the BI team

members to review the template and any additional findings or considerations.

Many questions with greater levels of detail are required as the project moves forward and

therefore the template shouldn’t attempt to be comprehensive or overwhelm business teams.

The specific questions to include should use business-friendly language and serve to call out the

top drivers of project resources and Corporate BI priorities, such as security and version control.

Now that you understand the process and requirements that drive project discovery and ingestion,

we next cover the different roles involved in Power BI projects.

Power BI project roles
Following the review of the project template and input from the business analyst, members of the

Power BI team directly engage the project sponsor and other key stakeholders to officially engage in

the project. These stakeholders include SMEs on the data source systems, business team members

knowledgeable about the current state of reporting and analytics, and administrative or governance

personnel with knowledge of organizational policies, available licenses, and current usage.

New Power BI projects of any significant scale and long-term adoption of Power BI within

organizations require Dataset Designers, Report Authors, and Power BI Admin(s), as illustrated

in the following diagram:

Figure 1.5: Power BI team roles

Chapter 1 13

Each of the three Power BI project roles and perhaps longer-term roles as part of a business

intelligence team entail a distinct set of skills and responsibilities. It can be advantageous in a

short-term or POC scenario for a single user to serve as both a dataset designer and a report author.

However, the Power BI platform and the multi-faceted nature of Corporate BI deployments are

too broad and dynamic for a single BI professional to adequately fulfill both roles.

It’s recommended that team members either self-select or are assigned distinct roles based on their

existing skills and experience and that each member develops advanced and current knowledge

relevant to their role. For example, individuals with a user experience and user interface (UX/UI)

background are generally best suited to fulfill the Report Author role. Conversely, more technical

developers with a background in coding and data modeling often fulfill the Dataset Designer

role. A BI manager and/or a project manager can help facilitate effective communication across

roles and between the BI team and other stakeholders, such as project sponsors.

Let’s now take a closer look at each of the three roles involved in Power BI projects.

Dataset designer
The dataset designer is responsible for the data access layer of the Power BI dataset, including

the authentication to data sources and the M queries used to define the tables of the data model.

Additionally, the dataset designer defines the relationships of the model and any required row-

level security roles and develops the DAX measure expressions for use in reports, such as year-

to-date (YTD) sales.

A Power BI dataset designer often has experience in developing Analysis Services models,

particularly Analysis Services models in tabular mode, as this aligns with the semantic modeling

engine used in Power BI. For organizations utilizing both Analysis Services and Power BI Desktop,

this could be the same individual. Alternatively, business analysts experienced with Power Pivot

for Excel or with the modeling features of Power BI Desktop may also prove to have the skills

required of Power BI dataset designers for self-service scenarios.

Datasets (semantic models) have always been the heart of Power BI solutions as they serve as

the data source responsible for rapidly resolving the report queries generated by reports and

analysis sessions. Power BI datasets can be designed to import copies of data from multiple data

sources into a compressed, in-memory cache, as well as merely passing report queries back to

a data source system such as Azure Synapse Analytics. Additionally, Power BI dataset designers

can mix both import (in-memory) and DirectQuery storage modes across different tables of a

dataset thus balancing the tradeoffs between the two storage modes.

Planning Power BI Projects14

In addition to providing a performant and scalable data source that efficiently utilizes resources

(CPU, RAM), datasets must provide a user-friendly interface for report authors and analysts to

quickly produce effective content. Moreover, datasets also typically contain Row-Level Security

(RLS) roles that limit what certain users or groups of users can see and can also contain complex

logic to support certain business rules or report requirements. Datasets are therefore a critical

component of Power BI projects and their design has tremendous implications regarding user

experience, query performance, source system and Power BI resource utilization, and more.

Given the importance of Power BI datasets and the implications of dataset design decisions for

entire environments, many organizations choose to dedicate one or multiple developer roles to

Power BI datasets. These individuals are expected to have advanced- to expert-level knowledge

of Data Analysis eXpressions (DAX) as well as experience with enterprise features such as

aggregation tables, partitions and incremental refresh, and other supporting third-party tools

such as ALM Toolkit. All of these topics are explained in later chapters.

Business analysts or “power users” can often independently learn or receive essential training

to build basic Power BI datasets that meet the needs of their department. However, business

analysts can also struggle to learn coding languages like M and DAX and can fail to appreciate

other goals of a dataset such as resource usage. For this reason, organizations are well advised

to regularly monitor the datasets developed by business teams/analysts and consider adopting

a process for migrating ownership of these datasets from a business team to a Corporate BI team.

It can’t be emphasized strongly enough that Power BI project teams should carefully distinguish

between datasets and reports and maintain a goal of supporting many related reports and

dashboards via high-quality, well-tested or certified datasets. This can be challenging as teams

are generally tasked with developing reports regardless of the source dataset, thus creating a

temptation to simply create a dataset dedicated to the needs of a single report. Over the long

term this “report factory” approach results in both inefficient use of resources (CPU) as well as

confusion and manageability issues with many datasets having slightly different logic and all

needing to be maintained.

Dataset designers should regularly communicate with data source owners or SMEs, as well as

report authors. For example, the dataset designer needs to be aware of changes to data sources so

that data access queries can be revised accordingly, and report authors can advise of any additional

measures or columns necessary to create new reports. Furthermore, the dataset designer should

be aware of the performance and resource utilization of deployed datasets and should work with

the Power BI admin on issues such as Power BI Premium capacity.

Chapter 1 15

As per Figure 1.5, there are usually relatively few dataset designers in a team compared with

the number of report authors. This is largely due to the organizational objectives of version

control and reusability, which leads to a small number of large datasets. Additionally, robust

dataset development requires knowledge of the M and DAX functional programming languages,

dimensional modeling practices, and business intelligence. Database experience is also very helpful.

If multiple dataset designers are on a team, they should look to standardize their development

practices so that they can more easily learn and support each other’s solutions.

With the crucial role of the dataset designer understood, we next explore the report author role.

Report authors
Report authors interface directly with the consumers of reports and dashboards or a representative

of this group. In a self-service deployment mode or a hybrid project (business and IT), a small

number of report authors may themselves work within the business.

Above all else, report authors must have a clear understanding of the business questions to be

answered and the measures and attributes (columns) needed to visually analyze and answer

these questions. The report author should also be knowledgeable of visualization best practices,

such as symmetry and minimalism, in addition to any corporate standards for report formatting

and layout.

Power BI Desktop provides a rich set of formatting properties and analytical features, giving report

authors granular control over the appearance and behavior of visualizations. Report authors

should be very familiar with all standard capabilities, such as conditional formatting, drilldown,

drillthrough, and cross-highlighting, as they often lead demonstrations or training sessions.

It’s important for report authors to understand the use cases and essential features of the two

alternative report types available in Power BI – paginated reports and Excel reports. For example,

given the requirements to export or print detail-level data, a report author should be comfortable

in building a paginated report via the Power BI Report Builder. Additionally, report authors should

understand the organization’s policies on custom visuals available in the MS Office store and the

specific use cases for top or popular custom visuals.

It should be clear now that report authors have distinct responsibilities and skillsets compared to

dataset designers. The ability to design intuitive reports and dashboards that are easily understood

by the business is also of critical importance to the success of every Power BI project. Next, we

look at the last critical role, the Power BI administrator.

Planning Power BI Projects16

Power BI administrator
As Power BI has grown its capabilities and become a mission-critical tool for organizations, the role

of a Power BI administrator (admin) has become increasingly common. Power BI administrators

are responsible for ensuring Power BI is utilized effectively and according to the organization’s

policies. For example, Power BI administrators monitor and troubleshoot dataset refresh failures,

performance issues, user access requests and issues, and the overall health of an organization’s

Premium capacities.

A Power BI administrator is assigned the Power BI administrator role in Azure Active Directory,

the identity and access control service at the heart of Microsoft’s cloud-based Software as a

Service (SaaS) products. Assignment of the Power BI administrator role is done in the Microsoft

365 admin center and only Global administrators of Office 365 can assign users to the role.

Users assigned to the Power BI administrator role obtain access to the Power BI admin portal

and the rights to configure Power BI tenant settings. The Power BI admin portal and tenant

settings are used to enable or disable features, such as exporting data and printing reports and

dashboards. BI and IT managers that oversee Power BI deployments are often assigned to this

role, as the role also provides the ability to manage Power BI Premium capacities and access to

standard monitoring and usage reporting.

The Power BI admin should have a clear understanding of the organizational policy on the various

tenant settings, such as whether content can be shared with external users. For most tenant

settings, the Power BI administrator can define rules in the Power BI admin portal to include

or exclude specific security groups. For example, external sharing can be disabled for the entire

organization except for a specific security group of users.

Power BI admins must also have a thorough knowledge of permissions, roles, sharing, and

licensing of Power BI in order to resolve common issues related to access. For example, a Power

BI admin would know that build permission to a dataset could be granted to a business analyst

as a less permissive alternative to membership in the workspace of the source dataset.

Most organizations should assign two or more users to the Power BI administrator role and

ensure these users are trained on the administration features specific to this role. Chapter 14,

Administering Power BI for an Organization, contains details on the Power BI admin portal and

other administrative topics.

While Power BI admins are not involved in the day-to-day activities of specific projects, the role is

ultimately critical to the success of all projects, as is the overall collaboration between all project

roles, which we cover in the next section.

Chapter 1 17

Project role collaboration
Communicating and documenting project role assignments during the planning stage promotes

the efficient use of time during the development and operations phases. For organizations

committed to the Power BI platform and perhaps migrating away from a legacy or different BI

platform, project roles may become full-time positions.

For example, BI developers with experience in DAX and Analysis Services tabular models

may transition to permanent dataset designer roles while BI developers experienced in data

visualization and report development may become report authors:

Name Project role

Brett Powell Dataset Designer

Jennifer Lawrence Report Author

Anna Sanders Power BI Administrator

Mark Langford Report Author

Stacy Loeb QA Tester

Table 1.3: Project role assignments

It is important for the individuals within all of the various roles to work together and communicate

effectively in order to deliver a successful project outcome. Proper communication and

collaboration are important to all projects but are perhaps even more crucial within the realm of

business intelligence given the distinct nature of the roles involved and the criticality of accurate,

effective reporting to the success of organizations.

With project roles and responsibilities now understood, we next cover the various forms of

licensing for Power BI deployments.

Power BI licenses
Power BI provides a number of different licensing options that provide flexible and affordable

pricing for individuals and organizations. These licensing options come in two primary categories:

• Shared capacity

• Dedicated capacity

Let us first have a look at shared capacity.

Planning Power BI Projects18

Shared capacity
Shared capacity is like an apartment building. While each tenant in the building has their own

personal living quarters accessible to only themselves, certain infrastructures such as plumbing,

electrical wiring, and stairways are common to everyone in the building. Shared capacity for Power

BI is similar. Each tenant within the Power BI service has its own area for publishing data and

reporting assets but infrastructure such as memory and processing capacity are shared among

the tenants. Thus, just like a noisy neighbor in an apartment building can affect other tenants,

so too can tenants within shared capacity in the Power BI service impact the performance for

other tenants.

Two licensing options exist for using shared capacity within the Power BI service:

• Free

• Pro

In the next two sections, we look at the differences between free and Pro licensing.

Free
It is possible to use Power BI entirely for free. First, the Power BI Desktop application is always

free to download and use. Licensing does not become a factor until one desires to use the Power

BI service. However, there is a free version of the Power BI service license. The free license allows

reports to be published to the Power BI service, however, there are significant limitations with

this approach. Figure 1.6 provides an overview of using Power BI free licensing.

Chapter 1 19

Figure 1.6: Power BI free

As shown in Figure 1.6, report authors can use Power BI Desktop to create datasets and reports and

publish these assets to the Power BI service. However, datasets can only be refreshed from cloud

sources and only from the user’s personal workspace, My Workspace. Refreshing on-premises

data sources is not supported. In addition, sharing content with other internal and external users

is only possible through the Publish to Web feature.

Planning Power BI Projects20

It is important to understand that the Publish to Web feature does not provide any kind of security

or authentication. Anyone that has the link to the report that has been published using the Publish

to Web feature can access the report anonymously. There are many other features that cannot be

used in the Power BI service as well, such as subscriptions and comments.

Once the limitations are understood, solely using the free license for Power BI has only limited

uses. Mainly, it is used for testing or performing a proof of concept. However, the free Power

BI service license can be coupled with Power BI Premium to provide a powerful and affordable

solution for enterprises.

Now that the free licensing model is understood, let’s compare it with the pro licensing model.

Pro
The Pro licensing option for Power BI removes the limitations of free licensing when using the

Power BI service. Figure 1.7 presents an overview of Pro licensing.

Figure 1.7: Power BI Pro

Chapter 1 21

As shown in Figure 1.7, Pro licensing allows users to share reports with both internal and external

users. However, those users also require a Pro license in order to access and view the reports

and datasets. Essentially, anyone that collaborates (views, creates, edits) datasets, reports, and

dashboards must have a Pro license.

Using a Pro license removes all of the restrictions of the free licensing structure and users are able

to utilize the standard features of the Power BI service including the ability to create subscriptions,

comment, create and use apps, and leverage the Analyze in Excel feature, which exports a report’s

underlying data to Excel in order to support further analysis.

Now that we have explored the free and Pro licensing options associated with shared capacity,

we’ll next look at the licensing models available for dedicated capacity.

Dedicated capacity
In addition to shared capacity licenses, there are also dedicated capacity licenses available for

Power BI. These licenses reserve memory and processing capacity solely for the use of a particular

tenant. In addition, these licenses enable advanced features such as larger datasets, increased

user quotas, more frequent dataset refreshes, paginated reports, goals, scorecards, pipelines, and

embedding of content into corporate applications.

Three licensing options exist for using dedicated capacity within the Power BI service:

• Premium

• Premium Per User

• Embedded

We cover each of these licensing options in detail in the following sections.

Premium
With Power BI Premium, users with Power BI free licenses are able to access and view Power

BI apps of reports and dashboards that have been assigned to Premium capacities. This access

includes consuming the content via the Power BI mobile application as well as fully interacting

with standard Power BI service features such as using subscriptions and comments. Additionally,

Power BI Pro users can share dashboards with Power BI free users if the dashboard is contained in

a Premium workspace. Power BI Pro licenses are required for users that create or distribute Power

BI content, such as connecting to published datasets from Power BI Desktop or Excel. Figure 1.8

presents an overview of Premium licensing.

Planning Power BI Projects22

Figure 1.8: Power BI Premium

Power BI Premium is purchased in capacity units priced on a per-month basis. These capacity

units are called node types and range in size from a P1 with 25 GB of RAM and eight virtual cores

for $5,000/month to a P5 with 400 GB of RAM and 128 virtual cores for $80,000/month. It is

important to understand that this is dedicated capacity and is charged on a per-month basis

(not per minute or hour). Power BI Premium also includes a license for using Power BI Report

Server on-premises.

An organization may choose to license Power BI Premium capacities for additional or separate

reasons beyond the ability to distribute Power BI content to read-only users without incurring

per-user license costs. Significantly, greater detail on Power BI Premium features and deployment

considerations is included in Chapter 15, Building Enterprise BI with Power BI Premium.

With an entry price point for Power BI Premium of $5,000 per month, many mid-sized organizations

were priced out of the ability to afford dedicated capacity. Thus, Microsoft recently introduced

Premium Per User pricing, which we cover next.

Chapter 1 23

Premium Per User
Premium Per User (PPU) licensing effectively works identically to Pro licensing except that all

users of a PPU workspace must have a PPU license. An overview of PPU licensing is shown in

Figure 1.9.

Figure 1.9: Power BI Premium Per User

As shown in Figure 1.9, PPU licensing works the same as Pro licensing except that PPU licensing

adds the additional advanced features of Premium such as increased dataset sizes, increased

refresh frequency, paginated reports, goals, scorecards, and pipelines.

Let’s now take a look at the last dedicated capacity licensing option, Embedded.

Embedded
Power BI Embedded is intended for use by developers and Independent Software Vendors

(ISVs) that use APIs to embed Power BI visuals, reports, and dashboards within their custom

web applications. These applications can then be accessed by external customers. Figure 1.10

provides an overview of Power BI Embedded.

Planning Power BI Projects24

Figure 1.10: Power BI Embedded

Similar to Power BI Premium, capacity units or node types for Embedded range in size from an
A1 with 3 GB of RAM and a single virtual core for $750 per month to an A6 with 100 GB of RAM
and 32 virtual cores for $24,000 per month. However, different than Premium, Embedded is
charged on a usage basis per minute versus a flat charge per month. The usage-based charge is
attractive to developers and ISVs as this provides greater flexibility and less expense, particularly
during development, since the service can be deprovisioned when development is not occurring.

With the basic licenses for Power BI understood, let’s next consider how these different licenses

are combined to provide a complete licensing scenario for an organization.

Power BI license scenarios
The optimal mix of Power BI Pro and Power BI Premium licensing in terms of total cost varies
based on the volume of users and the composition of those users between read-only consumers
of content versus Self-Service BI users. In relatively small deployments, such as 200 total users,
a Power BI Pro license can be assigned to each user regardless of self-service usage and Power BI
Premium capacity can be avoided.

Chapter 1 25

However, there are other benefits to licensing Power BI Premium capacity that may be necessary

for certain deployments, such as larger datasets or more frequent data refreshes.

If an organization consists of 700 total users with 600 read-only users and 100 self-service users

(content creators), it’s more cost-effective to assign Power BI Pro licenses to the 100 self-service

users and to provision Power BI Premium capacity to support the other 600 users. Likewise, for

a larger organization with 5,000 total users and 4,000 self-service users, the most cost-effective

licensing option is to assign Power Pro licenses to the 4,000 self-service users and to license Power

BI Premium for the remaining 1,000 users.

Several factors drive the amount of Power BI Premium capacity to provision, such as the number

of concurrent users, the complexity of the queries generated, and the number of Concurrent data

refreshes. See Chapter 14, Administering Power BI for an Organization, and Chapter 15, Building

Enterprise BI with Power BI Premium, for additional details on aligning Power BI licenses and

resources with the needs of Power BI deployments.

In the sample project example introduced in the section Sample template – Adventure Works BI,

Power BI Premium is being used. Therefore, only a few users need Power BI Pro licenses to create

and share reports and dashboards.

Referencing Table 1.3, Mark Langford, a data analyst for the sales organization, requires a Pro

license to analyze published datasets from Microsoft Excel. Jennifer Lawrence, a corporate BI

developer and report author for this project, requires a Pro license to publish Power BI reports to

app workspaces and distribute Power BI apps to users. Finally, Brett Powell as dataset designer

also requires a Power BI Pro license to create and publish the underlying dataset.

Typically, a Power BI administrator is also assigned a Power BI Pro license. Per Table 1.3, Anna

Sanders is the Power BI administrator. However, a Power BI Pro license is not required to be

assigned to the Power BI administrator role.

The approximately 200 Adventure Works sales team users who only need to view the content can

be assigned free licenses and consume the published content via Power BI apps associated with

Power BI Premium capacity. Organizations can obtain more Power BI Pro licenses and Power BI

Premium capacity (virtual cores, RAM) as usage and workloads increase.

We mentioned at the beginning of this chapter that Power BI is a robust, flexible business

intelligence platform and the different licensing options and combinations are a reflection of

that flexibility. In the following sections, we’ll next cover the tools, processes, and overall design

of datasets.

Planning Power BI Projects26

Dataset design
Designing Power BI datasets is in many respects similar to designing data warehouses. Both

datasets and data warehouses share concepts such as fact and dimension tables, star schemas,

slowly changing dimensions, fact table granularity, and local and foreign keys for building

relationships between tables.

This similarity allows us to use the same proven tools and processes for designing and building

Power BI datasets as are used to design data warehouses. In this section, we cover the tools and

processes used to design Power BI datasets, starting with the data warehouse bus matrix.

Data warehouse bus matrix
The data warehouse bus matrix is a staple of the Ralph Kimball data warehouse architecture, which

provides an incremental and integrated approach to data warehouse design. This architecture, as

per The Data Warehouse Toolkit (Third Edition) by Ralph Kimball, allows for scalable data models,

as multiple business teams or functions often require access to the same business process data

and dimensions.

To promote reusability and project communication, a data warehouse bus matrix of business

processes and shared dimensions is recommended. An example data warehouse bus matrix is

shown in Figure 1.11:

Figure 1.11: Data warehouse bus matrix

Each row in Figure 1.11 reflects an important and recurring business process, such as the monthly

close of the general ledger, and each column represents a business entity, which may relate to

one or several of the business processes. The shaded rows (Internet Sales, Reseller Sales, and

Sales Plan) identify the business processes that will be implemented as their own star schemas

for this project.

Chapter 1 27

The bus matrix can be developed in collaboration with business stakeholders, such as the corporate

finance manager, as well as source system and business intelligence or data warehouse SMEs.

The architecture of the dataset should support future BI and analytics projects of the organization

involving the given business processes (fact tables) and business entities (dimension tables). For

example, the same dataset containing Internet Sales data should support both an executive’s

sales and revenue dashboard as well a business analyst’s ad hoc analysis via Excel PivotTables.

Additional business processes, such as maintaining product inventory levels, could potentially be

added to the same Power BI dataset in a future project. Importantly, these future additions could

leverage existing dimension tables, such as a product table, including its source query, column

metadata, and any defined hierarchies.

Each Power BI report is usually tied to a single dataset. Given this 1:1 relationship and the

analytical value of integrated reports across multiple business processes, such as Inventory and

Internet Sales, it’s important to design datasets that can scale to support multiple star schemas.

Consolidating business processes into one or a few datasets also makes solutions more manageable

and is a better use of source system resources, as common tables (for example, Product, Customer)

are only refreshed once.

The data warehouse bus matrix is a proven tool used during the design process of data warehouses

and is just as effective for designing Power BI datasets. We cover this design process in the

next section.

Dataset design process
With the data warehouse bus matrix as a guide, the business intelligence team can work with

representatives from the relevant business teams and project sponsors to complete the following

four-step dataset design process:

1. Select the business process

2. Declare the grain

3. Identify the dimensions

4. Define the facts

In the following sections, we cover each of these steps in detail, starting with selecting the

business process.

Planning Power BI Projects28

Select the business process
Ultimately, each business process is represented by a fact table with a star schema of many-to-one
relationships to dimensions. In a discovery or requirements gathering process, it can be difficult
to focus on a single business process in isolation as users regularly analyze multiple business
processes simultaneously or need to.

Nonetheless, it’s essential that the dataset being designed reflects low-level business activities
(for example, receiving an online sales order) rather than consolidation or integration of distinct
business processes such as a table with both online and reseller sales data:

• Confirm that the answer provided to the first question of the project template from Table
1.2 regarding data sources is accurate.

• In this project, the required business processes are Internet Sales, Reseller Sales, and
Annual Sales and Margin Plan.

• Each of the three business processes corresponds to a fact table to be included in the
Power BI dataset.

• Obtain a high-level understanding of the top business questions for each business process.
For example, “What are total sales relative to the Annual Sales Plan and relative to last
year?”.

• In this project, Internet Sales and Reseller Sales are combined into overall corporate sales
and margin KPIs.

• Optionally, reference the data warehouse bus matrix of business processes and their related
dimensions. For example, discuss the integration of inventory data and the insights this
integration may provide.

• In many projects, a choice or compromise has to be made given the limited availability
of certain business processes and the costs or timelines associated with preparing this
data for production use.

• Additionally, business processes (fact tables) are the top drivers of the storage and

processing costs of the dataset and thus should only be included if necessary.

A common anti-pattern (a response to a reoccurring problem that is generally ineffective and
potentially counterproductive) to avoid in Power BI projects is the development of datasets for
specific projects or teams rather than business processes. For example, developing a dataset
exclusively for the marketing team and another dataset created for the sales organization.
Assuming both teams require access to the same sales data, this approach naturally leads to
a waste of resources, as the same sales data is queried and refreshed twice and both datasets
consume storage resources in the Power BI service.

Chapter 1 29

Additionally, this isolated approach leads to manageability and version control issues, as the

datasets may contain variations in transformation or metric logic. Therefore, although the

analytical needs of specific business users or teams are indeed the priority of BI projects, it’s

important to plan for sustainable solutions that can ultimately be shared across teams.

Let’s now look at the next step in the process, declaring the grain.

Declare the grain
The grain of fact tables ultimately governs the level of detail available for analytical queries as

well as the amount of data to be accessed. Higher grains mean more detail while lower grains

mean less detail.

All rows of a fact table should represent the individual business process from step 1 at a certain

level of detail or grain such as the header level or line level of a purchase order. Therefore, each row

should have the same meaning and thus contain values for the same key columns to dimensions

and the same numeric columns.

During this step, determine what each row of the different business processes represents. For

example, each row of the Internet Sales fact table represents the line of a sales order from a

customer. Conversely, the rows of the Sales and Margin Plan are aggregated to the level of a

Calendar Month, Products Subcategory, and Sales Territory region.

If it’s necessary to apply filters or logic to treat certain rows of a fact table differently than others,

the fact table likely contains multiple business processes (for example, shipments and orders).

Although it’s technically possible to build this logic into DAX measure expressions, well-designed

fact tables benefit Power BI and other data projects and tools over the long term. Thus, in such

circumstances, it is advisable to split the table into two separate tables.

When analyzing the grain of fact tables, consider the following:

• Review and discuss the implications of the chosen grain in terms of dimensionality and

scale

• Higher granularities provide greater levels of dimensionality and thus detail but result

in much larger fact tables

• If a high grain or the maximum grain is chosen, determine the row counts per year and

the storage size of this table once loaded into Power BI datasets

• If a lower grain is chosen, ensure that project stakeholders understand the loss of

dimensionalities, such as the inability to filter for specific products or customers

Planning Power BI Projects30

In general, a higher granularity is recommended for analytical power and sustainability. If a less

granular design is chosen, such as the header level of a sales order, and this grain later proves

to be insufficient to answer new business questions, then either a new fact table would have to

be added to the dataset or the existing fact table and all of its measures and dependent reports

would have to be replaced.

Once the grains of all fact tables are determined, it is time to move on to the next step and identify

the dimensions.

Identify the dimensions
Dimensions are a natural byproduct of the grain chosen in the previous design process step. A

single sample row from the fact table should clearly indicate the business entities (dimensions)

associated with the given process such as the customer who purchased an individual product on

a certain date and at a certain time via a specific promotion.

Fact tables representing a lower grain have fewer dimensions. For example, a fact table representing

the header level of a purchase order may identify the vendor but not the individual products

purchased from the vendor.

When analyzing dimensions, consider the following:

• Identify and communicate the dimensions that can be used to filter (aka slice and dice)

each business process.

• The foreign key columns based on the grain chosen in the previous step reference

dimension tables.

• Review a sample of all critical dimension tables, such as Product or Customer, and ensure

these tables contain the columns and values necessary or expected.

• Communicate which dimensions can be used to filter multiple business processes

simultaneously. For example, in this project, the Product, Sales Territory, and Date

dimensions can be used to filter all three fact tables.

• The data warehouse bus matrix referenced earlier can be helpful for this step.

• Look for any gap between the existing dimension tables and business questions or related

reports.

• For example, existing IT-supported reports may contain embedded logic that creates

columns via Structured Query Language (SQL) that are not stored in the data warehouse.

• Strive to maintain version control for dimension tables and the columns (attributes)

within dimension tables.

Chapter 1 31

• It may be necessary for project stakeholders to adapt or migrate from legacy reports or

an internally maintained source to the Corporate BI source.

A significant challenge to the identity of the dimensions step can be a lack of Master Data

Management (MDM) and alternative versions. MDM is a discipline practiced by organizations

in order to ensure the accuracy, uniformity, semantic consistency, and stewardship of the official

data assets.

For example, the sales organization may maintain its own dimension tables in Excel or Microsoft

Access and its naming conventions and hierarchy structures may represent a conflict or gap with

the existing data warehouse. Additionally, many corporate applications may store their own

versions of common dimensions, such as products and customers.

These issues should be understood and, despite pressure to deliver BI value quickly or according

to a specific business team’s preferred version, the long-term value of a single definition for an

entire organization as expressed via the bus matrix should not be sacrificed.

With dimensions identified, the final step is to define the fact tables.

Define the facts
The facts represent the numeric columns included in the fact tables. While the dimension columns

from step 3 are used for relationships to dimension tables, the fact columns are used in measures

containing aggregation logic such as the sum of a quantity column and the average of a price

column.

When defining the facts, consider the following:

• Define the business logic for each fact, represented by measures in the dataset. For example,

gross sales is equal to the extended amount on a sales order, and net sales is equal to gross

sales minus discounts.

• Any existing documentation or relevant technical metadata should be reviewed and

validated.

• Similar to the dimensions, any conflicts between existing definitions should be addressed

so that a single definition for a core set of metrics is understood and approved.

• Additionally, a baseline or target source should be identified to validate the accuracy of

the metrics to be created. For example, several months following the project, it should

be possible to compare the results of DAX measures from the Power BI dataset to an SSRS

report or a SQL query.

Planning Power BI Projects32

• If no variance exists between the two sources, the DAX measures are valid and thus any

doubt or reported discrepancy is due to some other factor

See Chapter 2, Preparing Data Sources, Chapter 3, Connecting Sources and Transforming Data with M,

Chapter 4, Designing Import and DirectQuery Data Models, and Chapter 5, Developing DAX Measures

and Security Roles, for details on the fact table columns to include in Power BI datasets (for import

or DirectQuery) and the development of DAX metric expressions. The fact definitions from this

step relate closely to the concept of base measures described in Chapter 5, Developing DAX Measures

and Security Roles.

Ultimately, the DAX measures implemented have to tie to the approved definitions, but there are

significant data processing, storage, and performance implications based on how this logic is

computed. In many cases, the Power BI dataset can provide the same logic as an existing system

but via an alternative methodology that better aligns with Power BI or the specific project need.

This concludes the dataset design process. Next, we cover another important topic related to

datasets, data profiling.

Data profiling
The four-step dataset design process can be immediately followed by a technical analysis of

the source data for the required fact and dimension tables of the dataset. Technical metadata,

including database diagrams and data profiling results, such as the existence of null values in

source columns, are essential for the project planning stage. This information is used to ensure

the Power BI dataset reflects the intended business definitions and is built on a sound and

trusted source.

For example, Figure 1.12 shows a database diagram that describes the schema for the reseller

sales business process:

Chapter 1 33

Figure 1.12: SQL Server database diagram: reseller sales

The foreign key constraints (the lines between the tables) identify the surrogate key columns used

in the relationships of the Power BI dataset and the referential integrity of the source database. The

columns used as keys are displayed in Figure 1.12 with small key icons to the left of the column name.

In this schema, the product dimension is modeled as three separate dimension tables—DimProduct,

DimProductSubcategory, and DimProductCategory. Given the priorities of usability, manageability,

and query performance, a single denormalized product dimension table that includes essential

Product Subcategory and Product Category columns is generally recommended. This reduces

the volume of source queries, relationships, and tables in the data model and improves report

query performance, as fewer relationships must be scanned by the dataset engine.

Planning Power BI Projects34

Clear visibility of the source system, including referential and data integrity constraints, data

quality, and any MDM processes, is essential. Unlike other popular BI tools, Power BI is capable

of addressing many data integration and quality issues, particularly with relational database

sources that Power BI can leverage to execute data transformation operations. However, Power BI’s

extract, transform, load (ETL) capabilities are not a substitute for data warehouse architecture

and enterprise ETL tools, such as SQL Server Integration Services (SSIS).

For example, it’s the responsibility of the data warehouse to support historical tracking with slowly

changing dimension ETL processes that generate new rows and surrogate keys for a dimension

when certain columns change. To illustrate a standard implementation of slowly changing

dimensions, Figure 1.13 shows the results of a query of the DimProduct table in the Adventure

Works data warehouse returning three rows for one product (FR-M94B-38):

Figure 1.13: Historical tracking of dimensions via slowly changing dimension ETL processes

It’s the responsibility of the Power BI team and particularly the dataset designer to accurately

reflect this historical tracking via relationships and DAX measures, such as the count of distinct

products not sold. Like historical tracking, the data warehouse should also reflect all master data

management processes that serve to maintain accurate master data for essential dimensions,

such as customers, products, and employees.

In other words, despite many line of business applications and Enterprise Resource Planning

(ERP), Customer Relationship Management (CRM), Human Resource Management (HRM), and

other large corporate systems that store and process the same master data, the data warehouse

should reflect the centrally governed and cleansed standard. Therefore, creating a Power BI dataset

that only reflects one of these source systems may later introduce version control issues and,

similar to choosing an incorrect granularity for a fact table, can ultimately require costly and

invasive revisions.

Different tools are available with data profiling capabilities. If the data source is SQL Server, SSIS

can be used to analyze source data intended for use in a project. In Figure 1.14, the Data Profiling

task is used in an SSIS package to analyze the customer dimension table:

Chapter 1 35

Figure 1.14: Data Profiling task in SSIS

The Data Profiling task requires an ADO.NET connection to the data source and can write its

output to an XML file or an SSIS variable. In this example, the ADO.NET data source is the

Adventure Works data warehouse database in SQL Server 2016 and the destination is an XML

file (DataProfilingData.xml).

Planning Power BI Projects36

Once the task is executed, the XML file can be read via the SQL Server Data Profile Viewer as per

the following example. Note that this application, Data Profile Viewer, requires the installation

of SQL Server and that the Data Profiling task only works with SQL Server data sources. All fact

and dimension table sources can be analyzed quickly for the count and distribution of unique

values, the existence of null values, and other useful statistics.

Each Data Profiling task can be configured to write its results to an XML file on a network location

for access via tools such as the Data Profile Viewer. In the example shown in Figure 1.15, the Data

Profile Viewer is opened from within SSIS to analyze the output of the Data Profiling task for the

customer dimension table:

Figure 1.15: Data Profile Viewer: column null ratio profiles of DimCustomer table

Identifying and documenting issues in the source data via data profiling is a critical step in the

planning process. For example, the cardinality or count of unique values largely determines the

data size of a column in an import mode dataset. Similarly, the severity of data quality issues

identified impacts whether a DirectQuery dataset is a feasible option.

In general, enterprise BI teams should utilize enterprise data profiling tools such as those included

with SQL Server. However, basic data profiling tools are also available in Power BI Desktop, which

we cover next.

Data profiling with Power BI Desktop
Power BI Desktop includes simple data quality reporting within the Power Query Editor interface.

The Power Query Editor is used to develop queries for connecting to and ingesting data from

source systems and is covered in detail in Chapter 2, Preparing Data Sources.

Chapter 1 37

To access the data quality reporting within Power Query Editor, use the View tab and check the
boxes for Column quality, Column distribution, and Column profile as shown in Figure 1.16:

Figure 1.16: Data quality in Power Query Editor

As shown in Figure 1.16, activating the data quality reporting within Power Query Editor displays
many important statistics such as the number of distinct values, the value distribution, and the
percentage of valid values and errors.

While not as comprehensive as some enterprise data quality tools, the data quality reporting
within Power Query Editor is useful as an additional data quality check for data accessed by
Power BI Desktop.

Once source data is profiled, the next natural step is dataset planning as covered in the next section.

Planning Power BI Projects38

Dataset planning
After the source data is profiled and evaluated against the requirements identified in the four-

step dataset design process, the BI team can further analyze the implementation options for the

dataset. In almost all Power BI projects, even with significant investments in enterprise data

warehouse architecture and ETL tools and processes, some level of additional logic, integration,

or transformation is needed to enhance the quality and value of the source data or to effectively

support a business requirement.

A priority of the dataset planning stage is to determine how the identified data transformation

issues are addressed to support the dataset. Additionally, based on all available information and

requirements, the project team must determine whether to develop an import mode dataset,

DirectQuery dataset, or composite dataset. Import, DirectQuery, and composite datasets are

explained in the section Import, DirectQuery, Live, and Composite Datasets.

The initial step in the dataset planning process is planning for data transformations, which we’ll

review next.

Data transformations
To help clarify the dataset planning process, a diagram such as Figure 1.17 can be created that

identifies the different layers of the data warehouse and Power BI dataset where transformation

and business logic can be implemented:

Figure 1.17: Dataset planning architecture

Chapter 1 39

In some projects, minimal transformation logic is needed and can be easily included in the Power BI
dataset or the SQL views accessed by the dataset. For example, if only a few additional columns are
needed for a dimension table and there’s straightforward guidance on how these columns should
be computed, the IT organization may choose to implement these transformations within Power
BI’s Power Query (M) queries rather than revise the data warehouse, at least in the short term.

If a substantial gap between BI needs and the corporate data warehouse is allowed to persist
and grow due to various factors, such as cost, project expediency, and available data warehouse
skills, then Power BI datasets become more complex to build and maintain. Dataset designers
should regularly analyze and communicate the implications of datasets assuming greater levels
of complexity.

However, if the required transformation logic is complex or extensive with multiple join operations,
row filters, and data type changes, then the IT organization may choose to implement essential
changes in the data warehouse to support the new dataset and future BI projects. For example,
a staging table and a SQL stored procedure may be needed to support a revised nightly update
process, or the creation of an index may be needed to deliver improved query performance for a
DirectQuery dataset.

Ideally, all required data transformation and shaping logic could be implemented in the source
data warehouse and its ETL processes so that Power BI is exclusively used for analytics and
visualization. However, in the reality of scarce IT resources and project delivery timelines, typically
at least a portion of these issues must be handled through other means, such as SQL view objects
or Power BI’s M query functions.

A best practice is to implement data transformation operations within the data warehouse or
source system. This minimizes the resources required to process an import mode dataset and, for
DirectQuery datasets, can significantly improve query performance, as these operations would
otherwise be executed during report queries.

For many common data sources, such as Oracle and Teradata, M query expressions are translated
into equivalent SQL statements (if possible) and these statements are passed back to the source
system via a process called query folding. See Chapter 2, Preparing Data Sources, for more details
on query folding.

As per the dataset planning architecture diagram, a layer of SQL views should serve as the source
objects to datasets created with Power BI Desktop. By creating a SQL view for each dimension
and fact table of the dataset, the data source owner or administrator is able to identify the views
as dependencies of the source tables and is therefore less likely to implement changes that would
impact the dataset without first consulting the BI team.

Planning Power BI Projects40

Additionally, the SQL views improve the availability of the dataset, as modifications to the source

tables are much less likely to cause the refresh process to fail.

As a general rule, the BI team and IT organization should avoid the use of DAX for data

transformation and shaping logic, such as DAX calculated tables and calculated columns. The

primary reason for this is that it weakens the link between the dataset and the data source, as these

expressions are processed entirely by the Power BI dataset after source queries have been executed.

Additionally, the distribution of transformation logic across multiple layers of the solution (SQL,

M, DAX) causes datasets to become less flexible and manageable. Moreover, tables and columns

created via DAX do not benefit from the same compression algorithms applied to standard tables

and columns and thus can represent both a waste of resources as well as a performance penalty

for queries accessing these columns.

In the event that required data transformation logic cannot be implemented directly in the data

warehouse or its ETL or Extract-Load-Transform (ELT) process, a second alternative is to build

this logic into the layer of SQL views supporting the Power BI dataset. For example, a SQL view for

the product dimension could be created that joins the Product, Product Subcategory, and Product

Category dimension tables, and this view could be accessed by the Power BI dataset.

As a third option, M functions in the Power BI query expressions could be used to enhance or

transform the data provided by the SQL views. See Chapter 2, Preparing Data Sources, for details

on these functions and the Power BI data access layer generally.

Once data transformation planning is complete, the next step is to determine the mode of the

dataset as explained in the next section.

Import, DirectQuery, Live, and Composite datasets
A subsequent but closely related step in dataset planning is choosing between the default import

mode, DirectQuery mode, Live mode, or composite mode. In some projects, this is a simple decision

as only one option is feasible or realistic given the known requirements while other projects entail

significant analysis of the pros and cons of either design.

If a data source is considered slow or ill-equipped to handle a high volume of analytical queries,

then an import mode dataset is very likely the preferred option. Likewise, if near real-time visibility

of a data source is an essential business requirement, then DirectQuery or Live mode are the

only options.

Chapter 1 41

The DirectQuery and Live modes are very similar to one another. Both methods do not store data

within the dataset itself but rather query source systems directly to retrieve data based upon user

interaction with reports and dashboards. However, Live mode is only supported for Power BI

datasets, Analysis Services (both multi-dimensional and tabular), and Dataverse.

When DirectQuery/Live is a feasible option or can be made a feasible option via minimal

modifications, organizations may be attracted to the prospect of leveraging investments in high-

performance database and data warehouse systems. However, the overhead costs and version

control concerns of import mode can be reduced via Power BI features, such as the dataset refresh

APIs or pipelines discussed in Chapter 10, Managing Application Workspaces and Content, and

incremental data refresh.

The following list of questions can help guide an import versus DirectQuery/Live decision:

1. Is there a single data source for our dataset that Power BI supports as a DirectQuery/Live

source?

For example, each fact and dimension table needed by the dataset is stored in a single

data warehouse database, such as Oracle, Teradata, SQL Server, or Azure SQL Database.

The following URL identifies the data sources supported for DirectQuery/Live with Power

BI, including sources that are currently only in beta: http://bit.ly/2AcMp25.

2. If DirectQuery/Live is an option per question 1, is this source capable of supporting the

analytical query workload of Power BI?

For example, although Azure Synapse (formerly Azure SQL Data Warehouse) technically

supports DirectQuery, it’s not recommended to use Azure Synapse as a DirectQuery data

source, given the limitations on the volume of concurrent queries supported and a lack

of query plan caching.

In many other scenarios, the data source may not be optimized for analytical queries,

such as with star schema designs and indexes that target common BI/reporting queries.

Additionally, if the database is utilized for Online Transaction Processing (OLTP)

workloads and/or other BI/analytical tools, then it’s necessary to evaluate any potential

impact on these applications and the availability of resources.

3. Is an import mode dataset feasible, given the size of the dataset and any requirements for

near real-time visibility of the data source?

http://bit.ly/2AcMp25

Planning Power BI Projects42

Currently, Power BI Premium supports import mode datasets up to 400 GB in size. However,

the true limit for model sizes in Premium is limited to the total available amount of RAM

within the capacity. In addition, PPU datasets are limited to 100 GB and Pro datasets are

limited to 10 GB. Therefore, truly massive datasets must either use a DirectQuery data

source or a Live connection to an Analysis Services model.

Additionally, Power BI Premium currently supports a maximum of 48 refreshes per day

for import mode datasets. Therefore, if there’s a need to view data source data for the last

several minutes or seconds, an import mode dataset is not feasible.

4. If the DirectQuery/Live source is capable of supporting a Power BI workload as per question

2, is the DirectQuery/Live connection more valuable than the additional performance and

flexibility provided via the import mode?

5. In other words, if an import mode dataset is feasible, as per question 3, then an organization

should evaluate the trade-offs of the two modes. For example, since an import mode

dataset is hosted in the Power BI service and in a compressed and columnar in-memory

data store, it is likely to provide a performance advantage. This is particularly the case if

the DirectQuery/Live source is hosted on-premises and thus queries from the Power BI

cloud service must pass through the on-premises data gateway reviewed in Chapter 11,

Managing the On-Premises Data Gateway.

Additionally, any future data sources and most future data transformations need to be

integrated into the DirectQuery/Live source. With an import mode dataset, the scheduled

import process can include many data transformations and potentially other data sources

without negatively impacting query performance.

For organizations that have invested in powerful data source systems for BI workloads, there’s a

strong motivation to leverage this system via DirectQuery/Live. In general, business intelligence

teams and architects are averse to copying data into another data store and thus creating both

another data movement and a source of reporting that must be supported.

Let’s now take a more detailed look at each of the possible dataset modes.

Import mode
An import mode dataset can include multiple data sources, such as SQL Server, Oracle, and an Excel

file. Since a snapshot of the source data is loaded into the Power BI cloud service, in addition to its

in-memory columnar compressed structure, query performance is usually good for most scenarios.

Chapter 1 43

Another important advantage of import mode datasets is the ability to implement data

transformations without negatively impacting query performance. Unlike DirectQuery/Live

datasets, the operations of data source SQL views and the M queries of import datasets are executed

during the scheduled data refresh process. The Query design per dataset mode section of Chapter 2,

Preparing Data Sources, discusses this issue in greater detail.

Given the performance advantage of the in-memory mode relative to DirectQuery/Live, the ability

to integrate multiple data sources, and the relatively few use cases where real-time visibility is

required, most Power BI datasets are designed using import mode.

Next, we provide more detail about DirectQuery/Live mode.

DirectQuery/Live mode
While DirectQuery and Live connections are different, as explained previously, they are similar

to one another and share common traits, such as not storing data within the dataset itself but

rather querying source systems directly to retrieve data based upon user interaction with reports

and dashboards.

A DirectQuery/Live dataset is traditionally limited to a single data source and serves as merely

a thin semantic layer or interface to simplify the report development and data exploration

experience. DirectQuery/Live datasets translate report queries into compatible queries for the

data source and leverage the data source for query processing, thus eliminating the need to store

and refresh an additional copy of the source data.

A common use case of DirectQuery/Live is to provide near real-time visibility to changes in source

data. For example, a manufacturer may want to monitor activities occurring on a manufacturing

floor and potentially link this monitoring solution to notifications or alerts.

The performance of DirectQuery/Live datasets is strongly influenced by the design and resources

available to the source system. Successful DirectQuery/Live datasets generally result from

performance optimizations implemented in the source system such as via columnstore indexes,

materialized views, and star schema designs that reduce the complexity of report queries.

With import and DirectQuery/Live modes understood, we next cover the relatively new

composite mode.

Composite mode
Composite mode is perhaps the most significant enhancement to Power BI in recent years as it

enables table-level control over a table’s storage mode (Import, DirectQuery, Dual).

Planning Power BI Projects44

Storage modes are covered in greater detail in Chapter 2, Preparing Data Sources. When designed

effectively, a composite model can deliver the performance benefits of import (in-memory) models

but also provide scalability for large DirectQuery source systems.

A common design pattern with composite models is to set the storage mode of a massive fact table

to DirectQuery but configure a smaller, targeted aggregation table in import mode and related

dimension tables in dual mode. Power BI automatically utilizes the in-memory aggregation table

to resolve incoming report queries if the given aggregation table(s) and its related Dual mode

dimension tables contain the necessary data.

Even more recently, Microsoft has unveiled DirectQuery for Power BI datasets and Azure Analysis

Services. With DirectQuery for Power BI datasets and Azure Analysis Services, datasets developed

and published to Power BI can be chained or extended to produce new datasets that incorporate

additional import or DirectQuery sources.

With data transformation and data model storage mode decisions made, the dataset planning

process is complete. Let’s now take a look at how these planning processes and decisions apply

to our sample project introduced earlier in this chapter.

Sample project analysis
As per the data refresh questions from the project template (questions 7 and 8), the Power BI

dataset only needs to be refreshed daily—there’s not a need for real-time visibility of the data

source. From a dataset design perspective, this means that the default import mode is sufficient

for this project in terms of latency or data freshness.

The project template from Table 1.2 also advises that an Excel file containing the Annual Sales

Plan must be included in addition to the historical sales data in the SQL Server data warehouse.

Therefore, unless the Annual Sales Plan data can be migrated to the same SQL Server database

containing the Internet Sales and Reseller Sales data, an import mode dataset is the only option.

The data security requirements from the project template can be implemented via simple security

roles and therefore do not materially impact the import or DirectQuery decision. DirectQuery

datasets can support dynamic or user-based security models as well but, given restrictions on the

DAX functions that can be used in security roles for DirectQuery datasets, import mode datasets

can more easily support complex security requirements. However, depending on the data source

and the security applied to that source relative to the requirements of the project, organizations

may leverage existing data source security through a DirectQuery dataset via a single sign-on

with Kerberos delegation.

Chapter 1 45

Finally, the BI team must also consider the scale of the dataset relative to size limitations with

import mode datasets. As per the project template in Table 1.2 (#6), 3-4 years of sales history

needs to be included, and thus the dataset designer needs to determine the size of the Power BI

dataset that would store that data. For example, if Power BI Premium capacity is not available, the

dataset is limited to a max size of 1 GB. If Power BI Premium capacity is available, large datasets

(for example, 10 GB+) potentially containing hundreds of millions of rows can be published to

the Power BI service.

The decision for this project is to develop an import mode dataset and to keep the Excel file

containing the Annual Sales Plan on a secure network location. The BI team will develop a layer

of views to retrieve the required dimension and fact tables from the SQL Server database as well

as connectivity to the Excel file. The business is responsible for maintaining the following Annual

Sales Plan Excel file in its current schema, including any row updates and the insertion of new

rows for future plan years. An excerpt from this file is shown in Figure 1.18:

Figure 1.18: Annual Sales Plan in Excel data table

By using the existing Excel file for the planned sales and margin data rather than integrating this

data into the data warehouse, the project is able to start faster and maintain continuity for the

business team responsible for this source. Similar to collaboration with all data source owners,

the dataset designer could advise the business user or team responsible for the sales plan on the

required structure and the rules for maintaining the data source to allow for integration into

Power BI.

For example, the name and directory of the file, as well as the column names of the Excel data

table, cannot be changed without first communicating these requested revisions. Additionally, the

values of the Sales Territory Region, Product Subcategory, and Calendar Yr-Mo columns

must remain aligned with those used in the data warehouse to support the required actual versus

plan visualizations.

The sales plan includes multiple years and represents a granularity of the month, sales territory

region, and product subcategories.

Planning Power BI Projects46

In other words, each row represents a unique combination of values from the Calendar Yr-Mo,

Sales Territory Region, and Product Subcategory columns. The Bridge tables section in

Chapter 4, Designing Import and DirectQuery Data Models, describes how these three columns are

used in integrating the Sales Plan data into the dataset containing Internet Sales and Reseller

Sales data.

This completes the sample project analysis and concludes this chapter.

Summary
In this chapter, we’ve walked through the primary elements and considerations in planning

a Power BI project. A standard and detailed planning process inclusive of the self-service

capabilities needed or expected, project roles and responsibilities, and the design of the dataset

can significantly reduce the time and cost to develop and maintain the solution. With a sound

foundation of business requirements and technical analysis, a business intelligence team can

confidently move forward into the development stage.

In the next chapter, the two data sources identified in this chapter (SQL Server and Excel) are

accessed to begin the development of an import mode dataset. Source data is retrieved via Power

BI’s M language queries to retrieve the set of required fact and dimension tables. Additionally,

several data transformations and query techniques are applied to enhance the analytical value

of the data and the usability of the dataset.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

2
Preparing Data Sources

This chapter follows on from the dataset planning process described in Chapter 1, Planning BI

Projects, by providing guidance on how to prepare for connecting to and transforming data using

Power Query (M) queries. Power Query queries are written in a data transformation language

commonly called “M” or can be generated via the Power Query Editor user interface. These queries

access data sources and optionally apply data transformation logic to prep the tables for the

Power BI data model.

As mentioned in Chapter 1, Planning BI Projects, to the greatest extent possible data transformation

processes should be implemented within data sources such as Azure SQL and Azure Synapse

SQL rather than via Power BI’s data transformation capabilities. The presence of significant data

transformation logic (for example, joins, filters, and new columns) outside of an organization’s

primary data warehouse or “source of truth” makes these solutions more difficult to understand

and support.

Prior to actually connecting to and transforming data, it is critical to understand a number of

important concepts, design principles, data sources, and Power BI Desktop settings as well as

source system preparation.

In this chapter, we cover the following topics:

• Query folding

• Query design per dataset mode

• Data sources

• SQL views

Preparing Data Sources48

Before diving into detailed explanations about data sources, SQL views, and M, it is critical that

the reader be familiar with the concept of query folding.

Query folding
Query folding is one of the most powerful and important capabilities of the M language as it

translates M expressions into equivalent query statements for the given source system to process.

With query folding, Power Query (M) serves as a rich abstraction layer for defining both simple

and complex data transformation processes while still leveraging the compute resources of the

source system. When implementing any remaining logic or data transformations via M functions,

a top priority of the dataset designer is to ensure that these operations are folded to the data source.

In the following M query shown in Figure 2.1, a Table.RemoveColumns() M function is applied

against the SQL view for the Internet Sales fact table to exclude three columns that are not

needed for the dataset:

Figure 2.1: Power Query Editor: View Native Query

Chapter 2 49

The additional step is translated to a SQL query that simply doesn’t select the three columns. The

specific SQL statement passed to the source system can be accessed by right-clicking the final

step in the Query Settings pane and selecting View Native Query as shown in Figure 2.1. If the

View Native Query option is grayed out, this indicates that the specific step or transformation

is executed with local resources.

Most data sources that can be queried, such as relational databases (e.g. SQL Server, Oracle)

support query folding. Data sources that lack any mechanism for understanding and resolving

queries, such as Excel files and Azure blobs, naturally do not support query folding.. The M queries

against these file sources use local M engine resources and thus the volume of data imported as

well as the complexity of the query should be limited. Other sources, such as SharePoint lists,

Active Directory, and Exchange, support some level of query folding, though significantly less

than relational databases.

Queries may be completely folded to the source system or partially folded as explained in the

next section.

Partial query folding
Dataset designers should check the final step of each query in the dataset to ensure that query

folding is occurring. If all required transformations or logic of an M query cannot be folded into

a single SQL statement, the dataset designer should attempt to re-design the query to obtain as

much query folding as possible.

For example, all common or simple transformations can be implemented in the first few steps

of the query so that View Native Query is visible for as many steps as possible. The remaining

logic can be added as the last step of the query and this locally executed step or transformation

is applied against the results of the SQL statement generated from the last step in which View

Native Query is active.

The Value.NativeQuery() M function can be used to pass a SQL statement to the data source.

However, any further transformations applied to the results of this function in the M query

exclusively use local resources. Therefore, if implemented, the SQL statement passed to the data

source should either include all required logic for the query or return a small result set that can

be further processed with local resources.

With the concept of query folding and its importance understood, we’ll next explore the different

designs and considerations for queries depending upon the mode of the dataset.

Preparing Data Sources50

Query design per dataset mode
As mentioned in Chapter 1, Planning BI Projects, to the greatest extent possible data transformation

processes should be implemented within data sources such as Azure SQL and Azure Synapse

Analytics rather than via Power BI’s data transformation capabilities.

The presence of significant data transformation logic, such as joins, filters, and new columns,

outside of an organization’s primary data warehouse or “source of truth” makes these solutions

more difficult to understand and support. In addition, source systems are generally provisioned

with more compute resources to handle data transformations and often include secondary data

structures, like indexes, that speed up certain operations such as filters and joins.

If resource or time constraints make it necessary to apply data transformations in Power BI

rather than source systems, Power Query (M) should generally be favored over DAX calculated

columns and tables. Additionally, the Power Query (M) transformations should be documented

and communicated such that this logic or process can later be migrated to a source system.

With respect to query design per dataset mode, many common M queries are the same for both

import and DirectQuery datasets. However, depending on the dataset mode, there can be widely

different implications for the source system resource load (memory, CPU, and disk) and the

performance of the queries from Power BI.

Therefore, it’s essential that the dataset planning decisions regarding table storage mode (import,

DirectQuery, Dual) are reflected in the M queries for the dataset. For example, a query that

gets imported into memory only once a night is a much better candidate to implement data

transformations than a query that is folded back to the source system during report interactions

via DirectQuery.

The M queries supporting a Power BI dataset import mode should exclude, or possibly split,

columns with many unique values, such as a transaction number column, as these columns

consume relatively high levels of memory. A standard design technique for import mode models

is to exclude derived fact table columns with relatively more unique values when these values

can be computed via simple DAX measure expressions based on columns of the same table with

fewer unique values.

In the following example, the SUMX() DAX function is used to compute the Sales Amount measure

based on the Order Quantity and Unit Price columns of the Internet Sales fact table, thus

avoiding the need to import the Sales Amount column:

Chapter 2 51

Internet Sales Amount (Import) =

SUMX('Internet Sales','Internet Sales'[Order Quantity]*'Internet
Sales'[Unit Price])

Internet Sales Amount (DirectQuery) = SUM('Internet Sales'[Sales Amount])

As per the second measure, the Sales Amount column would be included in a DirectQuery data

model and the DAX measure for the sales amount would exclusively utilize this column to generate

a more efficient SQL query for the data source.

The import mode model is able to efficiently compute similar SUMX() expressions at scale with

basic arithmetic operators (+, -, *, /) as these operations are supported by the multithreaded

storage engine of the xVelocity in-memory analytics engine. For greater detail on DAX measures

for import and DirectQuery datasets, see Chapter 5, Developing DAX Measures and Security Roles.

The M queries supporting a DirectQuery dataset should generally contain minimal to no

transformation logic as the complexity of the resulting SQL statement may negatively impact

the performance of Power BI report queries, as well as increasing the resource usage of the data

source. This is especially important for the fact tables and any large dimension tables of the

DirectQuery dataset. Given the central role of the data source for query performance and scalability

of DirectQuery solutions, the Power BI dataset designer should closely collaborate with the data

source owner or subject matter expert, such as a database administrator, to make the best use of

available source system resources.

With composite models, individual tables are set with distinct storage modes (import, DirectQuery,

Dual) in order to achieve a balance of the benefits of both import and DirectQuery modes. The most

common use case for composite models involves very large fact tables with hundreds of millions or

billions of rows. In a composite model, this large source table can be set as DirectQuery and a much

smaller import mode aggregation table can be added to the model to resolve the most common or

important report queries via compressed memory. Power BI composite models with aggregation

tables can dynamically determine if report queries can be resolved by aggregation table(s), which

are typically import mode tables, or if it’s necessary to issue queries to the DirectQuery source

tables.

As noted in the To get the most out of this book section of the Preface, an AdventureWorks data

warehouse sample database (AdventureWorksDW2019) hosted on a local instance of the SQL

Server 2019 database engine is the primary data source for the examples in this book. The PBIX

files included in the code bundle reference localhost\MSSQLSERVERDEV as the name of the

database server and AdventureWorksDW2019 as the name of the database.

Preparing Data Sources52

Therefore, any attempt to refresh the queries within these PBIX files or create new queries against

this data source results in errors as the user doesn’t have access to this source unless the same

instance name and database name are used within the reader’s own environment.

Additionally, certain objects of the AdventureWorksDW2019 database used in this book, such as

views, are not included in the original downloadable sample database from Microsoft. However,

a backup of the database used for this book was created that includes the custom schema and

views. This file is available in the code samples for this chapter. This file can be downloaded,

unzipped, and the database restored to a local copy or other SQL Server and thus only requires

that the query parameters be changed to point to the correct server and database.

Let’s now take a look at design considerations for import mode dataset queries.

Import mode dataset queries
All M queries of an import mode dataset, or import mode tables in a composite dataset, are

executed once per dataset refresh. Therefore, if sufficient resources are available during the dataset

refresh process, the M queries can contain more complex and resource-intensive operations

without negatively impacting report query performance.

However, as mentioned in the previous section, as a Power BI dataset matures and particularly

when a data warehouse system is available, it’s considered a best practice to migrate M data

transformation logic to the source view or table objects of the data warehouse. If migration of the

data transformation logic to a data warehouse source system is not an option, a Power BI dataflow

defined in the Power BI service might be a more robust alternative to a complex M query expression

embedded within a dataset. This is particularly the case if the dataflow can utilize premium

capacity and if other datasets may need to leverage the same data transformation workflow.

In this project example with an on-premises SQL Server database, the M queries can utilize the

database server’s resources during each refresh via a query folding process. Query folding simply

means that the M query is translated into the native syntax of the source system and executed

locally by the source system.

In the event that certain M expressions cannot be translated into an equivalent SQL statement for

the given source, these expressions are instead evaluated by the data gateway. A data gateway is

simply software installed on an on-premises server that serves as a bridge between the Power BI

service and on-premises data sources. Data gateways are explored in depth in Chapter 11, Managing

the On-Premises Data Gateway.

Chapter 2 53

If the source database was in the cloud and not on-premises or within an Infrastructure-as-a-

Service (IaaS) virtual machine, a gateway would not be required for the refresh, and resources

in Power BI, such as Power BI Premium capacity hardware, would be used to execute any M

expressions that can’t query fold back to a source. Briefly, IaaS provides on-demand access to

virtual and physical servers, storage, and networking. IaaS is distinct from Platform as a Service

(PaaS) and Software as a Service (SaaS), which provide on-demand access to ready-to-use services

and software.

For import mode datasets, M queries can be partially folded such that a source database is used

to execute only part of the required logic. For example, an M query may contain both simple

transformation steps, such as filtering out rows, as well as more complex logic that references a

custom M function. M functions are just like functions in other programming languages, blocks

of code that perform specific tasks.

In the case of partial folding, a SQL statement is generated for the initial steps of the query, and

the results of this SQL query are then used by the data gateway to process the remaining logic.

All steps (variables) within an M query following a step that cannot be folded are also not folded.

Likewise, any M step following a Value.NativeQuery() function that passes a SQL statement to a

source system is also not folded. See the Query folding section earlier in this chapter for more details.

Next, we’ll consider the designs of DirectQuery dataset queries.

DirectQuery dataset queries
Similar to import mode dataset queries, there are also specific design considerations when dealing

with DirectQuery dataset queries. For DirectQuery datasets or DirectQuery tables in a composite

dataset, every M query is folded to exclusively utilize the resources of the data source. It should be

noted that relatively few data source systems support DirectQuery. In addition, certain M functions

and query logic that lack an equivalent translation for the given data source are not supported.

In these scenarios, the dataset designer can develop alternative M queries that produce the same

target data structure and are supported by the source system or implement the necessary logic

within the source system, such as adding a layer of SQL views, to support the desired dataset.

An additional and fundamental limitation to the scope of M queries for DirectQuery datasets is

the impact on query performance and user experience. Since the native statements representing

M queries must be executed by the source system during report viewing sessions, common

transformations such as converting data types and sorting tables can cause significant

performance degradation.

Preparing Data Sources54

Additionally, a high volume of sub-optimal native queries passed from Power BI reports can

quickly drive up the resource usage of the source system. Therefore, although it’s often technically

possible to implement similar data transformation logic as import mode datasets using the native

system and DirectQuery, the performance and resource implications of these transformations

frequently prove unacceptable.

Dataset designers of DirectQuery datasets should document the native statements generated by

their M queries. As shown in the Query folding section earlier in this chapter, these queries can

be accessed from the View Native Query command within the Applied Steps pane of the Power

Query Editor in Power BI Desktop. Sharing and reviewing these queries with the data source

owner or a subject matter expert on the data source can often lead to new ideas to improve

performance or data quality.

One powerful technique to optimize DirectQuery performance is via the dynamic Power Query

(M) parameters feature. With dynamic Power Query parameters, the filter selections of the report

user for a common dimension such as department or fiscal year are passed into a performance-

optimized query such as the Where clause of a SQL statement.

Let’s take a closer look at how DirectQuery operates during report execution.

DirectQuery report execution
Because DirectQuery results in queries against the source system for each report interaction by

users, it is important to fully understand the performance and operations of these queries.

In the database trace from SQL Server Profiler shown in Figure 2.2, a DirectQuery dataset has

translated a Power BI report query into a SQL statement, which joins the SQL statements associated

with the Reseller Sales, Reseller, and Date M queries:

Chapter 2 55

Figure 2.2: SQL Server Profiler trace – Power BI DirectQuery report visualization

For DirectQuery datasets, it’s important to understand both the individual queries associated

with each table of the model as well as how the data source is utilizing these queries in resolving

report queries. In this example, the three table queries are used as derived tables to form the

FROM clause of the outer SQL statement. Additionally, though not included in the trace image,

the WHERE clause reflects a slicer (filter) selection for a specific calendar year in a Power BI report.

We’ll now move on to query design considerations for composite datasets.

Composite datasets
As described in Chapter 1, Planning BI Projects, composite datasets allow mixing DirectQuery mode

tables from different sources and/or DirectQuery mode tables and import mode tables in a single

dataset, such as having the reseller sales table in DirectQuery mode but the internet sales table

in import (in-memory) mode.

Preparing Data Sources56

With the release of the DirectQuery for PBI datasets and AS feature, multiple connections to

Power BI datasets can be combined within a composite data model or a Power BI dataset can be

modified through a process called chaining. Chaining involves a Power BI dataset that is extended

through the creation of DAX columns and measures or by combining the dataset with import

mode or other DirectQuery-mode tables.

The use of composite datasets should be considered carefully. Generally, whenever possible, it

is best to design import mode datasets as they provide the best performance and the greatest

amount of flexibility in terms of dataset design. Composite datasets can be useful, however, with

respect to extremely large fact tables or a requirement for near real-time reporting.

When using composite models, the inherent limitations of DirectQuery are still applicable except

that many of these limitations now apply to individual tables instead of the entire dataset. For

example, a calculated column in a DirectQuery table can still only refer to other columns in the

same table. Other DirectQuery limitations apply to the entire dataset if a single table within the

dataset has a storage mode of DirectQuery, such as the unavailability of the Quick Insights feature.

The Quick Insights feature is covered in Chapter 8, Applying Advanced Analytics.

With composite models, the concerns around data security and data privacy are extended to

actually using a report versus solely during data refresh. Because the dataset contains multiple

DirectQuery data sources or DirectQuery and import mode data sources, the underlying queries

between tables can comingle the data from different sources. For example, sensitive information

stored in a spreadsheet could be included in a query sent to a DirectQuery SQL Server relational

database. Corporate security and privacy restrictions may not allow such interaction.

Dataset designers should be particularly cognizant of the encryption levels of data sources in

composite models. It is unwise to allow information retrieved over an encrypted data source

connection to be included in information sent to a data source accessed over an unencrypted

connection.

There are also performance considerations when using composite datasets that are the same or

similar to the performance concerns with pure DirectQuery datasets. However, composite datasets

add an additional layer of performance considerations over simple DirectQuery datasets. This is

because a single visual may send queries to multiple different data sources.

Chapter 2 57

Consider that results from one query may be sent across to a second source via a subsequent query.

This type of scenario can result in a DirectQuery SQL query containing a large number of literal

values that becomes inefficient to include in a WHERE clause or results in multiple SQL queries

involving one SQL query per group value.

Therefore, dataset designers must pay particularly close attention to the cardinality (number of

unique values) of columns in such scenarios. Relatively low cardinality of a few thousand unique

values should not impact performance but as cardinality increases, performance can be reduced

or result in failure to execute the queries successfully.

In addition to the query design considerations for composite models covered thus far, composite

models introduce additional table storage modes.

Table storage modes
Composite models enable dataset creators to configure multiple storage modes across the different

tables of a model thus balancing the benefits of both import (cached) data and DirectQuery.

Typically, composite models also utilize hidden aggregation tables such that all common summary-

level queries are resolved by either a relatively small use of memory or an optimized DirectQuery

object but detailed queries are handled via a large-scale DirectQuery source system. Once a

composite model is created, the Power BI dataset dynamically determines whether incoming

report queries are resolved via imported in-memory cache or the source system via DirectQuery.

With composite models, there are four storage modes available for tables within the dataset. Of

these four, we have already discussed import and DirectQuery modes. Two additional modes are

added for non-calculated tables, Dual and Hybrid.

Dual mode tables are DirectQuery tables where a copy of the table is also kept in memory in

order to support fast access and query performance as if the table were in import-only mode.

Thus, Dual mode allows queries involving import mode-only tables to perform quickly when also

requiring queries to the Dual mode table but still allow the table to participate in DirectQuery-

only queries as well.

Consider a data model that involves fact tables using DirectQuery and imported dimension tables.

In this scenario, the dimension tables should be set to Dual mode in order to support DirectQuery

queries as well as fast performance with import mode queries.

Preparing Data Sources58

Hybrid tables are tables that contain one or more import mode partitions as well as a single

DirectQuery partition. Note that table partitions are simply a way to divide portions of data within

the table. For example, incremental refresh adds additional table partitions so that the data within

each incremental refresh partition can be processed separately from the initial load of the data.

This means that a single table can contain a large base load of data as well as data resulting from

incremental refreshes. This data can be queried quickly because the data exists in memory within

the dataset. However, the data within the table also supports near real-time visibility via its

DirectQuery partition. Thus, queries against the table retrieve data from the one or more import

mode partitions as well as the most recent data that has not been imported via DirectQuery.

Hybrid tables are a relatively new development but present an attractive design alternative where

the dataset remains largely import but allows for near real-time data visibility as well. Hybrid

tables should not be confused with Dual mode tables. Dual mode simply allows data model tables

to be available for report visuals that may query both import and DirectQuery tables within the

data model while Hybrid tables allow a single table to retrieve data from import mode partitions

as well as via DirectQuery.

Data sources
Data source connectivity is one of the strengths of Power BI, due to the vast list of standard data

source connectors included in Power BI Desktop. In addition, numerous industry standards such

as Open Data Protocol (OData), Open Database Connectivity (ODBC), and Object Linking

and Embedding Database (OLE DB) are supported. The breadth of data connectivity options is

further bolstered by the ability for developers to create custom Power BI data connectors for a

specific application, service, or data source.

Although a Power BI dataset can connect to multiple sources ranging from Azure Synapse Analytics

to a text file, solution architects and developers should strive to build solutions on a single, well-

supported source such as a data warehouse database system that already contains the necessary

data integrations as well as reflects data integrity constraints and quality processes. Power BI

datasets that connect to several distinct sources, and particularly to less stable sources like files and

folders, are much more prone to data quality and refresh errors and are more difficult to support.

Power BI’s data connectors are consistently extended and improved with each monthly release of

Power BI Desktop. New data sources are commonly added as a preview release feature (beta) and

previous Preview connectors are moved from Preview to general availability. Generally available

connectors are those that are considered fully functional and stable.

Chapter 2 59

In the following example from the November 2021 release of Power BI Desktop, Figure 2.3 shows

that four new connectors have been released to Preview while three other connectors that are

already generally available have been updated:

Figure 2.3: Preview and generally available data connectors in Power BI Desktop

Preview connectors should only be used for testing purposes, as differences between the preview

release and the subsequent generally available connector may cause queries dependent on the

preview version to fail.

Regardless of the data connector used, all data connectors share certain common elements within

Power BI Desktop, including such things as authentication caching, data source settings, and

privacy levels as covered in the following sections.

Authentication
All data sources require some type of authentication, even if the authentication is simply

anonymous such as publicly available web pages. Power BI Desktop saves a data source credential,

or sign-in identity, for each data source connection used. These credentials and settings are not

stored in the PBIX file but rather on the local computer specific to the given user.

Solution architects and developers should carefully consider which identity or principle is used

to authenticate to the data source, which permissions have been granted to this account, and

how this identity or credential is maintained. The main outcome of an authentication policy or

process is to ensure that solutions utilize a system identity available to the IT/BI team and do not

have a dependency on an individual user’s account permissions.

Preparing Data Sources60

For example, if SQL Server or Azure SQL Database is the source system, a BI team may create a

SQL login and user with the minimal permissions necessary to read the objects within the scope

of the solution. The password for this SQL login could be stored in Azure Key Vault and revised

every 3-6 months by the IT/BI team.

An authentication dialog specific to the data source is rendered if the user hasn’t accessed the

data source before or if the user has removed existing permissions to the data source in Power

BI Desktop’s Data source settings menu. In the following example shown in Figure 2.4, a Sql.

Database() M query function references the AdventureWorksDW2019 SQL Server database on the

localhost\MSSQLSERVERDEV SQL Server instance.

In this scenario, the user has not previously accessed this data source (or has cleared existing source

permissions), and thus executing this query prompts the user to configure the authentication to

this source as shown in Figure 2.4:

Figure 2.4: Edit authentication credentials in Power BI Desktop

Most relational database sources have similar authentication options. For SQL Server, the user

can choose between the default Windows authentication (that is, Use my current credentials),

Database authentication if the database is in Mixed Mode (SQL user or Windows authentication),

or Microsoft account if SQL Server is running in Microsoft Azure.

Chapter 2 61

Additionally, the credentials can be saved exclusively to the specific database or be reused for

other databases on the same server as shown in Figure 2.4 in the dropdown under Select which

level to apply these settings to.

Once authentication is configured, the authentication settings for a data source can be accessed

via the Data source settings menu within Power BI Desktop.

Data source settings
The Data source settings menu provides access to the authentication and privacy levels configured

for each data source within the current file and the saved permissions available to all of the user’s

Power BI Desktop files.

This menu can be accessed under the Transform data dropdown on the Home tab of Power BI

Desktop’s Report view or from the Home tab of the Power Query Editor, as shown in Figure 2.5:

Figure 2.5: Data source settings menu in Power Query Editor

Preparing Data Sources62

In this example, the user chose to save the Windows authentication to the SQL Server instance,

localhost\mssqlserverdev, rather than the specific database (AdventureWorksDW2019) on the

server. The Edit Permissions... command button provides the ability to revise the authentication,

such as from Windows to Database, or to enter a new User name and Password.

The Edit… button of the Edit Permissions dialog, highlighted in Figure 2.6, prompts the same

SQL Server credential menu used when originally configuring the method of authentication to

the data source:

Figure 2.6: Edit credentials accessed via Edit Permissions

Many organizations set policies requiring users to regularly revise their usernames or passwords

for certain data sources. Once these credentials are updated, the user should utilize the Edit

Permissions menu to ensure that the updated credentials are used for M queries against the data

source. Depending on the security policy of the data source, repeated failures to authenticate due

to outdated credentials can cause the user’s account to be temporarily locked out of the data source.

Having mentioned that the Data source settings menu also provides access to the privacy levels

of data sources, we will explain these next.

Chapter 2 63

Privacy levels
In addition to the authentication method and user credentials, Power BI also stores a privacy level

for each data source. Privacy levels define the isolation level of data sources and thus restrict the

integration of data sources in M queries. For example, in the absence of privacy levels, an M query

that merges a CSV file with a publicly available online database could result in the data from the

CSV file being passed to the online database to execute the operation.

Although such behavior is preferable from a query performance and resource utilization standpoint,

the CSV file may contain sensitive information that should never leave the organization or

even an individual user’s machine. Applying privacy levels, such as private for the CSV file and

public for the online database, isolates the two sources during query execution, thus preventing

unauthorized access to sensitive data.

The privacy level of a data source can be accessed from the same Edit Permissions dialog available

in the Data source settings menu as shown in Figure 2.7:

Figure 2.7: Privacy Level options per data source

Preparing Data Sources64

The default Privacy Level for data sources is None. Therefore, dataset designers should revise

privacy levels when first configuring data sources in Power BI Desktop based on the security

policies for the given sources.

Four privacy levels are available:

• None: The privacy level applied is inherited from a separate data source, or not applied if

the separate parent source has not been configured. For example, the privacy level for an

Excel workbook stored on a network directory could be set to None, yet the isolation level of

Private would be enforced if a data source for the root directory of the file is set to Private.

• Public: A public data source is not isolated from other public sources, but data transfer from

organizational and private data sources to public data sources is prevented. Public source

data can be transferred to an organizational data source but not to a private data source.

• Organizational: An organizational data source is isolated from all public data sources

but is visible to other organizational data sources. For example, if a CSV file is marked as

Organizational, then a query that integrates this source with an organizational SQL Server

database can transfer this data to the database server to execute the query.

• Private: A Private data source is completely isolated from all other data sources. Data

from the Private data source is not transferred to any other data sources, and data from

public sources is not transferred to the Private source.

In this project, the Excel workbook containing the Annual Sales Plan is not merged with any

queries accessing the SQL Server data warehouse and thus the privacy levels do not impact any

queries. However, as with all other data security issues, such as Row-Level Security (RLS) roles,

the dataset designer should be mindful of privacy levels and apply the appropriate setting per

data source.

Restrictive privacy levels may prevent query folding from occurring and thus significantly reduce

performance and reliability. For example, if an Excel workbook is isolated from a SQL Server data

source due to a Private privacy level, then the local resources available to the M engine are used

to execute this operation rather than the SQL Server database engine. If the source data retrieved

from SQL Server is large enough, the resource requirements to load this data and then execute

this operation locally could cause the query to fail.

With the essentials of data sources within Power BI understood, we’ll next cover perhaps one of

the most important data sources for Power BI, the Power BI service itself.

Chapter 2 65

Power BI as a data source
Dozens of cloud services are available to Power BI as data sources, such as Google Analytics and
Dynamics 365. Most importantly for this project, the Power BI service is a fully supported data
source enabling report development in Power BI Desktop against published datasets. As shown
in Figure 2.8, the datasets contained in Power BI workspaces in which the user is a member are
exposed as data sources:

Figure 2.8: Power BI service data connector in Power BI Desktop

Connecting to a dataset published to Power BI establishes a live connection for the given report,
just like connections to Analysis Services. With live connections, all data retrieval and modeling
capabilities are disabled and the queries associated with report visualizations are executed against
the source dataset.

In certain scenarios it’s necessary or useful to integrate a portion of one Power BI dataset into
a different dataset. In these cases, the XMLA endpoint can be used to connect to a Power BI
dataset as though it’s an Analysis Services database and pass a DAX query to support table(s) in
the source dataset.

Additionally, the Power BI composite models feature now supports the ability to connect to
multiple Power BI datasets and/or Analysis Services models from the same Power BI dataset.
For example, if inventory and sales data is stored in separate PBI datasets and the requirement
is to display inventory and sales visuals in the same report, connections to both datasets can be
defined in Power BI Desktop and converted from Live connections to DirectQuery data sources.
As shown in Figure 2.8, within the Power BI service, datasets can be endorsed as either Certified
or Promoted.

Preparing Data Sources66

Endorsed datasets are presented at the top of the dialog with Certified datasets displayed first

and then Promoted datasets. Organizations should adopt a process of certifying datasets in order

to distinguish enterprise data assets from other potentially less trustworthy data. Endorsing or

featuring content is further discussed in Chapter 14, Administering Power BI for an Organization.

Leveraging published datasets as the sources for reports provides natural isolation between the

dataset design and report development processes. For example, a dataset designer can implement

changes to a local Power BI Desktop file, such as the creation of new DAX measures, and re-publish

the dataset to make these measures available to report authors. Additionally, such connections

provide report authors with visibility of the latest successful refresh of the dataset if the dataset

is configured in import mode.

Before moving on from data sources, we’ll next cover some important Power BI Desktop options

that should be configured prior to starting query development.

Power BI Desktop options
Dataset designers should be aware of the global and current file settings available in Power BI

Desktop. Among other options, these settings include the implementation of the privacy levels

described earlier, the DAX functions available to DirectQuery datasets, auto-recovery, preview

features, and whether M queries are executed serially or in parallel.

Power BI Desktop options can be accessed from the File menu by doing the following:

1. Choose File in the ribbon

2. Choose Options and settings

3. Choose Options

These steps open the Options dialog in Power BI Desktop. Choosing Privacy from the left

navigation of the Options dialog presents the Privacy Levels options as shown in Figure 2.9:

Chapter 2 67

Figure 2.9: Power BI Desktop options – GLOBAL| Privacy

By setting the global Privacy Levels option to Always combine data according to your Privacy

Level settings for each source, the current file privacy setting options are disabled. For all

development and project activities, it’s recommended to apply the privacy levels established

per data source rather than each PBIX file’s privacy settings (the second option) or to Always

ignore Privacy Level settings.

Preparing Data Sources68

It’s outside the scope of this chapter to provide comprehensive details of every Power BI Desktop

option, but the following two sections recommend settings that are relevant to dataset design.

We start with global options (settings applied to all Power BI files).

Global options
Global options only need to be set once and concern fundamental settings, including data source

privacy levels and security:

1. For Security, under Native Database Queries, check the box for Require user approval

for new native database queries. Under ArcGIS for Power BI, check the box for Use

ArcGIS Maps for Power BI.

2. Set the Privacy option to Always combine data according to your Privacy Level settings

for each source.

3. For Power Query Editor options, check the boxes for Display the Query Settings pane

and Display the Formula Bar.

4. When finished, click the OK button in the bottom-right corner of the Options dialog to

apply these settings.

Note that it may be necessary to restart Power BI Desktop for the revised settings to take effect.

Next, we cover options that should be set for the current file.

CURRENT FILE options
The CURRENT FILE options must be set per Power BI Desktop file and are particularly important

when creating a new dataset:

1. Click on Data Load under CURRENT FILE

2. Under Type Detection, disable the option to Detect column types and headers for

unstructured sources

3. Under Relationships, disable all options, including Import of relationships from

data sources on first load, Update or delete relationships when refreshing data, and

Autodetect new relationships after data is loaded

4. Under Time intelligence, disable the Auto date/time option

5. For larger import datasets with many queries, disable the checkbox for Enable parallel

loading of tables under Parallel loading of tables

6. Click the OK button in the bottom-right corner of the Options dialog to apply these

settings

Chapter 2 69

Your CURRENT FILE | Data Load settings should look like Figure 2.10:

Figure 2.10: Power BI Desktop Options – CURRENT FILE | Data Load settings

Note that some of these same settings can be applied at the GLOBAL level as well, such as Type

Detection and Relationships settings. The dataset designer should explicitly apply the appropriate

data types within the M queries, accessing any unstructured sources, such as Excel files. Likewise,

the dataset designer should have access to data source documentation or subject matter experts

regarding table relationships.

Preparing Data Sources70

Furthermore, the columns and hierarchies of the dataset’s date dimension table can be used

instead of the automatic internal date tables associated with the Auto Date/Time option. The

creation of automatic date/time hierarchies for every date or date/time field within a dataset can

significantly increase the size of import mode datasets due to the generally high cardinality of

date and date/time columns.

Large Power BI datasets with multiple fact tables can contain many queries, which, if executed

in parallel, can overwhelm the resources of the source system, resulting in a data refresh failure.

Disabling the parallel loading of tables, therefore, improves the availability of the dataset and

reduces the impact of the refresh process on the source server.

When Power BI Desktop is being used for report development rather than dataset development,

the Query reduction settings in the CURRENT FILE options can benefit the user experience.

These options, including the Disabling of cross-highlighting/filtering by default and enabling

Add an Apply button for each slicer to apply changes when you’re ready and Add a single

Apply button to the filter pane to apply changes at once, result in fewer report queries being

generated. Particularly for large and DirectQuery datasets, these options can contribute to more

efficient and responsive self-service experiences with reports.

This concludes the overview of data sources and data source settings. We’ll next move on to

another important subject in data preparation prior to the creation of actual queries, SQL views.

SQL views
As described in the Dataset planning section of Chapter 1, Planning Power BI Projects, a set of SQL

views should be created within the data source and these SQL views, rather than the database

tables, should be accessed by the Power BI dataset. SQL views are essentially virtual tables that

provide an abstraction layer from the underlying database tables. SQL views can be used to merge

database tables and to limit the number of columns, thus preventing such transformations from

occurring within Power Query queries.

Each fact and dimension table required by the Power BI dataset should have its own SQL view and

its own M query within the dataset that references this view. The SQL views should preferably

be assigned to a dedicated database schema and identify the dimension or fact table represented

as shown in Figure 2.11:

Chapter 2 71

Figure 2.11: Views assigned to BI schema in SQL Server

A common practice is to create a database schema specific to the given dataset being created

or to the specific set of reports and dashboards required for a project. However, as suggested

in the Data warehouse bus matrix section of Chapter 1, Planning Power BI Projects, there shouldn’t

be multiple versions of dimensions and facts across separate datasets—version control is a top

long-term deliverable for the BI team. Therefore, a single database schema with a generic name

(BI in this example) is recommended.

The existence of SQL views declares a dependency to source tables that are visible to the data source

owner. In the event that a change to the source tables of a view is needed or planned, the SQL view

can be adjusted, thus avoiding any impact on the Power BI dataset, such as a refresh failure or an

unexpected change in the data retrieved. As shown in Figure 2.12, a view (BI.vDim_Promotion) is

identified as a dependent object of the DimPromotion dimension table:

Figure 2.12: SQL Server Object Dependencies

Preparing Data Sources72

For mature data warehouse sources, the simple query logic contained in each SQL view is sufficient

to support the needs of the dataset. However, with Power BI (and Analysis Services tabular), BI

teams can also leverage M functions to further enhance the value of this data. Such enhancements

are covered in the M query examples section of Chapter 3, Connecting to Sources and Transforming

Data with M. For now, we’ll move on to the subject of the differences between using SQL views

versus M queries for data transformation.

SQL views versus M queries
A common question in Power BI projects specific to data retrieval is whether to implement any

remaining transformation logic outside the data source in SQL views, within the M queries of the

dataset, or both. For Analysis Services projects prior to SQL Server 2017, the layer of SQL views

was the only option to implement any transformations and some BI teams may prefer this more

familiar language and approach.

In some scenarios, the dataset author doesn’t have the permissions necessary to create or alter

SQL views in the source database. In other scenarios, the dataset author may be stronger or more

comfortable with M queries relative to SQL. Additionally, given the expanded role of M queries

in the Microsoft ecosystem, such as in Dataverse and Azure Data Factory (ADF) pipelines, other

BI teams may see long-term value in M queries for lightweight data transformation needs.

Ideally, an organization’s data warehouse already includes the necessary data transformations

and thus minimal transformation is required within SQL or M. In this scenario, the M query for

the table can simply reference the SQL view of the table, which itself contains minimal to no

transformations, and inherit all required columns and logic.

As a secondary alternative, the SQL views can be modified to efficiently implement the required

logic, thus isolating this code to the data source. As a third design option, M queries can implement

the required logic and, via query folding, generate a SQL statement for execution by the source.

Yet another design option, though less than ideal due to transformation logic existing in two

different places and languages, is to implement part of the required logic in the SQL view and

the remaining logic in the M query.

The guiding principle of the data retrieval process for the import mode dataset is to leverage

the resources and architecture of the data source. The M queries of the Power BI dataset, which

access the layer of SQL views in the source system, ultimately represent the fact and dimension

tables of the data model exposed for report development and ad hoc analysis. This model should

address all data transformation needs, thus avoiding the need for DAX-calculated columns and

DAX-calculated tables.

Chapter 2 73

Additionally, the data model in Power BI (or Analysis Services) should remain aligned with

the architecture and definitions of the data warehouse. If a gap is created by embedding data

transformation logic (for example, new columns) into the Power BI dataset that is not present

in the data warehouse, plans should be made to eventually migrate this logic back to the data

warehouse in order to restore alignment.

In other words, a user or tool should be able to return the same results of a Power BI report based on

the Power BI dataset by issuing a SQL query against the source data warehouse. This is particularly

essential in environments with other BI and reporting tools built on top of the data warehouse.

If it’s necessary to use both SQL views and M functions to implement the data transformation logic,

then both queries should be documented and, when possible, this logic should be consolidated

closer to the data source.

As shown in Figure 1.16, Dataset planning architecture, from Chapter 1, Planning Power BI Projects,

there are six layers in which data logic can be implemented. This figure is repeated as Figure 2.13

for convenience:

Figure 2.13: Dataset planning architecture

Data retrieval processes should strive to leverage the resources of data sources and avoid or

minimize the use of local resources. For example, a derived column implemented within either

SQL Views (layer 3) or M Queries (layer 4) that folds its logic to the data source is preferable to

a column created by DAX Calculated Tables and Columns (layer 5).

Preparing Data Sources74

Likewise, if data transformation logic is included within M queries (for example, joins or group

by), it’s important to ensure these operations are being executed by the source system as described

in the Query folding section earlier in this chapter. These considerations are especially critical for

large tables given the relatively limited resources (for example, CPU and memory) of a Power BI

dataset or the data gateway if applicable.

Additionally, the dimension and fact tables of the Power BI dataset and any DAX measures created

should represent a single version for the organization—not a customization for a specific team

or project sponsor. Therefore, although the combination of SQL views and M queries provides

significant flexibility for implementing data transformations and logic, over time this logic should

be incorporated into corporate data warehouses and Extract-Transform-Load (ETL) processes

so that all business intelligence tools have access to a common data source.

Incrementally migrate transformation logic closer to the corporate data warehouse over time. For

example, a custom column that’s originally created within an M query via the Table.AddColumn()

function and a conditional expression (if...then) could subsequently be built into the SQL view

supporting the table, thus eliminating the need for the M query logic.

In the second and final stage, the column could be added to the dimension or fact table of the

corporate data warehouse and the conditional expression could be implemented within a standard

data warehouse ETL package or stored procedure. This final migration stage would eliminate the

need for the SQL view logic, improve the durability and performance of the data retrieval process,

and in some scenarios also increase the feasibility of a DirectQuery dataset.

With the differences between SQL views and M queries understood, let’s next explore some

examples of SQL views.

SQL view examples
As mentioned, the capabilities of source data systems, such as the creation of SQL views in SQL

Server, should be leveraged when possible to transform data. Each SQL view should only retrieve

the columns required for the dimension or fact table. If necessary, the views should apply business-

friendly, unambiguous column aliases with spaces and proper casing.

Dimension table views should include the surrogate key used for the relationship-to-fact tables.

As shown by the product dimension example later in this section, include the business or natural

key column if historical tracking must be maintained.

Chapter 2 75

Fact table views should include the foreign key columns for the relationships to the dimension

tables, the fact columns needed for measures, and a WHERE clause to only retrieve the required

rows, such as the prior three years. Given the size of many data warehouse fact tables and the

differences in how this data can best be accessed, as per the Query design per dataset mode section

earlier in this chapter, dataset designers should ensure that the corresponding SQL views are

efficient and appropriate for the dataset.

A robust date dimension table is critical for almost all datasets and thus its SQL view and/or M

query has a few unique requirements. For example, date dimension tables should include integer

columns that can define the default sort order of weekdays as well as sequentially increasing

integer columns to support date intelligence expressions.

The date table should also include a natural hierarchy of columns (that is, Year, Year-Qtr, Year-

Mo, Year-Wk) for both the Gregorian (standard) calendar as well as any custom fiscal calendar.

These columns enable simple drill-up/down experiences in Power BI and report visualizations at

different date granularities that span multiple time periods, such as the prior two years by week.

Given the static nature of the date (and time) dimension tables, their minimal size, and their

near-universal application in reports and dashboards, it’s usually a good use of IT/BI resources

to enhance the source date table in the data warehouse. This could include any derived columns

currently supported via SQL views or M queries as well as columns uniquely valuable to the

organization, such as company holidays.

Any dynamic columns, such as Calendar Month Status (Current Month, Prior Month), can be

computed within a SQL-stored procedure or an ETL package and this processing can be scheduled

to update the source date table daily.

For our first example, we take a look at building a date dimension view.

Date dimension view
Nearly all data models include some sort of date table due to the importance of tracking metrics

important to an organization over time. Table 2.1 shows sample data from a date dimension SQL

view that includes several columns needed by the Power BI dataset:

Preparing Data Sources76

Date
Calendar

Year

Calendar

Yr-Qtr

Cal-

endar

Yr-Mo

Calendar

Yr-Wk

Calen-

dar Year

Month

Number

Calendar

Month

Status

Calen-

dar Year

Status

Prior

Calendar

Year Date

2/26/2022 2022 2022-Q1
2022-

Feb

2022-

WK9
110

Prior

Calendar

Month

Current

Calendar

Year

2/26/2021

2/27/2022 2022 2022-Q1
2022-

Feb

2022-

WK9
110

Prior

Calendar

Month

Current

Calendar

Year

2/27/2021

2/28/2022 2022 2022-Q1
2022-

Feb

2022-

WK9
110

Prior

Calendar

Month

Current

Calendar

Year

2/28/2021

3/1/2022 2022 2022-Q1
2022-

Mar

2022-

WK9
111

Current

Calendar

Month

Current

Calendar

Year

3/1/2021

Table 2.1: Sample date dimension columns

The Calendar Year Month Number column can be used to define the default sort order of the

Calendar Yr-Mo column and can also support date intelligence DAX measure expressions that

select a specific time frame, such as the trailing four months. Likewise, a Prior Calendar Year

Date (or prior fiscal year date) column can be referenced in date intelligence measure

expressions.

The Calendar Month Status and Calendar Year Status columns make it easy for report

authors to define common filter conditions, such as the current and prior month or the current

year excluding the current month.

Additionally, since the values for these columns are updated either by a daily job in the source

database or computed within the SQL view for the date dimension, the filter conditions for these

columns only need to be set once.

Power BI Desktop supports relative date filtering conditions for date columns by default. Similar

to the Calendar Month Status and Calendar Year Status columns identified earlier, this feature

is also useful in defining many common report filter conditions, such as the last 20 days. However,

relative date filtering is not comprehensive in the conditions it supports and thus it often doesn’t

support specific report requirements.

Chapter 2 77

Dataset developers should work with data warehouse developers and/or data engineers in the

organization to ensure that the date dimension table contains the logical columns necessary to

simplify report development and avoid the need for report authors to regularly update the date

filters in their reports. As one example, an organization that runs on a fiscal calendar distinct from

the standard Gregorian calendar can benefit from columns that can filter for the current fiscal

period or the latest closed period. Additional details regarding relative date filtering are available

in Chapter 7, Creating and Formatting Visualizations.

The following SQL statement from the date dimension view (BI.vDim_Date) leverages the CURRENT_

TIMESTAMP() function to compute two dynamic columns (Calendar Year Status and Calendar

Month Status) and the DATEPART() function to retrieve the date rows from January 1st of three

years ago through to the current date:

SELECT

 D.[FullDateAlternateKey]

,

 CASE

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP) THEN
'Current Calendar Year'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP)-1 THEN
'Prior Calendar Year'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP)-2 THEN
'2 Yrs Prior Calendar Year'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP)-3 THEN
'3 Yrs Prior Calendar Year'

 ELSE 'Other Calendar Year'

 END AS [Calendar Year Status]

,

 CASE

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP) AND
MONTH(D.[FullDateAlternateKey]) = MONTH(CURRENT_TIMESTAMP) THEN 'Current
Calendar Month'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH,-
1,CAST(CURRENT_TIMESTAMP AS date))) AND

 MONTH(D.[FullDateAlternateKey]) = MONTH(DATEADD(MONTH,-1,CAST(CURRENT_
TIMESTAMP AS date))) THEN 'Prior Calendar Month'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH,-
2,CAST(CURRENT_TIMESTAMP AS date))) AND

 MONTH(D.[FullDateAlternateKey]) = MONTH(DATEADD(MONTH,-2,CAST(CURRENT_

Preparing Data Sources78

TIMESTAMP AS date))) THEN '2 Mo Prior Calendar Month'

 WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH,-
3,CAST(CURRENT_TIMESTAMP AS date))) AND

 MONTH(D.[FullDateAlternateKey]) = MONTH(DATEADD(MONTH,-3,CAST(CURRENT_
TIMESTAMP AS date))) THEN '3 Mo Prior Calendar Month'

 ELSE 'Other Calendar Month'

 END AS [Calendar Month Status]

FROM

DBO.DimDate as D

WHERE

D.[CalendarYear] >= DATEPART(YEAR,CURRENT_TIMESTAMP)-3 AND
D.[FullDateAlternateKey] <= CAST(CURRENT_TIMESTAMP as date);

Provided that the scheduled refresh of the import mode dataset is successful, reports with filter

conditions defined against the dynamic date columns, such as Calendar Month Status, are

updated automatically.

If the date columns in the SQL Server data source are only available as integers in YYYYMMDD format,

the following T-SQL expression can be used to produce a date data type within the SQL view:

CONVERT(date,CAST(F.OrderDateKey AS nvarchar(8)),112)

However, the Mark as date table feature can be used to leverage existing YYYYMMDD integer columns

for date relationships, as described in the following section.

Mark as date table
The DAX query language used by Power BI datasets comes with many time intelligence functions

for creating analytical measures such as DATESBETWEEN(), DATEADD(), and DATESYTD(). In order to

effectively utilize these functions, the dataset must have a table explicitly defined as a date table.

Most data warehouses store date columns as integers for query performance reasons. For example,

an Order Date Key column on a fact table would store the 20180225 (YYYYMMDD) value as an

integer data type to represent February 25th, 2018. Likewise, an existing date dimension table

in the data warehouse usually also contains a YYYYMMDD date key column to support the join to

these fact tables in SQL queries.

If this date dimension table also contains a date column and meets essential data integrity criteria,

the Mark as date table feature in Power BI Desktop can be used to leverage existing integer/whole

number columns representing dates for relationships.

Chapter 2 79

In Figure 2.14, the Date table has been selected in the Fields list in Power BI Desktop and the Mark

as date table icon has been selected from the Table tools tab of the ribbon:

Figure 2.14: Mark as Date Table

As shown in Figure 2.14, the column named Date, which is stored as a Date data type, has been

specified as the Date column to be used by the Mark as date table feature. Power BI validates

that this column meets the required criteria to function properly.

In addition to relationships based on YYYYMMDD columns, this feature enables DAX time intelligence

functions, such as SAMEPERIODLASTYEAR(), to work properly. Power BI uses the date column

specified by the model author in the Mark as date table setting in executing these expressions.

To utilize the Mark as date table feature, the Date column (Date data type) specified for the Mark

as date table feature must meet the following criteria:

• No null values.

• No duplicate values.

• Contiguous date values:

• There must be a single date value for each date from the earliest date to the latest

date. In other words, there can’t be any gaps or missing dates.

• If a date/time column is used, the timestamp must be the same for each value of

the column.

Preparing Data Sources80

We’ll now move on to a second SQL view example for the product dimension.

Product dimension view
As shown in the database diagram schema referenced in Chapter 1, Planning Power BI Projects, it’s

recommended to provide a consolidated or de-normalized dimension for datasets. In the following

view (BI.vDim_Product), three product dimension tables are joined and a logical column, Product

Category Group, is created to support a common reporting and analysis need:

SELECT

 P.ProductKey as 'Product Key'

, P.ProductAlternateKey as 'Product Alternate Key'

, P.EnglishProductName AS 'Product Name'

, ISNULL(S.EnglishProductSubcategoryName, 'Undefined') 'Product
Subcategory'

, ISNULL(C.EnglishProductCategoryName, 'Undefined') AS 'Product Category'

, CASE

 WHEN C.EnglishProductCategoryName = 'Bikes' THEN 'Bikes'

 WHEN C.EnglishProductCategoryName IS NULL THEN 'Undefined'

 ELSE 'Non-Bikes'

 END AS 'Product Category Group'

FROM

DBO.DimProduct AS P

LEFT JOIN DBO.DimProductSubcategory AS S

ON P.ProductSubcategoryKey = S.ProductSubcategoryKey

LEFT JOIN DBO.DimProductCategory AS C

ON S.ProductCategoryKey = C.ProductCategoryKey

In this example, it’s necessary to use LEFT JOIN since the product dimension table in the data

warehouse allows for null values in the foreign key column (ProductSubcategoryKey). Retrieving

the product rows that haven’t yet been assigned a subcategory or category is necessary for certain

reports that highlight future products. For these products, an ISNULL() function is used to replace

null values with an undefined value. Additionally, similar to the Date view, a CASE expression is

used to generate a column that groups the product rows into two categories (Bikes and Non-Bikes).

An additional aspect of the product dimension is that it is an example of a slowly changing

dimension. The implications of slowly changing dimensions as related to SQL views and queries

are covered in the following section.

Chapter 2 81

Slowly changing dimensions
As discussed in Chapter 1, Planning Power BI Projects, the historical tracking of core business entities,

such as customers and products, via slowly changing dimension ETL processes is an essential

requirement for data warehouses. While the ability to insert and update rows based on changes

in specific columns is well outside the scope of this chapter, we do wish to cover slowly changing

dimensions as related to the development of Power BI data queries.

The product dimension view retrieves both the surrogate key column used for relationships in

the dataset as well as the business key that uniquely identifies the given product or customer,

respectively. For example, as shown in Table 2.2, the same product (FR-M94B-38) is represented

by three product dimension rows (304, 305, 306) due to changes in its list price over time:

Product

Key

Product

Alternate Key

Product

Name

Product

List Price

Product

Start Date

Product

End Date

Product

Status

304 FR-M94B-38

HL Mountain

Frame –

Black, 38

$1,191 7/1/2011 12/28/2011 NULL

305 FR-M94B-38

HL Mountain

Frame –

Black, 38

$1,227 12/29/2011 12/27/2012 NULL

306 FR-M94B-38

HL Mountain

Frame –

Black, 38

$1,350 12/28/2012 NULL Current

Table 2.2: Slowly changing dimension processing applied to product dimension

DAX measures reference the business key or alternate key column of these dimension tables to

compute the distinct count of these entities. For dimensions without slowly changing dimension

processing applied, the foreign key column of the related fact table can be used to compute the

distinct count of dimension values associated with the given fact or event. Greater detail on these

measures is included in Chapter 5, Developing DAX Measures and Security Roles.

Summary
In this chapter, we’ve covered a number of important concepts, design principles, data source

settings, and source system preparation. This includes query folding, query design considerations

per dataset mode, important Power BI Desktop configuration settings, data source privacy levels,

and the layer of SQL views within a database source.

Preparing Data Sources82

Understanding these concepts and properly preparing source systems greatly aids the process of

connecting to and transforming data using Power BI.

In the next chapter, we’ll leverage the prepared source systems and design techniques described

in this chapter to connect to source systems and transform their data using Power Query (M).

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

3
Connecting to Sources and
Transforming Data with M

This chapter follows the environment and data source preparation described in Chapter 2, Preparing

Data Sources, by implementing Power Query (M) queries in a new Power BI Desktop file to retrieve

the required fact and dimension tables. Power Query queries are written in a data transformation

language commonly called “M” or can be generated via the Power Query Editor user interface.

These queries access data sources and optionally apply data transformation logic to prep the

tables for the Power BI data model.

Power Query (M) expressions are becoming ubiquitous throughout the entire Microsoft data

platform. These expressions are used with dataflows, which are reusable by multiple Power

BI datasets. They are also supported by Azure Data Factory (ADF) meaning that data mashup

processes that begin in Power BI can be scaled up if necessary. Finally, M queries underpin

dataflows within Dataverse, Microsoft’s operational data store.

The M query language includes hundreds of functions and several books have been written

regarding the language and its use. The greater purpose of this chapter is to understand M queries

in the context of a corporate Power BI solution that primarily leverages an IT-managed data

warehouse.

In this chapter, we use SQL Server and an Excel file as primary data sources for Power Query

(M) queries. Parameters and variables are used to access a set of SQL views reflecting the data

warehouse tables inside a SQL Server database and the Annual Sales Plan data contained in an

Excel workbook.

Connecting to Sources and Transforming Data with M84

Additional M queries are developed to support relationships between the sales plan and

dimension tables and to promote greater usability and manageability of the dataset. Examples of

implementing data transformations and logic within M queries, such as the creation of a dynamic

customer history segment column, are included. Finally, reusable queries called dataflows are

covered, as well as tools for editing and managing M queries, such as extensions for Visual Studio

and Visual Studio Code.

In this chapter, we cover the following topics:

• Types of Power Query M queries

• Creating Power Query M queries

• Power Query M query examples

• Dataflows

• Power Query M query editing tools

Let’s start by looking at the different types of M queries.

Types of Power Query M queries
In Chapter 2, Preparing Data Sources, SQL views were created, data sources configured, and the

Power BI Desktop environment options applied. With these tasks accomplished, the dataset

designer can finally start developing the data retrieval queries and parameters of the dataset.

Power Query (M) queries are the means by which data sources are connected to and data imported

into Power BI datasets. M queries are necessary to connect to data sources such as SQL views and

can also perform data transformation as required.

The Power Query M language is a functional coding language more formally called the Power

Query Formula Language. M includes over 700 functions that are used to connect to data and

perform transformations of that data. The lines of M code that connect to and transform data

are called a query.

There are a number of different types of queries that serve different purposes, including:

• Data source parameters

• Staging queries

• Fact and dimension queries

• Parameter table queries

• Security table queries

• Custom function queries

Chapter 3 85

This section explores each of these types of queries in detail. However, before delving into these

different types of queries, it is important to understand how queries can be organized in order to

achieve solutions that are more easily understood and maintained over time.

Organizing queries
Within the Power Query Editor of Power BI Desktop, group folders are used to organize M queries

into common categories such as Data Source Parameters, Staging Queries, Parameter Tables,

Fact Table Queries, Dimension Table Queries, and Bridge Table Queries as shown in Figure 3.1:

Figure 3.1: Power Query Editor in Power BI Desktop with group folders

New groups are created by right-clicking a query in the Queries pane and then choosing Move To

Group and finally New Group. Once groups are created, queries can be moved between groups

by dragging and dropping or by right-clicking the query, choosing Move to Group, and then

selecting the desired group.

The parameters and queries displayed in italics are included in the refresh process of the dataset

but not loaded to the dataset within Power BI Desktop. For example, the AdWorksSQLServer

query displayed in Figure 3.1 merely exposes the objects of the SQL Server database via the Sql.

Database() M function for other queries to reference. This query, along with the data source

parameters, is in italics and is used to streamline the data retrieval process such that a single

change can be implemented to update many dependent queries.

Connecting to Sources and Transforming Data with M86

Right-click a query or parameter in the Queries pane to expose the Enable load and Include in

report refresh properties as shown in Figure 3.2:

Figure 3.2: Enable load and Include in report refresh

For many datasets, the only queries that should be loaded to the data model are the dimension

and fact table queries and certain parameter table queries. In addition, there may be instances

where data within the source system is static, or unchanging. In these cases, there is no reason

to refresh the data within the dataset after the initial load and thus the Include in report refresh

option can be unchecked in order to save system resources and reduce refresh times.

We’ll now take a detailed look at the different types of M queries, starting with data source

parameters.

Data source parameters
In the previous section, Figure 3.1 displayed a group called Data Source Parameters. Parameters are

special M queries that do not access an external data source and only return a scalar or individual

value, such as a specific date, number, or string of text characters.

The primary use case for parameters is to centrally define a common and important value, such

as a server name or the name of a database, and then reference that parameter value in multiple

other queries. Like global variables, parameters improve the manageability of large datasets as

the dataset designer can simply revise a single parameter’s value rather than manually modify

many queries individually.

Additionally, Power BI dataset authors can use parameters to only load a sample of a table’s source

data to the local Power BI Desktop file and later load the entire table to the published Power BI

dataset. For example, starting and ending date parameters could be created and embedded in an

M expression that applies a filter condition when loading a table.

Chapter 3 87

The local Power BI Desktop file could use parameter values only representing a single month or

year date range, but the published dataset could load multiple years based on revised starting and

ending date parameter values. The dataset author or team can manipulate the parameter values

manually in the Power BI service or a script could be used that modifies the parameters via the

Power BI REST API. The Power BI REST API is described in the Power BI REST API and PowerShell

module section of Chapter 10, Managing Workspaces and Content.

Query parameters can be created and modified via the Manage Parameters dialog available on

the Home tab of the Power Query Editor. Figure 3.3 shows the Manage Parameters dialog, which

identifies the six parameters defined for the SQL Server database and the Microsoft Excel workbook:

Figure 3.3: Manage Parameters in Power Query Editor

Connecting to Sources and Transforming Data with M88

For this dataset, development and production environment database parameters (for example,

ProdServer and ProdDB) are configured with a list of valid possible values to make it easy and

error-free when switching data sources. For the same purpose, both the name of the Excel

workbook containing the annual Sales and Margin Plan and its file directory are also stored as

parameters.

The Suggested Values dropdown provides the option to allow any value to be entered manually,

for a value to be selected from a hardcoded list of valid values, and for a query that returns a list

(a value type in M, such as a table and a record) to dynamically populate a list of valid parameter

values. Given the small number of valid server names in this example and the infrequency of

changing production and development server names, the three suggested values have been entered

manually.

Parameters are often used with Power BI Template files to enable business users to customize

their own reports with pre-defined and pre-filtered queries and measures. For example, the user

would open a template and select a specific department, and this selection would be used to filter

the M queries of the dataset.

Additionally, parameters can be useful in defining the values used in the filtering conditions of

queries, such as the starting and ending dates, and in the calculation logic used to create custom

columns in M queries. Parameters are usually only used by other queries and thus not loaded

(italic font in Figure 3.3) but they can be loaded to the data model as individual tables with a

single column and a single row. If loaded, the parameters can be accessed by DAX expressions

just like other tables in the model.

We’ll now turn our attention to staging queries.

Staging queries
With the data source parameters configured, staging queries are used to expose the data sources to

the dimension and fact table queries of the dataset. For example, the AdWorksSQLServer staging

query merely passes the production server and production database parameter values into the

Sql.Database() M function as shown in Figure 3.1. This query results in a table containing the

schemas and objects stored in the database, including the SQL views supporting the fact and

dimension tables.

Chapter 3 89

The SalesPlanFilePath staging query used for the Annual Sales Plan Excel workbook source is very

similar in that it merely references the file name and file directory parameters to form a complete

file path, as shown in Figure 3.4:

Figure 3.4: Annual Sales Plan Staging Query—Excel Workbook

The third and final staging query, CurrentDateQry, simply computes the current date as a date

value as shown in Figure 3.5:

Figure 3.5: Current date staging query

Just like parameters, the results of staging queries, such as CurrentDateQry, can be referenced

by other queries, such as the filtering condition of a fact table. In the following sample M query,

the Table.SelectRows() function is used in the Internet Sales query to only retrieve rows where

the Order Date column is less than or equal to the value of the CurrentDateQry (for example

12/29/2021):

let

 Source = AdWorksSQLServer,

 ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],

 CurrentDateFilter = Table.SelectRows(ISales, each [Order Date] <=

 CurrentDateQry)

in

 CurrentDateFilter

Connecting to Sources and Transforming Data with M90

In this simple example, the same filter condition can easily be built into the SQL view (vFact_

InternetSales), supporting the fact table, and this approach would generally be preferable.

However, it’s important to note that the M engine is able to convert the final query variable

(CurrentDateFilter), including the reference to the staging query (CurrentDateQry), into a

single SQL statement via query folding.

In some data transformation scenarios, particularly with rapid iterations and agile project

lifecycles, it may be preferable to at least temporarily utilize efficient M queries within the Power

BI dataset (or Analysis Services model) rather than implement modifications to the data source

(for example, data warehouse tables or views).

As covered in the Query folding section of Chapter 2, Preparing Data Sources, if it’s necessary to

use M to implement query transformations or logic, the dataset designer should be vigilant in

ensuring this logic is folded into a SQL statement and thus executed by the source system. This

is particularly important for large queries retrieving millions of rows, given the limited resources

of the data gateway server (if applicable) or any provisioned capacities (hardware) with Power

BI Premium.

Staging queries can also be used with DirectQuery queries.

DirectQuery staging
It is possible to use staging queries even when working with DirectQuery. The database staging

query for a DirectQuery dataset is slightly different than an import mode dataset. For this query,

an additional variable is added to the let expression, as shown in the following example:

let

 Source = Sql.Database(ProdServer, ProdDB),

 DummyVariable = null

in

 Source

The additional variable (DummyVariable) is ignored by the query and the same Sql.Database()

function that references the server and database parameters for the import mode dataset can

also be used for the DirectQuery dataset.

With parameters and staging queries defined, we can now focus on the main data queries for our

facts and dimensions.

Chapter 3 91

Fact and dimension queries
All of the work performed thus far has really been preparation work for creating the queries that

connect to and import the data of interest, the tables for our facts and dimensions.

For import mode datasets, the M query is executed upon a scheduled refresh and the query results

are loaded into a compressed, columnar format. DirectQuery mode datasets and import queries

with the Enable load property disabled or not set (see the Organizing queries section in this chapter)

only define the SQL statement representing the given dimension or fact tables. The DirectQuery

data source utilizes these SQL statements to create SQL queries necessary to resolve report queries,

such as joining the Internet Sales query with the Product query.

With proper preparation, most M queries should simply access a single SQL view, apply minimal

to no transformations, and then expose the results of this query to the dataset as a dimension or

fact table. Such queries are referred to as source reference-only queries.

Source reference only
The following M query shown in Figure 3.6 references the SQL view (BI.vDim_Customer) via the

staging query (AdWorksSQLServer) and does not apply any further transformations:

Figure 3.6: Customer dimension query

As shown in Figure 3.6, the Customer query accesses the unique M record associated with the

schema (BI) and SQL view (vDim_Customer) from the table produced by the staging query

(AdWorksSQLServer). This record contains all field names of the staging table query including

the Data field that stores the SQL view. Referencing the Data field of the M record retrieves the

results of the SQL view.

Connecting to Sources and Transforming Data with M92

Since no M transformations are applied, the M query reflects the source SQL view, and changes
to the SQL view such as the removal of a column are automatically carried over to the Power BI
dataset upon the next refresh. The one-to-one relationship between the SQL view and the M
query is one of the primary reasons to favor implementing, or migrating, data transformation
logic to the data warehouse source rather than in the Power BI dataset.

Connecting to data warehouse databases such as Azure SQL Database or Azure SQL Managed
Instance should generally result in simple M query expressions with little to no transformations
required. Semi-structured and unstructured sources such as JSON and Excel files naturally require
more transformations to prepare the data for analysis. We’ll next look at a more complex query

resulting from connecting to an unstructured data source, Microsoft Excel.

Excel workbook – Annual Sales Plan
As demonstrated in the previous section, fact and dimension queries for structured data sources

such as SQL Server should generally involve source reference-only queries. However, for the import

mode dataset, the annual Sales and Margin Plan data is retrieved from a table object within an

Excel workbook, an unstructured data source.

In the following fact table query shown in Figure 3.7 (Sales and Margin Plan), the SalesPlanFilePath

staging query is referenced within an Excel.Workbook() data access function:

Figure 3.7: Sales and Margin Plan query from Excel workbook source

Chapter 3 93

As covered in the Power BI Desktop options section in Chapter 2, Preparing Data Sources, the automatic

data type detection option for unstructured sources should be disabled. Structured data sources

such as SQL Server explicitly define the data types for columns. For unstructured data sources,

the automatic data type detection feature attempts to analyze and determine the appropriate

data type for each column.

With automatic data type detection disabled, it is necessary to explicitly define the appropriate

data type for each column of the Excel table via the Table.TransformColumnTypes() function.

The Int64.Type, Currency.Type, and type number arguments used in this function correspond

to the Whole Number, Fixed Decimal Number, and Decimal Number data types, respectively.

For a DirectQuery dataset, the Sales and Margin Plan data would be retrieved from a SQL view

within the same database as the other fact and dimension tables as shown in Figure 3.8:

Figure 3.8: Sales and Margin Plan M query for DirectQuery dataset

The cost and time required to integrate the Sales and Margin Plan data into the data warehouse

database are one of the reasons that the default import mode dataset was chosen for this project.

The limitation of a single database within a single data source is currently one of the primary

limiting factors for DirectQuery datasets. In Figure 3.9, an error is thrown when trying to utilize

two databases from the same database server for a DirectQuery dataset:

Figure 3.9: DirectQuery limitation – Single Database

Connecting to Sources and Transforming Data with M94

This DirectQuery limitation can be overcome by using composite data models but this adds

additional complexity that is generally unwarranted in this scenario.

Let’s next look at queries designed to create tables that assist with building relationships within

a data model.

Parameter tables queries
Parameter table queries are developed for usability and manageability purposes.

From a usability standpoint, the Date Intelligence Metrics and Adventure Works Sales serve to

consolidate related measures in the Fields list that will be exposed to report authors and analysts

such that these users don’t have to scroll or hunt for measures. Additionally, the Current Date

query is used to provide reports with a text message advising of the latest data refresh date. From

a manageability standpoint, the Measure Support query is used to centralize intermediate or

branching DAX expressions that are referenced by many DAX measures.

As shown in Figure 3.10, a trivial expression is used for three of the four queries since the purpose

of the query is simply to provide a table name to the data model:

Figure 3.10: Adventure Works Sales Parameter Tables query

The Date Intelligence Metrics, Adventure Works Sales, and Measure Support queries all retrieve

a blank value and the Include in report refresh property is disabled. The following two chapters

demonstrate how these blank tables are utilized as data model metadata, and DAX measures are

added to the dataset in Chapter 4, Designing Import and DirectQuery Data Models, and Chapter 5,

Developing DAX Measures and Security Roles, respectively.

Chapter 3 95

The Current Date query is the only parameter table query executed with each report refresh. The

following M script for the Current Date query produces a table with one column and one record,

representing the current date as of the time of execution:

let

 RefreshDateTime = DateTime.LocalNow(),

 TimeZoneOffset = -5,

 RefreshDateTimeAdjusted = RefreshDateTime +
#duration(0,TimeZoneOffset,0,0),

 RefreshDateAdjusted = DateTime.Date(RefreshDateTimeAdjusted),

 TableCreate = Table.FromRecords({[CurrentDate =
RefreshDateAdjusted]}),

 DateType = Table.TransformColumnTypes(TableCreate,{"CurrentDate", type
date})

in

 DateType

All reported times in Microsoft Azure are expressed in Coordinated Universal Time (UTC).

Therefore, timezone adjustment logic can be built into the M query to ensure the last refreshed

date message reflects the local timezone.

In the preceding example, five hours are reduced from the DateTime.LocalNow() function,

reflecting the variance between US Eastern Standard Time and UTC. The adjusted datetime

value is then converted into a date value and a table is built based on this modified date value.

As shown in Figure 3.11, the Current Date query is used by a DAX measure to advise of the last

refreshed date:

Figure 3.11: Parameter Tables in Fields list and data refresh message

Calculating the current date and time in the Power BI query captures the date and time at the

time of refresh and can potentially be used as a support query for other queries within the dataset.

Connecting to Sources and Transforming Data with M96

The Current Date DAX expression simply surfaces this information within the report while

adding additional context for the report viewers.

The DAX expression supporting the last refreshed message is as follows:

Last Refresh Msg =

 VAR __CurrentDateValue = MAX('Current Date'[CurrentDate])

RETURN

 "Last Refreshed: " & __CurrentDateValue

An additional example of using DAX to return a string value for title or label purposes is included

in the Drill-through report pages section of Chapter 6, Planning Power BI Reports.

As datasets grow larger and more complex, BI teams or dataset designers may add or revise group

names to better organize M queries. For example, the four parameter group queries in this section

serve three separate functions (fields list, last refreshed date, and DAX logic centralization).

To experienced Power BI and Analysis Services Tabular developers, a parameter table is understood

as a custom table of parameter values loaded to a model and exposed to the reporting interface.

DAX measures can be authored to detect which value (parameter) has been selected by the user

(for example, 10% growth, 20% growth) and dynamically compute the corresponding result. For

this dataset, the concept of parameter tables is extended to include any query that is loaded to

the data model but not related to any other table in the data model.

Most large Power BI datasets include data source parameters, staging queries, fact and dimension

queries, relationship table queries, and parameter tables queries. We’ll next cover two optional

types of queries, security table queries and custom function queries.

Security table queries
Security table queries support the inclusion of tables for the express purpose of implementing

row-level security (RLS) for the dataset. Such queries may be required in circumstances where

each user should only see their own data. In these circumstances a security table can import the

user principal names (UPNs) of users with access to reports built against the dataset. Typically

the UPNs are the same values as user email addresses and the DAX function USERPRINCIPALNAME()

can be used to retrieve this value for applying security or other filtering requirement in the Power

BI service.

Based on the data security needs for this project described in Chapter 1, Planning Power BI Projects,

it’s not necessary to retrieve any tables for the purpose of implementing an RLS role.

Chapter 3 97

As shown in the Sample Power BI project template section in Chapter 1, Planning Power BI Projects,

the sales managers and associates should only have access to their Sales Territory groups, while

the vice presidents should have global access.

With these simple requirements, the security groups of users (for example, North America, Europe,

and the Pacific region) can be created and assigned to corresponding RLS roles defined in the data

model. See Chapter 5, Developing DAX Measures and Security Roles, for details on implementing

these security roles.

In projects with more complex or granular security requirements, it’s often necessary to load

additional tables to the data model such as a Users table and a Permissions table. For example,

if users were to be restricted to specific postal codes rather than sales territory groups, a dynamic,

table-driven approach that applies filters based on the user issuing the report request would be

preferable to creating (and maintaining) a high volume of distinct RLS roles and security groups.

Given the importance of dynamic (user-based) security, particularly for large-scale datasets,

detailed examples of implementing dynamic security for both import and DirectQuery datasets

are included in Chapter 5, Developing DAX Measures and Security Roles.

We’ll next look at another optional query type, custom function queries.

Custom function queries
Since the Power Query (M) language is a functional programming language, it is possible to create

custom functions as queries. These queries allow the creation of reusable code that can be used

to perform repeated data transformations, such as custom parsing, or perform calculations. In

the simple example below, a custom function is defined for calculating the age of customers in

the Customer table:

let CalculateAge = (BirthDate as date) =>

 Date.Year(CurrentDayQuery) - Date.Year(BirthDate)

in CalculateAge

This custom function takes a single parameter, BirthDate, which must be a date data type. The

Date.Year function is used on both the CurrentDayQuery reference and the BirthDate parameter

with the latter subtracted from the former in order to return the number of years. This function

can be saved as a query called GetAge and used within a custom column formula within the

Customer table as follows:

= GetAge([BirthDate])

Connecting to Sources and Transforming Data with M98

Additional examples and uses for custom functions can be found in the official Microsoft

documentation at the following link: https://bit.ly/33VJfRz.

You should now understand all of the various types of Power Query (M) queries that can be

created during dataset development. We’ll next look at more specific details regarding M queries.

Creating Power Query M queries
As mentioned, the M language is a functional programming language that includes over 700

functions. Similar to other programming languages, M has its own specific syntax, structure,

operators, and data types that must be used when coding. Experienced Power Query (M)

developers, for example, are very familiar with Lists, Records, and Tables and common use cases

and M functions available for working with these specific types.

While a full exploration of the entire M language is beyond the scope of this book, there are

a number of important subjects regarding M that we cover in the following sections as well

as providing readers with examples of more complex M queries. For readers interested in fully

understanding the M language, we refer them to the official Power Query M language specification

found here: https://bit.ly/3vmFSyr.

We’ll first take a look at numeric data types in M.

Numeric data types
For structured data sources, such as SQL Server, the source column data types determine the data

types applied in Power BI. For example, a currency or money data type in SQL Server results in

a Fixed Decimal Number data type in Power BI. Likewise, the integer data types in SQL Server

result in a Whole Number data type and the numeric and decimal data types in SQL Server result

in Decimal Number data types in Power BI.

When an M query is loaded to the data model in a Power BI dataset, a Fixed Decimal Number data

type is the equivalent of a (19,4) numeric or decimal data type in SQL Server. With four digits to

the right of the decimal place, the use of the Fixed Decimal Number data type avoids rounding

errors. The Decimal Number data type is equivalent to a floating point or approximate data type

with a limit of 15 significant digits.

Given the potential for rounding errors with Decimal Number data types and the performance

advantage of Fixed Decimal Number data types, if four digits of precision is sufficient, the Fixed

Decimal Number data type is recommended to store numbers with fractional components. All

integer or whole number numeric columns should be stored as Whole Number types in Power BI.

https://bit.ly/33VJfRz
https://bit.ly/3vmFSyr

Chapter 3 99

Numeric columns in M queries can be set to Whole Number, Fixed Decimal Number, and Decimal

Number data types via the following expressions, respectively—Int64.Type, Currency.Type,

and type number. The Table.TransformColumnTypes() function is used in the following M

query example to convert the data types of the Discount Amount, Sales Amount, and Extended

Amount columns:

let

 Source = AdWorksSQLServer,

 Sales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],

 TypeChanges = Table.TransformColumnTypes(Sales,

 {

 {"Discount Amount", Int64.Type}, // Whole Number

 {"Sales Amount", Currency.Type}, // Fixed Decimal Number

 {"Extended Amount", type number} // Decimal Number

 })

in

 TypeChanges

As M is a case-sensitive language, the data type expressions must be entered in the exact case, such

as type number rather than Type Number. Note that single-line and multiline comments can be

included in M queries. See the M query examples section later in this chapter for additional details.

Given the impact on performance and the potential for rounding errors, it’s important to check

the numeric data types defined for each column of large fact tables. Additional details on data

types are included in Chapter 4, Designing Import and DirectQuery Data Models.

Next, we’ll look at item (record) access using M.

Item access in M
Accessing records from tables, items from lists, and values from records are fundamental to M

query development. In the following example, the results of the BI.vDim_Account SQL view are

returned to Power BI using a slightly different M syntax than the customer dimension query from

the previous section:

let

 Source = AdWorksSQLServer,

 AccountRecord = Source{[Name = "BI.vDim_Account"]},

 Account = AccountRecord[Data]

in

 Account

Connecting to Sources and Transforming Data with M100

For this query, a record is retrieved from the AdWorksSQLServer staging query based only on the

Name column. The Data field of this record is then accessed in a separate variable (Account) to

return the results of the BI.vDim_Account SQL view to Power BI. BI teams or the dataset designer

can decide on a standard method for accessing the items exposed from a data source staging query.

The following sample code retrieves the "Cherry" string value from an M list:

let

 Source = {"Apple","Banana","Cherry","Dates"},

 ItemFromList = Source{2}

in

 ItemFromList

M is a zero-based system such that Source{0} would return the "Apple" value and Source{4}

would return an error since there are only four items in the list. Zero-based access also applies to

extracting characters from a text value. For example, the Text.Range("Brett",2,2) M expression

returns the et characters.

The list value type in M is an ordered sequence of values. There are many functions available for

analyzing and transforming list values, such as List.Count() and List.Distinct(). List functions

that aggregate the values they contain (for example, List.Average()) are often used within

grouping queries that invoke the Table.Group() function. For a definitive list of all M functions,

we refer the reader to the Power Query M function reference found here: https://bit.ly/3bLKJ1M.

Next we’ll look at perhaps one of the most important aspects of M, query folding.

Power Query M query examples
As demonstrated in the examples thus far, the combination of a mature data warehouse and a layer

of SQL view objects within this source may eliminate any need for further data transformations.

However, Power BI dataset designers should still be familiar with the fundamentals of M queries

and their most common use cases, as it’s often necessary to further extend and enhance source data.

The following sections demonstrate three common data transformation scenarios that can

be implemented in M. Beyond retrieving the correct results, the M queries also generate SQL

statements for execution by the source system via query folding, and comments are included for

longer-term maintenance purposes.

If you’re new to M query development, you can create a blank query from the Other category of

data source connectors available within the Get Data dialog.

https://bit.ly/3bLKJ1M

Chapter 3 101

Alternatively, you can duplicate an existing query via the right-click context menu of a query in

the Power Query Editor and then rename and revise the duplicate query.

Trailing three years filter
The objective of this example is to retrieve dates from three years prior to the current year through

the current date. For example, on December 30th, 2021, the query should retrieve January 1st,

2018 through December 30th, 2021. This requirement ensures that three full years of historical

data, plus the current year, is always available to support reporting.

The starting date and current date values for the filter condition are computed via Date and

DateTime M functions and assigned variables names (StartDate, CurrentDate). Since the

starting date is always January 1st, it’s only necessary to compute the starting year and pass this

value to the #date constructor.

Finally, the two date variables are passed to the Table.SelectRows() function to implement the

filter on the Reseller Sales fact table view:

let

//Trailing Three Year Date Values

 CurrentDate = DateTime.Date(DateTime.LocalNow(),

 StartYear = Date.Year(CurrentDate)-3,

 StartDate = #date(StartYear,1,1),

//Reseller Sales View

 Source = AdWorksSQLServer,

 ResellerSales = Source{[Schema = "BI", Item = "vFact_ResellerSales"]}
[Data],

//Trailing Three Year Filter

 FilterResellerSales =

 Table.SelectRows(ResellerSales, each Date.From([OrderDate]) >=
StartDate and Date.From([OrderDate]) <= CurrentDate)

in

 FilterResellerSales

As shown in the View Native Query dialog available in the Applied Steps window of the Power

Query Editor, the custom filter condition is translated into a T-SQL statement for the source SQL

Server database to execute:

from [BI].[vFact_ResellerSales] as [_]

where [_].[OrderDate] >= convert(datetime2, '2018-01-01 00:00:00') and
[_].[OrderDate] < convert(datetime2, '2021-12-31 00:00:00')

Connecting to Sources and Transforming Data with M102

Note that the order of the variables in the expression doesn’t impact the final query. For example,

the two Reseller Sales view variables could be specified prior to the three date variables and the

final FilterResellerSales variable would still generate the same SQL query. Additionally, be

advised that M is a case-sensitive language. For example, referencing the variable defined as

StartDate via the name Startdate results in a failure.

Single-line comments can be entered in M queries following the double forward slash (//)

characters as per the trailing three years example. Multiline or delimited comments start with

the (/*) characters and end with the (*/) characters, just like T-SQL queries for SQL Server.

If the requirement was only to retrieve the trailing three years of data relative to the current date

(for example, December 30th, 2018 through December 30th, 2021) the StartDate variable could

be computed via the Date.AddYears() function, as follows:

//Trailing three years (e.g. October 18th, 2018 through October 18, 2021)

 CurrentDate = DateTime.Date(DateTime.LocalNow()),

 StartDate = Date.AddYears(CurrentDate,-3)

Finally, note that the standard AdventureWorksDW database only has reseller sales through 2013

so using the Date.AddYears() function to subtract years from the CurrentDate variable calculation

is necessary if you wish to display results from a standard AdventureWorksDW database.

In our next example, we use this trailing three years query but extend it so that in test and

production environments all years are loaded.

Combining queries
Multiple queries can be combined (appended) to one another through the use of the Table.

Combine function. This function can be extremely useful in situations such as Folder queries,

where multiple files with the same format need to be appended together into a single table within

the data model.

In this example, a parameter called Mode has been created with a list of available parameter values

of Dev, Test, and Prod. The following query checks the value of this parameter. If the parameter

is set to Dev, then only the trailing three years are returned using the query from the previous

example. Otherwise, the query from the previous example is combined with a table expression

that retrieves all additional years. The two table expressions are appended to one another using

the Table.Combine function:

let

//Trailing Three Year Date Values

Chapter 3 103

 CurrentDate = DateTime.Date(DateTime.LocalNow()),

 StartYear = Date.Year(CurrentDate)-3,

 StartDate = #date(StartYear,1,1),

 Results =

 if Mode = "Dev"

 then Trailing3Years

 else

 Table.Combine(

 {

 Trailing3Years,

 Table.SelectRows(

 AdWorksSQLServer{[Schema = "BI", Item =
"vFact_ResellerSales"]}[Data],

 each Date.From([OrderDate]) < StartDate)

 }

)

in

 Results

In this example, the Trailing3Years query would be set to not load into the data model and this

query would be used as the main fact table for reseller sales. By using this approach, developers

can work with a much smaller local dataset and then easily include all required data when the

dataset moves from development to testing and production environments. Staging deployments

in this manner is discussed in the Staged deployments section of Chapter 10, Managing Workspaces

and Content.

This example also demonstrates the use of if statements, which have an overall format of:

if <true/false expression> then <expression> else <expression>

In this example, the use of an if statement prevents the query from including all rows from

the vFact_ResellerSales table when the Mode is set to Dev, providing faster data loading for

developers and a smaller overall dataset size.

Our next example also deals with fact tables and involves incremental refresh.

Incremental refresh for fact tables
Incremental refresh is a power Power BI feature that can greatly decrease refresh times for

extremely large fact tables.

Connecting to Sources and Transforming Data with M104

Incremental refresh allows only part of the data (new and changed) within a table to be refreshed

versus reloading all rows during every refresh cycle, which is the default refresh behavior for

Power BI.

Using incremental refresh requires the use of two reserved parameters names, RangeStart and

RangeEnd. These parameters must be defined as a type of date/time. In the following example, the

internet sales query is modified to include filtering specific to the implementation of incremental

refresh:

let

 Source = AdWorksSQLServer,

 InternetSales = Source{[Schema="BI",Item="vFact_InternetSales"]}
[Data],

 FilterRows = Table.SelectRows(InternetSales, each [OrderDateKey] >
ConvertDateKey(RangeStart) and [OrderDateKey] <= ConvertDateKey(RangeEnd))

in

 FilterRows

The code in the FilterRows step uses the Table.SelectRows() function in conjunction with

the RangeStart and RangeEnd parameters as well as a custom function, ConvertDateKey. The

ConvertDateKey function is necessary because the OrderDateKey surrogate key column is used.

The OrderDateKey column is a surrogate key column because it stores the date as an integer value

in the form of YYYYMMMDD instead of as a date or date/time data type.

The ConvertDateKey custom function code is provided next:

let ConvertDateKey = (DateTime as datetime) =>

 Date.Year(DateTime) * 10000 + Date.Month(DateTime) * 100 + Date.
Day(DateTime)

in

 ConvertDateKey

When filtering the table using the RangeStart and RangeEnd parameters, it is important that only

one of the comparison conditions contains an equal to (=) clause. Otherwise, duplicate data may

result since certain rows of data may fulfill the end condition of one refresh cycle and the start

condition of the next refresh cycle.

The initial refresh cycle for that dataset loads all rows of data within the dataset and the RangeStart

parameter is set automatically by the service. The subsequent refresh cycle sets the RangeEnd

parameter to the current date and time such that only new and updated data is added to the

data table.

Chapter 3 105

Next, we’ll turn our attention to M query examples for dimensions, starting with the customer

query.

Customer history column
In this example, the goal is to add a column to the customer dimension table that groups the

customers into four categories based on the date of their first purchase. Specifically, the new

column needs to leverage the existing first purchase date column and assign the customer rows

to one of the following four categories—First Year Customer, Second Year Customer, Third Year

Customer, and Legacy Customer.

Since the column is computed daily with each scheduled refresh, it is used by the sales and

marketing teams to focus their efforts on new and older customer segments.

A combination of date functions and conditional logic (if..then..else) is used with the Table.

AddColumn() function to produce the new column:

let

// Customer History Date Bands

 CurrentDate = DateTime.Date(DateTime.LocalNow()),

 OneYearAgo = Date.AddYears(CurrentDate,-1),

 TwoYearsAgo = Date.AddYears(CurrentDate,-2),

 ThreeYearsAgo = Date.AddYears(CurrentDate,-3),

//Customer Dimension

 Source = AdWorksSQLServer,

 Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],

 CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment",

 each

 if [DateFirstPurchase] >= OneYearAgo then "First Year Customer"

 else if [DateFirstPurchase] >= TwoYearsAgo and [Customer First
Purchase Date] < OneYearAgo then "Second Year Customer"

 else if [DateFirstPurchase] >= ThreeYearsAgo and [Customer First
Purchase Date] < TwoYearsAgo then "Third Year Customer"

else "Legacy Customer", type text)

in

 CustomerHistoryColumn

Connecting to Sources and Transforming Data with M106

As shown in Figure 3.13 from the Power Query Editor, the Customer History Segment column

produces one of four text values based on the DateFirstPurchase column:

Figure 3.12: Customer History Segment column in Power Query Editor

Like the previous M query example of a trailing three year filter, the conditional logic for the

derived customer column is also translated into T-SQL via query folding:

 [_].[DateFirstPurchase] as [DateFirstPurchase],

 [_].[CommuteDistance] as [CommuteDistance],

 case

 when [_].[DateFirstPurchase] >= convert(date, '2013-12-30')

 then 'First Year Customer'

 when [_].[DateFirstPurchase] >= convert(date, '2012-12-30') and
[_].[DateFirstPurchase] < convert(date, '2013-12-30')

 then 'Second Year Customer'

 when [_].[DateFirstPurchase] >= convert(date, '2011-12-30') and
[_].[DateFirstPurchase] < convert(date, '2012-12-30')

 then 'Third Year Customer'

 else 'Legacy Customer'

 end as [Customer History Segment]

from [BI].[vDim_Customer] as [_]

The two dynamic columns (Calendar Year Status and Calendar Month Status) included in

the date dimension SQL view earlier in this chapter could also be computed via M functions.

We’ll now provide additional details regarding the final parameter to the Table.AddColumn()

function, in this case type text.

Derived column data types
The final parameter to the Table.AddColumn() function is optional but should be specified to

define the data type of the new column.

Chapter 3 107

In the Customer History Segment column example, the new column is defined as a text data type.

If a whole number column was created, an Int64.Type would be specified, such as the following

example:

MyNewColumn = Table.AddColumn(Product, "My Column", each 5, Int64.Type)

If the data type of the column is not defined in the Table.AddColumn() function or later in the

query via the Table.TransformColumnTypes() function, the new column is set as an Any data

type, as shown in the following screenshot:

Figure 3.13: Data Type of Any

Columns of the Any data type are loaded to the data model as a text data type. Dataset designers

should ensure that each column in every query has a data type specified. In other words, as a best

practice, the Any (that is, unknown) data type should not be allowed in M queries.

We’ll now move on to providing an additional M query example for the product dimension.

Product dimension integration
The SQL view for the product dimension referenced in Chapter 2, Preparing Data Sources, contained

the following four operations:

1. Join the Product, ProductSubcategory, and ProductCategory dimension tables into a

single query

2. Create a custom product category group column (for example, Bikes versus Non-Bikes)

3. Apply report-friendly column names with spaces and proper casing

4. Replace any null values in the Product Subcategory and Product Category columns

with the 'Undefined' value

Connecting to Sources and Transforming Data with M108

Like almost all operations available to SQL SELECT queries, the same query can also be created

via M functions. If the SQL view for the product dimension cannot be created within the data

source, the following M query produces the same results:

let

 Source = AdWorksSQLServer,

//Product Dimension Table Views

 Product = Source{[Schema = "BI", Item = "vDim_Product"]}[Data],

 ProductSubCat = Source{[Schema = "BI", Item = "vDim_
ProductSubcategory"]}[Data],

 ProductCat = Source{[Schema = "BI", Item = "vDim_ProductCategory"]}
[Data],

//Product Outer Joins

 ProductJoinSubCat = Table.
NestedJoin(Product,"ProductSubcategoryKey",ProductSubCat,
"ProductSubcategoryKey","ProductSubCatTableCol",JoinKind.LeftOuter),

 ProductJoinSubCatCol = Table.
ExpandTableColumn(ProductJoinSubCat,"ProductSubCatTableCol",
{"EnglishProductSubcategoryName",
"ProductCategoryKey"},{"Product Subcategory", "ProductCategoryKey"}),

 ProductJoinCat = Table.NestedJoin(ProductJoinSubCatCol,
"ProductCategoryKey",ProductCat,
"ProductCategoryKey","ProductCatTableCol",JoinKind.LeftOuter),

 ProductJoinCatCol = Table.ExpandTableColumn(ProductJoinCat,
"ProductCatTableCol", {"EnglishProductCategoryName"},{"Product
Category"}),

//Select and Rename Columns

 ProductDimCols = Table.SelectColumns(ProductJoinCatCol,
{"ProductKey","ProductAlternateKey",
"EnglishProductName","Product Subcategory","Product Category"}),

 ProductDimRenameCols = Table.RenameColumns(ProductDimCols,{

 {"ProductKey", "Product Key"},{"ProductAlternateKey","Product
Alternate Key"},{"EnglishProductName","Product Name"}

 }),

//Product Category Group Column

 ProductCatGroupCol = Table.AddColumn(ProductDimRenameCols,
"Product Category Group", each

 if [Product Category] = "Bikes" then "Bikes"

Chapter 3 109

 else if [Product Category] = null then "Undefined"

 else "Non-Bikes"

,type text),

//Remove Null Values

 UndefinedCatAndSubcat = Table.ReplaceValue(ProductCatGroupCol,null,
"Undefined",Replacer.ReplaceValue,{"Product Subcategory","Product
Category"})

in

 UndefinedCatAndSubcat

The three product dimension tables in the dbo schema of the data warehouse are referenced from

the AdWorksSQLServer staging query described earlier in this chapter.

The Table.NestedJoin() function is used to execute the equivalent of the LEFT JOIN operations

from the SQL view, and the Table.ExpandTableColumn() function extracts and renames the

required Product Subcategory and Product Category columns.

Following the selection and renaming of columns, the Product Category group column is

created via a conditional expression within the Table.AddColumn() function. Finally, the

Table.ReplaceValue() function replaces any null values in the Product Category and Product

Subcategory columns with the 'Undefined' text string. The Power Query Editor provides a

preview of the results as shown in Figure 3.14:

Figure 3.14: Power Query Editor preview of Product M query

Despite the additional steps and complexity of this query relative to the previous M query examples

(trailing three years filter, Customer History Segment column), the entire query is translated

into a single SQL statement and executed by the source SQL Server database. The View Native

Query option in the Applied Steps pane of the Power Query Editor reveals the specific syntax of

the SQL statement generated via query folding:

select [_].[ProductKey] as [Product Key],

 [_].[ProductAlternateKey] as [Product Alternate Key],

 [_].[EnglishProductName] as [Product Name],

 case

 when [_].[EnglishProductSubcategoryName] is null

Connecting to Sources and Transforming Data with M110

 then 'Undefined'

 else [_].[EnglishProductSubcategoryName]

 end as [Product Subcategory],

 case

 when [_].[EnglishProductCategoryName] is null

 then 'Undefined'

 else [_].[EnglishProductCategoryName]

 end as [Product Category],

 case

 when [_].[EnglishProductCategoryName] = 'Bikes' and [_].
[EnglishProductCategoryName] is not null

 then 'Bikes'

 when [_].[EnglishProductCategoryName] is null

 then 'Undefined'

 else 'Non-Bikes'

 end as [Product Category Group]

from

Note that a dedicated SQL view object in the BI schema (for example, BI.vDim_ProductSubcategory)

is accessed for each of the three product dimension tables. As per the SQL views section of Chapter

2, Preparing Data Sources, it’s recommended to always access SQL views from Power BI datasets,

as this declares a dependency with the source tables.

Note that the Table.Join() function could not be used in this scenario given the requirement for

a left outer join and the presence of common column names. With a left outer join, the presence

of common column names, such as ProductSubcategoryKey or ProductCategoryKey, for the

tables in the join operation would cause an error.

Although a left outer join is the default behavior of the Table.NestedJoin() function, it’s

recommended to explicitly specify the join kind (for example, JoinKind.Inner, JoinKind.

LeftOuter, or JoinKind.LeftAnti) as per the ProductJoinSubCat and ProductJoinCat variables

of the M query. As a refresher of the types of joins available in Power Query, please refer to the

following link: https://bit.ly/3wWquJK.

Note that, in general, if the Table.Join function can be used then it should be preferred over

Table.NestedJoin. The reason is that Table.NestedJoin uses local resources to perform the

join operation while Table.Join can be folded back to the source system and is thus generally

more performant. It is worth noting then that the Merge operation available in the Power Query

Editor graphical user interface (GUI) performs a Table.NestedJoin by default.

https://bit.ly/3wWquJK

Chapter 3 111

Whenever any unstructured or business user-owned data sources are used as sources for a Power

BI dataset, it’s usually appropriate to implement additional data quality and error-handling logic

within the M query.

For example, a step that invokes the Table.Distinct() function could be added to the Sales

and Margin Plan query that retrieves data from the Excel workbook to remove any duplicate

rows. Additionally, the third parameter of the Table.SelectColumns() function (for example,

MissingField.UseNull) can be used to account for scenarios in which source columns have

been renamed or removed.

While the M language provides extensive data transformation capabilities on its own, some

experienced data professionals may be more comfortable with other languages like R and Python.

We cover this topic in the next example.

R and Python script transformation
It’s possible to execute an R or Python script within an M query as part of a data transformation

process.

As shown in Figure 3.15, the Run R script and Run Python script commands are available on the

Transform tab of the Power Query Editor in Power BI Desktop:

Figure 3.15: Run R script and Run Python script commands in Power Query Editor

To execute an R script or Python script in Power BI Desktop, R or Python need to be installed

on the local machine as well as any packages used by the script. If the data gateway is used, R,

Python, and appropriate packages must be installed on the server running the data gateway as

well. Most importantly, for the scripts to work properly when the dataset is published to the

Power BI service, the privacy levels for the data sources need to be set to Public.

Connecting to Sources and Transforming Data with M112

For most organizations, this limitation rules out the use of R and Python scripts for data

transformations in Power BI. Additionally, the presence of R and Python scripts adds another

layer of complexity to a solution that already includes SQL, M, and DAX.

Let’s next look at another way to create Power Query (M) queries using dataflows.

Dataflows
Simply stated, dataflows are Power Query M queries created in the Power BI service. For non-My

Workspace workspaces, the Power BI service provides an interface nearly identical to the Power

Query Editor in Power BI Desktop for creating and editing Power Query queries.

Dataflows access source systems in the same manner as Power Query queries created in Power

Query Editor within Power BI Desktop. However, the data ingested from these queries for import

mode dataflows is stored in Dataverse-compliant folders within an Azure Data Lake Storage Gen2

instance. Dataflows can also be created for DirectQuery access to source systems.

There are several key advantages to the use of dataflows within enterprise BI. Chief among these

advantages is reusability. Once created, a dataflow can be used as a data source within multiple

different Power BI Desktop files during dataset design. Power BI dataflows are an option when using

the Get data feature in both Power BI Desktop and Power Query Editor as shown in Figure 3.16:

Figure 3.16: Power BI dataflows as a data source

This means that the data transformation logic within a query can be created once and leveraged

across multiple different datasets, making the creation of datasets more efficient, more

standardized, and less error-prone.

Chapter 3 113

The second key advantage of dataflows for import mode datasets is that the dataflow isolates the

source systems from the Power BI datasets. This means that refreshes from Power BI datasets pull

from the Azure Data Lake Storage Gen2 instance instead of the source systems themselves, keeping

the loading of data refreshes from multiple Power BI datasets from impacting the source systems.

The dataflow can be refreshed once, and then refreshes in all Power BI datasets utilizing the

dataflow only impact the highly scalable Azure Data Lake Storage Gen2 instance and not the

source systems. This is even more important if the source data system accessed by the dataflow

is on-premises and requires a data gateway.

Since the data pulled by Power BI Desktop datasets is in an Azure Data Lake Storage Gen2 instance,

no data gateway is required for refreshing these datasets. The data gateway is only required when

refreshing the dataflow itself.

The isolation of the source data systems from the Power BI datasets also has an advantage in

terms of security. Instead of providing access credentials for data source systems to multiple

dataset designers, the enterprise BI team can now simply provide authorization credentials to

the dataflow and not the source systems.

While an idealized state for enterprise BI would include a single data warehouse and a

corresponding single Power BI dataset for reporting purposes, such an idealized state is often

not possible. For example, a customized product list might be stored by the marketing team in

a SharePoint site and this data is not planned to be included in the corporate data warehouse

any time soon. However, this list is applicable to multiple Power BI datasets that support sales,

marketing, and supply chain.

In such a situation, a single dataflow could be created that connects to this source file and applies the

necessary transforms. The sales, marketing, and supply chain datasets could then all connect to this

one dataflow such that any updates to this central source naturally flow to all dependent datasets.

As mentioned, dataflows provide several key advantages. When used within Power BI Premium,

additional features are exposed and available for dataflows.

Power BI Premium dataflow features
Power BI Premium supports additional dataflow features, including the Enhanced compute

engine, DirectQuery, Computed entities, Linked entities, Incremental refresh, and machine

learning capabilities in the form of AutoML.

Connecting to Sources and Transforming Data with M114

The enhanced compute engine can dramatically decrease refresh speeds for complex

transformations such as joins, group by, filter, and distinct operations. As previously mentioned,

creating dataflows for DirectQuery sources is supported but only in Premium. It is important to

note that composite models that have both import and DirectQuery sources currently do not

support the inclusion of dataflows as a data source within these composite models.

Computed entities allow you to perform in-storage computations, combining data from

multiple dataflows into a new, merged entity or enhancing an existing entity. For example, a

Product dataflow could be enhanced by adding information from Product Category and Product

Subcategory dataflows.

Similar to computed entities, linked entities allow you to reference other dataflows in order to

perform calculations (computed entities) or establish a table that serves as a single source of

truth for other dataflows.

Finally, AutoML automates the data science behind the creation of machine learning (ML) models,

enabling the automatic recognition of patterns, sentiment analysis, and other ML use cases.

To wrap up this chapter, we’ll explore the different editing tools used to create M queries.

Power Query M editing tools
Similar to other languages and project types, code-editing tools are available to support the

development, documentation, and version control of M queries.

In addition to the Advanced Editor within Power BI Desktop and the dataflows editing interface

of the Power BI service, dataset designers can use Visual Studio or Visual Studio Code to author

and manage the M queries for Power BI and other Microsoft projects. These tools include common

development features, such as IntelliSense, syntax highlighting, and integrated source control.

We’ll explore the different tools supporting M query development in the following sections.

Advanced Editor
In Power BI Desktop and for dataflows in the Power BI service, the M code for each query can be

accessed from the Advanced Editor window within the Power Query Editor.

Chapter 3 115

With the Power Query Editor open, select a query of interest from the list of queries on the left

and click on the Advanced Editor icon from the Home tab to access the Advanced Editor dialog

shown in Figure 3.17:

Figure 3.17: Advanced Editor in Power BI Desktop

Experienced M query authors often use the data transformation icons available in the Power

Query Editor to quickly produce an initial version of one or a few of the requirements of the query.

The author then uses the Advanced Editor or an external M editing tool to analyze the M code

generated by the Power Query Editor and can revise or enhance this code, such as by changing

variable names or utilizing optional parameters of certain M functions.

For the most common and simple data transformation tasks, such as filtering out rows based

on one value of a column (for example, State = "Kansas"), the M code generated by the Power

Query Editor usually requires minimal revision. For more complex queries with custom or less

common requirements, the Power Query Editor graphical interface is less helpful and a greater

level of direct M development is necessary.

Connecting to Sources and Transforming Data with M116

While the Advanced Editor is convenient, it lacks proper source control integration, a deficiency

that can be solved through the use of alternative tools such as Visual Studio Code.

Visual Studio Code
Visual Studio Code is a free, lightweight code-editing tool from Microsoft that’s available on all

platforms (Windows, Mac, and Linux). An extension for Visual Studio Code, Power Query / M

Language, provides code-editing support for the Power Query M language as shown in Figure 3.18:

Figure 3.18: M query in Visual Studio Code

In this example, the same Product query viewed in the Advanced Editor of Power BI Desktop

has been copied into a Visual Studio Code file and saved with a (.pq) file extension. Once saved

with a supported file extension, code-editing features, such as colorization, auto-closing, and

surrounding detection, are applied. M query files can be opened and saved with the following

four file extensions—.m, .M, .pq, and .PQ.

It must be noted that M code developed in Visual Studio Code cannot be used directly by Power

BI. The code must be copied from Visual Studio Code or a source control repository and pasted

into Advanced Editor. However, experienced enterprise BI teams recognize the importance of

proper version control, especially as it relates to changes to underlying data tables and data

transformations.

Since the .pq file extension is used by the Power Query SDK for Visual Studio, this file extension

is recommended for storing M queries in Visual Studio Code, as well as in Visual Studio, which

we’ll cover in the next section.

Chapter 3 117

Visual Studio
Visual Studio is the full-featured version of the more lightweight Visual Studio Code and is a

premier integrated development environment (IDE) in wide use throughout the technology

industry. For Visual Studio 2015 and later, the Power Query SDK can be used to create data

connector and M query projects, as shown in Figure 3.19:

Figure 3.19: Power Query project types in Visual Studio

With a new PQ file solution and project in Visual Studio, the M queries of a Power BI dataset can

be added as separate (.pq) files, as shown in Figure 3.20:

Figure 3.20: Power Query project in Visual Studio 2019

Unlike the extension for Visual Studio Code, the file extension type for Power Query projects

is exclusively to (.pq. Most importantly, full M language IntelliSense is supported, making it

dramatically easier to find M functions relevant to specific data transformation operations.

IntelliSense is the general term for code-editing features such as code completion, content assist

(parameter information), and code hinting.

Connecting to Sources and Transforming Data with M118

Moreover, unlike the extension for Visual Studio Code, M queries can be executed from within

Visual Studio via the Power Query SDK for Visual Studio. To execute an M query in Visual Studio,

such as in the preceding example, click the Start button on the toolbar (green play icon) or press

the F5 key.

You can also right-click the Power Query project (for example, AdWorks Enterprise Import) to

configure properties of the M query project, such as the maximum output rows to return and

whether native queries can be executed.

To install the Power Query SDK for Visual Studio, access the Visual Studio Marketplace (Extensions

| Manage Extensions) and search for the name of the extension (Power Query SDK).

The Power Query SDK for Visual Studio enables standard integration with source control and

project management tools, such as Azure DevOps services (formerly Visual Studio Team Services).

This completes our exploration of connecting to sources and transforming data with M.

Summary
In this chapter, we’ve covered many of the components of the data retrieval process used to

support the dataset for this project as described in Chapter 1, Planning Power BI Projects. This

included constructing a data access layer and retrieval process for a dataset and using M queries

used to define and load the dimension and fact tables of the dataset.

In the next chapter, we’ll leverage the M queries and design techniques described in this chapter

to create import and DirectQuery data models.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

4
Designing Import, DirectQuery,
and Composite Data Models

This chapter utilizes the queries described in Chapter 3, Connecting To Sources And Transforming

Data With M, to create import, DirectQuery, and composite data models. Relationships are created

between fact and dimension tables to enable business users to analyze the fact data for both

Internet Sales and Reseller Sales simultaneously by using common dimension tables and across

multiple business dates. In addition, business users can compare these fact tables against the

Annual Sales and Margin Plan.

This chapter also contains recommended practices for model metadata such as assigning data

categories to columns and providing users with a simplified field list. Finally, we review common

performance analysis tools and optimization techniques for import and DirectQuery data models.

As described in the Dataset planning section of Chapter 1, Planning Power BI Projects, data models

can have modes of either import, DirectQuery, or composite. The implications of the design

choices for data models significantly influence many factors of Power BI solutions including

optimizations applied to source systems to support DirectQuery access and the configuration of

incremental data refresh for import mode fact tables.

In this chapter, we review the following topics:

• Dataset layers

• The data model

• Relationships

• Model metadata

Designing Import, DirectQuery, and Composite Data Models120

• Optimizing performance

We start by taking a look at the different layers within data models (datasets).

Dataset layers
As covered in Chapter 1, Planning Power BI Projects, and Chapter 3, Connecting To Sources And

Transforming Data With M, Power BI datasets are composed of three tightly integrated layers,

which are all included within a Power BI Desktop file.

The first layer, the M queries described in Chapter 2, Preparing Data Sources, connect to data

sources and optionally apply data cleansing and transformation processes to this source data to

support the Data Model.

The second layer, the Data Model and the subject of this chapter, primarily involves the

relationships defined between fact and dimension tables, hierarchies reflecting multiple levels

of granularity of a dimension, and metadata properties such as the sort order applied to columns.

The final layer of datasets is discussed in Chapter 5, Developing DAX Measures and Security Roles,

Data Analysis Expressions (DAX) measures. DAX measures leverage the Data Model to deliver

analytical insights for presentation in Power BI and other tools.

The term Data Model is often used instead of dataset, particularly in the context of Analysis

Services. Analysis Services Tabular models include the same three layers as Power BI datasets.

In other contexts, however, Data Model refers exclusively to the relationships, measures, and

metadata, but not the source queries. For this reason, and given the use of the term datasets in

the Power BI service, the term dataset (and dataset designer) is recommended.

Figure 4.1 summarizes the role of each of the three dataset layers:

Figure 4.1: Three layers of datasets

Chapter 4 121

At the Data Model layer, all data integration and transformations should be complete. For example,

while it is certainly possible to create additional columns and tables via DAX calculated columns

and tables, other tools such as data warehouse databases, SQL view objects, and M queries are

almost always better suited for this need.

Ensure that each layer of the dataset is being used for its intended role. For example, DAX measures

should not contain complex logic that attempts to work around data quality issues that can be

addressed at the source or in a transformation within a source query. Likewise, DAX measure

expressions should not be limited by incorrect data types (for example, a number stored as text) or

missing columns on the date table. Dataset designers and data source owners can work together

to keep the analytical layers of datasets focused exclusively on analytics.

Before diving into an exploration of the objectives for datasets, we first update the guidance from

the first edition of this book.

Power BI as a superset of Azure Analysis Services
In the first edition of this book, organizations would typically use Power BI for small and simple

self-service datasets but provision Azure Analysis Services (AAS) or SQL Server Analysis Services

(SSAS) resources for large models requiring enterprise features such as partitions and object-level

security. Microsoft has now closed prior feature and scalability gaps with Analysis Services and

added powerful modeling features exclusive to Power BI Premium-hosted datasets.

For example, only a Power BI dataset can be designed to blend import and DirectQuery data sources

(composite models), to include one or multiple aggregation tables to accelerate performance

over large sources, and only a Power BI dataset can have incremental refresh policies managed

by the Power BI service.

Given the new modeling scenarios supported by Power BI exclusive features as well as the reduced

management overhead provided by incremental refresh policies, new enterprise models are now

typically deployed to Power BI Premium workspaces. Likewise, existing Analysis Services models

are commonly migrated to Power BI Premium to take advantage of new enterprise modeling

features and to align with Microsoft’s product roadmap.

We now move on to dataset objectives.

Dataset objectives
The intent of a Power BI dataset is to provide a central “source of truth” data source that’s easy

to use for report authors and analysts, applies all required security policies, and reliably delivers

adequate performance at the required scale.

Designing Import, DirectQuery, and Composite Data Models122

For both Power BI projects and longer-term deployments, it’s critical to distinguish Power BI

datasets from Power BI reports and dashboards. Although Power BI Desktop is used to develop both

datasets and reports, a Power BI dataset is a tabular Analysis Services Data Model internally. Power

BI reports, which are also saved as .pbix files, only connect to the dataset and thus exclusively

leverage Power BI Desktop’s visualization features, such as bookmarks and slicer visuals.

As per Chapter 1, Planning Power BI Projects, datasets and reports are also associated with unique

technical and non-technical skills. A Power BI report developer, for example, should understand

visualization standards, the essential logic and structure of the dataset, and how to distribute

this content via Power BI Apps. However, the report developer doesn’t necessarily need to know

any programming languages and can iterate very quickly on reports and dashboards.

Given that the dataset serves as the bridge between data sources and analytical queries, it’s

important to proactively evaluate datasets relative to longer-term objectives. Large, consolidated

datasets should be designed to support multiple teams and projects and to provide a standard

version or definition of core metrics. Although organizations may enable business users to create

datasets for specific use cases, corporate BI solutions should not utilize datasets like individual

reports for projects or teams.

Table 4.1 summarizes the primary objectives of datasets and identifies the questions that can be

used to evaluate a dataset in relation to each objective:

Objective Success criteria

User interface How difficult is it for business users to build a report from scratch?

Are users able to easily find the measures and columns needed?

Version control Do the measures align with an official, documented definition?

Are the same dimensions reused across multiple business processes?

Data security Have row-level security (RLS) roles been implemented and thoroughly tested?

Are Azure Activity Directory (AAD) security groups used to implement

security?

Performance Are users able to interact with reports at the speed of thought or, at a minimum,

at an acceptable level of performance?

Are the base or primary DAX measures efficient?

Has a repeatable, performance testing process with baseline queries been

created?

Chapter 4 123

Scalability Can the dataset support additional business processes and/or history?

Can the dataset support additional users and workloads?

Analytics Does the dataset deliver advanced insights (out of the box)?

Are any local (report-level) measures or complex filters being used?

Availability What is the level of confidence in the data sources and the data retrieval

process?

Are there dependencies that can be removed or potential errors that can be

trapped?

Is the dataset being backed up regularly?

Manageability How difficult is it to implement changes or to troubleshoot issues?

Can existing data transformation and analytical logic be consolidated?

Table 4.1: Dataset objectives

Several of the objectives are self-explanatory, but others, such as availability and manageability,

are sometimes overlooked. For example, the same business logic may be built into many individual

DAX measures, making the dataset more difficult to maintain as requirements change. Additionally,

there may be certain hardcoded dependencies within the M queries that could cause a dataset

refresh to fail. Dataset designers and BI teams must balance the need to deliver business value

quickly while not compromising the sustainability of the solution.

To simplify individual measures and improve manageability, common logic can be built into a

small subset of hidden DAX measures. The DAX measures visible in the fields list can reference

these hidden measures and thus automatically update if any changes are necessary. This is very

similar to parameters and data source staging queries in M as per Chapter 3, Connecting To Sources

And Transforming Data With M. Examples of centralizing DAX logic are provided later in this

chapter within the Parameter tables section.

Now that we have covered dataset objectives, we next consider how objectives might compete

with one another.

Competing objectives
As a dataset is expanded to support more dimension and fact tables, advanced analytics, and more

business users, it may be necessary to compromise certain objectives in order to deliver others.

Designing Import, DirectQuery, and Composite Data Models124

A common example is the desire to maintain in-memory performance over very large source

tables in the hundreds of millions or even billions of rows. In this case, as it may not be technically

feasible or desirable to support the scalability with in-memory import mode tables, a composite

model could be created containing a DirectQuery reference to the large fact table and an import

(in-memory) aggregation table designed to resolve common, summary-level report queries.

In addition to competing objectives, external factors can also influence dataset design.

External factors
Just like any other database, a well-designed Power BI dataset may still fail to deliver its objectives

due to external factors. For example, Power BI reports can be created with wide, data-extract like

table visuals which result in expensive, inefficient queries given the columnar data store of Power

BI datasets. Likewise, report authors may try to include 12-15 or more visualizations on the same

report page resulting in throttling or performance issues as many users attempt to access this

report page concurrently.

Additionally, even when the compression of an import mode dataset is maximized and the DAX

measures are efficient, there may be insufficient hardware resources available to support the

given reporting workload. It’s the responsibility of the Power BI admin, as described in Chapter

1, Planning Power BI Projects, and potentially any delegated capacity administrators to utilize the

monitoring capabilities of Power BI and to provision the necessary resources to ensure sufficient

performance.

Now that the various design objectives, considerations, and external factors are understood, we

turn our attention to the dataset or data model itself.

The Data Model
The Data Model layer of the Power BI dataset consists of the Model view, the Data view, and the

Fields list exposed in the Report view. Each of the three views in Power BI Desktop is accessible

via an icon in the top-left menu below the toolbar, although the Data view is exclusively available

to import mode and composite datasets.

Let’s first take a look at the Model view.

The Model view
The Model view provides the equivalent of a database diagram specific to the tables loaded to

the dataset. The relationship lines and icons identify the cardinality of the relationship such as

the parent table (1) having a one-to-many (*) relationship with the child table.

Chapter 4 125

A solid line indicates that the relationship is active, while a dotted line denotes an inactive

relationship that can only be activated via the USERELATIONSHIP() DAX expression.

The arrow icons on the relationship lines advise whether cross-filtering is single-directional (one

arrow → one way) or bidirectional (two arrows). Composite models introduced the concept of

limited or weak relationships. Weak relationships are displayed with breaks in the relationship

line at either end and semi-circle line endings.

Figure 4.2 displays an example of the Model view. In Figure 4.2, only the Reseller to Reseller Sales

relationship is bidirectional and the relationships between all tables are active:

Figure 4.2: Model view

As shown in Figure 4.2 referencing the Reseller Sales tab, multiple views or layouts for the model

can be created in the Model view. Creating multiple layout diagrams such as one per fact table is

a good practice similar to creating and maintaining bus matrix documentation. Particularly with

larger models involving many tables, the ability to quickly view a model layout to understand

the tables and relationships relevant to a given scenario such as the Reseller Sales table and its

relationships makes the dataset more manageable.

Also shown in Figure 4.2, the bidirectional cross-filtering relationship between the Reseller table

and the Reseller Sales table, a filter applied to the Employee table would filter the Reseller Sales

table and then also filter the Reseller dimension table.

Designing Import, DirectQuery, and Composite Data Models126

Any column with a slashed circle and arc icon next to it on the right indicates that the column

is not visible in the Report view. For certain tables that are only used for internal logic, such as

bridge tables or measure support, the entire table can be hidden by clicking the circle and arc

(“eyeball”) icon to the right of the table name. Certain settings, such as Custom format strings,

can only be accessed via the Model view’s Properties pane.

Double-clicking a relationship line, or right-clicking the relationship line and choosing Properties,

displays the Edit relationship dialog which displays and allows you to modify the columns

defining the relationship, the Cardinality (One to one 1:1, One to many 1:*, Many to one *:1,

Many to many *:*), the Cross-filter direction (Single or Both), and whether the relationship is

active or passive. The Edit relationship dialog is shown in Figure 4.3.

Figure 4.3: Edit relationship dialog

Chapter 4 127

The bidirectional relationship between Reseller and Reseller Sales from this example is only

intended to demonstrate the graphical representation of relationships in the Model view.

Bidirectional relationships (Both) should only be applied in specific scenarios, as described in

the Bidirectional relationships section later in this chapter.

Figure 4.4 displays the Model view for a similar data model built as a composite data model.

Figure 4.4: Composite data model

In Figure 4.4, the Reseller, Employee, Product and Currency tables are import mode tables. The

Reseller Sales table is a DirectQuery mode table as designated by the solid bar above the table

name. Finally, the Date table is a a Dual mode table, meaning that this table supports both import

and DirectQuery. Dual mode tables have a dashed line above their table names.

Notice that the relationship lines are broken between the Reseller Sales table and the import mode

tables. This designates a weak relationship between these tables since they are using different

Storage modes.

However, since the Dates table is Dual mode, its relationship with Reseller Sales is not a weak

relationship since both support DirectQuery. It is important to note that only DirectQuery tables

can be switched to Dual mode using the Advanced section of the Model view’s Properties pane.

We next explore the Data view.

Designing Import, DirectQuery, and Composite Data Models128

The Data view
The Data view provides visibility to the imported rows for each table as well as important metadata,

such as the count of rows and the distinct values for columns. In Figure 4.5, the Freight column

of the Reseller Sales table has been selected in the Data view, as indicated by the vertical bar to

the left of the table icon at the top left:

Figure 4.5: Data view

Metadata of the column and/or table selected is displayed at the bottom of the Data view window.

For example, selecting the Freight column as per Figure 4.4 results in a status message noting

60,855 rows for the Reseller Sales table and 1,416 distinct values for the Freight column. If only

the table name is selected from the Fields List, only the count of rows imported to the table is

displayed at the bottom.

The count of rows, and particularly the count of distinct values in a column, is of critical importance
to import mode datasets. Columns with many unique values, such as primary keys or highly
precise numeric columns (that is, 3.123456), consume much more memory than columns with
many repeating values. Additionally, as a columnar database, the columns with a larger memory
footprint also require more time to scan in order to resolve report queries.

DirectQuery datasets do not include the Data view and thus common modeling features, such
as setting the data format of columns and measures, can only be accessed via the Column tools
tab in the Report view. The dataset designer of a DirectQuery dataset would select the column or
measure from the Fields list in the Report view and then access the relevant metadata property
from the Column tools tab, such as Data category and Sort by column.

Chapter 4 129

The availability of the Data view and its supporting metadata (for example, count of rows, discount

count of values) is a modeling convenience of import mode datasets over DirectQuery datasets.

In the absence of the Data view, DirectQuery modelers can use table report visuals on the Report

view to sample or preview the values and formatting of columns and measures.

We now explore the final view, the Report view.

The Report view
The Report view is primarily used for developing visualizations, but it also supports modeling

features, such as the creation of user-defined hierarchies. Figure 4.6 is a screenshot of a DirectQuery

dataset where the City column of the Customer table is selected in the Fields list:

Figure 4.6: Modeling options in Report view

The modeling features in the Report view are broken up between four different tabs, the Modeling

tab, Table tools tab, Column tools tab, and Measure tools tab (not shown in Figure 4.6 but

appearing instead of Column tools when a measure is selected).

The Column tools tab of the Report view provides access to column metadata for both import and

DirectQuery tables while the Measures tools tab provides access to similar metadata for measures.

As shown in Figure 4.6, the Data Category and Default Summarization metadata properties for

the City column have been set to City and Don’t summarize, respectively.

The Modeling tab of the Report view provides import and DirectQuery datasets access to common

modeling features, such as managing relationships, creating new DAX measures and columns,

and accessing RLS roles, although some of these functions are available on the Table tools and

Column tools tabs as well, such as Manage relationships.

Designing Import, DirectQuery, and Composite Data Models130

In terms of data modeling, the Model view and the Manage relationships dialog shown in Figure

4.7 are the most fundamental interfaces as these definitions impact the behavior of DAX measures

and report queries:

Figure 4.7: Manage relationships dialog

Relationships can be created, edited, and deleted from the Manage relationships dialog. For larger

models with many tables and relationships, the dataset designer can utilize both the Manage

relationships dialog and the Model view.

With the various different views explained, we next turn our attention to the different types of

tables present in most data models, starting with fact tables.

Fact tables
There are three fact tables for this dataset—Internet Sales, Reseller Sales, and the Sales

and Margin Plan. The ability to analyze and filter two or all three of these tables concurrently

via common dimensions, such as Date, Product, and Sales Territory, is what gives this dataset

its analytical value to the business.

Chapter 4 131

A Power BI report could contain visualizations comparing total Adventure Works Sales (Internet

Sales plus Reseller Sales) to the overall Sales and Margin Plan. This same report could also

include detailed visualizations that explain higher-level outcomes, such as the growth in online

customers or changes in the Reseller Sales margin rates:

Figure 4.8: Data Warehouse Bus Matrix

Each checkmark symbol in Figure 4.8 represents the existence of a relationship implemented either

directly between the fact and dimension tables in the Data Model or, in the case of the Sales and

Margin Plan, via bridge tables. See Chapter 1, Planning Power BI Projects, for more details on the

Data Warehouse Bus Matrix.

The Sales and Margin Plan is at a lower grain (less granular) than the Internet Sales and

Reseller Sales fact tables and thus cannot be filtered directly by columns such as Product Name.

For the Sales and Margin Plan fact table, an alternative model design, including bridge tables and

conditional DAX measures, is used to support cross-filtering from the Product, Sales Territory,

and Date dimension tables. See the Bridge tables section later in this chapter for more details.

We next provide more detail related to fact table columns.

Fact table columns
Fact tables should only contain columns that are needed for relationships to dimension tables and

numeric columns that are referenced by DAX measures. In some models, an additional column

that isn’t modeled in a dimension table and is needed for analysis, such as Sales Order Number,

may also be included in a fact table.

Given their size and central role in the dataset, fact tables often receive much greater analysis to

deliver optimal performance and scalability. Extremely large fact tables may be good candidates

for DirectQuery mode tables within a composite model if their size exceeds the capacity of an

import mode only dataset.

Designing Import, DirectQuery, and Composite Data Models132

Figure 4.9 shows a T-SQL query of the Reseller Sales source fact table where columns are computed

that produce the same values as the ExtendedAmount, SalesAmount, and TotalProductCost

columns:

Figure 4.9: Reseller Sales fact column logic

Only the UnitPrice, OrderQuantity, DiscountAmount, and ProductStandardCost columns are

needed for the import mode dataset since DAX measures can be written to embed the necessary

logic (for example, UnitPrice * OrderQuantity) for the ExtendedAmount, SalesAmount, and

TotalProductCost columns.

By not importing these columns to the Data Model, a significant amount of data storage is

saved and query performance is not compromised. Columns with few unique values, such as

OrderQuantity, can be highly compressed by import mode datasets and thus are lightweight to

store and fast to scan to resolve report queries.

The same three columns can also be removed from the Internet Sales fact table. The SUMX()

function is used in the DAX measures and only references the source columns (OrderQuantity,

UnitPrice, and ProductStandardCost).

The $0.04 difference between the sum of the Sales Amount column and the Sales Amount Calc

expression is caused by the DiscountAmount column being stored as a float (approximate) data

type. In almost every scenario, a variance this small ($.04 out of $80.4 M) is acceptable to obtain

the scalability benefit of not importing a fact table column.

Chapter 4 133

If the SQL View for the fact table is exclusively utilized by this dataset, then the three columns can

be removed there. If the SQL View cannot be modified, then the three columns can be removed

via an M query:

 let

 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),

 BI_vFact_ResellerSales = Source{[Schema="BI",Item="vFact_
ResellerSales"]}[Data],

 RemoveColumns = Table.RemoveColumns(BI_vFact_
ResellerSales,{"ExtendedAmount", "TotalProductCost", "SalesAmount"})

in

 RemoveColumns

The Table.RemoveColumns() function excludes three columns from the source SQL View, as

these columns only represent derived values from other columns that are included in the query.

Therefore, for an import mode dataset, DAX measures can be written to efficiently implement

these simple calculations via the source columns, such as Unit Price and Order Quantity.

However, for a DirectQuery dataset, these derived columns (for example, TotalProductCost)

would not be removed due to the performance advantage of the SUM() SQL expressions referencing

individual columns. The following chapter, Chapter 5, Developing DAX Measures and Security Roles,

contains details on implementing these DAX measures and other measure expressions.

Along with understanding fact columns, it is also important to pay attention to fact column data

types.

Fact column data types
It’s essential that the numeric columns of fact tables are assigned to the appropriate data types.

All integer columns, such as OrderQuantity, should be stored as a Whole number data type,

and decimal numbers are stored as either a Fixed decimal number or as a Decimal number. If

four decimal places is sufficient precision, a Fixed decimal number type should be used to avoid

rounding errors and the additional storage and performance costs of the Decimal number type.

Designing Import, DirectQuery, and Composite Data Models134

In Figure 4.10, the Freight column is stored as a Fixed decimal number type and, thus, despite a

format of six decimal places, only four significant digits are displayed to the right of the decimal

place:

Figure 4.10: Fixed decimal number data type

Dataset designers should check the numeric columns of fact tables and ensure that the appropriate

data type has been assigned for each column. For example, certain scientific columns may require

the deep precision available for decimal number types (15 significant digits), while accounting

or financial columns generally need to be exact and thus the internal (19, 4) data type of a Fixed

decimal number type is appropriate.

Note that the result of aggregated expressions against this fixed decimal column is a number of

the same type and, therefore, to avoid overflow calculation errors, also needs to fit the (19, 4) data

type. The Numeric Datatypes section in Chapter 3, Connecting to Sources and Transforming Data with

M, provides details on the relationship between M data types and data types in the Data Model,

as well as the function for converting column types in M queries.

The Data view shown in Figure 4.10 is not available for DirectQuery datasets. For DirectQuery

datasets, the data types of columns should be set and managed at the data source table level

such that Power BI only reflects these types. Revising data types during report query execution,

either via SQL views in the data source or the M queries in Power BI, can significantly degrade

the performance of DirectQuery datasets.

Finishing our exploration of fact tables, we next explain fact-to-dimension relationships.

Chapter 4 135

Fact-to-dimension relationships
Data models often follow a star schema pattern where multiple dimension tables are related to

a single fact table thus forming a “star” pattern when viewed visually. An example of this “star”

is shown in Figure 4.2.

To create the Data Model relationships identified in the Data Warehouse Bus Matrix from Figure

4.8, follow these steps:

1. Click Manage Relationships from the Modeling tab in the Report view.

2. From the Manage relationships dialog, click the New… command button at the bottom

to open the Create relationship dialog.

3. Choose the fact table, such as Internet Sales, for the top table via the dropdown and

then select the dimension table as shown in Figure 4.11:

Figure 4.11: Creating a relationship for the import mode dataset

Designing Import, DirectQuery, and Composite Data Models136

If the relationship columns have the same name, such as CurrencyKey in this example,

Power BI automatically selects the columns to define the relationship. Almost all rela-

tionships follow this Many to one(*:1) or fact-to-dimension pattern with the Cross-filter

direction property set to Single and the relationship set to active.

The two columns used for defining each relationship should be of the same data type. In

most relationships, both columns are of the whole number data type as only a numeric

value can be used with slowly changing dimensions. For example, a ProductKey column

could use the values 12, 17, and 27 to represent three time periods for a single product as

certain attributes of the product changed over time.

As more relationships are created, it can be helpful to switch to the Model view and move

or organize the dimension tables around the fact table. The Model view can make it clear

when additional relationships need to be defined and can be useful in explaining the

model to report authors and users.

4. Click the OK button to create the relationship and repeat this process to build the planned

star schema relationships for both the Internet Sales and Reseller Sales fact tables,

as shown in Figure 4.12:

Figure 4.12: Internet Sales relationships

All relationships from Internet Sales to a dimension table are active (solid line) except for two

additional relationships to the Date dimension table.

Chapter 4 137

In this dataset, the OrderDate is used as the active relationship, but two additional inactive (dotted-

line) relationships are created based on the DueDate and ShipDate columns of the fact table. DAX

measures can be created to invoke these alternative relationships via the USERELATIONSHIP()

DAX function, as shown in the following example:

Internet Net Sales (Due Date) = CALCULATE([Internet Net Sales],
USERELATIONSHIP('Internet Sales'[DueDateKey],'Date'[DateKey]))

Internet Net Sales (Ship Date) = CALCULATE([Internet Net
Sales],USERELATIONSHIP('Internet Sales'[ShipDateKey],'Date'[DateKey]))

The inactive relationships and their corresponding measures enable report visualizations based

on a single date dimension table, such as the following table:

Figure 4.13: Measures with active and inactive relationships

In this scenario, the Internet Net Sales measure uses the active relationship based on Order

Date by default, but the other measures override this relationship via the CALCULATE() and

USERELATIONSHIP() functions.

A common alternative approach to inactive relationships is to load additional date dimension

tables and create active relationships for each additional date column in the fact table (for example,

DueDate, ShipDate) to these tables. The columns for these additional date tables can be named

to avoid confusion with other date columns (for example, Ship Date Calendar Year) and some

teams or organizations are more comfortable with table relationships than DAX measures.

Additionally, this design allows for intuitive matrix-style visualizations with two separate date

dimensions (ShipDate, OrderDate) on the x and y axes filtering a single measure via active

relationships.

For DirectQuery datasets, the Assume referential integrity relationship property is critical for

performance as this determines whether inner- or outer-join SQL statements are generated to

resolve report queries. Assume referential integrity means that the column on the one side of

the relationship is never null or blank and that a corresponding value always exists on the many

side of the relationship.

Designing Import, DirectQuery, and Composite Data Models138

When enabled, as shown in Figure 4.14, inner-join SQL queries are passed to the source system

when report queries require columns or logic from both tables of the relationship:

Figure 4.14: Assume referential integrity

If Assume referential integrity is not enabled, outer-join SQL queries are generated to ensure that

all necessary rows from the fact table or many sides of the relationship are retrieved to resolve

the report query.

The query optimizers within supported DirectQuery sources, such as SQL Server and Oracle, are

able to produce much more efficient query execution plans when presented with inner-join SQL

statements. Of course, improved performance is of no value if the outer join is necessary to return

the correct results, thus it’s essential for referential integrity violations in the source system to

be addressed.

Having finished our exploration of fact tables, we next turn our attention to dimension tables.

Dimension tables
The columns of dimension tables give the measures from the fact tables context, such as Internet

Net Sales by sales territory country and calendar year. More advanced dimension columns, such

as the Customer History Segment column, described in Chapter 3, Connecting to Sources and

Transforming Data with M, can instantly give report visualizations meaning and insight.

In addition to their application within report visuals, such as the date axis of charts, dimension

columns are frequently used to set the filter conditions of an entire report, a report page, or a

specific visual of a report page. By default, Power BI lists dimension tables alphabetically in the

Fields list and also lists column names of tables alphabetically.

Just as dataset designers must ensure that all common DAX measures are included in the dataset,

dataset designers must also ensure that the necessary dimension columns are available to group,

filter, and generally interact with the dataset.

Two of the top usability features for dimension tables include hierarchies and custom sorting.

When implemented, these features enable users to explore datasets more easily, such as drilling

up, down, and through the columns of a hierarchy.

Chapter 4 139

Additionally, the Sort by column feature serves to generate logical report layouts, such as the

months of the year from January through December.

Just as we provided greater detail regarding fact tables in the previous sections, additional details

are provided about dimension tables in the following sections, starting with an explanation of

hierarchies.

Hierarchies
Dimension tables often contain hierarchical information where data in one column represents the

parent of another column. Such constructs are referred to as hierarchies and can be seen in the

Product dimension table where the Product Category Group column is the parent of the Product

Category column, which in turn is the parent of the Product Subcategory column.

To create a hierarchy, select the column in the Fields list that represents the top level of the

hierarchy and use the ellipsis to the right of the column name or right-click the column and select

the Create hierarchy option, as shown in Figure 4.15:

Figure 4.15: Creating a hierarchy

In this example, the Product Category Group column is the top level of the hierarchy and

Product Category is its child or lower level. Likewise, the Product Subcategory column is a

child of Product Category and the Product Name column is the lowest level of the hierarchy

under Product Subcategory.

To add columns to the hierarchy, click the ellipsis to the right of the given column or use the

right-click context menu to choose the Add to hierarchy option. Alternatively, the child columns

can be dragged and dropped onto the name of the hierarchy by holding down the left mouse

button when selecting the column. The levels of the columns can also be adjusted from within

the hierarchy by dragging and dropping column names.

Designing Import, DirectQuery, and Composite Data Models140

Dimension tables often contain hierarchical data, such as dates (year, quarter, month, week,

day) and geographies (country, state/province, city, zip code). As shown in the Date dimension

view section of Chapter 2, Preparing Data Sources, natural date hierarchies in which each column

value has only one parent (for example, 2017-Sep) are strongly recommended. Unnatural date

hierarchies can be confusing in reports as it isn’t clear which parent value (2015, 2016, 2017?)

a given child value, such as September, belongs to.

Once the hierarchy is created, a single click of the hierarchy name in the fields list adds all the

columns and their respective levels to the report visualization. In Figure 4.16, all four columns of

the Product Hierarchy are added to the Axis of a column chart to support drilling and interactive

filter behavior in Power BI:

Figure 4.16: Hierarchy in Report visual

Certain columns or levels of the hierarchy can optionally be removed from the specific visual.

For example, if the report developer only wishes to include Product Category and Product

Subcategory in a particular visual, the other two columns can be removed from the Axis field

well via the delete (X) icons.

The DAX language includes a set of parent and child functions, such as PATH() and PATHITEM(),

that can be used to create hierarchy columns when a dimension table contains a Parent Key

column. Common examples of this include an organizational structure with multiple levels of

management or a chart of financial accounts. Creating these columns via DAX functions is one of

the few examples when DAX-calculated columns may be preferable to other alternatives.

Another topic often related to dimension tables is custom sorting, which we explore in the

next section.

Chapter 4 141

Custom sort
Most dimension columns used in reports contain text values, and, by default, Power BI sorts

these values alphabetically. To ensure these columns follow their logical order (for example, Jan,

Feb, Mar) in report visualizations, it’s necessary to store a corresponding numeric column in the

same dimension table and at the same granularity. For example, in addition to a Month Name

column that contains the 12 text values for the names of the months, a Month Number column

is included in the date dimension with the value of 1 for every row with the January value for

Month Name, and so forth.

To set a custom sort order for a column, select the column in the Fields list in the Report view

and then click the dropdown for the Sort by column icon under the Column tools tab. Choose

the supporting column that contains the integer values, such as Month Name, as shown in the

following screenshot:

Figure 4.17: Sort by column

Most columns used as a Sort by column are not needed for report visualizations and can be

hidden from the fields list. Per the Date dimension view section in Chapter 2, Preparing Data Sources,

sequentially increasing integer columns are recommended for natural hierarchy columns, such as

Year Month, as these columns can support both logical sorting and date intelligence calculations.

Although the Month Name and Weekday Name columns are the most common examples for custom

sorting, other dimension tables may also require hidden columns to support a custom or logical

sort order. In the following example, an integer column is added to the Customer dimension M

query to support the logical sort order of the Customer History Segment column:

/*Preceding M query variables not included*/

//Customer History Segment Column

 CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment",

Designing Import, DirectQuery, and Composite Data Models142

 each

 if [DateFirstPurchase] >= OneYearAgo then "First Year Customer"

 else if [DateFirstPurchase] >= TwoYearsAgo and [DateFirstPurchase] <
OneYearAgo then "Second Year Customer"

 else if [DateFirstPurchase] >= ThreeYearsAgo and [DateFirstPurchase] <
TwoYearsAgo then "Third Year Customer"

 else "Legacy Customer", type text),

//Customer History Segment Column Sort

 CustomerHistColSort = Table.AddColumn(CustomerHistoryColumn, "Customer
History Segment Sort", each

 if [DateFirstPurchase] >= OneYearAgo then 1

 else if [DateFirstPurchase] >= TwoYearsAgo and [DateFirstPurchase] <
OneYearAgo then 2

 else if [DateFirstPurchase] >= ThreeYearsAgo and [DateFirstPurchase] <
TwoYearsAgo then 3 else 4, Int64.Type)

in

 CustomerHistColSort

With the integer column (Customer History Segment Sort) added to the Customer dimension

table and the Sort by column property of the Customer History Segment column set to reference

this column, Power BI reports visualize the Customer History Segment column by the logical

order of the four possible values (First Year Customer, Second Year Customer, Third Year

Customer, and Legacy Customer) by default.

Having covered both fact and dimension tables in detail, we next explore parameter tables.

Parameter tables
Parameter tables are often used to store and organize measures. As such, unlike relationship tables,

there are no relationships between the four parameter tables and any other tables in the model.

Figure 4.18 shows the four parameter tables in the model:

Chapter 4 143

Figure 4.18: Parameter tables

As shown in Figure 4.18, the four parameter tables are Adventure Works Sales, Date Intelligence

Metrics, Measure Support, and Current Date. Let’s take a closer look at these different

measure groups.

Measure groups
The Date Intelligence and Adventure Works Sales tables only serve to provide an intuitive

name for users to find related DAX measures. For example, several of the most important DAX

measures of the dataset include both Internet Sales and Reseller Sales. It wouldn’t make

sense for consolidated measures, such as Total Net Sales, to be found under the Internet

Sales or Reseller Sales fact tables in the field list.

Designing Import, DirectQuery, and Composite Data Models144

For similar usability reasons, Date Intelligence Metrics provides an intuitive name for users

and report developers to find measures, such as year-to-date, prior year-to-date, and year-over-

year growth. The two parameter tables, Date Intelligence Metrics and Adventure Works

Sales, effectively serve as display folders, as shown in Figure 4.19, a screenshot of the Fields list

from the Report view:

Figure 4.19: Fields list with parameter tables

To obtain the calculator symbol icon in the fields list, all columns have to be hidden from the

Report view and at least one DAX measure must reference the table in its Home Table property.

Once these two conditions are met, the show/hide pane arrow of the fields list highlighted in the

image can be clicked to refresh the Fields list.

In this example, the Adventure Works Sales and Date Intelligence Metrics tables both

contain only a single column (named Dummy) that can be hidden via the right-click context menu

accessible in the Model view, the Fields list of the Report view, and for import datasets the Data

view as well.

The columns of the three fact tables (Internet Sales, Reseller Sales, and Sales and Margin

Plan) are also hidden to provide users with an intuitive display of groups of measures at the top

of the fields list followed by dimensions and their hierarchies.

The Home table for a measure can be set by selecting it from the fields list and choosing a table

from the Home table dropdown on the Modeling tab in the Report view. As shown in Figure

4.20, the Internet Net Sales (PY YTD) measure is selected and Date Intelligence Metrics

is configured as its Home table:

Chapter 4 145

Figure 4.20: Home table property for DAX measures

Having explored the Adventure Works Sales and Date Intelligence Metrics parameter tables,

we next explore the Current Date table.

Last refreshed date
The Current Date table, as described in the Data source parameters section of Chapter 3, Connecting

to Sources and Transforming Data with M, contains only one column and one row, representing

the date at the time the source M query was executed. With this date value computed with each

dataset refresh and loaded into the Data Model, a DAX measure can be written to expose the date

to the Power BI report visuals. Figure 4.21 shows a screenshot from the Report view. A measure

named Last Refresh Msg uses a DAX variable to reference the parameter table and then passes

this variable to a text string:

Figure 4.21: Last refreshed message via the parameter table

Designing Import, DirectQuery, and Composite Data Models146

It’s common to include a last refreshed text message on at least one report page of every published

report. In the event the source dataset has failed to refresh for several days or longer, the text

message advises users of the issue. See Chapter 5, Developing DAX Measures and Security Roles, for

more information on DAX variables.

For DirectQuery datasets, the M query for the CurrentDate parameter table uses standard SQL

syntax within the Value.NativeQuery() function, such as the following:

let Source = AdWorksSQLServer,

 View = Value.NativeQuery(Source, "Select CAST(Current_Timestamp as
date) as [CurrentDate]")

in View

The Source variable references the AdWorksSQLServer staging query, as described in the previous

chapter. The Data source parameters section of Chapter 3, Connecting to Sources and Transforming

Data with M, contains the M query for the CurrentDate parameter table in the import mode

datasets.

Our last parameter table is the Measure Support table, which we detail in the following section.

Measure support logic
The purpose of the Measure Support table is to centralize DAX expressions that can be reused

by other measures. Since DAX variables are limited to the scope of individual measures, a set of

hidden, intermediate measures avoids the need to declare variables for each measure.

The intermediate, or branching, DAX measure expressions also make it easy and less error-prone

to implement a change as all dependent DAX measures are updated automatically. In this way, the

Measure Support table serves a similar function to the parameter and staging query expressions,

described in the previous chapter, for M queries.

For this dataset, DAX expressions containing the ISFILTERED() and ISCROSSFILTERED() functions

can be used to determine the granularity of the filter context for the Product, Sales Territory,

and Date dimension tables. If the user or report developer has applied a filter at a granularity not

supported by the Sales and Margin Plan fact table, such as an individual product or date, a

blank should be returned to avoid confusion and incorrect actual versus plan comparisons. The

following DAX measure tests the filter context of the Date dimension table and returns one of

two possible text values—Plan Grain or Actual Grain:

Date Grain Plan Filter Test =

 SWITCH(TRUE(),

Chapter 4 147

 NOT(ISCROSSFILTERED('Date')),"Plan Grain",

 ISFILTERED('Date'[Week of Year]) ||

 ISFILTERED('Date'[Date]) ||

 ISFILTERED('Date'[Weekday Name]) ||

 ISFILTERED('Date'[Calendar Yr-Wk]), "Actual Grain",

 "Plan Grain"

)

Similar filter test measures can be created for the Sales Territory and Product dimension tables.

All such measures should be hidden from the Report view, and the Home table property should

be set to Measure Support. Once these dimension-specific measures have been defined, a final

support measure can integrate their results, as shown in the following example:

Plan Grain Status =

 IF(

 [Date Grain Plan Filter Test] = "Plan Grain" &&

 [Product Grain Plan Filter Test] = "Plan Grain" &&

 [Sales Territory Grain Plan Filter Test] = "Plan Grain",

 "Plan Grain",

 "Actual Grain"

)

Given the logic built into the hidden measure support expressions, DAX measures can reference

the results and deliver the intended conditional behavior in report visualizations, as shown in

the following example of a variance-to-plan measure:

Internet Net Sales Var to Plan =

 IF(

 [Plan Grain Status] = "Actual Grain",

 BLANK(),

 [Internet Net Sales] - [Internet Net Sales Plan Amt]

)

These support measures can be used to ensure that if users are operating at a granularity or filter

not supported by the calculations that blank values are returned versus incorrect values.

With all four parameter tables explained, we next cover an alternative method of organizing

measures, Display folders.

Designing Import, DirectQuery, and Composite Data Models148

Display folders
With the advent of the Display folder metadata property for columns and measures, it is now

possible to use a single parameter table for all measures and also maintain an organized structure.

As shown in Figure 4.22, the Properties pane of the Model view can be used to set the Display

folder property:

Figure 4.22: Display folders

In Figure 4.22, the Home table for all measures is a table called Calculations and the Display folder

property for the Reseller Net Sales (PY YTD) measure has been set to Date Intelligence Metrics\

Reseller Sales. Thus, multiple folder levels are supported through the use of the backslash (\)

character to designate subfolders. Once a Display folder is created, measures can be organized into

the display folders by dragging and dropping the measures within the Fields pane of the Model view.

Whether multiple parameter tables are used or display folders is a design decision and one
approach may work better than another depending upon the business.

Chapter 4 149

However, if display folders are used, it is recommended to keep the folder hierarchy relatively flat
(only one or two levels) in order to not frustrate users by requiring them to expand many folders
in order to reach a particular measure.

We have now detailed all of the different types of tables within a data model as well as alternative
methods for organizing measures. The next section explores the relationships between these tables.

Relationships
Relationships play a central role in the analytical behavior and performance of the dataset. Based
on the filters applied at the report layer and the DAX expressions contained in the measures,
relationships determine the set of active rows for each table of the model that must be evaluated.
Therefore, it’s critical that dataset designers understand how relationships drive report behavior
via cross-filtering and the rules that relationships in Power BI must adhere to, such as uniqueness
and non ambiguity, as discussed in the next section.

Uniqueness
Relationships in Power BI data models are always defined between single columns in two separate
tables. While Power BI does support direct many-to-many relationships, it is recommended that
relationships with a cardinality of many-to-many be avoided because this implies that the related
columns both contain duplicate values for the related columns. Relationships based on columns
containing duplicate values on both sides of the relationship can result in poor performance and
incorrect or unexpected results, and are generally indicative of poor or messy data models.

A better design practice is to instead use relationship tables with unique values in order to relate
the many-to-many table relationships. Thus, a good design practice is that one of the two columns
defining a relationship uniquely identifies the rows of its table, such as the CurrencyKey column
from the Currency table in the Fact-to-dimension relationships section earlier in this chapter.

However, Power BI and Analysis Services tabular models do not enforce or require referential
integrity as with relationship uniqueness. For example, a sales fact table can contain transactions
for a customer that are not present in the customer dimension table. In such a circumstance, no
error message is thrown and DAX measures that sum the sales table still result in the correct amount,
including the new customer’s transactions. Instead, a blank row is added to the customer dimension
table by default for these scenarios (also known as early-arriving facts) and this row is visible when
the measure is grouped by columns from the customer dimension table in report visualizations.

If missing dimensions are an issue, the dataset designer can work with the data source owner
and/or the data warehouse team to apply a standard foreign key value (for example, -1) to these
new dimension members within an extract-transform-load (ETL) process and a corresponding
row can be added to dimensions with an unknown value for each column.

Designing Import, DirectQuery, and Composite Data Models150

In the rare event that a text column is used for a relationship, note that DAX is not case-sensitive

like the M language. For example, M functions that remove duplicates, such as Table.Distinct(),

may result in unique text values (from M’s perspective), such as Apple and APPLE. However, when

these values are loaded to the data model, these values are considered duplicates.

To resolve this issue, a standard casing format can be applied to the column within a Table.

TransformColumns() function via text functions, such as Text.Proper() and Text.Upper().

Removing duplicates after the standard casing transformation results in a column of unique

values for the data model.

Along with uniqueness, another important topic related to relationships is ambiguity, which we

explore in the next section.

Ambiguity
Data model relationships must result in a single, unambiguous filter path across the tables of

the model. In other words, a filter applied to one table must follow a single path to filter another

table—the filter context cannot branch off into multiple intermediate tables prior to filtering a

final table. In Figure 4.23, the Model view only shows one of the two relationships to the Auto

Accidents fact table is allowed to be active (solid line) versus inactive (dashed line):

Figure 4.23: Ambiguous relationships avoided

Chapter 4 151

When a filter is applied to the Auto Owners table, the inactive relationship between Insurance

Polices and Auto Accidents provides a single, unambiguous filter path from Auto Owners to

Auto Accidents via relationships with the Automobiles table. If the model author tries to set

both relationships to the Auto Accidents table as active, Power BI rejects this relationship and

advises of the ambiguity it would create, as shown in Figure 4.24:

Figure 4.24: Ambiguity error in the Edit relationship dialog

Given the active relationship between the Automobiles and Auto Accidents tables, if the

relationship between Insurance Policies and Auto Accidents was active, the Auto Owners

table would have two separate paths to filter the Auto Accidents table (via Insurance Policies

or via Automobiles).

With uniqueness and ambiguity understood, we now explain single-direction relationships in

greater detail.

Single-direction relationships
Single-direction cross-filtering relationships are the most common in Power BI datasets and

particularly for data models with more than one fact table. In this dataset, whether import or

DirectQuery, all relationships are defined with single direction cross-filtering except for the

relationships from Sales Territory, Product, and Date to their corresponding bridge tables,

as described in the following section on bidirectional relationships.

Designing Import, DirectQuery, and Composite Data Models152

Figure 4.25 shows a layout of the Model view that includes three of the seven dimension tables

related to Reseller Sales:

Figure 4.25: Single-direction relationships

As you can see from the arrow icons in the Model view shown in Figure 4.25, the filter context

in single-direction relationships exclusively navigates from the one side of a relationship to the

many side.

In the absence of any DAX expressions that override the default cross-filtering behavior, tables

on the one side of single-direction relationships are not filtered or impacted by filters applied to

the table on the many side of the relationship.

For example, the Employee table has 296 unique rows based on its EmployeeKey column. A measure,

such as Count of Employees, that references this column always returns the 296 value regardless

of any filters applied to other tables in the model.

There are, of course, valid business scenarios for allowing the filter context of the related fact

table to impact dimension measures, such as the Count of Employees or the Distinct Count

of Product Subcategories.

Chapter 4 153

Dataset designers can support these requirements by default via bidirectional cross-filtering

relationships, but in most scenarios this isn’t necessary or appropriate. Instead, for these DAX

measures, the CROSSFILTER() function can be applied to override the default single-direction

cross-filtering. See The CROSSFILTER Function section for the function syntax and a use

case example.

In the next section, we explore the implications of unnecessary complexity when defining

relationships between tables.

Direct flights only
For the most common and data-intensive report queries, always look to eliminate any unnecessary

intermediate relationships between dimension tables and fact tables.

In Figure 4.26, the Reseller table must filter an intermediate table (Reseller Keys) prior to

filtering the Reseller Sales fact table:

Figure 4.26: Anti-pattern: intermediate table relationships

Removing the intermediate table (connecting flight), Reseller Keys in this example, can

significantly improve performance by reducing the scan operations required of the DAX query

engine. The performance benefit is particularly acute with larger fact tables and dimensions

with many unique values. For small fact tables, such as a budget or plan table of 3,000 rows,

intermediate tables can be used without negatively impacting performance.

Now that we have explored single-direction relationships, we next cover bidirectional relationships.

Designing Import, DirectQuery, and Composite Data Models154

Bidirectional relationships
Bidirectional cross-filtering enables the filter context of a table on the many side of a relationship

to flow to the one side of the relationship. A common use case for bidirectional relationships is

represented in Figure 4.27:

Figure 4.27: Bidirectional cross-filtering for a many-to-many relationship

In this model, a customer can have many accounts and an individual account can be associated

with many customers. Given the many-to-many relationship between Customers and Accounts,

a bridge table (CustomerAccount) is created that contains the combinations of customer and

account key values.

Due to the many-to one relationship between CustomerAccount and Accounts, a filter applied

to the Customers table only impacts the Transactions fact table if bidirectional cross-filtering

is enabled from CustomerAccount to Accounts. Without this bidirectional relationship, a filter

applied to the Customers table would only impact the CustomerAccount table as single-direction

relationships only flow from the one side of the relationship to the many.

Chapter 4 155

Although powerful, and preferable for certain use cases, bidirectional relationships can lead to

unexpected or undesired query results. Additionally, the DAX CROSSFILTER() function makes it

possible to selectively implement bidirectional relationship behavior for specific measures.

We now explore the implications of bidirectional relationships in the context of shared dimension

tables.

Shared dimensions
In this dataset, the Sales Territory, Product, Date, Currency, and Promotion dimension tables

are related to both the Internet Sales and Reseller Sales fact tables. As shown in Figure 3.28,

these relationships and the three dimension tables specific to either fact table all have single-

direction cross-filtering enabled:

Figure 4.28: Shared dimension tables

Unlike the shared dimensions, the Reseller and Employee dimension tables are exclusively

related to the Reseller Sales fact table and the Customer dimension is exclusively related to

the Internet Sales fact table. This is a common scenario for larger models in that fact tables

both share dimensions and maintain their own exclusive relationships to certain dimension tables.

In general, it’s recommended to avoid bidirectional relationships between shared dimensions and

fact tables when there are also dimension tables exclusive to certain fact tables. This is because

such relationships generate filter contexts that business users often don’t expect or desire and

that don’t add analytical value.

Designing Import, DirectQuery, and Composite Data Models156

For example, if the relationship between Promotion and Reseller Sales was revised to allow for

bidirectional cross-filtering, a report that analyzed internet sales by customers would be impacted

by the filter selections of the Reseller and Employee dimension tables even though these two

tables are not related to Internet Sales.

In this example, the filter context would flow from the Reseller and/or Employee tables to

Reseller Sales but then, via the bidirectional relationship with Promotion, also filter the

Promotion table, and finally filter the Internet Sales fact table.

In almost all scenarios, the business would expect the Reseller and Employee tables to only filter

the Reseller Sales measures. For the rare cases in which this filtering behavior is useful or needed,

bidirectional cross-filtering can be enabled for specific measures via the CROSSFILTER() function.

A better use case for bidirectional relationships is between the exclusive dimension tables and

their fact tables, such as from Reseller to Reseller Sales or from Customer to Internet Sales.

These bidirectional relationships aren’t required given the CROSSFILTER() function and other

options available in DAX, but they allow simple measures against these dimensions, such as the

count of resellers to reflect the filter selections applied to other Reseller Sales dimensions, such

as Sales Territory and Product.

Bidirectional cross-filtering is also not allowed for certain relationships due to the ambiguity this

would create. In this dataset, Power BI Desktop rejects bidirectional relationships between the

Sales Territory, Product, and Date dimension tables with the Internet Sales and Reseller

Sales fact tables because this would create more than one filter path to the Sales and Margin

Plan fact table.

For example, a bidirectional relationship between Sales Territory and Reseller Sales

would allow the Product table to either filter the Sales and Margin Plan table via the Product

Subcategory bridge table, or filter the Reseller Sales table and then utilize the new bidirectional

relationship to filter the Sales Territory table and then its bridge table to the Sales and Margin

Plan table. Rather than guess at the correct or intended filter behavior, Power BI throws an error

and identifies the tables associated with the ambiguous condition.

Similar to shared dimensions, date dimensions also deserve special consideration when it comes

to bidirectional relationships and we explain this in the next section.

Date dimensions
Relationships between fact tables and date dimension tables should always use single-direction

cross-filtering.

Chapter 4 157

If bidirectional cross-filtering is used with date dimension tables, then filtered selections of other

dimension tables related to the given fact table, such as Promotion or Product, reduce the date

table rows available for date intelligence calculations.

Similar to the example with shared dimensions, although this adjusted filter context is technically

correct, it often produces unexpected or undesired results, such as only the dates in which internet

sales transactions were associated with a specific promotion type.

Note that the bidirectional relationship with the Date dimension table in this dataset is between

the Date table and the bridge table containing unique month values. The bridge tables are hidden

from the Report view and are not used to filter the Date table.

With the perils of bidirectional relationships understood, there are times when bidirectional

filtering is appropriate. Thus, we now explain how bidirectional filtering can be implemented

using the CROSSFILTER function.

The CROSSFILTER function
Similar to the USERELATIONSHIP() function that can invoke an inactive relationship for a specific

DAX measure, the CROSSFILTER() function can be used to implement a specific cross-filtering

behavior (single, bidirectional, none) for a specific measure. The cross-filtering behavior specified

in the measure overrides the default cross-filtering behavior defined for the relationship.

In Figure 4.29, an Employee Count measure only references the Employee dimension table and

therefore is not impacted by the filter selections of the Sales Territory Country slicer due to

the single direction relationship between Employee and Reseller Sales:

Figure 4.29: Bidirectional cross-filtering via the DAX CROSSFILTER function

The Employee Count (CF) measure, however, does adjust to reflect the Sales Territory Country

selections as well as any other dimension table filter selections that impact the Reseller Sales

fact table, such as the Date, Product, and Promotion dimension tables.

Designing Import, DirectQuery, and Composite Data Models158

In this example, the Reseller Sales fact table is first filtered to the set of Reseller Sales rows

associated with the Germany and United Kingdom sales territory countries. This filtered set of

Reseller Sales rows is then used to filter the Employee table resulting in three distinct employee

key values. The value of 3 represents the three salespeople associated with the Reseller Sales

of Germany and United Kingdom.

In the absence of any filter selections in the report, the Employee Count and Employee Count

(CF) measures return the same results (that is, 290 distinct IDs). The bidirectional cross-filtering

only occurs when either a filter selection has been applied to a related dimension table in the

report or within the DAX measure itself.

If the intent is to only count the distinct employee IDs associated with Reseller Sales and to

respect filter selections on related dimensions, the DAX measure can be written as follows:

CALCULATE(DISTINCTCOUNT(Employee[EmployeeAlternateKey]),'Reseller Sales')

See the Dimension metrics section of Chapter 5, Developing DAX Measures and Security Roles, for

more details.

The syntax for CROSSFILTER() is also very similar to USERELATIONSHIP(), as shown by the

following code block:

Employee Count = DISTINCTCOUNT(('Employee'[EmployeeAlternateKey]))

Employee Count (CF) =

 CALCULATE(

 DISTINCTCOUNT('Employee'[EmployeeAlternateKey]),

 CROSSFILTER('Reseller Sales'[EmployeeKey],'Employee'[EmployeeKey],

 Both)

)

The EmployeeAlternateKey column represents the business key or natural key of the employee.

The EmployeeKey column uniquely identifies each row of the Employee table and is used in the

relationship with Reseller Sales. Given the slowly changing dimension process, which adds a

new employee row when certain attributes of an employee change, it’s necessary to reference the

EmployeeAlternateKey column in the DISTINCTCOUNT() measures to only count each employee once.

The third parameter to CROSSFILTER() can be set to OneWay, Both, or None. Given the potential

for unexpected or undesired results when applying bidirectional cross-filtering relationships to

models with multiple fact tables, it’s generally recommended to selectively enable bidirectional

cross-filtering per measure, such as in the preceding example.

Chapter 4 159

There may be valid use cases for both single-direction and bidirectional cross-filtering relationships,

such as the two measures seen here. Including these alternative measures in the dataset doesn’t

violate the version control objective but does entail additional user training and documentation.

A report developer or business analyst can regularly provide brief tutorials or updated documents

on these measures and other dataset customizations.

We have now completed our exploration of relationships. The next section covers another aspect

of data models, model metadata.

Model metadata
Metadata is simply the concept of data or information about data. In Power BI, metadata is

available for tables, columns, and measures within a dataset.

The consistent and complete application of metadata properties, such as Default summarization

and Data category, greatly affect the usability of a dataset. With a solid foundation of tables,

column data types, and relationships in place, dataset designers and BI teams should consider all

primary metadata properties and their implications for user experience as well as any additional

functionality they can provide.

In the following sections, we explore many of the most important types of model metadata,

starting with the visibility of tables and columns.

Visibility
Data modelers can define the visibility of tables, columns, and measures within a dataset. In other

words, each of these elements can either be visible or hidden to report authors and business users

within the Report view.

Every table, column, and measure that isn’t explicitly needed in the Report view should be hidden.

This usually includes all relationship columns and any measure support tables and measure

expressions.

If a column is rarely needed or only needed for a specific report, it can be temporarily unhidden

to allow for this report to be developed and then hidden again to maximize usability. Numeric

fact table columns that are referenced by DAX measures (for example, quantity) should be hidden

from the fields list, as the measures can be used for visualizing this data.

As discussed in the Parameter tables section, when all columns of a table are hidden from the

Report view and at least one DAX measure identifies the given table as its home table, a measure

group icon (calculator symbol) appears in the fields list.

Designing Import, DirectQuery, and Composite Data Models160

This clear differentiation between the measures and dimension columns (attributes) is

recommended, especially if business users are developing their own reports based on the dataset.

Tables with both visible columns and measures force business users and report developers to

navigate between these different elements in the fields list. This can be onerous given the volume

of DAX measures for common fact tables. If it’s necessary to expose one or a few fact table columns

permanently, consider migrating some or all of the DAX measures for the table to a parameter

table to simplify navigation.

Visibility applies to tables, columns, and measures. We next look at additional metadata available

to just columns and measures.

Column and measure metadata
Dataset designers should review the columns and measures of each table exposed to the Report

view and ensure that appropriate metadata properties have been configured. These settings,

including any custom sorting described earlier in the Custom sort section of this chapter, only

need to be applied once and can significantly improve the usability of the dataset.

In the following sections, we explore some of the more important metadata settings for columns

and measures. Some of these apply only to columns, such as the Default summarization setting

explained in the next section.

Default summarization
As mentioned, the Default summarization property only applies to columns and controls the

default aggregation applied to a column such as sum, average, first, last, and so on.

The Default summarization property should be revised from Power BI’s default setting to the

Do not summarize value for all columns. Power BI applies a Default summarization setting of

Sum for all columns with a numeric data type (whole number, fixed decimal number, decimal

number) when a table is first loaded to the data model.

As shown in Figure 4.30, a summation symbol ∑ appears next to the field name in the fields list if

a Default summarization other than Do not Summarize is enabled:

Chapter 4 161

Figure 4.30: Default summarization for numeric columns

As illustrated in Figure 4.30, the Default summarization property for a column can be accessed via

the Column tools tab of the Data view. Additionally, as with other metadata properties, Default

summarization can also be accessed from the Report view.

As mentioned in the Data view section earlier, implementing metadata changes, such as Default

summarization and Data category, via the Column tools tab from the Report view is the only

option for DirectQuery models.

If a user selects a column with Default summarization enabled, the aggregation specified by

the property (for example, Sum, Average) is returned rather than the grouping behavior of Do

not summarize. In many cases, the numeric column is only used to group measures, such as

Internet Net Sales by Product Dealer Price, and DAX measures can be written for any

needed calculation logic.

Additionally, Default summarization can create confusion, such as when a user expects a sum

aggregation based on the summation symbol but the model author has applied an alternative

default summarization (for example, Minimum, Average). Alternatively, the names assigned to DAX

measures, such as Average Product Dealer Price, make it clear which aggregation is being applied.

Designing Import, DirectQuery, and Composite Data Models162

For these reasons, it’s recommended to convert the default summarization setting to Do not

summarize. A broader concept of this recommendation is to build essential DAX measure

expressions into the dataset, as described in Chapter 5, Developing DAX Measures and Security

Roles, to make Power BI datasets more flexible and powerful for users and report developers.

While the Default summarization metadata setting only applies to columns since measures

inherently aggregate column information or otherwise return scalar (single) values, the Data

format setting applies to both columns and measures as explained in the next section.

Data format
The Data format setting controls how data is displayed to users when viewed in report visuals.

The default formatting Power BI applies to columns and measures should also be revised to a

corporate standard or a format applicable to the column or measure. For example, the default

full date format of “Friday July 1, 2011” can be revised to the more compact (mm/dd/yyyy)

format of 7/1/2011. Likewise, the currency format for measures calculating financial data can be

revised to display two or no decimal places and the thousands separator can also be added to

numeric measures.

In addition to standard data formats such as Whole Number, Currency, Percentage and so on,

Custom formats are also supported. In the Properties pane of the Model view under Formatting

and then Format, you can choose to have a Custom format. Choosing a Custom format allows

you to enter a custom display format such as 00:00:00, for example, which can be useful for

displaying duration formats such as hh:mm:ss.

Business users and report developers do not have the ability to change column and measure

formatting when connecting to the published dataset from Power BI or Excel. Therefore, it’s

important to choose widely accepted data formats and formats that lend themselves to intuitive

data visualizations.

We next explore another setting applicable to both columns and measures, the Data category

setting.

Data category
The Data category setting allows data modelers to tag columns and measures as specific types

of information. Setting the data category changes the behavior of these columns and measures

within Power BI.

Chapter 4 163

By default, Power BI does not assign columns or measures to any of the 13 available data categories.

Assigning geographic categories, such as City, helps Power BI determine how to display these

values on map visualizations. For example, certain city names, such as Washington, are also

associated with state or province names and without an assigned data category, map visuals

would have to guess whether to plot the city or the state.

Currently 10 of the 13 column data categories are related to geography, including County, Country,

Continent, City, Latitude, Longitude, Postal code, Address, Place, and State or Province.

The Web URL Data Category can be used to enable the initiation of emails from Power BI report

visuals. In Figure 4.31, the Employee Email Link column contains mailto values (that is, mailto://

John@adworks.com) and the URL icon property under Values has been set to On:

Figure 4.31: Web URL data category for Employee Email Link column

Without specifying the Web URL data category of the Employee Email Link column, the values

appear as normal text. With the Web URL data category specified, the full mailto link is displayed

in the table visual by default and this can also be used to initiate an email. Both the Web URL data

category specification and the URL icon property (set to On) are required to display the email icon.

The Image URL data category can be used to expose images in report visualizations, such as with

a slicer visualization set to an Orientation of Horizontal as shown in Figure 4.32:

Figure 4.32: Image URL Data Category used for Chiclet slicer visual

mailto://John@adworks.com
mailto://John@adworks.com

Designing Import, DirectQuery, and Composite Data Models164

The Barcode data category, the only other non-geographic category beyond Web URL and Image

URL, can be used by Power BI mobile applications to scan individual items from mobile devices.

Next, we cover another important metadata field, Description.

Description
The Description metadata property lets data modelers provide short explanations and information

about elements in the data model.

Descriptions can be added to the tables, columns, and measures of a data model to aid users during

report development. Once descriptions have been applied and the dataset has been published

to the Power BI service, users connected to the dataset via reports can view the descriptions as

they hover over the fields in the fields list. This feature is particularly useful in communicating

the business logic contained in measures, such as whether discounts are included or excluded

in the Internet Net Sales measure.

Although field descriptions are recommended, particularly for measures that contain custom

or complex logic, they are not a substitute for the formal documentation of a dataset. In most

scenarios, the field description is only used as a convenient reminder of the essential logic or

meaning and thus can be more concise than the official corporate definition of the column

or measure.

In Figure 4.33, a report author is connected to a published Power BI dataset and has hovered over

the Internet Gross Product Margin measure:

Figure 4.33: Field descriptions as tooltips in the Fields list

The descriptions can only be viewed from Power BI Desktop or the Power BI service. Field

descriptions are exclusive to the fields list and are not displayed in visuals on the report canvas.

Chapter 4 165

Descriptions can be applied by using the Properties pane of the Model view as shown in Figure 4.34:

Figure 4.34: Properties pane of the Model view

Users connected to the dataset via Live connections can view the descriptions via the Properties

pane. In this context, the Name and Description properties are read-only.

This completes our exploration of metadata property settings. In the following section, we provide

advice around optimizing the performance of datasets.

Optimizing data model performance
One of the main reasons for creating a dataset, particularly an import mode dataset, is to provide

a performant data source for reports and dashboards. Although Power BI supports traditional

reporting workloads, such as email subscriptions and view-only usage, Power BI empowers

users to explore and interact with reports and datasets. The responsiveness of visuals for this

self-service workload is largely driven by fundamental data model design decisions, as explained

in the following subsections.

Additional performance factors outside the scope of this chapter include the hardware resources

allocated to the dataset, such as with Power BI Premium capacities (v-cores, RAM), the efficiency

of the DAX measures created for the dataset, the design of the Power BI reports that query the

dataset, and the volume and timing of queries generated by users.

Designing Import, DirectQuery, and Composite Data Models166

We first take a look at optimizing import mode datasets.

Import
The performance of an import mode dataset is largely driven by fundamental design decisions,

such as the granularity of fact and dimension tables. For example, large dimension tables with

more than a million unique values, such as customer IDs or product IDs produce much less

performant report queries than small dimensions with only 100 to 1,000 unique values.

Likewise, DAX measures that access columns containing thousands of unique values perform much

more slowly than measures that reference columns with only a few unique values. A simplistic

but effective understanding is that higher levels of cardinality (unique values) result in greater

memory consumption via reduced compression and CPUs require additional time to scan greater

amounts of memory.

An import mode designer should be cautious about the performance implications of relationships

to large dimension tables. Although usability is somewhat compromised, a separate but less

granular dimension containing only the most common columns can be created to drive more

efficient report queries. For example, business users may rarely need to access individual product

Stock Keeping Units (SKUs) and would prefer the performance benefit provided by a smaller

dimension table that contains only product categories and product subcategories.

Query caching
For Premium and Embedded workloads, the Power BI service supports automatic query caching

that can be enabled or disabled via the Settings page for each dataset. When enabled, this feature

automatically caches the queries associated with the initial opening of a report by each user.

Query caching is only available for import mode datasets and respects personal bookmarks,

persistent filters, and security rules. The query cache resets during scheduled dataset refreshes

and this can result in performance degradation in the event of multiple dataset refreshes occurring

simultaneously or if the capacity is heavily loaded. While it is recommended to enable this feature,

enterprise BI teams should be aware of these considerations.

We next look at another important consideration for import mode datasets, columnar compression.

Columnar compression
Power BI uses the xVelocity In-Memory Analytics Engine (previously known as VertiPaq) for

datasets. This engine applies several techniques to achieve 10X or greater data compression, thus

minimizing the amount of memory required to be scanned to return query results.

Chapter 4 167

To optimize columnar compression, it’s important to understand the columnar layout and internal

storage of import mode datasets. Power BI creates individual segments of approximately one

million rows and stores separate memory structures for column data, the dictionary of unique

values for columns, relationships, and hierarchies.

In Figure 4.35, three segments are used to store a fact table of 2.8 million rows:

Figure 4.35: Columnar storage of import mode datasets

Since only the columns required for a query are scanned during query execution, a relatively

expensive column in terms of memory consumption (due to many unique values), such as Order #,

can be stored in the dataset without negatively impacting queries that only access other columns.

Removing fact table columns or reducing the cardinality of fact table columns that are not used

in queries or relationships nonetheless benefits the storage size and resources required to refresh

the dataset. Fewer fact table columns may also enable Power BI to find a more optimal sort order

for compression and thus benefit the query performance.

Eliminate any DAX-calculated column on fact tables as these columns are not compressed as

efficiently as imported columns. If necessary, replace DAX-calculated columns with the equivalent

expression in the source M query or SQL View.

Additionally, as per the Fact table columns section earlier in this chapter, remove columns that

can be computed within DAX measures via simple expressions (+,-,/,*). For example, the Sales

column from Figure 4.36 can be excluded from the import dataset given the Price and Qty columns.

During query execution over tables with more than one segment, one CPU thread is associated

per segment. This parallelization is limited by the number of CPUs available to the dataset (for

example, Power BI Premium P1 with four backend v-cores), and the number of segments required

to resolve the query.

Designing Import, DirectQuery, and Composite Data Models168

Therefore, ideally, the rows of fact tables can be ordered such that only a portion of the segments

are required to resolve queries. Using the example of the 2.8M-row fact table, a query that’s filtered

on the year 2017 would only require one CPU thread and would only scan the required column

segments within Segment 3.

The internal order of fact table rows cannot be dictated by the dataset designer as Power BI

determines the optimal order that leads to the highest compression during dataset refreshes.

However, dataset designers can add a sorting transformation to the M query of a fact table (Table.

Sort()) such that Power BI, at a minimum, considers this particular order during its processing.

Such a sorting operation can be expensive in terms of the time taken to refresh import mode

datasets but may prove beneficial to report query performance.

Whether Power BI used the particular sort order can be determined by analyzing the memory

footprint of the sorted column before and after the data is loaded. If the size of the sorted column

is significantly reduced following the refresh operation, Power BI took advantage of the specified

sort order.

Given the importance of columnar compression for import-mode datasets, we next explain tools

and techniques for analyzing the internal workings of the xVelocity In-Memory Analytics Engine

in greater detail via Data Management Views (DMVs) and the VertiPaq Analyzer.

Memory analysis via DMVs and the VertiPaq Analyzer
DMVs are Analysis Services queries that return information about server operations, server health,

and data model objects at the time the queries are run.

The same DMVs that provide information about Analysis Services tabular databases are also

available for Power BI datasets. Querying these DMVs can provide schema information, such

as the columns used to define relationships, the definitions of DAX measures, and the memory

usage of columns and other structures.

From a memory analysis standpoint, the two most important DMVs are DISCOVER_STORAGE_

TABLE_COLUMNS and DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS.

These and other DMVs are at the heart of VertiPaq Analyzer, a set of open-source libraries that

expose statistical information about tabular models. The use of VertiPaq Analyzer within DAX

Studio is shown in Figure 4.36 with the dictionary size of each column of a Power BI dataset

retrieved via the DISCOVER_STORAGE_TABLE_COLUMNS DMV:

Chapter 4 169

Figure 4.36: Dictionary size by column

The use of VertiPaq Analyzer can quickly expose columns with high Cardinality and large

Dictionary sizes that may be good candidates for exclusion from the dataset.

This concludes our exploration of performance optimization for import mode datasets and we

next move on to DirectQuery mode datasets.

DirectQuery
Dataset designers have less control over the performance of pure DirectQuery datasets given that

data storage and query execution is the responsibility of the source system.

However, dataset designers can ensure that the DAX functions used in measures take advantage

of the source system resources and can partner with source system owners and experts to test

alternative data source optimizations, such as the columnstore index for SQL Server. In SQL Server,

columstore indexes use column-based data storage and query processing and can achieve gains up

to 10 times the query performance and 10 times the compression versus traditional row-oriented

storage and uncompressed data respectively.

Additionally, as advised earlier regarding the Assume referential integrity relationship property,

performance can be significantly improved by generating inner-join SQL statements.

Let’s now take a deeper look at optimizing DirectQuery datasets.

Designing Import, DirectQuery, and Composite Data Models170

Columnstore and HTAP
Business intelligence queries generated from tools such as Power BI are more suited for columnar

data stores and most DirectQuery source systems offer a columnar feature to deliver improved

query performance. For Microsoft SQL Server, the columnstore index is recommended for large

fact tables and this index eliminates the need to maintain traditional B-tree indexes or to apply

row or page compression.

Additionally, a combination of non-clustered columnstore indexes and in-memory table

technologies can be used to support Hybrid Transactional and Analytical Processing (HTAP)

workloads. HTAP refers to the tools and features that enable live data to be analyzed without

affecting transactional operations. HTAP features include memory-optimized tables, natively

compiled stored procedures, and clustered columnstore indexes.

For example, the Power BI queries against the DirectQuery dataset would utilize the columnstore

index without impacting the OnLine Transactional Processing (OLTP) workload of the database.

OLTP refers to the traditional transaction operations of databases that facilitate and manage

transaction-oriented applications.

The details of these features and configurations are outside the scope of this book but at a minimum

the owners or experts on the DirectQuery data source should be engaged on the performance of

the Power BI dataset.

The following URL provides guidance on designing columnstore indexes for SQL Server database

services (for example, Azure SQL Database, Azure SQL Data Warehouse) and on-premises SQL

Server database environments: http://bit.ly/2EQon0q.

The Related Tasks section of the Columnstore indexes – Design guidance documentation referenced

in the preceding URL contains links for the T-SQL DDL statements associated with implementing

the columnstore index. In most scenarios, the dataset designer in a Power BI project or the author

of an Analysis Services model is not responsible for or authorized to optimize data sources using

methods such as a columnstore index.

However, the dataset designer can regularly collaborate with the responsible subject matter

expert or team as the demands and requirements of the dataset change. For example, the dataset

designer can use tools such as DAX Studio and SQL Server Profiler, as described in Microsoft Power

BI Cookbook 2nd Edition (https://www.amazon.com/Microsoft-Power-Cookbook-expertise-

hands/dp/1801813043), to capture the common or important SQL queries generated by Power

BI reports and then share this information with the data warehouse team.

http://bit.ly/2EQon0q
https://www.amazon.com/Microsoft-Power-Cookbook-expertise-hands/dp/1801813043
https://www.amazon.com/Microsoft-Power-Cookbook-expertise-hands/dp/1801813043

Chapter 4 171

Alternatively, the database or data warehouse team can run a trace against a data source system

as per the DirectQuery report execution section of Chapter 2, Preparing Data Sources, during a test

query workload from Power BI. This trace data could be used to identify the specific columns, tables,

or expressions associated with slow queries and thus inform database modification decisions.

Let’s next look at automatic aggregations.

Automatic aggregations
Automatic aggregations are a new feature (currently in preview) that uses machine learning

(ML) to continuously train and optimize ML algorithms to intelligently cache aggregations in

memory. When enabled, automatic aggregations can improve query performance by reducing

DirectQuery queries against the source system.

Automatic aggregations train the ML model during scheduled refreshes of the dataset at either

a Day or Week interval. The first scheduled refresh during the specified interval thus becomes

a refresh of the dataset as well as a training operation for the ML model. During these training

operations, Power BI evaluates the query log in order to retrain the ML algorithms regarding

which aggregations are most import to cache in memory.

Composite
Composite models, which blend import mode and DirectQuery mode tables, may be useful when

dealing with extremely large fact tables with potentially trillions of rows, or even millions or

billions of rows, that cannot comfortably fit into an import-only data model due to memory

limitations or other constraints.

Power BI has a specific feature designed to help optimize data model performance that is specific to

composite data models. Dataset designers can leverage this feature, which is specifically designed

to help speed up the performance of DirectQuery tables and calculations. The feature is called

aggregation tables, which we explore in the following subsection.

Aggregation tables
Aggregation tables are a feature of composite data models specifically targeted at improving the

performance of the DirectQuery components of the data model. Aggregation tables allow the

dataset designer to create summary tables of pre-aggregated measures that are stored locally

within the data model in either import or dual storage mode.

These aggregation tables allow simple aggregations, like sums and averages, to be retrieved from

the aggregation for certain levels of granularity.

Designing Import, DirectQuery, and Composite Data Models172

Only when the granularity of the aggregation table is exceeded, such as reporting against a

particular product SKU in the case of an aggregation table grouped by product category and

product subcategory, will DirectQuery operations occur. In general, filtering or displaying detail

columns not included in the aggregation table will cause DirectQuery operations against the

source system.

While not strictly needed given the number of rows in the Reseller Sales table, an aggregation

table was created in the composite version of the data model. The aggregation table can be created

using SQL or in Power Query. In this case, for demonstration purposes, we chose to use Power

Query:

let

 Source = #"Reseller Sales",

 GroupRows = Table.Group(Source, {"OrderDateKey", "ResellerKey",
"SalesTerritoryKey"}, {{"Sum of OrderQuantity", each List.
Sum([OrderQuantity]), type nullable number}, {"Sum of Unit Price", each
List.Sum([UnitPrice]), type nullable number}, {"Sum of DiscountAmount",
each List.Sum([DiscountAmount]), type nullable number}, {"Count of Sales",
each Table.RowCount(_), Int64.Type}}),

 ChangedType = Table.TransformColumnTypes(GroupRows,{{"Sum of Unit
Price", Currency.Type}})

in

 ChangedType

Chapter 4 173

It is critical to double-check the data types for the aggregation columns as they must have the

same data type as the column on which the aggregation is based. The aggregation table, Reseller

Sales Aggregation, is hidden, the storage mode set to Import, and relationships are created to the

corresponding dimension tables, Date, Reseller, and Sales Territory, as shown in Figure 4.37:

Figure 4.37: Aggregation table relationships

If not already, the dimension tables, Date, Reseller, and Sales Territory, should all be set

to a storage mode of Dual as shown in Figure 4.38. Since these tables must operate against the

DirectQuery Reseller Sales table as well as the import mode Reseller Sales Aggregation

table, a storage mode of Dual ensures that query performance is optimized under all circumstances.

Designing Import, DirectQuery, and Composite Data Models174

To configure aggregations, use the Fields pane of the Model view and either from the ellipses menu

to the right of the table name or by right-clicking the table name, choose Manage aggregations.

This opens the Manage aggregations dialog as shown in Figure 4.38:

Figure 4.38: Aggregation table relationships

As shown in Figure 4.38, in all cases, the DETAIL TABLE and DETAIL COLUMN settings for each

aggregation table column should reflect the original source column in the corresponding fact

table. Grouping columns like OrderDateKey, ResellerKey, and SalesTerritoryKey should be

set to a SUMMARIZATION of GroupBy while table row counts like Count of Sales should be

set to Count table rows. Other aggregations should be set to their designated aggregation (Sum,

Count, Max, Min).

Once aggregations are set, you can consider the aggregation table as a sort of surrogate for

the actual fact table for the designated aggregations and specified grain. Thus, queries for the

aggregations contained within the local (import mode) aggregation table are used instead of

querying the DirectQuery source when those aggregations are as granular as (or less than) the

aggregation table.

Chapter 4 175

Aggregations at a higher granularity (more granular) than the aggregation table circumvent the

aggregation table and directly use the DirectQuery source instead.

This concludes our analysis and advice on optimizing data model performance. As one can see,

many different features are included in Power BI that allow dataset designers to optimize the

performance of datasets used for analysis and reporting.

Summary
This chapter built on the queries from Chapter 3, Connecting To Sources And Transforming Data

With M, to implement import, DirectQuery, and composite analytical data models. Relationships

were created between fact and dimension tables as well as between bridge tables and the Sales

and Margin Plan to enable actual versus plan reporting and analysis.

Additionally, the fundamentals of designing Power BI models were reviewed and detailed guidance

on metadata and the DMVs available for analyzing memory usage was provided. Finally, guidance

was provided for optimizing the performance of import, DirectQuery, and composite data models.

The following chapter continues to build on the dataset for this project by developing analytical

measures and security models. The DAX expressions implemented in the next chapter directly

leverage the relationships defined in this chapter and ultimately drive the visualizations and user

experience demonstrated in later chapters.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

5
Developing DAX Measures and
Security Roles

This chapter details the implementation of DAX measures and security roles for the dataset de-

veloped in the previous two chapters. We first create a set of base measures for each business

process that represents business definitions such as gross and net sales, cost of sales, and margin

percentages. These base measures are then leveraged in the development of date intelligence

calculations including year-to-date (YTD) and year-over-year (YOY) growth. Additionally, a set

of custom measures is created, including exceptions, rankings, and KPI targets, to further extract

insights from the dataset and simplify report visualizations.

This chapter also contains examples of dynamic security models in which the identity of the

logged-in user is used to filter the dataset. Finally, guidance is provided on testing the performance

of DAX expressions with DAX Studio.

In this chapter, we’ll review the following topics:

• DAX measure basics

• Base measures

• Date intelligence metrics

• Calculation groups

• Dimension metrics

• Ranking metrics

• Security roles

• Performance testing

Developing DAX Measures and Security Roles178

Minimal experience or technical skill is required to grasp the essentials of star schema dimensional

modeling and to create a basic Power BI dataset containing fact-to-dim relationships and a set

of basic DAX measures. However, even with a well-designed data warehouse reflecting a robust

data transformation process, business requirements for more complex analytical logic and secu-

rity are unavoidable. To meet these requirements, it’s essential to maintain a solid foundational

knowledge of DAX and its concepts of filter context and row context. Thus, we start with a review

of the basics concepts that underpin DAX measures.

DAX measure basics
All analytical expressions ranging from simple sums and averages to custom, complex statistical

analyses should be implemented within DAX measures. Although it’s technically possible to

utilize the default summarization property of columns for some basic measures, well-developed

datasets should embed calculation logic into DAX measure definitions thus improving clarity

and reusability.

The need for the rapid deployment of complex yet efficient and manageable DAX measures, que-

ries, and security roles underscores earlier guidance regarding the value of an experienced Power

BI dataset developer to deliver enterprise-grade solutions. Organizations are strongly advised to

appreciate DAX as a functional programming language (not just Excel formulas) that is central

to Power BI solutions and thus take steps to ensure that Power BI dataset developers possess the

required knowledge and skills with DAX. These steps may involve certification exams, detailed

technical interviews, and internal skill development and evaluation.

For example, a seasoned dataset developer should be capable of quickly translating common

filtering and aggregation logic found in SQL queries and/or Excel formulas into DAX expressions

that return the same numbers. Moreover, professional dataset developers utilize tools beyond

Power BI Desktop such as Tabular Editor, DAX Studio, and ALM Toolkit to more productively

develop, analyze, and deploy their DAX code, respectively.

Most measure expressions reference and aggregate the numeric columns of fact tables, which are

hidden from the Report View, as we have seen in the previous chapter. Additional DAX measures

can include filtering conditions that supplement or override any filters applied in Power BI reports,

such as the net sales amount for first-year customers only.

Chapter 5 179

Measures are also commonly used to count the number of dimension members that meet cer-

tain criteria such as customers who are associated with sales transactions in a given time frame.

Additionally, with functions such as SELECTEDVALUE(), DAX measures are often used to display

a text value or a date value such as the name of a product currently being filtered in a report or a

date reflecting when the source data was refreshed.

Just like the M query language, DAX is a rich, functional language that supports variables and

external expression references. Multiple variables can be defined within a DAX measure to im-

prove readability, and the results of other measures can be referenced as well, such as the Plan

Grain Status measure in Chapter 4, Designing Import, DirectQuery, and Composite Data Models.

These layers of abstraction and the built-in code editing features of Power BI Desktop, including

IntelliSense and colorization, enable dataset designers to embed powerful, yet sustainable, logic

into datasets.

In addition to the DAX measures authored for a Power BI dataset, Power BI Desktop’s Analytics

pane can be used to create metrics specific to a given visual, such as a trend line, min, max, and

an average of a metric on a line chart. The Analytics pane is reviewed in Chapter 8, Applying Ad-

vanced Report Features.

We now take a detailed look at perhaps the most important topic when discussing DAX measures,

filter context.

Filter context
Whenever there’s a question or doubt about a certain number on a Power BI report, an early step

in troubleshooting scenarios is understanding the filter context applicable to the given number.

Filter context refers to the filters applied during the evaluation of a measure. The filter context

limits the set of rows for each table in the data model that is available to be evaluated for each

value displayed in report visualizations.

For example, each value of a Power BI chart that analyzes a sales amount measured by a Product

Category column is usually unique because a different set of rows (filter context) of the sales fact

table was available to the measure when calculating each value.

Developing DAX Measures and Security Roles180

In Figure 5.1, five distinct filters representing five dimension tables have been applied to a matrix

visual of the Internet Gross Sales measure:

Figure 5.1: Filtered Power BI report

Filters applied to the Promotion, Date, Product, Customer, and Sales Territory dimension

tables all flow across their relationships to filter the Internet Sales fact table. The Internet

Gross Sales measure is a simple SUMX() expression described in the base measures and is thus

evaluated against the Internet Sales rows remaining from these filters.

The filters applied come from external sources (those filters not applied within the visual itself

such as Product Category and Marital Status in Figure 5.1) can be viewed by clicking on the filter

icon shown when a visual is selected on the canvas, as shown in Figure 5.2:

Figure 5.2: Filter icon

Chapter 5 181

Each individual value in Power BI reports is computed independently. For example, the $242,995

subtotal value shown in Figure 5.1 is not filtered by the Product Category column like other

values in the matrix, and it’s not calculated as the sum of the three cells in the Married column.

This value is computed using the MaritalStatus column of the Customers table with a value of

Married, as well as the other filters applied from the Sales Territory Group slicer and the fil-

ters in the Filters pane. See the Measure evaluation process section for details on the DAX engine’s

execution process.

To help better explain filter context, we now look at an equivalent SQL statement for the matrix

values shown in Figure 5.1.

SQL equivalent
To help understand filter context and to validate certain reports or DAX measures, it can be helpful

to compare Power BI reports to SQL statements. The following SQL statement returns the same

six values of the Power BI matrix (excluding the subtotals) via standard inner joins and WHERE

clause conditions. Similar to the external filters for a visual, WHERE clauses in SQL statements serve

to filter the base set of rows in a table available for further calculations:

SELECT

 P.[Product Category]

, C.[Customer Marital Status]

, FORMAT(SUM(F.[Unit Price] * F.[Order Quantity]), '$#,###') AS [Internet
Gross Sales]

FROM BI.vFact_InternetSales as F

 INNER JOIN BI.vDim_FinDate as D on F.[Order Date Key] = D.[Date Key]

 INNER JOIN BI.vDim_Promotion as Promo on F.[Promotion Key] = Promo.
[Promotion Key]

 INNER JOIN BI.vDim_Product as P on F.[Product Key] = P.[Product Key]

 INNER JOIN BI.vDim_Customer as C on F.[Customer Key] = C.[Customer Key]

 INNER JOIN BI.vDim_SalesTerritory as S on F.[Sales Territory Key] =
S.[Sales Territory Key]

WHERE D.[Calendar Year Status] in ('Prior Calendar Year', 'Current
Calendar Year')

 and S.[Sales Territory Group] = 'Europe' and

Promo.[Promotion Type] in ('Excess Inventory', 'Volume Discount')

GROUP BY

 P.[Product Category], C.[Customer Marital Status]

Developing DAX Measures and Security Roles182

In this example, the SQL statement’s WHERE clause implements the Power BI report’s slicer visual

filter and its report- and page-level filters. The GROUP BY clause accounts for the row and column

filters of the matrix visual.

Although certain SQL concepts and examples are applicable, DAX is distinct from SQL and other

languages, such as MDX (Multi-Dimensional eXpressions). Additionally, since Power BI import

mode datasets are stored in a columnar format, SQL developers experienced with row-based tables

and B-tree indexes have to revise their design patterns in developing DAX measures and queries.

With filter context understood, another important and related topic with regard to DAX measures

is the process by which measures are calculated.

Measure evaluation process
The measure evaluation process defines how calculations are performed when computing the

value of measures. Each value in Figure 5.1, such as the $708 from the matrix visual, is computed

according to the following four-step process:

1. Initial Filter Context

a. This includes all filters applied within and outside the report canvas by the report

author

b. Selections on slicer visuals and the rows and columns of the table and matrix

visuals represent on-canvas filters

c. Report, page, visual, and drill-through filters represent off-canvas filters that also

contribute to the initial filter context

2. Filter Context Modified via DAX

a. For base measures and other simplistic expressions, the initial filter context from

the report is left unchanged

b. For more complex measures, the CALCULATE() function is invoked to further modify

the initial filter context

c. Via CALCULATE(), the initial filter context can be removed, replaced, or supple-

mented with an additional filter condition

d. In the event of a conflict between the initial filter context from the report (for

example, slicers, report-level filters) and the filter condition embedded in the

DAX measure, by default, the DAX measure overrides the report filter condition

Chapter 5 183

3. Relationship Cross-Filtering

a. With each table filtered from steps 1 and 2, the filter context is transferred across

cross-filtering relationships

b. In most cases, the filtered dimension tables filter the related fact tables via single

direction cross-filtering

c. However, as described in Chapter 4, Designing Import, DirectQuery, and Composite

Data Models, bidirectional cross-filtering allows the filter context to also transfer

from the many side of a relationship to the one side

4. Measure Logic Computation

a. The computation logic of the measure (for example, DISTINCTCOUNT(),

COUNTROWS()) is finally evaluated against the remaining active rows for the given

table or column referenced

b. For common and base measures, this is simply the set of remaining or active fact

table rows

c. However, as shown in the following Dimension metrics section, other DAX measures

reference dimension tables, and thus it’s important to understand how these tables

are impacted by relationship filtering and DAX expressions

This four-step process is repeated for each value of the report independently. Consequently, re-

ports and visuals that are dense in values require more computing resources to refresh and update

based on user filter selections. Large tabular report visuals with many columns and rows are

particularly notorious for slow performance, as this forces the DAX engine to compute hundreds

or thousands of individual values.

Although report authors and business analysts might not create DAX measures, it’s important

that they have a basic understanding of the filter context and measure evaluation processes. For

example, the report author should understand the cross-filtering relationships of the data model

(single or bidirectional) and how certain DAX measures impact the filters applied in reports. Sim-

ilarly, business analysts should be able to explain to business users why certain report behaviors

and results occur.

For example, since bidirectional cross-filtering relationships are generally avoided by dataset

developers for performance and unexpected behavior reasons as described in Chapter 4, Design-

ing Import, DirectQuery, and Composite Data Models, a common question raised by report authors

and users is why a particular dimension or slicer isn’t impacted by the filter selection on another

dimension or slicer.

Developing DAX Measures and Security Roles184

Users may expect the list of possible product names on one slicer visual to be reduced by the

selection of a fiscal year on a different slicer.

The reason and explanation are simply that the two slicers reflecting different dimension tables

in the model may both filter the same fact table(s) and thus impact fact table-based measure

calculations but that these filters end at the fact table and there’s no direct relationship between

the two dimension tables.

We’ll next move on to explaining an additional base concept regarding measures, row context.

Row context
In addition to filter context, it is also important to understand the concept of row context and

the ability in DAX to transition from row context to filter context. Row context is an evaluation

context that always contains a single row. Row context is present for calculated columns as well

as DAX iterator functions such as FILTER() and SUMX(), which execute their expressions per row

of a given table.

The set of rows to evaluate from a table is always defined by the filter context, which was described

earlier in this chapter. The expression parameter of iterating functions (aggregation functions

ending in X such as SUMX and AVERAGEX) can aggregate the rows of a table or can invoke the filter

context of the specific row being iterated upon via the CALCULATE() function or a measure refer-

ence. Evoking filter context is further explained in the following paragraphs.

Calculated DAX columns are used to illustrate row context. In Figure 5.3, four calculated columns

have been added to a Date table and reference the Weekday Sort column:

Figure 5.3: The row context in calculated columns

All four calculated columns simply add the value 1 to the Weekday Number column, but achieve

their results via distinct expressions:

Weekday Number Plus 1 (SUM) = SUM('Date'[Weekday Number]) + 1

Weekday Number Plus 1 CALC = CALCULATE(SUM('Date'[Weekday Number])) + 1

Chapter 5 185

Weekday Number Plus 1 Measure = [Weekday Number Summed] + 1

Weekday Number Plus 1 = 'Date'[Weekday Number]+1

The Weekday Number Plus 1 CALC column and the Weekday Number Plus 1 Measure column

represent the concept of context transition. These two columns invoke the filter context (context

transition) of the given row via the CALCULATE() function or implicitly via the reference of an

existing measure, respectively. Context transition is simply when row context is replaced with

filter context. To explain this more clearly, let’s expand upon how each calculation uses row and

filter context:

• Weekday Number Plus 1 (SUM) is calculated using row context. However, because the

SUM function evaluates all rows visible to the current filter context, this calculated column

computes the sum of all rows for the Weekday Number column plus one and repeats this

value for each row.

• Weekday Number Plus 1 CALC embeds a SUM() function within the CALCULATE() func-

tion prior to adding one. As explained further in the CALCULATE() function section in

this chapter, the CALCULATE() function replaces or modifies the current filter context. In

this case, since the CALCULATE() function has no filter parameter, the only purpose of the

CALCULATE() function is context transition where the row context is transitioned into a

filter context of a single row.

• Weekday Number Plus 1 Measure references an existing measure that sums the Weekday

Number column and then adds one. Referencing a measure within a DAX calculation adds

an implicit CALCULATE() and thus the same context transition occurs as with the Weekday

Number Plus 1 CALC measure.

• Weekday Number Plus 1 references the Weekday Number column of the Date table and

adds one. Here only row context is active and thus only the Weekday Number column value

in the current row is used in the calculation.

The Weekday Number Plus 1 (SUM) expression demonstrates that aggregation functions, in

the absence of CALCULATE() or the implicit CALCULATE() when invoking measures, ignore row

context. The three other columns all operate on a per-row basis (row context) but achieve their

results via three different methods. The Weekday Number Plus 1 column represents the default

behavior of expressions executing in a row context such as calculated columns, FILTER(), and

other iterating DAX functions.

Developing DAX Measures and Security Roles186

To develop more complex DAX measures, it can be necessary to ignore the row context of the input

table, such as the Weekday Number Plus 1 (SUM) example, or explicitly invoke the row context

of the table depending upon the circumstances and desired resulting value.

Row context, filter context, and context transition can be confusing for those new to DAX and

are thus important subjects to bear in mind when learning to create DAX calculated columns

and measures. Similarly, another important topic is understanding the difference between DAX

functions that return scalar values and tables.

Scalar and table functions
The majority of DAX functions return a single value based on an aggregation or a logical evaluation

of a table or column. For example, the COUNTROWS() and DISTINCTCOUNT() functions return indi-

vidual numeric values based on a single table and a single column input parameter, respectively.

DAX functions that return individual values as their output, including information functions,

such as ISBLANK() and LOOKUPVALUE(), are referred to as scalar functions. For relatively simple

datasets and at early stages in projects, most DAX measures reference a single scalar function

with no other modifications, such as the use of CALCULATE().

In addition to scalar functions, many DAX functions return a table as the output value. The tables

returned by these functions, such as FILTER() and ALL(), are used as input parameters to other

DAX measure expressions to impact the filter context under which the measure is executed via

the CALCULATE() function.

The DAX language has been extended to support many powerful table functions, such as TOPN(),

INTERSECT(), and UNION(), thus providing further support for authoring DAX measures. It is

important to note that DAX measures cannot return a table as a value.

In addition to serving as table input parameters to DAX measures, the results of DAX table func-

tions can be returned and exposed to client reporting tools. The most common example of this

is the use of the SUMMARIZECOLUMNS() function to return a grouping of certain dataset dimension

attributes and certain measures as aggregations to support a data region (e.g. table visual) in a

paginated report. Paginated reports are covered in more detail in Chapter 12, Deploying Paginated

Reports.

Additionally, DAX table functions can return a summarized or filtered table within a Power BI

dataset based on the other tables in the dataset. Such DAX-created tables are known as calcu-

lated tables.

Chapter 5 187

As models grow in complexity and as model authors become more familiar with DAX, new mea-

sures increasingly leverage a combination of scalar functions (or existing measures based on scalar

functions) and table functions. As per the DAX variables section later in this chapter, both scalar

and table values (based on scalar and table functions, respectively) can be stored as variables to

further support abstraction and readability.

With scalar and table functions understood, we’ll next turn our attention to an example of the

use of DAX table functions with respect to related tables.

Related tables
DAX measure calculations respect the row context formed by relationships between tables. Thus, it

is possible to reference other tables in the data model from within a row context via the RELATED()

and RELATEDTABLE() functions.

Figure 5.4 shows the Data View of an import mode dataset where three calculated columns have

been added to a Date dimension table with expressions referencing the Freight column of the

Internet Sales fact table:

Figure 5.4: Row context with RELATEDTABLE()

The DAX expressions used for each column are as follows:

Related Internet Freight Cost (Sum) = SUMX(RELATEDTABLE('Internet
Sales'),(SUM('Internet Sales'[Freight])))

Related Internet Freight Cost Column = SUMX(RELATEDTABLE('Internet
Sales'),[Freight])

Related Internet Freight Cost Measure = SUMX(RELATEDTABLE('Internet
Sales'),[Internet Sales Freight Cost])

Developing DAX Measures and Security Roles188

For reference, the formula for the Internet Sales Freight Cost measure is simply:

Internet Sales Freight Cost = SUM('Internet Sales'[Freight])

Only Related Internet Sales Freight Cost Column and Related Internet Sales Freight
Cost Measure return the correct freight cost amount for each date. The Related Internet Freight
Cost (Sum) column computes the total freight cost on the entire Internet Sales table and uses
this value for each related row before summing the result.

For example, five rows on the Internet Sales table have a date of 12/29/2010 and the sum of
the Freight column on the Internet Sales table is $733,969.61. Given that the SUM() function
ignores row context, the SUMX() function, calculates a value of $3,669,848 for that date, which
is the result of five (rows) multiplied by $733,969.61.

Related Internet Freight Cost Column returns the correct amount since the value of the
Freight column for each row is evaluated within the row context and then the amounts in these
rows are summed by the SUMX() function.

Related Internet Sales Freight Cost Measure also returns the correct amount, which may
seem odd since Related Internet Freight Cost (Sum) essentially simply substitutes in the
formula contained within the Internet Sales Freight Cost measure. However, recall that
measures implicitly invoke CALCULATE() and thus preserve row context via context transition.

The RELATEDTABLE() function is used to reference tables on the many side of one-to-many rela-
tionships. Likewise, the RELATED() function is used to reference tables on the one side of many-
to-one relationships.

For example, a calculated column or the row context of an iterating function such as SUMX() on
the Internet Sales fact table would use RELATED() to access a dimension table and apply logic
referencing the dimension table per row of the Internet Sales table.

We now turn our attention to a specific DAX function that we briefly covered in previous sections,
the CALCULATE() function.

The CALCULATE() function
The CALCULATE() function is perhaps the most important function in DAX as it enables the author

to modify the filter context under which a measure is evaluated. Regardless of the fields used and

filters applied in reports, the filter parameter input(s) to CALCULATE() is applied.

Specifically, the CALCULATE() function either adds a filter to a measure expression (for example,

Color = "Red"), ignores the filters from a table or column (for example, ALL(Product)), or up-

dates/overwrites the filters applied within a report to the filter parameter specified in CALCULATE().

Chapter 5 189

The syntax of CALCULATE() is the following:

CALCULATE(<expression>, <filter1>, <filter2>, …).

Any number of filter parameters can be specified including no filter parameters such as

CALCULATE(SUM(Sales[Sales Amount])). When multiple filter parameters are specified, the

function respects all of them together as a single condition via internal AND logic. Thus, rows

resulting from the specified filter context must meet the criteria of the first filter, the criteria of

the second filter, and so on.

The expression parameter is evaluated based on the new and final filter context applied via the

filter parameters. In the following measure, any filter applied to any column from the Product

or Sales Territory tables are ignored by the calculation:

Internet Sales Row Count (Ignore Product and Territory) =

CALCULATE(COUNTROWS('Internet Sales'),ALL('Product'),ALL('Sales
Territory'))

The preceding measure represents one simple example of a table function (ALL()) being used in

conjunction with a scalar function (COUNTROWS()) via CALCULATE(), as described in the previous

section, Scalar and table functions.

There are multiple forms of the ALL() function beyond ALL(table). The ALL() function can

be used to ignore the values from a single column or multiple columns, such as the following

two examples: (All('Customer'[Customer City]) and ALL('Customer'[Customer City],

'Customer'[Customer Country]).

Additionally, the ALLEXCEPT() function only allows certain columns specified to impact the filter

context, and the ALLSELECTED() function ignores filters from inside a query but allows filters from

outside the query. Finally, the REMOVEFILTERS() function allows certain filters to be removed

when executing the CALCULATE() function.

Just as the CALCULATE() function is used to modify the filter context of scalar value expressions,

the CALCULATETABLE() function is used to modify the filter context of expressions that return

tables. For example, the following expression returns all columns from the product dimension

table and only the rows that match the two filter parameter conditions specified:

CALCULATETABLE('Product',

'Product'[Product Category] = "Bikes",

'Product'[Product Dealer Price] > 2100)

Developing DAX Measures and Security Roles190

The modified table result from CALCULATETABLE() can then be used as a parameter input to an-

other table function such as FILTER() or as a filter parameter to CALCULATE().

The FILTER() function
The FILTER() function is one of the most important and powerful functions in DAX in that it al-

lows complex logic to fully define the set of rows of a table. FILTER() accepts a table as an input

and returns a table with each row respecting its defined condition.

The FILTER() function is almost always used as a parameter to a CALCULATE() function and can

add to the existing filter context or redefine the filter context by invoking ALL(), ALLEXCEPT(), or

ALLSELECTED() as its table input. The date intelligence measures described later in this chapter

utilize FILTER() to fully define the set of Date rows for the filter context.

In the following DAX measure, the FILTER() function is utilized against the Date table and im-

plements a condition based on the existing Internet Gross Sales measure:

Days with over 15K Gross Internet Sales =

 CALCULATE(COUNTROWS('Date'),

 FILTER('Date', [Internet Gross Sales] > 15000))

With respect to the use of CALCULATE, the ability to directly reference DAX measures is unique to

the FILTER() function. For example, the following measure expression is not allowed by the DAX

engine: CALCULATE(COUNTROWS('Date'), [Internet Gross Sales] > 15000). This is because

the standard filter clause of the CALCULATE function cannot directly reference measures.

The Days with over 15K Gross Internet Sales measure and the Internet Gross Sales base

measure are used to create the visuals shown in Figure 5.5:

Figure 5.5: DAX measure with FILTER

Chapter 5 191

Given that the FILTER() function simply references the Date table and does not remove any

filters via ALL(), the measure executes on each date contained in the matrix visual to return a 1

or a blank. When no dates are on the visual, such as the subtotal row or the card visual, the total

number of days that meet the condition (232 for the year 2011) is returned.

If the Internet Gross Sales measure was not included in the table visual, by default, Power

BI would only display the dates with a 1 value for the Days with over a 15K Gross Internet

Sales measure.

Given both its iterative (row-by-row) execution and the potential to apply complex measures

to each row, it’s important to use the FILTER() function carefully. For example, DAX measures

should not use FILTER() directly against large fact tables since the filter condition must be eval-

uated for every row of the fact table, which may be millions, billions, or even trillions of rows.

Additionally, FILTER() should not be used when it’s not needed for simple measures such as the

following two examples:

CALCULATE([Internet Gross Sales],'Product'[Product Category] = "Bikes")

CALCULATE([Reseller Gross Sales],'Product'[Product Color] IN {"Red",
"White"},Promotion[Discount Percentage] > .25).

With two of the most important DAX functions, CALCULATE() and FILTER(), explained, we’ll next

cover the last important base DAX concept, variables.

DAX variables
Variables can be defined within DAX measures and primarily serve to improve the readability of

DAX expressions. Rather than creating and referencing separate DAX measures, variables provide

an inline option, thereby limiting the volume of distinct measures in a dataset.

As a basic example of variable syntax, the Last Refreshed measure described in the Parameter

tables queries section of Chapter 3, Connecting to Sources and Transforming Data with M, uses a DAX

variable in its expression, as follows:

Last Refresh Msg =

 VAR __CurrentDateValue = MAX('Current Date'[CurrentDate])

RETURN

 "Last Refreshed: " & __CurrentDateValue

The VAR function is used to name a variable and the RETURN keyword allows for the variable’s

result to be referenced by this name.

Developing DAX Measures and Security Roles192

In this example, the __CurrentDateValue variable retrieves the date stored in the CurrentDate

parameter table, and a string of text is concatenated with the variable to generate the text message.

Variables can sometimes improve the performance of slow measures. Variables are only evalu-

ated once and their resulting values (a scalar value or a table) can be referenced multiple times

within a measure.

Measures that produce fewer storage engine queries almost always execute faster and make better

use of hardware resources. Therefore, any DAX measure or query that makes multiple references

to the same expression logic can be a good candidate for DAX variables.

A common use case for DAX variables is to split up the components of an otherwise more complex

DAX expression. In the following example, six DAX variables are used to produce a filtered distinct

count of accessory products and a filtered distinct count of clothing products:

Reseller High Value Accessory and Clothing Products =

/*

Accessory category products with over 20K in net sales and over 32% net
margin since last year

Clothing category products with over 55K in net sales and over 28% net
margin since last year

Enable filtering from dimension tables related to Reseller Sales

*/

 VAR __AccessorySales = 30000

 VAR __AccessoryNetMargin = .32

 VAR __ClothingSales = 50000

 VAR __ClothingNetMargin = .28

//Distinct Accessory Products

 VAR __AccessoryProducts =

 CALCULATE(

 DISTINCTCOUNT('Product'[ProductAlternateKey]),

 FILTER(

 SUMMARIZE(

 CALCULATETABLE('Reseller Sales',

 'Date'[Calendar Year] IN {2014, 2013},

 'Product'[Product Category] = "Accessories"

),

 'Product'[ProductAlternateKey]

),

Chapter 5 193

 [Reseller Net Margin %] >= __AccessoryNetMargin && [Reseller
Net Sales] >= __AccessorySales

)

)

 //Distinct Clothing Products

 VAR __ClothingProducts =

 CALCULATE(

 DISTINCTCOUNT('Product'[ProductAlternateKey]),

 FILTER(

 SUMMARIZE(

 CALCULATETABLE('Reseller Sales',

 'Date'[Calendar Year] IN {2014, 2013},

 'Product'[Product Category] = "Clothing"

),

 'Product'[ProductAlternateKey]

),

 [Reseller Net Margin %] >= __ClothingNetMargin && [Reseller Net
Sales] > __ClothingSales

)

)

RETURN

 __AccessoryProducts + __ClothingProducts

With the variables named and evaluated, the RETURN keyword simply adds the results of the two

distinct count expressions contained within the __AccessoryProducts and __ClothingProducts

variables. The multi-line comment at the top of the expression denoted by /* and */ makes the

DAX measure easier to understand in the future.

Single-line comments have been added using // to precede the distinct accessory and clothing

products. With the variables declared in this structure, it becomes very easy to adjust the mea-

sure to different input thresholds such as a higher or lower net sales value or net margin rates.

The most efficient filtering conditions of measures should be implemented in measures first. Ef-

ficient filter conditions are those that don’t require the FILTER() function, such as the Calendar

Year and Product Category filter conditions in the Reseller High Value Accessory and

Clothing Products measure.

Developing DAX Measures and Security Roles194

Simple filters that do not require the FILTER() function are known as Boolean (true/false) ex-

pressions. Boolean expressions are more efficient because import mode datasets consist of tables

represented by in-memory column stores, which are explicitly optimized to efficiently filter col-

umns based upon Boolean expressions.

However, Boolean expressions come with a number of restrictions. Namely Boolean expressions

cannot:

• Compare columns to other columns

• Reference a measure

• Use nested CALCULATE() functions

• Use functions that scan or return a table

Once sufficient filters have been applied, more-complex but less-performant filtering conditions

can operate on smaller sets of data, thus limiting their impact on query performance.

A Power BI report can leverage the measure in a visual-level filter to only display the specific prod-

ucts that meet the criteria of the measure. In Figure 5.6, only six products (two accessories, four

clothing) are displayed given the filter on the Reseller High Value Accessory and Clothing

Products measure:

Figure 5.6: Variable-based DAX measure as a visual-level filter

The filter context of the Reseller Sales fact table is respected via the SUMMARIZE() function. Just

like bidirectional cross-filtering via the CROSSFILTER() function and bidirectional relationships,

other dimensions related to the Reseller Sales fact table can be used for filtering the measure.

For example, a filter on the SalesTerritoryCountry column for the United States would result

in only five products.

Chapter 5 195

It’s necessary to reference the alternate key of the product dimension given the implementation

of slowly changing dimension logic, as described in Chapter 1, Planning Power BI Projects, since

a single product can have multiple rows in its dimension table, reflecting various changes such

as with list prices and product weight. These unique product keys would be reflected in the fact

table, and so using the product key column would result in counting different versions of the

same product multiple times.

In addition to scalar values like DAX measures, DAX variables can also store table values such

as a specific set of customer key values or filter a set of product rows. DAX measures can then

reference and apply aggregation functions against this set of tables.

In the following example, two distinct sets of customer keys (tables) are computed via variables

and then combined via the UNION() function to drive the filter context of the measure:

Internet Sales Married and Accessory Customers =

 VAR __MarriedCustomers =

 SUMMARIZE(

 CALCULATETABLE('Internet Sales',

 'Customer'[MaritalStatus] = "Married"),

 'Customer'[CustomerAlternateKey])

 VAR __AccessoryCustomersThisYear =

 SUMMARIZE(

 CALCULATETABLE('Internet Sales',

 'Date'[Calendar Year] = 2013,'Product'[Product Category] =
"Accessories"),

 'Customer'[CustomerAlternateKey])

 VAR __TargetCustomerSet = DISTINCT(UNION(__MarriedCustomers,__
AccessoryCustomersThisYear))

RETURN

 CALCULATE(DISTINCTCOUNT('Customer'[CustomerAlternateKey]),

__TargetCustomerSet)

The DISTINCT() function is applied against the result of the UNION() function since duplicate

rows are retained by the UNION() function in DAX. Note that the UNION() function simply appends

two or more tables together, returning a single table. The DISTINCT() function returns a table of

unique values (either unique rows in a table or the unique values in a single column).

Developing DAX Measures and Security Roles196

Just like the previous example with variables, the SUMMARIZE() function is used to both embed

filter conditions and respect the filter context of the Internet Sales fact table. In this example,

SUMMARIZE() allows selections on dimension tables related to the Internet Sales fact table,

such as Sales Territory to also impact the measure.

Figure 5.7 shows a matrix visual in a Power BI report where the Sales Territory Country col-

umn from the Sales Territory dimension is used as the column header and the results from

the measure reflect each individual country:

Figure 5.7: Table-valued DAX variable-based measure

The filter context embedded into both variables (__MarriedCustomers and __

AccessoryCustomersThisYear) of the measure provides the equivalent behavior of bidirectional

cross-filtering between Internet Sales and the Customer dimension. The SUMMARIZE() function

is used rather than CROSSFILTER() when given a performance advantage. See the Performance

testing section later in this chapter for additional details on performance testing.

The combination of table-valued DAX variables and set-based DAX functions such as UNION(),

INTERSECT(), and EXCEPT() supports a wide variety of analytical operations. Authors of DAX

measures should familiarize themselves with the essentials of DAX as a query language, partic-

ularly the SUMMARIZE() and SUMMARIZECOLUMNS() functions. Custom tables resulting from DAX

queries are often needed by DAX measure expressions and can also be used in other applications

such as SSRS.

This completes our exploration of all of the base concepts with respect to DAX measures. Next,

we use the knowledge from this section to develop the base measures for our dataset.

Base measures
Before any custom or complex DAX measures can be developed, a set of relatively simple base

measures must be implemented first. These measures represent the metrics from the Define the

facts section of Chapter 1, Planning Power BI Projects, and thus contain validated and approved

business definitions.

Chapter 5 197

For Adventure Works, a set of base measures related to sales, cost, and margins are applicable to

both the Internet Sales and Reseller Sales fact tables, such as the following:

Reseller Gross Sales = SUMX('Reseller Sales', 'Reseller Sales'[UnitPrice]
* 'Reseller Sales'[OrderQuantity])

Reseller Sales Discounts = SUM('Reseller Sales'[DiscountAmount])

Reseller Net Sales = [Reseller Gross Sales] - [Reseller Sales Discounts]

Reseller Sales Product Cost = SUMX('Reseller Sales', 'Reseller
Sales'[OrderQuantity] * 'Reseller Sales'[ProductStandardCost])

Reseller Sales Freight Cost = SUM('Reseller Sales'[Freight])

Reseller Cost of Sales = [Reseller Sales Product Cost] + [Reseller Sales
Freight Cost]

Reseller Gross Product Margin = [Reseller Gross Sales] - [Reseller Sales
Product Cost]

Reseller Gross Product Margin % = DIVIDE([Reseller Gross Product
Margin],[Reseller Gross Sales])

Reseller Net Product Margin = [Reseller Net Sales] - [Reseller Sales
Product Cost]

Reseller Net Product Margin % = DIVIDE([Reseller Net Product
Margin],[Reseller Net Sales])

Reseller Gross Margin = [Reseller Gross Sales] - [Reseller Cost of Sales]

Reseller Gross Margin % = DIVIDE([Reseller Gross Margin],[Reseller Gross
Sales])

Reseller Net Margin = [Reseller Net Sales] - [Reseller Cost of Sales]

Reseller Net Margin % = DIVIDE([Reseller Net Margin],[Reseller Net Sales])

As shown in the Fact table columns section from Chapter 4, Designing Import, DirectQuery, and Compos-

ite Data Models, three fact table columns (ExtendedAmount, SalesAmount, and TotalProductCost)

were excluded from the Power BI fact table to save resources. The SUMX() function is used to com-

pute the equivalent values from these three columns to support the Gross Sales, Net Sales,

and Product Cost measures, respectively.

Sales discounts and freight costs, both simple sums of their respective fact table columns, are the

two measures that create differences among the base measures. Discounts separate gross sales

from net sales and freight costs separate the cost of sales from product costs only. The distinct

definitions of the base measures support common analysis needs, such as the profitability (mar-

gin) of sales inclusive or exclusive of freight costs.

Developing DAX Measures and Security Roles198

With base measures created for both the Reseller Sales and Internet Sales fact tables, an

additional set of base measures can be created for Adventure Works as an organization. Several

of these measures can simply sum the Reseller Sales and Internet Sales measures as shown

in the following examples:

AdWorks Net Sales = [Internet Net Sales] + [Reseller Net Sales]

AdWorks Cost of Sales = [Internet Cost of Sales] + [Reseller Cost of
Sales]

AdWorks Net Margin = [AdWorks Net Sales] - [AdWorks Cost of Sales]

AdWorks Net Margin % = DIVIDE([AdWorks Net Margin],[AdWorks Net Sales])

Additional DAX measures with specific filtering or evaluation logic such as date intelligence

metrics can reference the base measures in their expressions. Via this measure branching, any

subsequent changes to the definition of the base measures are automatically reflected in other

dependent measures. Additionally, the readability of the custom measures is improved, as these

expressions only contain their specific logic.

With our base measures created, we can next create supporting measures.

Measure support expressions
Large and complex Power BI datasets with many measures may have one or multiple measure

support tables. As shown in the previous chapters, these hidden tables don’t contain data and

aren’t refreshed with the dataset, but serve as the home table for commonly used DAX expressions.

Unlike DAX variables, hidden DAX measure expressions are globally available to other DAX mea-

sures and queries. Measure support expressions, therefore, serve as a staging and consolidation

layer to simplify DAX measures.

The measure support table may contain any of the following types of expressions:

• KPI targets

• Current and prior periods

• Filter context information

The two measures described in the Measure support logic section of Chapter 4, Designing Import,

DirectQuery, and Composite Data Models, represent the filter context information type of measure

support.

Chapter 5 199

These measures typically use the ISFILTERED() or ISCROSSFILTERED() functions and are refer-

enced within conditional expressions of other measures. Additionally, the USERPRINCIPALNAME()

function is a good candidate for the Measure Support table if dynamic RLS is needed, or if other,

user-based functionality is built into the dataset. The USERPRINCIPALNAME() function is covered

in more detail in the Dynamic row-level security section later in this chapter.

The ISFILTERED() function is used to test whether an individual column or a table is directly

filtered only. The ISCROSSFILTERED() function, however, tests whether an individual column or

a table is either directly filtered or if it’s filtered via its relationship to another table in the model,

Let’s now look at the first of our support measures, a target for a KPI visual.

KPI targets
The standard Key Performance Indicator (KPI) visual in Power BI Desktop compares an indicator

measure relative to a specified target value, which may also be a measure. The variance between

the indicator and the target is displayed in the visual and is used to drive the color formatting

(for example, red = bad; green = good).

For many measures, a corresponding target measure may need to be created that applies some

calculation logic to an existing measure. The following measure is simply 10% greater than the

previous year’s year-to-date net sales:

Target: 10% Above PY YTD Internet Sales = [Internet Net Sales (PY YTD)] *
1.10

In a standard KPI visual, the target measure is displayed as the goal and used to calculate the

variance percentage between the indicator and the target. In Figure 5.8, a $16.35M indicator value

for Internet Net Sales (YTD) is 154.43% higher than the 10% growth target measure of $6.43M:

Figure 5.8: Standard KPI visual

Several other common visuals in Power BI benefit from target measures, including the bullet

chart and the gauge visual. Several of these visuals can use multiple target measures to define

alternative thresholds, such as the min and max values displayed.

Developing DAX Measures and Security Roles200

In certain scenarios, a dedicated table of corporate target measures can be added to a dataset. For

example, a table may contain columns for expected or target customer counts, products sold, and

other metrics at a given date’s granularity. Target measures can be created to access the values

of this table via utility functions, such as LOOKUPVALUE().

The LOOKUPVALUE() function returns a scalar value from a single column that results from filtering

rows of a table based on specified criteria. In other words, LOOKUPVALUE() provides the means to

return a single “cell,” similar to Excel’s VLOOKUP function. LOOKUPVALUE() is particularly useful

because it ignores the current filter context.

As shown in the examples in the following section, the LOOKUPVALUE() function can be relied on

to provide the same input value to other measures, such as a date or a number referring to specific

date rows, regardless of any filters applied in the report.

Let’s take a look at using the LOOKUPVALUE() function for current and prior period support mea-

sures.

Current and prior periods
A common requirement of date intelligence metrics is to compare the YTD total for a measure

versus the equivalent time period of the prior year. For example, on November 14, 2017, the visual

would compare January through October of 2017 versus January through October of 2016.

Without any external filtering, however, a standard YTD measure would include the 14 days of

November in 2017 and would capture the entire year of 2016 if the year 2016 was in the filter

context. To deliver equivalent or apples-to-apples comparisons of equal time periods, the filter

context of measures can be further customized.

The following measures retrieve the year-to-date net sales through the prior calendar month

and prior calendar week. For example, throughout the month of November, the YTD Last Month

measure would, at most, only retrieve the net sales through the month of October. Likewise, the

YTD Last Week measure would, at most, only include the net sales through the end of the prior

week of the year (45):

Prior Calendar Month Number =

 VAR __CurrentDay = TODAY()

RETURN

 IF (LOOKUPVALUE('Date'[Month Number],'Date'[Date],__CurrentDay) = 1,

 12,

 LOOKUPVALUE('Date'[Month Number],'Date'[Date],__CurrentDay)-1

Chapter 5 201

)

Prior Calendar Week Number =

 VAR __CurrentDay = TODAY()

RETURN

 IF(LOOKUPVALUE('Date'[Week of Year],'Date'[Date],__CurrentDay) = 1,

 CALCULATE(MAX('Date'[Week of
Year]),FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar
Year]) - 1)),

 LOOKUPVALUE('Date'[Week of Year],'Date'[Date],__CurrentDay)-1

)

Internet Net Sales (YTD Last Month) =

 IF([Prior Calendar Month Number] <> 12,

 CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar
Year] = MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date'[Month Number] <= [Prior Calendar Month Number])),

 CALCULATE([Internet Net Sales], FILTER(ALL('Date'),
'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Date]
<= MAX('Date'[Date]) && 'Date'[Month Number] <= [Prior Calendar Month
Number]))

)

Internet Net Sales (YTD Last Week) =

 VAR __CurrentWeek = LOOKUPVALUE('Date'[Week of
Year],'Date'[Date],TODAY())

RETURN

 IF(__CurrentWeek <> 1,

 CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar
Year] = MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date'[Week of Year] <= [Prior Calendar Week Number])),

 CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar
Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Date])
&& 'Date'[Week of Year] <= [Prior Calendar Week Number]))

)

For any prior calendar year in the filter context, the (YTD Last Month) measure would only

include January through October for this given year. Likewise, the (YTD Last Week) measure

would only include weeks 1 through 45 of the given year. By embedding this dynamic filtering

logic, it’s possible to use these measures in report visuals without applying any additional filters.

Developing DAX Measures and Security Roles202

The TODAY() function combined with the LOOKUPVALUE() function makes it possible to retrieve

values at query time relative to the current date. In the previous example, the month and week

number columns of the current year (for example, October = 10) are queried via LOOKUPVALUE()

based on the current date.

With these values retrieved, subtracting one from the results provides the value associated with

the prior month and prior week, respectively. These measures are then referenced in the FILTER()

function of their respective year-to-date measures.

Similar to this simple example, dynamically computed dates and other values make it possible

to create measures for the current date and yesterday:

Internet Net Sales (Today) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()))

Internet Net Sales (Yesterday) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()-1))

Along with the date intelligence metrics described in the following section, a rich set of date-based

metrics gives users of Power BI reports and dashboards visibility for both short- and long-term

results.

Date intelligence metrics
Date intelligence metrics are typically the first set of measures to be added to a dataset following

base measures. These measures reference the base measures and add a custom filtering condition

to the Date dimension table, thus providing visibility to multiple distinct time intervals, such as

year-to-date and the previous year-to-date.

Given their built-in date filtering logic, Power BI reports and dashboards can be developed faster

and without manual maintenance costs of updating date filter conditions.

The following four measures apply custom filter contexts to either return the current year, month,

and week by default, or the latest of these time intervals given the date filters applied in a report:

Internet Net Sales (CY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar
Year]) && 'Date'[Date] >= MIN('Date'[Date]) && 'Date'[Date] <=
MAX('Date'[Date])))

Internet Net Sales (YTD) = CALCULATE([Internet Net Sales],

Chapter 5 203

FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (MTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Year Month Number] = MAX('Date'[Year Month
Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (WTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Year Week Number] = MAX('Date'[Year Week
Number]) && 'Date'[Date] <= MAX('Date'[Date])))

As explained in the Row context section of this chapter, the use of the MIN() and MAX() functions

within the FILTER() function invokes the filter context of the report query. For example, if a

report page is filtered to the second quarter of 2016 (2016-Q2), the CY measure only returns the

sales from these three months while the YTD measure includes both the first and second quarter

of 2016. The month-to-date (MTD) and week-to-date (WTD) measures return the sales for June of

2016 and week 27 of 2016, the last month and week in the filter context.

The Date dimension table only contains rows through the current date. Therefore, in the absence

of any other date filters applied in a report, these measures default to the current YTD, MTD, and

WTD totals for net sales as per Figure 5.9:

Figure 5.9: Date intelligence metrics for the last full year in the dataset (2013)

The CY measure returns the same value as the YTD measure when no other date filters are applied.

The MTD and WTD measures both reference a numeric column on the Date table that corresponds

to the given granularity. For example, December of 2013 and January of 2014 are represented by

the values 108 and 109 in the Year Month Number column. As shown in the previous chapter,

these sequential columns are critical for date intelligence and are also used by the Sort By col-

umn property.

The following set of DAX measures return the prior year, month, and week given the filter context

of the report:

Internet Net Sales (PY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date'), CONTAINS(VALUES('Date'[Prior Year
Date]),'Date'[Prior Year Date],'Date'[Date])))

Developing DAX Measures and Security Roles204

Internet Net Sales (PYTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 &&
'Date'[Date] <= MAX('Date'[Prior Year Date])))

Internet Net Sales (PMTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Year Month Number] = MAX('Date'[Year Month
Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Month Date])))

Internet Net Sales (PWTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Year Week Number] = MAX('Date'[Year Week
Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Week Date])))

The Calendar Year, Year Month Number, and Year Week Number columns used by the current

period measures are also referenced by the prior period measures. However, the prior period

measures subtract a value of one from the result of the MAX() function to navigate to the given

preceding period.

In the Internet Net Sales (PY) measure, the CONTAINS() function used within the filtering

parameter of the FILTER() function returns a true or false value for each prior calendar year

date based on the date column. The CONTAINS() function returns true if the date column reflects

the filter context of the report query and thus only the corresponding prior year dates are passed

to FILTER() as the modified filter context.

DAX provides a number of functions dedicated to date intelligence, such as DATEADD() and

SAMEPERIODLASTYEAR(). These functions are much less verbose than the techniques from these

examples, but they’re also generally limited to standard calendars. The approach described in this

section leveraging DAX functions, such as FILTER() and ALL(), can also be applied to financial

calendars. Additionally, the filter navigation (for example, MAX() - 1) implemented in the prior

period measures is applicable to more advanced date intelligence expressions.

Each prior period measure references a column containing date values that have been adjusted

relative to the date column. Figure 5.10 of the Date dimension query in Power Query Editor high-

lights these three columns relative to the date column:

Chapter 5 205

Figure 5.10: Prior date columns in the date dimension

Given the value of date intelligence measures and the relatively static nature of the date dimension,

it’s recommended to develop a robust date dimension table. If the necessary columns cannot be

implemented in the source database itself, the columns can be computed within the SQL view

or the M query of the Date table.

Sample M query examples are available in the companion PBIX files for this book on GitHub

(https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition)

and detailed instructions are provided in Chapter 6 of Power BI Cookbook, 2nd Edition.

Let’s now look at a different type of date intelligence measure that compares prior years.

Current versus prior and growth rates
With date intelligence measures developed for the current and prior periods, growth or variance

measures can be added to the dataset, comparing the two values. In the following example, a

year-over-year (YOY) and a year-over-year year-to-date (YOY YTD) measure have been created

based on the current year and prior year measures from the preceding section:

Internet Net Sales (YOY) = [Internet Net Sales (CY)] - [Internet Net Sales
(PY)]

Internet Net Sales (YOY YTD) = [Internet Net Sales (YTD)] - [Internet Net
Sales (PYTD)]

https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition

Developing DAX Measures and Security Roles206

Finally, growth percentage measures can be added, which express the variance between the

current and prior period measures as a percentage of the prior period. The following measures

reference the above YOY measures as the numerator within a DIVIDE() function:

Internet Net Sales (YOY %) = DIVIDE([Internet Net Sales (YOY)],[Internet
Net Sales (PY)])

Internet Net Sales (YOY YTD %) = DIVIDE([Internet Net Sales (YOY
YTD)],[Internet Net Sales (PYTD)])

The DIVIDE() function returns a blank value if the denominator is zero or a blank value by default.

The divide operator (/), however, returns an infinity value when dividing by zero or a blank. Given

the superior error-handling behavior and performance advantages of DIVIDE(), the DIVIDE()

function is recommended for computing division in DAX.

Another popular category of date intelligence measures deals with rolling date periods so let’s

look at those next.

Rolling periods
Rolling periods, sometimes referred to as trailing averages, are very common in datasets, as they

help to smooth out individual outliers and analyze longer-term trends. For example, a significant

business event or variance 10 months ago has a relatively small impact on a trailing 12-month

total. Additionally, this variance does not impact trailing 30-day or 3-, 6-, and 9-month rolling

period measures.

The following two measures capture the trailing 60 days of sales history and the 60 days of history

prior to the trailing 60 days:

Internet Net Sales (Trailing 60 Days) =

 VAR __MaxDate = MAX('Date'[Date])

 VAR __StartDate = __MaxDate - 59

RETURN

 CALCULATE([Internet Net Sales],FILTER(ALL('Date'),'Date'[Date] >= __
StartDate && 'Date'[Date] <= __MaxDate))

Internet Net Sales Trailing (60 to 120 Days) =

 VAR __MaxDate = MAX('Date'[Date])

 VAR __EndDate = __MaxDate - 60

 VAR __StartDate = __EndDate - 59

Chapter 5 207

RETURN

 CALCULATE([Internet Net Sales],FILTER(ALL('Date'), 'Date'[Date] >= __
StartDate && 'Date'[Date] <= __EndDate))

The two 60-day measures compute the dates for the filter condition within DAX variables and

then pass these values into the FILTER() function. The two measures help to answer the question

“Is Internet sales growth accelerating?” With this logic, the value for the trailing 60 days measure

on November 15th, 2013 includes Internet sales since September 17th, 2013. The 60-to-120-days

measure, however, includes sales history from July 19th, 2013 through September 16th, 2013.

Rolling period or trailing average measures generally require the sequential numeric date dimension

columns in the date suggested in both previous chapters. Very similar to the prior period measures

from the previous section (for example, PY YTD), rolling period measures can reference sequential

columns for the given granularity and modify the date filter by adding or subtracting values.

In the next section, we take a look at a different way to create groups of measures called calcu-

lation groups.

Calculation groups
Calculation groups are a data modeling feature that enable common expression logic to be cen-

tralized and leveraged by other measures when needed in reports. In this section, we cover the

creation of the same basic date intelligence from the previous section, Date intelligence metrics,

but use calculation groups.

In the previous section, we covered the creation of basic date intelligence metrics for Internet

Net Sales. However, supporting eight common date intelligence expressions for each of 24 base

measures would imply adding 192 (8*24) distinct measures to the dataset, thus adding both de-

velopment time and complexity for report authors and analysts. Calculation groups address this

issue by allowing report authors to reuse common expressions such as year-to-date for whichever

base measure it’s needed for.

Calculation groups allow the creation of general calculation formulas that can be applied to any

explicit measure within the data model. Thus, a single set of 8 basic date intelligence metrics

could be created (CY, YTD, MTD, WTD, PY, PYTD, PMTD, PWTD) as a calculation group and this calculation

group could be applied to all 24 base measures.

Calculation groups and certain other dataset objects such as detail-row expressions can only be

created in external tools (outside of Power BI Desktop) such as Tabular Editor. Detail row expres-

sions enable custom drillthrough actions in MDX-based client tools such as via PivotTables in Excel.

Developing DAX Measures and Security Roles208

For example, the SELECTCOLUMNS() function could be used in a Detail Rows Expression to select

the dimension attributes most valued in a drillthrough scenario such as Customer ID and Sales

Order Number. Excel report users are able to simply double-click values in their Excel PivotTa-

bles to access a table containing the detail row expression attributes for the given filters applied.

Figure 5.11 shows a calculation group being created in Tabular Editor v2:

Figure 5.11: Creating a calculation group in Tabular Editor

Once deployed to the model, calculation groups appear as a table in the Fields pane with a sin-

gle named column. This column represents the collection of calculation items defined for the

calculation group.

Chapter 5 209

Figure 5.12 shows a matrix with a calculation group used with four different base measures si-

multaneously. In each case, the specified calculations are performed on each measure separately.

Figure 5.12: Calculation group used with multiple measures in a matrix

The equivalent calculation items for the basic date intelligence metrics covered earlier in this

chapter are as follows:

Current Year

CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'), 'Date'[Calendar Year]
= MAX('Date'[Calendar Year]) && 'Date'[Date] >= MIN('Date'[Date]) &&
'Date'[Date] <= MAX('Date'[Date])))

Year to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Calendar Year] =
MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date])))

Month to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Year Month Number]
= MAX('Date'[Year Month Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Week to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Year Week Number] =
MAX('Date'[Year Week Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Previous Year

CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'),
CONTAINS(VALUES('Date'[Prior Year Date]),'Date'[Prior Year

Developing DAX Measures and Security Roles210

Date],'Date'[Date])))

Previous Year to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Calendar Year] =
MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Prior Year
Date])))

Previous Month to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Year Month Number]
= MAX('Date'[Year Month Number])-1 && 'Date'[Date] <= MAX('Date'[Prior
Month Date])))

Previous Week to Date

CALCULATE(SELECTEDMEASURE(), FILTER(ALL('Date'),'Date'[Year Week Number] =
MAX('Date'[Year Week Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Week
Date])))

As you can see, in each instance, the explicit measure such as Internet Net Sales has been

replaced with the DAX function SELECTEDMEASURE(). The SELECTEDMEASURE() function is a

placeholder that represents the current measure in the context of the calculation item. Three

additional special functions are available to calculation items including SELECTEDMEASURENAME,

ISSELECTEDMEASURE, and SELECTEDMEASUREFORMATSTRING.

SELECTEDMEASURENAME is used to determine the measure in context by name. ISSELECTEDMEASURE

is used to determine if the measure in context is contained within a list of measures.

SELECTEDMEASUREFORMATSTRING is used to retrieve the format string of the measure in context.

Each calculation item in a calculation group can only operate on a single explicit measure. In ad-

dition, calculation item formulas do not support the use of VAR and RETURN statements. That said,

the YOY and YOY% calculations can be added to the calculation group with the following equations:

YOY

CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'), 'Date'[Calendar Year]
= MAX('Date'[Calendar Year]) && 'Date'[Date] >= MIN('Date'[Date]) &&
'Date'[Date] <= MAX('Date'[Date])))

-

CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'),
CONTAINS(VALUES('Date'[Prior Year Date]),'Date'[Prior Year
Date],'Date'[Date])))

YOY%

DIVIDE(CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'),
'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
'Date'[Date] >= MIN('Date'[Date]) && 'Date'[Date] <=

Chapter 5 211

MAX('Date'[Date]))), CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date'),
CONTAINS(VALUES('Date'[Prior Year Date]),'Date'[Prior Year
Date],'Date'[Date]))))

Data modelers should consider calculation groups for repetitive measures such as date intelligence

metrics. However, because calculation items can only refer to a single measure within their for-

mulas, calculation groups are limited in their utility. Furthermore, the appearance of calculation

groups as a table and the inability to see their formulas within Power BI Desktop or Excel can be

confusing to report authors and business users unfamiliar with the functionality.

Even with calculation groups handling common expressions (YTD, YOY), given the volume of dis-

tinct business questions that datasets and specifically DAX measures are tasked with addressing,

it can be challenging to avoid the development of hundreds or even thousands of DAX measures.

Over time such a high volume of DAX measures can make a dataset more difficult to support and,

even with a thoughtful display folder structure, can complicate the user experience of report

authors and analysts.

Report-scoped measures in Power BI reports are one method that organizations can use to avoid

an excessive volume of DAX measures within datasets. If a certain calculation or set of calcula-

tions is only applicable to a particular report or a few reports and isn’t expected to be used in the

future for self-service analysis or other reports then it may be preferable to implement these DAX

measures in the report rather than the Power BI dataset.

In these instances, depending on the complexity of the measure(s) and the experience and com-

fort level of the report author with DAX, either the report author or the dataset developer could

obtain access to the Power BI report file (.pbix) to add the measures.

This completes our exploration of calculation groups. We’ll next move on to exploring measures

that make calculations based upon dimension tables.

Dimension metrics
The majority of DAX measures apply aggregating functions to numeric columns of fact tables.

However, several of the most important metrics of a dataset are those that focus on dimension

tables, such as the count of customers who’ve purchased and those who haven’t.

It can also be necessary to count the distinct values of a dimension column such as the number

of postal codes sold to or the number of distinct marketing promotions over a period of time.

In the dataset for this project, the customer dimension table is exclusive to the Internet Sales

fact table, and the measure should only count customers with internet sales history.

Developing DAX Measures and Security Roles212

Additionally, slowly changing dimension logic has been implemented so that a single customer de-

fined by the CustomerAlternateKey column could have multiple rows defined by the CustomerKey

column.

The following two DAX measures count the number of unique customers and products with

internet sales history:

Internet Sales Customer Count =
CALCULATE(DISTINCTCOUNT('Customer'[CustomerAlternateKey]), 'Internet
Sales')

Internet Sales Products Sold Count =
CALCULATE(DISTINCTCOUNT('Product'[ProductAlternateKey]),'Internet Sales')

By invoking the Internet Sales fact table as a filtering parameter to CALCULATE(), any filter

applied to a related dimension table such as Sales Territory also impacts the measure.

This behavior is the same as bidirectional cross-filtering between the Internet Sales and

Customer tables. However, in the event that no filters have been applied in the reporting tool

(for example, Power BI or Excel), the Internet Sales table filter ensures that only customers

with Internet Sales histories are counted.

Let’s next look at an additional aspect of measures focused on dimensions, missing dimensions.

Missing dimensions
Missing dimension measures are commonly used in churn and exception reporting and analyses.

Missing dimension metrics attempt to identify what dimension values are not present within a

given set of fact table rows.

For example, a report may be needed that displays the specific products that haven’t sold or the

past customers who haven’t made a purchase in a given filter context. Additionally, missing di-

mension measures give greater meaning to other dimension measures. For instance, the count

of products sold in a period may not be as useful without knowing how many products were not

sold over this same period.

The following DAX measures count the number of unique customers without Internet Sales

history:

Internet Sales Customers Missing =
CALCULATE(DISTINCTCOUNT('Customer'[CustomerAlternateKey]),
FILTER(VALUES('Customer'[CustomerAlternateKey]),

Chapter 5 213

ISEMPTY(RELATEDTABLE('Internet Sales'))))

Internet Sales Products Missing =
CALCULATE(DISTINCTCOUNT('Product'[ProductAlternateKey]),
FILTER(VALUES('Product'[ProductAlternateKey]),
ISEMPTY(RELATEDTABLE('Internet Sales'))))

The Internet Sales Customers Missing measure references the Internet Sales fact table like

the customer count measure does, but only within the ISEMPTY() function. The ISEMPTY() func-

tion operates as the filter parameter of the FILTER() function and returns a true or a false value

for each distinct CustomerAlternateKey provided by the VALUES() function. Only the customer

rows without any related rows in the Internet Sales fact table are marked as true and this

filtered set of customer rows is passed to the DISTINCTCOUNT() function. The same methodology

is applied to the Internet Sales Products Missing measure.

The following matrix visual shown in Figure 5.13 has been filtered to five calendar quarters and

broken out by the Sales Territory Group:

Figure 5.13: Internet Sales Customers and Customers Missing

Any other dimension table with a relationship to the Internet Sales fact table, such as Promotion

and Product, could also be used to filter the metrics.

In this dataset, the customer dimension has 18,484 unique customers as defined by the

CustomerAlternateKey. Therefore, the sum of the customer count and customers missing mea-

sures is always equal to 18,484.

Developing DAX Measures and Security Roles214

As explained in the Filter context section of this chapter, the subtotal values execute in their own

filter context. For example, only 549 customers did not make an online purchase in any of the

four quarters, while over 12,000 customers did not make a purchase in each of the four quarters.

Once core dimension metrics have been established such as in the previous examples, additional

metrics can be developed that leverage their logic. The following measures identify the count

of first-year internet sales customers and the count of accessories products that have not sold

online, respectively:

Internet Sales First Year Customer Count = CALCULATE([Internet Sales
Customer Count],'Customer'[Customer History Segment] = "First Year
Customer")

Internet Sales Products Missing (Accessories) = CALCULATE([Internet Sales
Products Missing],'Product'[Product Category] = "Accessories")

Dimension metrics, just like the base measures described earlier, may be used in reporting by

themselves or may be referenced by other measures. This branching of measures underlines the

importance of clearly defining, documenting, and testing the foundational measures of a dataset.

In the next section we look at another common category of measures, those that deal with ranking.

Ranking metrics
Many reports and analyses are built around the ranking of dimensions relative to measures, such

as the top 10 salespeople based on YTD sales. Ranking measures can also help deliver cleaner and

more intuitive report visualizations as they substitute small integer values for large numbers

and decimal places. Ranking measures can be as simple as specifying a column and a measure,

or more complex with unique ranking logic applied in distinct filter contexts.

Ranking measures in DAX are implemented via the RANKX() function, which is an iterator like

SUMX() and FILTER(). As an iterating function, two required input parameters include a table

and the expression to be evaluated for each row of the table. The following two measures rank

products based on the Internet Net Sales measure:

Internet Net Sales Product Rank =
RANKX(ALL('Product'[ProductAlternateKey]),[Internet Net Sales],,DESC,Skip)

Internet Net Sales Product Rank (All Products) =

 VAR __ProdRankTable =
ALL('Product'[ProductAlternateKey],'Product'[Product

Chapter 5 215

Name],'Product'[Product Category Group],'Product'[Product
Category],'Product'[Product Subcategory],'Product'[Product Name])

RETURN

 RANKX(__ProdRankTable, [Internet Net Sales],,DESC,Skip)

As with date intelligence and other measures, ALL() is used to remove the filters applied to a table.

The ALL() function both removes a filter and returns a table that can then be evaluated by other

functions. ALL() can remove filters from an entire table, multiple columns of the same table, or a

single column from a table. Additionally, the ALLEXCEPT() function can be used to remove filters

from the current and any future columns of a table, except for one or a specific set of columns.

In the Internet Net Sales Product Rank measure, the ALL() function returns a table of the

unique product’s alternate key values. Since only a single column is referenced by ALL() in this

measure, other columns from the Product dimension table are allowed into the filter context.

For example, in Figure 5.14, the Product Category column impacts the Internet Net Sales

Product Rank measure so that the HL-U509-R product is ranked first given that it’s the high-

est-selling product in the Accessories category:

Figure 5.14: Ranking measures

The Internet Net Sales Product Rank (All Products) measure, however, ranks the product

relative to all other products including products in the Bikes category. The group of columns

specified in the ALL() function (the table parameter to RANKX()) defines the set of rows that the

ranking expression is evaluated against.

For ranking and certain other scenarios, it’s necessary to apply alternative logic for subtotals. For

example, the total row of the previous table visual would show a ranking value of 1 without any

modification to the DAX. A common pattern to address subtotal values is to check whether an

individual item of a column is in the filter context via HASONEVALUE().

Developing DAX Measures and Security Roles216

The following revised measure uses an IF() conditional function to apply the ranking for indi-

vidual products, but otherwise returns a blank value:

Internet Net Sales Product Rank (Revised) =
IF(HASONEVALUE('Product'[ProductAlternateKey]),
RANKX(ALL('Product'[ProductAlternateKey]),[Internet Net
Sales],,DESC,Skip),BLANK())

As shown in this example, it’s essential to understand the intended ranking logic and it may be

necessary to store alternative ranking measures to suit the requirements of different reports and

projects.

The RANKX() function has five parameters, but only the first two—the table and the expression

to evaluate—are required. In this example, the third parameter is skipped via the comma and

the measure is set to rank in descending order of the expression.

Additionally, the final parameter (Skip or Dense) determines how tie values are treated. For exam-

ple, if two products are tied for the highest sales, both products are ranked 1, and the next-highest

product is ranked 3. Descending order and the skip tie behavior are both defaults, but it’s a good

practice to explicitly define these settings in the measures.

We next look at a specific type of ranking measure that can dynamically calculate ranks based

upon how the user interacts with the report.

Dynamic ranking measures
The ranking measures in the previous section are specific to individual products. These measures

cannot be used, for example, to rank product subcategories or product categories. Rather than

develop many separate measures targeted at one specific column, logic can be embedded in DAX

measures to dynamically adjust to the columns in the filter context.

In the following measure, a ranking is applied based on the filter context from three levels of a

product hierarchy:

Internet Net Sales Product Rank (Conditional) =

 VAR __ProductFilter = ISFILTERED('Product'[Product Name])

 VAR __SubCatFilter = ISFILTERED('Product'[Product Subcategory])

 VAR __CatFilter = ISFILTERED('Product'[Product Category])

RETURN

 SWITCH(TRUE(),

 __ProductFilter = TRUE(), RANKX(ALL('Product'[Product Name]),[Internet

Chapter 5 217

Net Sales],,DESC,Skip),

 __SubCatFilter = TRUE(), RANKX(ALL('Product'[Product
Subcategory]),[Internet Net Sales],,DESC,Skip),

 __CatFilter = TRUE(), RANKX(ALL('Product'[Product Category]),[Internet
Net Sales],,DESC,Skip),

 BLANK())

The measure checks for the existence of a filter on the Product Name, Product Subcategory, and

Product Category columns within a SWITCH() function via the ISFILTERED() function. The

first logical condition to evaluate as true results in the corresponding RANKX() expression being

executed. If no condition is found to be true, then the BLANK() value is returned.

The dynamic ranking measure can be used in report visuals that drill up/down through the prod-

uct hierarchy or in separate visuals dedicated to specific columns. Drilling within Power BI is

covered in later chapters.

In Figure 5.15, distinct table visuals representing the three levels of the product hierarchy utilize

the Internet Net Sales Product Rank (Conditional) measure:

Figure 5.15: Dynamic ranking measure

For the visuals in the preceding table, a shorter and more intuitive name was used instead of the

full measure name (Internet Net Sales Product Rank (Conditional)).

To change the name of a measure or column used in a report visual, double-click the name of the

measure or column in the Values bucket of the Visualizations pane. The revised name only applies

to the specific visual, and hovering over the revised name identifies the source measure or column.

Similar to the Internet Net Sales Product Rank measure from the previous section, the con-

ditional measure allows for other columns to impact the filter context. For example, if both the

Product Category and Product Subcategory columns are included in the same table visual,

the conditional measure ranks the subcategories relative to other subcategories of the same

Product Category.

Developing DAX Measures and Security Roles218

With this dataset, the Tires and Tubes subcategory, which is ranked fourth overall as per the

above table, would be ranked number one for the Accessories product category. Next, we wrap

up our coverage of different types of measures with a section on report-scoped measures.

Security roles
In addition to DAX’s utility for creating measures, DAX is also required when defining security

roles within a dataset. Per Chapter 1, Planning Power BI Projects, the required data security for this

project is to limit the visibility of the Adventure Works sales team users to their respective sales

territory groups. There are three sales territory groups (North America Sales Group, Europe

Sales Group, and Pacific Sales Group), and, as described in the previous chapter, cross-filter-

ing relationships exist between the Sales Territory dimension table and all three fact tables

(Internet Sales, Reseller Sales, and Sales and Margin Plan).

Therefore, security roles with a filter condition on the given sales territory group also filter

the fact tables, and business users mapped to these roles only see data associated with their

Sales Territory group.

Security roles are defined in Power BI Desktop via the Manage roles dialog of the Modeling tab

as shown in Figure 5.16:

Figure 5.16: Managing security roles

Chapter 5 219

In this example model, the Sales Territory dimension table has a single-direction one-to-

many relationship with the Internet Sales and Reseller Sales fact tables. For the Sales and

Margin Plan fact table, the Sales Territory filter first flows to the bridge table and then uses a

bidirectional cross-filtering relationship from the Sales Territory bridge to Sales and Margin

Plan. Therefore, a user mapped to the Europe Sales Group role only has access to the Internet

Sales, Reseller Sales, and Sales Plan data associated with Europe.

Just like a filter selection on a column of the Sales Territory table in a report, a security filter

also flows across the cross-filtering relationships of the data model. However, unlike report filters,

security filters cannot be overridden by DAX measures. Security filters are applied to all report

queries for the given dataset and any additional filtering logic or DAX expression respects the

security role definition.

Given the automatic filtering of security role conditions, it’s important to implement efficient se-

curity filters and to test the performance of security roles. For example, a complex filter condition

applied against a large dimension table could significantly degrade the performance of reports

and dashboards for users or groups mapped to this security role.

In addition to defining security roles, security roles can also be tested in Power BI Desktop via

the View as roles command on the Modeling tab. In Figure 5.17, a chart that displays sales by the

sales territory country is only displaying the countries associated with the Europe Sales Group

due to the View as roles selection:

Figure 5.17: View as roles in Power BI Desktop

Developing DAX Measures and Security Roles220

Similar to the View as roles feature in Power BI Desktop, a Test as role option is available in the

Power BI service. This feature can be accessed from the ellipsis next to each Row Level Security

(RLS) role in the Security dialog for the dataset.

Additionally, other users can test the security roles by connecting to published Power BI apps.

In this testing scenario, the user would not be a member of the workspace, but a member of an

Azure Active Directory Security Group, which is mapped to a security role of the dataset. The

reason why test users should not be a member of a workspace is covered in detail in Chapter 10,

Managing Workspaces and Content.

For this project, and as a strongly recommended general practice, Azure Active Directory (AAD)

security groups should be created for the users accessing Power BI content. AAD security groups

are the enterprise solution for controlling security across all systems that authenticate with AAD.

While it is possible to use Microsoft 365 groups with security roles, Microsoft 365 groups are not

a replacement for AAD security groups.

Figure 5.18 displays the properties of a North America Sales security group:

Figure 5.18: The Azure Active Directory security group

Chapter 5 221

Users can be added or removed from AAD security groups in the Azure portal or via PowerShell

scripts. PowerShell and other administration topics are covered in Chapter 14, Administering Power

BI for an Organization.

The Assigned membership type can be used but alternatively, a Dynamic User membership type

can be created based on a membership rule query. With Dynamic User AAD security groups, a

user can be automatically added or removed from groups as their role in the organization changes.

The AAD security groups can then be mapped to their respective security roles for the published

dataset in Power BI. In Figure 5.19, the North America Sales AAD security group is recognized as

a potential group to be added as a member of the North America Sales Group RLS role:

Figure 5.19: Member assignment to row-level security roles

With the AAD security groups created and mapped to their corresponding RLS roles of the Power

BI dataset, security filters are applied based on the user’s membership to the AAD group. When

RLS roles have been applied to a dataset, the users accessing the reports and dashboards based

on that dataset need to be mapped to at least one of the roles.

For example, if a Power BI app is distributed to a user who is not included in one of the AAD security

groups mapped to one of the RLS roles, and this user account is not mapped individually to one of

these RLS roles, the user receives an error message in the Power BI service as shown in Figure 5.20:

Figure 5.20: Error message: User not mapped to an RLS role

Developing DAX Measures and Security Roles222

In the event that a user is mapped to multiple RLS roles, such as both the North America Sales

Group and the Europe Sales Group, that user sees data for both Sales Territory groups (and

not Pacific Sales Group). For users that require access to the entire dataset, such as administra-

tors or executives, an RLS role can be created on the dataset that doesn’t include any filters on

any of the tables.

Chapter 13, Creating Power BI Apps and Content Distribution, and Chapter 14, Administering Power

BI for an Organization, contain additional details on AAD’s relationship to Power BI and the role

of security groups in securely distributing Power BI content to users.

Dynamic row-level security
The security model discussed thus far relies on users being a member of static groups or security

roles. While appropriate for many datasets, other scenarios require a more user-specific meth-

odology in which the identity of the report user is determined dynamically and this value is used

to apply filter conditions.

Dynamic row level security implementations involve defining a single security role which uses

the USERPRINCIPALNAME() DAX function to retrieve the identity (the UPN) of the connected user.

This identity value is then used to filter a typically hidden table in the model which maps indi-

viduals to the dimensions they’re allowed to access.

For example, a user and a permissions table could be added to the dataset (and hidden) so that

the user table would first filter the permissions table, and the permissions table would then filter

the dimension to be secured, such as a Sales Territory Country.

Figure 5.21 shows an example of a permissions table where Jen Lawrence is associated with Germany,

Australia, and the United States, and thus should only have visibility to these countries in any

Power BI report or dashboard built on top of the dataset:

Figure 5.21: User permissions table

Chapter 5 223

The other two tables in the Security Table Queries query group include a Users query with a

distinct list of User Principal Names (UPNs) and a SalesTerritoryCountries query that contains

a distinct list of the values in the SalesTerritoryCountry column in the Sales Territory query.

The SalesTerritoryCountries table is necessary because the Sales Territory dimension table

is more granular than the country one.

The SalesTerritoryCountry table receives the filter context from the permissions table and uses

a simple one-to-many cross-filtering relationship with the Sales Territory dimension table

to filter the fact tables.

The dynamic RLS role is defined with the User Principal Name column of the Users table equal

to the USERPRINCIPALNAME() function.

[User Principal Name] = USERPRINCIPALNAME()

The relationships, and, more specifically, the cross-filtering from the Sales Country Permissions

table, deliver the intended filter context for the given user.

In Figure 5.22, a bidirectional cross-filtering relationship is defined between Sales Country

Permissions and SalesTerritoryCountries so that only the countries associated with the user

filter the Sales Territory dimension table:

Figure 5.22: Dynamic RLS model relationships

Developing DAX Measures and Security Roles224

The Apply security filter in both directions property of the bidirectional relationship between

Sales Country Permissions and SalesTerritoryCountries should be enabled. This property

and the relationships-based filtering design are applicable to both import and DirectQuery data-

sets. All three security tables should be hidden from the Report View.

With users or groups assigned to the dynamic security role in the Power BI service, the role can

be tested via the Test as role feature in Power BI. In Figure 5.23, the user Brett is able to test the

dynamic role as himself (Canada, United States), but can also view the dynamic role as though

any other user is logged in, viewing the reports:

Figure 5.23: Testing dynamic row-level security in Power BI

It can be useful to create a dedicated security testing report that can be leveraged as security roles

are created and modified. The report may contain multiple pages of visualizations representing

all primary tables and any sensitive metrics or columns from across the dataset.

On this project, a business analyst or a QA tester can be mapped onto the security role and use the

report to confirm that the filter context from the security role has been implemented successfully.

We’ll now move on to discussing how to performance test DAX calculations.

Chapter 5 225

Performance testing
Given that DAX measures can implement complex business logic and are dynamically calculated

as users interact with reports, the performance of these calculations is a critical component of

providing a good user experience.

There are often many available methods of implementing business logic and custom filter contexts

into DAX measures. Although these alternatives deliver the essential functional requirements, they

can have very different performance characteristics, which can ultimately impact user experience

and the scalability of a dataset.

When migrating a self-service dataset to a corporate solution or preparing a large and highly

utilized dataset, it’s always a good practice to test common queries and the DAX measures used

by those queries.

For example, the same common dimension grouping (for example, Product Category and Year)

and the same filter context (Year = 2018) could produce dramatically different performance

results based on the measures used in the query, such as Internet Net Sales versus Count

of Customers. The alternative performance statistics associated with different measures such

as duration and the count of storage engine queries generated could then be used to focus per-

formance tuning efforts.

In some cases, the DAX measures associated with slow queries cannot be significantly improved,

but the data obtained from the performance testing results can drive other changes.

For example, report authors could be advised to only use certain measures in less performance-in-

tensive visuals such as cards, or in reports that have been substantially filtered. In a DirectQuery

model, the data source owner of the dataset may be able to implement changes to the specific

columns accessed via the slow-performing measures.

Let’s first look at how to use the Performance analyzer within Power BI Desktop in order to

collect performance statistics about DAX calculations.

Performance analyzer
The performance of DAX measures in the context of report queries reflecting Power BI visual-

izations is essential to the scalability of the dataset and the user experience. To assist with trou-

bleshooting and testing performance, the Performance Analyzer has been added to Power BI

Desktop thus making it easy to quickly isolate and analyze slow performing queries and metrics.

Developing DAX Measures and Security Roles226

As shown in Figure 5.24, the Performance analyzer pane can be accessed from the View menu

of the ribbon in Power BI Desktop.

Figure 5.24: Performance analyzer in Power BI Desktop

As shown in Figure 5.23, once the Performance analyzer pane is activated, you can click the
Start recording link to begin capturing performance statistics as you interact with the report. In
Figure 5.23, performance recording was started and then the Refresh visuals link was pressed.
The statistics for this action were recorded in the Refreshed visual section of the Performance
analyzer. After that a value was selected in the slicer visual. The statistics for this action were
recorded in the Changed a slicer section of the Performance analyzer.

The Performance analyzer logs the duration of report user interactions with the report in milli-
seconds (ms). Clicking on an individual performance item within the Performance analyzer log
highlights (selects) the visual within the report. The individual item can be expanded to see more
detailed statistics including the timings for the DAX query, Visual display, and Other. The under-
lying DAX query sent to the data model can be copied to the clipboard using the Copy query link.

The entire Performance analyzer log can be exported to a JSON file by clicking the Export link.
This exported JSON file can then be easily imported into DAX Studio via the Load Perf Data icon
on its Home tab for further evaluation and testing. Once you are finished collecting performance
information, you can stop recording performance statistics by clicking on the Stop link.

Using the Performance analyzer pane, data modelers and report authors can quickly understand
the measures and visuals that are creating performance issues within the report including how
user interactions affect performance. In addition, studying the underlying DAX queries sent to

the data model is an excellent way to learn optimal DAX coding strategies.

Chapter 5 227

While the Performance analyzer is powerful, there are still times when external tools such as DAX

Studio provide additional performance insights.

DAX Studio
DAX Studio is a lightweight, open source client tool for executing DAX queries against Power BI

datasets and other sources that share the Microsoft Analysis Services Tabular database engine,

such as SSAS in Tabular mode and Azure Analysis Services.

DAX Studio exposes the metadata of the source model (for example, tables, measures, hierarchies),

includes reference panes for DAX functions and Tabular Dynamic Management Views (DMVs),

and also provides query formatting, syntax highlighting, and IntelliSense for developing DAX

queries.

Additionally, DAX Studio supports performance tuning as it can execute traces against its data

sources and displays useful performance statistics, as well as the query plans used to execute

the query.

The Server timings and Query plan panes in DAX Studio expose the storage engine and formula

engine query plans, respectively. The formula engine processes data but cannot retrieve data

from the tables of a dataset. Within tabular models, the storage engine is solely responsible for

data retrieval.

In most performance testing scenarios, the storage engine versus formula engine results of a trace

(for example, 50 ms in the storage engine, 10 ms in the formula engine) lead the user to focus on

either the slowest storage engine queries or the most expensive operations in the formula engine.

For these reasons, despite improvements to DAX authoring in SQL Server Management Studio

(SSMS), DAX Studio is very commonly used by Microsoft BI developers in Analysis Services and

Power BI environments. Specifically, BI developers store the DAX queries created within DAX

Studio as .dax or .msdax files and later open these files from DAX Studio for performance testing

or troubleshooting scenarios.

For example, a team may have a DAX query that returns the count of rows for three fact tables of

a data model by calendar date and use this query to troubleshoot issues related to a data-loading

process. Additionally, just as M queries saved within .pq files can be added to version control

systems, DAX query files can be added to version control systems, such as Azure DevOps.

DAX Studio can be downloaded from http://daxstudio.org.

http://daxstudio.org

Developing DAX Measures and Security Roles228

Summary
This chapter developed and described several common classes of DAX measures, including base

measures, date intelligence metrics, dimension metrics, and ranking metrics. These measures

utilized the fact and dimension tables developed in previous chapters.

In addition to detailed measure examples, the primary concepts of the DAX were reviewed and

standard row-level security (RLS) and dynamic RLS (DRLS) models were shared. Finally, perfor-

mance testing and tuning tools, including the Performance analyzer pane and DAX Studio were

presented.

In the following chapter, Power BI reports are created, which leverage the dataset that has been

incrementally developed since Chapter 2 and 3. Report-authoring features, such as the visualiza-

tion types in Power BI Desktop, access the DAX measures from this chapter and the dimensions

from previous chapters to deliver business insights and intuitive, self-service functionality.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

6
Planning Power BI Reports

Effective and sustainable Power BI reports and Power BI solutions more generally reflect thoughtful

planning and process. To this end, this chapter contains foundational concepts and features to

support the design of Power BI reports including visualization best practices, report filter scopes,

and Live connections to Power BI datasets.

In this chapter, we review the following topics:

• Report planning process

• Visualization best practices

• Choosing the right visual

• Visual interactions

• Drillthrough report pages

• Report filter scopes

• Bookmarks

• Live connections to Power BI datasets

• Report design summary

Before jumping into creating visuals, it is important to properly plan reports in order to ensure a

good user experience and maximize the value to the business. Thus, we’ll first take a look at the

report planning process.

Report planning process
Power BI reports can take on a variety of forms and use cases, ranging from executive-level

dashboard layouts to highly detailed and focused reports.

Planning Power BI Reports230

Prior to designing and developing Power BI reports, some level of planning and documentation

is recommended to ensure that the reports are well aligned with the needs of the users and the

organization.

Effective report planning can be encapsulated in the following six steps:

1. Identify the audience

2. Define the business questions to answer

3. Confirm that the dataset supports the business questions

4. Determine interactivity

5. Define access and distribution

6. Sketch the report layout

Let’s look at each of these steps in turn, starting with identifying report users.

Identify the audience
When developing reports, the report author should have a clear understanding of the different

consumers of the report and their priorities and use cases.

For example, analysts often place a high value on the ability of the report to help them tell a story

about the data. Storytelling refers to the ability to focus on a key KPI or data element and then

explain how and why that KPI is lower or higher than expected, an outlier compared to previous

years, or represents a significant trend. Therefore, analysts often require significant flexibility to

filter and interact with more detailed reports. Thus, reports used by analysts generally include

more slicer visuals and may include table or matrix visuals as well.

Conversely, senior managers generally prefer less self-service interactivity and value simple,

intuitive visuals, such as KPIs. Senior managers are less focused on storytelling and more focused

on the ability to manage their business area or organization from a “single pane of glass.” The

term “single pane of glass” is the theoretical ability to distill and expose all of the important

information regarding complex systems to a single report or tool.

Separating reports by user role or group serves to keep reports focused for users and more

manageable for BI teams. In many scenarios, an organizational hierarchy provides a natural

demarcation such that reports can be designed for specific roles or levels within an organization.

In the project example for the Adventure Works sales team, reports could align with the Sales

Territory hierarchy (SalesTerritoryGroup | SalesTerritoryCountry | SalesTerritoryRegion).

Chapter 6 231

The vice president of group sales generally values high-value corporate-wide metrics and

intuitive dashboard reports. A sales analyst in the United States, however, likely needs to break

out individual regions and even analyze specific ZIP codes or individual products.

We’ll now move on to defining the business questions that the report should answer.

Define the business questions to answer
In addition to knowing one’s audience, it is also critical to understand the exact questions the

report should be able to answer for the business.

Confirm with the business user(s) or project sponsors that the report has the correct scope and

the appropriate focus. A report architecture diagram described in the subsequent section, Report

architecture diagram, can support this communication. For example, the user could be advised

that a particular business question or metric is included in a different report but featured on the

same dashboard and is easily accessible within the same Power BI app.

The most important business question (for example, what were our sales?) is addressed in the

top-left corner of the report, likely with a KPI or similar visual. Similar to separating reports by

user role or group, a report should not attempt to resolve widely disparate business questions.

A single report certainly can contain visuals reflecting distinct fact tables and business processes

such as customer service interactions, product inventories, and shipping or delivery orders.

However, for most reports it’s best that the visuals within the report align to the same or very

similar business processes such as Internet Sales and Reseller Sales. The need to summarize and

integrate visuals from multiple business processes is often best addressed by Power BI dashboards,

not reports, as described in Chapter 9, Designing Dashboards.

Once the business questions are verified, the next step is to confirm that the dataset supports

the desired questions.

Confirm that the dataset supports the business questions
The report author should ensure that the dataset includes necessary measures such as year-

over-year (YOY) sales and the dimension columns (for example, Product Category) necessary

to visualize the business questions.

In order to both develop an accurate report and to support questions from consumers of the

report, report authors should have a solid understanding of the Power BI dataset. This knowledge

includes the logic and business definitions of DAX measures, the relationships defined between

fact and dimension tables, and any data transformation logic applied to the source data.

Planning Power BI Reports232

In many projects, report authors regularly collaborate with business stakeholders or project

sponsors in gathering requirements and demonstrating report iterations. Therefore, the authors

need to explain the values and behaviors of Power BI reports as well as any current limitations in

the dataset, such as the years of history supported and any DAX logic or measures not yet created.

If a gap exists between the dataset and the measures required for the report, the team can

determine whether the dataset should be extended or whether the measure should be created

local to the report. For example, with Power BI Live connections, only measures can be created

within Power BI Live connection reports. Any new columns, tables, or modifications to existing

tables or columns must be implemented within the source dataset.

The set of base measures described in Chapter 5, Developing DAX Measures and Security Roles, as

well as the dynamic date dimension columns described in Chapter 2, Connecting to Sources and

Transforming Data with M (for example, Calendar Month Status = 'Prior Calendar Month'),

should support the most common needs of reports.

If a measure required for a report is considered to be common to other future reports, and if

the measure doesn’t violate the single corporate definition of an existing measure, the measure

should generally be added to the dataset. However, if the report requirement is considered rare

or if a measure definition has been approved only for the specific report, then the measure(s) can

be created local to the report.

For version control and manageability reasons, report authors should not have to implement

complex filtering logic or develop many local report measures. Report authors should communicate

with dataset designers and the overall team if a significant gap exists or is developing between

reports and the dataset.

Once the dataset is confirmed to support the desired business questions, the next step is to determine

the report type and mobile features based on the desired report interactions and access methods.

Determine interactivity
Although Power BI reports developed in Power BI Desktop are increasingly the default report type

for new reports given their modern user experience and relative ease of development, Power BI

also fully supports paginated reports, formerly SQL Server Reporting Services (SSRS) reports,

as well as Excel-based reports.

In many instances, particularly when reports are being migrated from legacy systems and/or

business processes, the features of these alternative report types more closely align with the

requirements and priorities of the report users.

Chapter 6 233

Choosing the incorrect report type can lead to delayed delivery timelines and frustrated
stakeholders who may assume that features from current or past BI tools are supported by Power
BI reports.

For example, if printing or distributing multiple pages of report data is a top priority, then a
paginated report developed in Power BI Report Builder would be the appropriate report type.
Similarly, if the intent is to support an existing Excel report that contains significant cell-level
formatting and logic such as a financial statement, it would make sense to continue to leverage
Excel but switch the data source to a Power BI dataset.

In many cases a combination of the features of multiple report types is needed or valued such
as both visual interaction and exporting out multiple pages of details. In these scenarios, report
authors and BI teams should consider options of providing Power BI apps containing multiple
report types as well as integrated reports via the paginated report visual discussed in Chapter 7 ,
Creating and Formatting Visuals.

Conversely, Power BI reports created in Power BI Desktop are visually interactive by default and
report authors have many options to empower report users to analyze and explore the data in
reports to derive their own insights. Thus, if a high degree of interactivity and exploration are the
priority, then reports developed in Power BI Desktop are likely the correct choice.

Report authors and BI teams should be transparent with users and stakeholders about the
differences and trade-offs between the different report types. In scenarios in which one of the
three report types isn’t the clear choice, the BI/IT team and the primary stakeholders can reach a
consensus on the type of report to be developed. Alternatively, it can be determined that multiple
report types will be required, such as an interactive Power BI report as well as a paginated report,
and possibly an Excel report too.

After the interactivity of the report is determined, the next step is to define the access

and distribution.

Define access and distribution
Power BI report content can be accessed from a variety of form factors ranging from smartphones
and tablets up to large screens in conference rooms and office hallways. Additionally, report
content can be integrated within PowerPoint slide decks and delivered to end users via email
subscriptions and data-based alerts thus limiting or avoiding the need for users to navigate to
relevant content in the Power BI service.

Report authors should be familiar with the rich mobile layout features available in Power BI
Desktop as well as options for email subscriptions such delivering paginated report data as

attached CSV or Excel files via subscriptions.

Planning Power BI Reports234

Once the access and distribution methods are confirmed, the final step is to create a sketch of

the report layout.

Sketch the report layout
It is often beneficial to create a sketch of the basic layout of a report. Such a sketch should be

completed for at least the primary page of the report and should document the position and

relative size of visuals on the report canvas (page).

Figure 6.1 shows a sample sketch created within a PowerPoint presentation file via the standard

shape objects:

Figure 6.1: Sample report layout sketch

As per the sample layout, the critical sales and margin measures are located in the top-left corner

of the report page. Slicer (filter) visuals are planned for below these KPI or card visuals and other

visuals add further context. Greater space is allocated to the two visuals in the middle of the page

given their importance to the report.

The report layout sketch can be used exclusively for planning purposes or can be set as the

background for a report page. For example, a PowerPoint slide of the same shapes, background

shading, and borders can be saved to a network directory as a PNG file.

In Power BI Desktop, the PNG file can be imported via the Image formatting option under Canvas

background on the Format pane or via the insert an image icon on the Home tab in Report

view. Page background images with proper alignment, spacing, and colors can expedite quality

report development.

Chapter 6 235

Be willing to modify a report layout or even start afresh with a new layout based on user feedback.

Unlike dataset development, which can require significant time and expertise (for example, DAX,

M, and SQL), reports can be developed in a rapid, agile delivery methodology. Report authors can

engage directly with users on these iterations and, although recommended practices and corporate

standards can be communicated, ultimately, the functional value to the user is the top priority.

It’s important to distinguish flexibility in report layout and visualization from the report’s target

users and business questions. Second and third iterations of reports should not, for example,

call for fundamentally different measures or new report pages to support different user groups.

Report authors and BI teams can work with users and project sponsors to maintain the scope of

IT-supported reports. The interactivity built into Power BI reports and the self-service capabilities

provided by Power BI Pro licenses can broaden the reach of projects without requiring new or

additional reports.

This completes the report planning process. Next, we’ll look at a tool that can aid in the report

planning process – a report architecture diagram.

Report architecture diagram
Similar to the data warehouse bus matrix described in Chapter 1, Planning Power BI Projects, a

report architecture diagram can be helpful in planning and communicating Power BI projects

with both business and IT stakeholders. This diagram serves to maintain the scope and focus of

individual reports.

For example, certain business questions or entities (such as Customer, Product) can be assigned

to dedicated reports and the individual pages of these reports can visualize these questions or

entities at varying levels of detail.

Most commonly, a single report page, such as that represented in Figure 6.1, addresses the top

priority of a report at a summary level. This page includes cards and/or KPI visuals at the top left

of the page and charts rather than tables or matrices that visualize these metrics at a high level.

Additional report pages, usually a maximum of 3-4, are designed to provide a greater level of

detail supporting the summary page. With this report structure, a user can naturally start their

analysis from an intuitive and visually appealing summary page and then, if necessary, navigate

to pages exposing greater levels of detail.

In addition to supporting report pages with greater detail, drillthrough report pages can be

designed to display the details for an individual item, such as a specific product or a combination

of items, for example, the year 2018 and a specific product.

Planning Power BI Reports236

Drillthrough report pages are simply report pages that include drillthrough filters and are detailed

in the Drillthrough report pages section of this chapter, which provides details and examples of

this feature.

In the absence of a report architecture or diagram, reports can quickly become less user-friendly

as many report pages are added that address unrelated business questions. Additionally, the

lack of scope or focus for a report can lead to duplicated efforts with the same business question

being visualized in multiple reports.

Guidance from stakeholders on the visuals to be included in or featured on a dashboard can

strongly inform the report design process. For example, in the case where several dashboard tiles

are closely related (such as profitability %), then it’s likely that a separate report with 3-4 pages

should be designed to support further analysis of each tile.

Conversely, if only one dashboard tile relates to a particular business question or entity, such as

resellers, then the supporting report may only need 1-2 pages and provide relatively less detail.

In the basic example shown in Figure 6.2, four reports and one dashboard are planned for the

German sales team:

Figure 6.2: Sample report architecture diagram

In the example shown in Figure 6.2, report visuals contained in four Germany sales reports are

pinned as tiles in the Germany Sales and Margin dashboard. By default, this would link the

reports to the dashboard such that a user could access the details of any of the four reports by

clicking on a related dashboard tile.

Visuals from a single report can be pinned as tiles to multiple dashboards. Additionally, a

dashboard tile can be linked to a separate dashboard or to a separate report in the Power BI

service. Chapter 9, Designing Dashboards, includes additional details and examples of Power BI

report and dashboard architectures.

Chapter 6 237

The four reports and the dashboard from the preceding example could be included in a dedicated

app workspace for the German sales team or within a broader workspace that supports multiple

sales teams and related content (for example, marketing) in the organization.

Information on workspaces and content distribution via apps is provided in Chapter 10, Managing

Application Workspaces and Content, and Chapter 14, Creating Power BI Apps and Content Distribution.

The following section describes Live connection reports to Power BI datasets published to the

Power BI service.

It’s important to understand and communicate the differences between Power BI reports and

dashboards. Although Power BI report pages can appear as “dashboards” to users, dashboards

created in the Power BI service serve an important and distinct role of providing a single pane of

glass to highlight key performance indicators and the most important visuals for an organization.

Simply stated, dashboards are a feature of the Power BI service that allow visuals from multiple

reports to be pinned to a single canvas. Dashboards are covered in detail in Chapter 9, Designing

Dashboards.

This completes the report planning section and we’ll now turn our attention to additional

considerations when designing reports, starting with visualization best practices.

Visualization best practices
Effective reports are much more than simply answering documented business questions with the

available measures and columns of the dataset. Reports also need to be visually appealing and

provide a logical structure that aids in navigation and readability. Business users of all backgrounds

appreciate a report that is clear, concise, and aesthetically pleasing.

Now that the report planning phase described is complete, the following list of 15 visualization

best practices can guide the report development process:

1. Avoid clutter and minimize non-essential details: Each visual should align with the

purpose of the report—to gain insight into a business question. Visualizations should

not represent wild guesses or functionality that the author finds interesting.

Eliminate report elements that aren’t essential for improving understanding. Gridlines,

legends, axis labels, text boxes, and images can often be limited or removed. The report

should be understandable at a glance, without supporting documentation or explanation.

A simple but helpful test is to view a Power BI report on a laptop screen from a distance

of 12 to 15 feet, such as from the opposite end of a conference room.

Planning Power BI Reports238

At this distance, it is impossible to read any small text, and only the shapes, curves, and

colors are useful for deriving meaning. If the report is still meaningful, this suggests the

report is effectively designed visually.

2. Provide simple, clear titles on report pages and visuals: Text boxes can be used to name

or describe the report, report page, and provide the last-refreshed date.

3. For chart visuals, use the length of lines and the two-dimensional position of points

to aid visual comprehension: On line charts, users can easily perceive trends and the

divergence of lines relative to each other. On column or bar charts, users can easily

distinguish relative differences in the length of bars. On scatter charts, users can quickly

interpret the two-dimensional position of data points relative to each other.

The purpose of these two attributes (line length and 2-D position) as the primary

communication mechanism is to guide the user to an accurate assessment with minimal

effort. Other visual attributes, such as color, shape, and size, can also be beneficial,

particularly when these properties are driven by the data, such as with conditional

formatting (data-driven colors/formatting) and KPIs.

However, line length and 2-D position (X, Y coordinates) have a natural advantage in visual

perception. For example, the differences between three items on a clustered column chart

are much more obvious than the same three items presented on a pie chart.

4. Position and group visuals to provide logical navigation across the canvas: The most

important visuals should be positioned in the top-left corner of each report page. If

multiple visuals are closely related, consider grouping them within a shape object.

5. Use soft, natural colors for most visuals: Avoid overwhelming users with highly saturated

bright or dark colors. Only use more pronounced colors when it’s necessary to make an

item stand out, such as conditional formatting.

Note that some organizations may have standards that require colorblind-friendly color

schemes or other color and formatting requirements for visually impaired viewers such

as requiring both a symbol and a color.

6. Only apply distinct colors to items in chart visuals when the colors convey meaning:

For example, three colors might be useful for the data points of three separate product

categories.

Chapter 6 239

7. Align visuals to common horizontal and vertical pixel positions: For example, if a visual

in the top-left corner of a page has horizontal and vertical coordinate position values of

20 and 40, respectively, then other visuals on the left side of the canvas should also have

a horizontal position of 20. Likewise, the top visual(s) on the right side of the canvas

should align with the left visuals at a vertical position of 40.

8. Distribute visuals vertically and horizontally to create an equal amount of space

between visuals: The amount of spacing should be adequate to clearly distinguish the

visuals as separate entities. With one or multiple visuals selected in Power BI Desktop, a

Format tab appears on the ribbon as per Figure 6.3:

Figure 6.3: Alignment, distribution, and Z-order format options

The format options (Bring forward and Send backward (Z-order)), as well as the Align

option, are consistent with common MS Office applications, such as Excel and PowerPoint.

Between these formatting options and the four properties available under the General

sub-pane of the Visualizations pane for all visuals (Horizontal position, Vertical position,

Width, and Height), report authors can ensure that visuals are properly aligned and spaced.

The Gridlines and Snap to grid options under the View tab also support alignment.

The Selection setting displays the Selection pane, allowing report authors to set layer

order, show or hide visuals, and set the tab order. When multiple visuals are selected

simultaneously (by selecting visuals while holding down the Ctrl key) the Group feature

becomes active, allowing visuals to be grouped together and thereafter moved around

the canvas as a single unit.

9. Choose a page background color that naturally contrasts with visuals, such as the

default white background.

10. For column and bar charts, sort visuals by their measure to provide an implicit ranking

by the given measure: This sorting is only applicable to nominal categories, such as

product categories, when the individual items in the category don’t need to follow a

custom sort order.

Planning Power BI Reports240

11. Fill the available report canvas space; avoid large blank spaces on report pages.

12. Provide supporting context via tooltips and additional lines in charts, such as target

values and the min, max, and average: Several measures related to a given visual can

be displayed via tooltips without incurring performance penalties. The Analytics pane

provides several support lines, including a trend line and a predictive forecast line.

13. All report pages should follow a common design theme and color palette: Preferably,

all reports in a project and even for an organization should follow the same basic design

guidelines. A Themes area is available on the View tab when in Report view within Power

BI Desktop and exposes options for importing a report theme or customizing the current

theme, as shown in Figure 6.4:

Figure 6.4: Themes

Chapter 6 241

Custom report themes allow organizations to apply a custom set of formatting properties
to Power BI reports. For example, an organization can embed its corporate colors into a
report theme (a JSON file) to apply this set of colors to all Power BI reports. Additionally,
more elaborate formatting properties can be specified in report themes to standardize
report development, such as the font family and font sizes.

Existing report themes are available for download from the Power BI Report Theme Gallery
(http://bit.ly/2pyUKpl). Additionally, there are other community tools for customizing
themes, as covered in the article Power BI Theme Generators (https://community.powerbi.
com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899).

14. The quantitative scale for column and bar charts should start at zero: Custom
quantitative scales, such as from 12% to 15%, can be applied to line, scatter, and bubble
charts to emphasize specific ranges of values. However, this is generally not a good idea.

Consider two items, Product A and Product B, of a clustered column chart with margin
percentage values of 32% and 34%, respectively. With a base of zero, the two items would
correctly appear similar for the given measure. However, if the base value of the visual
starts at 31% and the maximum value of the scale is set to 35%, Product B would visually
appear as a dramatically higher value. This distortion is the reason that quantitative scales
for column and bar charts should start at zero.

15. Lines should only be used to connect interval scale data points, such as time series and
ordered bins of values: A line should not, for example, represent the sales for different
product categories. A line should, however, represent the sales of products by unit price

bins (for example, $0 to $10, or $10 to $20).

In addition to visualization best practices, there are also certain practices to avoid. Thus, next,

we will explore visualization anti-patterns.

Choosing the right visual
With the report planning phase completed, an essential task of the report author is to choose the
visual(s) best suited to gain insight into the particular questions within the scope of the report.
The choice of the visualization type, such as a column chart or a matrix visual, should closely align
with the most important use case, the message to deliver, and the data relationship to represent.

Visualization types have distinct advantages in terms of visual perception and types of data
relationships such as part-to-whole and comparisons. Additionally, although several formatting
options are common to all visuals, certain options such as the line style (solid, dashed, or dotted)
of a line chart are exclusive to specific visuals.

http://bit.ly/2pyUKpl
https://community.powerbi.com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899
https://community.powerbi.com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899

Planning Power BI Reports242

A standard visual selection process is as follows:

1. Plan and document the business question(s) and related measures and dimension columns

2. Determine whether a table, a chart, or both are needed to best visualize this data

3. If a chart is needed, choose the chart visual that’s best aligned with the relationship (for

example, trend, comparison, or correlation)

Following these three steps helps to ensure that effective reports are developed with efficient

resources. Many other visualization and analysis features can be used to further enhance reports,

but these should only supplement report planning and design.

Power BI currently supports 40 standard visualizations, and hundreds of custom visualizations

are available in AppSource, Microsoft’s online marketplace. The standard visuals are aligned

with the most common analytical representations, including trend, rankings, part-to-whole,

exceptions, geospatial, and distribution. Several of these visuals can be further enhanced via the

Analytics pane.

Finally, advanced visualizations are included that support machine learning elements, Power

Platform integration, paginated reports, Q&A capabilities, and integration with R and Python.

Refer to the following chapter for additional details on basic, custom, and advanced visuals.

Let’s first take a look at when to use tables and matrices versus charts.

Tables and matrices versus charts
An initial step in the visualization selection process is to determine whether a table, a chart, or

a combination of both is most appropriate. Power BI’s table visual provides simple row groups

of dimension values and measures, and the matrix visual supports both row and column field

inputs similar to pivot tables in Excel. Both the table and matrix visuals have been significantly

enhanced to provide granular controls over layouts, subtotals, field formatting, and more.

Both the table and the matrix visuals are superior to charts in enabling users to look up specific

data points. However, despite conditional formatting options available to table and matrix

visuals, charts are superior to table and matrix visuals in displaying trends, comparisons, and

large volumes of distinct data points.

Chapter 6 243

The following matrix visual shown in Figure 6.5 breaks down the AdWorks Net Sales measure

by two product dimension columns and two promotion dimension columns:

Figure 6.5: Matrix visual

The product hierarchy created in Chapter 4, Designing Import, DirectQuery, and Composite Data

Models, is used as the rows’ input and a promotion table hierarchy is used as the columns’ input.

Via the expand all down feature for both the rows and the columns, the matrix provides easy

access to specific data points, including subtotals by both product categories and promotion types.

Although it’s possible to visualize the same data with a chart, a matrix visual (or a table visual)

makes it easy to locate individual values and to display the exact values with no rounding.

Additionally, if a table or matrix is needed to reference individual values, but less precision is

required, the field formatting card in the formatting pane allows the report author to define the

display units (for example, thousands (K) or millions (M)) and the number of decimal places for

the measure. The same two formatting properties (display units and value decimal places) are

also accessible for chart visuals via the data labels formatting card in the formatting pane.

Matrix features, such as showing values (for example, multiple metrics) as individual rows, as

a percentage of column or row totals, and full control over subtotals positions Power BI matrix

visuals as an alternative to many Excel pivot tables and matrix displays in paginated reports.

Additionally, table and matrix visuals are interactive such that user selections on a row, a specific

value, or a row or column header filter other visuals or can even drillthrough to other report pages.

Planning Power BI Reports244

The following line chart visual, Figure 6.6, breaks down the AdWorks Net Sales measure according

to the calendar year week:

Figure 6.6: Line chart visual

With 21 different data points displayed, the periodic spikes of the line help to identify the specific

weeks with relatively higher net sales. The drawback or trade-off of this visual relative to the

prior matrix visual is the lack of subtotals and the loss of precision given the rounding to one

decimal place.

Line charts are uniquely advantaged to call out patterns, trends, and exceptions in measures

across time. More generally, chart visualizations (for example, bar, column, and scatter) are

recommended over table and matrix visuals when the shape or position of the data, such as

trends, comparisons, correlations, and exceptions, is more valuable than the individual values.

With a date hierarchy or the date columns in the chart axis input field, the concatenate labels

property in the x axis formatting card should be turned off to provide the grouped layout as per

the preceding line chart example. Additionally, also included in the line chart example visual, the

vertical gridlines can be turned on to separate the parent values (for example, 2013-Feb).

Let’s now turn our attention to chart selection.

Chart selection
Within Power BI Desktop, there are many different types of charts, including line, column, bar,

scatter, bubble, pie, doughnut, waterfall, and funnel. Different charts are better at displaying

different types of information to report viewers.

Chart visuals can broadly be categorized into the following four types of data relationships:

1. Comparison: How items compare against each other or over time

2. Relationship: How items relate (or correlate) to one another across multiple variables

Chapter 6 245

3. Distribution: The most common values for a variable and the concentration of values

within a range

4. Composition: The portion of a total that an item represents relative to other items, possibly

over time

The following table, Table 6.1, associates specific visuals with these categories and briefly describes

their top use cases:

Chart Category Notes

Line Comparison • Display the fluctuation and trend of a value over time.

• Compare the trends of multiple items over time.

Column and

bar

Comparison • Rank items based on a value and display precise data

points.

• Use a bar chart if there are many items or if item data

labels are long.

Combination Comparison • Compare items against two values with different scales.

• For example, display sales by country as columns

across time, but also show the margin % as a line on the

secondary axis.

Scatter and

bubble

Relationship • Display the relative position of items (data points) on two

values, such as products by sales and sales growth %.

• Optionally drive the size of data points by a third variable.

Histograms Distribution • Display a frequency distribution such as the count of

items sold by different list prices or list price bins on the

x axis.

• In Power BI, use a column chart, line chart, or custom

visual.

Pie and

doughnut

Composition • Commonly used for part-to-whole relationships.

• Column, bar, and stacked columns and bar charts are

recommended alternatives.

Waterfall

and funnel

Composition • Use waterfall charts to break out the changes in a value

over time by category.

• Use funnel charts to display variances in the stages of a

process.

Table 6.1: Chart visuals by category

Planning Power BI Reports246

As a table of chart types, map visuals, and the three standard single number visuals provided

in Power BI Desktop—Cards, Gauge, and KPI—are excluded as these visuals are generally used

for different purposes. For example, single number visuals are commonly used in dashboards,

mobile-optimized reports, and in the top-left section of report pages to deliver easy access to

important individual metrics.

The standard single number visuals (Card, Gauge, and KPI) can also be used to create data alerts

when these visuals are pinned to Power BI dashboards. Alerts can be created and managed in both

the Power BI service and on the Power BI mobile application. With an alert set on a dashboard tile

representing one of these visuals, whenever the number of the visual crosses a defined condition

(for example, above 100), a notification is raised and optionally an email can be sent as well.

Details on standard map visuals are included in the Map visuals section of Chapter 7, Creating

and Formatting Visualizations, and the ArcGIS Map visual for Power BI is reviewed in Chapter 8,

Applying Advanced Report Features.

There are several publicly available resources on visualization practices and visual selection.

The Chart Suggestions diagram from Extreme Presentation (http://bit.ly/1xlXh1x) provides

additional details on the visuals and visual categories described in this section.

Additionally, the SQL BI team provides a Power BI Visuals reference (http://bit.ly/2ndtcZj) that

categorizes visuals at a more granular level than the table in this section. Finally, Zebra BI provides

an interactive Power BI report for chart selection (https://zebrabi.com/chart-selector/).

The next subject related to report design deals with how visuals interact with one another.

Visualization anti-patterns
In addition to report planning and generally aligning reports with visualization best practices,

it can be helpful to acknowledge and avoid several common visualization anti-patterns. Anti-

patterns are common practices that negatively impact the quality, usability, performance, and

other aspects of a report.

For many reports, particularly when report development time and Power BI experience are limited,

simply avoiding these anti-patterns coupled with adequate planning and appropriate visual type

choices is sufficient to deliver quality, sustainable content.

http://bit.ly/1xlXh1x
http://bit.ly/2ndtcZj
https://zebrabi.com/chart-selector/

Chapter 6 247

The most common visualization anti-patterns include the following:

1. A cluttered interface of many visuals and report elements that are complex or difficult to

interpret: This is often the result of too many visuals per report page or too high a precision

being displayed. Report visuals should be separated across distinct reports, report pages,

and bookmarks to both improve usability as well as limit the volume of concurrent queries.

2. A lack of structure, order, and consistency: Each report page should naturally guide the

user from the essential top-left visuals to the supporting visuals. A failure to align visuals

or to provide proper spacing and borders can make reports appear disorganized. Mixing

widely disparate grains of detail on the same report page can be disorienting to users.

3. High-density and/or high-detail visualizations, such as large table visuals or thousands

of points on a scatter chart or map: The need for a scrollbar is a strong indication that a

visual contains too many values. A table visual should not be used as a raw data extract

of many columns and rows. High-density visuals, such as line and scatter charts with

thousands of data points, can cause poor performance.

Figure 6.7, showing a table visual with seven dimension columns and three measures, is

an example of a data extract anti-pattern:

Figure 6.7: Data extract anti-pattern

The small scrollbar on the right indicates that many rows are not displayed. Additionally,

the Export data option available from the ellipses (…) menu of the visual prompts the

warning message (Data exceeds the limit), suggesting the visual contains too much data.

Planning Power BI Reports248

4. The excessive use of fancy or complex visuals and images: Reports can be aesthetic and

engaging, but the priority should be to inform users, not to impress them. For example, a

column chart or a stacked column chart is usually more effective than a treemap.

5. Suboptimal visual choices such as pie charts, donut charts, and gauges: Column or

bar charts are easier to interpret than the circular shapes of pie and donut charts. KPI

visuals provide more context than gauge visuals, including the trend of the indicator value.

Additionally, report authors sometimes utilize table and matrix visuals when a column

or line chart would better highlight the differences between items or the overall trend.

6. The misuse of colors, such as utilizing more than five colors and overwhelming users

with highly saturated colors: Colors should be used selectively and only when the few

alternative colors convey meaning.

7. A high volume of report pages such as 10 or more: Reports with many pages are generally

less focused and more difficult to browse by end users. Report authors should consider

dividing report pages into more focused or targeted reports and using bookmarks and

buttons to further reduce the volume of report pages.

Just as important as following visualization best practices and avoiding visualization anti-patterns

is choosing the right visualization.

Visual interactions
Power BI reports are highly interactive by nature, allowing users to click on data points within

visuals and cross-filter or highlight other filters on the page. When planning and designing reports,

it is important to keep this default behavior in mind and consider whether or not the default

visual interaction behavior should be changed.

By default, the filter selections applied to a single visual, such as clicking a bar on a column chart

or a row on a table, impact all other data visualizations on the given report page with relationships

to the selection.

In Figure 6.8, the bar representing the United States sales territory country has been selected and

this causes the product category chart to highlight the portion of each product category related

to the United States sales territory country ($45M):

Chapter 6 249

Figure 6.8: Visual interactions – Highlighting

Multiple values from the same column can be selected (for example, France and Canada) by

holding down the Ctrl key and the values from separate columns of the same visual, such as the

dimension columns of a table visual, can also cross-filter other visuals on the report page. The

ability to drive visual interactions from the selections of two or more visuals (for example, United

States and Bikes) is also supported.

The highlight interaction option from the preceding example is available and enabled by default

for column, bar, treemap, pie, and donut charts. Only the filter and the no interaction options

are available for cards, KPIs, and line and scatter chart visuals.

As per prior chapters, the Sales Territory, Product, and Date dimension tables are related to

all three fact tables—Internet Sales, Reseller Sales, and Sales and Margin Plan. Therefore,

the filters and selections applied to the columns of these tables simultaneously impact measures

from other fact tables.

This integration within the dataset supports robust analyses but can also require some training or

explanation to users as users may not initially expect or understand the cross-filtering behavior.

If this is the case, or if a different interaction between visuals is desired, report authors can modify

the default behavior by editing the interactions.

Editing interactions
Report authors can modify the visual interaction behavior such that selections (user clicks) on

certain visuals don’t impact other visuals or only impact certain visuals. Additionally, for the

visuals set to the highlight interaction by default, report authors can revise the interaction behavior

to filter.

Planning Power BI Reports250

In Figure 6.9, the United States selection in the middle bar chart has no impact on the multi-row

car visual but causes a filter interaction (rather than highlight) on the product category chart:

Figure 6.9: Edit interactions in Power BI Desktop

To edit visual interactions, select the visual that receives the selections and then enable the Edit

interactions command under the Format tab in Power BI Desktop. In this example, the None

interaction icon has been selected for the multi-row card visual as indicated by the circle with a

slash through it below the visual. The Filter interaction icon has been selected for the Product

Category column chart as similarly indicated by the left-most icon below the visual. To disable

editing interactions, simply return to the Format tab and click the Edit interactions command again.

Like the preceding example, it’s often appropriate to disable visual interactions from impacting

cards or KPIs. These values can be impacted exclusively by the filters defined outside of the report

canvas, such as report- and page-level filters, and do not change during user sessions like other

visuals on the page.

Regardless of the design decision, if users regularly interact with reports, such as clicking on slicers

and other visuals, it’s important to briefly review or explain the visual interaction behavior. This

is especially necessary with new users and with more customized designs, such as two or three

visuals with interactions enabled and two or three visuals with interactions disabled.

In addition to interactions between visuals on the same page, visuals can also interact with one

another between different report pages via drillthrough report pages.

Chapter 6 251

Drillthrough report pages
A well-designed Power BI report of summary-level visualizations may itself sufficiently address

user questions. However, it’s often the case that users need the ability to view the details behind

particular data points of interest, such as the sales orders for a specific product, customer, or fiscal

period that seems high or low relative to expectations.

Drillthrough report pages are typically hidden by default and accessed via the right-click context

menu of visuals for items of interest, such as an individual bar on a bar chart. These report pages

enable users to continue and often complete their own analysis at a detailed level and thus can

reduce the need to create or support traditional paginated or extract-like detail reports.

As per Figure 6.10, a report page has been designed with a drillthrough filter set to the Product

Name column. This drillthrough page automatically applies filters from the source report page’s

Product Name column, such as Road-250 Black, 44.

Figure 6.10: Drillthrough report page

Planning Power BI Reports252

Drillthrough filters are set at the bottom of the Visualizations pane in the Drill through section

of the Build visual sub-pane, as shown in Figure 6.10.

With the drillthrough report page configured, when the Product Name column is exposed on

a separate page within the report, the user has a right-click option to drill to this page as per

Figure 6.11:

Figure 6.11: Drillthrough source page

Only the column or columns specified in the Drill through section of the Visualizations pane

(drillthrough filters) can be used as drill columns.

For example, even if the ProductAlternateKey column has a 1-to-1 relationship with the Product

Name column, the drillthrough option is not available to visuals based on the ProductAlternateKey

column unless ProductAlternateKey is also specified as a drillthrough filter, like the Product Name

column. Therefore, if some report visuals use Product Name and others use ProductAlternateKey,

both columns can be configured as Drill through filters on the drillthrough report page to support

both scenarios.

In the preceding example, the user has drilled down through the four levels of the product

hierarchy created in Chapter 4, Designing Import and DirectQuery Data Models (Product Category

Group, Product Category, Product Subcategory, and Product Name), to display a bar chart by

the Product Name column.

The same right-click drillthrough option is exposed via table, matrix, and other chart visuals,

including scatter charts, stacked column and bar charts, column charts, and bar charts.

Chapter 6 253

The bottom-level column of a hierarchy, such as the preceding Product Name example, is often

a good candidate to support a drillthrough report page.

For example, a common analysis pattern is to apply a few slicer selections and then drill down

through the hierarchy levels built into chart and matrix visuals. Each level of the hierarchy provides

supporting context for its parent value, but ultimately, the report user wants to investigate a

specific value (for example, Customer 123) or a specific combination of values (Customer 123

and Calendar Year 2018).

The use of drillthrough report pages can create certain challenges with regard to navigation by

report viewers. In addition, users unfamiliar with Power BI Desktop may not intuitively understand

the context in which they are viewing a report page. Both of these issues are addressed in the

next section.

Custom labels and the back button
Two of the most important components of the drillthrough report page shown in Figure 6.10

include the custom Product Name label and back button image at the top of the report page.

The Product Name message at the top of the page uses the following DAX measure expression:

Selected Product Name =

 VAR __ProdName = SELECTEDVALUE('Product'[Product Name], "Multiple
Product Names")

RETURN

 "Product Name: " & __ProdName

The SELECTEDVALUE() function returns either the single value currently selected for a given column

or an alternative expression if multiple values have been selected. For drillthrough report pages,

it’s a given that the drill column only has a single value as each drillthrough column is limited

to a single value.

To provide a dynamic label or title to the page, the DAX variable containing the Product Name

expression is concatenated with a text string. In this example, the Selected Product Name measure

is displayed in a card visual. Alternatively, the Selected Product Name measure could be used

as a dynamic title for the visual. Although card visuals can be used to display text messages and

dates, a text box also supports DAX measures and importantly provides much greater formatting

control to define how the message appears on the canvas.

Planning Power BI Reports254

The custom back button image was added to the report via the insert image command on the

Insert tab of Report view. Once positioned in the top left of the page, selecting the image exposes

the image formatting cards. As per Figure 6.12, the Action card is enabled, and Type is set to Back:

Figure 6.12: Back button image formatting

Power BI Desktop adds a back button arrow shape by default when a drillthrough page is created,

but this shape is less intuitive for users than the custom image. With the back button configured,

Ctrl + click is used to return to the source page in Power BI Desktop. Only a single click is needed

to use the back button in the Power BI service.

The single-row table at the bottom of the drillthrough report page shown in Figure 6.10 has been

filtered to only display the current, active values of the product. As described in the Slowly changing

dimensions section of Chapter 2, Connecting to Sources and Transforming Data with M, the Products

table contains multiple rows per product, representing different points in time.

To ensure that only one row is displayed by the table visual, a visual-level filter was applied, setting

the Product Status column equal to Current. Alternatively, the visual-level filter condition could

specify that the Product End Date column is Blank via an advanced filter condition.

Thus far, we have covered drillthrough report pages consisting of a single drillthrough column.

However, it is possible to include multiple columns in drillthrough report pages.

Multi-column drillthrough
In many scenarios, a more specific filter context is needed for drillthrough report pages to

resolve analyses. For example, the user may be interested in one specific year for a given Product

Subcategory column.

Chapter 6 255

To support these needs, multiple columns can be added as drillthrough page filters. When one

or both columns are exposed in a report visual on a separate page, the drillthrough right-click

option can be used to apply multiple filter selections to the drillthrough page.

In the stacked column chart of Internet Sales by Year and Product Subcategory shown in Figure

6.13, right-clicking on the Road Bikes column for 2011 ($5.7M) exposes the Drill through option

to the Figure 6.13 drillthrough report page:

Figure 6.13: Drillthrough by multiple columns

The Drill through report page filters for both the Year and Product Subcategory columns. Report

visuals that only expose one of these two columns can still drill to this multi-column drillthrough

report page. In this scenario, no filter would be applied to the column not contained in the source

visual.

Planning Power BI Reports256

Executing the drillthrough action from the preceding chart results in the drillthrough report

page filtered for both column values. As shown in Figure 6.14, with Keep all filters toggled on,

all filters from the source visual are passed to the drillthrough report page, including the most

specific filters for Product Subcategory of Road Bikes and Year of 2011:

Figure 6.14: Multi-column drillthrough report page

The drillthrough report page in this scenario is designed to display the values of the two drill-

through columns and provide supporting analysis for this given filter context. The choice to keep

all filters should be considered carefully as this may confuse users who do not understand that

this behavior preserves all existing source visual filters, including those outside of the specific,

user-chosen context when drilling.

In Figure 6.15, $3M of the $5.7M of Internet Net Sales from the source page occurs in the second

half of the year, as identified in a card visual and also visualized by the last 6 calendar months of

2011 in a stacked column chart to break out the product models for the Road Bikes subcategory:

Chapter 6 257

Figure 6.15: Multi-column drillthrough report page

In Figure 6.15, the user obtains details on both Internet Net Sales and Reseller Net Sales

for the given Year and Product Subcategory. Visuals that utilize measures from any fact table

(for example, Sales Plan) with a cross-filtering relationship to the drillthrough column tables

can be added to the drillthrough report page to provide additional context.

In addition to stacked column charts, matrix visuals are also a common choice for initiating a

drillthrough action based on two columns. For example, the Year column could be the columns

input and the Product Subcategory could be the rows input for a matrix visual. Additionally, a

pie chart with the two columns used in the legend and detailed input fields can also be used to

drill through based on two columns.

With the concept of drillthrough filters explained, we can delve further into the subject of the

different types of filters and filter scopes available in reports.

Report filter scopes
Within Power BI Desktop, the Filters pane provides access to three different filter scopes, filters

on all pages, filters on the current page, and filters on the current visual. In addition, a fourth

filter scope can be set in the Visualizations pane, using drillthrough filters.

Planning Power BI Reports258

Filter scopes simply refer to what is impacted by the filter, either just the visual, the whole report

page, the entire report, or only when drilling into a visual’s information. A fundamental skill

and practice in Power BI report development is utilizing the report filter scopes and the filter

conditions available to each scope.

For example, a report intended for the European sales team can be filtered at the report level for

the European sales territory group and specific report pages can be filtered for France, Germany,

and the United Kingdom. Reports can be further customized by implementing filter conditions

to specific visuals, applying more complex filter conditions, and providing drillthrough report

pages to reflect the details of a unique item, such as a product or a customer.

Report filter scopes are defined outside of the report canvas and therefore provide report authors

with the option to eliminate or reduce the need for on-canvas user selections as well as the canvas

space associated with slicer visuals. This can provide a better user experience with less interaction

required by users as well as larger visuals with easier-to-read font sizes.

In addition to meeting functional requirements and delivering a simplified user experience, report

filter scopes can also benefit performance. Using the European sales report as an example, the

simple filter conditions of Sales Territory Group = Europe (Report-level filter) and Sales Territory

Country = France (Page-level filter) are efficiently implemented by the Power BI in-memory engine

(import mode) and almost all the DirectQuery data sources. Even if the DAX measures used on the

report page for France are complex, the report filters contribute to acceptable or good performance.

With a visual selected on the canvas in Report view, the Filters and Visualizations panes present

the following four input field wells:

1. Filters on all pages: The filter conditions defined impact all visuals on all report pages.

The scope of these filters is the entire report

2. Filters on this page: The filter conditions defined impact all visuals on the given report

page. The scope of these filters is a single page. Report-level filter conditions are respected

by the page-level filters as well. Any drillthrough filter conditions defined for the report

page are also respected.

3. Filters on this visual: The filter conditions defined only impact the specific visual selected.

The scope of these filters is a single visual. Report- and page-level filter conditions are

respected by the visual-level filters as well. Any drillthrough filter conditions defined for

the report page of the given visual are also respected.

Chapter 6 259

4. Drill-through: The filter condition, a single value from a column, impacts all visuals

on the given report page. The scope of these filters is the entire page. Report-level filter

conditions are respected by the drillthrough filters as well. Any page- and visual-level

filter conditions are also respected.

As per prior chapters, filters are applied to Power BI visuals via the relationships defined in the

dataset (via single or bidirectional cross-filtering) as well as any filtering logic embedded in DAX

measures. All four of the preceding filters (Report, Page, Visual, and Drill through) contribute

to the initial filter context, as described in the Measure evaluation process section of Chapter 5,

Developing DAX Measures and Security Roles.

Therefore, just like filters applied on the report canvas (for example, Slicers), the filter logic of DAX

measures can supplement, remove, or replace these filters’ conditions. In the event of a conflict

between any report filter and a DAX measure expression that utilizes the CALCULATE() function,

the DAX expression supersedes or overrides the report filter.

Let’s now explore the different filter conditions that can be applied to each scope.

Report filter conditions
Different types of filter conditions can be defined for the distinct filter scopes. For example, report-

and page-level filters are limited to relatively simple filter conditions that reference individual

columns of a dataset. However, more complex and powerful conditions, such as filtering by the

results of a DAX measure and top N filters (such as the three largest or five smallest values), can

be applied via visual-level filters.

The following outline and matrix (filter conditions by filter scope) summarize the filtering

functionality supported:

1. Basic: A single equality condition for a column to a single value or set of values, such as

“is North America or Europe”; a single inequality condition for a column to a single value

or set of values, such as “is not $25 or $35.”

2. Advanced: Several condition rules per data type, such as “starts with” for text and “is

greater than or equal to” for numbers; supports filtering for blank and non-blank values;

optionally, apply multiple conditions per column via logical operators (and, or).

3. Relative Date: Supports three filter condition rules (is in this, is in the last, and is in the next)

for days, weeks, months, and years. Partial period and complete period filter conditions can

be defined. The same filter condition rules are available to slicers with date data type columns.

Planning Power BI Reports260

4. Top N: Filter a visual to a defined number of top or bottom values of a column based on

their values for a measure. For example, the top 10 products based on net sales can be set

as a visual-level filter condition.

5. Filter by Measure: Filter a visual by applying advanced filtering conditions to the results

of a DAX measure. For example, greater than 45% on the Internet Net Margin % measure

can be set as a visual-level filter condition.

Table 6.2 summarizes the preceding filter conditions available to each of the three primary report

filter scopes:

Filter Conditions Report Level Page Level Visual Level

Basic Yes Yes Yes

Advanced Yes Yes Yes

Relative Date Yes Yes Yes

Top N No No Yes

Filter by Measure No No Yes

Table 6.2: Filter conditions by filter scope

Multiple filter conditions can be defined per report filter scope. For example, a report-level filter

could include two basic filter conditions and an advanced filter condition. Additionally, the same

column can be used in multiple filter scopes, such as a report-level filter and a page-level filter

on the product subcategory column.

All defined filter conditions are applied to the visuals within their scope provided that the DAX

measures included in the visuals don’t contain filtering logic in conflict with the report filter

conditions. Additionally, the columns and measures referenced in the filter conditions do not need

to be displayed in the report visuals. For the top N filtering condition, the column to be filtered

only has to be displayed in the visual when the filter condition is initially defined.

A good indicator of Power BI development and solution-specific knowledge is the ability to

accurately interpret the filters being applied to a given visual on a report page. This includes all

Power BI report filters (report-level, page-level, and visual-level), any slicer selections or cross-

highlighting, the filter logic of the DAX measures, the cross-filtering applied via relationships in

the data model, and any filter logic built into the M queries of the dataset. Complex reports and

datasets utilize all or many of these different layers in various combinations to ultimately affect

the values displayed in report visuals.

Chapter 6 261

BI teams generally want to limit the complexity built into reports, both for users and the report

authors or developers responsible for the reports. For example, if visual-level filter conditions are

applied to many visuals of a report, the filter condition for each visual must be modified if the

requirement(s) of the report change or the columns or measures used by the filter condition change.

Dataset designers and data warehouse teams can often implement changes or enhancements to

simplify the filter conditions needed by report authors.

As one example, a filter condition implemented in multiple reports that specifies several product

categories (hardcoded) could be replaced with a new column in the product dimension table. The

new column would distinguish the group of product categories that meet the desired criteria

relative to those that don’t, and logic could be built into the data source or retrieval process to

dynamically include additional product categories that later meet the given criteria.

Drillthrough filters, which are used to define drillthrough report pages as described in the previous

section, are unique in that they can be used to implement basic filtering conditions at the page

level as well as their more common filtering of a single column value. This can enable a report

page to serve a dual purpose, both as a standard report page as well as a drillthrough page.

For example, three countries can be selected in a drillthrough filter condition and the visuals on

the report page reflect these three countries. Such a page may be useful for displaying European

countries such as the United Kingdom, France, and Germany.

However, a user can only drill to the report page from the context of a single column value. The

source drillthrough value (for example, Germany), replaces the three countries in the previous

filter condition on the drillthrough page when the drillthrough action is executed.

Additionally, multiple columns can be used as drillthrough filters and the values of both columns

from a separate report page are applied to the drillthrough page when a drillthrough action is

executed. If only one value is present from the source report page, the drillthrough action only

filters this column and removes any filter defined for the other drillthrough filter column.

Report and page filters
Report- and page-level filters (Filters on all pages and Filters on this page from the Report filter

scopes section) are most commonly used to apply the fundamental filter context for the report.

Columns with few unique values, such as SalesTerritoryCountry, are good candidates for report-

level filters, while more granular columns such as SalesTerritoryRegion are better suited for

page-level filters.

Planning Power BI Reports262

In Figure 6.16, the individual report pages are named according to the report and page filters

applied:

Figure 6.16: Power BI report pages

In the absence of any custom DAX measures that retrieve the filter selections applied, users of

the report do not typically see the applied report-, page-, and visual-level filters. Therefore, it’s

important to assign intuitive names to each report page as per Figure 6.16 and to include a brief

title for each report page via a text box.

Figure 6.17 shows the Report and Page filters applied to the Northeast report page of a United

States sales report:

Figure 6.17: Report- and page-level filters

Each report page is filtered for a different sales territory region except the USA page, which would

only contain a Country page filter since the USA page covers multiple sales territories (Northeast,

Northwest, Central, Southeast, and Southwest).

Chapter 6 263

The Year Status column, as described in the Date dimension view section of Chapter 2, Preparing

Data Sources, restricts all visuals to only the current and prior year. One or two years of history

is sufficient for many reports given the pace of change in business environments and strategies.

Additionally, the report-level date filter promotes both query performance and low maintenance

since the dates filtered reflect the latest dataset refresh.

Report filters are not a long-term substitute for poor data quality or a suboptimal dataset (data

model or retrieval queries). If it’s necessary to implement many filter conditions or complex

filtering conditions within reports to return accurate results, the dataset or the source system

itself should likely be revised.

Similarly, if many filter conditions or complex filter conditions are needed to retrieve the desired

results, the dataset can likely be enhanced (for example, a new column, new measure) to simplify

or eliminate these report filter conditions.

Power BI report authors should communicate to the dataset designer(s) and BI team whenever

complex or convoluted report filters are being applied. Given limited team resources, it may be

sufficient to use report filters to support rare or uncommon reports. For common reporting needs,

however, it’s generally appropriate to build or revise the necessary logic in the data source or

dataset.

We’ll now move on to exploring the use cases for relative date filtering within Power BI reports.

Relative date filtering
Relative date filtering refers to the ability to enable date filters relative to the current date and

time. Relative date filtering is available for date columns at all filter scopes (report, page, and

visual) and for slicer visuals.

These dynamic filter conditions, such as the last 30 days (relative to the current date), promote

both data freshness and query performance since the minimal amount of history required can be

retrieved. Additionally, relative date filters can often avoid the need to add dynamically computed

columns to a date dimension table or implement date filter conditions in DAX measures.

In Figure 6.18, five report pages are dedicated to a specific relative date filter condition:

Figure 6.18: Relative date filter conditions per page

Planning Power BI Reports264

A page-level filter is used for each report page with the following conditions, as per Figure 6.19:

Figure 6.19: Relative date filter condition

As of 1/23/2022 (the current date when the report was viewed), the five report pages are filtered

to the following date ranges with the Include today option enabled:

• Is in the last 12 months, 1/24/2021 through 1/23/2022

• Is in the last 12 weeks, 11/1/2021 through 1/23/2022

• Is in this month, 1/1/2022 through 1/31/2022

• Is in the next 12 months, 1/23/2022 through 1/22/2023

• Is in the next 12 weeks, 1/23/2022 through 4/16/2022

A report design such as this would make it simple for users to analyze immediate, near-term, and

longer-term trends and issues.

Three types of relative date filter conditions can be set:

1. is in the last

2. in this

3. is in the next

Chapter 6 265

Each of these filter conditions supports days, weeks, months, and years intervals. For the is in

the last and is in the next filter conditions, calendar weeks, calendar months, and calendar

years conditions can also be specified. These last three intervals represent full or completed

calendar periods only.

For example, as of January 23, 2022, the last one-calendar month and last one-calendar year

would include all dates of December 2021 and all dates of 2021, respectively. The week of 1/16/2022

through 1/22/2022 would represent the last one-calendar week.

In the next section, we explore filters scoped to individual visuals or visual-level filtering.

Visual-level filtering
Visual-level filters (Filters on this visual from the Report filter scopes section) provide the most

powerful filter conditions in Power BI exclusive of custom filter conditions specified in DAX

expressions.

Unlike report- and page-level filters, DAX measures can be used in visual-level filter conditions,

such as net sales greater than $5,000. Additionally, top N filter conditions can be implemented

referencing a column and measure that are included or excluded from the visual as per the Top

N visual-level filters section following this example.

In Figure 6.20, a table visual of customers has been filtered according to the Internet Net Sales

and Internet Sales Orders measures:

Figure 6.20: Table with visual-level filters applied

Specifically, the visual only displays items (customers) with more than $12,000 in Internet Net

Sales and more than five Internet Sales Orders. As per the Customer Sales Rank measure, certain

customers that meet the net sales condition are excluded based on the sales order condition.

Unlike the top N visual-level filter condition, filters based on measures, such as the conditions

shown in Figure 6.20, are only applied when items (for example, customers or products) are

displayed on the visual.

Planning Power BI Reports266

By removing the customer columns, the remaining measures (Internet Sales Orders and

Internet Net Sales) would not be filtered by the visual-level filter conditions. In other words,

the visual-level filters based on measures are only applied against the dimension column or

columns in the visual, such as CustomerAlternateKey or FirstName.

Although analytically powerful, report authors should exercise caution with visual-level filters.

From a usability standpoint, reports can become confusing when visuals on the same report page

reflect different filter conditions. If used, report authors should include the visual-level filters as

part of the visual’s Title, such as “Customers with Internet Net Sales greater than 12K and more

than 5 orders.”

Additionally, executing complex filter conditions against large or dense report visuals can result

in performance degradation. If a complex filter condition is repeatedly needed at the visual level,

it’s likely the case that the dataset should be modified to include some or all of this logic.

We complete our look at visual-level filtering with an example of the use of Top N filtering.

Top N visual-level filters
In Figure 6.21, a table visual is filtered based on the top five products for the Internet Net Sales

(PYTD) measure:

Figure 6.21: Top N visual-level filter

For this visual, the Internet Net Sales (PYTD) measure used for the filter condition is not one of

the three measures displayed. Nonetheless, the Top N condition filters out all products, including

some of the top-selling products for the current year that weren’t one of the top five products in

the prior year.

Chapter 6 267

With a Top N filter defined between a column and a measure, the report author can optionally

remove the column being filtered from the visual or replace it with a different column. For example,

the $3,193,810 in Internet Net Sales (YTD) associated with the top five products from the prior

year could be visualized by Occupation instead of Product Name.

Alternatively, all columns except the Internet Net Sales (YTD) measure could be removed from

the table visual, and a card or KPI visual could be used to visualize the $3,193,810 value. The

column referenced by the Top N filter condition only needs to be included in the visual when the

filter condition is originally defined.

The TOPN() DAX function emulates top N filtering by returning a filtered table based on an

expression (such as a net sales measure). As a table, the results of this function can be passed as

a filter argument to CALCULATE() in a separate measure. For example, a measure could be created

to compute the sales for the top 100 customers based on Internet Net Sales (PYTD).

In addition to filtering scopes, another report planning and design consideration involves the

use of bookmarks.

Bookmarks
Bookmarks enable report authors to save specific states of reports for easy access and sharing with

others. For example, an important or common view of a report page that involves filter conditions

across several columns can be saved as a bookmark for easy access at a later time via a command

button, the bookmark navigator control, or the bookmark dropdown in the Power BI service.

By persisting the exact state of a report page, such as whether a visual is visible, bookmarks enable

report authors to deliver application-like experiences for their users. For example, rather than

expecting or asking users to navigate to separate report pages or to apply certain filters, bookmarks

containing these different visuals and filter contexts could be readily available to the user.

By default, bookmarks represent the entire state of a report page, including all filter selections and

the properties of the visuals (for example, hidden or not). However, bookmarks can also optionally

be associated with only a few visuals on a report page. Additionally, report authors can choose to

avoid persisting any filter or slicer selections and rather only save visual properties on the page.

These granular controls, along with the Selections pane and linking support from images and

shapes, enable report authors to create rich and compelling user experiences.

Planning Power BI Reports268

In Figure 6.22, 12 bookmarks have been created for a European sales report:

Figure 6.22: Bookmarks pane

Bookmarks are created via the Add icon at the top of the Bookmarks pane. With the Bookmarks

pane visible via the View tab in Report view, a report author can develop a report page with the

filters and visual layout required and then click the Add icon to save these settings as a bookmark.

As per Figure 6.22, the ellipsis at the right of the bookmark’s name can be used to Update bookmarks

to reflect the current state and to Rename and Delete bookmarks. Additionally, bookmarks can be

grouped together. For example, all of the United Kingdom bookmarks are grouped into a single

folder that can be expanded or collapsed.

The second group of bookmark options, underneath the Group option, allows report authors to

customize what is stored by the bookmark. The Data category includes the report-, page-, and

visual-level filters, slicer selections, the drill location if a visual has been drilled into, any cross-

highlighting of other visuals, and any sort of orders applied to visuals. The Display category

includes whether a visual is hidden or not, the Spotlight property, Focus mode, and the Show

Data view. By disabling the Data category for a bookmark, a user’s selections on slicers or other

visuals are not overridden when the bookmark is accessed. Finally, the Current page option

determines whether the user is automatically navigated to the current page.

Chapter 6 269

The third group of bookmark options, immediately beneath the Current page option, controls

the scope of the bookmark to either apply to All visuals on the page or only to specific, Selected

visuals. These options provide the report author with flexibility when creating the report and

are often used in storytelling to walk others through interesting insights.

The creative use of bookmarks can help reduce the number of report pages and duplicate visuals

required for reports. For example, all 12 of the bookmarks shown in Figure 6.7 reference the same

page. Thus, instead of creating 4 pages with duplicate visuals and the only difference being the

country, bookmarks allow a single page to service an overall summary of all of Europe as well as

each individual country – France, Germany, and the United Kingdom.

Selection pane and the Spotlight property
The Selection pane and the Spotlight property for visuals are both closely related features to

Bookmarks. The Selection pane is accessed via the View tab in Report view and displays all objects

of the selected report page, including visuals, images, and shapes. Although most commonly

used with Bookmarks, the Selection pane is also helpful when developing report pages that

contain many visuals and objects. Selecting an object from the Selection pane provides access

to the properties associated with that object (for example, field inputs and formatting cards) as

though the object was selected on the report canvas.

In Figure 6.23, the Slicer visuals originally used to create the bookmarks are hidden for each bookmark

since the bookmarks handle filtering to the correct Country and Product Category selections:

Figure 6.23: Selection pane and the Bookmarks pane

Planning Power BI Reports270

In the Selection pane, the icons next to the visuals toggle between Show (eye symbol) and
Hide (eye symbol with slash). The ellipses menu next to the Show/Hide toggle icon provides the
ability to Group visuals as well as a Summarize feature. Grouping allows visuals to be organized
together. For example, in Figure 6.23, the Slicer visuals have been grouped into a Hidden group.
The Show/Hide toggle can then be set for the entire group instead of each visual independently.
The Summarize option generates a Smart narrative visual for the selected visual.

The Spotlight property, accessed via the ellipsis in the corner of any visual, draws attention to
the specific visual by making all other visuals on the report page fade into the background.

Spotlight is particularly useful in supporting presentations via Bookmarks. For example, in the
View mode described later in this section, one bookmark could display a report page of visuals
normally and the following bookmark could highlight a single visual to call out a specific finding
or an important trend or result. Spotlight may also be helpful for presenters in explaining more
complex visuals with multiple metrics and/or dimension columns.

As an alternative to Spotlight, Focus mode can also be saved as a bookmark. Focus mode can
be applied via the diagonal arrow icon in the corner of chart visuals and fills the entire report
canvas with a single visual.

In Figure 6.24, the Spotlight property has been enabled for a scatter chart on the Europe report page:

Figure 6.24: Report page with Spotlight enabled on the scatter chart

Chapter 6 271

In Figure 6.24, the other visuals (four cards and a bar chart) are still visible, but the scatter chart

is emphasized via the Spotlight property. With Spotlight enabled, the report author could add

a bookmark with an intuitive name (for example, Europe Summary: Customer Segment and

Country Scatter) to save this specific view. Referencing this bookmark in a meeting or presentation

makes it easier to explain the meaning and insights of the scatter chart.

While bookmarks are useful on their own for preserving the state of visuals and filtering, bookmarks

can also be used as an aid to navigate within a set of report pages.

Custom report navigation
Bookmarks can also be assigned as links to shapes and images. With multiple bookmarks created

across multiple report pages, a visual table of contents can be created to aid the user’s navigation

of a report. Rather than opening and browsing the Bookmarks pane, users can simply click images

or shapes associated with specific bookmarks, and a back button can be used to return to the

Table of contents page.

In Figure 6.25, nine images have been positioned within a rectangle shape and linked to bookmarks

in the report:

Figure 6.25: Custom navigation to bookmarks

Three rectangle shapes and three line shapes are used to form the matrix of icons and three text

boxes display the headers. Shapes, images, and text boxes can be added from the Insert tab of

Report view. With a shape, image, or text box selected, the Format tab appears in the ribbon,

allowing the author to align and distribute the objects, as well as moving certain objects forward

or backward on the canvas. Grouping similar objects within shapes is a common practice for

improving usability.

In addition to the Format tab, when a shape, image, or text box is selected, the Visualizations

pane is replaced with a Format shape, Format image, and Format text box pane, respectively.

Planning Power BI Reports272

With an image or a shape selected, an Action formatting card can be enabled to choose between

Back, Bookmark, Page navigation, Q&A, or Web URL actions. In Figure 6.26, the France flag

image positioned under the Bikes Only heading is linked to the France: Bikes Only bookmark:

Figure 6.26: Link formatting card for images and shapes

The combination of custom navigation and bookmarks representing many specific views or reports

pages contributes to an easier, more productive experience for users. When designed properly,

the user often doesn’t need to know which page or bookmark to navigate to or which filters to

apply as this logic is already built into the report.

In addition to using bookmarks for report navigation via images, shapes, and buttons, a special

view mode exists, which is especially useful for presentations.

View mode
The View icon in the Bookmarks pane can be used in both Power BI Desktop and in the Power

BI service to navigate between visuals similar to a slideshow. When View mode is enabled, a

navigation bar similar to that shown in Figure 6.27 appears at the bottom of the canvas and the

user can close other panes and/or launch full-screen mode in the Power BI service to further

support the presentation:

Chapter 6 273

Figure 6.27: View mode navigation

As per Figure 6.27, the number and order of bookmarks, bookmark names, and navigation arrows

are included in the View mode navigation. Bookmarks are ordered based on their position in the

Bookmarks pane from the top to the bottom. To revise the order, drag and drop bookmarks to

higher or lower positions in the Bookmarks pane, or select a bookmark and use the up and down

arrow icons to adjust the order of the bookmark.

We now consider report development using Live connections to Power BI datasets.

Live connections to Power BI datasets
An optional but very important report planning and design decision is whether or not to develop

the data model and report visuals within the same Power BI Desktop file or to separate the report

from the dataset into separate files. As a general recommendation, if there’s any possibility that

additional reports will be needed in the future based on the same dataset, the dataset and report

should be separated into separate files and likely separate workspaces as well.

With Live connections to Power BI datasets, report authors can develop reports in Power BI

Desktop files containing only the visualization layer (report pages of visuals) while leveraging

a single, “golden” dataset. Increasingly organizations will isolate these source datasets, which

are typically maintained by an IT or BI department, into Power BI workspaces that only the IT or

BI organization has edit rights to. Report authors and users of these source datasets are granted

read and optionally build permission to these dataset.

The dataset (data layer) already includes the data retrieval supporting tables and columns, the data

model relationships, and the DAX measures or calculations as described in previous chapters. Once

the Live connection report is developed and published to Power BI, it maintains its connection to

the source dataset and is refreshed with the refresh schedule configured for the dataset.

In the absence of using Live connection reports to Power BI datasets, users within teams would be

forced to create multiple versions of the same dataset in order to create different reports. As both

a report and a dataset, each individual report would require its own scheduled refresh process

(in import mode), its own data storage, and would create version control problems as the report

author could modify the underlying dataset.

Live connection reports therefore severely reduce resource requirements and promote a single

version of the truth. Moreover, Live connection reports facilitate the isolation of report design

and development from dataset design and development.

Planning Power BI Reports274

Most Power BI report authors are not interested in, or responsible for, dataset design topics, such

as data retrieval with M queries, data modeling, and DAX measures. Likewise, a dataset designer

is often less interested in, or responsible for, visualization best practices and engagement with

the actual users of reports and dashboards.

As advised in Chapter 1, Planning Power BI Projects, the alternative roles (dataset designer and

report author) need to collaborate regularly, such as identifying measures or columns that need

to be added to the dataset to support reports and dashboards.

To create a Live connection report with a published Power BI dataset as the source, the report

author needs a Power BI Pro license. Additionally, the tenant setting Allow live connections

under the Export and sharing settings section must be enabled. Finally, if the tenant setting

Use datasets across workspaces under the Workspace settings section is configured, then the

Live connection reports can be published to a different workspace than where the underlying

dataset is published.

In Figure 6.28, the report author can Live connect to datasets in many different workspaces:

Figure 6.28: Creating a Live connection to the Power BI dataset

Chapter 6 275

After selecting the Power BI datasets from the list of Power Platform sources within the Get Data

dialog, the list of the workspaces of which the report author is a member is prompted.

In this example, either double-clicking a dataset or selecting a dataset and clicking the Create

button establishes the Live connection as per the status bar (lower right-hand corner) in Power

BI Desktop, as shown in Figure 6.29:

Figure 6.29: Live connection status bar

When connected in Live mode, the Fields pane that lists the columns, measures, and tables in the

dataset is exposed in Report view and the tables and relationships are shown in the Relationship

view. However, the Data view is not available.

In the past, Live reports were always limited to a single data model as a source. However, with

the advent of composite models and DirectQuery for Power BI datasets, a local model can be

added to a Live connection report, as discussed in Chapter 4, Designing Import, DirectQuery, and

Composite Data Models.

It’s possible to create reports based on Power BI datasets within the Power BI online service.

However, the .pbix files for these reports cannot be downloaded and thus, all edits must be

implemented within the service without version history. Additionally, several important report

authoring features in Power BI Desktop are not supported in the service, including the alignment

of objects and local report measures.

Given these considerations, Power BI Desktop is recommended for any report development

beyond personal or ad hoc use. Guidance on version history for Power BI Desktop files (reports

and datasets) is included in Chapter 10, Managing Application Workspaces and Content.

We continue our exploration of Live connection reports by reviewing the ability to customize

such reports.

Customizing Live connection reports
Although data modeling and retrieval capabilities are removed in purely Live connection reports

(non-composite model), report authors can create new measures specific to the given report via

the New measure icon under the Modeling and Table tools tabs.

Additionally, report authors can change the names of measures and columns displayed in reports

using the field wells for visualization in the Visualizations pane.

Planning Power BI Reports276

In Figure 6.30, the Internet Net Sales measure and the SalesTerritoryCountry column have

been renamed to Net Sales and Country, respectively:

Figure 6.30: Renamed measure and column in visual

Double-clicking the name of the column or measure in the field well(s) for the visual exposes an

input box for the revised name. As per the preceding diagram, the revised names appear in the

report visual and the Tooltips in the field wells indicate the source column or measure. In this

example, the Internet Net Sales measure, with a home table of the Internet Sales fact table,

is the source for the Net Sales alias name.

Although the flexibility to create measures and apply names within reports is helpful and

appropriate in certain scenarios, these revisions can create complexity and version control issues.

For example, users can become accustomed to specific measures and names that the dataset

designer is not aware of and that may conflict with other measures or names in the dataset.

Therefore, it’s generally recommended to incorporate the necessary measure logic and standard

names into the source dataset.

Next, we look at two different scenarios involving switching between or to Live datasets, starting

with switching from one Live source dataset to another.

Switching Live source datasets
In many project scenarios, a Power BI report is initially built against a development or testing

dataset. After this report has been validated or received the proper approvals, the report’s source

dataset can be switched to a production dataset and the report can then be published to the

production workspace used for distributing Power BI content to users.

To switch the Power BI dataset of a Live connection report, click Data Source settings under the

Transform data drop-down menu on the Home tab, as shown in Figure 6.31:

Chapter 6 277

Figure 6.31: Data source settings for a Live connection report

The same dialog is presented as shown in Figure 6.28. Simply select a different dataset and click

the Create button. See Chapter 10, Managing Application Workspaces and Content, for details on

Power BI project life cycles, such as migrating from development to production environments

and version control.

Next, we look at another dataset switching scenario, this time between an import mode dataset

and a Live source dataset.

Switching between import mode and Live mode datasets
Another common scenario is that report development begins with an import mode dataset for

creating report visuals as a proof-of-concept (POC). Subsequently, as the project progresses, it

becomes advantageous to separate data modeling from report development.

It’s possible to convert an import mode dataset that contains report visuals in the same file into two

separate artifacts, a dataset and a report connected to this dataset, using the following procedure:

1. Publish the dataset with the report to a workspace in the Power BI service.

2. Make a copy of the PBIX file containing the dataset and the report visuals.

3. In the copied PBIX file, open Power Query Editor and delete all source queries. Ensure

that all dataset tables are removed from the file.

4. Exit Power Query Editor and return to Power BI Desktop. The report visuals should now

(temporarily) return an error.

5. On the Home tab of Report view, click Power BI Datasets in the Data section of the ribbon

and connect your file to the dataset published as part of step 1.

The report visuals should load normally as though the data was still local to the file and now the

report has a Live connection to the Power BI dataset.

Planning Power BI Reports278

This concludes our advice regarding Live connections to Power BI datasets. We’ll next explore

the topic of some best practices with regard to visualizations.

Report design summary
As a data visualization and analytics platform, Power BI provides a vast array of features and

functionality for report authors to develop compelling content that helps users to derive insights.

Given the volume of features and possible formatting configurations, report authors and BI teams

generally want to follow a set of report planning and design practices to ensure that report content

of a consistent quality is delivered to stakeholders. These practices include report planning in

terms of scope, users, and use cases, data visualization practices, and the selection of visuals.

The Report planning process, Visualization best practices, and Choosing the right visual sections earlier

in this chapter provided details on many of the recommended practices to develop effective

and sustainable report content. As a standard summary-level review of report creation, at the

conclusion of a development phase and prior to deployment, the following list of questions

should be asked:

1. Does the report have a clear scope and use case?

The report addresses specific business questions of value to specific users or teams that

consume the report. The relationship and distinction between this report and other

reports or dashboards that the users have access to are understood. The pages of the

report naturally relate to one another to address the same or closely related business

questions, perhaps at alternative levels of detail.

2. Have standard visualization practices been followed?

The visuals have proper spacing, alignment, and symmetry. The reports use colors

selectively and there are clear titles on report pages and visuals. The report is intuitive

and not cluttered with unnecessary details

3. Have the right visuals been chosen to represent the data?

Tables and matrices were used when cross-referencing or looking up individual values

was necessary. The type of data relationship to represent (for example, comparison) and

the relative advantages of the different visuals, such as line charts for the trends of a value,

drove the visual choice.

Chapter 6 279

4. Does the report enable the user to easily apply filters and explore the data?

Slicer visuals for common or important columns have been utilized and are easily accessible

to users. The filtering and cross-highlighting interactions between the visuals on the report

pages have been considered and configured appropriately. Hierarchies of columns have

been built into certain visuals to allow a simple drill-up and drill-down experience

5. Does the report aid the user in identifying insights or exceptions?

Dynamic formatting, such as with KPI visuals and conditional formatting rules and

techniques, has been applied. Tooltips have been added to report visuals to provide the

user with additional context by hovering over the visual, such as the columns in a column

chart or the data points in a line chart.

6. Have simple and sustainable filter conditions been applied at the appropriate scope?

Report- and page-level filter scopes have been applied to minimize the resources required

by the queries generated by the report. Visual-level filters are only used when the visual

needs to reflect an alternative filter context of the report- and page-level filter scopes.

Report filter conditions are not being used to address issues with data quality or the

source dataset. Efforts have been made (or will be made) to enhance the source dataset

to better support the report. Filter conditions on the date dimension are dynamic and

sustainable (for example, Current Year and Prior Year) rather than hardcoded values

(for example, 2018 and 2017).

This concludes our exploration of the report planning process and other important concepts

related to report planning and design.

Summary
In this chapter, we walked through the fundamental components of Power BI report planning

and design, including visualization best practices, Live connections to Power BI datasets, and the

filter scopes available in Power BI Desktop. We also reviewed the overall report planning process

and introduced the report architecture diagram as a tool to aid in that planning.

The following chapter is also dedicated to report development, but goes well beyond the

fundamental design concepts and features introduced in this chapter. The next chapter explores

the basics of report authoring, including an exploration of the different visuals and formatting

features available during report development.

Planning Power BI Reports280

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

7
Creating and Formatting
Visualizations

With the report planning and design phases described in the previous chapter completed, this

chapter dives into report development. This includes the creation and formatting of standard

Power BI visuals such as slicers, cards, and maps as well as supporting elements such as text

boxes, buttons, shapes, and images.

Visualizations are the building blocks of reports. A combination of distinct visuals, each with their

own formatting and data represented at different granularities and filter contexts, enables Power

BI reports to generate insights and to support data story telling. The ability to create and apply

formatting to visualizations is fundamental knowledge for all report authors.

In this chapter, we review the following topics:

• The Visualizations pane

• Slicers

• Single-value visuals

• Map visuals

• Waterfall charts

• Power Platform visuals

• Premium visuals

• Elements

• Formatting visualizations

Creating and Formatting Visualizations282

We start with a brief overview of the Visualizations pane.

The Visualizations pane
While in the Report view, the Visualizations pane provides the primary interface for creating and

formatting visuals. The Visualizations pane includes three sub-panes, the Build visual, Format,

and Analytics panes, as shown in Figure 7.1:

Figure 7.1: The Visualizations pane’s sub-panes

As shown in Figure 7.1, the Build visual sub-pane is located on the left, the Format sub-pane

in the center, and the Analytics sub-pane on the right. The Analytics sub-pane is discussed in

greater depth in the next chapter.

The Build visual sub-pane, as its name suggests, is used for creating visuals. By default, 40 icons

representing different visualization types are displayed and can be used to create visuals. In

addition, when a visual is selected on the report page, the Build visual sub-pane presents one or

more field wells used to configure the visual as shown in Figure 7.2:

Figure 7.2: Field wells

Field wells are simply areas where columns and measures from the Fields pane can be dragged

and dropped. In Figure 7.2, a column chart visual has three main field wells, Axis, Legend, and

Values. Depending on the visual, field wells accept one or multiple columns and/or measures.

Chapter 7 283

Once a visualization is created and selected on the report canvas, the Format sub-pane provides

two tabs, Visual and General, used to configure various properties such as size, position, colors,

and font sizes as shown in Figure 7.3:

Figure 7.3: Format sub-pane

As shown in Figure 7.3, each tab includes multiple sections, such as the Properties section, and

each section includes one or more format cards such as Size and Position. The Format sub-pane

is explored in greater depth in the Formatting visualizations section later in this chapter.

With a basic overview of the Visualizations pane complete, we move on to an exploration of

specific visualization types, starting with slicers.

Slicers
Slicer visuals are interactive controls added to the report canvas to enable report users to apply

their own filter selections to an individual report page. Given their power and flexible support for

multiple data types, slicers have been a staple of Power BI interactive reports for years.

Slicers are a central element of self-service functionality in Power BI in addition to the visual

interaction behavior described in the previous chapter. The standard slicer visual displays the

unique values of a single column enabling report users to apply their own filter selections to all

or some visuals on a report page.

Creating and Formatting Visualizations284

However, although slicer visuals are still fully supported and a great addition to many reports,

Power BI now also supports a Filters pane that can be exposed to users to deliver essential self-

service filtering without requiring additional report canvas space or additional queries. Given

the availability and advantages of the Filters pane, report authors should only use slicers for the

most common or frequently used fields for filtering. Fields that are less frequently used to apply

filters can be added to the Filters pane.

Power BI Desktop provides several formatting and filter condition options available based on the

data type of the column. Figure 7.4 contains three sample slicer visuals with each slicer representing

a different data type (text, number, date):

Figure 7.4: Slicer visuals

In this example, the three slicers filter for two sales territory countries (Australia and France), a

range of product list prices ($500 to $2,500), and the last 30 Days inclusive of the current date

(12/25/2021 to 1/23/2022). Filter condition rules are available for numeric and date columns in

slicers, such as greater than or equal to $500 and after 5/1/2021, respectively.

See the Report filter conditions and Relative date filtering sections from the previous chapter for

additional details on relative date filters.

By default, Multi-select with CTRL is enabled on the Selection card of Slicer settings. This

setting requires users to hold down the Ctrl key to select multiple items. For slicer visuals with

many unique values, and when users regularly need to exclude only one or a few items, enabling

the Show “Select all” option can improve usability.

Additionally, for slicers based on text data-type columns, users can search for values via the ellipsis

menu (…) that appears at the top right or bottom right of the visual. Alternatively, a search box

can be activated by toggling the Search settings to On in the Options card of Slicer settings.

To preserve space on the report canvas, the slicer visual supports a drop-down option for all

column data types. In Figure 7.5, a single value is selected for the country and date slicers but

multiple values are selected for the price slicer:

Chapter 7 285

Figure 7.5: Slicer visuals as dropdown

The drop-down option is most applicable for columns with many unique values. In addition, it’s

recommended to group slicer visuals together near the edge of a report page.

Slicers are most commonly aligned on the left side of the page below the visuals in the top-

left corner. If vertical canvas space is limited, slicers displayed in list format can be presented

horizontally rather than vertically. The Orientation formatting property (Vertical or Horizontal)

is available on the General formatting card.

One of the most powerful features of slicers is the ability to filter both the current report page

and optionally other report pages from a single slicer visual. The details of utilizing this feature,

referred to as Slicer synchronization, are included in the following section.

Slicer synchronization
By default, slicer visuals only filter the other visuals on the same report page. However, via the

Sync slicers pane, report designers can synchronize a slicer visual to also filter all other report

pages or only specific report pages. This feature eliminates the need to include the same slicer

on multiple report pages and thus simplifies the user experience.

For example, a common report may utilize three slicers (for example, Year, Product Category, Sales

Country) and include four report pages. With slicer synchronization configured, the report user

would only need to select values from these slicers on a single report page and the visuals from

all four report pages would be updated to reflect these selections.

The Sync slicers pane can be accessed from the View tab of the ribbon in the Report view as

shown in Figure 7.6:

Figure 7.6: Sync slicers pane

Creating and Formatting Visualizations286

Once selected as per Figure 7.6, the Sync slicers pane appears to the right of the report page. A

slicer visual from the current report page can then be selected to configure its synchronization

with other pages.

In Figure 7.7, the SalesTerritoryGroup slicer has been selected but has not yet been synchronized

with other report pages:

Figure 7.7: Sync slicers pane with slicer selected

To quickly synchronize the slicer to all other report pages, simply click the Add and sync with all

pages link above the Sync (double arrows) and Visible (eyeball) icons. In this example, the Add

and sync with all pages command would apply checkmarks under the Sync and Visible icons

for all four report pages. You could then uncheck the Visible icons for the different pages. The

Sales Territory Group slicer would now filter all report pages but would only be visible on pages

where the Visible icon is checked.

Several other report design features are accessible from the View tab, such as the Bookmarks and

Selection panes, show Gridlines, and Snap to grid. The Gridlines and Snap to grid features simply

aid in the positioning and alignment of visuals on the report canvas while the Bookmarks and

the Selection panes are described in the Bookmarks section of Chapter 6, Planning Power BI Reports.

For reports with several report pages and common slicers, a single report page can be dedicated

to slicer selections and not contain any other visuals.

Chapter 7 287

Report designers can configure synchronization for each slicer on this page and instruct users to

only use this page for applying their filter selections for all pages on the report.

Moreover, a back button can be added to report pages allowing the user to easily navigate back to

the dedicated slicer report page. An example of using a back button is included in the Drillthrough

report pages section of Chapter 6, Planning Power BI Reports, and additional information is included

in the Embellishments section of this chapter.

Next, we look at a distinct use case for slicers involving custom slicer parameters.

Custom slicer parameters
A powerful use case for slicer visuals is to expose a custom list of parameter values and drive

one or multiple DAX measures based on the user’s selection. In the example shown in Figure

7.8, a slicer visual contains six date intelligence periods, and a custom DAX measure used in the

central Card visual, User Selected Internet Net Sales, references the date intelligence measure

corresponding to the user’s selection:

Figure 7.8: Slicer as a measure parameter

The table used for the slicer values could be defined within a source system and retrieved during

data refresh like other tables. Alternatively, since the parameter values are unlikely to change,

the table could be created within Power BI Desktop using an Enter data query and loaded to the

model but not included in a data refresh. Like all parameter tables, no relationships would be

defined with other tables.

The custom measure User Selected Internet Net Sales utilizes the SELECTEDVALUE() and

SWITCH() functions to retrieve the user selection and then apply the appropriate date intelligence

measure.

Creating and Formatting Visualizations288

In this implementation, a DAX variable is used to store the period selection value, as per the

following expression:

User Selected Internet Net Sales =

 VAR __PeriodSelection = SELECTEDVALUE('Date Parameter'[Date Period
Selection], "Year to Date")

RETURN

 SWITCH(TRUE(),

 __PeriodSelection = "Week to Date", [Internet Net Sales (WTD)],

 __PeriodSelection = "Month to Date", [Internet Net Sales (MTD)],

 __PeriodSelection = "Year to Date", [Internet Net Sales (YTD)],

 __PeriodSelection = "Prior Week to Date", [Internet Net Sales
(PWTD)],

 __PeriodSelection = "Prior Month to Date", [Internet Net Sales
(PMTD)],

 __PeriodSelection = "Prior Year to Date", [Internet Net Sales
(PYTD)]

)

The second parameter to the SELECTEDVALUE() function ensures that the Year to Date measure

is used if multiple values have been selected or if no values have been selected. In Figure 7.8, the

radio buttons indicate that the Single select option has been set to On in the Selection card of

the Slicer settings in order to avoid multiple selections. The Single select option disables the

default behavior of allowing multiple selections within a slicer.

If several additional DAX measures are driven by the parameter selection, a dedicated measure

could be created that only retrieves the selected value. This supporting measure would then

eliminate the need for the variable since the support measure could be referenced directly within

the SWITCH() function.

See Chapter 5, Developing DAX Measures and Security Roles, for example expressions of date

intelligence measures as well as measure support expressions. Of course, it’s possible to fully define

each date intelligence expression within the parameter-driven measure but, for manageability

reasons, it’s almost always preferable to leverage an existing measure. This is particularly the

recommendation when the required measures represent common logic, such as month-to-date.

In addition to using source system tables or Enter data queries to create parameter tables, Power

BI provides an alternative means known as What-if parameters.

Chapter 7 289

What-if parameters
What-if parameters provide a user interface for more easily creating parameter tables than the

custom slicer parameter demonstrated in the previous section. This option is currently limited

to numeric parameter values but automatically creates a single-column table, slicer, and DAX

measure that retrieves the slicer’s input value.

In Figure 7.9, two What-if parameters are used to calculate alternative unit price and unit cost

values thereby driving a hypothetical product margin % measure:

Figure 7.9: What-if parameters applied in report visuals

By adjusting the two slider bars, a user is able to quickly model an alternative gross product

margin % scenario, as illustrated by the dotted line in Figure 7.9. The slider bar for modifying a

single value is unique to slicers for What-if parameter columns.

Creating and Formatting Visualizations290

To create a What-if parameter, click the New parameter icon on the Modeling tab in the Report

view to launch the dialog shown in Figure 7.10:

Figure 7.10: Creating a What-if parameter

Based on the minimum, maximum, and increment input values specified, a new table with a

single column of values is created within the Power BI dataset. For the Internet Sales Unit

Price Growth parameter, this column has 21 rows from 0 to .2 with each value representing a

full percentage point (for example, 0%, 1%, 2%...20%). These tables are actually calculated tables

created using DAX with formulas as follows:

Internet Sales Unit Price Growth = GENERATESERIES(CURRENCY(0),
CURRENCY(0.2), CURRENCY(0.01))

Internet Sales Unit Cost Growth = GENERATESERIES(CURRENCY(0),
CURRENCY(0.2), CURRENCY(0.01))

Additionally, a new DAX measure is created automatically to retrieve the user selection, as per

the following expressions:

Internet Sales Unit Price Growth Value = SELECTEDVALUE('Internet Sales
Unit Price Growth'[Internet Sales Unit Price Growth], 0)

Internet Sales Unit Cost Growth Value = SELECTEDVALUE('Internet Sales Unit
Cost Growth'[Internet Sales Unit Cost Growth], 0)

Chapter 7 291

With the second argument to both functions set to 0, both growth values return zero if a selection

hasn’t been made or if multiple values have been selected. The only remaining step is to create

one or more measures that reference the parameter values in their calculation logic.

In this example, the Unit Price and Unit Cost growth parameters are applied to gross sales and

product cost scenario measures, respectively. These two scenario measures are then used to

compute a product margin scenario measure and a product margin % scenario measure, per the

following expressions:

Internet Gross Sales Scenario = [Internet Gross Sales] * (1 + [Internet
Sales Unit Price Growth Value])

Internet Sales Product Cost Scenario = [Internet Cost of Sales] * (1 +
[Internet Sales Unit Cost Growth Value])

Internet Gross Product Margin Scenario = [Internet Gross Sales Scenario] -
[Internet Sales Product Cost Scenario]

Internet Gross Product Margin % Scenario = DIVIDE([Internet Gross Product
Margin Scenario], [Internet Gross Sales Scenario])

Although it’s possible and sometimes necessary to create parameter columns and measures

manually, the What-if parameter feature in Power BI Desktop can simplify this process for many

modeling scenarios. Additionally, the slider bar slicer exclusive to the What-if parameter columns

is the most user-friendly option for selecting parameter values.

To change the range of values available to the parameter, select the Parameter column in the

Fields pane and modify the min, max, or increment arguments to the GENERATESERIES() function.

Considering that both slicers and the Filters pane covered in the previous chapter can both filter

an entire report page, you may be curious as to when to use one or the other, so we explore that

topic in the next section.

Page filter or slicer?
Slicer visuals can serve as an alternative to distinct or dedicated report pages. With a slicer, a user

has the flexibility to select one or multiple values on the same report page, such as Northeast and

Southwest sales territories, without needing to navigate to a dedicated page. Additionally, by

consolidating dedicated report pages, slicers can simplify report development and management.

Creating and Formatting Visualizations292

Slicers are often the best choice when there’s nothing unique to the different values of the slicer.

For example, if all sales regions are always analyzed by the same measures, dimensions, and

visuals, it may be unnecessary to duplicate these pages of visuals. Slicers are also very helpful or

necessary when users regularly need to analyze the data by the same dimensions or by custom

dimensions, such as price and date ranges.

While the Filters pane can be exposed to users and serve the same function as slicers, this can

be less intuitive and require more training for end users. Conversely, the benefit of utilizing the

Filters pane for this function is that more report canvas space is available for non-slicer visuals.

In general, slicer visuals that consume a small amount of canvas, such as dropdowns, are preferable

for dimensions that the user is expected to regularly apply filters on. Less common or “nice to

have” filters can generally be added to the filter pane rather than slicer visuals to preserve canvas

space and to avoid unnecessary queries.

As shown in Figure 7.11, the Filters pane allows filters to be hidden or locked by report authors

via the circle and arc (eyeball) icon and lock icon respectively:

Figure 7.11: Filter pane filter locking and hiding

Dedicated report pages are valuable for supporting email subscriptions, data alerts, and dashboard

visuals specific to a particular value such as a sales region. As shown in Figure 7.12, when in the

Power BI service, an email subscription can be set to any of the report pages within the USA

SALES AND MARGIN report:

Chapter 7 293

Figure 7.12: Email subscription in Power BI

As one example, the visuals from the Northeast report page could potentially be pinned to a

Northeast dashboard (or another dashboard) and used in data alerts and notifications for the

Northeast team as well. These region-specific capabilities are made possible by the distinct report

pages of visuals filtered for the given sales territory region.

Creating and Formatting Visualizations294

If using dedicated report pages, it is likely that the report author will want to hide the Filters

pane entirely as shown in Figure 7.13 or, alternatively, lock all of the filters within the Filters pane.

Figure 7.13: Hiding the Filters pane when viewing report

This completes our review of slicers. We next turn our attention to visuals designed to primarily

feature single number values.

Single-value visuals
Single-value visuals are a class of visuals which prominently display an important value such as

the YTD Sales or the % Variance to Plan. These visuals are typically positioned at the top and left

sections of report pages and are commonly pinned to dashboards in the Power BI service. Though

simple relative to other visuals, single value visuals are often the first visuals users perceive and

these values relative to their expectations determine whether or not other visuals in the report

are analyzed.

The Card visual
Card visuals present a single Fields field well that accepts a single column or measure. Card visuals

are most often used to prominently display a single numeric value, such as an important business

metric. While perhaps more limited and visually unappealing than the KPI and Gauge visual, Card

visuals are valued for their simplicity and ability to drive data alerts within the Power BI service.

That said, Card visuals do include the ability to conditionally format the color for the displayed

value and label, providing the ability to serve as a rudimentary KPI visual displaying different

colors depending upon the overall health of the chosen metric.

Additionally, Card visuals can also display text. This is a powerful feature when combined with

measures, as demonstrated in the Drillthrough report pages section of the previous chapter.

Note that a version of the Card visual exists for displaying multiple numeric or text values called

the Multi-row card visual. The Multi-row card visual also includes a single Fields field well but

accepts multiple columns and/or measures.

We now turn our attention to the standard KPI visual.

Chapter 7 295

The KPI visual
The standard KPI visual packs a tremendous amount of information within a single visual. The

KPI visual is popular for displaying key business metrics given its ability to display the current

value of a business metric, the metric’s trend over time, and progress towards a specified goal all

within a compact form factor.

As shown in Figure 7.14, the KPI visual presents three field wells for Indicator, Trend axis, and

Target goals:

Figure 7.14: KPI visual

The Indicator field well accepts a single column or measure and is displayed as the large numeric

value in the center of the visual. The Trend axis field well accepts a single numeric or date column

and drives the shaded, sloping area behind the Indicator value. Both the Indicator and Trend

axis field wells must be populated for the KPI visual to display.

Optionally, the Target goals field well accepts one or more columns and/or measures. Most often,

a single goal is used. Including a Target goal provides conditional color formatting based on

whether the current Indicator value is higher, the same as, or lower than the Target goal. In

addition, the value of the Target goal is displayed beneath the Indicator value as well as the

variance (%) between the Indicator and Target goal.

Similar to the KPI visual, we next take a look at the Gauge visual.

Creating and Formatting Visualizations296

Gauge visual
The Gauge visual is similar to the KPI visual in that a particular metric can be compared against a

target value. The Gauge visual may be preferred over the KPI visual in the event that an appropriate

trend axis is unavailable. However, a downside to the Gauge visual is that it takes up a large

amount of space relative to the amount of information presented.

As shown in Figure 7.15, the Gauge visual presents five field wells:

Figure 7.15: Gauge visual

Of the five field wells displayed in Figure 7.15, only the Value field well is required. The column or

measure in the Value field well is shown as the central number within the Gauge visual ($5.0M).

Adding a Target value adds a line on the gauge and displays the target value ($3.22M). Alternatively,

the column or measure used as the Target value can instead be used as the Maximum value so

that the gauge is completely full once the target value is reached.

Power BI automatically selects minimum and maximum values for the gauge if the Minimum

value and Maximum value field wells are left unconfigured. An optional Tooltips field well is

available for the Gauge visual. Tooltips are covered in greater detail in the Formatting visualizations

section of this chapter.

We now move on from single number visuals to explore the various map visuals available within

Power BI Desktop.

Chapter 7 297

Map visuals
Power BI currently provides five map visuals including the Map, Filled map, Shape map (in

preview), Azure map (in preview), and the ArcGIS Maps for Power BI.

The map visual plots location points as bubbles over a world map and varies the size of the

bubbles based on a value. The bubbles on these maps can also be broken out across a dimension

to provide additional context.

The Filled map and Shape map visuals are forms of heat maps that use color and color intensity

to distinguish specific areas of a map by a value, such as postal codes by population.

The Azure map visual is similar to the map visual in that it displays bubbles on a world map.

The Azure map supports different base layers like satellite and road as well as many different

settings including a display of live traffic data. While still in preview, continued enhancements

to this visual could position the Azure Map as the standard for geospatial analysis in Power BI.

The ArcGIS map visual is the most powerful of the available geospatial visualizations and several

custom map visuals are available in the App Store including the Globe Map, Flow Map, Icon Map,

Mapbox Visual, Drilldown Choropleth, Drilldown Cartogram, Route map, and Google Maps for

Power BI. See Chapter 8, Applying Advanced Analytics, for details on the ArcGIS map visual and

using custom visuals.

The Shape map and Azure map visuals are currently still in preview and thus should only be

used for testing purposes. The following URL provides documentation on the Shape map visual:

http://bit.ly/2zS2afU. The following URL provides documentation on the Azure map visual:

https://bit.ly/3H3kEIL.

As per the Data category section in Chapter 4, Designing Import, DirectQuery, and Composite Data

Models, it’s important to assign geographic data categories to columns. This information aids the

map visuals in plotting the correct location when a value is associated with multiple locations

(ambiguous locations).

Data categories can be assigned to columns from the Column tools tab in the Data view or the

Report view. For DirectQuery datasets, these metadata properties can only be assigned from

the Report view. Report authors should engage the dataset designer or BI team responsible for

a dataset if data categories have not been assigned to columns needed for report development.

http://bit.ly/2zS2afU
https://bit.ly/3H3kEIL

Creating and Formatting Visualizations298

Additionally, for bubble and Filled map visuals, hierarchies can be added to the Location field

well to avoid ambiguous results. For example, by adding the hierarchy shown in Figure 7.16 to the

Location field well, the map visuals only use the locations associated with their parent values,

such as only the states of Australia.

Figure 7.16: Geographic hierarchies in map visuals

For greater precision and performance with map visuals (excluding the Shape map), latitude and

longitude input field wells are available as alternative inputs to Location.

We now take a more detailed look at the Bubble map visual.

Bubble map
Bubble maps are particularly useful when embedding an additional dimension column or category

to the legend input. When a geographic boundary column, such as country or postal code, is used

as the location input, the added dimension converts the bubbles to pie charts of varying sizes.

Larger pie charts reflect the measure used for the Size input field and the components of each pie

are color-coded to a value from the legend column providing even greater context.

The map visual shown in Figure 7.17 uses the postal code as the location input, the Internet Net

Sales measure as the size input, and the Customer History Segment column as the legend input:

Chapter 7 299

Figure 7.17: Map visual

For this map, the Grayscale theme is applied from the Style card in the Map settings category.

The bubble map also includes a color saturation input to help distinguish bubbles beyond their

relative sizes. This input, however, can only be used when the legend field well is not used.

See the Customer history column section of Chapter 3, Connecting to Sources and Transforming Data

with M, for details on creating a history segment column within an M query.

Next, we explore the Filled map visual.

Creating and Formatting Visualizations300

Filled map
A Filled map visual includes several of the same formatting properties of a bubble map but utilizes

color as its primary means to contrast locations. In the Filled map example shown in Figure 7.18,

a gradient color scheme has been applied via the Colors card in the Fill colors category of the

Format pane to highlight individual states based on the Internet Net Sales measure:

Figure 7.18: Filled map visual with gradient colors

Exactly like the color scheme described in the column and line chart conditional formatting section

later in this chapter, three distinct numeric values and colors are assigned to the Minimum, Center,

and Maximum properties. For this visual, the values of $1M, $2M, and $3M are associated with

red, yellow, and green respectively; causing the South Australia state to appear as red (low value)

while the New South Wales state is green (high value).

Additionally, like the previous bubble map example, a grayscale map-style theme has been applied

and the auto-zoom property has been disabled.

Chapter 7 301

Other map themes, such as dark, light, road, and aerial, are also available for filled and bubble

maps. These alternative themes, particularly when contrasted with the bright or rich colors of a

Filled map, can significantly add to the aesthetic appeal of a report.

As per the drill-up/down icons above the visual, a hierarchy of geographical columns (Country,

State, City) has been added to the Location field well. These additional columns help the Bing

Maps API to display the correct location, such as only Victoria in Australia. Note that whenever a

hierarchy is included in an appropriate visualization’s field well, the drill-up/down icons allow

report viewers to move between the various levels of the hierarchy.

To ensure that Bing Maps respects the parent column (for example, Country) when plotting child

locations (for example, States/Provinces), the user can enable the drill mode via the drill-down

button in the top-right corner of the visual. With drill mode enabled, the user can click the specific

parent value on the map, such as the United States, and Bing plots states by only searching for

states within the United States.

Alternatively, with drill mode not enabled, the user can click the expand all down one level icon

at the top left of the visual. From the initial state of the parent value (country), this also plots the

states within each parent value. The other drill option at the top left of the visual, the go to the

next level drill, only plots the child values without the context of the parent value.

Moving on from map visuals, we next expound upon the Waterfall chart visual.

Waterfall chart
The waterfall chart is one of the most powerful standard visuals in Power BI given its ability to

compute and format the variances of individual items between two periods by default.

The items representing the largest variances are displayed as columns of varying length, sorted

and formatted with either an increase (green), no change (yellow), or decrease (red) color. This

built-in logic and conditional formatting make waterfall charts both easy to create and intuitive

for users.

Creating and Formatting Visualizations302

In Figure 7.19, the Internet Net Sales of the last two completed months are broken down by

SalesTerritoryCountry:

Figure 7.19: Waterfall chart with breakdown

The waterfall chart in Figure 7.19 was created by placing the Internet Net Sales measure applied

to the Values field well, and placing the Year Month and SalesTerritoryCountry columns into

the Category and Breakdown input fields, respectively. The waterfall chart naturally walks the

user from the starting point category on the left (2013-Nov) to the ending point category on the

right (2013-Dec).

As per Figure 7.19, hovering the cursor over a bar results in the details for this item being displayed

as a tooltip. In this example, hovering over the ($52K) green bar for Australia displays Internet

Net Sales for both months, the variance, and the variance as a percentage. These four tooltip

values are provided by default and report authors can optionally add measures to the Tooltips

field well to deliver even greater context.

We now turn our attention to another powerful analytical visual, the Key influencers visualization.

Power Platform visuals
Power BI is part of a larger suite of products known as the Power Platform. In addition to Power

BI, the Power Platform is comprised of Power Apps, Power Automate, and Power Virtual Agents.

Chapter 7 303

The Power Platform is designed to support low-code and no code development by business

analysts familiar with MS Office tools like Excel but is also extensible to support complex, custom

solutions involving application development skills and processes. Power Automate is used to

design and run workflows and Robotic Process Automation (RPA). Finally, Power Virtual Agents

provides a platform for creating intelligent, automated agents.

Over the last few years, Microsoft has worked steadily to create seamless integration between

the various Power Platform tools as well as Dataverse, Microsoft’s business data object/entity

store. In terms of Power BI, this has meant the introduction of standard visuals for Power Apps

and Power Automate, thus enabling Power BI report users to act based on their analyses without

ever leaving Power BI.

For example, after analyzing recent sales trends on one report page, a user could increase the

sales budget via an integrated Power App that contains budget information on a separate report

page. Likewise, a button could be added to a Power BI report page that enables a user to trigger

a Power Automate workflow that refreshes a Power BI dataset.

We start by looking at an example of using the Power Apps visual in Power BI Desktop.

Power Apps for Power BI
As mentioned, Power Apps allows for the creation of low-code/no-code applications and web

portals. Power Apps is a cloud-first environment and the latest of a long line of forms-based

collaboration technologies that include Exchange Forms, Outlook Forms, and SharePoint.

Figure 7.20 shows the Power Apps for Power BI visual after being configured to have the

ResellerName column from the Resellers table in the PowerApps Data field well within the

Visualizations pane.

Figure 7.20: Power Apps for Power BI visual

Creating and Formatting Visualizations304

As shown in Figure 7.20, the Dataverse environment for the app can be selected in the upper-right

corner of the visual, in this case, the coe environment. Existing Power Apps can be chosen by

clicking the Choose app option or a new Power App can be created using the Create new option.

In either case, the data included in the PowerApps Data field well for the visual is available to

the Power App.

Choosing the Create new option launches a browser window that navigates to the make.powerapps.

com website and allows the report author to create a new Power App. The new Power App includes

a default screen with a gallery control as shown in Figure 7.21.

Figure 7.21: Power app displayed in the Power Apps for Power BI visual

Details regarding creating a Power App are beyond the scope of this book but Chapter 13 of Power

BI Cookbook 2nd Edition provides a more complete example.

http://make.powerapps.com
http://make.powerapps.com

Chapter 7 305

Once the Power App is created or chosen, the Power App can be saved and shared with others.

Once this is done, the Power App is displayed within the Power App for Power BI visual within

Power BI Desktop.

Moving on, we next take a look at the Power Automate visual for Power BI.

Power Automate for Power BI
Power Automate is Microsoft’s cloud-based workflow and RPA platform. The Power Automate

for Power BI allows Power Automate flows to be initiated from Power BI Desktop. These flows

can utilize data from the Power BI model exposed to the Power Automate for Power BI visual.

Figure 7.22 shows the Power Automate for Power BI visual after adding the visual to the report

page and placing the EmailAddress column from the Customer table into the Power Automate

data field well within the Visualizations pane.

Figure 7.22: Power Automate for Power BI visual

Creating and Formatting Visualizations306

As shown in Figure 7.22, once data fields are added to the Power Automate data field well, the

ellipses menu is used to Edit the Power Automate flow. Choosing the Edit option exposes the

interface shown in Figure 7.23, allowing the user to choose an existing flow or create an entirely

new flow from a template.

Figure 7.23: Power Automate for Power BI visual Edit screen

The New menu shown in Figure 7.23 provides two options, Template and Instant cloud flow. In

this case, the Instant cloud flow option was selected and a simple flow was created to send links

to a web-based survey. This flow is shown in Figure 7.24.

Chapter 7 307

Figure 7.24: Power Automate for Power BI visual Edit screen

In Figure 7.24, the EmailAddress data exposed to the Power Automate for Power BI visual via the

Power Automate data field well is used as the To address for the email. Note the tooltip indicates

that the email will be sent to each selected email address. The simple flow includes a Subject and

an email Body that includes a link to a survey.

Once the flow is saved and shared, the Power Automate for Power BI visual displays a button

that can be used by Power BI report viewers as shown in Figure 7.25.

Figure 7.25: Power Automate for Power BI visual configured

Creating and Formatting Visualizations308

Like other Power BI visuals, the Power Automate for Power BI visual is interactive and filtered by

other report visuals. This means that the report viewer can select data appearing in other visuals

on the report page and this cross-filters the Power Automate for Power BI visual, meaning that

upon clicking Send Survey Email, an email is generated for each customer email address.

In addition to integration with other Power Platform offerings, Microsoft has also introduced

visuals specific to Premium (capacity-based) offerings, and we take a look at these next.

Premium visuals
As Microsoft’s Power BI Premium offering has matured, Microsoft has added two standard Power

BI visuals that support features exclusive to capacity-based Power BI licenses, including Power BI

Premium and Premium Per User (PPU). These visuals are the Scorecard visual and the Paginated

report visual.

We begin by looking at the Scorecard visual.

Scorecard
Scorecards are a relatively recent addition to Power BI that support the display and tracking

of Goals within Power BI Premium and PPU. Goals allow you to create and track multiple key

business metrics and objectives in a single place via a Scorecard. Both Goals and Scorecards are

covered in more detail in later chapters.

Figure 7.26 shows an unconfigured Scorecard visual added to a Power BI report page.

Figure 7.26: Scorecard visual

As shown in Figure 7.26, two options are present, Create new scorecard and Connect to an

existing scorecard. Figure 7.27 shows the same visual after being configured to Connect to an

existing scorecard.

Chapter 7 309

Figure 7.27: Configured Scorecard visual

As shown in Figure 7.27, a simple scorecard consisting of two goals is displayed in the Scorecard

visual. The Scorecard visual is completely interactive, allowing the report viewer to interact with

the scorecard as if viewing the scorecard in the Power BI service. Options are included to Edit the

scorecard, Replace scorecard, and open the scorecard in the Power BI service.

In addition to the Scorecard visual, another premium visual is the Paginated report visual.

Paginated reports
Paginated reports have a long and storied history at Microsoft, having first appeared in SQL Server

Reporting Services (SSRS) in 2004. Paginated reports use an XML-based language called Report

Definition Language (RDL). With the paginated report visual now available in Power BI Desktop,

the unique benefits of paginated reports such as exporting high volumes of data and multi-page

report documents can be integrated within Power BI reports.

While Power BI reports are optimized to be highly interactive and allow self-service exploration of

data by users, paginated reports allow pixel-perfect formatting that report designers can optimize

for screens, printing, and PDF generation. Paginated reports are explored in greater detail in

Chapter 12, Deploying Paginated Reports.

Figure 7.28 shows an unconfigured Paginated report visual added to a Power BI Desktop

report page.

Figure 7.28: Configured Scorecard visual

Creating and Formatting Visualizations310

Clicking on the Connect to report button within the Paginated report visual as shown in Figure

7.28 opens the Embed a paginated report dialog shown in Figure 7.29.

Figure 7.29: Select paginated report

As shown in Figure 7.29, any paginated reports published in the Power BI service to which the
report author has permissions is displayed in the Embed a paginated report interface. Selecting
a paginated report activates the Set Parameters button.

Parameters are an optional feature of paginated reports that allow a single report to display
different data, such as for a specific customer or division. Once parameters, if any, are set the
report can be displayed using a button.

Moving on from premium visuals, we next explore reporting elements such as text boxes, shapes,

images, and buttons.

Elements
In addition to visuals, Power BI Desktop includes the ability to add elements such as text boxes,

shapes, images, and buttons to report pages.

Elements can be added to report pages using the Insert tab of the ribbon when in the Report

view as shown in Figure 7.30:

Figure 7.30: Select paginated report

Chapter 7 311

Elements share common traits and features. For example, buttons, shapes, and images all include

the ability to activate a bookmark when clicked on as demonstrated in the Custom labels and the

back button and Custom report navigation sections of the previous chapter.

In addition, selecting a text box, button, shape, or image on a report page replaces the Visualizations

pane with a Format text box, Format button, Format shape, and Format image pane respectively.

This pane works identically to the Format sub-pane of the Visualizations pane as described in

the Visualizations pane section earlier in this chapter.

Elements are often used as navigation features between pages in a report due to the ability to

configure the Action format card for buttons, shapes, and images for settings such as Back,

Bookmark, Drill through, and Page navigation in addition to Q&A and Web URL actions.

In fact, the Buttons element includes a special Navigator feature that allows the report author

to automatically add multiple buttons for each page or each bookmark in a report as shown in

Figure 7.31:

Figure 7.31: Navigator button options

Creating and Formatting Visualizations312

As shown in Figure 7.31, there are nine different buttons available. However, realize that the only

difference between these buttons is the icon and default Action configured, both of which can

be changed after creating the button.

Other uses for elements include stylizing the report to more clearly separate report areas, such as

the example from the Custom report navigation section of the previous chapter. In addition, text

boxes are often used to display static text such as a report title or other instructional information

for report viewers.

There are many other creative ways that elements can be used within Power BI reports such as

referencing a DAX measure from a text box in order to display a custom message or value such as a

title or date refreshed. Readers are encouraged to explore blog articles and other online materials

for additional ideas and inspiration.

With many of the default visualizations and elements explained, we next discuss formatting

visualizations.

Formatting visualizations
One of the final steps in report development is configuring the formatting options for each visual.

Several of these options, such as data labels, background colors, borders, and titles are common

to all visuals and are often essential to aid comprehension. Several other formatting options,

such as fill point for scatter charts, are exclusive to particular visuals and report authors are well

served to be familiar with these features.

In addition to giving reports a professional appearance, features such as tooltips can be used to

provide visuals with additional or supporting context. Furthermore, formatting features can be

used to implement conditional logic to dynamically drive the color of data points by their values.

We start by exploring how Tooltips can aid in providing additional context and insights to

report viewers.

Tooltips
Chart and map visuals include a Tooltips field well in the Visualizations pane to allow report

authors to define additional measures that display when the user hovers over the items in the

visual. These tooltip values reflect the same filter context of the data labels for the visual and

thus provide the user with additional context. In Figure 7.32, five measures have been added to

the Tooltips field well for a column chart:

Chapter 7 313

Figure 7.32: Additional measures displayed as tooltips

By hovering over the column for online net sales in October of 2013, the tooltip is displayed, which

includes both the Internet Net Sales measure used for the chart as well as the five tooltip

measures. In the absence of the tooltips, the user may have to search for other reports or visuals

to find this information or may miss important insights related to the visual.

Tooltips are a great way to enhance the analytical value of a visual without adding complexity

or clutter. Additionally, given the features of the DAX query engine, such as DAX fusion, the

additional measures displayed as tooltips generally do not negatively impact performance. DAX

fusion occurs automatically when the measures displayed are based on the same fact table and

the DAX query engine can optimize the query plan to generate a single storage engine query for

all measures.

Next, we take a look at a special type of tooltip, report page tooltips.

Report page tooltips
The standard tooltips described in the previous section may be sufficient for most reporting

scenarios. However, Power BI Desktop also provides report page tooltips that allow report authors

to display a custom page of report visuals as an alternative to the default tooltips. The following

steps can be used to configure a report page tooltip:

Creating and Formatting Visualizations314

1. Add a new blank report page to a report.

2. On the Format pane for the report page, enable the Allow use as tooltip property under

the Page information formatting card.

3. Also on the Format pane, specify a Type of Tooltip under Canvas settings as per Figure 7.33:

Figure 7.33: Report page tooltip

4. On the tooltip page from step 3, set Page view to Actual size via the Page view icon on

the View tab.

5. From the Fields pane of the tooltip page, drag a measure or multiple measures to the tooltip

Fields field well. Columns can also be specified as tooltip fields (for example, Product

Name).

6. Create report visuals on the tooltip report page that relate to the Tooltip field well

measure(s) or column(s). For example, if the tooltip page supports a sales measure,

consider building visuals that display sales versus plan, budget, or sales growth measures.

Given the limited size of the tooltip report page, KPI and Card visuals are recommended.

Chapter 7 315

By default, other visuals in the report that utilize the measure(s) or column(s) specified as tooltip

fields in step 5 display the tooltip report page when the user hovers over the items of the visual.

The Type of Tooltip from step 3 is not required for utilizing tooltip report pages. However, this

property makes the purpose of the page clear to the other report authors and has been provided

by the Power BI team as a good starting point for most report page tooltips. Likewise, viewing

the report page tooltip in Actual size as per step 4 is technically not required but is very helpful

in designing these pages as the report author can better gauge how the tooltip will be displayed

to end users.

Alternatively, a Tooltips formatting card is available on the General tab of the Format pane for

charts and map visuals. This formatting card can be used to specify a particular tooltip report page

for the given visual or to disable tooltips. The Type of tooltip can be specified such as a Report

page or Default. If Default is selected, the visual displays the default tooltips as described in the

previous section.

We next take a closer look at formatting column and line charts.

Column and line charts
Line, column, and bar charts are the most common chart visualization types given their advantages

in visual perception, as explained in the Visualization best practices section of this chapter. Power BI

includes clustered and stacked versions of column and bar charts in addition to two combination

charts that display both a line and either a clustered or stacked column.

Note that the difference between clustered and stacked charts involves how the Legend impacts

the columns and bars. With clustered charts, the Legend adds additional columns or bars to the

axis within the axis groupings. Conversely, with stacked charts, the Legend creates groups within

a single bar or column for each axis group.

The ribbon chart visualization represents a variation of the stacked column chart. Unlike the

stacked column chart, the ribbon chart sorts the category items within each column based on

their values and connects the items across columns with a ribbon.

Creating and Formatting Visualizations316

Figure 7.34 shows an example of a ribbon chart. Four product subcategories are displayed across

months by Internet Net Sales:

Figure 7.34: Ribbon chart

The Ties and Tubes subcategory overtook the Helmets subcategory in July 2013 to become the

top-selling product subcategory in the visual. As per the tooltip included in the preceding image,

hovering over the curved ribbon connecting the months on the X-axis displays the values for

each month, the variance and percentage change between the months, and the change in rank

for the given category (for example, from second to first for Tires and Tubes). Insights into the

rankings of categories and their changes across periods wouldn’t be as easily identified in a

standard stacked column chart.

The ribbons formatting card allows for spacing, transparency, and a border to further aid

comprehension. As shown in Figure 7.34, the ribbon Border is enabled, the Connector transparency

of the ribbon is set to 50%, and the ribbon Spacing is set to 5. Currently, unlike the stacked

column chart, the ribbon chart doesn’t include a Y-axis to identify the total value of each column.

Additionally, the individual ribbons are currently distinguished by color.

Let’s next take a look at conditional formatting for these charts.

Column and line chart conditional formatting
Column and line charts are two of the most common visuals in reports given their flexibility and

advantages in visualizing comparisons and trends. However, these classic visuals don’t have to

be static or simple—report authors can embed custom rules to dynamically drive formatting

properties based on source data.

Chapter 7 317

Similar to tooltips, conditional formatting techniques help users more quickly derive insights

from visuals without the added complexity of more data points or additional visuals, so let’s start

by exploring conditional formatting for column charts.

Column chart conditional formatting
To apply conditional formatting, use the fx formatting option in the Colors format card under

the Columns section. In Figure 7.35, the Internet Net Margin % measure is used as the Colors

setting with a Format style of Gradient:

Figure 7.35: Diverging data color formatting

With the Add a middle color property enabled, this rule associates three colors (red, yellow,

and green) with Minimum, Middle, and Maximum values. This rule makes it easy for users to

distinguish the columns, such as fiscal periods or product categories, associated with low, average,

and high product margins.

By switching Format style to Rules, a rule can be specified for only a minimum and a maximum

value. This can be useful to change the color of a column only when a threshold is reached. In

other words, the chart displays, at most, two distinct colors with one of the colors (for example,

red) flagging the exceptions.

Note that the fx option for driving the conditional formatting for colors applies to many other

visuals than just column and line charts and the interface is identical to that shown in Figure

7.35. However, conditional formatting for line charts works differently so let’s look at that next.

Creating and Formatting Visualizations318

Line chart conditional formatting
Conditional formatting can be applied to line charts by applying distinct colors to separate DAX

measures. In the following example, a DAX measure is created that only returns the sales per

order value when its value is below $325,000:

Internet Net Sales Below $325K =

VAR __Sales = [Internet Net Sales]

RETURN

IF(__Sales < 325000,__Sales,BLANK())

Using this measure and the Internet Net Sales measure on the same line chart allows for

separate colors to be applied as shown in Figure 7.36:

Figure 7.36: Contrasting colors for line chart measures

Chapter 7 319

For this example, a green color is used for the Internet Net Sales measure and red for the

Internet Net Sales Below $325K measure. Additionally, the below $325K line can be formatted

with a slightly larger stroke width and a dashed line style via the Shape card as shown in Figure

7.36. The line chart appears as a single line that changes colors and styles when it goes below $325K.

The stroke width, join type, line style, and marker shape formatting properties provide a wide range

of options for contrasting lines beyond their colors. These additional properties are recommended

to aid general comprehension and to support users who cannot easily distinguish colors.

Let’s next take a look at formatting for table and matrix visuals.

Table and matrix visuals
As per the Choosing the visual section earlier in this chapter, table and matrix visuals are best suited

for identifying and displaying precise values. A classic example of a matrix visual is when a user

needs to view the values of a metric at multiple levels of a hierarchy such as the sales dollars for

individual products, product subcategory, and category.

While Power BI reports are most known for their graphically rich visualizations, the table and

matrix visuals have also received significant enhancements over the past few years to give report

authors granular control over the layout and formatting of these visuals.

For example, a matrix visual can be designed in a Power BI report to generally replicate and

potentially improve upon a PivotTable report in Excel or a matrix data region in a SQL Server

Reporting Services (SSRS) report.

Creating and Formatting Visualizations320

Table and matrix visuals also support the same Display units and Value decimal places formatting

properties as other visuals. In Figure 7.37, both measures have been formatted to display their

values in terms of millions with one decimal place:

Figure 7.37: Display units and Value decimal places for table and matrix visuals

As shown in Figure 7.37, these properties are available within the Specific column category of

the Format pane. Display units options range from Thousands (K) to Trillions (T). By default,

the Display units property is set to None for table and matrix visuals and Value decimal places

is blank.

Prior to the availability of the Display units and Value decimal places properties, it was necessary

to use the FORMAT() function in separate DAX measures to display custom formats in table or

matrix visuals. The following two measures apply a custom rounded currency format to the

results of the Internet Net Sales measure:

Internet Net Sales (Format Thousands) = FORMAT([Internet Net
Sales],"$0,.0K")

Chapter 7 321

Internet Net Sales (Format Millions) = FORMAT([Internet Net
Sales],"$0,,.0M")

Both measures use the FORMAT() function to convert the input value (the Internet Net Sales

measure) to a string in a custom, rounded format. Specifically, the comma or commas immediately

to the left of the decimal are used to divide the value by 1,000 and round as necessary. The

zero to the right of the decimal displays a digit or a zero. For example, the $541,613 value would

be displayed as $541.6K and $0.5M by the format thousands and format millions of measures,

respectively.

In addition to the visual format settings and FORMAT() function, another method is available to

precisely control how values are displayed, custom format strings.

Custom format strings
The obvious disadvantage of using the FORMAT() function is that numeric values are converted

to text. However, while still an intern at Microsoft, Chelsie Eiden implemented custom

format strings.

Custom format strings accept the same kinds of format strings as used in the FORMAT() function

(such as "$0,,.0M" for millions and "mmmm" for long month names like January) but preserve the

underlying data type of the column or measure.

Custom format strings can be entered into the Format dropdown while in the Report view on the

Column tools or Measure tools tabs. Alternatively, while in the Model view, select a column or

measure and in the Properties pane, in the Formatting section, set Format to Custom and then

enter a Custom format as shown in Figure 7.38:

Figure 7.38: Display units and decimal places for table and matrix visuals

Creating and Formatting Visualizations322

Custom format strings can be used for a variety of purposes, such as displaying numbers in

duration format (hh:mm:ss). The following measure takes a column called Duration given in

seconds and applies a transformation to locate hours, minutes, and seconds in particular orders of

ten. This code can be used with a custom format string of 00:00:00 in order to display a duration

in hh:mm:ss format.

Chelsie Eiden's Duration =

// Duration formatting

// * @konstatinos 1/25/2016

// * Given a number of seconds, returns a format of "hh:mm:ss"

//

// We start with a duration in number of seconds

VAR __SecondsDuration = SUM([Duration])

 VAR __Sign = SIGN(__SecondsDuration)

 VAR __Duration = ABS(__SecondsDuration)

// There are 3,600 seconds in an hour

VAR __Hours = INT (__Duration / 3600)

// There are 60 seconds in a minute

VAR __Minutes = INT (MOD(__Duration - (__Hours * 3600),3600) / 60)

// Remaining seconds are the remainder of the seconds

// divided by 60 after subtracting out the hours

// We round up here to get a whole number

VAR __Seconds = ROUNDUP(MOD (MOD(__Duration - (__Hours * 3600),3600),
60),0)

RETURN

// We put the hours, minutes and seconds into the proper "place"

(__Hours * 10000 + __Minutes * 100 + __Seconds) * __Sign

Additional uses of custom format strings can allow otherwise seemingly impossible things such as

displaying dates and date-time values in the Y-axis of a chart. Such a chart is useful, for example,

when attempting to chart at what time of day certain events occur across multiple days or on

what days events occurred across years or months.

The following column definition using a Date column as input can be used with a custom format

string of 00\/00\/0000 in order to display dates on the Y-axis.

DatesInY = MONTH([Date]) * 1000000 + DAY([Date]) * 10000 + YEAR([Date])

Chapter 7 323

Since the Y-axis of charts only supports numeric values, custom format strings such as this are

required in order to display dates and date times within the Y-axis.

It must be stressed that custom format strings are a general feature of columns and measures and

thus can be used in all types of visuals, not just tables, matrixes, and charts.

We now turn our attention to conditional formatting for tables and matrixes.

Table and matrix conditional formatting
As with charts, default and custom conditional formatting rules can be applied to table and matrix

visuals to make it easier to identify exceptions and outlier values. Power BI currently supports

Background color, Font color, Data bars, Icons, and Web URL conditional formatting for table

and matrix visuals.

To apply conditional formatting to a table or matrix, click the drop-down arrow next to the field

name of the measure or column (for example, Internet Net Sales) in the Values field well of

the Visualizations pane. A Conditional formatting menu item appears with an arrow providing

access to the different types of conditional formatting.

In Figure 7.39, data bar conditional formatting has been applied to four measures related to

internet sales:

Figure 7.39: Data bar conditional formatting

The length of the data bars helps to call out high or low values and alternative colors can be

applied per measure. The direction of data bars is particularly helpful in distinguishing negative

from positive values as per the Internet Net Sales (YOY YTD %) measure in the preceding

example visual.

For large table and matrix visuals with many values, or when the relative differences between

values are more important than the individual values themselves, the option to show only the

data bar can be very useful.

Creating and Formatting Visualizations324

Custom conditional formatting rules can be applied to the background and font color scales of

table and matrix visual cells similar to Microsoft Excel. In Figure 7.40, Rules are defined to format

the background cells of a measure as green if over 25%, yellow when between -25% and 25%, and

red if the value is less than -25%:

Figure 7.40: Custom conditional formatting rules

The conditional formatting rules are evaluated from the bottom to the top. Therefore, if a cell

meets the condition of multiple rules, the lower rule is applied. The order of rules can be adjusted

via the up and down arrows to the right of the color icons.

Multiple conditional formatting types can be applied against the same measure. For example,

the same three conditional rules used for the background color scales in the preceding image

could also be implemented as font color rules. However, the font colors specified for each rule

(for example, white) could be chosen to contrast with the conditional background colors (for

example, red) to further help call attention to the value.

DAX measures are also supported as inputs to conditional formatting rules. This functionality

makes it easier to implement more complex rules, such as greater than the prior year-to-date

sales value or a different color based upon the margin % of different product categories.

For example, the following Internet Net Margin % Color supporting measure can be created

to return 2, 1, or 0 depending upon the Product Category and desired Internet Net Margin %

measure value.

Internet Net Margin % Color =

 VAR __Category = MAX('Product'[Product Category])

 VAR __Margin = [Internet Net Margin %]

Chapter 7 325

RETURN

 SWITCH(TRUE,

 __Category = "Bikes" && __Margin >= .40,"Green",

 __Category = "Bikes" && __Margin >= .35,"Yellow",

 __Category = "Bikes" && __Margin < .35,"Red",

 __Category = "Clothing" && __Margin >= .35,"#00ff00",

 __Category = "Clothing" && __Margin >= .30,"#ffff00",

 __Category = "Clothing" && __Margin < .30,"#ff0000",

 __Category = "Accessories" && __Margin >= .65,"Red",

 __Category = "Accessories" && __Margin >= .60,"Yellow",

 __Category = "Accessories" && __Margin < .60,"Red"

)

In this example, a different target margin % is desirable for different product categories. As shown,

either standard color names or hexadecimal color codes can be used as return values.

This measure can be used for field value-based background color conditional formatting as shown

in Figure 7.41:

Figure 7.41: Conditional formatting based on field values

When applied to a simple table, the result is shown in Figure 7.42:

Figure 7.42: Background conditional formatting for a table

Creating and Formatting Visualizations326

As shown in Figure 7.42, even though Clothing has the lowest net margin % for internet sales, the
background color is green because the 37.5% value is above the target threshold of 35% specified
in the Internet Net Margin % Color measure. Conversely, Accessories and Bikes are colored
yellow because they do not meet the desired margin % thresholds for these categories.

Let’s next look at a highly desired feature for tables and matrixes that was recently added to

Power BI, Sparklines!

Sparklines
Sparklines are small line charts drawn without axes or coordinates that help visualize the shape
of variations (usually over time) of some metric. Sparklines have long been a staple in Excel and
were one of the most requested features for Power BI Desktop, being prized for their ability to
convey analytical insights with a miniscule form factor.

Recently, Microsoft added Sparklines to Power BI. When a table or matrix visualization is selected,
the Sparkline feature becomes active on the Insert tab of the ribbon while in the Report view as

shown in Figure 7.43:

Figure 7.43: Add a sparkline option

Clicking on the Add a sparkline option shown in Figure 7.43 presents a dialog for configuring the

Sparkline as shown in Figure 7.44:

Figure 7.44: Add a sparkline dialog

Chapter 7 327

As shown in Figure 7.44, the Internet Net Margin % measure is being compared across the

months of the year. When added to our simple table visual from Figure 7.42, we can now observe

the variances of the Internet Net Margin % measure over time along with our color-coded,

aggregate values during that time span as shown in Figure 7.45:

Figure 7.45: Sparklines added to a table visual

As shown in Figure 7.45, the sparkline is added to the Values field well of the table visualization

with options available for removing, renaming, moving, and editing the sparkline.

The table visual shown in Figure 7.45 packs a lot of analytical insights but consumes minimal

report page real estate. Report viewers can observe the trend of the important metric across

multiple product categories as well as easily see the health of that metric over the specified time

period (in this case, the year 2013).

We next turn our attention to a feature exclusive to matrix visualizations, the ability to display

measures as rows.

Values as rows
A common form for matrix visuals is to display categories or hierarchies as rows and measures

as columns. However, the reverse, displaying multiple measures as rows, particularly with one

or multiple date dimension fields across the columns, is a very common layout for Excel pivot

table reports.

Creating and Formatting Visualizations328

Matrix visuals in Power BI Desktop support the important ability to show measures as rows. In

Figure 7.46, the matrix visual breaks out six DAX measures by a date hierarchy across the columns:

Figure 7.46: Values on rows in matrix visual

To enable this feature in Power BI, simply enable the Switch values to rows feature within the

matrix visual’s Options card located in the Values section of the Visualizations pane’s Format

sub-pane.

Scatter charts
Scatter charts are very effective at explaining the relationship or correlation between items against

two variables. Optionally, a third variable can be used to drive the size of the data points and

thereby convert the visual to a bubble chart.

Chapter 7 329

In Figure 7.47, three countries from the Sales Territory Country column are used as the details

input to a scatter chart:

Figure 7.47: Scatter chart

To provide additional detail, three product subcategories are included in the legend input, such

that nine total points (3 x 3) are plotted on the chart. The scatter chart naturally calls out the

differences among the items based on their X position (Reseller Net Sales) and Y position

(Internet Net Sales).

Creating and Formatting Visualizations330

Moreover, to make the visual even easier to interpret, the marker shapes have been customized

for each product subcategory (for example, triangles, diamonds, squares) and the size of the

shapes have been increased to 40%.

By default, Power BI applies different colors to the items in the legend. If the legend is not used,

the report author can customize the colors of the individual items from the details input column.

Although color can be effective for differentiating values, customized marker shapes, such as this

example, are helpful for users with visual disabilities.

This concludes our exploration of building and formatting visuals within Power BI. While we

cannot hope to cover the myriad of formatting options available for every visual, as there are

literally hundreds of available format cards, this chapter has provided a good overview of how

to build and format many of the standard visualizations within Power BI Desktop.

Summary
Building on the foundation of the previous chapter regarding Power BI report planning, this

described how to create and format the basic building blocks of reports, Power BI visualizations.

We initially provided an overview of the Visualizations pane that is foundational to building and

formatting visuals, introduced the configuration and utility of numerous standard visuals and

elements, and finally provided numerous examples of important formatting functionality such

as conditional formatting, Sparklines, and custom format strings.

The following chapter builds upon the foundational knowledge of this chapter to introduce more

advanced visualizations, analytics, and mobile support.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

8
Applying Advanced Analytics

The previous two chapters focused on foundational knowledge regarding Power BI report planning,

design, and how to create and format visualizations. This chapter builds upon that foundation

to demonstrate how the advanced analytical capabilities of Power BI can create an even more

compelling user experience and assist users in exploring data to derive insights. This includes

a review of artificial intelligence (AI) powered visuals, custom visuals, animation, and other

analytics features with Power BI Desktop and the service.

In this chapter, we will review the following topics:

• AI visuals

• ArcGIS Maps for Power BI

• R and Python visuals

• Custom visuals

• Animation and data storytelling

• Analytics pane

• Quick insights/Analyze

• Mobile-optimized report pages

AI visuals
Artificial intelligence (AI) visuals incorporate aspects of machine learning such as pattern

recognition and natural (human) language parsing. Machine learning is a form of AI that uses

statistical models and algorithms to analyze and make inferences from complex data patterns.

Applying Advanced Analytics332

In the past, the application of AI or machine learning required a data scientist, but Microsoft has

made tremendous strides in democratizing machine learning within Power BI both with the Auto

ML features of dataflows in the Power BI service and AI visuals within Power BI Desktop. The use

of the advanced capabilities of AI visuals can add analytical punch to many reports.

Power BI Desktop contains four AI visuals as follows:

• Key influencers

• Decomposition tree

• Q&A

• Smart narrative

We explore each of these visuals in turn, starting with the key influencers visual.

Key influencers
The key influencers visual is a powerful analytic tool included as a standard visual within Power

BI Desktop. This visual can be complex to work with and is often best used by report authors to

quickly identify interesting analytic insights that deserve further investigation. The report author

can then create simple visuals and stories that highlight these analytical insights.

The key influencers visual uses machine learning algorithms to analyze and find patterns within

the data. These patterns are then presented back to the report author as key influencers that

impact a particular metric as well as clustering into Top segments.

In Figure 8.1, the key influencers visual has been configured to analyze the Internet Net Sales

measure by placing numerous columns from the Customer table into the Explain by field well in

order to identify what factors impact Internet Net Sales to be higher or lower:

Chapter 8 333

Figure 8.1: A key influencers visual

Applying Advanced Analytics334

As shown in Figure 8.1, the single largest factor that impacts Internet Net Sales to Decrease

is that the Customer History Segment column has a value of First Year Customer. The second

most impactful factor is that the CountryRegionName of the customer is United States. Additional

high impacts are an Education of Partial High School, TotalChildren of more than 4, and a

decrease in Customer Yearly Income.

For each of these key influencers, a graphic is presented that helps explain the insight further.

This visual is generally a column chart or scatter chart and includes a text narrative at the top

that puts the insight into words.

In Figure 8.1, note that the analysis can be performed for What influences Internet Net Sales to

either Decrease or Increase. Additionally, Counts have been enabled on the Analysis formatting

card. Enabling Counts displays a ring around each circle that represents the count of records that

form the key influencer. The key influencers can then be sorted by Impact or Count in the lower

left of the visual.

Special attention should be paid to the Expand by field well. As shown in Figure 8.1, the

CustomerAlternateKey field has been used in the Expand by field well. To understand the

function of the Expand by field well, consider that the measure or summarized column placed

in the Analyze field well is automatically analyzed at the detail level of the Explain by columns.

Depending on the data, this level may be overly summarized and thus not suitable for a machine

learning regression model. Machine learning models tend to work best with more data. Thus, in

order to increase the detail level analyzed, the Expand by field can be used. By using a unique

key for each customer, this effectively forces the data to not summarize and thus the machine

learning algorithm executes at the most detailed grain for the table.

Chapter 8 335

In addition to the Key influencers tab, a Top segments tab is also populated by the Key influencers

visual as shown in Figure 8.2:

Figure 8.2: A key influencers visual, Top segments

Applying Advanced Analytics336

Top segments use clustering algorithms to identify clusters where the Analyze metric is lower

or higher than the average of the overall dataset. In Figure 8.2, six segments are presented that

include the Average of Internet Net Sales as well as a Population count of the number of rows

included in each segment. The size of each bubble corresponds to the Population count. Therefore,

we can quickly see visually that Segment 2 is more impactful than Segment 1 since the measure

value is similar, but Segment 2 has almost 3 times the number of occurrences.

Clicking on Segment 2 presents additional information about the segment, including the attribute

values that correspond to the segment as shown in Figure 8.3:

Figure 8.3: Top segments, details

As shown in Figure 8.3, the attributes that make up Segment 2 are when the Customer History

Segment is First Year Customer and the Customer Yearly Income is less than or equal to 30000.

Clear, detailed information is presented identifying the average Internet Net Sales for the

segment, the difference from the overall average, the number of data points within the segment,

and the percentage of the overall data within the segment (19.7%).

The key influencers visualization is not the only Power BI visual that leverages machine learning

technology. Another such visual is the Decomposition tree visualization that we will explore next.

Decomposition tree
The Decomposition tree visual is another advanced visual that incorporates machine learning

technology.

Chapter 8 337

The Decomposition tree visual is another visual that is perhaps best used by report authors to

perform ad hoc data and root cause analysis, in order to quickly gain insights into data that can

then be presented to users in a more intuitive and straightforward fashion.

In Figure 8.4, the key influencers visual from Figure 8.1 has been converted to a Decomposition

tree visual:

Figure 8.4: A decomposition tree visual

As shown in Figure 8.4, at each level of the hierarchy data bars are displayed along with category

values and amounts. A + icon is present for each category value. Clicking on this + icon allows

you to manually drill into any category not already present in the visual.

In addition, you can instead choose to let the visual guide you through the analysis by displaying

the next hierarchy level that has the highest or lowest value for the metric. These High value

and Low value options are known as AI splits and can be disabled in the Analysis format card

for the visual.

Hierarchy levels can be removed by clicking the X icon at the top of each column. Note also that

as a hierarchy level is expanded, the sub-heading under the main column heading displays the

expanded category value, which is displayed in bold within the visual itself.

Applying Advanced Analytics338

Moving on from the advanced machine learning visuals, we will next explore two visuals that

leverage Power BI’s natural language (human language versus a constructed, artificial language)

features, starting with the Q&A visual.

Q&A
The Q&A visualization represents Microsoft’s investments in natural language technology that

can transform the user experience from selecting elements with a mouse to simply speaking or

typing in their questions. Common questions and terms that business users are familiar with can

be associated with metrics and attributes of the source Power BI dataset.

As with other advanced visuals such as key influencers and Decomposition tree, the Q&A visual

is perhaps best suited for report authors attempting to quickly understand and tease out analytical

insights from the data. The ability to ask natural language questions and generate visuals based

upon those questions is quite powerful.

A Q&A visual can be added to a report page by using the Visualizations pane or by double-clicking

the report canvas. Figure 8.5 shows an example of an unconfigured Q&A visual:

Figure 8.5: A Q&A visual

Chapter 8 339

Selecting one of the default example questions or typing a question into the Ask a question about

your data text box generates a visual. By default, the type of visual is most often a column or bar

chart but particular visuals can be specified as part of the question. In Figure 8.6, the requested

visual is a pie chart:

Figure 8.6: A Q&A visual result

As shown in Figure 8.6, if the report author likes the visual created, the visual can be added as a

standard visual to the report page simply by clicking on the Turn this Q&A result into a standard

visual icon to the immediate right of the question text box.

Applying Advanced Analytics340

Clicking on the gear icon or clicking on the Add synonyms now button shown in Figure 8.5 opens

the Q&A setup dialog as shown in Figure 8.7:

Figure 8.7: A Q&A visual result

As shown in Figure 8.7, the Q&A setup dialog allows the report author to create synonyms, review

questions asked by report viewers, train Q&A to better understand questions, and add or remove

suggested questions. A full treatment of Q&A setup is beyond the scope of this chapter but a

detailed recipe for setting up and preparing Q&A is included in Chapter 5 of Power BI Cookbook,

2nd Edition.

Enterprise business intelligence teams should consider the implications of introducing Q&A

to report viewers carefully. Achieving good Q&A results depends heavily on configuring

synonyms correctly.

While proper, intuitive naming of columns and measures can help, generally there are many

synonyms that are required to be configured and maintained over time. In addition, it is imperative

that enterprise business intelligence teams monitor the questions being asked by the business

users and the results returned from those queries.

In addition to the Q&A visual, another visual that leverages the natural language capabilities of

Power BI is the smart narrative visual.

Chapter 8 341

Smart narrative
The smart narrative visual is another impressive visualization that can save report authors a

lot of time and energy. The smart narrative visual creates a natural language (human language)

summary of an entire report page or an individual visual.

In Figure 8.8, the report page shown in Figure 6.10 from Chapter 6, Planning Power BI Reports, was

duplicated. A blank area of the canvas was clicked and then the smart narrative visual is chosen

from the Visualizations pane. The smart narrative visual then generated the text shown in

Figure 8.8:

Figure 8.8: The smart narrative result

The smart narrative visual can be customized by the report author to add additional text and

insights. In Figure 8.8 the custom value Adworks net margin % was added to the smart narrative

visual using the + Value dialog and corresponding custom text added to the visual, AdWorks

Net Margin % was. Custom values created via the + Value pane can be reviewed and removed

via the Review pane.

Smart narrative visuals can also be used on individual report visuals. To create a corresponding

smart narrative visual for an individual report visual, simply right-click the report visual and

choose Summarize. Most standard visuals are supported such as bar, column, and line charts.

However, more advanced visuals like waterfall charts and decomposition trees, for example, are

not supported and have the Summarize option greyed out.

Applying Advanced Analytics342

The smart narrative visual provides all of the standard text box controls for formatting text as

well as all of the standard text box formatting options via the Format text box pane. This makes

the smart narrative visual highly customizable. While this may make it seem like the smart

narrative visual is just a simple text box, all of the underlined values and analysis are updated

each time the report data is refreshed!

We now turn our attention to two additional visuals that integrate the powerful data analytics

capabilities of the R and Python programming languages.

R and Python visuals
The R and Python programming languages both have strong data analysis and visualization

capabilities. This makes these languages a natural fit for data analysis and visualization tools

such as Power BI Desktop. In addition to other integration options, such as the ability to use R and

Python in Power Query, Power BI Desktop also provides standard visuals for both R and Python.

In order to use the R and Python visuals, you must first install the R and Python programming

languages and ensure that the R scripting and Python scripting options are configured in the

GLOBAL options (File | Options and settings | Options) as shown in Figure 8.9:

Chapter 8 343

Figure 8.9: R scripting options

Applying Advanced Analytics344

As shown in Figure 8.9, Power BI attempts to detect any installed R and Python program language

installations and integrated development environments (IDEs). Once you have the R and Python

languages installed and configured, you are ready to add an R or Python visual to a report page.

Adding an R or Python visual to a report page for the first time results in a security prompt as

shown in Figure 8.10:

Figure 8.10: R and Python Enable script visuals message

The prompt in Figure 8.10 is displayed once per report when using R and Python visuals and is

intended to alert the report author that enabling scripts has potential security and privacy risks.

In addition, each time a report containing R and Python visuals is opened within Power BI Desktop

the same prompt is opened.

While integration with the R and Python languages adds a tremendous amount of analytical and

visual capabilities to Power BI, enterprise business intelligence teams should carefully consider

the use of R and Python within their Power BI projects. While the Power BI service supports the

most popular R and Python packages/modules, not every package or module is fully supported

in the service.

In addition, once included in a Power BI file, other report authors or editors are required to have

the R or Python language installed on their computers with the required packages and modules

installed. Given the frequency of changes to both R and Python and the potential for code to work

on one version of R and Python and not another, enterprise business intelligence teams that use

R and Python should standardize the use of specific versions and allowed packages and modules.

We now take a closer look at using R visuals.

R visual
The R language and runtime can be downloaded from the R Project for Statistical Computing

website (https://cran.r-project.org/bin/windows/base/) or Microsoft (https://www.

microsoft.com/en-us/download/details.aspx?id=51205). Once R is installed and the Power

BI R script options configured, R visuals can be added to report pages in Power BI Desktop.

https://cran.r-project.org/bin/windows/base/
https://www.microsoft.com/en-us/download/details.aspx?id=51205
https://www.microsoft.com/en-us/download/details.aspx?id=51205

Chapter 8 345

In Figure 8.11 the Product Name column from the Products table has been added to the Values

field well for the R visual and a word cloud has been created using the R language:

Figure 8.11: R visual

As shown in Figure 8.11, selecting an R visual opens an R script editor pane at the bottom of the

canvas when in the Report view. This script editor allows the input of R code. Four icons are

present in the upper-right corner of the R script editor. From left to right, these icons perform

the following functions:

• The chevron icon expands or collapses the R script editor pane

• The arrow icon opens the R script in the configured IDE

• The gear icon opens the Power BI Desktop Options (File | Options and settings | Options)

• The run icon renders the R visual

The full code listed in the R script editor from Figure 8.11 is provided here:

The following code to create a dataframe and remove duplicated rows is
always executed and acts as a preamble for your script:

dataset <- data.frame(Product Name)

dataset <- unique(dataset)

Applying Advanced Analytics346

Paste or type your script code here:

require(tm)

require(wordcloud)

require(RColorBrewer)

words <- Corpus(VectorSource(dataset[,1]))

words <- tm_map(words, stripWhitespace)

words <- tm_map(words, content_transformer(tolower))

words <- tm_map(words, removeNumbers)

words <- tm_map(words, removePunctuation)

words <- tm_map(words, removeWords, stopwords("english"))

words <- tm_map(words, stemDocument)

wordcloud(words, scale=c(5,0.75), max.words=50, random.order=FALSE, rot.
per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Note the warning message displayed in Figure 8.11, Duplicate rows will be removed from the data.

A similar message is repeated in the first comment within the script editor. Removing duplicate

rows is done for performance reasons and cannot be overridden.

The next two comment lines display the pre-processing that occurs for the script. A dataframe

variable called dataset is created from the columns and measures present in the Values field

well, in this case just the Product Name column. Then, the unique function is used to return only

distinct rows within the data frame. It is important to note that while these are comments within

the code, these commands are in fact executed on the data prior to the rest of the script running.

The required packages, in this case tm, wordcloud, RColorBrewer, and SnowballC, were installed

using the R console application outside of Power BI Desktop. While inside the R console, you can

use the install.packages command to install packages:

install.packages("package name")

Since the R script editor lacks any real debugging features, it is often advantageous to use an

external integrated development environment (IDE) to develop the R code. Clicking on the arrow

icon in the upper-right corner of the R script editor pane opens the code within the configured IDE

and also creates a temporary comma-separated value (CSV) file that holds the data configured

for the visual.

The same dataset variable is initialized using the read.csv function with this temporary file

specified as the source. Once you are finished debugging the R script, you must copy and paste

the R code from the IDE back into the R script editor pane.

Chapter 8 347

Using Python visual is similar to using R visual so let’s look at that next.

Python visual
Python visuals operate identically to R visuals except that the scripting language used is Python.

The Python language and runtime can be downloaded from the python.org website (https://

www.python.org/downloads/windows/) or the Microsoft Store (https://www.microsoft.com/

en-us/p/python-39/9p7qfqmjrfp7). Once Python is installed and the Power BI Python script

options configured, Python visuals can be added to report pages in Power BI Desktop.

In Figure 8.12 the CountryRegionName column from the Geography table and the Internet Sales

Customer Count measure from the Internet Sales table have been added to the Values field

well for the Python visual and a simple bar chart created using the Python language.

Figure 8.12: The Python visual

Figure 8.12 displays the Python script editor pane as collapsed. The Python script editor pane

works identically to the R script editor pane. From left to right, the four icons in the upper-right

corner of the Python script editor pane perform the following functions:

• The chevron icon expands or collapses the Python script editor pane

• The arrow icon opens the Python script in the configured IDE

• The gear icon opens the Power BI Desktop Options (File | Options and settings | Options)

• The run icon renders the Python visual

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.microsoft.com/en-us/p/python-39/9p7qfqmjrfp7
https://www.microsoft.com/en-us/p/python-39/9p7qfqmjrfp7

Applying Advanced Analytics348

The full code listed in the Python script editor from Figure 8.11 is provided here:

The following code to create a dataframe and remove duplicated rows is
always executed and acts as a preamble for your script:

dataset = pandas.DataFrame(Internet Net Sales, Product Category)

dataset = dataset.drop_duplicates()

Paste or type your script code here:

import matplotlib.pyplot as plt

dataset.plot(kind='barh', fontsize=6, x='CountryRegionName', y='Internet
Sales Customer Count')

plt.show()

As with R visuals, Python visuals remove duplicate rows within the data, creating a dataframe

within the dataset variable.

We now turn our attention to the most powerful standard map visual for Power BI, the ArcGIS

Maps for Power BI visual.

ArcGIS Maps for Power BI
The ArcGIS Map visual for Power BI enables report authors to develop map visualizations far
beyond the capabilities of the bubble and filled map visuals described in Chapter 7, Creating and
Formatting Visualizations. Created by Esri, a market leader in Geographic Information Systems
(GIS), the ArcGIS Map supports all standard map types (for example, bubble and heatmap), but
also provides many additional features including a clustering map theme for grouping individual
geographic points and the ability to filter a map by the points within a geographical area.

The ArcGIS Map also enables deep control over the logic of the size and color formatting, such as
the number of distinct sizes (classes) to display and the algorithm used to associate locations to
these classes. Additionally, reference layers and cards of demographic and economic information
are available to provide greater context and advanced analytical insights.

The ArcGIS Map visual is included in the standard visualizations pane and enabled by default
in Power BI Desktop. However, the ArcGIS Map visual is not currently supported for the Power
BI Report Server and thus is not available in the Power Desktop application optimized for it.
Additionally, an option is available on the Tenant settings page of the Power BI admin portal
to enable or disable the use of the ArcGIS Maps visual. Details on utilizing the Power BI admin

portal to configure tenant settings and other options are included in Chapter 14, Administering

Power BI for an Organization.

Chapter 8 349

In Figure 8.13, customer addresses in the state of Washington have been plotted with different

sizes and colors based on the Internet Net Sales measure and the Customer History Segment

column, respectively:

Figure 8.13: The ArcGIS Map visual for Power BI

For the most visually engaging ArcGIS Map, use the Dark Gray Canvas base map and bright,

saturated colors for the data points plotted. The Streets and OpenStreetMap base map types

are practical choices whenever transportation between the data points or pinned locations is

expected. In Figure 8.13, the Streets base map supports the sales team that may drive from the

pinned office location on 11th street in Bremerton, Washington to the plotted customer addresses.

The visual has been zoomed into the Bremerton, Washington area near several large customers

and a fictional sales office location on 11th street near downtown Bremerton. Pin locations are

often used in conjunction with the Drive Time feature to plot an area relative to specific locations

such as a group of customers who are within a 20-minute drive of an office.

Applying Advanced Analytics350

To configure these options and all other layout and formatting settings, a set of icons are present

in the upper left of the visual as shown in Figure 8.13. For this visual, the Streets base map type

has been selected and the Map theme is set to Size & Color. The reference layer USA Median Age

is used to distinguish areas based on age (via color intensity). A column named Full Address is

used for the Location input field. This column includes the street address, city, state, and postal

code such as the following example: 1097 Kulani Lane, Kirkland, WA, 98033.

The Data category for this column has been set to Address in Power BI Desktop to further improve

the accuracy of the geocoding process in which the location input value (the address) is converted

to a latitude and longitude. Latitude and longitude fields are available as well, and these inputs

are recommended over street addresses for greater performance and scale.

A maximum of 3,500 street addresses can be geocoded without a Creator license. To avoid the

limit of addresses geocoded and to focus the visual on more meaningful data points, a visual level

filter can be applied to a measure. In this example, a visual level filter was applied to the Internet

Net Sales measure to only include data points (customer addresses) with over $100. By removing

the small customers, this filter reduced the count of addresses by half and still retained over 97%

of the Internet Net Sales.

The Use ArcGIS Maps for Power BI option should be checked in the Global Security options of

Power BI Desktop. An equivalent option is exposed in the Power BI service via the Settings menu

(Gear icon | Settings | ArcGIS Maps for Power BI), and this should be checked as well to render

ArcGIS Maps in the Power BI service.

In addition, a Use ArcGIS Maps for Power BI setting is available in the Tenant settings page of

the Power BI admin portal. Power BI service administrators can optionally disable this feature to

prevent all users from using ArcGIS Maps for Power BI. The configuration of Tenant settings in

the Power BI admin portal is described in Chapter 14, Administering Power BI for an Organization.

It should be noted that the ArcGIS Maps for Power BI visual requires additional licensing from

Esri and a Pro Power BI license. The Azure map visual, which is currently in preview, may serve

as an alternative to the ArcGIS Map for Power BI visual in some scenarios. The Azure map visual

supports 30,000 data points, has many of the primary geospatial visualization and interactive

features as the ArcGIS visual, and does not require additional licensing. More information about

the Azure map visual can be found here:

https://docs.microsoft.com/en-us/azure/azure-maps/power-bi-visual-get-started

https://docs.microsoft.com/en-us/azure/azure-maps/power-bi-visual-get-started

Chapter 8 351

The AI visuals, R and Python visuals, and ArcGIS Maps for Power BI visual are just the tip of the

iceberg when it comes to adding advanced analytical insights to Power BI. Hundreds of additional,

advanced visuals developed by Microsoft and third parties are available as custom visuals.

Custom visuals
In addition to the standard visuals included in the Visualizations pane of Power BI Desktop, a vast

array of custom visuals can be added to reports to deliver extended functionality or to address

specific use cases such as applying ‘smooth lines’ formatting to a line chart or displaying multiple

KPIs in the same visual via the Power KPI visual by Microsoft.

These visuals, many of which have been created by Microsoft, are developed with the common

framework used by the standard visuals and are approved by Microsoft prior to inclusion in

Microsoft AppSource. Given the common framework, custom visuals can be integrated into

Power BI reports with standard visuals and exhibit the same standard behaviors such as filtering

via slicers and report and page filters.

Power BI report authors and BI teams are well-served to remain conscious of both the advantages

and limitations of custom visuals. For example, when several measures or dimension columns

need to be displayed within the same visual, custom visuals such as the Impact Bubble Chart

and the Dot Plot by Maq Software may exclusively address this need. In other scenarios, a trade-

off or compromise must be made between the incremental features provided by a custom visual

and the rich controls built into a standard Power BI visual.

Additionally, performance and maintenance can be an issue with custom visuals. For example, a

custom visual may generate many more queries than a similar standard visual and thus render

more slowly and consume more system resources. Moreover, a Power BI environment that utilizes

many custom visuals is more difficult to support as report authors are less familiar with the

features and behaviors of these visuals.

Custom visuals available in AppSource are all approved for running in browsers and on mobile

devices via the Power BI mobile apps. A subset of these visuals are certified by Microsoft and

support additional Power BI features such as email subscriptions and export to PowerPoint.

Additionally, certified custom visuals have met a set of code requirements and have passed strict

security tests. Additional details on the certification process are available at the following link:

http://bit.ly/2AFAC9W.

Let’s now take a look at how to find and add custom visuals to a Power BI report.

http://bit.ly/2AFAC9W

Applying Advanced Analytics352

Adding a custom visual
Custom visuals can be added to Power BI reports by either downloading and importing .pbiviz

files from Microsoft AppSource or directly using them within Power BI Desktop. Figure 8.14 shows

Microsoft AppSource filtered to Power BI visuals:

Figure 8.14: Power BI custom visuals in AppSource

The following link filters AppSource to the Power BI custom visuals per the preceding screenshot:

http://bit.ly/2BIZZbZ.

The search bar at the top of the page and the vertical scrollbar on the right can be used to browse

and identify custom visuals to download. Each custom visual tile in AppSource includes a Get it

now link that, if clicked, presents the option to download the custom visual itself (the .pbiviz

file). Clicking anywhere else in the tile other than Get it now displays a window with a detailed

overview of the visual, ratings, support details, and the ability to download a demo .pbix file.

http://bit.ly/2BIZZbZ

Chapter 8 353

To add custom visuals directly to Power BI reports, click the Get more visuals option via the

ellipsis of the Visualizations pane, as per Figure 8.15:

Figure 8.15: Importing custom visuals from the store

If a custom visual (.pbiviz file) has been downloaded from AppSource, the Import a visual from

a file option can be used to import this custom visual into the report.

Selecting Get more visuals launches a slightly different AppSource experience than the website.

Unlike the AppSource website, the visuals are assigned to categories such as KPI, Maps, and

Advanced Analytics, making it easy to browse and compare related visuals. More importantly,

utilizing the integrated Get more visuals avoids the need to manage .pbiviz files and allows

report authors to remain focused on report development.

Applying Advanced Analytics354

In Figure 8.16, the KPI category of Power BI visuals is selected from within AppSource:

Figure 8.16: Custom visuals via the Office Store in Power BI Desktop

Selecting a custom visual’s card displays the same detailed information as AppSource and an

Add button directly adds the custom visual as a new icon in the Visualizations pane. The visual

categories, customer reviews, supporting documentation, and sample reports all assist report

authors in choosing the appropriate visual and using it correctly.

Organizations can also upload custom visuals to the Power BI service via the organization visuals

page of the Power BI Admin portal. Once uploaded, these visuals are exposed to report authors

in the Organizational visuals tab as shown in Figure 8.16.

This feature can help both organizations and report authors simplify their use of custom visuals

by defining and exposing a particular set of approved custom visuals. For example, a policy could

define that new Power BI reports must only utilize standard and organizational custom visuals.

The list of organizational custom visuals could potentially only include a subset of the visuals

that have been certified by Microsoft.

Chapter 8 355

Alternatively, an approval process could be implemented so that the use case for a custom visual

would have to be proven or validated prior to adding this visual to the list of organizational custom

visuals. Additional details on managing organizational custom visuals are included in Chapter 14,

Administering Power BI for an Organization.

In the next section on animation and data storytelling, we will include the use of a custom visual,

the Pulse chart.

Animation and data storytelling
A top responsibility for many data professionals is the ability to convey their findings to others

in a clear and compelling fashion. Common scenarios for data storytelling include recurring

performance review meetings (for example, the close of a fiscal period) and special project or ad

hoc meetings with senior managers and executives. For these meetings, the data professional

or team has already identified the analytical insights to highlight but must plan to properly

communicate this message to the specific stakeholders or audience.

Power BI animation features, including bookmarks as described in Chapter 6, Planning Power

BI Reports, provide powerful support for data storytelling. In addition, the play axis available in

the standard Scatter chart visual and the animation features available in many custom visuals,

such as the Line Dot chart and the Pulse chart, can also be used to deliver advanced analytical

insights and data storytelling.

Let’s first look at the animation features of standard scatter charts.

Play axis for Scatter charts
The Scatter chart is the only standard visual in Power BI Desktop that supports animation. By

applying a date/time series column to the Scatter chart’s Play axis field well, animated playback

and trace features are enabled.

For example, a visual can be paused at a specific point along the time series, allowing the user to

provide additional context. The user can also select one or multiple items (for example, product

categories) to display data points representing the previous time periods.

Applying Advanced Analytics356

In Figure 8.17, the user has paused the animation on the month of June via the Play axis and

selected the icon associated with the Touring Bikes product subcategory:

Figure 8.17: Scatter chart with Play axis

With the Touring Bikes subcategory selected, a trace line appears connecting the latest data point

for this subcategory to its preceding data points. Additionally, the user can hover the cursor over

the preceding data points to provide the details for these months via a tooltip.

Date, number, and text columns can be used in the Play axis for the Scatter chart. As per Chapter 4,

Designing Import and DirectQuery Data Models, the Sort by column property can be used to define a

logical sort order for text columns such as sorting a Month name column by a Month number column.

Next, we will explore similar animation capabilities of the Pulse chart custom visual.

Pulse chart
The Pulse chart custom visual, developed by Microsoft, provides both animation and annotation

features to support data storytelling. The Pulse chart animates the value of a single measure over

time and pauses (pulses) at dates associated with events to display pop-up boxes of annotations

describing these events.

Chapter 8 357

During each pause, which can also be applied manually via playback buttons, other Power BI

visuals on the same report page are filtered by the event date. Additionally, a second measure can

be visualized as a counter at the top of the chart via the Runner Counter field.

In Figure 8.18, a year-to-date (YTD) internet sales measure and four events with annotations

are plotted on a Pulse chart:

Figure 8.18: Pulse chart

In Figure 8.18, the Internet Sales (YTD) measure is visualized via the animated line (and dots)

in relation to the Y axis. For this example, a YTD customer count measure has also been applied

to the Runner Counter field input.

With the visual paused on the shipping promotion event of October 12, 2013, the Y axis indicates

a sales value of approximately $12.00 M, and the Runner Counter displays a count of 13,258

customers.

Alternatively, the same measure can be applied to both the Values and Runner Counter fields,

thus providing the precise value at each pause in addition to the trend via the line. Examples of

defining YTD and customer count measures are included in Chapter 5, Developing DAX Measures

and Security Roles.

If event annotations are not needed, only the Timestamp and Values input fields are required

to render the Pulse chart. The Event Title, Event Description, and Event Size input fields are

available to display events and annotations as pop-up boxes.

Applying Advanced Analytics358

Additionally, the formatting pane provides several cards for defining the look and behavior of the

Pulse chart, including the size and color of the pop-up text boxes and the speed of the animation.

For example, white text at size 10 can be formatted against a black fill background and the pause

at each event can be set to 4 seconds.

To support the Pulse chart in the preceding example, a separate table of events was added to the

dataset as per Figure 8.19:

Figure 8.19: Events table

The Event Date column is used to define a one-to-one relationship from the Events table to the

Date dimension table. The Date column from the Date dimension table is applied to the Pulse

chart’s Timestamp input field, and the Event Title and Event Description columns from the

events table are applied to their respective input fields.

The formatting options for the X and Y axes of the Pulse chart are much less robust than the

standard line chart. As one example, the Y axis gridlines cannot be disabled. However, gridlines

can be hidden by setting the axis color to match the background color. Additionally, the second

and later lines of event descriptions in pop-up boxes are displayed without spaces. Report authors

can adjust the width of popups or reduce the length of event descriptions to account for this.

This completes our exploration of using more complex visuals to add advanced analytics and

insights to reports. We will next explore another method of adding such analytics and insights

via the Analytics pane.

Analytics pane
In addition to the Visualization pane’s Build visual and Format visual sub-panes used to create

and format report visuals discussed in the previous chapter, an Analytics pane is also available

for certain Cartesian standard visuals such as Line charts and Clustered column charts.

Chapter 8 359

The Analytics pane allows report authors to add constant and dynamic reference lines such as

average, max, and min to visuals to provide greater context and analytical value. Additionally,

trend and forecast lines can be added to display the results of advanced analytical techniques

such as exponential smoothing to support predictive analytics.

A simple but important use case of the Analytics pane, exemplified in the Trend line section

below, is to add a constant line that represents a goal or threshold to compare a measure against.

Dynamic reference lines representing an aggregation (for example, a median) behave just like

DAX measures and thus, in some scenarios, avoid the need to create new DAX measures in the

source dataset or within the report.

The reference lines available in the Analytics pane depend on the type of visual. For example,

reference lines are currently not supported for any custom visuals and only constant lines can be

applied to the stacked column chart and stacked bar chart visuals. Additionally, the Trend line

is exclusive to the line and clustered column chart; the forecast line is exclusive to the line chart.

Moreover, a date or a numeric column is required on the X axis and the X axis Type must be set

to Continuous in order to utilize the trend and forecast lines.

New features and capabilities are planned for the Analytics pane, including an expanded list

of visuals supported and error bars to visualize uncertainty of the data. Similar to the Tooltips

feature described in the previous chapter, Chapter 7, Creating and Formatting Visualizations, Power

BI report authors should be conscious of the Analytics pane and its ability to enhance report

visuals with additional context and insights such as the use of a Trend line.

Trend line
A Trend line is available via the Analytics pane if there’s time-series data for five standard visuals

including the line chart, area chart, clustered column chart, scatter chart, and the combination

line and clustered column chart. Trend lines display the general direction and slope of data

points over time.

The Trend line is particularly valuable when a chart contains many data points and significant

variation exists among the points, making it difficult to observe the trend of the metric visually.

Applying Advanced Analytics360

In Figure 8.20, a trend line and two additional reference lines (average and constant) have been

added to a clustered column chart to provide greater insight and context:

Figure 8.20: Trend, constant, and average reference lines

In Figure 8.20, the Label density property of the Data labels formatting card has been set to

100% in order to ensure that all columns have a data label displayed. Additionally, the Position

property of the data labels has been set to Inside end with a white color. Clear visibility of the

data labels for each column, in addition to the two reference lines (Average and Goal), avoids the

need to display the Y axis and gridlines.

Excluding the three reference lines from the Analytics pane, the clustered column chart simply

plots the Internet Sales Customer Count measure against a Month Beginning Date column.

The Month Beginning Date column (for example, 11/1/2013) is required for the axis input in this

scenario as both the trend line and the forecast line require either a date or a number data type

for the X axis and Type of Continuous. For example, if the Year Month column was used for the

axis (for example, 2013-Nov), both the trend line and the forecast line cards would not appear

in the Analytics pane as the X axis type would be Categorical.

The DAX expression used for the Internet Sales Customer Count measure is included in the

Dimension metrics section of Chapter 5, Developing DAX Measures and Security Roles. The Month

Beginning Date column’s formula is given below:

Month Beginning Date = DATE(YEAR([Date]),MONTH([Date]),1)

Chapter 8 361

The Month Beginning Date column is used instead of a Month Ending Date column because if

that was used, the X axis labels would be shifted to the wrong months. In other words, the Nov

2013 label would appear under the October data. The Month Ending Date column formula is:

Month Ending Date = EOMONTH([Date],0)

With the essential column chart built, the three reference lines can be added from the Analytics

pane as per Figure 8.21:

Figure 8.21: Analytics pane

As per Figure 8.21, the Line style of the Trend line is set to Dashed with a transparency of 0%.

This formatting ensures that the trend reference line can be easily distinguished from other data

on the chart such as the other two reference lines.

Applying Advanced Analytics362

The Combine Series property is not relevant to this visual as there is only one series and Use

Highlight Values is the default setting for calculating the Trend line. The Combine Series property

can be useful for plotting the trend of multiple, related column series.

The numeric symbols (1) next to the Constant line and Average line cards denote that a reference

line of each type has also been applied to the visual. For these reference lines, a Dotted line

style has been used, and custom names have been configured (for example, Goal, Average) to

be displayed via Data labels. These two additional lines make it easy for users to identify the

columns that are above or below the average value for the columns in the visual (1,719) and the

constant goal value of 2,000.

We will next look at a more advanced feature of the Analytics pane, Forecasting .

Forecasting
The Forecasting feature of the Analytics pane is exclusive to standard line charts and utilizes

predictive algorithms to generate forecasted data points as well as upper and lower boundaries.

The report author has control over the number of data points to forecast, the confidence interval

(range of estimate) of the forecast (for example, 80%, 95%), and can apply formatting to distinguish

the forecast from the actual data points. Additionally, the Forecasting feature allows authors to

optionally exclude a number from the last data points. This Ignore the last property is useful

for excluding incomplete periods as well as evaluating the accuracy of the forecast relative to

recently completed periods.

In Figure 8.22, the clustered column chart from the Trend lines section has been switched to a

line chart and a Forecast for the next two months has been added:

Chapter 8 363

Figure 8.22: Forecast line

By hovering over the first forecast point, January 2014, the forecasted Internet Sales Customer

Count value of 2,123 is displayed along with the upper (2,428) and lower (1,818) boundaries.

The user can easily distinguish the last actual data point, 2,133 for December of 2013, from the

forecast via the Dotted style of the forecast line and the dark fill of the Confidence band style.

The Trend line, Average, and Goal reference lines applied in the previous section provide further

context to the Forecast.

Applying Advanced Analytics364

As per Figure 8.22, a custom Forecast length and Confidence interval have been applied to the

Forecast. The Seasonality property is optional and is used to help detect seasonal variances in

data. Think retail sales being seasonally impacted by holiday sales in November and December.

The Confidence interval property defines the distance between the upper and lower boundaries

from the forecasted data points. For example, the minimum confidence interval of 75% produces

a narrower range, and the maximum confidence interval of 99% produces a much wider range.

The Ignore the last property can be used to evaluate how accurately the forecast would’ve predicted

recent data points. In this example, an Ignore last value of 2 would result in forecast values for

November and December of 2013—the last two completed months. The forecast algorithm would

use all available data points through October of 2013 to generate the two forecast points. If the

actual data points for these two months fall outside the confidence interval (upper and lower

bounds) of the forecast, the forecast may not be valid for the given data, or the Confidence interval

may be too narrow. This testing technique is referred to as hindcasting.

Let’s now look at one of the most advanced options for adding analytical insights to reports, the

Quick insights or Analyze feature.

Quick insights/Analyze
Quick insights, also known as the Analyze feature, is one of the most analytically advanced

features in Power BI as it enables sophisticated machine learning algorithms to be executed against

datasets or specific subsets of those datasets. The results of these computations automatically

generate highly formatted Power BI visuals that can be integrated into reports as though they

were created from scratch.

The full Quick insights capabilities are only generally available in the Power BI service for import

mode datasets without RLS applied and with dashboard tiles reflecting those datasets. However,

the essential capabilities of Quick insights are also available in Power BI Desktop as the Analyze

feature.

Chapter 8 365

In Figure 8.23, Quick insights has been executed against the Chapter06_Import dataset in the

Power BI service:

Figure 8.23: Quick insights for a dataset in the Power BI service

To execute Quick insights against an entire dataset, see the Get quick insights option under the

Actions ellipsis menu for a dataset in the Power BI service. Once the insights have been generated,

a View Insights menu option replaces the Get quick insights option.

The visuals generated from the insights, such as the line chart on the left, advise of the algorithm

used (for example, outlier, cluster, and correlation). Most importantly, the visuals can be pinned

to dashboards and are displayed without the supporting text like normal dashboard tiles. In

Power BI Desktop, Quick insights are limited to specific data points represented by report visuals.

As mentioned, Quick insights cannot be executed against datasets that contain row-level security

roles as described in Chapter 5, Designing DAX Measures and Security Roles. Additionally, Quick

insights cannot be executed against DirectQuery datasets, live connection datasets, or real-time

streaming datasets.

In addition to the use of Quick insights in the Power BI service, similar capabilities are available

within Power BI Desktop via the Analyze feature, which we will explore next.

Applying Advanced Analytics366

Explain the increase/decrease
Quick insight features are enabled in Power BI Desktop by default, allowing users to right-click

data points in visuals and execute the relevant analysis. In Figure 8.24 right-clicking on the data

point for 2014-Feb presents an Explain the increase option in the Analyze menu:

Figure 8.24: Explaining the decrease in Power BI Desktop

Clicking Explain the increase executes machine learning algorithms against the dataset and

populates a window with visuals representing the insights retrieved. The user can scroll vertically

to view the different insights obtained such as Non-Bikes accounting for all of the increase in

customers, as shown in Figure 8.25:

Chapter 8 367

Figure 8.25: Explain the increase in Power BI Desktop

Applying Advanced Analytics368

Clicking the plus sign at the top right corner of the text box explaining the insight adds the visual

to the report page. Adding the visual to the report page automatically populates the associated

field wells and visual level filters as though the visual was created manually. If necessary, the report

author can apply further formatting to align the visual with the design and layout of the page.

The default for Quick insight charts is a clustered column chart but other available chart options

are displayed at the bottom center of each insight card. In Figure 8.25 a ribbon chart is also available

as opposed to the clustered column chart.

Currently, Quick insights in Power BI Desktop is limited to the local dataset and is exclusive

to import mode datasets. For example, the Explain the decrease option does not appear when

connecting to a published Power BI dataset or an SSAS database via live connection. Given the

importance of isolating reports from a central dataset as described in the previous chapter, Chapter

6, Planning Power BI Reports, this limitation represents a significant obstacle to utilizing this feature

in corporate deployments.

Additionally, there are several limitations on the kinds of measures and filters supported. For

example, measures that use the DISTINCTCOUNT() and SUMX() functions are not supported, and

measures containing conditional logic (for example, IF()) are also not supported.

Just as important as delivering advanced analytics and insights to business users is the ability

to deliver those such insights anytime, anywhere. Luckily, Power BI provides such capabilities

through mobile-optimized report pages.

Mobile-optimized report pages
A critical use case for many reports is access from smaller form factor devices such as phones and

tablets running the iOS and Android mobile operating systems. A report that is perfectly designed

for a laptop or PC monitor may be difficult to use on a tablet or mobile device, thus depriving

business users of advanced analytical insights while they are traveling or otherwise on the go.

To account for multiple form factors, including both small- and large-screen phones, report

authors can create mobile-optimized reports via the Phone Layout view in Power BI Desktop.

In Figure 8.26, the Mobile layout of a report page in Power BI Desktop is accessed via the View tab:

Chapter 8 369

Figure 8.26: Mobile layout in the View tab

From the Mobile layout view, the visuals created and formatted for the report page can be arranged

and sized on a mobile layout grid. In Figure 8.27, the two KPI and card visuals included in the

preceding image from the Report view, as well as a line chart, are arranged on the mobile canvas:

Figure 8.27: The phone layout

Applying Advanced Analytics370

Single-number visuals, such as cards and KPIs, are natural candidates for mobile-optimized

layouts. More complex and data-intensive visuals, such as scatter charts and combination charts,

are generally less effective choices for mobile layouts given the smaller form factor and screen

resolution of mobile devices versus desktop and laptop monitors.

Given the one-to-one relationship between report pages and the phone layout, one design option

is to create a dedicated report page with the visuals needed for the phone layout. This can be

especially important because the font sizes and other format options for the visuals cannot be

individualized for the Mobile layout but rather inherit the formatting of the report in the Report

view.

The size and position of visuals can be adjusted by dragging visual icons along the Mobile layout

grid. A mobile-optimized layout can be defined for each report page, or any number of the pages

contained in a report.

The formatting and filter context of report visuals is always aligned between the Mobile layout

and the default Report view. For example, to change the format or filter for a visual accessed via

the Mobile layout, the visual can be modified from the standard Report view desktop layout.

When a report page is accessed from the Power BI mobile application, the Mobile layout created

in Power BI Desktop is rendered by default in the phone report mode. If a phone-optimized layout

doesn’t exist, the report opens in landscape view.

Power BI dashboards can also be optimized for mobile devices. The Mobile layout for dashboards

is implemented in the Power BI service and is reviewed in Chapter 9, Designing Dashboards.

This completes our exploration of applying advanced analytics to Power BI reports.

Summary
This chapter reviewed many advanced analytical and visualization features that are available to

deliver powerful and compelling report content. This included the use of more complex visuals

such as the AI visuals, R and Python visuals, the ArcGIS Maps for Power BI visual, and custom

visuals. Additionally, the analytical potential of animation via the standard scatter chart visual

and custom Pulse chart visual was explored. Finally, the advanced analytical capabilities of the

Analytics pane and the Quick insights/Analyze feature were presented.

The next chapter utilizes the report visualizations and design patterns described in this chapter

as well as the previous two chapters to create Power BI dashboards.

Chapter 8 371

This includes simple single dashboard projects and more elaborate multi-dashboard architectures,

representing different levels of detail. Although some users may only view or interact with Power

BI via dashboards, the quality and sustainability of this content, and particularly the ability to

analyze the supporting details, is largely driven by the report design concepts and features from

Chapter 6, Planning Power BI Reports.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

9
Designing Dashboards

This chapter leverages the dataset and report development features and concepts from prior

chapters to plan and develop Power BI dashboards and apps. Alternative dashboard architectures

are described, including an organizational architecture that aligns business teams at different

levels of an organization to a common set of corporate KPIs.

The design and implementation of these dashboards and apps, including layout, custom links,

and mobile-optimized dashboards, are described in this chapter. Additionally, other top features

and capabilities of dashboards are reviewed, including live report pages and the integration of

content from other report types, including paginated reports and Microsoft Excel workbooks.

In this chapter, we will review the following topics:

• Dashboards versus reports

• Dashboard design

• Dashboard architectures

• Dashboard tiles

• Live report pages

• Mobile-optimized dashboards

Dashboards versus reports
Executives and senior-level stakeholders require a holistic view of the top metrics or Key

Performance Indicators (KPIs) established by their organization. While Power BI reports deliver

a visually rich data analysis experience, optionally at a very detailed level, Power BI dashboards

provide a simplified “single pane of glass” for viewing top metrics.

Designing Dashboards374

Additionally, since the tiles of dashboards can be linked to their source report visuals or other

dashboards, a dashboard can serve as the starting point to optionally navigate to other dashboards

and underlying reports.

From a technical standpoint, Power BI dashboards are exclusive to the Power BI online service

and are primarily composed of tiles representing visuals from one or many reports. While Power

BI reports are often limited to a single source dataset, a dashboard’s tiles can represent multiple

datasets from highly disparate sources to help provide a 360-degree view on a single canvas.

To less experienced users and BI team members, the terms and capabilities associated with

dashboards and reports can be misunderstood. Much of this confusion stems from the fact that,

in common parlance, the word dashboard is used to refer to any type of summary-level report

containing multiple visualizations. However, in Power BI, dashboards and reports are two distinct

types of content with their own unique capabilities and use cases.

For example, data-driven alerts are exclusive to Power BI dashboards, while embedding in

SharePoint Online is only supported for Power BI reports. More fundamentally, Power BI reports

deliver an interactive data exploration experience by providing many methods of filtering, cross-

filtering, and drilling to different levels of detail. Power BI dashboards, with the exception of pinned

live report pages, are not intended for significant user interaction but rather as a summary-level

single pane of glass for displaying key performance indicators.

Although several capabilities, such as email subscriptions and printing, are common to reports and

dashboards, BI teams are well served to design dashboards and reports according to their distinct

roles in Power BI. For example, a dashboard should not contain granular details or complex visuals,

but rather the essential metrics describing the stakeholder’s area of responsibility or influence.

The following table compares dashboards to reports across 19 capabilities:

Capability Dashboard Report

Visualization pages One page One or multiple pages

Authoring

environment

Power BI service Power BI Desktop and service

Viewing

environment

Power BI service and mobile

apps

Power Desktop, service, and mobile apps

Pinning Can pin existing dashboard

tiles to other dashboards in

the current workspace

Can pin report visualizations and pages as

tiles to dashboards

Chapter 9 375

Email subscriptions Supported Supported

Filtering Can only filter or interact

with live report page tiles

Can filter, cross-highlight, and slice

Data alerts Supported Not supported

Customization Can alter layout, tile size,

names, and links

Fully customizable in Edit mode of the

Power BI service and Power BI Desktop

Natural language

queries (Q&A)

Available for all dataset

types (import, Live, and

DirectQuery)

Q&A report visual

Visibility to data

detail

Can export data for a tile Can export summarized and underlying

data, and also the Show Data option to

view tabular data of a visual

Printing Can print current dashboard Can print current report page

Featured and

favorites

A dashboard can be set as

featured and as a favorite

Can only be set as favorites

Publish to web Not supported Supported

Embed in

SharePoint

Not supported Supported in SharePoint Online via the

Power BI web part

Mobile optimized Supported Supported

Create visuals Can add tiles containing text,

image, video, web content,

and streaming data

Can create visuals using both standard

and custom visuals

Dataset sources Tiles pinned from Excel

workbooks, PBRS, and Power

BI visuals

Hundreds of supported sources

Datasets Tiles can reflect one or

multiple datasets

Usually a single dataset with potentially

multiple data sources. Can be multiple

datasets using DirectQuery for Power BI

datasets and Analysis Services

Data caching Tiles reflect cached query

results, and the cache is

updated on a schedule

Visuals generate queries against the

source dataset when opened and based on

user interactions

 Table 9.1: Dashboard and report capabilities

Designing Dashboards376

As per the preceding table, data-driven alerts are exclusive to Power BI dashboards in the Power

BI service. Data alerts and their corresponding notifications are not available to Power BI reports,

including reports published to Power BI Report Server (PBRS).

The ability to embed custom alert rules and the deep integration of data alerts with the Power

BI mobile apps is a top reason to leverage dashboards in the Power BI service. Data alerts and

email subscriptions to reports and dashboards in the Power BI service are reviewed in Chapter 13,

Creating Power BI Apps and Content Distribution.

Dashboard(s) may not be necessary or appropriate for every Power BI app. If the primary use case

is for users to explore and analyze data or if the desired visualizations can be developed within

a report, then a dashboard may only add unnecessary time and complexity. However, if there’s

a need to integrate visuals from separate reports on a single canvas, or if a feature exclusive to

dashboards such as data alert notifications is required, then dashboards can be an indispensable

component of a solution.

The subsequent sections of this chapter describe many core dashboard features and capabilities,

including dashboard tiles, mobile optimizations, and alternative sources, including Excel and

paginated reports.

Dashboard design
The design of dashboards and their relationship to both reports and other dashboards is critical

to provide a consistent and robust package of information assets for an organization. Report

authors and BI teams can use visual selection, layout, and supporting tiles to maximize the value

and usability of dashboards.

Report authors are best positioned to produce initial drafts of dashboards based on their knowledge

of the most utilized or valued report visuals. Ultimately, a well-designed dashboard delivers both

at-a-glance visibility to the most important metrics for the consumer as well as accessibility to

supporting and related details.

Chapter 9 377

Particularly for executives and senior management, the dashboard should support all essential

business questions and metrics, without requiring any user clicks.

If an executive or senior manager regularly has to access underlying reports, make filter selections

on live pages, or utilize several dashboards to answer core questions, the architecture and scope

of the Power BI dashboard should be reconsidered.

Figure 9.1 shows an example dashboard organized by Sales Territory Group:

Figure 9.1: Global sales dashboard

In this example, three Power KPI custom visuals are displayed at a global level and also for each

of the three sales territory groups. The Power KPI custom visual is chosen for these metrics as it

presents greater detail and context than other related visuals, such as the standard KPI visual. For

example, the Total Net Sales vs. Plan tile at the global level provides the actual value for the latest

month, $5.29M for 2013-Dec, as well as the YOY growth for this month, 102.52%, in addition to

the ability to hover over points on the line to see individual values for particular months.

Designing Dashboards378

Each of the 12 Power KPI visualizations was created in the underlying report with the same basic

configuration shown in Figure 9.2:

Figure 9.2: Power KPI configuration

The AdWorks Net Sales vs Plan Index measure was created using the following formula:

AdWorks Net Sales vs Plan Index = IF([AdWorks Sales Var to Plan %] >
0,1,2)

In this measure, the value 1 indicates that sales are greater than the plan, meaning that the goal

has been met, while 2 indicates the opposite.

Distinct line styles are applied to each of the three lines displayed by the Power KPI visuals.

Chapter 9 379

Solid, dotted, and dashed line styles are associated with the net sales, net sales plan, and net

sales (PY) lines, respectively. The solid style of the net sales line and the actual KPI value helps

to highlight this line relative to the two other less important lines. The distinct line styles are

particularly helpful when the tile is being viewed in focus mode or the visual is being viewed

with greater space in a report.

The user, such as the vice president of global sales, can quickly monitor overall performance

relative to the plan via the KPI symbol icons in the top-left corner of the tiles (green caret up, red

caret down). Additionally, two standard KPI visuals and a 100% stacked column chart were added

specifically to the global level to deliver YTD sales and margin performance information as well

as the recent mix of reseller and internet sales channels.

To view the details of a dashboard tile, such as the individual monthly values of one of the smaller

tiles, a user can open the tile in focus mode. Focus mode fills the entire screen with a single visual

and thus makes it easy to perceive differences in the length and shape of columns and lines,

respectively. Focus mode can be accessed by hovering over the top-right corner of a dashboard

tile and then clicking the more options ellipsis (three dots) menu. Figure 9.3 shows the options

available for the Total Net Sales vs. Plan dashboard tile:

Figure 9.3: Dashboard tile options

The 12 Power KPI dashboard tiles, combined with focus mode, provide the user with a simple

interface for a robust suite of information. For a user at the global level of the sales organization,

this level of detail may be more than sufficient for most scenarios, precluding the need to access

other dashboards or reports.

Designing Dashboards380

The same three KPIs (Total Net Sales vs. Plan, Reseller Net Sales vs. Plan, Internet Net Sales vs.

Plan) are also featured in separate, dedicated dashboards for each sales territory group. Simply

clicking a tile on the Global Sales dashboard opens the North America dashboard, providing

several additional visuals specific to this Sales Territory Group. Additionally, the North America

sales dashboard follows the same structure as the Global Sales dashboard and thus contains sets

of tiles dedicated to the United States and Canada.

If necessary, a third layer of dashboards could be created for each country within each sales

territory group, thus enabling even greater dashboard navigation flexibility (for example, Global

| Europe | Germany), with the same Power BI dataset being used for all reports and dashboards

in the workspace. Row-level security roles described in Chapter 5, Developing DAX Measures and

Security Roles, can ensure users do not have access to KPIs outside the scope of their assigned

role. Additional details and considerations for planning multiple dashboards and creating links

between dashboards and reports are described later in this chapter.

Visual selection
Given that the primary purpose of dashboards is to provide an at-a-glance status of key business

metrics, it’s important to choose visuals that best fit this purpose. Too many dashboard tiles and

more detailed tiles can detract from the dashboard’s purpose.

Although any report visual can be pinned to a dashboard, only the visuals that either align with

a corporate standard or that represent a critical insight or starting point should be represented

on dashboards. Additionally, dense or relatively complex visuals, such as tables, matrices, and

scatter charts, should rarely be pinned to dashboards. As per the Global sales dashboard, KPI

visuals with built-in conditional formatting logic and supporting context are usually the best

choices for dashboards given their intuitive nature and clear, concise visual display.

For example, if a table or matrix is considered to be the most valuable visual within a report, a

KPI or card visual could be created targeting, but summarizing, the same business question. KPI

and card visuals are more intuitive on dashboards and can be configured to provide single-click

access to a report page with sufficient supporting details. Additionally, KPI or card visuals support

data-driven alerts while tables, matrices, and scatter charts do not.

The visual in the top-left corner of a report page, the user’s logical starting point for understanding

the report, is often a good candidate to be pinned to a dashboard. Every report should have at

least one summary-level visual (for example, card, KPI, or gauge) aligned to the primary business

question or purpose of the report as this provides immediate context and understanding for the

rest of the visuals on the report page.

Chapter 9 381

Additionally, given that dashboards are limited to a single page (one canvas), visuals that provide

supporting context, such as the standard KPI and the Power KPI custom visuals, should generally

be favored over simple cards and gauges. The additional details provided by these visuals may

not be visible in small dashboard tiles but are very valuable if additional space is allocated to the

tile and when accessed in focus mode.

In Figure 9.4, the Total Net Sales vs. Plan KPI dashboard tile at the Global level is accessed in

focus mode:

Figure 9.4: Focus mode of dashboard tile – Power KPI custom visual

Given the full pane of additional space provided by focus mode, the supporting metric lines of the

Power KPI visual and the individual data points of those lines are exposed to the user.

Focus mode is also available in reports via the Focus mode icon in the corner of each report visual.

This can certainly be useful as well but remember, as per Table 1, opening reports always results

in new queries being generated. With the exception of streaming dataset tiles, dashboard tiles

store the cached results of prior queries. Therefore, leveraging focus mode in dashboards, and

dashboards in general (rather than reports), to address a significant portion of user analysis needs

can reduce the query workload on the underlying dataset and resources (for example, the Power

BI Premium capacity) and help ensure a more optimal user experience.

The Power KPI visual in the preceding example automatically adjusts to the additional space

of focus mode to display data labels for all months. The distinct line styles (solid, dotted, and

dot-dashed) of the actual net sales, sales plan, and prior year’s sales measures are also more

transparent to the user. Additionally, the three measures (net sales, sales plan, and prior year

sales) and the two variances (actual versus plan and actual versus prior year) are displayed as

tooltips via hovering over the data points.

Designing Dashboards382

These additional data details, formatting options, and other capabilities are not available in the

standard KPI visual and therefore, although the Power KPI visual requires additional configuration,

it ultimately delivers more analytical value and serves to reduce the need for users to search for

additional visuals and reports to resolve their questions.

However, only the standard KPI, card, and gauge visuals are supported for data alerts so this could

be a factor in favor of choosing the standard KPI visual. Thus, dashboard authors must carefully

consider the respective tradeoffs between using custom and standard visuals. Additional details

on configuring data alerts in the Power BI service are included in Chapter 13, Creating Power BI

Apps and Content Distribution.

Moving on from the topic of visual selection for dashboards, another important consideration

is dashboard layout.

Layout
The position and size of dashboard tiles should align with the primary purpose or priorities of

the dashboard and standard visual comprehension techniques.

For example, the Total Net Sales vs. Plan tile at the global level is the most important tile of the

Global Sales dashboard. Therefore, this tile is positioned at the top-left corner of the dashboard

and twice as much width is allocated to it relative to the Reseller Sales and Reseller Sales tiles.

Via this layout, the user can naturally start at the top left of the dashboard and navigate to the

right (Reseller and Internet Sales) and down (North America, Europe, and Pacific) to add greater

context to the Total Net Sales vs. Plan tile.

Another top consideration for layout is to maximize the available canvas space. Unlike reports,

which can contain multiple pages and bookmarks, a dashboard is always a single canvas of tiles.

Therefore, although a dashboard should not contain empty space, users should not have to scroll

vertically or horizontally to view dashboard tiles.

Given the limited space, typically, a compromise must be made between larger tile sizes for more

important visuals versus the inclusion or exclusion of tiles for less essential visuals. As one example,

the trailing six-month channel mix tile (stacked column chart) in the Global sales dashboard

could be removed, thereby allowing the Internet Net Sales and Reseller Net Sales tiles to be

enlarged to the same size as the total net sales tile.

Given that space considerations are paramount to dashboard layouts, there are two techniques

for adding additional space that we cover in the following two sections.

Chapter 9 383

Navigation pane
Additional space for dashboard tiles can be obtained by hiding the navigation pane. To toggle

between hiding or showing the navigation pane, click the three lines above the Home icon (house

symbol), as per Figure 9.5:

Figure 9.5: Hidden navigation pane

URL parameters can also be used to open dashboards with the navigation pane hidden by default.

URL parameters are simply information contained within the query string of a URL. The query

string is the portion of the URL that follows a question mark (?).

In the following example, a string of text from the question mark through to the true property

has been appended to the end of the URL for a dashboard:

https://app.powerbi.com/groups/abc123/dashboards/d8465?collapseNavigation=true

This modified URL can be shared with users such that users of the dashboard aren’t required to

click on the navigation pane icon. The second technique for adding space is by using fullscreen

mode, which we explore next.

Fullscreen mode
Another technique for obtaining more space on dashboards is to utilize the fullscreen mode. The

fullscreen mode can be accessed via the diagonal arrow icon in the top menu bar on the far right

as per Figure 9.6:

Figure 9.6: Fullscreen mode icon

https://app.powerbi.com/groups/abc123/dashboards/d8465?collapseNavigation=true

Designing Dashboards384

The fullscreen mode removes all of Chrome, including the navigation pane, Power BI menus, and

the bars associated with the web browser (for example, tabs, address bar, and bookmarks bar).

This view alone substantially increases the available space for larger tiles or a higher volume of

dashboard tiles. If certain dashboard tiles are still not visible in the fullscreen mode, Fit to Screen

and Fit to width options are available in the lower-right corner via the diagonal, outward-pointing

arrows icon and the arrow and box icon respectively as shown in Figure 9.7:

Figure 9.7: Fit to Screen

The Fit to Screen option, exclusive to the fullscreen mode, is also referred to as TV mode and is

frequently used to display Power BI dashboards on large monitors in corporate hallways. URL

parameters can be used to access dashboards in fullscreen mode by default. In the following

example, a text string from the question mark through to the true property has been appended

to the URL of the dashboard such that the dashboard will be opened in fullscreen mode:

https://app.powerbi.com/groups/abc123/dashboards/d8465?chromeless=true

Ultimately, BI teams must align the layout of tiles with the use cases for the dashboard and the

preferences of the stakeholders. For example, if a dashboard is almost exclusively going to be

used in fullscreen mode, a layout that requires some level of scrolling to view all tiles outside of

fullscreen mode may be acceptable.

Alternatively, if users regularly access the dashboard via the browser on their laptops or desktop

monitors, they may not want to have to collapse the navigation pane or view the dashboard in

fullscreen mode to see all the tiles. As the position and size of dashboard tiles can be easily adjusted

via drag-and-drop handles within the Power BI service, multiple iterations of dashboard layouts

can be quickly evaluated.

In addition to a dashboard’s primary tiles, supporting tiles can be added to help organize and

structure the dashboard.

Supporting tiles
Supporting tiles refer to dashboard tiles used to help structure and organize the dashboard. For

example, custom images and text boxes can be pinned from reports to dashboards to help structure

and organize dashboards. However, shapes cannot be pinned from reports to dashboards.

https://app.powerbi.com/groups/abc123/dashboards/d8465?chromeless=true

Chapter 9 385

While most dashboard tiles are pinned visualizations from an underlying Power BI report,

additional tiles can be added via the Add a tile option in the Power BI service. These tiles, which

can include web content, images, video, streaming data, and simple text boxes, serve to give the

dashboard greater context and a more robust and finished design.

In the Global sales dashboard described earlier, four Text box tiles were used to distinguish the

Global tiles from those associated with each of the three sales territory groups (North America,

Europe, and Pacific). The position and size of the supporting tiles help to clarify the priority and

scope of the dashboard.

For example, without any knowledge of the dashboard’s title, the top position of the global tile

and the additional space allocated to the global section of the dashboard help to confirm that

the dashboard is primarily focused on the global level.

Figure 9.8 shows the creation of the Europe text box tile, created by using the Edit menu and

then choosing Add a tile.

Figure 9.8: Supporting text box tile

Once created, the diagonal arrow handles in the lower-right corner of each supporting tile can be

used to change the size of the tile. Additionally, a tile can be selected and dragged to a different

location on the canvas.

Designing Dashboards386

Dashboard architectures
For small projects and the early iterations of an agile BI project, a single dashboard and a few

supporting reports may be sufficient. For many users, however, multiple dashboards with their

own distinct reports are required. Both of these approaches, a single dashboard and multiple

dashboards, are geared toward a specific stakeholder or group of consumers, such as the vice

president of sales.

Although these different methodologies may meet the needs of their intended users, a potential

risk is a lack of coordination across teams. For example, business units might reference distinct

metrics included in their dashboard and these metrics may not be included in the dashboards of

senior managers or other business units.

To promote greater consistency and coordination across groups of users, BI teams can pursue an

integrated, organizational dashboard architecture. In this approach, the same metrics and KPIs

considered strategic for the organization are available in multiple dashboards specific to levels

in an organizational hierarchy or distinct business units.

The Global Sales dashboard, described earlier in this chapter, represents this methodology as

separate dashboards specific to individual sales territory groups including the same KPIs as the

global dashboard. This approach ensures that dashboard tiles are relevant to the specific users

and make it possible to analyze up and down a natural organizational hierarchy. Additionally, a

common dashboard layout with integrated KPIs makes Power BI solutions much easier to manage

with limited BI resources.

In this section, we explore the single-dashboard, multi-dashboard, and organizational

dashboard architectures.

Single-dashboard architecture
A single-dashboard architecture is just that, a single dashboard supporting one or more reports.

In Figure 9.9, a single dashboard focused on Reseller Sales contains tiles representing report

visuals from four separate Power BI reports:

Chapter 9 387

Figure 9.9: Single-dashboard architecture

By default, a user selection on any of the dashboard tiles opens the report page of the underlying

report. For example, a dashboard tile reflecting the percentage of bike sales versus other product

categories would be linked to the Reseller Product Mix report and the specific page of this report

containing the source visual.

Each Power BI report is based on a Live connection to the AdWorks Enterprise dataset. As

described in the Live connections to Power BI datasets section in Chapter 6, Planning Power BI Reports,

leveraging this feature avoids the duplication of datasets since each Power BI Desktop report file

(.pbix) only contains the visualization layer (for example, visuals and formatting).

Although relatively simple to build and support, the single Reseller Sales dashboard architecture

provides both a summary of a diverse set of essential metrics and visuals (represented as dashboard

tiles) as well as an entry point to reports containing the details supporting this dashboard. As

described in the previous three chapters, Power BI reports could include multiple report pages of

visuals related to the dashboard and leverage interactive features, such as slicers and bookmarks,

to enable users to explore these reports more easily.

Designing Dashboards388

All of the content in this architecture – the dashboard, reports, and dataset – would be hosted

in a single workspace in the Power BI service. Chapter 10, Managing Application Workspaces and

Content, explains the role and configuration of workspaces.

We’ll now explore a more complex dashboard architecture involving multiple dashboards.

Multiple-dashboard architecture
Power BI solutions will often need to summarize multiple related topics or business areas that

either require or benefit from having their own dashboard. As one example, Internet Sales and

Reseller Sales may have slightly different definitions for KPIs and also serve different stakeholders.

Separating out these KPIs and visuals to their own dashboards could result in simplified and more

focused, relevant dashboards for their users.

In Figure 9.10, a Reseller Margin dashboard and a Reseller Margin Trends report have been added

to the solution described in the previous section:

Figure 9.10: Multiple-dashboard architecture

In this design, a visual from the Reseller Margin Analysis report has been pinned to both the

Reseller Sales and the Reseller Margin dashboards, as per the preceding diagram.

Chapter 9 389

This is not required but is recommended for usability such that users can maintain context as

they navigate between both dashboards. The new Reseller Margin Trends report, built via a

Live connection to the published AdWorks Enterprise dataset, exclusively supports the Reseller

Margin dashboard.

This architecture extends the scope of the solution to provide greater visibility to margin metrics

and trends not available via the single dashboard. For example, rather than navigating through the

multiple pages of the two reseller margin reports (Reseller Margin Analysis and Reseller Margin

Trends), users could access the Reseller Margin dashboard for a more simplified dashboard

experience. In addition to user convenience and the limited scope of a single dashboard, utilizing

dashboards and their cached data helps to reduce the workload on the underlying dataset and

resources.

Like the single dashboard architecture, all content (dashboards, reports, and datasets) from this

multi-dashboard architecture is included in the same workspace in the Power BI service. Given

this common workspace, each dashboard tile can be linked to a report or dashboard in the same

workspace. For example, a margin-related tile on the sales dashboard could be linked to the

margin dashboard rather than the default source report. The Dashboard tiles section later in this

chapter contains an example of configuring custom links.

The multiple dashboard architecture described in this section focused on a specific business process,

Reseller Sales. Even more complex dashboard architectures can be created when considering how

to architect dashboards to service an entire organization.

Organizational dashboard architecture
Organizational dashboard architectures are multiple-dashboard architectures designed by

considering the reporting needs of an entire organization. Organizational dashboards tend to

mirror the organizational hierarchy of a business in terms of its business units or departments.

Designing Dashboards390

In Figure 9.11, four dashboards contain corporate KPIs at the global level and for the three sales

territory groups:

Figure 9.11: Organizational dashboard architecture

Since the same KPIs or metrics are included in each of the four dashboards, users of these

dashboards are able to remain aligned with the same goals and can more clearly share their

findings and results across teams and levels in the organization. From the perspective of an

executive at the global level, the Global Sales dashboard provides an intuitive entry point into

the individual sales territory groups and potentially further layers, if necessary.

For example, an executive could start out at the Global Sales dashboard and optionally click a

tile related to European sales in order to access the Europe Sales dashboard and obtain greater

detail such as the sales performance of Germany, France, and the United Kingdom. From there,

even greater levels of detail from the underlying Europe reports could be accessed by clicking on

tiles from the Europe Sales dashboard.

Chapter 9 391

In Figure 9.12, the Europe Sales dashboard follows the design (layout and visual selection) of the

Global Sales dashboard:

Figure 9.12: Europe sales dashboard

The three tiles aligned at the top of the Europe Sales dashboard are exactly the same tiles as

presented on the Global Sales dashboard. The only difference is that the tiles are filtered for

Europe only.

The three tiles representing the second row of the Global and Europe Sales dashboard (Net Sales

YTD vs. Plan, Net Margin % YTD vs. Plan, and Sales Channel Mix) do not have to be the same

across the dashboards since these are not the approved KPIs for the organization. Maintaining a

1:1 match in terms of tiles across the dashboards can be beneficial as this allows users to navigate

between dashboards for further analysis of any given tile. However, in many scenarios, there are

metrics or visuals that are more pertinent to the given business unit and users may rarely need

to analyze non-KPIs across multiple dashboards.

Designing Dashboards392

As per Figure 9.11, a set of three dedicated European sales reports support the Europe Sales

dashboard. The pages of these reports may provide sufficient detail or, depending on the

organizational structure and requirements, an additional layer of dashboards dedicated to each

sales territory country could be added.

Other forms of the organizational dashboard architecture include dedicated dashboards by

product group, such as bikes, clothing, and accessories in the case of Adventure Works. Ultimately,

these implementations serve to align the different business units on common corporate goals

while also providing a rich set of insights relevant to each business unit or organizational level.

All of the dashboard architectures we have shown thus far have involved a single dataset. We

next explore the case where multiple datasets underlie the reports and dashboards for a solution.

Multiple datasets
The reports and dashboards that comprise a solution may be based on a single dataset or multiple

datasets.

A single dataset, AdWorks Enterprise, was utilized to support all reports and dashboards in each

of the three dashboard architectures reviewed in the previous sections. This level of integration

is not technically necessary and there are valid scenarios where multiple datasets could be used

in the same Power BI solution and even by the same dashboard.

Multiple datasets can quickly create problems due to separate data refresh processes, separate data

source dependencies, and separate data security rules. Additionally, version control issues can

arise as each dataset may include differences in the structure and definitions of tables common to

both datasets. Moreover, the integration of visuals from separate datasets on a single dashboard

may be insufficient to support analytical requirements.

One use case for multiple datasets is that an organization may not have a particular data source,

such as an Oracle database, integrated into its data warehouse system (for example, Teradata)

but still wishes to provide essential visualizations of this data in Power BI in order to supplement

other reports and dashboards. In this scenario, a Power BI dataset could be built against the

Oracle database, and reports utilizing this dedicated dataset could then support one or multiple

dashboards. Once the necessary data warehouse integration is completed, the dedicated dataset

could be retired and its reporting replaced with new reports based on an Analysis Services

model (which uses Teradata as its source) that supports other Power BI reporting content for

the organization.

Chapter 9 393

In other scenarios, a dataset is chosen (or was already implemented) for one or a few business

processes that aren’t closely related to other business processes. For example, one dataset was

built to include sales and marketing-related data, while a separate dataset includes inventory and

shipment data. The reasoning for this isolation may have been that the users of each dataset don’t

need access to the other dataset or that a large, integrated dataset would be complex to develop

and use. Alternatively, if Power BI Premium capacity is not available and Power BI datasets are used,

the 1 GB file limit could force a team to utilize separate Power BI files to store the required data.

In general, corporate BI projects should limit the use of multiple datasets for the reasons described

and the long-term value of a centralized data store. However, in environments lacking a data

warehouse and other scalable resources, such as an Analysis Services instance or Power BI Premium

capacity, multiple datasets can be considered an option and potentially the only option to support

one or multiple dashboards in the same Power BI solution.

We’ll now move on from dashboard architectures to take a closer look at working with dashboard

tiles.

Dashboard tiles
Most dashboard tiles are created in the Power BI service by pinning a visual in a report to a new

or existing dashboard in the same workspace. However, dashboard tiles can also be created by

adding a tile directly from the dashboard itself and by pinning from an Excel workbook or Report

Server report.

With a report open in the Power BI service, hovering over the top-right corner of a visual exposes

the Pin visual icon, as shown in Figure 9.13:

Figure 9.13: Pin visual icon for report visual

Designing Dashboards394

Once pinned to the dashboard, several options are available for configuring tiles depending on

the type of tile and the content it contains. In the Global and Europe Sales dashboards described

previously, a subtitle was added to each tile (for example, France) and custom links were applied

to allow direct navigation from the Global dashboard to the Europe dashboard.

In addition, for the top, left-most visual, the Display last refresh time setting was enabled. This

setting displays the last time the dataset completed a successful refresh. Such information is often

critical to business users so that they understand how current the data is that they are viewing.

For example, if a nightly refresh failed and users are looking for data that includes yesterday’s

data, knowing the last refresh time helps the users understand that there was an issue.

Dashboard tiles can be thought of as snapshots of a specific visual and filter context. When a

visual is pinned from a report to a dashboard, the specific filter context (for example, slicers

or page-level filters), visualization, and formatting at that time are captured by the dashboard.

Subsequent changes to the report, such as a modified filter or a different visualization type, are

not reflected by the dashboard tile. The dashboard tile will, however, continue to reflect the latest

data refreshes of the underlying dataset. Additionally, by default, the dashboard tile will continue

to be linked to the report from which the visual was pinned.

To maintain the synchronization between report visuals and dashboard tiles, changes to reports

that impact the pinned visuals require the updated report visual to be pinned again. The existing

dashboard tile, reflecting the original filter context and visualization, can be deleted.

One exception to the snapshot behavior of dashboard tiles is live report pages. When an

entire report page is pinned as a single tile to a dashboard, any changes to the report page are

automatically reflected on the dashboard as well. The Live report pages section later in this chapter

includes additional details and an example.

Let’s now take a deeper look at some of the additional functionality of dashboard tiles.

Tile details and custom links
By default, pinned dashboard tiles link to the report page from which the tile was pinned. Custom

links allow this default behavior to be changed to allow linking dashboard tiles to any valid URL.

Custom links are an important component of multi-dashboard architectures, and particularly

the organizational dashboard architecture described previously.

Chapter 9 395

As mentioned, in the absence of custom links, clicking a dashboard tile opens the report page from

which the visual was pinned to the dashboard. Custom links allow BI teams to take control of the

navigation experience and enable users to navigate directly to another dashboard with related

information or even to an external site, such as a team site on SharePoint Online.

Tile details can be accessed by hovering over the top-right corner of a dashboard tile, clicking the

ellipsis, and then selecting Edit details. Figure 9.14 shows the Tile details pane where a Subtitle

(Europe) is added to one of the Total Net Sales vs. Plan KPI tiles:

Figure 9.14: Tile details

Additionally, as shown in Figure 9.14, the Set custom link property is enabled, and the Europe

Sales dashboard is selected for the target of the link. Clicking Apply at the bottom of the dialog (not

included in Figure 9.14) confirms the selection. Different options are available in the Tile Details

window for tiles added directly on the dashboard (not pinned), such as text boxes and images.

Designing Dashboards396

We next take a look at a unique aspect of dashboards, the ability to support streaming data.

Real-time data tiles
Real-time data tiles allow streaming data from Internet of Things (IoT) devices and other real-

time sources to be included in a dashboard. IoT is a term that refers to physical objects with sensors

that connect and exchange data with other systems or devices. For example, a car battery that

reports charge levels every few seconds that can then be viewed on a phone via an app.

Real-time data tiles can be added to dashboards using the Edit and then Add a tile links. One of

the options when adding a tile is an option for Custom Streaming Data as shown in Figure 9.15:

Figure 9.15: Custom Streaming Data tile

Choosing this option provides the opportunity to use a current streaming dataset or add a

streaming dataset as shown in Figure 9.16:

Figure 9.16: Add a custom streaming data tile

Chapter 9 397

New streaming datasets can come from three sources, API, Azure Stream, and PubNub as shown

in Figure 9.17:

Figure 9.17: Sources for new streaming datasets

The API option refers to the ability of the Power BI REST API to post real-time data to a streaming

dataset, referred to as Push Datasets in the Power BI REST API documentation. This option allows

organizations to create their own applications that stream data to Power BI.

The Azure Stream option refers to the ability of Azure Stream Analytics to use Power BI as an

output. Azure Stream Analytics is an event processing and real-time analytics engine designed

to process and analyze streaming data. Integration with Azure Machine Learning allows patterns

and relationships to be identified and used to trigger actions, alerts, and workflows. Business use

cases for Azure Stream Analytics include:

• Analysis of real-time telemetry from IoT devices

• Geospatial analytics for fleet/vehicle management

• Analyzing web logs and clickstreams

• Inventory and anomaly detection for Point of Sale (PoS) systems

• Monitoring and predictive maintenance of remote systems

As Azure Stream Analytics finds patterns, these events or anomalies can be streamed in real time

to a Power BI dashboard tile.

Finally, the PubNub option provides integration options with the third-party company PubNub.

PubNub is an API platform for developers building real-time applications such as live events,

online chat, remote IoT control, and geolocation.

Designing Dashboards398

In Figure 9.18, the ambient temperature from a sample PubNub streaming data source is plotted

in real time:

Figure 9.18: Streaming data tile

Next, we take a look at standardizing the look and feel of dashboards using themes.

Dashboard themes
Similar to how Power BI Desktop supports themes for reports, as covered in the Visualizations

best practices section of Chapter 6, Planning Power BI Reports, dashboards also support themes.

In Figure 9.19, the Dashboard theme dialog has been accessed by choosing Edit and then

Dashboard theme from the dashboard ribbon:

Figure 9.19: Streaming data tile

Chapter 9 399

Three default themes, Light, Dark, and Color-blind friendly, are available as well as the Custom

option shown in Figure 9.19.

Themes can be downloaded as JSON files, modified and uploaded back to the Power BI service.

The following JSON code is an example of a Power BI dashboard theme file:

{

 "name":"b33fd847240881ee3107",

 "foreground":"#FFFFFF",

 "background":"#afb5b6",

 "dataColors":[

 "#01B8AA","#374649","#FD625E","#F2C80F",

 "#5F6B6D","#8AD4EB","#FE9666","#A66999"

],

 "tiles":{"background":"#808080","color":"#FFFFFF","opacity":1},

 "visualStyles":

 {"*":{"*":{"*":[

 {"color":{"solid":{"color":"#FFFFFF"}}},

 {"labelColor":{"solid":{"color":"#FFFFFF"}}}

]}}},

 "backgroundImage":null

}

We now turn our attention to an additional source for dashboard tiles, paginated reports.

Paginated reports
SQL Server Reporting Services (SSRS) 2016, and later versions, as well as PBRS, support integration

with the Power BI service. Once integration is configured between the on-premises report server

and the Power BI tenant, certain SSRS report items, such as charts and maps, can be pinned to

Power BI dashboards.

Additionally, a reporting services subscription is automatically created for pinned report items,

allowing report server administrators to manage the data refresh schedule of the dashboard tile.

Since the source of the dashboard tile is a report published to a reporting services instance, the

reporting services instance must initiate updates to the tile.

Designing Dashboards400

In Figure 9.20, showing an image of Report Server Configuration Manager, Power BI Report

Server has been configured for Power BI Integration:

Figure 9.20: Power BI integration with Power BI Report Server

In Figure 9.20, the PBRS instance is configured for integration with the Power BI service. The

same Power BI integration is available for SSRS 2016 and later via the same interface in Report

Server Configuration Manager. The following documentation includes all the requirements for

integration with the Power BI service as well as technical details on the integration and pinning

process: http://bit.ly/2CnCkOU.

As described in Chapter 12, Deploying Paginated Reports, Power BI Report Server includes all the

functionality of SSRS, including paginated (RDL) reports, report subscriptions, folder security, and

the reporting services web portal. Power BI Report Server, however, provides several additional

features and benefits, with the ability to view and interact with Power BI reports (PBIX files)

topping this list.

http://bit.ly/2CnCkOU

Chapter 9 401

In Figure 9.21, a paginated (RDL) report containing a map is open:

Figure 9.21: Pin to Power BI icon in Power BI Report Server

Selecting the Pin to Power BI Dashboard icon in the top-right window prompts the user to select

the specific report item to pin. In this report, the map is selected, and this launches the dialog

shown in Figure 9.22 for identifying the dashboard in the Power BI service as well as defining the

refresh schedule of the tile:

Figure 9.22: Pin paginated report visual to Power BI dashboard

Designing Dashboards402

In this example, the map is pinned to the Customer Distribution dashboard in the Corporate

Sales app workspace as shown in Figure 9.23. The Daily, Hourly, and Weekly tile refreshes can

be configured via the Frequency of updates drop-down menu and this setting defines the report

subscription supporting the tile. Report subscriptions can be managed via the My Subscriptions

(Settings | My Subscriptions) interface on the Reporting Services web portal.

Figure 9.23: Paginated report item as Power BI dashboard tile

Unlike visuals from Power BI reports, which can only be pinned to dashboards in the workspace

of the given report, paginated report items can be pinned to any dashboard in any workspace.

By default, the paginated report dashboard tile is linked back to the on-premises report server

report. This link, as well as the title and subtitle for the tile, can be modified via the Tile details

window just like other dashboard tiles.

Additional information on Power BI Report Server, including the deployment and scheduled

refresh of Power BI reports, is included in Chapter 12, Deploying Paginated Reports.

Chapter 9 403

Excel workbooks
Excel workbooks containing tables and/or data models can be connected to Power BI. Once

connected, users can pin Excel ranges and objects, such as pivot tables and charts. Scheduled data

refreshes can be configured in the Power BI service for Excel workbooks containing data models.

However, given the size limitations of Excel data models as well as the additional capabilities

of Power BI reports, such as custom visuals, role security, and advanced analytics, it’s generally

recommended to migrate Excel data models to Power BI datasets (PBIX files).

As per Figure 9.24, the Power BI content contained in an Excel workbook can be imported to a

Power BI Desktop file:

Figure 9.24: Import Excel queries and models to Power BI

The migration process includes the data retrieval M queries, data model tables and relationships,

DAX measures, and even any Power View report pages contained in the source workbook.

Only when Excel reports are deeply dependent on Excel-specific functionality, such as worksheet

formulas and customized conditional formatting rules, should the model not be migrated to Power

BI. Power BI Desktop’s enhanced table and matrix visuals and conditional formatting options

now support many of the most common Excel report use cases. Therefore, only limited effort is

required to develop an equivalent Power BI Desktop relative to Excel.

Designing Dashboards404

In circumstances where it is not possible to migrate the Excel file to Power BI Desktop, the Excel file

can be connected to Power BI using the Get data feature of the Power BI service. Once connected,

Excel ranges, pivot tables, and charts can be pinned to Power BI dashboards. Figure 9.25 shows

a pivot table being pinned to the Customer Distribution dashboard in the Corporate Sales

workspace:

Figure 9.25: Pin Excel content to Power BI dashboard

The pinning interface is the same as for Power BI report visuals, allowing the choice of pinning

to an existing dashboard or a new dashboard as shown in Figure 9.26:

Figure 9.26: Pin to dashboard

Chapter 9 405

Just like reporting services (SSRS and PBRS) report items, Excel content can also be pinned to

any dashboard in any workspace in the Power BI service. Also, like reporting services dashboard

tiles, the details of dashboard tiles containing Excel content can be configured, including the

title, subtitle, and a custom link. Moreover, Excel and reporting services dashboard tiles can also

be included in mobile dashboard layouts. The Mobile-optimized dashboards section later in this

chapter describes this feature.

Although Excel and SSRS report content is not designed to be as visually engaging as Power BI

visuals, the ability to leverage these common reporting tools and consolidate their distinct content

on the same dashboard is a unique capability of Power BI.

The details of developing reporting services and Excel-based content as complements to a Power

BI solution are beyond the scope of this chapter. However, several examples of these integrations,

as well as considerations in choosing among the three tools, are included in Microsoft Power BI

Cookbook Second Edition (https://www.packtpub.com/product/microsoft-power-bi-cookbook-

second-edition/9781801813044).

Live report pages
Live report pages allow entire report pages to be pinned to dashboards. This can be useful in certain

situations where the interactivity of reports is desired along with the consolidation benefits of

dashboards.

For some users, the self-service data exploration experience provided within Power BI report

pages is the most valuable use case of Power BI content. Although a dashboard of tiles may initiate

or contribute to an analysis, these users often have more complex and unpredictable analytical

needs such that greater flexibility is required. Additionally, these users are generally much more

comfortable and experienced in interacting with Power BI content, such as modifying slicer

selections and drilling up and down through hierarchies.

https://www.packtpub.com/product/microsoft-power-bi-cookbook-second-edition/9781801813044
https://www.packtpub.com/product/microsoft-power-bi-cookbook-second-edition/9781801813044

Designing Dashboards406

To provide both the self-service experience of a report page as well as the consolidation benefits

of a dashboard, an entire report page can be pinned as a single tile to a dashboard. In Figure 9.27,

showing a dashboard for the United States, a live report page of eight visuals has been pinned to

supplement the corporate standard KPI tiles:

Figure 9.27: Dashboard with live report page

In the dashboard shown in Figure 9.27, the user can leverage the robust filtering options on the

sales and margin live page to explore the dataset while maintaining visibility to standard metrics

via the top six tiles. In Figure 9.27, the user has filtered on the Southwest sales territory region

and also selected the Bikes product category via the bar chart. These selections impact the other

five visuals on the page via either highlighting, in the case of the Net Sales by Calendar Month

column chart, or filtering, in the case of the other four visuals. Filter selections on the live page

do not, however, impact the dashboard tiles outside of the live page.

Chapter 9 407

Like standard dashboard tiles, live page tiles are moveable on the canvas and configurable via

the Tile details window. However, custom links cannot be configured for live report pages. In the

United States dashboard example shown in Figure 9.27, the report page itself included a text box

with a title and thus the display title and subtitle property of the dashboard tile were disabled.

Unlike the snapshot behavior of normal dashboard tiles, any saved changes to the report containing

the live report page, such as a different filter condition, are automatically reflected by the live

page tile on the dashboard. This automatic synchronization avoids the need to delete dashboard

tiles reflecting the original state of the report and re-pinning visuals to reflect changes in the

source report.

To pin an entire report page to a dashboard, when viewing or editing a report in the Power

BI service, click the More options ellipses (…) menu in the report header and choose Pin to a

dashboard. Choosing the Pin to a dashboard option generates the dialog shown in Figure 9.28:

Figure 9.28: Pin report page to a dashboard

Live report page tiles can also be included in mobile-optimized views of dashboards. However,

given their size, live pages are generally more valuable in larger form factors and with fullscreen

mode.

Designing Dashboards408

Mobile-optimized dashboards
Just like the mobile layout view in Power BI Desktop described in Chapter 8, Applying Advanced

Analytics, the Power BI service provides a Mobile layout to customize a mobile-optimized layout

for dashboards. With a Mobile layout configured for a dashboard, the specific tiles, sizes, and

order of tiles defined for the Mobile layout are presented to a user when the dashboard is accessed

via the Power BI mobile app.

The Mobile layout is accessed via the drop-down Edit menu in the dashboard header as shown

in Figure 9.29:

Figure 9.29: Dashboard phone view

The same drag and resize options available in the mobile layout for Power BI Desktop are also

available for the dashboard. In Figure 9.30, the most important tiles from the Global Sales

dashboard are positioned at the top and less important tiles are unpinned:

Chapter 9 409

Figure 9.30: Phone view of dashboard in Power BI service

Designing Dashboards410

Power BI saves the mobile layout automatically and the defined mobile layout becomes the new

default view for phones accessing the dashboard. However, the user can still turn their phone

sideways to view the dashboard in the standard web view.

The subtitles applied to the dashboard tiles are particularly valuable in mobile layout. In the

standard web view, the four supporting tiles with text (Global, North America, Europe, and

Pacific) make it easy to determine the scope of each tile. These text box tiles are likely not, however,

desired in Mobile layout and thus the subtitles convey the scope of each tile.

Summary
This chapter demonstrated how dashboards are planned and developed as part of a large,

integrated corporate BI solution. All essential features and processes of Power BI dashboards were

highlighted, including the configuration of dashboard tiles, their links to other dashboards and

reports, and mobile-optimized dashboards. Additionally, the unique capability of dashboards to

integrate real-time data as well as their ability to include content from reporting services reports

and Excel workbooks were reviewed.

The next chapter transitions from the development of Power BI content to the management of

Power BI content. This includes the application of version control to Power BI Desktop files and

the migration of content across test and production environments using workspaces.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

10
Managing Workspaces and
Content

The preceding six chapters have focused on the design and development of Power BI datasets,

reports, and dashboards. While the creation of impactful and sustainable content is essential, this

chapter reviews the processes and features IT organizations can leverage to manage and govern

this content through project life cycles and ongoing operational support.

These features include the planning and use of workspaces in the Power BI service, staged deploy-

ments between test and production environments, and maintaining version control of Power BI

Desktop files. Additional features and practices highlighted in this chapter include data classi-

fication for dashboards, documenting Power BI datasets, and utilizing the Power BI REST API to

automate and manage common processes.

In this chapter, we will review the following topics:

• Workspaces

• Staged deployments

• Dashboard data classifications

• Version control

• Metadata management

• Metadata reporting

We’ll first take a look at one of the fundamental building blocks of Power BI content, workspaces.

Managing Workspaces and Content412

Workspaces
Workspaces are containers in the Power BI service of related content (reports, dashboards, and

scorecards) as well as datasets. As discussed in the Power BI licenses section of Chapter 1, Planning

Power BI Projects, members of workspaces are able to create and test content, such as new dash-

boards and changes to reports, without impacting the content being accessed by users outside

of the workspace.

Once the new or revised content in the workspace is deemed ready for consumption, the work-

space is published or updated as a Power BI app. Apps are collections of dashboards, reports, and

datasets and are described in detail in Chapter 13, Creating Power BI Apps and Content Distribution.

In addition to the default isolation or staging between content creation (workspaces) and content

consumption (apps), BI teams can utilize multiple workspaces to stage their deployments as per

the Staged deployments section later in this chapter. For example, reports and dashboards can be

initially created in a development workspace, evaluated against requirements in a test workspace,

and finally deployed to a production workspace.

The production workspace supports the app. If large numbers of business users access the Power

BI content via the app, the production workspace could be assigned to Power BI Premium capacity

to provide dependable performance and the flexibility to scale resources according to the needs

of the workload.

Chapter 15, Building Enterprise BI with Power BI Premium, provides details on the features and

benefits of Power BI Premium. This includes the cost advantage of capacity-based pricing versus

per-user licensing for large-scale deployments, managing Premium capacities (hardware), such

as scaling up or out, and assigning workspaces to Premium capacities.

Additional capabilities exclusive to content stored in Premium capacity, such as larger Power BI

datasets, more frequent scheduled data refreshes (for example, every 30 minutes), deployment

pipelines, scorecards, and goals, are also described in Chapter 15, Building Enterprise BI with Power

BI Premium.

”We intend workspaces just for creation...it’s the place where content gets created

in Power BI.”

– Ajay Anandan, Senior Program Manager.

Chapter 10 413

Figure 10.1 depicts the four-step process showing the essential role of workspaces in the life cycle

of Power BI content:

Figure 10.1: Workspaces and apps

1. A Power BI Pro user creates a workspace and adds other Power BI Pro users as members

with edit rights. Workspaces are created in the Power BI service by clicking the Workspaces

option in the left navigation menu and then clicking the Create a workspace button at

the bottom of the fly-out panel. Additional users can also be added as Admin users. Only

Admins can add members with edit rights to a workspace as explained in the Workspace

roles and rights section of this chapter.

2. The members of the workspace publish reports to the workspace and create dashboards

in the workspace.

3. All content or a subset of the content in the workspace is published as a Power BI app.

4. Users or groups of users access content in the published app from any device.

All users within the workspace need a Power BI Pro license. All users consuming the published

Power BI app also need a Power BI Pro license unless the workspace is assigned to Power BI

Premium capacity. If the workspace is assigned to Power BI Premium capacity, users with Power

BI (free) licenses and, optionally, external guest users from outside the organization with free

licenses can read or consume the Power BI app.

In small team scenarios (5–15 users) where maximum self-service flexibility is needed, all users can

be assigned Pro or PPU licenses and collaborate on content within the workspace. This approach

negates the isolation benefit of workspaces from apps but provides immediate visibility to the

latest versions of the content. Additionally, Power BI users within the workspace can create their

own Power BI and Excel reports based on connections to the published dataset in the workspace.

Managing Workspaces and Content414

Opening a workspace within the Power BI service presents an interface similar to that shown in

Figure 10.2:

Figure 10.2: Workspace

As shown in Figure 10.2, the workspace dialog presents a header for accessing the workspace’s

Settings and controlling Access, as well as the ability to create or update an associated app. Fur-

thermore, content within the workspace such as dashboards, reports, and datasets are shown.

It is highly recommended that the creation of workspaces be controlled by enterprise BI and IT

teams. Workspace creation can be restricted to specific users or groups of users via tenant settings

as discussed in Chapter 14, Administering Power BI for an Organization. A simple workflow process

can govern the workspace creation process as part of the overall Power BI project planning and

execution.

In addition to serving as containers of content, workspaces also provide a logical security context

where specific users and groups can be provided different roles and rights within the workspace.

Workspace roles and rights
Workspace roles are used to provide access to all content within a workspace. Both Azure Active

Directory (AAD) users and groups can be assigned to one of four roles:

1. Viewer

2. Contributor

3. Member

4. Admin

It’s strongly recommended to assign groups to workspace roles and thus manage workspace

permissions by adding or removing users to or from these groups. Azure Active Directory security

groups as well as Microsoft 365 groups and distribution lists are all supported for workspace roles.

Chapter 10 415

Manually mapping individual user accounts to various workspace roles is both difficult to main-

tain and could introduce a security risk with a user getting more access than required. Power BI

administrators should partner with both the business and IT to decide on an appropriate and

efficient process for approving membership and adding/removing users to/from groups.

It is important to understand that users or all users within a group added to a workspace role

gain access to all content within the workspace regardless of whether specific content is shared

with those users. In addition, the Admin, Member, and Contributor roles override row-level

security (RLS) for content in the workspace. Thus, workspace roles are fundamentally different

than individually sharing workspace content with specific users or via links.

To assign users to roles, use the Access option in the workspace header as shown in Figure 10.2.

Choosing the Access option opens the Access dialog shown in Figure 10.3:

Figure 10.3: Workspace Access dialog

Depending on the specific role assigned, members can view content, edit content, create new

content, and publish content from the workspace to a Power BI app. The specific capabilities and

features available for each role are explained in the following sections, starting with the least

privileged, the Viewer role.

Managing Workspaces and Content416

Viewer role
The Viewer role provides read only access to workspaces. Users assigned to the Viewer role can

view and interact with all content within the workspace as well as read data stored in workspace

dataflows. Importantly, the Viewer role does not override RLS for content within the workspace.

It is imperative to remember that every other role other than the Viewer role overrides RLS. Every

other workspace role is effectively an administrator of the Power BI datasets in a workspace and

thus this permission overrides RLS roles. Thus, users that should not see data restricted by RLS

should never be added to any role other than Viewer.

While limited to read access to workspace content, the Viewer role is well suited for certain QA/

Test or “early look” scenarios. For example, if a workspace is hosted on Premium capacity, a

team’s primary QA/Test user or a key stakeholder who only has a Power BI Free license could be

assigned the Viewer role in order to access new reports and dashboards that haven’t yet been

published to a Power BI app.

Because of the convenience of assigning the Viewer role a single time to a user or group within a

workspace, organizations may be tempted to utilize the Viewer role as a means of sharing content

with end users (report consumers). This is best avoided as the Viewer role is able to see all content

in the workspace including content that is a work in progress or not fully ready for production.

This can lead to confusion by end users or, worse, incorrect decisions being made by viewing a

report that has bugs and thus displays incorrect information.

Instead, apps should be used for sharing and distributing content to end users and offer the same

convenience. For enterprise BI organizations, the Viewer role should be used sparingly and only

in specific circumstances where the end user requires access to view the underlying datasets and

other workspace content.

Viewers can also reshare content if the Add reshare option is selected for specific content. To

add resharing capabilities for users with the Viewer role, users in the Member or Admin role can

access the permissions for specific content. This is done by accessing the More options menu

(three vertical dots) for specific content in the workspace as shown in Figure 10.4:

Chapter 10 417

Figure 10.4: More options menu for workspace content

Once within the Manage permissions dialog for the dashboard, report, or dataset, users assigned

to workspace roles are listed under the Direct access tab. Accessing the More options menu

(three horizontal dots) for a particular user assigned to the Viewer role provides the option to

Add reshare rights as shown in Figure 10.5:

Figure 10.5: More options menu user with Viewer role

Managing Workspaces and Content418

The same Add reshare option is also displayed for users assigned to the Contributor role, which

we detail in the next section.

Contributor role
The Contributor role has create and edit permissions to content in the Workspace but by default

lacks the sharing and publishing permissions of the Member and Admin roles. For example, a BI

developer could be granted the Contributor role to publish a new report to the workspace but

a user with higher privileges would be required to publish or update a Power BI app containing

this report to end users. In addition, the Contributor role provides the ability to schedule dataset

refreshes and modify data gateway connection settings.

The Contributor role is a natural fit for report authors and dataset developers within a corporate

BI organization. These users can perform their work within Power BI Desktop and publish to the

workspace but are prevented from managing permissions for the workspace’s content or sharing

it unless specifically granted reshare rights.

As mentioned, the Contributor role overrides RLS for content in the workspace. Thus, never assign

users to the Contributor role that should not see data protected by RLS. In addition, Contributors

can also be granted the ability to update the app for the workspace. This setting is accessed by

choosing the Settings option in the workspace header as shown in Figure 10.2. This opens the

Settings pane. Expanding the Advanced section, the option to Allow contributors to update

the app for this workspace setting is displayed at the bottom of the Settings pane as shown in

Figure 10.6:

Figure 10.6: More options menu user with Viewer role

The ability to set the Allow contributors to update the app for this workspace setting is exclu-

sive to the Admin role. Users in the Member role cannot configure this setting, as we detail in

the next section.

Chapter 10 419

Member role
The Member role provides full workspace functionality, features, and access, save for a few per-

missions exclusive to the Admin role, such as the ability to allow Contributors to update the app

for a workspace, mentioned previously. This role includes all of the permissions of the Contrib-

utor roles plus the ability to add members with lower permission roles, publish, unpublish, and

change permissions for apps and content, update apps, and share content.

The Member role is best suited to the business owner of the app or, in more restrictive environ-

ments, personnel specifically responsible for defining permissions and security. Less restrictive

environments are likely happy to offload the sharing and permission requirements from IT to

the business since the business is generally more in tune with the personnel that require access

to the workspace content.

We’ll now cover the final workspace role, the Admin role.

Admin role
Every workspace has one or multiple administrators who manage the access of other Power BI

users to the workspace. The user that initially creates the workspace is the workspace admin by

default.

The admin role is the highest security role for workspaces and includes all of the rights and per-

missions of the Member role. In addition, only workspace Admins can add other users as Admins

to the workspace. As already mentioned, only Admins can grant Contributors the right to update

the associated app. Finally, Admins also have the exclusive right to update a workspace’s settings

or delete a workspace, thus removing all of its content (dashboards, reports, and datasets) from

the Power BI service.

Prior to deleting a workspace, check to see if an app is published from the workspace. If an app is

published, unpublish the app via the ellipsis (three dots) next to the Access option in the header

of the workspace. If the workspace is deleted but the published app is not unpublished, users of

the published app will see errors when attempting to access or refresh its content.

If Power BI Premium capacity is provisioned for the organization and if the workspace Admin is

granted assignment permissions to Premium capacity, they can assign the workspace to a Premi-

um capacity. This action moves the content in the workspace to dedicated hardware (capacity)

exclusive to the organization and enables many additional features, such as the distribution of

apps to Power BI Free users.

Managing Workspaces and Content420

Further information on the assignment of app workspaces to Power BI Premium capacity is

included in Chapter 15, Building Enterprise BI with Power BI Premium. The additional capabilities

provided by Power BI Premium and considerations in allocating Premium capacity are also in-

cluded in Chapter 15, Building Enterprise BI with Power BI Premium.

Now that workspace roles and rights are understood, we’ll next consider a common workspace

configuration in enterprise deployments, the use of datasets across workspaces.

Datasets across workspaces
A common deployment pattern for enterprise BI teams is to separate the dataset development

from the report development. In this pattern, data modelers focus on dataset development and

report authors connect live to this dataset when creating reports. This separates the duties of

data modelers and report authors and enables a single dataset to service multiple audiences.

Taking this a step further, datasets can be published to dedicated dataset-only workspaces that

only dataset authors and admins can access. Report authors and end users are granted read or

read and build permissions to these datasets thus ensuring that the datasets will only be modified

by dataset authors. Additional, content-only workspaces can then be created and used for con-

tent development such as reports, dashboards, and scorecards. With the proper tenant settings

configured as discussed in Chapter 14, Administering Power BI for an Organization, the datasets

in the separate workspace can be accessed by report authors and used when building content.

Separating the concerns of data modelers and report developers using workspaces provides a

least-privileges security model, meaning that only the least amount of permissions required to

perform a task are granted. As opposed to report authors being made Contributors or Members

of a workspace, which grants them the ability to modify existing datasets in that workspace, this

pattern secures the datasets such that only approved data models can modify published datasets.

Using datasets across workspaces requires that the datasets be shared with users and groups

that require access to build content using those datasets. Sharing content is discussed in the

Sharing content section of Chapter 13, Creating Power BI Apps and Content Distribution. However,

specifically for this scenario of using datasets across workspaces, the Allow recipients to build

content with the data associated with this dataset checkbox must be checked. This setting is

sometimes referred to as the Build permission.

We’ll now consider the default My workspace provisioned for every Power BI user.

Chapter 10 421

My workspace
All Power BI users, including those with free licenses, are assigned a My workspace in the Power

BI service. This workspace should only be used and thought of as a private scratchpad for con-

tent specific to the individual user. For those familiar with SharePoint My Sites or OneDrive, the

concept is similar. By default, only each individual user has permissions to see and access content

within their My workspace, including even Global administrators and Power BI administrators.

My workspace is accessed via the same Workspaces menu as other workspaces, as shown in

Figure 10.7:

Figure 10.7: My workspace

Any Power BI content that requires access by other users should be stored in a different work-

space and distributed as an app. Although My workspace can host the same content types as

other workspaces, with the exception of dataflows, any content shared and distributed from My

workspace is dependent on the individual user’s account.

Managing Workspaces and Content422

Armed with a basic understanding of workspaces, we next turn our attention to how workspaces

can be used in staged deployments.

Staged deployments
Staged deployments are a familiar process to technical IT teams involved with application de-

velopment and the creation of data assets. Quite simply, staged deployments provide separate

environments for different life cycle stages such as development, test, and production. Each stage

of the life cycle is designed to accomplish specific tasks and ensure quality. Development stages

are for work-in-progress content and are solely used by report authors and other content devel-

opers. Test is for users to perform user acceptance testing (UAT) to verify that the reports and

other content function as desired. The production stage is only for content that has passed UAT.

Multiple workspaces and their corresponding apps are used to stage and manage the life cycle

of Power BI content. Similar to the development, test, and production release cycles familiar

to IT professionals, staged deployments in the Power BI service are used to isolate data, users,

and content appropriate to each stage of the process. Effectively implementing a staged Power

BI deployment serves to raise the quality of the content delivered as well as the productivity of

project team members.

The nine-step process depicted in Figure 10.8 shows the primary elements of a staged deploy-

ment life cycle:

Figure 10.8: Staged deployment life cycle

Chapter 10 423

An explanation of the various numbered steps of the staged deployment life cycle process is

provided here:

1. A development workspace is created. A Power BI Desktop file containing the dataset is

published to the development workspace. Reports are developed in Power BI Desktop

based on live connections to the development workspace dataset and published to the

workspace. Dashboards are created within the development workspace in the Power BI

service.

2. An app is published or updated and made available to a small number of users for their

review.

3. The BI manager or project lead reviews the status of content being developed and provides

feedback to the developers. As purely a preference, in some scenarios, certain business

stakeholders are allowed early access to content under development.

4. The Power BI REST API, Power BI PowerShell module, or a pipeline is used to migrate

completed content from the development workspace to the test workspace. The Power

BI REST API operations are called via PowerShell scripts. The Power BI REST API, Power

BI PowerShell module, and pipelines are explained in the following sections.

5. A TEST app is published or updated and made available to a small number of users for

their review.

6. A UAT user or team reviews the content relative to requirements and provides feedback.

If necessary, revisions are implemented in the TEST workspace and the TEST app is up-

dated for further review.

7. The Power BI REST API, Power BI PowerShell module, or pipeline is used to migrate ap-

proved content from the TEST workspace to the production workspace. Supported REST

API operations, such as a clone report and rebind report, are called via PowerShell scripts.

8. A production app is published or updated and made available to groups of users for their

consumption. Publishing and accessing apps is described in Chapter 13, Creating Power

BI Apps and Content Distribution.

9. Groups of business users access and consume the dashboards and reports via the produc-

tion app from any device. Measuring and monitoring the usage of the published app is

also described in Chapter 13, Creating Power BI Apps and Content Distribution.

Creating and managing workspaces as well as publishing apps for testing or consumption are all

simple processes handled via the user interface in the Power BI service.

Managing Workspaces and Content424

Properly utilizing the Power BI REST API or Power BI PowerShell module to copy or migrate con-

tent across workspaces, however, requires some level of custom scripting, usually performed via

Windows PowerShell. Organizations using Power BI Premium can instead leverage deployment

pipelines instead of relying on the Power BI REST API and/or PowerShell scripts.

Before delving into either the Power BI REST API, PowerShell, or deployment pipelines, however,

we’ll consider the management of datasets during the staged deployment process.

Workspace datasets
As per Figure 10.8, this architecture requires distinct Power BI datasets per workspace. To min-

imize resource usage and for data security reasons, the development workspace dataset could

include the minimal amount of data necessary and exclude all sensitive data. This would allow

the organization to comfortably provide development access to teams of content developers,

potentially from outside of the organization.

Access to the test workspace could be limited to a small number of trusted or approved users

within the organization and thus could include sensitive data. Finally, the production workspace

dataset would have the same schema as the other datasets but include the full volume of data

as well as sensitive data.

If a common schema exists between the different datasets in each workspace, the source dataset

of a Power BI Desktop report file can be revised to a dataset in a separate workspace as per the

Switching source datasets section in Chapter 6, Planning Power BI Reports.

For example, the report file (which has an extension of .pbix) approved for migration from the

development workspace to the test workspace could be opened, modified to reference the test

workspace dataset, and then published to the test workspace. This approach represents a manual

alternative to the Power BI REST API described in the following section.

The ability to use datasets across workspaces can help eliminate the resource cost and manage-

ability issues of duplicated datasets across multiple app workspaces. This functionality can be

turned on within Tenant settings of the Admin portal in the Power BI service. This setting is

explained in more detail in Chapter 14, Administering Power BI for an Organization.

Chapter 10 425

For example, distinct Power BI apps developed for the finance, sales, and marketing teams could

all leverage a single production dataset in a dedicated workspace rather than individual datasets

within each workspace. That said, the development of the dataset itself should also follow a staged

deployment life cycle similar to that shown in Figure 10.8.

Let’s now explore how the Power BI REST API and Power BI PowerShell module can be used to

implement a staged deployment.

Power BI REST API and PowerShell module
The Power BI REST API provides programmatic access to resources in the Power BI service includ-

ing content (datasets, reports, and dashboards), workspaces, and the users of these resources.

This access enables organizations to automate common workflows, such as cloning a report to a

different workspace or triggering a dataset refresh operation via familiar tools, such as Windows

PowerShell.

The goal of the REST API is to fully support all functionality available in the Power BI service,

including capabilities exclusive to the Power BI Admin portal, thus providing complete admin-

istrative and automation capabilities. The following URL provides updated documentation on

the REST API including the request syntax and a sample result set for each operation: http://

bit.ly/2AIkJyF.

Windows PowerShell is a task-based command-line shell and scripting language. It’s primarily

used by system administrators to automate administrative tasks. For example, PowerShell script

files, having an extension of .ps1, are commonly used in scheduled data refresh processes for

Analysis Services models.

PowerShell can use the Power BI REST APIs directly or alternatively use the Power BI PowerShell

module. Both approaches are covered in the following sections and additional documentation

can be found here: https://bit.ly/3vDJ5qc. We’ll first investigate the Power BI REST API.

Power BI REST API
To use the Power BI REST API in a custom .NET program, the application must be registered

with Azure Active Directory. This registration is performed in the Azure portal application and

specifically here: https://bit.ly/3C04EG2.

http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
https://bit.ly/3vDJ5qc
https://bit.ly/3C04EG2

Managing Workspaces and Content426

1. Sign in with the Azure Active Directory account and provide a name for the application.

Sign in with the account used for logging into the Power BI service. Once complete, the

App registrations dialog is displayed as shown in Figure 10.9.

Figure 10.9: App registration in Azure Active Directory portal

2. Select API permissions under the Manage heading as shown in Figure 10.9. On the API

permission page, select Add a permission. Scroll down until you find Power BI Service

as shown in Figure 10.10 and select it.

Figure 10.10: Request API permissions

Chapter 10 427

3. In the Request API permissions dialog, choose Delegated permissions. Under Select

permissions, expand all sections and check all checkboxes as shown in Figure 10.11.

Figure 10.11: Adding Request API permissions

4. When finished, click the Add permissions button shown in Figure 10.11.

Once an application is registered in Azure Active Directory with the correct permissions, the

client ID created for the application can be used within .NET applications to perform actions in

the Power BI service. Next, we’ll look at the Power BI PowerShell module.

Managing Workspaces and Content428

Power BI PowerShell module
The Power BI PowerShell module was created to simplify the scripting of Power BI tasks from

within PowerShell. Scripting operations via the Power BI PowerShell module is significantly

easier than using the Power BI REST API directly and does not require application registration as

covered in the previous section. However, the Power BI PowerShell module does not necessarily

include all of the operations available via the Power BI REST API.

To use the Power BI PowerShell module, ensure that you are a Power BI administrator or otherwise

have appropriate permissions to the Power BI service, and then follow these steps:

1. Open a Windows PowerShell session as administrator by right-clicking the Windows

PowerShell app and then choosing Run as administrator.

2. Set the execution policy to RemoteSigned by entering the following command:

Set-ExecutionPolicy RemoteSigned

3. Answer Y when prompted.

4. Run the following command to install the Power BI PowerShell module:

Install-Module MicrosoftPowerBIMgmt -Force

5. Log in to the Power BI service using the Connect-PowerBIServiceAccount command or

its alias Login-PowerBI.

The Windows PowerShell session is now ready to start interacting with the Power BI service

via function calls called Cmdlets. However, using either the Power BI REST API or the Power BI

PowerShell module often requires that the unique identifiers for content objects such as work-

spaces, dashboards, reports, and datasets are known. Thus, we’ll next cover how to identify these

unique identifiers.

Workspace and content identifiers
All workspaces and content within those workspaces are provided a globally unique identifier

(GUID). A GUID is simply a unique ID that adheres to RFC 4122. These GUID values must be

known in order to perform most operations within the Power BI service using PowerShell or a

.NET program.

For example, in order to clone a report to a separate workspace and then bind the report to a

dataset in the new workspace, GUID values associated with the report, the source and target

workspace, and the dataset must be obtained.

Chapter 10 429

Once known, these GUID values can be passed into the variables of PowerShell script files and

executed on demand or as part of a scheduled process, such as with dataset refresh operations.

The GUIDs for Power BI objects can be obtained by executing scripts that reference the appro-

priate REST API, such as Get Reports (GET https://api.powerbi.com/v1.0/myorg/reports).

Alternatively, the necessary GUIDs can be found by navigating to the specific object or collection

of objects in the Power BI service and noting the URL.

For example, to retrieve both the workspace GUID and the dataset GUID, navigate to Workspace

and open the Settings menu for a report. This is the same menu displayed in Figure 10.4 previously.

In this example, opening the Settings menu for the AdWorks Enterprise dataset of the Ad-

Works Global Sales workspace results in the following URL in the address bar of the browser:
https://app.powerbi.com/groups/c738f14c-648d-47f5-91d2-ad8ef234f49c/settings/

datasets/61e21466-a3eb-45e9-b8f3-c015d7165e57.

Based on this URL, the following two GUIDs can be used in PowerShell scripts:

• AdWorks Global Sales (workspace): c738f14c-648d-47f5-91d2-ad8ef234f49c

• AdWorks Enterprise (dataset): 61e21466-a3eb-45e9-b8f3-c015d7165e57

The GUIDs for reports and dashboards can similarly be found by simply navigating to them within

the Power BI service. With GUIDs in hand, we are now ready to present information regarding

available sample PowerShell scripts.

PowerShell sample scripts
Several self-documenting sample PowerShell scripts that leverage the Power BI REST API are

available at the following GitHub repository: https://github.com/Azure-Samples/powerbi-

powershell. This repository includes PowerShell scripts (.ps1 files) for the refresh of a dataset,

the rebinding of a report (to a dataset), and other common use cases.

A similar GitHub repository for PowerShell scripts that utilize the Power BI PowerShell module is

available here: https://github.com/Microsoft/powerbi-powershell. This repository is even

more extensive.

CopyWorkspace.ps1 and CopyWorkspaceSampleScript.ps1 from their respective repositories

can be used to perform the staged deployment steps between workspaces shown in Figure 10.8

(steps 4 and 7).

https://app.powerbi.com/groups/c738f14c-648d-47f5-91d2-ad8ef234f49c/settings/datasets/61e21466-a3eb-45e9-b8f3-c015d7165e57
https://app.powerbi.com/groups/c738f14c-648d-47f5-91d2-ad8ef234f49c/settings/datasets/61e21466-a3eb-45e9-b8f3-c015d7165e57
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Microsoft/powerbi-powershell

Managing Workspaces and Content430

The use of PowerShell scripts, either via the Power BI REST API or the Power BI PowerShell module,

can help automate the implementation of a staged deployment life cycle for all paid licensing

scenarios. We’ll next take a look at an even easier method of implementing staged deployments

available to Premium capacities and PPU users, Power BI deployment pipelines.

Power BI deployment pipelines
Power BI deployment pipelines, or simply Pipelines, are a Premium (Premium and PPU) feature

specifically designed to support staged deployment life cycles. Pipelines provide a simple user

interface within the Power BI service that move content between workspaces with the click of

a button.

Pipelines are created in the Power BI service using the Deployment pipelines tab in the left nav-

igation pane or from a workspace using the Create a pipeline option in the workspace header as

shown in Figure 10.2.

Pipelines are the recommended method for executing staged deployment life cycle processes in

Power BI. Pipelines do not require any custom scripting and are fully supported by Microsoft as

part of the Power BI service.

Once created, pipelines allow workspaces to be assigned to three different deployment stages:

Development, Test, and Production, as shown in Figure 10.12:

Figure 10.12: Power BI deployment pipeline

Chapter 10 431

Alternatively, clicking the Deploy to … button in Development or Test can automatically create

a workspace for the next stage if no workspace is currently assigned.

The Show more option enables granular control over exactly what content is deployed to the next

stage and the three vertical dots menu provides options for publishing the app for the workspace,

modifying access to the workspace and workspace settings as shown in Figure 10.13:

Figure 10.13: Pipeline options

Managing Workspaces and Content432

Pipelines also provide automation via rules. Clicking on the lightning bolt icon in the stage header

as shown in Figure 10.13 opens the Deployment settings panel. Subsequently clicking on a data-

set within the Deployment settings panel allows Data source rules and Parameter rules to be

defined as shown in Figure 10.14:

Figure 10.14: Pipeline deployment rules

In Figure 10.14, a parameter rule is defined to update the AdWorks Database query parameter to

point to a different database, AdventureWorksDW2019Test, instead of the original value from

the development stage, AdventureWorksDW2019Dev.

Chapter 10 433

Pipelines greatly simplify the deployment of content between the stages of a staged deployment

life cycle, eliminating the need for scripting and the identification of GUIDs.

Moving on from staged deployments, we’ll next consider another important topic with respect

to managing workspaces and content within Power BI, content sensitivity and protection.

Content sensitivity and protection
A key advantage of Power BI is its native integration with Microsoft 365. This integration is perhaps

most evident when it comes to securing and sharing content. Power BI uses AAD for assigning

permissions to content as well as authenticating users. However, the integration with the security

features of Microsoft 365 runs much deeper to include the integration of information protection

and data loss prevention policies.

In the following sections, we explore this deeper integration with the security and compliance

features of Microsoft 365 since the subjects of information protection and data loss prevention

are often prominent in the minds of enterprise BI and information security teams.

Information protection
The Microsoft Information Protection solution involves the creation and application of sensitiv-

ity labels to emails, files, and content containers such as Microsoft Teams, Microsoft 365 Groups,

and SharePoint sites.

Sensitivity labels serve to alert end users to the privacy level of the information they are viewing

and can also include protection settings to encrypt the content. For example, sensitivity labels of

“Internal Only” or “Confidential” help alert end users that the content they are viewing should

not be shared outside of the organization.

Using Microsoft Information Protection requires an Azure Information Protection license, which

can be purchased separately or via licensing suites such as Microsoft 365 Enterprise plans, Mic-

rosoft 365 Business, and Enterprise Mobility + Security plans. In addition to licensing, there are

a number of steps required to activate the information protection capabilities within Power BI.

The first step is to use the Microsoft 365 admin center (https://admin.microsoft.com) to create

a sensitivity label. Within the admin center, use the Compliance left navigation option under Ad-

min centers to open the Microsoft 365 compliance portal (https://compliance.microsoft.com).

https://admin.microsoft.com
https://compliance.microsoft.com

Managing Workspaces and Content434

Within the Microsoft 365 compliance portal, choose Information protection in the left navigation

pane as shown in Figure 10.15:

Figure 10.15: Information protection label

In Figure 10.15, an Information protection label has been created called Confidential with a

Scope of File, Email.

Once Information protection labels are created, the next step is to turn on Information protec-

tion for the Power BI tenant. This is done using the tenant settings of the Power BI Admin portal

in the service as shown in Figure 10.16. More information about using the Power BI Admin portal

and tenant settings is provided in Chapter 12, Administering Power BI for an Organization.

Figure 10.16: Information protection tenant settings

Chapter 10 435

In Figure 10.16, four of the five information protection settings have been enabled for the entire

organization.

Once the Information protection settings are enabled, users are able to apply sensitivity labels

to content within the Power BI service using the settings for dashboards, reports, and datasets

as shown in Figure 10.17:

Figure 10.17: Sensitivity labels in the Power BI service

In Figure 10.17, the Confidential sensitivity label is applied to the Monthly Financials report.

Once applied, the sensitivity label is displayed next to the report title as shown in Figure 10.18:

Figure 10.18: Sensitivity labels displayed for a report

In addition to setting sensitivity labels in the Power BI service, sensitivity labels can also be applied

within Power BI Desktop from the Home tab of the ribbon, as shown in Figure 10.19:

Figure 10.19: Sensitivity labels in Power BI Desktop

Managing Workspaces and Content436

When Sensitivity labels are applied within Power BI Desktop, publishing to the Power BI service

automatically marks the dataset, as well as the report, with the applied Sensitivity label.

Information protection sensitivity labels can be useful in alerting end users about the privileged

nature of the content of Power BI reports and dashboards and enterprise BI teams are encouraged

to work with information security and compliance teams to enable and use clear, consistent

labeling policies. For example, reports developed for human resources often include sensitive or

personally identifiable information that should not be shared outside of the organization.

Next, we’ll take a look at Power BI’s integration with Microsoft’s data loss prevention solution.

Data loss prevention
Microsoft’s data loss prevention (DLP) solution assists organizations in detecting and protecting

sensitive (private) data such as United States Social Security Numbers (SSNs) and other per-

sonally identifiable information (PII). The ability to detect and respond to potential breaches of

privacy is an important component in maintaining compliance with many different government

regulations.

Privacy and compliance are important topics within almost all organizations, particularly when

dealing with information about employees and customers. In the European Union (EU), the

main privacy act is the General Data Protection Regulation (GDPR). In the United States, there

are many different federal privacy laws such as the Privacy Act, the Health Insurance Portability

and Accountability Act (HIPAA), the Children’s Online Privacy Protection Act (COPPA), as well

as individual state laws.

Tracking and maintaining compliance with so many different regulations is complex and

time-consuming and violations can be costly. Microsoft’s data loss prevention solution assists

with compliance through the use of built-in DLP policy templates that implement the privacy

rules of the most prominent government privacy regulations throughout the world.

Figure 10.20 shows the policy templates available in the Microsoft 365 compliance portal for

medical and health information.

Chapter 10 437

Figure 10.20: Sensitivity labels in Power BI Desktop

As shown in Figure 10.20, templates are available for medical and health regulations enacted in

Australia, Canada, the United Kingdom, and the United States. These policy templates are main-

tained by Microsoft and updated to reflect changes in regulations such as the Enhanced version

of the Australia Health Records Act (HRIP Act).

Managing Workspaces and Content438

DLP policies can identify over 250 standard types of PII such as Australia Tax File Number, Belgium

Driver’s License Number, IP Address, and U.S. / U.K. Passport Number. In addition, DLP rules can

include custom rules identifying organizationally sensitive information. These policies can be

applied to many different Microsoft 365 systems, including Power BI, as shown in Figure 10.21.

Figure 10.21: Sensitivity labels in Power BI Desktop

When turned on, DLP policies targeting Power BI are evaluated whenever content is published or

refreshed. If a potential violation is identified, the user can be notified via a policy tip. In addition,

alerts can be sent to administrators and users via email and alerts also appear in the Microsoft

365 compliance center. DLP policies can thus help prevent the publishing of sensitive information

that may violate government regulations such as the HIPAA or GDPR.

Chapter 10 439

It should be clear now that the ability to leverage pre-built and custom DLP policies across emails,

files, devices, and data assets both on-premises and in Microsoft 365 is a significant differentiator

for Power BI in the enterprise BI software market.

Moving on, another top concern regarding the management of workspaces and content is version

control.

Version control
Version history and source control are essential elements of an IT organization’s application life
cycle management (ALM) processes and policies. Power BI files that are used in any production
sense should be stored in a system such as Azure DevOps that provides version control features
for tracking who made changes when and the ability to restore or recover files from their previ-
ous states.

For example, changes to an Analysis Services data model, such as new DAX measures, are typ-
ically committed to a source control repository, and tools such as Azure DevOps Services, for-
merly known as Visual Studio Team Services (VSTS), provide features for teams to manage and
collaborate on these changes. Perhaps most importantly, these tools enable teams to view and
revert back to prior versions.

Power BI Desktop files (.pbix and .pbit) do not integrate with these robust systems in the same
manner as code (text) files. That said, Power BI files can be included in Azure DevOps, Git, or other
version control repositories with support for common commit and pull operations. For example,
a team of BI developers could all stay synchronized to a set of Power BI files in a Git repository via
their local/remote repository. Additionally, a team could enforce a pull request process and review
changes to Power BI files before approving the merging of developer branches to a master branch.

Alternatively, Microsoft recommends OneDrive for Business, given its support for version his-
tory and large file size limit. Additionally, for longer-term and larger-scale projects, BI teams can
optionally persist the core DAX and M code contained in a dataset into a structure suitable for
implementing source control.

OneDrive for Business
OneDrive for Business is Microsoft’s cloud-based file storage platform. It supports large files,

version history, and other features such as sharing, synchronization to desktop systems, and

automation via integration with Microsoft Power Automate. OneDrive for Business features are

built into SharePoint Team sites, which are also used by Teams, Microsoft’s collaboration soft-

ware. Thus a business unit that uses Teams could keep their Power BI files on the Teams site and

synchronize those files to their local device.

Managing Workspaces and Content440

In Figure 10.22, a Power BI template file (.pbit) has been uploaded to a OneDrive for Business

folder. A template file can be created from a Power BI Desktop file (.pbix) by selecting File and

then Save as and setting Save as type to Power BI template files (.pbix). Template files preserve

all of a report’s queries, DAX measures, and visualizations but do not contain any data. Thus,

while the full .pbix file could also be uploaded, .pbit files are significantly smaller in size and

thus are excellent candidates for version control.

Figure 10.22: OneDrive for Business file options

Selecting the three vertical dots exposes several file options including Version history. As changes

are implemented and saved in the .pbix file, such as a revised DAX measure or a new M query,

the updated .pbix or an updated .pbit template file is uploaded to OneDrive for Business.

As shown in Figure 10.23, the Version History pane makes it easy to view the history of changes

to a file and to restore an earlier version.

Chapter 10 441

Figure 10.23: File options in Version History

As shown in Figure 10.23, selecting the three vertical dots for the Version 1.0 row exposes three

file options, including Restore. Selecting Restore creates a new version (Version 4.0), which

is an exact copy of the file restored. This restored file replaces the current file accessible in the

OneDrive for Business folder.

As described in the Live connections to Power BI datasets section in Chapter 6, Planning Power BI

Reports, reports should be created with Power BI Desktop files rather than within the Power BI

service to enable version history. However, since dashboards are created exclusively within the

Power BI service, version history is currently not possible for dashboards.

With version control for entire Power BI files covered, we’ll next explore version control for M

and DAX code.

Source control for M and DAX code
Although the version history of M and DAX code within Power BI Desktop files is technically

available via OneDrive for Business, some BI organizations may also choose to utilize more ro-

bust version control tools on essential queries and measures. With this approach, it is easier to

manage complex code, as well as reusing code across solutions.

Managing Workspaces and Content442

For example, an M query can be saved as a .pq file and synchronized with a team project code

repository in Azure DevOps services or a private GitHub repository. In Figure 10.24, a Power Query

project containing multiple folders of PQ files (M queries) has been added to a solution in Visual

Studio and synchronized with a Git repository in an Azure DevOps project:

Figure 10.24: Power Query project in Visual Studio

In this example, all M queries (.pq files) are checked into source control as indicated by the lock

icon in the Solution Explorer window, except for the Customer query, which is pending an edit

(checkmark icon). The revised Customer dimension table query would be implemented within

the Power BI Desktop file first but also saved within the Power Query project in Visual Studio.

As an enterprise tool, many version control options are available in Visual Studio, including Com-

pare with Unmodified... and Blame (Annotate). By clicking Commit, a message describing the

change can be entered and the updated file can be synced to the source control repository in

Azure DevOps Services.

Given the additional maintenance overhead, enterprise source control tools may not be suitable

for smaller, simpler Power BI projects or the very early stages of projects. In addition to sound

requirement gathering efforts, teams can minimize the maintenance effort required of the version

control project by only including the essential M queries and DAX measures.

Chapter 10 443

For example, only the DAX measures containing fundamental business logic, such as the base

measures described in Chapter 4, Designing Import, DirectQuery, and Composite Data Models, could

be saved as .msdax files.

In addition to OneDrive for Business, Visual Studio, and Azure DevOps Services, there are several

external tools that can be leveraged for code maintenance purposes, such as the oddly named

external tool MSHGQM.

MSHGQM
MSHGQM is a free external tool for Power BI Desktop used for the creation of DAX measures and

columns as well as measure and column definitions that can be reused between multiple datasets.

MSHGQM includes over 200 DAX calculation definitions, including all of Power BI Desktop’s

built-in quick measures.

MSHGQM allows measure and column formulas to be created using replaceable parameters,

as shown in Figure 10.25. These definitions can then be used to create measures and columns

within datasets.

Figure 10.25: Power Query project in Visual Studio

In addition to using the built-in calculation definitions, users can create their own custom calcu-

lation definitions. MSHGQM stores custom calculation definitions within a JSON file and includes

the ability to store pre-defined labels, tooltips, default values, and even custom format strings.

Managing Workspaces and Content444

Using MSHGQM, enterprise BI teams can create a single measure definition for key metrics and

share the measure definitions among team members by distributing the JSON file. This ensures

that all team members are using the same calculations for such things as date intelligence mea-

sures, enabling consistency and repeatability across different data modelers, and speeding up

the data model development process.

MSHGQM can be downloaded from the following GitHub repository (https://bit.ly/3HlkjRa),

which includes documentation on its installation and use. Additional information and demon-

strations are provided via a dedicated YouTube channel: https://bit.ly/3M9QsPp.

This concludes our explanation of various version control options for Power BI. We’ll next turn

our attention to the subject of metadata management.

Metadata management
Metadata is simply data about data. While often overlooked, metadata management is an im-

portant aspect of properly managed content within Power BI.

Power BI datasets support metadata capabilities with the ability to include descriptions and

other metadata about tables, columns, and measures found within the dataset. The information

provided by metadata can become important as it’s common for hundreds of DAX measures to

be built into datasets over time to support advanced analytics and address new requirements.

In addition, content published to the Power BI service also allows metadata to be set via the

Settings pane as shown in Figure 10.26:

Figure 10.26: Metadata settings for a report in the Power BI service

https://bit.ly/3HlkjRa
https://bit.ly/3M9QsPp

Chapter 10 445

Consider that as Power BI projects grow to support more teams and business processes, the

dataset(s) supporting the reports and dashboards for these projects also grows. In addition, the

number of reports, dashboards, and other content is also likely to increase. For example, integrat-

ing the general ledger into the existing AdWorks Enterprise dataset would require new fact and

dimension tables, new relationships, and additional measures with their own unique business

rules or definitions.

Given this added complexity, BI teams and specifically the dataset designer described in Chapter 1,

Planning Power BI Projects, can embed descriptions to aid report authors in correctly utilizing the

data model. Additionally, the dynamic management views (DMVs) for Analysis Services models

can be leveraged to generate metadata reports providing detailed visibility of all essential objects

of the dataset. DMVs are simply Analysis Services queries that return information about server

health, server operations, and model objects.

The combination of field descriptions and metadata reporting can help drive consistent report

development, as well as facilitating effective collaboration within the project team and between

the project team and other stakeholders. In addition, the consistent application of metadata for

content published to the Power BI service can also help users search for and find content, as well

as understanding the intent and purpose of that content.

In addition to field descriptions, properties such as synonyms, display folders, and custom format

strings are additional examples of metadata. Let’s take a closer look at field descriptions.

Field descriptions
A Properties pane in the Model view of Power BI Desktop allows dataset designers to enter de-

scriptions and other metadata for the measures, columns, and tables of a dataset. The description

metadata is then exposed to report authors who connect to this dataset as they hover over these

objects in the Fields list of the Report view and within the input field wells of visualizations.

Although field descriptions are not a full substitute for formal documentation, descriptions of the

logic, definition, or calculation of various objects enable report authors to develop content more

efficiently. For example, rather than searching an external resource such as a data dictionary or

contacting the dataset designer, the report author could simply hover over measures and column

names from within Power BI Desktop.

Creating and viewing field descriptions is relatively simple, as explained in the following sections,

starting with how to create field descriptions.

Managing Workspaces and Content446

Creating descriptions
To create a description, open the Power BI Desktop file containing the dataset and navigate to

the Model view. By default, both the Properties pane and Fields pane are expanded as shown

in Figure 10.27.

Figure 10.27: Power Query project in Visual Studio

As shown in Figure 10.27, the Internet Gross Sales measure is selected on the Fields pane and

a sentence is entered into the Description box. Additional metadata such as Synonyms is also

displayed.

Chapter 10 447

Just like the preceding example with measures, selecting a table or a column in the Fields pane

exposes similar metadata, including a Description box. Table and column descriptions can be

valuable, but measures are likely the best use case for this feature given the volume of measures

in a dataset and the variety of calculations or logic they can contain.

Identify the most important measures in a dataset and apply concise, consistent descriptions using

business-friendly terms. The set of measures described in the Base measures section of Chapter

5, Developing DAX Measures and Security Roles, represents good candidates for descriptions since

they are reused in many other measures, including the date intelligence measures. For example,

it’s essential that the report author knows that the net sales measure includes discounts while

the gross sales measure does not.

Next, we’ll look at how to view field descriptions.

View field descriptions
The descriptions included in Power BI datasets can be viewed in the Fields pane, the input field

wells of visualizations, and the Properties pane (for import and composite mode datasets).

In Figure 10.28, the report author built a simple visual using the Customer History Segment

column and Internet Gross Sales measure. Hovering the mouse cursor over the Customer

History Segment column in the visual’s Values field well exposes the description in the tooltip

along with the table and column name.

Figure 10.28: Field description via visualization field wells

As shown in Figure 10.27, the report author can view the description of the field (column or mea-

sure) via the tooltip to understand the essential definition, such as the first purchase date relative

to the current date in this example.

Managing Workspaces and Content448

Likewise, the author can also hover over the Internet Gross Sales measure in the Values field

well to view this description or hover over other measure, column, and table names in the Fields

pane, as shown in Figure 10.29:

Figure 10.29: Description of measure via the Fields pane

For the Internet Gross Product Margin measure and other measures in the dataset, the descrip-

tion applied uses proper casing when referring to DAX measures. This approach helps to keep

each description concise and advises the user of the other measures they may need to review.

Field descriptions cannot be viewed by hovering over names or values in the visuals themselves

on the report canvas. However, as per the Visualization formatting section of Chapter 6, Planning

Power BI Reports, chart visuals contain a Tooltips input field well that provides a very similar

experience to viewing field descriptions.

Tooltips are typically used to display DAX measures related to the measures in the visual, such

as the net margin percentage for a chart that visualizes net sales. However, measures can also

return text strings and, thus, if necessary, to aid the users viewing the reports, measures can be

created containing the field description metadata and utilized as tooltips.

Although potentially useful for report consumers, BI teams should be cautious that the DAX

measures used for descriptions are isolated from the actual field descriptions. Therefore, in the

event of a change in description, both the description measure and the field description would

need to be updated.

Additionally, if description measures are used extensively, a dedicated measure support table, as

described in Chapter 3, Transforming Data with M, and Chapter 4, Designing Import, DirectQuery,

and Composite Data Models, may be necessary to organize these measures. Alternatively, they

could be organized into display folders.

Field descriptions applied to Analysis Services data models also flow through to Power BI reports

just like the examples in this section with a Power BI dataset.

Chapter 10 449

However, field descriptions applied to Power BI datasets are not visible when connecting via

Microsoft Excel.

Managing metadata such as descriptions for all tables, columns, and measures within a dataset

can be burdensome and time-consuming. Additionally, for datasets with many tables, columns,

and measures, it is easy to miss setting the metadata for particular items. Thus, we’ll next briefly

explore an external tool for Power BI that helps make the management of metadata easier.

Metadata Mechanic
Metadata Mechanic is a free, external tool for Power BI Desktop specifically designed to make the

management and setting of metadata easier and faster. Using Metadata Mechanic, the metadata

for all tables, columns, and measures within a data model can be retrieved and updated as shown

in Figure 10.30:

Figure 10.30: Metadata Mechanic

Metadata Mechanic includes the ability to automatically mass configure displayed metadata, such

as hiding all columns in a table, moving all measures to another table, or setting the thousands

separator for all whole number columns and measures.

Metadata Mechanic can be downloaded from the following GitHub repository (https://bit.

ly/3HlkjRa), which includes documentation on its installation and use.

Additional information and demonstrations are provided via a YouTube channel: https://bit.

ly/3M9QsPp. We’ll now turn our attention to reporting on this metadata.

https://bit.ly/3HlkjRa
https://bit.ly/3HlkjRa
https://bit.ly/3M9QsPp
https://bit.ly/3M9QsPp

Managing Workspaces and Content450

Metadata reporting
Analysis Services DMVs are available to retrieve the descriptions applied to datasets and related

information. These DMVs can be leveraged for both simple, ad hoc extracts via common dataset

tools, such as DAX Studio, as well as more robust and standardized reports in Power BI or Excel.

Official documentation of Analysis Services DMVs, including a reference and description of

each DMV, query syntax, and client-tool access, is available via the following link: http://bit.

ly/2A81lek.

The following query can be used to retrieve the measures in a dataset with descriptions as well

as their DAX expression:

SELECT

 [Name] as [Measure Name]

 , [Description] as [Measure Description]

 , [Expression] as [DAX Expression]

FROM

$SYSTEM.TMSCHEMA_MEASURES

WHERE LEN([Description]) > 1

ORDER BY [NAME];

The WHERE clause in this query ensures that only measures with a description applied are returned.

Removing or commenting out this clause (for example, --WHERE LEN([Description]) > 1) re-

turns all measures whether or not they have a description. Additionally, column aliases of Measure

Name, Measure Description, and DAX Expression improve the usability of the DMV columns.

As shown in Figure 10.31, the query can be executed from DAX Studio against the open Power BI

Desktop file:

Figure 10.31: Measure descriptions via a DMV query in DAX Studio

http://bit.ly/2A81lek
http://bit.ly/2A81lek

Chapter 10 451

Just as measure descriptions can be retrieved via the TMSCHEMA_MEASURES DMV, the following

query retrieves the column descriptions from the TMSCHEMA_COLUMNS DMV:

SELECT

 [ExplicitName] as [Column Name]

 , [Description] as [Column Description]

FROM $SYSTEM.TMSCHEMA_COLUMNS

WHERE LEN([Description]) > 1

ORDER BY [ExplicitName];

As per the official documentation referenced earlier in this section, the query engine for DMVs

is the Data Mining parser and the DMV query syntax is based on the SELECT (DMX) statement.

Therefore, although the queries appear to be standard SQL statements, the full SQL SELECT syntax

is not supported, including the JOIN and GROUP BY clauses.

For example, it’s not possible to join the TMSCHEMA_COLUMNS DMV with the TMSCHEMA_TABLES DMV

within the same SELECT statement to retrieve columns from both DMVs. Given these limitations,

it can be helpful to build lightweight data transformation processes on top of DMVs, as described

in the following section.

Standard metadata reports
For larger datasets with many measures, relationships, and tables, a dedicated metadata report

can be constructed using Power BI. In this approach, the Analysis Services data connector is used

to access the DMVs of the Power BI dataset and this data is transformed via M queries.

A set of report pages can be created to visualize the primary objects of the model and support

common ad hoc questions, such as which relationships use bidirectional cross-filtering? Imple-

menting the DMV-based Power BI report consists of the following four steps:

1. Obtain the server and database parameter values of the Power BI dataset

2. Query the DMVs of the Power BI dataset from a separate Power BI Desktop file

3. Integrate and enhance the DMV data to support the visualization layer

4. Develop the report pages

Each of these steps is explained in the following sections starting with obtaining the server and

database parameters.

Managing Workspaces and Content452

Server and database parameters
The server value of the Power BI dataset is visible in the status bar (bottom-right corner) when

connected to the dataset from DAX Studio, as shown in Figure 10.32:

Figure 10.32: Server value of Power BI dataset via DAX Studio

In Figure 10.31, the server parameter is localhost:59910. To obtain the database parameter, run

the following query in DAX Studio:

 SELECT

 [CATALOG_NAME]

 , [DATABASE_ID]

 FROM $SYSTEM.DBSCHEMA_CATALOGS

Both columns retrieve the same GUID value, which can be used as the database parameter.

There are other methods of obtaining the server parameter, such as finding the process ID (PID)

in Task Manager and then running netstat -anop tcp from Command Prompt to find the port

associated with the PID. However, connecting to the dataset from DAX Studio is more straight-

forward and it’s assumed that experienced Power BI dataset designers will have at least a basic

familiarity with DAX Studio.

The server parameter (for example, localhost:59910) can also be used to connect to the running

Power BI dataset via SQL Server Profiler. This can be useful for identifying the DAX queries gen-

erated by report visuals and user interactions. Alternatively, Power BI Desktop can generate a

trace file via the Enable tracing setting within the Diagnostics tab (File | Options and Settings

| Diagnostics).

Querying the DMVs from Power BI
With the server and database known, parameters and queries can be created in Power BI Desktop

to stage the DMV data for further transformations. In Figure 10.33, showing the Power Query Ed-

itor, three query groups are used to organize the parameters, the DMV queries, and the enhanced

queries (Metadata Report Tables) used by the report:

Chapter 10 453

Figure 10.33: Power Query Editor in Power BI Desktop

As per the TablesDMV query, the two parameters (AnalysisServicesServer and

AnalysisServicesDatabase) are passed to the AnalysisServices.Database() function for each

DMV query. As indicated by the gray font of the DMV queries and the parameters, these queries

are not loaded to the data model layer.

To update the metadata report in a future session to reflect changes to the dataset, the server and

database parameter values would need to be retrieved again. These values could then be passed

to the data model parameters, thus allowing all queries to update. This manual update process

is necessary with Power BI Desktop files, given changes to the port and database ID, but is not

necessary for metadata reports based on Analysis Services models.

Given the small size of the DMV data and the limitations of SQL SELECT queries against DMV data,

a simple SELECT * is used to expose all columns and rows. The Metadata Report Table queries

contain all the joins and transformations to prepare the data for reporting.

Managing Workspaces and Content454

Integrating and enhancing DMV data
The following M query produces the Relationships table by implementing joins to retrieve the

table and column names on each side of each relationship:

let

 FromTableJoin = Table.NestedJoin(

 RelationshipsDMV,{"FromTableID"},TablesDMV,{"ID"},"TableDMVColumns",
JoinKind.Inner),

 FromTable = Table.ExpandTableColumn(FromTableJoin, "TableDMVColumns",
{"Name"}, {"From Table"}),

 ToTableJoin = Table.NestedJoin(

 FromTable,{"ToTableID"},TablesDMV,{"ID"},"TableDMVColumns",
JoinKind.Inner),

 ToTable = Table.ExpandTableColumn(ToTableJoin, "TableDMVColumns",
{"Name"}, {"To Table"}),

 FromColumnJoin = Table.NestedJoin(

 ToTable,{"FromColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns",
JoinKind.Inner),

 FromColumn = Table.ExpandTableColumn(FromColumnJoin,
"ColumnsDMVColumns",

 {"ExplicitName"}, {"From Column"}),

 ToColumnJoin = Table.NestedJoin(

 FromColumn,{"ToColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns",
JoinKind.Inner),

 ToColumn = Table.ExpandTableColumn(ToColumnJoin, "ColumnsDMVColumns",

 {"ExplicitName"}, {"To Column"}),

 CrossFilteringColumn = Table.AddColumn(ToColumn, "Cross-Filtering
Behavior", each

 if [CrossFilteringBehavior] = 1 then "Single Direction"

 else if [CrossFilteringBehavior] = 2 then "Bidirectional" else
"Other", type text),

 RenameActiveFlag = Table.
RenameColumns(CrossFilteringColumn,{{"IsActive", "Active Flag"}})

in

 RenameActiveFlag

Chapter 10 455

The Relationships DMV (TMSCHEMA_RELATIONSHIPS) includes table and column ID columns,

which are used for the joins to the tables (TMSCHEMA_TABLES) and columns (TMSCHEMA_COLUMNS)

DMVs, respectively. Additionally, a more intuitive cross-filtering behavior column is added based

on a conditional (if..then) expression.

Metadata report pages
With the enhanced DMV data loaded, report pages can be created, visualizing the most import-

ant columns. In Figure 10.34, the table and column names retrieved via the M query joins in the

previous section, Integrating and enhancing DMV data, are included in a simple table visual:

Figure 10.34: Metadata report page

A Power BI Desktop file containing the M queries and report pages from this example is included

with the code bundle for this book. Additionally, Chapter 3, Transforming Data with M, and Chapter

4, Designing Import, DirectQuery, and Composite Data Models, describe the essential concepts of M

queries and relationships contained in this section, respectively.

This concludes our exploration of metadata management and reporting.

Summary
This chapter introduced workspaces and their fundamental role in managing and delivering Power

BI content to groups of users in the Power BI service. A staged deployment architecture across

development, test, and production workspaces was described and implementation guidance

was provided. Additionally, several features and processes related to content management and

governance were reviewed, including content sensitivity and protection, version history, and

metadata management and reporting.

Managing Workspaces and Content456

The next chapter examines the on-premises data gateway and the configuration of data refresh

processes in the Power BI service. This includes the administration of the gateway, such as au-

thorizing users and data sources, as well as monitoring gateway resource utilization.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

11
Managing the On-Premises Data
Gateway

For many organizations, the data sources for Power BI datasets or reports are located in on-

premises environments. The on-premises data gateway (gateway) serves as a bridge between the

Power BI service and on-premises data sources, providing a means to securely connect to these

sources to support scheduled data refreshes. In the case of DirectQuery and Analysis Services

Live connections, the gateway is used to return the results of queries requested by users in the

Power BI service.

As a critical component of many Power BI solutions and potentially other solutions utilizing

Microsoft cloud services, such as Azure Analysis Services, Power Automate, and Power Apps, a

sound understanding of the data gateway is essential.

This chapter reviews the architecture and behavior of the On-premises data gateway in the context

of Power BI. End-to-end guidance and best practices are provided across the primary stages of

deployment, from planning to installation, and setting up to management and monitoring.

In this chapter, we review the following topics:

• On-premises data gateway planning

• Gateway concepts

• Gateway installation and configuration

• Managing gateway clusters

• Troubleshooting and monitoring gateways

• Data refresh

Managing the On-Premises Data Gateway458

We start with planning for the implementation of the On-premises data gateway.

On-premises data gateway planning
Planning for the On-premises data gateway involves considerations for infrastructure/resources

and networking, data governance, and the administration of the gateway itself. Before committing

to a gateway, an organization can determine if BI solutions should be developed against data

sources that require a gateway such as legacy on-premises databases or if this data should be

loaded/centralized in a source that doesn’t require a gateway such as Azure Synapse or Azure

SQL Database.

For example, a BI team could determine that a gateway will only be used for a particular on-premises

SQL Server database and any other on-premises sources such as files on network file shares and

other databases will either not be supported or will require its own gateway in the future.

After determining that a gateway or cluster of gateways will indeed be a required component of

the Power BI architecture, more detailed considerations can be reviewed such as the resources this

gateway will need to support its expected workload, who will be responsible for administering

this gateway, and who will be granted permissions to use the gateway.

One such detailed consideration is identifying which data sources require a gateway and

understanding the role of the gateway in each deployment scenario. Recall from previous chapters

that datasets support import, DirectQuery, and composite storage modes. In addition, reports

can connect Live to Power BI datasets published to the Power BI service.

For example, if an import mode Power BI dataset or an import mode Azure Analysis Services

model simply needs to be refreshed with on-premises data every night, then gateway resources

(hardware) should be provisioned to support this specific nightly workload. This deployment

scenario, with the refreshed and in-memory data model hosted in the cloud, is preferable from a

user experience or query performance standpoint, as the report queries generated in the Power

BI service do not have to access the on-premises source via the On-premises data gateway.

Alternatively, when the data model or data source accessed directly by Power BI reports is located

in an on-premises environment, the On-premises data gateway is used to facilitate data transfer

between the data source and the report queries from the Power BI service.

For example, a DirectQuery Power BI dataset built against an on-premises Teradata database

results in report queries being sent from the Power BI service to the Teradata database via the

On-premises data gateway and the results of those queries being returned to the Power BI service

via the On-premises data gateway.

Chapter 11 459

This deployment scenario can naturally require alternative gateway resources, such as additional

CPU cores, given the potentially high volume of queries being generated dynamically based on

user activity.

In addition to on-premises data sources, data sources residing in Infrastructure-as-a-Service

(IaaS) virtual machines (VMs) also require a data gateway. This is an important exception as

cloud data sources generally do not require a gateway. For example, Platform-as-a-Service (PaaS)

sources, such as Azure SQL Database, and Software-as-a-Service (SaaS) solutions, such as Google

Analytics, do not require a gateway.

The following two sets of questions address essential, high-level planning topics including the

administration of the installed gateway. The following section, Top gateway planning tasks, as

well as the Gateway architectures section later in this chapter, contain greater detail to support

gateway deployment:

1. Where is the data being used by the Power BI dataset?

Confirm that a gateway is needed to access the data source from Power BI. This access

includes both scheduled data refresh and any DirectQuery or Live connections to the data

source. Additional details on sources requiring a gateway are provided in the next section,

Top gateway planning tasks.

2. If a gateway is needed, is the data source supported with a generally available (GA) data

connector?

If a source-specific connector is not available, the gateway supports Open Database

Connectivity (ODBC) and Object Linking and Embedding Database (OLE DB)

connections as well. The current list of supported data sources is available at https://

bit.ly/30N5ofG. Data connectors labeled as (Beta) in the Get Data window of Power BI

Desktop should only be used for testing for stability reasons and the fact that functionality

may change.

3. Is the on-premises data or the IaaS data being imported to the Power BI dataset(s) or an

Azure Analysis Services model?

If yes, the gateway supports the scheduled refresh/processing activities for these datasets.

If no, the gateway supports user report queries of the data source via DirectQuery or Live

connections.

4. Will a standard On-premises data gateway be used or will a personal gateway (personal

mode) be used?

https://bit.ly/30N5ofG
https://bit.ly/30N5ofG

Managing the On-Premises Data Gateway460

In all corporate BI deployments, the default and recommended on-premises gateway is

installed by the IT organization on IT-owned and maintained servers.

However, in certain business-led self-service projects or in scenarios in which an IT-owned

gateway server is not available, the personal gateway could be installed on a business user’s

machine, allowing that user to configure scheduled refreshes of import mode datasets.

A single gateway can be used to support multiple datasets, and both import and DirectQuery

modes. However, it can be advantageous to isolate the alternative Power BI workloads across

distinct gateway clusters (discussed later in this chapter), such as with an import gateway cluster

and a DirectQuery or Live connection gateway cluster.

Without this isolation, the scheduled refresh activities of import mode datasets (Power BI or

Azure Analysis Services) could potentially impact the performance of user queries submitted via

DirectQuery and Live connection datasets. Additionally, as mentioned earlier, scheduled refresh

activities can require far different gateway resources (for example, memory) than the queries

generated via DirectQuery datasets or Live connections to on-premises SQL Server Analysis

Services (SSAS).

In addition to provisioning hardware and installing the gateway(s) for each scenario, BI teams

must also plan for the administration and management of the gateway. Answering the following

five questions contributes to planning the implementation:

1. Which users will administer the gateway in Power BI?

This should be more than one user. Preferably, an Azure Active Directory (AAD) security

group of multiple gateway admins can be configured. These users do not need Power BI

Pro licenses if they’re only administering gateway clusters.

In larger Power BI deployments, distinct users or security groups could be assigned as

administrators of different gateways. For example, two users could administer a gateway

cluster utilized by enterprise or corporate-owned BI content while two other users could

administer a gateway cluster used to support self-service BI content and projects.

This isolation of hardware resources between corporate and self-service BI (that is,

business user/team owned) can also be implemented with Power BI Premium capacities,

as described in Chapter 15, Building Enterprise BI with Power BI Premium. The essential

goal of this isolation is to provide the self-service projects with resources aligned to these

needs while ensuring that high priority and widely utilized corporate BI assets are not

impacted by self-service content or activities.

Chapter 11 461

2. Which authentication credentials or method will be used to configure the gateway data

sources?

For SSAS and Azure Analysis Services, this should be a server administrator of the Analysis

Services instance. For certain DirectQuery data sources, a single sign-on (SSO) option

is supported in which the Power BI user’s identity is passed to the source system, thus

leveraging the source system’s security. The DirectQuery datasets section later in this

chapter contains details of this configuration.

3. Which users will be authorized to use the gateway?

Users or security groups of users must be mapped to the data source of a gateway. These

are usually report authors with Power BI Pro licenses.

4. Where will the gateway recovery key be stored?

Recovery keys are necessary for migrating, restoring, or taking over an existing gateway.

5. Who will be responsible for updating the On-premises data gateway as new versions are

released?

Just like Power BI Desktop, new versions of the On-premises data gateway are frequently

released. This release schedule is as frequent as once a month. New versions include new

features and improvements, such as the support for datasets with both cloud and on-

premises data sources and/or new and updated connector support.

The Power BI team recommends staying up to date with new releases and will not support

old gateway versions. Each new gateway version includes the same M Query engine utilized

by the corresponding release of Power BI Desktop. Examples and considerations for M

Queries were described in Chapter 3, Connecting to Sources and Transforming Data with M.

With the essential questions answered regarding gateway planning, we next take a closer look

at the most important gateway planning tasks.

Top gateway planning tasks
Since the gateway relates to different areas of IT, including infrastructure, networking, and data

security, subject matter experts in these areas often inquire about the technical requirements of

the gateway and its functionality. Additionally, business intelligence teams want to ensure that

the gateway doesn’t become a bottleneck to query performance and that dependencies on an

individual gateway are avoided.

Managing the On-Premises Data Gateway462

BI/IT teams responsible for deploying Power BI solutions with on-premises data (or IaaS data)

must partner with these other IT stakeholders to resolve questions and provision the appropriate

resources for the On-premises data gateway. This section addresses four of the most common

gateway planning tasks. Information related to high availability and security is included in the

gateway clusters and architectures, and gateway security sections, respectively.

Let’s now address the first gateway planning task, determining whether a gateway is needed.

Determining whether a gateway is needed
As one would expect, an On-premises data gateway is usually not required for connectivity to

cloud data sources. PaaS offerings, such as Azure SQL, and SaaS solutions, such as Salesforce,

do not require a gateway. In addition, a virtual network data gateway is available for securely

connecting to resources provisioned within the same virtual network in Azure such as Azure table

and blob storage, Cosmos DB, and Snowflake.

However, data sources that reside in an IaaS VM do require a gateway. Additionally, the Web.

Page() function used in M Queries also requires a gateway. This function is used by the Web Data

Connector (WDC) (Get Data | Web) to return the contents of an HTML web page as a table, as

shown in the following M Query:

// Retrieve table of data access M functions and their descriptions

let

 Source = Web.Page(Web.Contents("https://msdn.microsoft.com/en-US/
library/mt296615.aspx")),

 PageToTable = Source{0}[Data],

 ChangedType = Table.TransformColumnTypes(PageToTable,

 {{"Function", type text}, {"Description", type text}})

in

 ChangedType

In the preceding example, a two-column table (Function, Description) of M functions is retrieved

from an MSDN web page and imported into a table in Power BI.

Additionally, all data sources for a dataset that accesses an on-premises data source must be added

to the list of data sources in the gateway management portal. For example, if a dataset uses both

SharePoint (on-premises) and an Azure SQL database, the URL for the Azure SQL database must

also be added as a data source (via the SQL Server data source type) in the gateway management

portal. If one of the data sources for the dataset is not configured for the gateway, the gateway

will not appear in the dataset settings to support a refresh.

Chapter 11 463

Assuming that a gateway is needed, the next task is to identify where to install the gateway.

Identifying where the gateway should be installed
Gateways should be installed in locations that minimize the latency between the Power BI service

tenant, the gateway server, and the on-premises data source. Reduced latency between these

three points results in improved query performance.

Minimizing this latency is especially important when the gateway is used to support interactive

report queries from Power BI to on-premises DirectQuery sources and Live connections to on-

premises SSAS models. Network latency from an IP location to Azure data regions can be tested

at http://azurespeed.com.

For example, via this free tool, it can quickly be determined that the average latency to the West

US region is 100 ms while the East US region is only 37 ms. The lower latency of the East US region

is due to the physical proximity of this region to the source IP location (near Columbus, OH). It is

most often the case that reduced physical distance results in lower network latency.

For example, if the Power BI tenant for your organization is located in the North Central US

(Illinois) region in Microsoft Azure and your on-premises data source (for example, Oracle) is also

located in the upper Midwest region of the United States, then the gateway should be installed

on a server near or between these two locations.

The location of a Power BI tenant can be found by clicking the About Power BI menu item via

the question mark (?) icon in the top-right corner of the Power BI service. Performing this action

displays a dialog similar to Figure 11.1.

Figure 11.1: About Power BI: tenant location

In this example, the Power BI content for the organization is being stored in the North Central

US (Illinois) Azure region.

http://azurespeed.com

Managing the On-Premises Data Gateway464

Therefore, the gateway should be installed on a location that minimizes the distance between

Illinois and the location of the data source.

One example of this would be to install the gateway on the same subnet of the production data

source server. It’s not necessary, or recommended, to install the gateway on the same server as the

production data source given that the data gateway service will consume memory and processor

resources that may impact the performance of the source system.

Alternatively, assuming the on-premises data center is hybridized with Azure via a virtual private

network (VPN) connection such as Azure ExpressRoute, the gateway could be installed as an IaaS

VM in the North Central US (Illinois) Azure region. ExpressRoute extends on-premises networks

to Microsoft Azure via a private connection.

Currently, there are 66 Azure regions globally with 12 new regions planned. This link identifies

the Azure regions and the criteria for choosing a specific region: http://bit.ly/2B598tD.

Once a location is identified, the next task is to determine the hardware resources required for

the gateway.

Defining the gateway infrastructure and hardware requirements
The recommended starting point for a server that hosts the gateway is eight CPU cores, 8 GB of

memory, at least 4 GB of solid-state drives (SSD), the 64-bit version of Windows 2012 R2 (or

later), and .NET Framework 4.8 (for gateway version February 2021 or later). However, hardware

requirements for the gateway server vary significantly based on the type of dataset supported (import

versus DirectQuery/Live connection), the volume of concurrent users, and the queries requested.

For example, if an M query or part of an M query is not folded back to the source system, as

described in Chapter 3, Connecting to Sources and Transforming Data with M, the gateway server must

execute the non-folded M expressions during the scheduled refresh (import) process. Depending

on the volume of data and the logic of these expressions, a greater amount of RAM would better

support these local operations.

Similarly, if many users are interacting with reports based on a DirectQuery dataset or a

Live connection to an SSAS model (on-premises), additional CPU cores would provide better

performance.

The gateway installs on any domain-joined machine and cannot be installed on a domain controller.

Additionally, only one gateway can be installed per computer per gateway mode (enterprise versus

personal). Therefore, it’s possible to have both an enterprise mode and a personal mode gateway

running on the same machine.

http://bit.ly/2B598tD

Chapter 11 465

It’s strongly recommended to avoid a single point of failure by installing instances of the gateway

on separate servers. These multiple instances can serve as a single gateway cluster of resources

available to support data refreshes and queries against on-premises data sources. Gateway clusters

and architectures consisting of separate gateway clusters are described in the Gateway clusters

and Gateway architectures of this chapter.

Performance logging associated with the gateway and the gateway server can be used to

determine whether adjustments in available resources (RAM and CPU) are necessary. Guidance

on interpreting reporting on and interpreting these logs is included in the Troubleshooting and

monitoring gateways section later in this chapter.

In terms of network configuration, the gateway creates an outbound connection to Azure Service

Bus and does not require inbound ports. The gateway communicates on the following outbound

ports: TCP 443 (default), 5671, 5672, and 9350 through 9354.

It’s recommended that organizations whitelist the IP addresses for the data region of their Power

BI tenant (for example, North Central US) within their firewall. The list of IP addresses for the

Azure data centers can be downloaded via the following URL: https://bit.ly/3vqg6JQ.

The downloaded list of Azure IP addresses is contained within a JSON file which can be easily

accessed via Power BI Desktop via an M Query similar to the following:

let

 Source = Json.Document(File.Contents("C:\Users\gdeckler\Downloads\
ServiceTags_Public_20220221.json")),

 #"Converted to Table" = Table.FromRecords({Source}),

 #"Expanded values" = Table.ExpandListColumn(#"Converted to Table",
"values"),

 #"Expanded values1" = Table.ExpandRecordColumn(#"Expanded values",
"values", {"name", "id", "properties"}, {"values.name", "values.id",
"values.properties"}),

 #"Expanded values.properties" = Table.ExpandRecordColumn(#"Expanded
values1", "values.properties", {"changeNumber", "region", "regionId",
"platform", "systemService", "addressPrefixes", "networkFeatures"},
{"values.properties.changeNumber", "values.properties.region", "values.
properties.regionId", "values.properties.platform", "values.properties.
systemService", "values.properties.addressPrefixes", "values.properties.
networkFeatures"}),

 #"Changed Type" = Table.TransformColumnTypes(#"Expanded values.
properties",{{"changeNumber", Int64.Type}, {"cloud", type text}, {"values.

https://bit.ly/3vqg6JQ

Managing the On-Premises Data Gateway466

name", type text}, {"values.id", type text}, {"values.properties.
changeNumber", Int64.Type}, {"values.properties.region", type any},
{"values.properties.regionId", Int64.Type}, {"values.properties.
platform", type text}, {"values.properties.systemService", type text},
{"values.properties.addressPrefixes", type any}, {"values.properties.
networkFeatures", type any}}),

 #"Expanded values.properties.addressPrefixes" = Table.
ExpandListColumn(#"Changed Type", "values.properties.addressPrefixes"),

 #"Extracted Values" = Table.TransformColumns(#"Expanded values.
properties.addressPrefixes", {"values.properties.networkFeatures", each
Text.Combine(List.Transform(_, Text.From), ","), type text}),

 #"Filtered Rows" = Table.SelectRows(#"Extracted Values", each true)

in

 #"Filtered Rows"

Once the infrastructure and hardware are configured and provisioned, the next task is to define

gateway roles and permissions.

Defining gateway roles and permissions
Similar to Power BI workspace roles described in the previous chapter, different roles are available

for the on-premises data gateway and organizations should plan for which users and/or groups

should be assigned to which roles.

There are three security roles for gateways, Admin, Connection creator, and Connection creator

with sharing. The Admin role has full control of the gateway including the ability to fully manage

data sources (connections), users and permissions. In contrast, the Connection creator role is

limited to only creating connections (data sources) on the gateway. The Connection creator with

sharing provides the additional ability to share the gateway with users.

There are also three connection security roles, Owner, User and User with sharing. The Owner role

can fully manage the connection including the ability to delete the connection, update data source

credentials and manage permissions. In contrast, the User role can simply use the connection

and the User with sharing adds the ability to share the connection with others.

For example, a small team of IT admins may be assigned the gateway Admin role and be responsible

for keeping the gateway updated to the latest version and granting required access to other users.

Additionally, certain dataset authors or BI teams could be identified as valid users of the gateway

or for only certain data sources configured on the gateway.

Chapter 11 467

Some BI teams might prefer to use the User with sharing role, assigning this to a small group

within the business. As these users are closer to the needs and requirements for the business these

users would then have the necessary knowledge to know who else within the business requires

access to the data source connection.

As with the Power BI workspace roles described in the previous chapter, groups should be used

in role assignments and then users assigned to those groups. Assigning users and/or groups to

gateways, as well as managing data sources, is done within the Power Platform Admin Center

(https://admin.powerplatform.microsoft.com/) using the Data page.

With roles and permissions assigned, the next task is to plan for the creation and management

of recovery keys.

Planning for recovery keys
Recovery keys (essentially a password) are a critical security component of Power BI gateways.

Recovery keys are used to generate encryption keys used to encrypt data source credentials.

Recovery keys are also required to move gateways from one server to another and when adding

gateway instances to gateway clusters. These subjects are explained in greater detail later in

this chapter.

A recovery key is entered when installing a new gateway instance. This key is not shown when

entered and must be confirmed. This original key must be known in order to set a different key.

Given the importance of recovery keys, it is imperative that enterprise BI teams properly plan for

their creation and management.

Once entered and the gateway installation is complete, loss of the recovery key may mean that

the entire gateway or even an entire gateway cluster must be removed and rebuilt. Therefore,

enterprise BI teams should agree upon and pre-generate an alphanumeric key consisting of at least

8 characters/numbers. This key should then be stored in password vault software or otherwise

treated as a highly valuable, highly confidential enterprise password.

Because the requirement to enter a recovery key during gateway installation often comes as a

surprise to those unfamiliar with Power BI and because recovery keys are often not needed for

extended periods of time, more than one gateway has had to be rebuilt because of the loss of

the recovery key. With the importance of recovery keys understood, the next decision to make is

deciding between installing the gateway in standard or personal mode.

https://admin.powerplatform.microsoft.com/

Managing the On-Premises Data Gateway468

Standard versus personal mode
There are two separate downloads for the On-premises data gateway, one for standard mode
and one for personal mode. The recommended gateway mode, standard mode, provides all the
functionality of the personal mode plus many more features and management capabilities.

The additional features include support for DirectQuery and Live connection datasets, several
other Azure services, such as Power Automate, and the management capabilities described in the
Managing gateway clusters section later in this chapter.

Who can install gateways can be managed within the Power Platform admin center. The Data
page of the Power Platform Admin Center provides an option to Manage gateway installers where
administrators can specify which users are authorized to install standard mode gateways. Personal
gateways can only be disabled or managed by PowerShell scripts that utilize the DataGateway
module and specifically the Set-DataGatewayTenantPolicy.

A single personal mode gateway can be installed per Power BI user account and can only be used
for the on-demand or scheduled refresh of the import mode Power BI datasets. Most importantly,
the personal mode gateway is completely tied to the individual user and cannot be shared.

For example, if the gateway is installed in personal mode on a user’s laptop, that laptop will need
to be on and connected to the internet to support any scheduled data refreshes. Additionally,
unlike the administrators of a standard mode gateway, a personal mode user cannot authorize
other users to leverage the personal mode gateway and its configured data sources.

In Figure 11.2, both a personal mode gateway and a standard gateway are available to refresh a

dataset.

Figure 11.2: Dataset gateway connection

Chapter 11 469

In Figure 11.2 the various data source connections within the dataset are mapped to configured

data sources available in the standard gateway cluster. If the user was not authorized to use the

On-premises data gateway (Mastering Power BI), the personal mode gateway could be used

to complete the refresh assuming the user has the necessary privileges to the on-premises data

sources of the import mode dataset.

The personal mode gateway is not intended for large datasets or datasets supporting reports and

dashboards that many users depend on. The personal mode gateways should only be considered

for enabling individual business users to work on personal or proof-of-concept projects.

For example, the business user may have several Excel workbooks and other frequently changing

local files that are not configured as data sources on a standard gateway. If the user has been

assigned a Power BI Pro license, the personal mode gateway allows the user to keep Power BI

reports and dashboards based on these sources updated for review by colleagues.

In the event that the user’s content requires reliable, longer-term support, the BI/IT organization

can add the data sources to a standard gateway thus removing the dependency on the user’s

machine. All the remaining sections of this chapter are exclusively focused on the standard

data gateway.

With reliability and supportability in mind, we now look at some important concepts related

to gateways.

Gateway concepts
There are a number of different concepts and designs enterprise BI teams should be familiar with

when it comes to the On-premises data gateway. These include the concept of gateway clusters,

different gateway architecture designs, and security. Each of these subjects is explored in detail

in the following sections.

Gateway clusters
Gateways natively support clustering. Clustering is when independent software systems, called

instances or nodes, work together as a unified resource to provide greater scalability and reliability.

Each Power BI dataset is associated with a single gateway cluster, which is composed of one or

more standard gateway instances.

For example, if a Power BI dataset imports data from both a SQL Server database and an Excel

file, the same gateway cluster is responsible for the import from both sources.

Managing the On-Premises Data Gateway470

Likewise, if hundreds of business users interact with reports based on the same DirectQuery

dataset or a Live connection to an on-premises SSAS instance, these user interactions generate

query requests to the same gateway cluster.

Gateway clusters representing multiple standard gateway instances (for example, primary and

secondary) provide both high availability and load balancing. Each instance must be installed on

a separate machine as per the Defining the gateway infrastructure and hardware requirements section.

From an availability standpoint, if an individual gateway instance within a cluster is not running,

the data refresh and user query requests from the Power BI service are routed to the other gateway

instance(s) within the cluster. In terms of query performance and scalability, the Power BI service

can automatically distribute (load balance) the query requests across the multiple gateway

instances within the cluster.

Data source configurations for the primary gateway of the cluster, which is the first gateway

installed for the cluster, are leveraged by any additional gateways added to the cluster. In Figure

11.3 from the gateway installer application, a new gateway is added to an existing gateway cluster:

Figure 11.3: Adding a gateway to a gateway cluster

Chapter 11 471

In this example, the new gateway (Mastering Power BI 2) is added to the Mastering Power BI

gateway cluster as per the Add to an existing gateway cluster checkbox and Available gateway

clusters selection. Note that the Recovery key for the primary gateway instance, which was

created when the first gateway instance of the cluster was installed, is required to add a gateway

to a cluster.

Be aware that the gateway management portal in the Power BI service only displays the gateway

clusters, not the individual gateways within each cluster. Both the gateway clusters and the

individual gateways within each cluster can be accessed and managed via PowerShell scripts as

per the Managing gateway clusters section.

Before adding a gateway to a cluster, ensure that the new gateway instance is able to connect to

the same data sources configured for the cluster. As described in the Top gateway planning tasks

section, the additional gateways added to gateway clusters should also be installed in locations

that minimize the distance between the gateway server, the Power BI service tenant, and the

data source(s).

Let’s now turn our attention to some different architectures for gateways within an enterprise

configuration.

Gateway architectures
For large-scale deployments of Power BI in which multiple types of datasets and workloads are

supported (such as import, DirectQuery, and Live connection queries), BI teams can consider

multiple gateway clusters. In this approach, each gateway cluster is tailored to meet the specific

resource needs (RAM and CPU) of the different workloads, such as large nightly refreshes or high

volumes of concurrent queries in the early mornings.

For example, one gateway cluster could be composed of two gateway instances with a relatively

high amount of available RAM on each gateway server. This cluster would have resources available

during the most intensive scheduled refresh operations (for example, 4 A.M. to 6 A.M.) and would

be exclusively used by import mode Power BI datasets and any Azure Analysis Services models

that also regularly import data from on-premises sources.

A separate gateway cluster would be created based on two gateway instances with a relatively

high number of CPU cores on each gateway server. This gateway cluster would be used exclusively

by DirectQuery Power BI datasets and any reports based on Live connection to an on-premises

SQL Server Analysis Services instance.

Managing the On-Premises Data Gateway472

A third gateway cluster, in addition to an import and a DirectQuery/Live connection cluster,

could be dedicated to business-led BI projects. For example, as described in the Standard versus

personal mode section earlier in this chapter, certain data sources maintained by business teams

(for example, Excel workbooks) may require the high availability and management benefits of

the On-premises data gateway.

Generally, this self-service cluster would be oriented toward scheduled refresh operations, but

organizations may also want to empower business users to create DirectQuery datasets or reports

based on Live connections to SSAS instances (on-premises).

In Figure 11.4 from the Manage gateways portal in the Power BI service, two gateway clusters

have been configured:

Figure 11.4: Manage gateways in the Power BI service

If gateway clusters are created for specific workloads (for example, import versus DirectQuery),

it can be helpful to note this both in the Gateway Cluster Name and in its Description. It’s not

recommended to allow a single point of failure but if only one gateway server is used in a cluster

then the name of this server can be included in the cluster name and description.

Chapter 11 473

Figure 11.5 depicts a gateway cluster that supports scheduled refreshes of datasets:

Figure 11.5: Scheduled data refresh via gateway cluster

With the data source(s) configured in the Manage Gateways portal in the Power BI service, a
scheduled data refresh for an import mode dataset can be configured to use the Gateway Cluster.
The Gateway Cluster receives the query request at the scheduled time and is responsible for
connecting to the data source(s) and executing the queries that load/refresh the tables of the
Power BI dataset.

Once the dataset in the Power BI service is refreshed, dashboard tiles based on the dataset are
also refreshed. Given that report queries are local to the refreshed dataset within the same Power
BI service tenant, and given the performance optimizations of the engine running within import
mode Power BI datasets (that is, columnar compression, in-memory), query performance is
usually very good with this deployment.

Figure 11.6 depicts two gateway clusters being used to support both the scheduled refresh of an

import mode dataset and a Live connection to an SSAS tabular instance:

Figure 11.6: Multiple gateway clusters

Managing the On-Premises Data Gateway474

Gateway Cluster A in the preceding diagram functions just like Figure 11.5 in supporting scheduled

refreshes of import mode datasets. Gateway Cluster B has been created to exclusively support

queries requested via Live connections to an on-premises SSAS database—an SSAS tabular model

in this scenario.

Given the high volume of query requests generated by users interacting with Power BI reports

based on the SSAS model, the servers used in Gateway Cluster B can be provisioned with additional

CPU cores and actively monitored via performance counters for changes in utilization.

In addition to the interactive query requests from Live connection reports, owners of datasets can

configure a scheduled refresh for the cache supporting dashboard tiles based on Live connection

reports. Guidance on configuring this feature is included in the Dashboard cache refresh section

at the end of this chapter.

The description of Gateway Cluster B is also generally applicable to DirectQuery datasets based

on supported sources, such as SQL Server, Oracle, and Teradata. Just like Live connections to SSAS,

DirectQuery reports built against these datasets also generate high volumes of queries that must

go through the gateway cluster and be returned to the Power BI service tenant.

Given the additional latency created by the requests for queries and the transfer of query results

back to the Power BI service, it’s especially important to develop and provision efficient data

sources for DirectQuery and Live connection reports. Two examples of this include using the

clustered columnstore index for SQL Server and optimizing the DAX expressions used for measures

of an SSAS model.

Additionally, organizations can consider Azure ExpressRoute to create a fast, private connection

between on-premises infrastructure and Azure. The following URL provides documentation on

this service: http://bit.ly/2tCCwEv.

With alternative gateway architectures understood, let’s next explore how gateways implement

security.

Gateway security
Given that potentially sensitive data can flow back and forth between the cloud and on-premises

environments, Microsoft has designed the On-premises data gateway to be extremely secure.

Administrators of the On-premises data gateway are responsible for configuring the data sources

that can be used with each gateway cluster. As shown in Figure 11.7 from the Manage gateways

portal in the Power BI service, credentials entered for data sources are encrypted:

http://bit.ly/2tCCwEv

Chapter 11 475

Figure 11.7: Encrypted data source credentials

As mentioned, the recovery key entered during gateway installation is used to encrypt these

credentials. The data source credentials are only decrypted once the query request reaches the

on-premises gateway cluster within the corporate network.

The gateway decrypts the credentials needed for query requests and, once the query has executed,

it encrypts the results of these query requests prior to pushing this data to the Power BI service.

The Power BI service never knows the on-premises credential values.

Technically, the following four-step process occurs to facilitate communication and data transfer

between the Power BI service and the on-premises sources:

1. The Power BI service initiates a scheduled refresh or a user interacts with a DirectQuery

or a Live connection report.

2. In either event, a query request is created and analyzed by the data movement service

in Power BI.

Managing the On-Premises Data Gateway476

3. The data movement service determines the appropriate Azure Service Bus communication

channel for the given query.

4. A distinct service bus instance is configured per gateway.

Obviously, all of this complexity is hidden from the end users and even administrators and all

network traffic is encrypted. For more information regarding the specifics of security for the

gateway and Power BI in general, see the Power BI security whitepaper found here: https://

bit.ly/3tmJJJ3.

With the important concepts of clustering, architectures, and security understood, we next look

at installing and configuring gateways.

Gateway installation and configuration
Once the gateway scenario and architecture are planned as per the previous sections, BI or IT

administrators can download and install the gateway (or multiple gateways) on the chosen

server(s). The gateway installation file to be downloaded is small and the installation process is

quick and straightforward.

The gateway installer application is obtained via the Download (down arrow) dropdown in the

Power BI service, as shown in Figure 11.8.

Figure 11.8: Download in Power BI service

The Data Gateway item from the download menu shown in Figure 11.8 currently links to a Power

BI Gateway page with two large buttons near the top for downloading either the standard or

personal mode gateway installers.

Selecting either button downloads the installer file (GatewayInstall.exe or on-premises data

gateway (personal mode).exe) locally. The installation and configuration process via the installer

application is very straightforward.

https://bit.ly/3tmJJJ3
https://bit.ly/3tmJJJ3

Chapter 11 477

Step-by-step instructions have been documented here (see Install the gateway section): https://

bit.ly/3C71AYo. As noted in the Planning for recovery keys section, the most critical step in this

process is entering and securely storing the recovery key used during installation.

Once the installation and configuration are complete, an On-premises data gateway application

is available on the server to help manage the gateway, as shown in Figure 11.9.

Figure 11.9: On-premises data gateway application

Details on the settings available via this application are included in the Troubleshooting and

monitoring gateways section later in this chapter. When first getting started with the gateway,

you can launch the application after configuration and sign in with a Power BI service account

to check the status of the gateway and to get familiar with the tool.

The same installation software can be downloaded and run to update an existing On-premises

data gateway to the latest version. The update process is very quick to complete and the On-

premises data gateway application reflects the new version number on the Status page, as shown

in Figure 11.10.

Figure 11.10: On-premises data gateway Status

https://bit.ly/3C71AYo
https://bit.ly/3C71AYo

Managing the On-Premises Data Gateway478

It’s strongly recommended to regularly update the On-premises data gateway to the latest

version. An out-of-date gateway is flagged for updating on the Status page of the On-premises

data gateway and may result in data refresh or connectivity issues.

Additionally, administrators should be aware of the following two XML configuration files for

the gateway:

C:\Program Files\On-premises data gateway\EnterpriseGatewayConfigurator.
exe.config

C:\Program Files\On-premises data gateway\Microsoft.PowerBI.
EnterpriseGateway.exe.config

The EnterpriseGatewayConfigurator.exe.config file relates to the installation screens that

configure the gateway. The Microsoft.PowerBI.EnterpriseGateway.exe.config file is for the

actual Windows service that handles the query requests from the Power BI service. This Windows

service runs under a default service account, as explained in the next section.

The gateway service account
By default, the gateway runs under the NT SERVICE\PBIEgwService Windows service account.

However, as shown in Figure 11.11, this account can be changed via the Service Settings tab of the

On-premises data gateway desktop application.

Figure 11.11: On-premises data gateway Service Settings

Chapter 11 479

In Figure 11.11, a user has opened the gateway application from the server on which a gateway

instance has been installed. Additionally, in order to change the service account, the user has

signed in to Power BI from the gateway application with the email address used to log in to the

Power BI service.

If the default account (NT SERVICE\PBIEgwService) is able to access the internet and thus Azure

Service Bus, ensure that the account can also authenticate to the required on-premises data

sources, such as the production SQL Server instance. In some environments, the default account

cannot access the internet as it is not an authenticated domain user.

In this scenario, the service account can be revised to a domain user account within the Active

Directory domain. To avoid the need to routinely reset the password for the Active Directory

account, it’s recommended that a managed service account is created in Active Directory and

used by the gateway service.

We next take a more detailed look at the network communication used by the gateway.

TCP versus HTTPS mode
As shown in Figure 11.12, the Network tab of the On-premises data gateway desktop application

displays the network settings for a gateway. By default, the gateway uses HTTPS network

communication. However, as shown in Figure 11.12, the gateway can be forced to exclusively use

direct Transmission Control Protocol (TCP) instead.

Figure 11.12: On-premises data gateway application Network settings

Managing the On-Premises Data Gateway480

A restart of the gateway is required to apply a change in network communication mode and thus

this modification should only be implemented when minimal or no query requests are being

processed.

When originally released, the gateway defaulted to direct TCP with HTTPS provided as an option.

HTTPS is now the default as this requires fewer network ports to be opened in firewalls and

overall less configuration.

We next look at the subject of custom connectors.

Connectors
The gateway supports custom connectors not included with Power BI Desktop. Custom connectors

are optional and may be developed by third parties or internally by organizations.

As shown in Figure 11.13, the Connectors tab is used to configure Custom data connectors in the

On-premises data gateway desktop application.

Figure 11.13: On-premises data gateway application Connectors settings

As shown in Figure 11.13, the gateway provides a suggested folder path:

C:\WINDOWS\ServiceProfiles\PBIEgwService\Documents\Power BI Desktop\Custom
Connectors

This folder path may or may not exist and may not be the desired folder for custom connectors.

Regardless of the folder path chosen, it is recommended that all gateways have a consistent path

for custom connectors and that gateway administrators verify that the folder exists and the service

account has the appropriate permissions on each gateway.

Chapter 11 481

More information about creating custom connectors for Power BI can be found here: https://

github.com/Microsoft/DataConnectors.

Let us now turn our attention to the subject of recovery key configuration.

Recovery Keys
The Recovery Keys tab in the On-premises data gateway desktop application provides a single

option to Set new recovery key. Clicking this link opens up the Add new recovery key dialog

shown in Figure 11.14.

Figure 11.14: On-premises data gateway application Connectors settings

https://github.com/Microsoft/DataConnectors
https://github.com/Microsoft/DataConnectors

Managing the On-Premises Data Gateway482

As indicated by the information displayed in the text box at the top of the page, changing the

recovery key should only be done when the gateway is not being used as the change requires that

the gateway restart and that data credentials need to be reentered.

Changing recovery keys should be a rare event and only entertained if the security of the recovery

key has been compromised, such as someone that had access to the recovery key leaving the

organization.

Also notice in Figure 11.14 that it is possible to configure the Azure Relays used by the gateway by

clicking the Provide relay details (optional) link. Azure Relays enable the ability to securely expose

services running on-premises to Azure without opening firewall ports or otherwise changing

network infrastructure. More information about this option can be found here: https://bit.

ly/35FUeis.

This completes our exploration of gateway installation and configuration. We next turn our

attention to managing gateway clusters.

Managing gateway clusters
Once a gateway is installed, the Power BI account used to register the gateway during installation

can access the Manage gateways portal in the Power BI service to assign administrators for the

gateway.

The Manage gateways portal is available via the gear icon in the top-right corner of the Power

BI service, as shown in Figure 11.15:

Figure 11.15: Manage gateways

https://bit.ly/35FUeis
https://bit.ly/35FUeis

Chapter 11 483

The Manage gateways portal exposes all gateway clusters where the user is assigned as an

administrator. The following sections describe the management of gateways within the Power

BI Service. However, it is important to note that certain essential gateway management features

have been moved to the Power Platform Admin Center.

Specifically, the gateway security roles and permissions described in the Defining gateway roles

and permissions section of this chapter are only available in the Power Platform Admin Center. In

addition, the Power Platform Admin Center also provides the ability to specify which users are

authorized to install standard mode gateways as described in the Standard versus personal mode

section of this chapter.

Moving forward, it is likely that additional gateway management functionality will be introduced

within the Power Platform Admin Center given that on-premises data gateways are used across

multiple Power Platform products including Power BI, Power Apps and Power Automate.

Let’s now explore the primary functionality and tasks of gateway administrators in the following

sections.

Gateway administrators
Administrators of gateway clusters have the ability to add or remove data sources, modify the

authentication to those sources, and enable or disable users or groups of users from utilizing

the cluster.

Given the importance of these responsibilities, assigning more than one gateway administrator,

such as a security group of administrators, is strongly recommended. In the event that the

credentials for a data source need to be revised or when a data source needs to reference a different

database, only an admin for the gateway is able to implement these changes in the Manage

gateways portal.

In Figure 11.16 from the Manage gateways portal in Power BI, a single security group (IT

Administration) is added as the administrator of the Mastering Power BI cluster.

Figure 11.16: Power BI gateway administrators

Managing the On-Premises Data Gateway484

The primary job of administrators added to gateway clusters is to manage data sources and users

for the gateway as we see in the next section.

Gateway data sources and users
The primary role of gateway administrators is to add data sources as per the gateway cluster

and to authorize (or remove) users or groups of users. Both of these duties are performed in the

Manage gateways portal.

With the gateway cluster selected within the Manage gateways portal, clicking ADD DATA

SOURCE from the list of gateway clusters creates a blank new data source, as shown in Figure 11.17.

Figure 11.17: Adding a data source to a gateway cluster

New data sources can also be added via the ellipsis (three dots) to the right of each cluster name

in the Manage gateways portal as shown in Figure 11.18. This menu is notoriously hard to find

as the ellipses only appear if hovered over with the mouse cursor.

Figure 11.18: The hidden ellipsis menu for gateway clusters

Chapter 11 485

As shown in Figure 11.18, this menu is the only way in which a gateway cluster can be removed

from within the Power BI service.

Once data sources have been added, the users who publish reports and/or schedule data refreshes

via the gateway can be added to the data source. This is done via the Users tab as shown in Figure

11.19.

Figure 11.19: Adding a security group of users to the gateway data source

In Figure 11.19, a security group of users is added to the data source of the gateway cluster. The

users included in the security group will see the option to use the gateway cluster when scheduling

refreshes for datasets.

As shown, the most critical administration functions are performed manually within the Power

BI service. However, a PowerShell module is also available for the administration of gateway

clusters as covered in the next section.

PowerShell support for gateway clusters
A PowerShell module is available to support the management of gateway clusters. This module

is named DataGateway and requires PowerShell 7.0.0 or higher. This means that the standard

Windows PowerShell app is unable to successfully use this module. Instead, the cross-platform

version of PowerShell referred to as PowerShell Core must be used instead. PowerShell Core can

be downloaded from the following link: https://bit.ly/3IAxhvT.

Once installed, PowerShell can be run as Administrator and the following command can be used

to install the DataGateway module:

Install-Module -Name DataGateway

Once the DataGateway module is installed, future sessions of PowerShell can import the module

via the Install-Module command:

Import-Module -Name DataGateway

https://bit.ly/3IAxhvT

Managing the On-Premises Data Gateway486

Once the module is installed and/or imported to a session of PowerShell in which the user has

administrator privileges, a login command (Login-DataGatewayServiceAccount) must be

executed to enable other gateway management commands.

Unlike the Manage gateways portal in the Power BI service, the PowerShell commands provide

access to the specific gateway instances configured for each cluster. For example, properties of a

specific gateway within an instance can be modified or a gateway instance can be removed from

a cluster altogether.

Once authenticated, the Get-DataGatewayCluster command is used to retrieve the list of gateway

clusters in which the logged-in user is an administrator along with the gateway clusters’ unique

IDs. These IDs can then be used to get information about the individual gateway instances for the

cluster, including the server names where these instances are installed. The following command

exposes the information about gateway instances for a cluster:

Get-DataGatewayCluster -GatewayClusterId ID | Select -ExpandProperty
Permissions

In the example given, ID would be replaced with the actual ID of the gateway cluster, such as

dc8f2c49-5731-4b27-966b-3db5094c2e77. The full list of available gateway cluster PowerShell

commands and their parameters can be found here: https://bit.ly/3Izft48.

This section has covered the overall management of gateway clusters within the Power BI service

and via PowerShell. We next look at troubleshooting and monitoring gateways.

Troubleshooting and monitoring gateways
For organizations with significant dependencies on the On-premises data gateway, it’s important

to plan for administration scenarios, such as migrating or restoring a gateway to a different

machine. Administrators should also be familiar with accessing and analyzing the gateway log

files and related settings to troubleshoot data refresh issues. Finally, gateway throughput and

resource availability can be monitored using Power BI template files provided by Microsoft.

In this section, we investigate each of these topics in turn.

https://bit.ly/3Izft48

Chapter 11 487

Restoring, migrating, and taking over a gateway
Sometimes it is necessary to migrate or restore a gateway to a separate server. For example, a

gateway may have initially been installed on a server with insufficient resources to support the

current workload. In other cases, a hardware failure may have occurred on a gateway’s server

and thus it’s necessary to quickly restore connectivity.

Using the recovery key created when a gateway is first installed and configured, the data sources

and their associated settings (authentication and credentials) can be restored on a new server.

In Figure 11.20, during gateway installation on a different server, the option is given to Migrate,

restore, or takeover an existing gateway rather than register a new gateway.

Figure 11.20: Gateway setup options

Choosing to Migrate, restore, or takeover an existing gateway requires the recovery key that is

created when a gateway is originally configured. If this key is not available, the only option is to

install a new gateway and manually add the data sources and authorized users for that gateway.

This again speaks to the importance of properly securing and managing recover keys as covered

in the section Planning for recovery keys earlier in this chapter. Also, only an administrator of a

gateway cluster can use the recovery key to restore a gateway to a different server.

Next, we take a closer look at the diagnostic and logging capabilities for gateway instances.

Managing the On-Premises Data Gateway488

Gateway diagnostics
The On-premises data gateway desktop application makes it easy for gateway administrators to

analyze gateway request activity. As shown in Figure 11.21, the Diagnostics tab allows admins

to record additional details in the gateway log files, export these files for analysis, and even test

network port connectivity.

Figure 11.21: Diagnostics settings

Chapter 11 489

Applying the additional logging setting requires the gateway to be restarted but provides visibility

to the specific queries requested and the duration of their execution.

In a typical troubleshooting or analysis scenario, a gateway admin would temporarily enable

additional logging, execute a data refresh or query from the Power BI service, and then export

the gateway log files to analyze this activity. Once the log files have been exported, additional

logging should be disabled to avoid reduced query throughput.

Technically, the additional logging setting modifies the EmitQueryTraces and TracingVerbosity

properties of the following two XML configuration files, respectively:

Microsoft.PowerBI.DataMovement.Pipeline.GatewayCore.dll.config

Microsoft.PowerBI.DataMovement.Pipeline.Diagnostics.dll.config

As an alternative to the gateway application setting, both configuration files can be accessed and

modified at the installation location of the gateway, such as C:\Program Files\On-premises

data gateway.

Log files for gateway instances are stored in the AppData folder for the account running the On-

premises data gateway service. For example, if using the default PBIEgwService account, the

log files are stored in the following location depending on the version of the operating system:

C:\Windows\ServiceProfiles\PBIEgwService\AppData\Local\Microsoft\On-premises data
gateway

C:\Users\PBIEgwService\AppData\Local\Microsoft\On-premises data gateway

With the essentials of gateway logs understood, we next explain how to easily explore and gain

insights from these logs.

Gateway monitoring reports
A recent addition to gateway logging and diagnostics are special log files that can be used in

conjunction with a Power BI template file to easily visualize log performance. Prior to these new

gateway log files and template, it was necessary to configure Windows performance monitor

counters and create custom monitoring reports from scratch.

The special log files are stored within a Report directory of the log file directory identified in the

previous section. The Power BI report template can be downloaded here: https://bit.ly/3nffIJQ.

https://bit.ly/3nffIJQ

Managing the On-Premises Data Gateway490

Opening the template file opens Power BI Desktop and prompts for the Folder Path to the Report

directory as shown in Figure 11.22.

Figure 11.22: GatewayPerformanceMonitoring Power BI template

Entering the Folder Path and clicking the Load button loads the report data and visuals. Using

the generated reports, gateway administrators can easily observe the volume of queries, identify

slow queries, and break out queries by source system.

The combination of gateway diagnostics, logging, and pre-built Power BI reports greatly eases

the burden of troubleshooting and monitoring gateway instances. We next explore data refresh

in more detail.

Data refresh
The configuration of gateways and their role during data refresh varies depending upon the mode

of the dataset, such as import, DirectQuery, or Live. In this section, we explore the gateway’s role,

additional configuration steps, and technical nuances of each of these modes.

Scheduled data refresh
Scheduled data refreshes allow Power BI datasets to be updated with the latest data on a preset

schedule. The scheduled refresh for an import or composite mode dataset is configured on the

Settings page for each dataset in the Power BI service.

The Settings option is found by clicking the three vertical dots displayed next to datasets listed

in the Power BI service, either in the left navigation pane or the Datasets + dataflows tab of a

workspace. Once on the Settings page, the Schedule refresh section can be expanded as shown

in Figure 11.23.

Chapter 11 491

Figure 11.23: Scheduled data refresh

In Figure 11.23, a Daily refresh at 5:30 A.M. Eastern Time is set.

Import mode datasets hosted in a shared capacity (non-premium) are currently limited to eight

scheduled refreshes per day. Import datasets hosted in Power BI Premium capacity, however, can

be refreshed up to 48 times per day. Each scheduled refresh for both Power BI Premium and the

shared capacity dataset is separated by a minimum of 30 minutes.

Non-premium refreshes must complete in 2 hours while refreshes for Premium capacities must

complete in 5 hours. In addition, any dataset whose dashboards and reports have not been viewed

in 2 months automatically has the scheduled refresh suspended.

In addition to the scheduled refreshes configured in the Power BI service interface, Power Automate

can also be used to initiate refreshes. Finally, the Settings page for each dataset contains a Refresh

history link that can be used to help troubleshoot refresh issues.

Managing the On-Premises Data Gateway492

As mentioned, scheduled refreshes are for import mode datasets and composite mode datasets

only since DirectQuery and Live datasets do not contain a local data model. Next, we consider

the gateway’s role and configuration for DirectQuery and Live datasets.

DirectQuery datasets
When publishing DirectQuery datasets, it’s essential that the data source settings (for example,

server name, database name) configured for the gateway data source exactly match the entries

used for the Power BI Desktop file. The Power BI service automatically matches these settings to

available data sources in gateway clusters.

Many organizations have made significant investments in scalable on-premises data sources

and have implemented user security rules/conditions in these sources. For these organizations,

it’s often preferable to use DirectQuery data connections that leverage both the resources of the

source and the custom security rules.

To address this scenario, the On-premises data gateway supports a single sign-on feature that

passes the identity of the Power BI user to the data source via Kerberos constrained delegation

as shown in Figure 11.26.

Figure 11.24: Single sign-on for DirectQuery

Chapter 11 493

Figure 11.23 shows a portion of the dialog when creating a new data source in the Power BI service

via the Manage gateways portal.

By default, the single sign-on (SSO) feature is not enabled, and thus all DirectQuery queries (from

any user) execute via the credentials specified in the source. If enabled, the user principal name

(UPN) of the user viewing content in the Power BI service is mapped to a local Active Directory

identity by the gateway. The gateway service then impersonates this local user when querying

the data source.

Kerberos constrained delegation must be configured for the gateway and data source to properly

use the SSO for DirectQuery feature. This involves changing the service account of the gateway

to a domain account, as discussed in the Gateway installation and configuration section earlier in

this chapter.

Additionally, a Service Principal Name (SPN) may be needed for the domain account used by

the gateway service and delegation settings must be configured for this account as well. SPNs

and detailed instructions on configuring Kerberos constrained delegation can be found here:

https://bit.ly/3Mqas0i.

Live connections to Analysis Services models
For on-premises SQL Server Analysis Services (SSAS) models that Power BI users access via Live

connections, an SSAS data source must be added in the Manage gateways portal. Critically, the

credentials entered for this data source in the Manage gateways portal must match an account

that has server administrator permissions for the SSAS instance.

SQL Server Management Studio (SSMS) can be used to determine the server administrators for

both SSAS and Azure Analysis Services by right-clicking the instance name, choosing Properties,

and then the Security tab. Identification of the Power BI user by SSAS only works if a server

administrator account is specified and used when opening connections from the gateway.

User authentication to SSAS is based on the EffectiveUserName property of SSAS. Specifically,

the user principal name (for example, user@company.onmicrosoft.com) of the Power BI user

is passed into this property and this email address must match a UPN within the local Active

Directory. This allows the SSAS model to apply any row-level security roles built into the model

for the given Power BI user.

https://bit.ly/3Mqas0i

Managing the On-Premises Data Gateway494

Dashboard cache refresh
Dashboard tiles based on import/composite mode datasets are refreshed when the dataset itself

is refreshed in the Power BI service. For dashboard tiles based on DirectQuery or Live connection

datasets, however, the Power BI service maintains a scheduled cache refresh process for updating

dashboard tiles. The purpose of this cache is to ensure dashboards are loaded extremely quickly

since, as described in Chapter 9, Designing Dashboards, many users, such as executives, exclusively

rely on dashboards.

For DirectQuery and Live datasets, the Scheduled refresh section of a dataset’s Settings page, as

described in the Scheduled data refresh section, controls the dashboard cache refresh instead of

how frequently data is imported and refreshed. By default, the dashboard tile cache is refreshed

once every hour but as shown in Figure 11.24, owners of these datasets can configure this refresh

process to occur as frequently as every 15 minutes or as infrequently as once per week:

Figure 11.24: Scheduled cache refresh

Switching Refresh frequency to 15 minutes causes the queries associated with each dashboard

tile dependent on the DirectQuery dataset to be submitted at 15-minute intervals. Users can

also manually refresh dashboard tiles via the Refresh dashboard tiles menu option. This option,

exposed via the ellipsis in the top-right corner of dashboards, also sends queries to the DirectQuery

or Live connection data source like the scheduled cache refresh.

Power BI reports containing either a Live connection or a DirectQuery connection to the data

source are represented as distinct datasets in the Power BI service. Power BI reports created

based on these published datasets utilize the scheduled dashboard cache refresh configured for

the given source dataset.

Chapter 11 495

The optimal cache refresh frequency depends on the business requirements for data freshness,

the frequency with which the source database is updated, and the available resources of the

source system.

For example, if the top priority of the source system is OnLine Transaction Processing (OLTP)

transactions and the dashboard queries are resource-intensive, it may be preferable to limit the

refresh frequency to once a day. However, if the very latest data updates are of top value to the

business users and ample resources are available to the source system, a 15-minute cache refresh

schedule may be appropriate.

Summary
This chapter reviewed the primary planning and management scenarios for the On-premises data

gateway. This included alternative-solution architectures, methods for distributing workloads

across multiple gateways, and ensuring high availability via gateway clusters. Additionally, this

chapter described the process of administering a gateway, including the configuration of data

sources and the authorization of users or groups to utilize the gateway per source. Finally, the

primary tools and processes for troubleshooting and monitoring the gateway were reviewed.

While this chapter focused on using the Power BI service with on-premises data and traditional

Power BI datasets and reports, the following chapter highlights paginated reports and the option to

deploy Power BI exclusively on-premises via Power BI Report Server. This includes the publication,

refresh, and management of Power BI reports on-premises and within the Power BI service as well

as the primary differences between Power BI Report Server and the Power BI service.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

12
Deploying Paginated Reports

Paginated reports are eXtensible Markup Language (XML)-based report definitions that were

first introduced in SQL Server Reporting Services (SSRS). Unlike Power BI reports, which deliver

highly interactive visualization experiences on a single page, paginated reports provide richly

formatted multi-page documents optimized for printing, exporting, and automated delivery.

As a Power BI Premium feature, paginated reports provide organizations with a mature and robust

option for migrating existing SSRS and other similar operational reports to Power BI without

the need to manage report server infrastructure. Additionally, for organizations that require an

on-premises solution, the Power BI Report Server (PBRS) continues to be enhanced and also

supports both paginated and Power BI reports.

This chapter reviews the primary considerations in migrating paginated reports to Power BI as

well as planning and deploying the PBRS. This includes feature compatibility with the Power BI

service, licensing and configuration details, and an example deployment topology. Additionally,

management and administration topics are reviewed, including the scheduled data refresh of

Power BI reports and monitoring server usage via execution log data.

In this chapter, we will review the following topics:

• Paginated reports in the Power BI service

• Migrating reports to the Power BI service

• Planning the Power BI Report Server (PBRS)

• Installing and upgrading PBRS

• PBRS client applications

We begin by looking at using paginated reports within the Power BI service.

Deploying Paginated Reports498

Paginated reports in the Power BI service
So far, this book has primarily focused on the Power BI reports created in Power BI Desktop.

While these reports are increasingly the de facto standard, given their ability to quickly generate

insights and the speed with which these reports can be developed, paginated reports uniquely

address several important use cases such as the need to email, print, or export report data that

spans multiple pages.

As explained in the Paginated reports section of Chapter 7, Creating and Formatting Visualizations,

paginated reports are optimized for printing and PDF generation. These reports have a long and

storied history at Microsoft, having first appeared in SSRS in 2004.

In contrast to Power BI reports, which are highly interactive, paginated reports have limited user

interactivity via the use of parameters, which filter the entire report page. However, unlike Power

BI reports, which can only present a single report page at a time, paginated reports can display

multiple pages.

Paginated reports are only supported in the Power BI service in Premium workspaces, specifically,

those workspaces running on embedded capacity, Premium capacity, or created using a Premium

Per User (PPU) license. To be clear, environments using only pro licenses do not have access to

paginated report features.

In addition, paginated reports do not import data, but rather use dataset connections that query

the underlying data sources when reports are rendered. This is similar to how DirectQuery or

live reports operate. Thus, reports published to the Power BI service that use on-premises data

sources must always use a standard mode data gateway, as discussed in Chapter 11, Managing

the On-Premises Data Gateway.

Before building a paginated report, it is important to determine whether the paginated report is

a good fit for the intended purpose.

Planning paginated reports
Before building a paginated report, it is helpful to confirm whether or not a paginated report is

suitable or appropriate. The following possible requirements can help confirm that a paginated

report is indeed required:

1. The report is primarily intended for printing.

2. The report is primarily intended for printing or exporting simple table(s) of data to stan-

dard document formats such as Excel (.xlsx) or PDF.

Chapter 12 499

3. The report needs to be printed across multiple pages of data.

4. Users of the report do not require or expect any significant level of interaction beyond

possibly making a few filter selections.

5. The report needs to render a very specific and detailed document template layout such

as an invoice or a job application form.

6. The report requires a significant amount of custom logic or source data that’s not avail-

able in an existing Power BI dataset. For example, a paginated report could be built with

SQL statements or stored procedures directly against a SQL Server or Azure SQL database

system.

7. Users of the report need the ability to export large amounts of data beyond the limit of

Power BI reports (150,000 rows).

8. The report data itself needs to be delivered to people in a file format such as CSV or Excel

via an email subscription.

9. The report data needs to be able to be exported in XML, Microsoft Word, or Multipur-

pose Internet Mail Extension (MIME) HyperText Markup Language (HTML) format,

otherwise known as MHTML.

For example, consider a simple report that lists a table of product categories, product subcatego-

ries and individual product SKU sales amounts, tax costs, and freight costs. The report needs to

report on all products across multiple pages, while additional pages are desired for each individual

product category and/or product subcategory. The report is designed to be printed and used in

board meetings. Such a report is a good candidate for a paginated report. In contrast, a report

that shows a single report page at a time, features interactions between the visuals, and supports

drillthrough between the report pages would not be a good candidate for paginated reports and

should be created as a Power BI desktop report.

Once paginated reports are identified as a good fit for the specified requirements, the next step

is to build and publish the paginated report.

Building and publishing paginated reports
Paginated reports use an XML-based language called Report Definition Language (RDL). RDL is

traditionally written in Visual Studio or Report Builder, but a specific Power BI Report Builder

application is available and should be used when building paginated reports for publication with

the Power BI service. Visual Studio Code and Power BI Report Builder can be freely downloaded,

but recall that a Premium capacity is required to use paginated reports in the Power BI service.

Deploying Paginated Reports500

Power BI Report Builder requires Windows 7 or higher, Microsoft .NET Framework 4.7.2, 80 MB

of disk space, and 512 MB of RAM. To download Power BI Report Builder, use the following link:

https://bit.ly/3rM6P9k.

Designing and creating reports in Power BI Report Builder is an extremely different process and

experience from creating reports in Power BI Desktop. Figure 12.1 shows the Design view of a

simple report containing a single matrix visual:

Figure 12.1: Design view of a paginated report

As shown in Figure 12.1, the report contains two Datasets, Dataset1 and Colors, as well as a single

Parameter, Color.

Both datasets, which should be thought of as tables, pull from the same SQL Server data source.

Data sources are simply defined connections to source systems. Power BI Report Builder supports

eleven different data sources including Power BI Dataset, Dataverse, Azure SQL Database, Azure

Analysis Services, and Azure Synapse, as shown in Figure 12.2:

Figure 12.2: Available data sources in Power BI Report Builder

https://bit.ly/3rM6P9k

Chapter 12 501

The data source, in this case, is a SQL Server hosting the AdventureWorksDW2019 database. An

important question in the real world is whether the paginated report should be built against a

Power BI dataset or a source system like Azure SQL. There are important security implications

such as the ability to leverage any row-level security roles in the Power BI dataset or if security

needs to be applied to the SQL database system. There are also often performance implications, as

the paginated report may require a query that involves many columns and, thus, doesn’t perform

well against a columnar system like import mode Power BI datasets.

In this example, the SQL query defined for DataSet1 is the following:

SELECT

 BI.vDim_Product.ProductKey AS [vDim_Product ProductKey]

 ,BI.vDim_Product.ProductSubcategoryKey AS [vDim_Product
ProductSubcategoryKey]

 ,BI.vDim_Product.DaysToManufacture

 ,BI.vDim_Product.Color

 ,BI.vDim_ProductCategory.ProductCategoryKey AS [vDim_ProductCategory
ProductCategoryKey]

 ,BI.vDim_ProductCategory.EnglishProductCategoryName

 ,BI.vDim_ProductSubcategory.ProductSubcategoryKey AS [vDim_
ProductSubcategory ProductSubcategoryKey]

 ,BI.vDim_ProductSubcategory.EnglishProductSubcategoryName

 ,BI.vFact_InternetSales.ProductKey AS [vFact_InternetSales ProductKey]

 ,BI.vFact_InternetSales.OrderQuantity

 ,BI.vFact_InternetSales.UnitPrice

 ,BI.vFact_InternetSales.DiscountAmount

 ,BI.vFact_InternetSales.TaxAmt

 ,BI.vFact_InternetSales.SalesAmount

 ,BI.vFact_InternetSales.Freight

 ,BI.vFact_InternetSales.OrderDate

 ,BI.vDim_ProductSubcategory.ProductCategoryKey AS [vDim_
ProductSubcategory ProductCategoryKey]

 ,BI.vDim_Product.EnglishProductName

FROM

 BI.vDim_Product

 LEFT OUTER JOIN BI.vFact_InternetSales

 ON BI.vDim_Product.ProductKey = BI.vFact_InternetSales.ProductKey

 LEFT OUTER JOIN BI.vDim_ProductSubcategory

Deploying Paginated Reports502

 ON BI.vDim_Product.ProductSubcategoryKey = BI.vDim_ProductSubcategory.
ProductSubcategoryKey

 LEFT OUTER JOIN BI.vDim_ProductCategory

 ON BI.vDim_ProductSubcategory.ProductCategoryKey = BI.vDim_
ProductCategory.ProductCategoryKey

This query pulls information from four different SQL views, vFact_InternetSales, vDim_Product,

vDim_ProductCategory, and vDim_ProductSubcategory. Relationships between these tables are

defined using key columns to form the following relationships:

• A left outer join between vDim_Product and vFact_InternetSales in the ProductKey

columns of each table

• A left outer join between vDim_Product and vDim_ProductSubcategory in the

ProductSubcategoryKey columns of each table

• A left outer join between vDim_ProductSubcategory and vDim_ProductCategory in the

ProductCategoryKey columns of each table

Particularly for critical production environment reports, some organizations require report dataset

queries to be created as database objects such as stored procedures or views in the data source sys-

tem. Similar to creating view objects for each Power BI dataset table, this policy helps to promote

transparency between the BI/reporting layer teams and the data warehouse or data engineering

teams. Additionally, it reduces the number of scenarios in which source data or objects used in

Power BI solutions are altered or removed.

In either case, whether writing the query in the report or as a database object, the query returns

a table or a dataset for the report. Then, this query is executed against the SQL Server, with pos-

sible filtering, each time the matrix visual in the report is rendered. Figure 12.3 shows such a filter:

Chapter 12 503

Figure 12.3: Dataset filter

As shown in Figure 12.3, the Color column from the vFact_InternetSales table is selected for the

Expression value, and the value in this column must equal (=) the Value of the report parameter

Color. This Color parameter is defined for the Value by choosing the fx button and specifying

the code =Parameters!Color.Value, which returns the current value of the report parameter.

Deploying Paginated Reports504

Report parameters can be added by right-clicking the Parameters folder, as shown in Figure 12.1,

and choosing Add parameter. Figure 12.4 shows the configuration of the Color parameter:

Figure 12.4: Dataset filter

As shown in Figure 12.4, the Color parameter gets the available values using the Colors dataset,

from the Color field/column for both the Label field and Value field of the listed items. The Colors

dataset is another simple SQL query that simply gets the DISTINCT values of the Color column

in the vDim_Product view, as shown here:

SELECT DISTINCT

 BI.vDim_Product.Color

FROM

 BI.vDim_Product

Chapter 12 505

Additional charts and report elements can be added to a report via the Insert menu. In Figure 12.5,

a Header has been added to the report and an image placed within the header:

Figure 12.5: Additional report elements including a header and an image

Because the image has been added to the header section of the report, the image will appear on

every page of the report in the event that the report spans multiple pages. Similarly, footers are also

available and printed on every page of the report. Both headers and footers can include built-in

fields such as PageNumber, TotalPages, and ExecutionTime that return the current page number,

the total number of pages in the report, and the date and time the report was rendered respectively.

As shown in Figure 12.5, Power BI Report Builder supports many common visuals and report

elements such as lines and rectangles, although not nearly the number of visuals and report

elements available in Power BI Desktop.

Once the report design is complete, the report can be previewed using the Run button found on

the Home tab, as shown in Figure 12.6:

Figure 12.6: The Run and Publish buttons on the Home tab

Deploying Paginated Reports506

A preview of the report is shown in Figure 12.7:

Figure 12.7: Report preview

Returning to the design view via the Design button, as shown in the upper-left corner of Figure 12.7,

the report can be published to the Power BI service via the Publish button shown in Figure 12.6.

Clicking the Publish button allows the user to choose a workspace for the report, as shown in

Figure 12.8:

Chapter 12 507

Figure 12.8: Report publishing

It is important to keep in mind that paginated reports are only supported in the Power BI service

via a dedicated capacity such as Premium and PPU workspaces. Therefore, only workspaces using

a dedicated capacity, denoted by the diamond icon, appear in the list of available workspaces.

Deploying Paginated Reports508

Once published to the Power BI service, we can now view and interact with the report in a web

browser.

Identifying and interacting with paginated reports
With the report published to the Power BI service, you can now log in and view the report. Pagi-

nated reports can be identified in the Power BI service via a different icon, as shown in Figure 12.9:

Figure 12.9: Paginated report icon in the Power BI service

Once opened, paginated reports can appear blank in the Power BI service if parameters are re-

quired to be set prior to running the report. If the report is blank, click the Parameters button in

the ribbon to display the parameters of the report. Set the parameters and then click the View

report button, as shown in Figure 12.10:

Figure 12.10: Paginated report parameters in the Power BI service

Interactivity with paginated reports is limited to setting the report parameters and then re-ren-

dering the report. Paginated report visuals are not interactive in the same manner as reports

created in Power BI Desktop, meaning that report visuals are static once rendered and cannot

interact with one another such as via cross-filtering or highlighting.

If multiple pages are generated by the report, these pages can be navigated to and displayed

using the paging controls located to the left of the Parameters button, as shown in Figure 12.10.

While users like the robust interactivity of Power BI Desktop reports, paginated reports do offer

more export options as well as different printing options.

Chapter 12 509

Printing, exporting, subscribing, and sharing
The paginated report printing options are slightly different from Power BI Desktop reports. Choos-

ing File and then Print from the report ribbon presents the dialog shown in Figure 12.11:

Figure 12.11: Paginated report print dialog in the Power BI service

Unlike Power BI Desktop reports, paginated reports offer the ability to specify the exact Height

and Width of the printed pages in addition to a Preview ability.

Deploying Paginated Reports510

In addition to the different printing capabilities, paginated reports offer additional export options

in the Export menu, as shown in Figure 12.12:

Figure 12.12: Paginated report Export menu in the Power BI service

As shown in Figure 12.12, additional export options include the XML (.xml), Microsoft Word

(.docx), and Web Archive (.mhtml) formats.

While printing and exporting are different for paginated reports, the ability to Subscribe and

Share is the same as Power BI Desktop reports and provides the exact same interface. Subscribing

and sharing are covered in the next chapter, Chapter 12, Creating Apps and Content Distribution.

While new reports can be created and published using Power BI Report Builder, it is likely that

organizations interested in paginated reports in the Power BI service already have existing pag-

inated reports. Migrating existing paginated reports to the Power BI service comes with certain

considerations that we explore in the next section.

Migrating reports to the Power BI service
Given their long and successful history in the competitive enterprise reporting platform market,

many organizations continue to support hundreds and even thousands of paginated or SSRS

reports. Additionally, existing reports built with other common BI tools such as Cognos, Mi-

croStrategy, and Crystal Reports are usually more easily re-produced in paginated reports than

Power BI reports.

Chapter 12 511

A key question to answer is whether the existing or legacy reports should be maintained going

forward or if they can be replaced (or perhaps supplemented) with a more modern and interac-

tive experience offered by Power BI reports. In somes cases, users would prefer a well developed

Power BI report and the existing reports merely reflect the functionality that was available years

ago in SSRS or another similar tool. This section covers the steps and considerations organiza-

tions should bear in mind when migrating existing RDL reports to paginated reports for Power BI.

Assuming the organization has already determined that they wish to use paginated reports in the

Power BI service, the migration of reports to Power BI includes the following phases:

1. Inventory

2. Assess

3. Plan

4. Migrate

5. User Acceptance Testing (UAT)

Each of these phases is discussed in the following sections.

Inventory
Before migrating reports, it is important to understand the size and scope of the effort required.

This means creating an inventory of all the report servers and reports within the environment.

Creating an inventory of all reports should begin with identifying all the SSRS and PBRS servers

within the environment. The Microsoft Assessment and Planning Toolkit (MAP Toolkit) is

useful in discovering the SQL Server instances within the environment, including identifying

the versions and installed features of those SQL instances. The MAP Toolkit can be downloaded

at the following link: https://bit.ly/3KSBoUG.

Once SQL Server instances have been identified, the following versions of SQL Server can have

their reports migrated to the Power BI service:

• SQL Server 2012

• SQL Server 2014

• SQL Server 2016

• SQL Server 2017

• SQL Server 2019

• Power BI Report Server

https://bit.ly/3KSBoUG

Deploying Paginated Reports512

The final step in creating the inventory of reports is to understand the reports present on each SQL

Server. This can be done with a simple SQL query run within SQL Server Management Studio

(SSMS) such as this:

SELECT

 ,[Path]

 ,[Name]

 ,[Description]

 ,[CreatedByID]

 ,[CreationDate]

 ,[ModifiedByID]

 ,[ModifiedDate]

 FROM [ReportServer].[dbo].[Catalog]

Here, ReportServer can be replaced with the name of the reporting server database. Once the

results are obtained, right-click the results in SSMS and choose Save Results As… to save the list

of reports in a comma-separated value (CSV) file.

With our inventory complete, we should now assess our inventory of reports in order to determine

which, if any, reports should be migrated.

Assess
The next step in migrating paginated reports to the Power BI service involves assessing the reports

in our inventory. It is common for reports to be created and then slowly fall out of use over time.

We can determine if reports are no longer being used using a simple SQL query run from SSMS

such as the following:

USE ReportServer

GO

DECLARE @Days INT

 SET @Days = 365

SELECT

 [Path],

 [Name],

 [DateLastViewed]

 FROM dbo.catalog [cat]

 INNER JOIN (SELECT [ReportID],[DateLastViewed] = MAX([TimeStart])

 FROM dbo.[ExecutionLog] GROUP BY [ReportID]) [exe]

 ON [cat].[ItemID] = [exe].[ReportID]

Chapter 12 513

WHERE DATEDIFF(day, [DateLastViewed], GETDATE()) <= @Days

ORDER BY [DateLastViewed] DESC

Here, ReportServer should be changed to the name of the reporting services database, and the

number of days, 365, should be adjusted according to business preferences. The preceding query

returns all the reports that have been executed within @Days number of days, in this case, 365.

The results of this query can be compared to the inventory, and those reports not included in the

results of reports that have been executed in the last year can be removed from the list of reports

to be migrated.

The next step in assessing reports involves determining if the reports include any features that

are not supported by the Power BI service. The Power BI service does not support the following

features of RDL reports:

1. Shared data sources and shared datasets

2. Resources, like image files

3. KPIs and mobile reports (SSRS 2016, or later—Enterprise Edition only)

4. Report models and report parts (deprecated)

5. Map visuals (not supported by the data gateway)

The RDL Migration Tool that is available on GitHub, https://github.com/microsoft/

RdlMigration, can be used to test reports for incompatibility with any of the four identified

unsupported features identified previously.

It should be noted that the RDL Migration Tool must be compiled locally within Visual Studio

Code or a similar integrated development environment (IDE). After compiling, the tool is run

from a command line and instructions for its use are available on the GitHub repository.

BI teams and the business should work in coordination when assessing reports to further refine

the list of reports to be migrated. Teams using paginated reports should be encouraged to consider

redeveloping those reports in Power BI Desktop, if possible, in order to potentially modernize

the reports.

For example, mobile reports or reports using KPI visuals can be redeveloped in Power BI Desktop.

Similarly, reports using on-premises data sources and map visuals are good candidates to be

redeveloped in Power BI Desktop since the data gateway does not support complex data types

such as geographic spatial data types.

https://github.com/microsoft/RdlMigration
https://github.com/microsoft/RdlMigration

Deploying Paginated Reports514

Once an acceptable list of paginated reports has been identified, the next step is to plan the mi-

gration of these reports to Power BI.

Plan
The Plan phase ensures that the necessary infrastructure and other components are in place to

facilitate running paginated reports within the Power BI service. In addition, the Plan phase helps

identify how security will be implemented.

First, since paginated reports are a premium feature, the BI team needs to ensure that an appro-

priate dedicated capacity or PPU workspaces have been created and defined within the Power BI

service. Second, since paginated reports that access on-premises resources must use a data gate-

way, BI teams should ensure that such gateways are present and functioning prior to migration.

Perhaps the most important element of planning the migration of paginated reports is security.

The Power BI service and SSRS use very different security models; thus, it is important to under-

stand these differences when planning to migrate reports.

SSRS uses folders and permissions to secure content while the Power BI service uses workspaces,

as covered in the Workspace roles and rights section of Chapter 9, Managing Workspaces and Content.

BI teams need to understand how SSRS folders and permissions work and then create a plan to

map these permissions to one or more workspaces.

BI teams should also consider the use of the built-in report field, UserID. In the Power BI service,

this field returns the User Principal Name (user@domain.com) instead of the Active Directory

account name (domain\user). Thus, if using the UserID field to secure content within the report,

the dataset definitions and possibly the source systems will need to be revised.

Special consideration should also be given to the use of the built-in field ExecutionTime. In the

Power BI service, this returns a date/time in Coordinate Universal Time (UTC) versus the local

time zone of the report server. This may cause confusion among report viewers.

Finally, while the RDL Migration Tool is capable of converting shared data sources and shared

datasets into local data sources and local datasets, BI teams may wish to consider migrating

shared data sources to shared Power BI datasets published within the Service.

With a plan in place for the migration, the next step is to actually migrate the paginated reports.

Migrate
With an appropriate plan in place, the next step is to actually migrate the selected reports. This

can be done manually or automatically.

Chapter 12 515

To migrate reports manually, simply download the RDL files from the reporting services instances

within the environment. Open these RDL files in Power BI Report Builder, as described in the

Building and publishing paginated reports section of this chapter. Make any necessary modifications

and then publish to the Power BI service.

Alternatively, the migration of reports can be automated by using the RDL Migration Tool. In-

structions for using the RDL Migration Tool can be found on the GitHub page here: https://

github.com/microsoft/RdlMigration.

It is also possible to create a custom migration tool or script using the Power BI REST APIs and

the SSRS REST APIs. More information on the Power BI REST APIs can be found in the Power BI

REST API and PowerShell Module section of Chapter 10, Managing Workspaces and Content.

The choice of which approach to use when migrating reports is highly situational and may even

require a combination of approaches. For example, the RDL Migration Tool might be used to

migrate the majority of reports. The remaining reports that the RDL Migration Tool cannot suc-

cessfully migrate could then be processed manually. However, if there are hundreds of reports

that the RDL Migration Tool cannot successfully process, it might be necessary to create a custom

migration script using the APIs.

With reports migrated to the Power BI service, the final step is UAT and final deployment.

User Acceptance Testing and final deployment
Migrated paginated reports should follow the same life cycle as Power BI Desktop reports, such

as the process described in the Power BI deployment pipelines section of Chapter 10, Managing

Workspaces and Content. This means that migrated reports should first be published to a Devel-

opment workspace to allow the report developers to verify that the report operates and renders

in the Power BI service.

Once published to the Development workspace and checked for basic functionality by the BI team,

the reports should then be promoted to the Test workspace for UAT. UAT includes the business

users running the reports and ensures that the reports still function and return the correct results.

Once users have signed off on UAT, the BI team can then promote the reports that pass UAT to the

Production workspace. Reports that do not pass can be revised by the BI team and sent through

the process again as needed.

This completes our exploration of paginated reports in the Power BI service. Next, we will look at

Power BI’s support for continuing to use paginated reports on-premises using PBRS.

https://github.com/microsoft/RdlMigration
https://github.com/microsoft/RdlMigration

Deploying Paginated Reports516

Planning the Power BI Report Server (PBRS)
PBRS is a modern enterprise-reporting platform that allows organizations to deploy, manage,

and view Power BI reports, in addition to other report types, internally. PBRS renders Power BI

reports (.PBIX files) for data visualization and exploration, just like the Power BI web service.

PBRS allows large numbers of users to view and interact with the same reports created in Power

BI Desktop in a modern web portal and via the same Power BI mobile applications used with the

Power BI cloud service. PBRS addresses a current and sometimes long-term need to maintain a

fully on-premises BI solution that includes both data sources and reports. Additionally, PBRS

can be used in combination with the Power BI service to support scenarios in which only certain

reports need to remain on-premises.

PBRS is built on top of SSRS; therefore, organizations can continue to utilize existing paginated

SSRS reports and familiar management skills to easily migrate to PBRS. In addition to Power BI

and paginated reports, the Office Online Server (OOS) can be configured to allow for viewing

and interacting with Excel reports in the same report server portal, thus providing a consolidated

hub of BI reporting and analysis.

Moreover, when provisioned with the Power BI Premium capacity, organizations can later choose

to migrate on-premises Power BI reports to a dedicated capacity in the Power BI service, without

incurring an additional cost.

Prior to any licensing or deployment planning, an organization should be very clear on the ca-

pabilities of PBRS in relation to the Power BI cloud service. PBRS does not include many of the

features provided by the Power BI cloud service, such as the dashboards described in Chapter 9,

Designing Dashboards, or the apps, email subscriptions, Analyze in Excel, and data alert features

reviewed in Chapter 13, Creating Power BI Apps and Content Distribution.

Although new features are included with new releases of PBRS, PBRS is not intended or planned

to support the features provided in the Power BI cloud service.

Power BI Report Server is extending our journey of giving customers more flexi-

bility in terms of being able to deploy some of their workloads on-premises behind

their firewall.

– Riccardo Muti, Group Program Manager

Chapter 12 517

Additionally, for organizations using SSRS, it’s important to understand the differences between

the PBRS and SSRS, such as the upgrade and support life cycle. Mapping the capabilities and the

longer-term role of the PBRS in relation to a current and a longer-term BI architecture and cloud

strategy is helpful to plan the PBRS.

The following list of five questions can help guide the decision to deploy the PBRS:

1. Do some or all reports currently need to stay on-premises and behind a corporate

firewall?

PBRS is a fully on-premises solution designed to meet this specific scenario. Alternatively,

organizations can deploy PBRS to virtual machines provisioned in Azure.

2. Is SSRS currently being used?

PBRS includes SSRS and, thus, allows seamless migration from an existing SSRS server.

3. Are the primary data sources for reports located on-premises and expected to remain

on-premises?

As an on-premises solution, the on-premises data gateway is not required to connect to

on-premises sources. As discussed in the previous chapter, some degree of query latency,

hardware, and administrative costs are incurred by using on-premises data sources with

the Power BI service.

4. Are there features exclusive to the Power BI service that are needed?

PBRS is limited to rendering paginated reports and Power BI Report (.PBIX) files, as will

be discussed in the following section.

5. Will large import mode Power BI datasets be needed, or will the Power BI reports use

DirectQuery and Live connections?

The size of the files that can be uploaded to PBRS for Scheduled refresh is limited to 2 GB.

Additionally, unlike the Power BI service, a single Power BI dataset cannot be used as a

source for other reports. With Power BI Premium capacity in the Power BI service, 10 GB

and larger files (datasets) are supported.

Given these considerations, organizations with significant on-premises investments or require-

ments may wish to consider PBRS as at least part of their BI architecture. One example of this

is a large on-premises data warehouse with many existing paginated (.RDL) SSRS reports built

against it.

Deploying Paginated Reports518

As described in the Migrating reports section from earlier in this chapter, new Power BI reports

deployed to PBRS can later be migrated to the Power BI cloud service via the same licenses.

For example, a group of related Power BI reports initially published to a folder on PBRS could later

be uploaded to a workspace in the Power BI service. The app workspace could be assigned a Power

BI Premium capacity; thus, the reports could be distributed to all users, including Power BI Free

users, via an app, as per Chapter 13, Creating Power BI Apps and Content Distribution.

Prior to deciding on the use of PBRS, it is important to understand the key feature differences

between PBRS and the Power BI service.

Feature differences with the Power BI service
The PBRS renders Power BI reports (.pbix files) similar to the Power BI service, but it is not in-

tended to deliver other features found in the Power BI service such as dashboards and data alerts.

For users or organizations inexperienced with Power BI concepts (datasets, reports, and dash-

boards) and the Power BI service, these reports may be considered to be dashboards, and many

of the additional features provided by the Power BI service, such as dashboards, workspaces, and

apps, may not be known or utilized.

Although viewing and interacting with Power BI reports is clearly central to Power BI, Power BI

as a Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) cloud offering provides

many additional benefits beyond the standard infrastructure cost and maintenance benefits of

a cloud solution. These additional features support content management, collaboration, and the

managed distribution of content throughout the organization.

Prior to committing to PBRS, it’s recommended that you understand the role and benefit of fea-

tures exclusive to the Power BI service such as the following:

• Dashboards

• Data alerts and notifications

• Email subscriptions to dashboards and reports

• Workspaces and apps

• Quick insights

• Natural Language Query (Q&A)

• Analyze in Excel

• Streaming datasets

• R and Python custom visuals

Chapter 12 519

• Composite datasets

• Many-to-many relationships

• Cross-report drillthrough

• Full-screen mode

• Advanced Microsoft 365 collaboration

• Template apps

• Shared Power BI datasets

Several of the Power BI Service features not available on the PBRS have been reviewed in earlier

chapters, such as dashboards (Chapter 9, Designing Dashboards, and Chapter 10, Managing Work-

spaces and Content).

Other features exclusive to the Power BI service, including email subscriptions to dashboards

and reports, Power BI apps, and data alerts, are reviewed in Chapter 13, Creating Power BI Apps

and Content Distribution.

While PBRS does not include certain features of the Power BI service, PBRS does have full feature

parity with SSRS.

Parity with SQL Server Reporting Services
PBRS is 100% compatible with SSRS. In fact, PBRS can be thought of as a superset of an SSRS server

in the sense that both modern Power BI reports and all SSRS features up to the latest release of

SSRS are included.

Therefore, it’s not necessary to deploy both an SSRS report server and PBRS to support existing

SSRS workloads.

It’s certainly possible to deploy PBRS along with an instance of SSRS. For example, a PBRS instance

could be dedicated to self-service BI reports built with Power BI Desktop, while the SSRS instance

could be dedicated to IT-developed paginated (.RDL) reports.

For the majority of organizations, however, PBRS and its modern web portal should be used to

consolidate all report types.

There is no reason, except in some edge cases, for you to be running both SSRS and

Power BI Report Server.

– Christopher Finlan, Senior Program Manager for Power BI Report Server

Deploying Paginated Reports520

There are three main differences between PBRS and SSRS:

1. Power BI Report (.PBIX) files can only be viewed from the PBRS web portal.

2. Excel workbooks (.XLSX) can only be viewed from the PBRS web portal although this

requires the OOS.

3. The upgrade and support cycles are significantly shorter for the PBRS. A new version of

PBRS is released approximately every 4 months in January, May, and September.

New versions of SSRS continue to be tied to the release of SQL Server. For example, SSRS 2017

was made generally available (GA) on October 2, 2017, along with SQL Server 2017. Although the

upgrade cycle has shortened for SQL Server, it doesn’t match the pace of innovation of Power BI’s

monthly release cycles. Therefore, to make new Power BI features available to customers with

on-premises deployments, a new PBRS is released approximately every 4 months.

Unlike versions of SSRS, which continue to receive support such as cumulative updates for years

following their release, support for each PBRS release ends after one year. Therefore, while up-

grading to each new version of PBRS every 4 months is not required, organizations should plan to

upgrade within one year of each version’s release to maintain support. Additional information and

considerations on upgrade cycles are included in the Upgrade cycles section later in this chapter.

Support for multiple instances per server represents one additional difference between PBRS and

SSRS. Currently, only one instance of PBRS can be installed per server. Therefore, unlike SSRS,

virtual machines need to be configured if multiple instances are required for the same server.

There are no plans to deprecate SSRS or replace it with PBRS. However, given the additional features

exclusive to PBRS and the more frequent release cycles, there are strong reasons to choose PBRS

over SSRS going forward. Additionally, an existing SSRS server can be easily migrated to PBRS.

BI teams who are familiar with SSRS can quickly take advantage of the mature features, such as

report subscription schedules and role-based user permissions. For organizations running older

versions of SSRS, the significant features introduced in SSRS 2016, including the modern web

portal and KPIs, can further supplement their BI solution.

In summary, PBRS allows organizations to continue to fully support existing and new SSRS reports,

while also enabling the self-service and data visualization features of Power BI reports.

Let’s review the data sources and connectivity options for PBRS next.

Chapter 12 521

Data sources and connectivity options
All three main connectivity options for Power BI Reports (import, DirectQuery, and Live connec-
tion) are supported by PBRS. However, composite datasets are not supported.

For example, corporate BI teams could develop DirectQuery and Live connection reports based
on a Teradata database and a SQL Server Analysis Services (SSAS) model, respectively. Business
users with Power BI Pro licenses can also import data from Excel and other sources to the Power
BI Desktop version optimized for the PBRS and publish those reports to the PBRS.

Power BI reports deployed to PBRS cannot currently utilize a single Power BI dataset (.PBIX file)
as their data source, as described in the Live connections to the Power BI datasets section of Chapter
6, Planning Power BI Reports. Given the resource limitations of the report server and the important
goals of reusability and version control, this implies that DirectQuery and Live connection reports
are strongly preferred for the current version of PBRS.

Imported Power BI datasets are currently limited to 2 GB file sizes. This compares to the 10 GB
file size limit of Power BI datasets published to the Premium capacity in the Power BI server.
Therefore, if it’s necessary to import data to a Power BI report for deployment to the PBRS, only
include the minimal amount of data needed for the specific report.

Avoid duplicating imported data across many reports by leveraging report pages, slicer visuals,
and bookmarks. If import mode reports are required, such as when data integration is needed
or when an Analysis Services model is not available, look for opportunities to consolidate report
requests into a few .PBIX reports that can be shared.

One advantage of PBRS is that, as an on-premises solution, the on-premises data gateway section
described in Chapter 11, Managing the On-Premises Data Gateway is not needed. The report server
service account, running either as the Virtual Service Account or as a domain user account within

the local Active Directory, is used to connect to data sources.

We will now turn our attention to hardware and user licensing.

Hardware and user licensing
The rights to deploy PBRS to a production environment can be obtained by purchasing Power BI

Premium capacity or via SQL Server Enterprise Edition with a Software Assurance agreement.

Power BI Premium is the primary and recommended method as this includes both a Power BI

service (cloud) dedicated capacity and PBRS at the same cost. By licensing PBRS via Power BI

Premium capacity, an organization can choose to migrate Power BI reports to the Power BI service

(cloud) at a future date.

Deploying Paginated Reports522

For example, a Power BI Premium P2 SKU includes 16 v-cores of dedicated capacity in the Power
BI service, as well as the right to deploy PBRS to 16 processor cores on-premises. Furthermore, the
cores provisioned via Power BI Premium can be allocated to on-premises hardware as needed by
the organization, such as one PBRS with all 16 cores or two PBRS instances with eight cores each.

Once Power BI Premium capacity has been purchased, a product key required to install the report
server becomes available in the Power BI admin portal. The details of Power BI Premium including
the management of Premium (dedicated) capacities and the additional capabilities enabled by
Premium capacities for deployments to the Power BI service are included in Chapter 15, Building
Enterprise BI with Power BI Premium.

As an alternative to licensing via Power BI Premium, organizations with SQL Server Enterprise
Edition with Software Assurance can use their existing SQL Server licenses to deploy PBRS.

One of the benefits of the Software Assurance program has been to provide access to new versions
of SQL Server as they’re released, and this benefit has been extended to include PBRS. For exam-
ple, if an organization has already licensed 24 cores to run SQL Server Enterprise Edition with
a Software Assurance agreement, they could allocate 8 of those 24 cores to a server for running
PBRS. Just like current SQL Server licensing, additional SQL Server products (such as SQL Server
Integration Services) could also be deployed on the same eight-core server. It’s essential to re-
alize that, unlike Power BI Premium, this licensing method does not provide access to the many
additional features exclusive to the Power BI (cloud) service, as described earlier in this chapter.

Pro licenses for report authors
In addition to licensing for PBRS, each user who publishes Power BI reports (.PBIX files) to the

report server’s web portal requires a Power BI Pro license. In most large deployments, these are

typically a small number of BI report developers and self-service BI power users, as described in

the Power BI licenses section of Chapter 1, Planning Power BI Projects.

Users who only view and optionally interact with reports published to PBRS do not require Power

BI Pro licenses or even Power BI Free licenses. This licensing structure (Premium Capacity + Pro

licenses for report authors) further aligns PBRS with the Power BI service.

Let’s now take a look at the various ways PBRS can be deployed within an organization.

Alternative and hybrid deployment models
PBRS, along with the ability to embed Power BI content into custom applications, gives organi-

zations the option to choose a single deployment model (such as PBRS only) or a combination

of deployment models in which both PBRS and the Power BI service are utilized for distinct

scenarios or content.

Chapter 12 523

With both the Power BI service and the PBRS available via Power BI Premium capacity, an organi-

zation could choose to match the deployment model to the unique needs of a given project, such

as by using the PBRS if traditional paginated reports are needed, or if the reports need to remain

on-premises for regulatory reasons.

For example, one Power BI solution for the marketing organization could be completely cloud-

based, such as using Azure SQL Database as the source for Power BI reports and dashboards

hosted in the Power BI service.

A different solution for the sales organization could use the on-premises data gateway to query

a SSAS model (on-premises) from the Power BI service, as described in Chapter 11, Managing the

On-Premises Data Gateway.

Finally, it could be used for scenarios in which both the data source(s) and the report/visualization

layer must remain on-premises, such as for sensitive reports used by the human resources orga-

nization. Power BI reports developed against on-premises sources could be deployed to the PBRS.

Figure 12.13 shows the essential architecture of three distinct Power BI solutions: cloud-only, cloud

and on-premises, and on-premises only:

Figure 12.13: Power BI solutions by deployment model

In this example, Power BI reports and dashboards developed for the marketing department are

hosted in the Power BI service and based on an Azure SQL database. The sales team also has access

to dashboards and reports in the Power BI service, but the queries for this content utilize a Live

connection to an on-premises SSAS model via the on-premises data gateway.

Deploying Paginated Reports524

Finally, Power BI reports developed for the human resources department based on on-premises

data sources are deployed to the PBRS.

BI solutions that utilize PaaS and SaaS cloud offerings generally deliver reduced overall cost of

ownership, greater flexibility (such as scaling up/down), and more rapid access to new features.

For these reasons, plans and strategies to migrate on-premises data sources to equivalent or

superior cloud solutions, such as Azure Synapse and Azure Analysis Services, are recommended.

If multiple Power BI deployment models are chosen, BI teams should understand and plan to

manage the different components utilized in different models. For example, identify the admin-

istrators, hardware, and users of the on-premises data gateway.

Likewise, identify the Power BI service administrators and the tenant settings to apply, as de-

scribed in Chapter 14, Administering Power BI for an Organization. Additionally, as discussed in

the Upgrade cycles section later in this chapter, organizations can choose either a single Power

BI Desktop version to utilize for both PBRS and the Power BI service, or run separate versions of

Power BI Desktop side by side.

BI teams responsible for managing these more complex deployments should have monitoring in

place to understand the utilization and available resources of the alternative deployment models.

For example, rather than adding resources to a PBRS or adding another report server in a scale-

out deployment, certain Power BI reports could be migrated to available Premium capacity in the

Power BI service. The Power BI Premium capacities section in Chapter 14, Administering Power BI

for an Organization, includes details on the Premium capacity monitoring provided in the Power

BI service.

We will now take a closer look at a reference topology for PBRS.

PBRS reference topology
The four main components of a PBRS deployment include the report server instance, the Report

Server Database, Active Directory, and the data sources used by the reports. The Active Directory

domain controller is needed to securely authenticate requests by both the data sources and the

report server.

Chapter 12 525

In Figure 12.14, a SQL Server database and an SSAS Tabular model are used as data sources by the

report server:

Figure 12.14: PBRS reference topology

In Figure 12.14, the Report Server Database is hosted on a separate server from the PBRS. This

is recommended to avoid competition for resources (the CPU, memory, and network) between

the PBRS and the SQL Server database engine instance required for the Report Server Database.

Let’s take a look at how to scale out the reference architecture next.

Scale PBRS
Both scale-up and scale-out options are available for PBRS deployments. In a scale-up scenario,

additional CPU cores can be provisioned via Power BI Premium capacity or an existing SQL Server

Enterprise Edition with Software Assurance agreement.

For example, if 16 cores were obtained via Power BI Premium P2 SKU, an additional 8 cores could

be purchased via a P1 SKU. Additionally, particularly if import mode Power BI datasets are used,

additional RAM can be installed on the report servers.

In a scale-out deployment, multiple instances of PBRS are installed on separate machines. These

instances share the same Report Server Database and serve as a single logical unit exposed to

business users via the web portal.

Deploying Paginated Reports526

Figure 12.15 shows a diagram of a scale-out deployment. Business user report requests are dis-

tributed between two different instances of PBRS via a network load balancer:

Figure 12.15: Scale-out PBRSes

Servers can be added or removed from a scale-out deployment. In addition to supporting more

users and greater usage, scale-out deployments also increase the resiliency of the deployment.

To avoid a single point of failure, the scale-out deployment of the report servers can be coupled

with high availability features for the Report Server Database, such as SQL Server Always On avail-

ability groups or a failover cluster. Additional information on configuring Always On availability

groups with a Report Server Database is available via the following URL: http://bit.ly/2rLtSqY.

We will now cover the basics of installing PBRS.

Installing and upgrading PBRS
Once capacity (cores) to deploy PBRS have been obtained, teams can prepare to install and con-

figure the environment by downloading the report server software and the version of Power BI

Desktop optimized for PBRS.

Both the report server installation software and the report server version of Power BI Desktop

can be downloaded from Microsoft at the following link: https://powerbi.microsoft.com/en-

us/report-server/. Clicking the Advanced download options link on that page transports the

user to the most current release of PBRS available in the Microsoft Download Center.

http://bit.ly/2rLtSqY
https://powerbi.microsoft.com/en-us/report-server/
https://powerbi.microsoft.com/en-us/report-server/

Chapter 12 527

Clicking the large Download button presents the option to download three different files, as

shown in Figure 12.16:

Figure 12.16: Downloading PBRSes

Referring to Figure 12.16, the PowerBIReportServer.exe file is the file for installing PBRS, while the

PBIDesktopRS.msi and PBIDesktopRS_x64.msi files are for downloading the Power BI Desktop

application optimized for PBRS (either 32-bit or 64-bit respectively).

System requirements for running PBRS can change over time, so it is recommended that you ex-

pand the System Requirements section and ensure that the target system meets the necessary

minimum requirements for running PBRS.

For PBRS, an operating system of Windows Server 2016 or later is required, as is 1 GB of RAM, 1 GB

of available hard-disk space, and a 64-bit processor with a clock speed of 1.4 GHz or higher. 4 GB

of RAM and a 64-bit processor with a 2.0 GHz or a faster clock speed is recommended. Additional

hard disk space is required on the database server hosting the Report Server Database.

Detailed instructions for installing and configuring PBRS can be found here: https://bit.

ly/36uTWLS. However, prior to installing PBRS, you must have the necessary installation key,

which we will cover next.

Retrieve the PBRS product key
If a Power Premium capacity has been purchased, the PBRS product key can be retrieved from the

Power BI admin portal. The Power BI admin portal can be accessed by either an Office 365 global

administrator or a user assigned to the Power BI service administrator role.

https://bit.ly/36uTWLS
https://bit.ly/36uTWLS

Deploying Paginated Reports528

For these users, a link to the Admin portal is exposed from the gear icon in the top-right corner

of the Power BI service, as shown in Figure 12.17:

Figure 12.17: Admin portal

Note that depending on the browser display settings and window size, three dots (…) may be dis-

played next to the user’s profile image in the upper-right corner of the window. Clicking the ellipsis

exposes a Settings menu, which in turn displays the Admin portal link, as shown in Figure 12.18:

Figure 12.18: Admin portal alternate path

Once in the Admin portal, choose Capacity settings and then click on the Power BI Report Server

key link, as shown in Figure 12.19:

Chapter 12 529

Figure 12.19: Admin portal alternate path

Once your PBRS instance has been installed and configured, the PBRS instance needs to be main-

tained over time as new PBRS versions are released approximately every 4 months. Thus, we will

look at considerations regarding upgrade cycles next.

Upgrade cycles
A new version of the PBRS is released approximately every 4 months with release months typically

being January, May, and September.

For example, the May 2021 release was followed by a September 2021 version, which in turn was

followed by a January 2022 release. Security and critical updates are available for the prior version

until the next release. After the next release, security updates are only provided for prior versions

and only for 1 year after the initial release. In other words, for the three releases cited previously,

their support end dates will be May 2022, September 2022, and January 2023 respectively.

Therefore, enterprise organizations wishing to remain compliant with Microsoft support would

be required to update their PBRS instances a minimum of once a year. The upgrade cycle is one of

the reasons for choosing the Power BI service since this process is managed by Microsoft within

the Power BI service.

For example, new features are automatically added to the Power BI service each month, and

users can update to the latest release of Power BI Desktop automatically via the Windows Store

in Windows 10 operating systems.

Deploying Paginated Reports530

The main reason PBRS is not released more frequently, such as every 2 months, is that most IT

organizations will not want to upgrade their BI environments more than three to four times per

year. Some organizations are expected to skip one or two of the releases per year to coincide with

their internal upgrade policies and schedules.

With each release of PBRS, a new version of the Power BI Desktop optimized for this version of the

PBRS is also released. This is a distinct application from the Power BI Desktop application, which

can be downloaded directly from PowerBI.com and is described more fully in the following section.

To avoid report rendering errors, it’s strongly recommended that you synchronize the deployment

of the PBRS with its associated version of the Power BI Desktop. For example, once an upgrade

to the January 2022 version of PBRS is complete, the January 2022 version of Power BI Desktop

optimized for the PBRS should be installed on users’ machines.

We will now look at the Power BI Desktop application optimized for PBRS.

PBRS client applications
As mentioned in the previous section, a version of the Power BI Desktop application optimized

for PBRS is made available with each release of PBRS.

As shown in the Installing and upgrading PBRS section earlier, a PowerBIDesktopRS_x64.msi file

is also available for download when downloading PBRS. This is the application used to create the

Power BI reports to be published to that specific version of PBRS.

When running the report server optimized version of Power BI Desktop, the version is displayed

in the title bar in parentheses, such as (January 2022). In addition, the Save as menu displays

an option for PBRS, as shown in Figure 12.20:

Figure 12.20: Power BI Desktop optimized for PBRS

Chapter 12 531

As suggested by the Save as menu in the preceding screenshot, a report created via the PBRS op-

timized application can be saved directly to the report server. In other words, a .PBIX file doesn’t

necessarily have to be saved to a user’s machine—the PBRS can serve as a network file share. If

a report needs to be modified, the user (with a Power BI Pro license) could open the file directly

from the web portal and save their changes back to the report server.

It is possible to run both the regular Power BI Desktop application and the optimized report

server version at the same time.

Running desktop versions side by side
It’s possible to install and run both versions of Power BI Desktop (the standard and Report Server

optimized) on the same machine. This can be useful in organizations deploying reports to both

the Power BI service and PBRS.

For example, the standard Power BI Desktop application could be used to create a new report

for a workspace in the Power BI service, which utilizes the very latest features. The report server

optimized version, however, would be used to create or edit reports that are deployed to a PBRS

instance.

As an alternative to running both applications side by side, an organization could choose to ex-

clusively use the PBRS-optimized version of Power BI Desktop for reports published to both the

Power BI service and PBRS. This single-application approach could simplify the management of

the overall deployment but would prevent the utilization of the latest features available in the

standard version of Power BI Desktop.

Next, we will look at the mobile version of Power BI and how it can be used with PBRS.

Deploying Paginated Reports532

Power BI mobile applications
The same Power BI mobile applications for the iOS, Android, and Windows platforms, which are

used to access content published to the Power BI service, can also be used with PBRS. As shown

in Figure 12.21, the user has opened the Settings menu via the global navigation button (≡) to

connect to a report server:

Figure 12.21: Power BI mobile app: Settings

Referring to Figure 12.21, clicking Connect to server opens a page to enter the report server address

and optionally provide a friendly name for the server, such as AdWorks Report Server. The server

address entered should follow one of two formats:

http://<servername>/reports

https://<servername>/reports

The connection between the mobile application and the report server can be created by opening

a port in the firewall, being on the same network (or VPN), or through a Web Application Proxy

from outside the organization. Information on how to configure OAuth authentication via Web

Application Proxy is available at the following URL http://bit.ly/2EepW4J.

Regardless of the platform (iOS or Android), up to five concurrent connections can be created for

different report servers. Each report server connection appears in the Settings menu. Additionally,

the Favorites menu displays reports and content marked as favorites, whether that content is

hosted on PBRS or in the Power BI service.

http://bit.ly/2EepW4J

Chapter 12 533

From a business user or consumption standpoint, the mobile layout and mobile optimizations

described in the Mobile optimized reports section of Chapter 8, Applying Advanced Analytics, are

reflected in Power BI reports accessed from the Power BI mobile app.

Summary
This chapter introduced paginated reports for Power BI both within the Power BI service and

on-premises only via the PBRS. While the support of paginated reports in the Power BI service

has greatly reduced the need for PBRS in many organizations, there are still use cases where a

fully on-premises solution for reporting is required.

Key topics covered in this chapter were migrating Report Description Language (RDL) files to

the Power BI service, the feature differences between PBRS and the Power BI service, and the

overall planning, scaling, and upgrading of PBRS.

In the next chapter, we focus on the distribution of published content to end users. This includes

the delivery and management of packages of related Power BI content to large groups of users

via Power BI Apps as well as other content delivery capabilities of the Power BI service such as

data-driven alerts and scheduled email subscriptions.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

13
Creating Power BI Apps and
Content Distribution

This chapter walks through all facets of Power BI apps as the primary method for distributing

content to groups of users. Given the current one-to-one relationship between apps and

workspaces, you are advised to review Chapter 10, Managing Application Workspaces and Power BI

Content, prior to this chapter.

Additional content distribution and consumption methods including email subscriptions,

SharePoint Online embedding, data-driven alerts, and Analyze in Excel are also described in this

chapter. The distribution methods available in Power BI Report Server and the technical details

of integrating Power BI content into custom applications are outside the scope of this chapter.

In this chapter, we will review the following topics:

• Content distribution methods

• Power BI apps

• Sharing content

• Embedding

• Data alerts

• Email subscriptions

• Analyze in Excel

• Self-service BI workspaces

We’ll start with an overview of methods for distributing content in Power BI.

Creating Power BI Apps and Content Distribution536

Content distribution methods
Content distribution refers to the sharing and distribution of artifacts that result from Power BI

projects. Sharing reporting artifacts is a balance of ease of access, discoverability, security, and

general data governance.

As a result, there are multiple different ways to share reports, datasets, and other content. Some of

these methods, like Power BI apps, focus heavily on read-only reports and centralization. Others,

like self-service workspaces, focus more on collaboration and editing. In fact, one of the main

value propositions of Power BI is the ability of users to access relevant analytical content in a

manner and context that’s best suited to their needs.

For example, many read-only users may log in to the Power BI service to view dashboards or

reports contained within Power BI apps that are specific to their role or department. Other users,

however, may only receive snapshot images of reports and dashboards via email subscriptions or

respond to data alert notifications on their mobile devices. In other scenarios, certain users may

analyze a dataset hosted in Power BI from an Excel workbook, while other users could observe a

Power BI report embedded within a SharePoint team site.

Organizations can choose to distribute or expose their Power BI content hosted in the Power BI

service via a single method or a combination of various different methods. The following table

summarizes eleven different methods of content distribution and data access:

Method Summary

1 Power BI apps • A group of related dashboards, scorecards, Power BI reports,

paginated reports, and Excel reports within a workspace

• The app can be published to the security groups of users,

enabling wide distribution

2 Embed in custom

applications

• Power BI content is embedded in a custom application or a

separate service from Power BI

• Dedicated capacity is required to host embedded content

(Power BI Premium or embedded)

3 Share reports and

dashboards

• An individual report or paginated report can be shared with a

user or a group of users

• A dashboard and its underlying reports are shared with a user

or a group of users

Chapter 13 537

4 Embed in

SharePoint Online

• A Power BI report is embedded in a SharePoint Online site page

via the Power BI web part

• Power BI Pro licenses, the Power BI Premium capacity, or

embed licenses can be used to license site users

5 Email

subscriptions

• Subscriptions are configured for dashboards or individual

pages of reports

• Users receive recurring emails with snapshot images of

updated dashboards or report pages

6 Data alerts • Alerts are configured for dashboard tiles in the Power BI service

or mobile applications

• Users receive notifications when the alert conditions are

triggered

7 Publish to web • A report is made available via a publicly accessible URL or

embedding in a website

• Insecure; anyone with the URL can view the report

8 Analyze in Excel • Users with Power BI Pro licenses can connect to Power BI

datasets via Excel

9 Live connections in

Power BI Desktop

• Users with Power BI Pro licenses can connect to Power BI

datasets from Power BI Desktop

• Users have the option of publishing new report files back to the

Power BI service

10 Microsoft Teams

integration

• A Power BI report is added as a tab in Microsoft Teams

• Power BI Pro licenses, the Power BI Premium capacity, or

embedded licenses can be used to license site users

Table 13.1: Power BI content distribution methods

The most common corporate BI distribution methods for supporting large numbers of users

are the first two methods listed in Table 13.1: Power BI apps and embedding Power BI content

into custom applications. Several other methods, however, are useful for small-scale and self-

service scenarios, such as Analyze in Excel as well as supplements to larger Power BI solutions.

Additionally, email subscriptions, data alerts, and embedding options for SharePoint Online and

Microsoft Teams help bring analytical data to wherever the user works.

Creating Power BI Apps and Content Distribution538

The Power BI mobile application aligns with and supports several of the primary distribution

methods, including Power BI apps, the sharing of dashboards and reports, and data alerts.

Examples of the relationship between the Power BI service, Power BI mobile, and other Microsoft

applications and services are included in the following sections.

Let’s now take a closer look at Power BI apps.

Power BI apps
A Power BI app is a published collection of content from a workspace. An app can include all or

a subset of the dashboards, scorecards, reports, and Excel workbooks within a single workspace.

There is currently a one-to-one relationship between apps and workspaces such that each

workspace can only have a single associated app, and an app’s content can only come from a single

workspace. This limitation has caused organizations to create and manage more workspaces than

they would like in order to isolate app content to different groups. Given the customer feedback

for this issue, a new feature is planned for later in 2022 that will allow a single workspace to

support multiple app versions for different consumer groups.

Just as workspaces are intended for the creation and management of Power BI content, apps are

intended for the distribution of that content to groups of users. Once granted permission to an

app, users can view the contents of the app within the Power BI service or via Power BI mobile

applications.

Power BI apps should be the primary method of content consumption within organizations, so

let’s discuss how apps are licensed.

Licensing apps
Apps are particularly well suited to large, corporate BI deployments that support the reporting

and analysis needs of many users. This is because apps provide a centralized method of content

distribution for a workspace where app creators can customize the navigation of content, as

well as including additional links and information, such as links to supporting information and

contacts for questions about the app. In addition, apps also provide a superior user interface and

user experience versus navigating to and viewing many different individual reports, dashboards,

and other content.

There are three primary mechanisms for licensing apps:

• Power BI Pro

• Power BI Premium Per User (PPU)

Chapter 13 539

• Power BI Premium capacity

In most of these scenarios, the great majority of users only need to view certain reports or

dashboards and don’t require the ability to edit or create any content like Power BI Pro users.

For example, a salesperson within the northwest region of the United States may only briefly

access a few dashboards or reports 2–3 times per week and occasionally interact with this content,

such as via slicer visuals. With the source workspace of the app hosted in the Power BI Premium

capacity, these read-only users can be assigned Power BI Free licenses yet still be allowed to access

and view published apps. Additionally, Power BI Free licensed users can be granted the ability

to connect to the datasets used by the reports in the published app from client applications like

Power BI Desktop and Excel.

In the absence of the Power BI Premium capacity, a Power BI Pro license is required for each user

that needs to access the app. In small-scale scenarios, such as when organizations are just getting

started with Power BI, purchasing Power BI Pro licenses for all users can be more cost-effective

than Power BI Premium capacities.

However, at a certain volume of users, the Power BI Premium capacity becomes a much more

cost-efficient licensing model. For example, once an organization exceeds approximately 500

Power BI Pro licenses, the Power BI Premium capacity should be considered as a potential way

to save on licensing costs.

For organizations that desire some of the additional features of Premium capacities, Power BI

PPU licenses can also be an alternative to the Premium capacity. However, once an organization

exceeds approximately 250 PPU licenses, the Power BI Premium capacity can potentially save

those organizations money.

The same licensing considerations apply to users outside of the organization. If the Premium

capacity is used, these external users do not require a Pro or PPU license to view the content.

However, if the Premium capacity is not used, these external users require a Pro or PPU license

assigned by their organization.

Power BI Premium and PPU licenses enable many additional features intended to support

enterprise deployments. The details of provisioning and managing Power BI Premium capacity

are described in Chapter 15, Scaling with Power BI Premium.

Let’s look at the deployment process for Power BI apps next.

Creating Power BI Apps and Content Distribution540

App deployment process
The app deployment process simply refers to the manner in which an app is created and distributed

to users. A Power BI app is published from a workspace and inherits the name of its source

workspace.

As mentioned previously, an app can only contain content from its source workspace. However,

an app does not have to expose all the content of its source workspace. The members of the

workspace responsible for publishing and updating the app can utilize the Include in app toggle

switch to selectively exclude certain dashboards or reports.

For example, two new reports that have yet to be validated or tested could be excluded from the

app in its initial deployment. Following the validation and testing, the Include in app property

(on the far right of each report and dashboard when viewing a workspace, as shown in Figure

13.1) can be enabled and the app can be updated, thus allowing users access to the new reports:

Figure 13.1: Include in app property

The one-to-one relationship between workspaces and apps underscores the importance of

planning for the scope of a workspace and providing a user-friendly name aligned with this

scope. Too narrow a scope could lead to users needing to access many different apps for relevant

reports and dashboards. Alternatively, too broad a scope could make it more difficult for users

to find the reports and dashboards they need within the app. Additionally, the workspace and

app-update process could become less manageable.

Chapter 13 541

A simple publish (or update) process is available within the workspace for defining the users

or groups who can access the app as well as adding a description and custom navigation, and

choosing a default landing page for users of the app. The details of the publish process are included

in the Publishing apps section.

Figure 13.2 and the supporting five-step process describe the essential architecture of apps and

workspaces:

Figure 13.2: App deployment process

An example of using this deployment process is a Global Sales app being accessed by a sales team

consisting of 200 users, as per the Sample Power BI project template section of Chapter 1, Planning

Power BI Projects. Additionally, the row-level security roles described in Chapter 5, Developing DAX

Measures and Security Roles, and the organizational dashboard architecture reviewed in Chapter 9,

Designing Dashboards, would be utilized by such an app.

The deployment process involves five steps, as noted in Figure 13.2 and described below:

1. One or more workspaces are created in the Power BI service, and dataset modelers and

report designers are added as workspace members with edit rights to the workspace(s).

Individual members and Microsoft 365 groups can be added to workspaces.

2. Members of the workspace publish datasets, scorecards, reports, and Excel workbooks

to the given workspace and create dashboards based on the reports. Power BI Desktop

is used to author and publish datasets and reports based on a Live connection to the

published datasets. Visuals from the published reports are pinned to dashboards, such

as European Sales. However, dashboards are not required to publish an app and neither

are scorecards or Excel workbooks.

Creating Power BI Apps and Content Distribution542

It should be noted that Power BI reports can access datasets via Live connections even

if those datasets are contained in a separate workspace, which is often a best practice

employed by organizations to maintain security and the separation of duties. This requires

a specific Power BI tenant setting to be enabled, which is discussed in further detail in

Chapter 14, Administering Power BI for an Organization.

3. Scheduled data refresh or dashboard cache refresh schedules are configured, and the

workspace content is validated. In this example, an import mode dataset is used, and

thus, the dashboards and reports are updated when the scheduled refresh completes.

4. A workspace administrator or a member with edit rights publishes an app from the

workspace. The app is distributed to one or multiple users and/or Microsoft 365 groups,

Azure AD security groups, or Azure AD mail-enabled security groups.

5. Members of the sales team view and optionally interact with the content in the Power

BI service and/or Power BI mobile applications. The dashboards and reports reflect the

row-level security roles configured in the dataset.

Certain sales team users requiring Power BI Pro features, such as Analyze in Excel, could utilize

the Power BI app as well. Additional content access methods exclusive to Power BI Pro users, such

as email subscriptions to dashboards and reports, are described later in this chapter.

As organizations are generally keen on making certain that sensitive business information is

secure, let’s take a closer look at the security and user permissions for apps.

User permissions and security
BI teams distributing Power BI content via apps have three layers of control for granting users

permission to view the app’s dashboards and reports. The first layer is control over which users or

groups of users should be able to access the app after publishing in the Power BI service. Remember

that Microsoft 365 groups, Azure AD security groups, and mail-enabled Azure AD security groups

can all be assigned access to apps.

In Figure 13.3, a security group from Azure AD (Sales) is specified when publishing the workspace

as an app:

Chapter 13 543

Figure 13.3: Publishing an app to a security group

In this example, a Power BI user must be included in the Sales security group to see and access

the app. The user who published the app is also automatically granted permission to the app.

Additionally, as per the Install this app automatically checkmark, the published app will be

automatically installed for members of the Sales security group. These users will be able to access

the installed app via the Apps menu item in the left navigation menu of the Power BI service.

The Install this app automatically option, as well as the option to grant access to the Entire

organization, only appears if specific tenant settings are enabled in the Power BI Admin portal.

Specifically, a Power BI admin can enable the Push apps to end users setting and/or Publish

content packs and apps to the entire organization, respectively, in the Tenant settings page

for an entire organization or for specific security groups of users.

Creating Power BI Apps and Content Distribution544

Microsoft recommends that apps should only be pushed to users during off-hours and that teams

should verify the availability of the app prior to communicating to a team that the published app

is available. The configuration of Tenant settings in the Power BI admin portal is described in

Chapter 14, Administering Power BI for an Organization.

The second layer of control is the available options shown under the Allow everyone who has

app access to heading. Here, app publishers can control whether or not app users have the ability

to build new reports from the underlying datasets of the app, copy reports within the app, and

share the app with other users. In most enterprise scenarios, all three of these options should

be disabled in order to prevent unintended individuals from accessing the app as well as the

creation of unofficial reports. Build permission, which is the ability to create new reports against an

existing dataset, can be granted to report authors and self-service report authors via the Manage

Permissions page for the source dataset in the workspace of the source dataset.

The third layer of control is the row-level security (RLS) roles configured for the dataset supporting

the reports and dashboards. If RLS is defined within the dataset, all users accessing the app should

be mapped to one of the RLS roles in the Power BI service.

Included in this third layer is object-level security (OLS). Since RLS simply filters data rows,

users without access can still potentially see that certain tables and columns exist in the dataset.

In contrast, OLS completely hides the tables and columns from users that do not have access to

this information.

Note that OLS cannot be configured within Power BI Desktop, but rather must be implemented

using tools such as Tabular Editor. Also, be aware that using columns secured by OLS directly in

visualizations will break those visuals for users that do not have access to those columns.

In Figure 13.4, another Azure AD security group (Admin) is being mapped to the Europe Sales

Group RLS role:

Figure 13.4: Dataset security role assignment

Chapter 13 545

This dialog is accessed via a dataset’s Security setting, which is accessed from the three vertical

dots menu when viewing the content of a workspace, as shown in Figure 13.5:

Figure 13.5: Security menu option for datasets

Thus, in this example, the user accessing and consuming the app must be a member of both the

Sales security group and one or more of the security groups assigned to an RLS role. If the user is

only a member of the Sales security group, the visuals of the dashboard and report will not render.

With the three distinct levels of security and permission controls understood, let’s take a look at

actually publishing an app next.

Publishing apps
Apps are published from app workspaces in the following way:

1. A workspace member with edit rights clicks the Create app button in the top-right corner

of the workspace. Three pages are launched for configuring the app: Setup, Navigation,

and Permissions.

Creating Power BI Apps and Content Distribution546

2. On the Setup page, an App name and a short Description of the app are entered, such as

in the following example:

Figure 13.6: Setup page when publishing an app

3. As shown in Figure 13.6, in addition to the App name and Description, the Support site,

App logo, App theme color, and Contact Information (not shown) properties can also

be configured for the app.

4. On the Navigation page, customize the navigation with custom sections and links to

dashboards, reports, scorecards, and Excel workbooks:

Chapter 13 547

Figure 13.7: App Navigation page

In Figure 13.7, four sections (Global Sales, North America Sales, Europe Sales, and Pacific

Sales) have been created to group the different sections of the app and help users more

easily navigate to content. In this example, users accessing the Global Sales app will land

on the Global Sales (dashboard) by default since this is first in the Navigation list.

Creating Power BI Apps and Content Distribution548

The Navigation page also provides a consolidated view of the dashboards, reports,

scorecards, and Excel workbooks that are included in the app given the current settings.

In the event that any content has been included that shouldn’t be, the user can navigate

to this item in the workspace and disable the Include in app property.

By default, the Include in app property for new dashboards, reports, scorecards, and Excel

workbooks is enabled. Therefore, prior to publishing the app, ensure that this property

has been disabled for any internal testing or development content.

In addition to creating custom sections, the New button also allows the creation of custom

links. Custom links can be useful to direct viewers of the app to such things as the external

support pages or other content that is not stored in Power BI.

Individual navigation items or entire sections can be moved up and down in the Navigation

list using the up and down arrow icons. In addition, list items can be hidden from the

Navigation list using the circle and arc (eyeball) icon or, alternatively, the Hide from

navigation checkbox.

5. On the Permissions page, the users, Microsoft 365 groups, and security groups that should

have permission for the app are defined. The Permissions page was covered in the User

permissions and security section earlier in this chapter.

Once finished configuring permissions, click the Publish app button in the lower-right

corner of the page. A URL to the app is provided in a window along with a Successfully

published message, as per Figure 13.8:

Figure 13.8: Published app

The published app can now be accessed by the users or groups of users defined on the Permissions

page. If the Install this app automatically option was used, the user or team publishing the app

can verify with a few users that the app is now installed and available.

Chapter 13 549

Depending on the number of items (dashboards, reports, scorecards, and Excel workbooks)

included in the app, the automatic installation could take some time. Once the automatic

installation is confirmed, an email or other communication can then be sent to advise users of

the availability of the published app.

Viewing the app is an immersive experience. As shown in Figure 13.9, much of Power BI chrome,

such as the left navigation, is replaced with app elements, such as the Navigation list for the

app. The user experience feels very much like the app is a standalone web application versus

a page within the Power BI service. This is beneficial as it allows app viewers to focus on the

content without distractions or confusion regarding the standard Power BI service features and

functionality:

Figure 13.9: App

The following section describes the installation of an app if the Install this app automatically

(push apps to end users) feature was not used.

Installing apps
When an app is published and not pushed to end users via the Install this app automatically

feature described in the previous section, a one-time install per user is necessary. This install can

be completed by either sharing the URL for the app with users or by instructing users to add the

app to the Power BI service.

Creating Power BI Apps and Content Distribution550

In Figure 13.10, a user has logged into the Power BI service and clicked Get apps from the Apps

menu to observe the Global Sales app:

Figure 13.10: Installing a Power BI app manually

Clicking the Get it now link installs the app for the user.

The Apps menu can be found in the left navigation pane of the Power BI service. Once on the Apps

menu page, all installed apps are listed. Users can hover over an app, to either mark the app as a

favorite or remove the app via the More options menu, as shown in Figure 13.11:

Figure 13.11: Installed app

A second option to install the app is to share the URL to the app provided in the Power BI service.

As per the Publishing apps section, this URL is provided in a dialog (Figure 13.8) when the app is first

published. Additionally, this URL can be obtained from the Permissions page when publishing

or updating the app, as shown in Figure 13.12:

Chapter 13 551

Figure 13.12: App link

In the preceding example, a member of the Global Sales app workspace has clicked Update app

from the top-right corner of the workspace and navigated to the Permissions page. The App link,

as well as other URLs specific to dashboards and reports within the app, is located in the Links

section at the bottom of the page.

Once the apps are installed and are being used within the organization, it may be necessary to

update the app with additional content.

App updates
As new content becomes available within a workspace, it may be necessary to update an app with

this new content or remove certain content that has become outdated.

One of the main advantages of Power BI apps is their isolation from workspaces. The members

of the workspace can continue to develop, test, and modify content in the app workspace while

users only view the latest published app.

This single level of built-in staging could be a sufficient alternative for some teams and projects

relative to the multiple workspaces (Dev, Test, and Prod) involved in a staged deployment life

cycle, as described in Chapter 10, Managing Application Workspaces and Content.

Creating Power BI Apps and Content Distribution552

After an app has been published, the Publish app icon in the top-right corner of the workspace

is changed to an Update app icon, as shown in Figure 13.13:

Figure 13.13: Update app

In Figure 13.13, the ellipsis (…) to the left of the Update app icon has been selected. As shown, three

options exist to Endorse this app, Feature this app on Home, and Unpublish App.

Endorsing apps promotes or certifies an app and can help other users find useful organizational

apps. Enterprise BI teams may also wish to feature certain apps on the Power BI service Home

page for users in order to promote and encourage the use of the app. Finally, there may be times

when an app should be unpublished and, thus, made unavailable.

Clicking Update app launches the same three pages (Setup, Navigation, and Permissions)

described in the Publishing apps section. In the most common update scenarios, such as adding

a new report or modifying a dashboard, it’s unnecessary to change any of these settings, and the

Update app icon in the lower-right corner of the page can be clicked a second time. However,

these pages enable fundamental modifications to be implemented, including the users or groups

with permission to access the app and the Navigation for the app.

As previously mentioned, users can view the contents of apps within the Power BI service or via

Power BI mobile applications, so let’s look at how apps can be viewed on mobile devices next.

Apps on Power BI mobile
Just like the Apps menu item in the Power BI service, users can access published Power BI apps

from the main menu within Power BI mobile applications. In Figure 13.14, a user has accessed the

Global Sales app on the Power BI mobile application for Android devices:

Chapter 13 553

Figure 13.14: Apps on Power BI mobile

The user can easily navigate to the dashboards and reports contained within the app and take

advantage of all the standard mobile features, such as the exclusive ability of the Power BI mobile

apps to annotate and share both the annotations and the content with colleagues. Additionally,

any mobile optimizations configured by the report authors for the reports and dashboards are

also reflected through apps.

Creating Power BI Apps and Content Distribution554

Overall, mobile applications provide the benefit of accessing Power BI content from anywhere

using just about any mobile device such as iOS, Android, or Windows phones and tablets. This

is important for executives, salespeople, and other consumers that are constantly on the move

and require timely analytics.

Moving on from apps, we can now explore additional content distribution methods, starting with

another common distribution method – the direct sharing of content.

Sharing content
In addition to Power BI apps, Power BI Pro users can share individual dashboards, reports,

scorecards, and Excel workbooks directly with users, groups, and even guest users from outside

the organization.

For example, unlike a Power BI app built for the sales organization containing several dashboards

and many reports, a single dashboard or report could be shared with two or three users in the

customer service department. In this scenario, the few customer service department users may

have limited or undefined reporting needs, or the corporate BI team may not have a full Power

BI app for their department prepared yet.

Recipients of directly shared content receive the same essential benefits of Power BI apps in

terms of easy access as well as the latest updates and modifications to the content. In terms of

user access, the Shared with me menu in the left navigation of the Power BI service provides easy

access. The Shared with me menu option is also available within Power BI mobile applications.

In Figure 13.15, the user has accessed the More pages dialog via the three vertical dots at the

bottom of the mobile application:

Figure 13.15: Power BI mobile More pages menu

Chapter 13 555

Recipients of shared content can also add this content to their list of Favorites just like Power

BI apps.

The Power BI service gives content owners a properties pane to define the recipients of the shared

content and whether the recipients will also be allowed to share the content. This pane can be

accessed via the Share icon in the ribbon menu when viewing the content in the Power BI service.

Alternatively, as shown in Figure 13.16, a share icon is also available when viewing the content

list of a workspace:

Figure 13.16: Sharing action in Power BI service

The same sharing icon from Figure 13.16 is available for dashboards and scorecards.

Excel workbooks published to the Power BI service cannot be shared directly. To share a published
Excel workbook (indirectly), a dashboard can be shared containing a tile that was pinned to
the Excel workbook. The user receiving the shared dashboard can access the workbook via the
dashboard tile, just like accessing a Power BI report based on a pinned report visual.

Once the sharing action has been selected, a Send link dialog is launched to define the recipients
who will receive access as well as their permissions. In Figure 13.17, the European Reseller Sales
report is being shared with specific people, Pamela Hagely and Mike Laning:

Figure 13.17: Sharing the report

Creating Power BI Apps and Content Distribution556

Three options exist regarding who content can be shared with. In Figure 13.18, the Specific people

can view link from Figure 13.17 has been clicked to reveal the three options:

Figure 13.18: Who to share with

As shown in Figure 13.18, the sharing link can work for everyone in the organization, those users

with existing access, or specific people that you specify. In addition, as per the checkboxes in

Figure 13.18, the content owner has the option to allow sharing recipients to also share the content

with others or allow sharing recipients to build their own content from the underlying dataset.

If these boxes are not checked, sharing recipients can only view the content.

In addition to the Send link dialog, clicking the ellipses (three dots) shown in the upper-right

corner of Figure 13.17 provides access to a Manage permissions pane. This pane, as shown in

Figure 13.19, displays all the sharing links created for the content as well as those users with direct

access to the content via their workspace membership:

Chapter 13 557

Figure 13.19: Manage permissions pane

The Links giving access can be edited using the ellipses menu to the right of the Copy button.

Members with edit rights to the workspace containing the shared dashboard or report can manage

user access by utilizing the Manage permissions pane. For example, several days after the report

was shared, it may be necessary to add or remove users from the share. Additionally, the ability

of recipients to reshare the content can be revoked if this was enabled originally.

Sharing dashboards and reports should only be generated from workspaces and not from a user’s

private My Workspace. The workspace allows the workspace members to manage both the

content and its distribution and, thus, eliminates a dependency on a single user.

Creating Power BI Apps and Content Distribution558

If content is shared from a user’s My Workspace, or if the user leaves the organization and their

account is removed, their My Workspace is also removed. This can mean the potential loss of

important information and useful analytics. A possible exception to this may be the solicitation

of feedback from others on a personal analytics project.

Let’s now dive a little deeper into how sharing works, starting with an explanation of sharing

scopes.

Sharing scopes
When a dashboard is shared, the reports containing the visuals pinned to that dashboard are

shared as well. The recipient of the shared dashboard can, therefore, access and interact with the

underlying reports by clicking the linked dashboard tile(s).

The ability to share a report directly eliminates the need for the owners of a report to create a

dashboard and for the recipients to leverage this dashboard when they only need to access the

report. However, recipients of a shared dashboard can still add one or more of the underlying

reports as favorites, thus providing the same ease of access as a shared report. Although a single

report may be all that’s needed currently, sharing a dashboard provides greater scalability because

of the caching of dashboard tiles.

For example, a shared dashboard may begin with only one report, but visuals from two or three

new reports could be pinned to the dashboard, thus granting access to these additional reports.

This would negate the need to share each new report individually, and the dashboard could help

summarize the reports for the user. When a report is shared, the only option for adding content

is to add report pages to the existing report, and this can reduce the usability of the report.

Let’s now look at the similarities and differences between direct sharing and the use of Power

BI apps.

Sharing versus Power BI apps
Just like Power BI apps, either the Power BI Pro or PPU licenses, as well as the Power BI Premium

capacity, can be used to enable user access. In the example from this section, both Pam and Mike

could be assigned Power BI Pro licenses to allow both users to view the shared content.

Alternatively, the workspace of the shared content could be assigned to a Power BI Premium

capacity, thus allowing Power BI Free users to access the content. The same licensing considerations

for external guest users described in the Licensing apps section apply to sharing dashboards and

reports.

Chapter 13 559

Also, like Power BI apps, the recipients of the shared content need to be mapped to an RLS role

if RLS has been configured on the source dataset. Otherwise, the users attempting to access the

shared content receive an error message if this mapping is not implemented within the security

settings of the dataset, as described in the User permissions and security section earlier in this chapter.

Ultimately, Power BI apps provide the best long-term solution for content distribution, particularly

for groups of users. Unlike sharing content, any number of new dashboards and reports can be

added to Power BI apps as needs grow and change.

Additionally, as described earlier in this chapter, owners of the workspace can stage and test

content prior to republishing the app via the app update process. In the case of shared dashboards

and reports, any revision to the shared content is immediately visible to the user(s).

Let’s move on to the options for distributing content via embedding next.

Embedding
Embedding refers to the distribution of Power BI content outside of the Power BI service and

mobile applications such as SharePoint Online, Microsoft Teams, custom applications, and the

public internet. In this section, we will cover the separate licensing considerations for embedding

as well as four embedding scenarios:

• Publish to web

• Secure URL embedding

• Microsoft 365 apps

• Custom applications

In addition to the embedding options covered in this section, it is worth noting that other Microsoft

applications also include the ability to embed Power BI content, including Dynamics 365 and

Power Apps. Many of these additional embedding scenarios are covered in Chapter 13 of Microsoft

Power BI Cookbook, Second Edition.

Before diving into the four embedding scenarios, it is first important to understand how Power

BI content embedding is licensed.

Licensing embedding
Power BI Premium capacity isn’t required for embedding reports into SharePoint Online or MS

Teams. If the content is not in a Premium workspace, the SharePoint users would need to have

Power BI Pro or PPU licenses. If the content is in a Premium workspace, the SharePoint users

only need a fee license.

Creating Power BI Apps and Content Distribution560

Embedding content from Power BI into other applications requires the use of at least one of three

different stock-keeping units (SKUs). These SKUs are referred to as P, EM, and A SKUs.

P SKUs (P1–P5) are Premium capacity SKUs primarily intended for enterprises to cost-effectively

license large numbers of view-only Power BI users. However, these SKUs also grant the ability to

embed Power BI content into Microsoft 365 apps such as SharePoint Online and Microsoft Teams

and even custom applications developed by the business for both internal and external use. P

SKUs are billed monthly, and the commitment is either monthly or yearly.

EM SKUs (EM1–EM3) are specifically designed for smaller organizations using Pro licenses to add

embedding capabilities. EM SKUs have lower amounts of memory and processor cores than P

SKUs, but they include the same functionality and are also billed monthly although they require

a yearly commitment.

It is a common misconception that EM SKUs do not grant the ability to embed Power BI content

for external customers. The only differences in terms of embedding between P SKUs and EM SKUs

are the cost of the license, commitment length, and resources provisioned.

A SKUs (A1–A8) are specifically designed for independent software vendors (ISVs) to include

Power BI content within their custom applications. As such, the A SKUs do not grant the right to

embed content within the organization, in Microsoft 365 apps, or via secure URL embedding. A

SKUs also differ in that they are billed hourly and can be paused and resumed to avoid charges.

While additional licensing is required for most embedding scenarios, it is not required for Publish

to web.

Publish to web
If enabled by the Power BI administrator, reports in the Power BI service can be embedded on

any website and shared via a URL to the public internet. The Publish to web feature provides an

embed code for the Power BI report, including an HTML iFrame markup and a report URL. iFrames

are inline HTML elements for embedding nested content within a web page.

Organizations can utilize Publish to web to expose non-confidential or publicly available

information on their public-facing corporate website. In Figure 13.20, a Publish to web embed

code has been obtained in the Power BI service:

Chapter 13 561

Figure 13.20: Publish to web embed code

The Publish to web feature is accessed via the File menu dropdown for a report, then accessing

the Embed report option, and finally selecting Publish to web (public). Members of a workspace

with edit rights can use the settings menu (the gear icon) to access the Manage embed codes

page. This page allows the user to retrieve or delete any embedded codes for the given workspace.

With the exception of R and Python visuals, all standard and custom visuals are supported in

publish-to-web reports. However, there are many other limitations to the Publish to web feature

including not supporting reports using RLS, any Live connection, shared and certified datasets,

and Q&A.

Given the obvious potential risk of users accidentally sharing confidential or protected information

over the public internet, Power BI administrators have granular controls over this feature including

the ability to disable it for the entire organization. Details of these administrative settings are

included in Chapter 14, Administering Power BI for an Organization.

Creating Power BI Apps and Content Distribution562

Power BI reports accessed via embed codes reflect the latest data refresh of the source dataset

within approximately one hour of its completion. Additional documentation on Publish to web,

including tips for fitting the iFrame into websites, is available at http://bit.ly/2s2aJkL.

Let’s now look at a method of securely embedding Power BI content into web pages.

Secure URL embedding
Just as workspace members can easily use the Publish to web feature to embed Power BI reports

in web pages available on the public internet, workspace members can also securely embed Power

BI reports onto any web page by using the Secure URL embedding feature.

Securely embedding Power BI content into a web page works almost identically to Publish to

web, but it requires the viewer to have been authenticated to Power BI and granted access to the

content either via their workspace membership or direct sharing.

To securely embed Power BI reports, view the report in the Power BI service. Then, access the File

menu, the Embed report option, and finally Website or portal. Figure 13.21 shows the dialog for

creating a secure embed code:

Figure 13.21: Secure embed code

Unlike Publish to web embed codes, secure embed codes are not stored or managed via the

Manage embed codes page, which is available to workspace members, or the Embed code page,

which is available to Power BI administrators within the Admin portal. In addition, secure URL

embedding requires a Power BI Pro or PPU license, or the content must be in a workspace assigned

to the Premium capacity (a P or EM SKU).

Let’s now turn our attention to embedding Power BI content within Microsoft 365 apps such as

Teams and SharePoint Online.

http://bit.ly/2s2aJkL

Chapter 13 563

Microsoft 365 apps
Microsoft 365 consists of many different apps such as Outlook, OneDrive, Power Apps, and Power

Automate. Two of these apps, Teams and SharePoint Online, are natively integrated with Power

BI. Thus, organizations that obtain a P or EM SKU can embed content from Power BI into these

apps, or alternatively, all users must have a Pro or PPU license.

Let’s first take a look at how embedding works for Teams.

Teams
Teams is Microsoft’s popular real-time collaboration, communication, meeting, file, and app

sharing app. Within Teams, users can create team workspaces for sharing and collaborating on

content as well as conducting audio and video meetings.

Once a team is created, multiple channels can be created to organize content. Each channel can

have multiple tabs. Each tab represents a particular app used by the channel, such as OneDrive

for file sharing, a Wiki, a Whiteboard, or even YouTube. One of the available apps is Power BI.

Figure 13.22 shows a team member adding the Global Internet Sales report from the Global Sales

Power BI app as a tab called Global Internet Sales:

Figure 13.22: Adding a Power BI tab to a Teams channel

Creating Power BI Apps and Content Distribution564

The ability to surface content from a variety of different apps is a strength of Teams. Distributing

content via a central collaboration space such as Teams eases the user experience since important

content is directly available within users’ primary collaboration workspaces without requiring

those users to switch back and forth between separate applications.

While Teams has, in many respects, supplanted SharePoint in terms of collaboration and content

sharing, many organizations still cling to SharePoint as their primary means of information

sharing. Thus, let’s look at embedding in SharePoint Online next.

SharePoint Online
As mentioned, while the importance and utility of SharePoint as a collaboration platform has

diminished over the years to the point where SharePoint is primarily used as a backend document

repository for apps such as OneDrive and Teams or as a rudimentary intranet/extranet, there

are instances where organizations still wish to distribute Power BI content within SharePoint.

Distributing content to SharePoint Online is actually a two-step process, requiring actions in

both the Power BI service and within SharePoint Online. The first step is to generate an embed

code in the Power BI service. This step is similar to generating embed codes for Publish to web

and Secure URL embedding.

In fact, the same basic steps are necessary: view the report in the Power BI service, then access

the File menu, the Embed report option, and finally SharePoint online, as shown in Figure 13.23:

Figure 13.23: Adding a Power BI tab to a Teams channel

Chapter 13 565

Choosing this option generates an embed code similar to the one shown in Figure 13.24:

Figure 13.24: Adding a Power BI tab to a Teams channel

This embed code must be copied. Similar to secure URL embedding, this code is not stored or

managed via the Manage embed codes page, which is available to workspace members, or the

Embed code page, which is available to Power BI administrators within the Admin portal.

The second step requires editing a SharePoint Online page. In Figure 13.25, the + icon for a section

of a SharePoint Online page in edit mode has been selected, allowing the insertion of a Power BI

web part:

Figure 13.25: Adding a Power BI web part to a SharePoint Online page

Creating Power BI Apps and Content Distribution566

Adding the Power BI web part to the page enables the configuration options to paste the embedding

link from the first step in Power BI report link, as shown in Figure 13.26:

Figure 13.26: Configuring a Power BI web part

Once the Power BI report web part has been added and configured, republish the SharePoint

Online page.

We will now look at our last embedding scenario, embedding Power BI content into custom

applications.

Custom applications
In addition to the embedding options covered so far, Power BI embedded analytics enables the

ability to embed reports, dashboards, and individual dashboard tiles into any custom application

provided that a P, EM, or A SKU is purchased.

Chapter 13 567

As opposed to embedding within an organization, otherwise known as user owns data, Power

BI embedded analytics are known as app owns data. The terms user owns data and app owns

data simply refer to how authentication is handled, either by the user or by the app respectively.

Power BI embedded analytics work very differently from the link embedding solutions such

as Publish to web, Secure URL embedding, and SharePoint Online embedding. One of the

differences is with regard to authentication. Publish to web uses anonymous authentication, while

organizational embedding uses interactive authentication to Azure AD. In contrast, embedded

analytics uses non-interactive authentication where the custom application uses a service

principal or master user for authentication.

Using a service principal is the recommended method for authentication when using Power BI

embedded analytics. A service principal is simply an application whose security tokens can be

used to authenticate Azure resources from a service, tool, or user app.

With service principals, tokens can either be an application secret or a certificate. Application

secrets are simply strings of letters, numbers, and special characters unique to that application.

Information about creating and registering Azure service principals can be found here: https://

bit.ly/3tGVag7.

In contrast, the master user approach uses an actual username and password. This approach is

sometimes referred to as “fake user” since the user ID is not tied to a physical individual but rather

exists solely to facilitate application authentication. As mentioned, the use of service principals

is preferred over the master user approach.

Once an authentication method has been selected, the next step is to register the Azure AD

application. Registering the Azure AD application allows access to the Power BI REST APIs and

establishes permissions for the Power BI REST resources. Additional information about registering

Azure AD applications to use Power BI can be found at the following link: https://bit.ly/3DgKc41.

Once the Azure AD application has been properly registered, the next step is to create a Power

BI workspace and publish content within this workspace. This is the same process as described

throughout this book.

With a workspace created and content published, the next step is to obtain a number of embedding

parameters. For service principals, embedding requires the following embedding parameters:

• Client ID

• Workspace ID

• Report or dashboard ID

https://bit.ly/3tGVag7
https://bit.ly/3tGVag7
https://bit.ly/3DgKc41

Creating Power BI Apps and Content Distribution568

• Client secret

• Tenant ID

If using the master user approach instead, then the embedding parameters required are the client

ID, workspace ID, and report or dashboard ID as well as the chosen username and password for

the “fake” Power BI user.

The workspace ID as well as the report or dashboard ID can be obtained by viewing content within

the Power BI service. Workspace IDs are the unique ID appearing just after the /groups/ portion

of a Power BI service URL. Similarly, report and dashboard IDs appear just after the /reports/ or

/dashboards/ portion of such URLs.

The client ID, client secret, and tenant ID parameters are obtained within the Microsoft Azure

portal when viewing the app registration for the application registered previously. In the Azure

portal, select App registrations and then the registered app. From the Overview section, copy

the Application (client) ID. Also in the Overview section, copy the Directory (tenant) ID. On

the same page, under Manage, select Certificates & secrets. Under Client secrets, select New

client secret, and, once created, copy the string in the Value column of the newly created secret.

The next step is to ensure that service principals are allowed to access your Power BI tenant. This

is done in the Tenant settings of the Power BI Admin portal and specifically the Allow service

principals to use Power BI APIs setting. More information about the Power BI Admin portal and

Tenant settings is included in Chapter 14, Administering Power BI for an Organization.

Once service principals are granted the ability to use the Power BI APIs for the tenant, the service

principal must be given access to the workspace. This is done by adding the service principal as a

member of the workspace. This is the same as adding any other user as a member of a workspace

and is covered in Chapter 10, Managing Application Workspaces and Content.

Once access has been granted, it is time to embed your content. While developing a full-blown

application that embeds Power BI content is beyond the scope of this book, Microsoft provides

code samples for .NET Core, .NET Framework, Java, Node.js, PowerShell, Python, and React-TS

in a GitHub repository: https://github.com/microsoft/PowerBI-Developer-Samples.

In addition, a Power BI embedded analytics playground is available for developers to test

embedding code. This playground can be accessed at http://playground.powerbi.com/. For

example, the following simple code embeds a Power BI report:

let loadedResolve, reportLoaded = new Promise((res, rej) => {
loadedResolve = res; });

https://github.com/microsoft/PowerBI-Developer-Samples
http://playground.powerbi.com/

Chapter 13 569

let renderedResolve, reportRendered = new Promise((res, rej) => {
renderedResolve = res; });

models = window['powerbi-client'].models;

function embedPowerBIReport() {

 let accessToken = EMBED_ACCESS_TOKEN;

 let embedUrl = EMBED_URL;

 let embedReportId = REPORT_ID;

 let tokenType = TOKEN_TYPE;

 let permissions = models.Permissions.All;

 let config = {

 type: 'report',

 tokenType: tokenType == '0' ? models.TokenType.Aad : models.
TokenType.Embed,

 accessToken: accessToken,

 embedUrl: embedUrl,

 id: embedReportId,

 permissions: permissions,

 settings: {

 panes: {

 filters: {

 visible: true

 },

 pageNavigation: {

 visible: true

 }

 }

 }

 };

 let embedContainer = $('#embedContainer')[0];

 report = powerbi.embed(embedContainer, config);

 report.off("loaded");

 report.on("loaded", function () {

 loadedResolve();

 report.off("loaded");

 });

 report.off("error");

 report.on("error", function (event) {

 console.log(event.detail);

Creating Power BI Apps and Content Distribution570

 });

 report.off("rendered");

 report.on("rendered", function () {

 renderedResolve();

 report.off("rendered");

 });

}

embedPowerBIReport();

await reportLoaded;

await reportRendered;

We have now covered all four embedding scenarios, so let’s move on to data alerts.

Data alerts
Data-driven alerts are email notifications and one of the top capabilities exclusive to dashboards

in the Power BI service. For many users and business scenarios, data-driven alerts are a high-value

complement, or even a substitute, to dashboards and reports as they help to avoid frequently

accessing Power BI to search for actionable information.

For example, rather than opening Power BI in the browser or on a phone every morning and

looking for red colors or certain KPI symbols, users could view certain dashboards or reports less

frequently and only respond to data-driven alert notifications sent via email.

With a standard card, KPI, or gauge visual pinned to a dashboard, a data-driven alert can be

configured either in the Power BI service or via the Power BI mobile app. In Figure 13.27, the

ellipses (…) of a KPI visual are clicked, exposing the Manage alerts option:

Figure 13.27: Manage alerts in Power BI service

Chapter 13 571

Choosing Manage alerts from the menu displays the Manage alerts pane, allowing one or multiple

alert rules to be added, as shown in Figure 13.28:

Figure 13.28: Setting an alert rule

Each alert rule is limited to a single condition and, thus, additional alert rules can be configured for

the same dashboard tile to provide notifications for multiple conditions. For example, a separate

alert rule could be configured for the gauge tile with a condition of Above 15,000,000. When

the underlying dataset of the dashboard tile is refreshed, a value for Total Net Sales YTD above

that threshold will trigger an alert notification. Notifications appear in the Power BI service as a

counter next to the bell icon in the upper-right corner of all the Power BI service pages, as shown

in Figure 13.29:

Figure 13.29: Notifications in the Power BI service

Creating Power BI Apps and Content Distribution572

Data alerts and notifications are deeply integrated with Power BI mobile applications. Between

the mobile alert notifications, the notifications within the Power BI service, and the optional email

delivery of the notification, users are able to respond quickly as significant data changes occur.

While data alerts are easy to configure and highly useful for many users, if organizations have

more complex alerting requirements, Power Automate can potentially be used to fulfill those needs.

Power Automate integration
Currently, the alert notification emails from Power BI are limited to the user who configured the

data alert. In many scenarios, however, several users or a group email account should receive

the notification email, as it’s not practical for each user to individually configure the data alerts.

Power Automate provides a powerful but easy-to-use alternative to the standard Power BI alert

email. For example, without any custom data connections or code, it enables a single user to fully

define one or multiple email recipients of an alert notification and to customize the content of

an email message.

Power Automate is an online service that enables the automation of workflows between

applications and services. Since each Power Automate flow is fundamentally composed of a trigger

(starting action) and one or more corresponding actions, a top use case for Power Automate is

to send custom email messages based on various trigger events. For example, when a sales lead

is added in Dynamics 365 Customer Experience (CE), an email could be automatically sent to a

sales team member via Power Automate.

Several pre-built Power Automate templates are available that leverage the Power BI data alert

as a trigger. These templates make it easy to get started and to customize details, such as email

addresses and the data from the alert to include. In the following Power Automate flow, the Total

Net Sales YTD alert, as described in the Data alerts section, is used to trigger a customized email

message, as shown in Figure 13.30:

Chapter 13 573

Figure 13.30: Power BI alert email via Power Automate

Dynamic content from Power BI is available for the Subject and Body of the email. In the subject,

the alert title would be replaced by the title of the alert – in this case, Total Net Sales YTD vs.

Plan. In the body, the tile value placeholder would be replaced by the actual value for the KPI

dashboard tile.

Power Automate provides a rich platform for building both simple and complex workflows

to obtain greater value from Power BI assets. Other common Power Automate and Power BI

integrations, beyond custom email notifications, include posting messages to a Slack channel

and triggering an alert in Microsoft Teams based on an alert in Power BI.

Creating Power BI Apps and Content Distribution574

Email subscriptions
Power BI also provides email subscriptions for Power BI Pro users of both reports and dashboards

as well as users with Free licenses if the content is hosted in a Premium capacity workspace (a P or

EM SKU). With email subscriptions configured in the Power BI service, a user is sent a snapshot

of either the report page or the dashboard canvas as well as an optional link to the content in

the Power BI service.

In Figure 13.31, a user with a Power BI Pro license has accessed European Sales (dashboard), as

described earlier in this chapter, from within a Power BI app:

Figure 13.31: Subscribe to the dashboard

Clicking the Subscribe icon, as shown in Figure 13.31, opens the Subscribe to emails pane to

configure and confirm the email subscription, as shown in Figure 13.32:

Figure 13.32: Subscribe to emails pane

Chapter 13 575

With the yellow slider set to On, selecting the Save and close button (not shown) at the bottom
of the pane enables the email subscription to the dashboard with the configured settings. An
email containing an image of the current state of the dashboard and a link to the dashboard in
Power BI is sent at the scheduled Frequency and Scheduled time.

A very similar subscription icon and dialog is also available for Power BI reports. The only
significant difference with report subscriptions is that each subscription is associated with a single
page. Therefore, the Power BI Pro user must choose the page for each subscription and configure
multiple subscriptions to the same report if multiple pages of the report need to be emailed.

A common scenario for subscriptions is for the report data, which may consist of thousands of
rows and many report pages, to be distributed in standard file formats such as Excel or CSV. For
example, an accounting department team may utilize the data from a weekly or monthly report to
help analyze recently closed financial periods. Paginated report subscriptions can be configured
to deliver report data in seven different common file formats as email attachments and, thus, are
the correct report type for these scenarios.

Unlike data alerts, subscriptions can be set for other users using the Subscribe field. Additionally,
subscriptions are currently sent with the report’s default filter and slicer states.

Subscriptions do not support most custom visuals. However, certified custom visuals, such as
the Power KPI visual used in European Sales (dashboard), are supported.

Let’s now look at Power BI’s Analyze in Excel functionality.

Analyze in Excel
Users with Power BI Pro licenses can connect to datasets hosted in the Power BI service from
both Power BI Desktop and Microsoft Excel. Either of these tools displays the tables, columns,
and measures for the dataset and, based on the report visuals created (for example, pivot tables),
sends queries to Power BI for execution by the source dataset.

In the case of Power BI Desktop, these reports can be published back to the Power BI service and
retain their connection to the dataset, as recommended in the Live connections to Power BI datasets
section of Chapter 6, Planning Power BI Reports.

Prior to broadly recommending Excel as a client-reporting tool, consider whether Power BI
Desktop isn’t better suited to common use cases, such as pivot tables. As the adoption of Power
BI increases, Power BI reports that are built in Power BI Desktop provide a richer and more familiar
user experience.

The Analyze in Excel feature is exposed as an action for Power BI reports and datasets in the Power
BI service. The action is accessible for Power BI Pro and PPU users in both workspaces as well as

when viewing the report or dataset and in published apps.

Creating Power BI Apps and Content Distribution576

In addition, connecting to a Power BI dataset is an option when using the Get Data dropdown in Excel.

In the following example from a workspace, the option to analyze the European Internet Sales

report in Excel is available on the right-hand side after clicking the three vertical dots menu:

Figure 13.33: Analyze in Excel icon

Clicking the Analyze in Excel icon provides a Microsoft Excel (.xlsx) file that can be saved to

the local machine. This file contains a default pivot table tied to the live Power BI dataset that

supports the report.

For example, even though the European Internet Sales report may only utilize a few measures

and columns of the dataset, the entire fields list of the dataset is exposed with a pivot table

connection in Excel, as shown in Figure 13.34:

Figure 13.34: Excel connection to the Power BI dataset

Chapter 13 577

Similar to the fields list in Power BI Desktop, Excel positions tables with only measures visible

at the top of the list preceding the tables. Just like standard Excel pivot tables, users can drag

measures and columns to the field wells to structure each pivot table report. Right-clicking a

column name presents the option to add the column as a slicer.

Just like interacting with a Power BI report, any RLS roles applied on the source dataset are

enforced on the user’s report queries generated from Excel. The Excel workbook and any reports

created based on the connection can be saved and shared like other Excel workbooks. However,

for other users to refresh and query the source dataset from Excel, they require access to the app

or workspace, a Power BI Pro license, and must be mapped to a security role if RLS is configured.

We now turn our attention to self-service BI workspaces.

Self-service BI workspaces
As part of an organization’s effort to empower users and drive a data culture, some workspaces

are often created for the purpose of enabling business users and their teams to create and manage

their own content.

For example, although other workspaces and apps containing financial reporting could be wholly

owned by the BI/IT team, a workspace could be created for certain members of the finance and

accounting department, and a few authors could be assigned Power BI Pro licenses and some

training and documentation on data sources.

Such a self-service BI workspace allows business users, versus the enterprise BI team, to create

and share content. As per the Power BI deployment modes section of Chapter 1, Planning Power BI

Projects, some organizations may choose to empower certain business users to create and manage

the visualization layer (Self-Service Visualization).

This hybrid approach gives business users more flexibility to address rapidly changing analytical

needs, yet leverages IT-supported and validated data sources and resources. When even greater

business user flexibility is required, or when IT resources are not available, the self-service BI

mode can be implemented via Power BI Pro licenses and a self-service BI workspace.

In the Self-Service BI deployment model, several business users (for example, between five and

ten) who regularly collaborate within a team or department are assigned Power BI Pro licenses.

One of these users then creates a workspace in the Power BI service and adds the other users as

members.

Creating Power BI Apps and Content Distribution578

The BI/IT team typically requires that at least one member of the BI organization be added as a

workspace administrator. Additionally, if applicable, the BI/IT team would authorize a few business

users in the workspace to utilize an on-premises data gateway for their required data sources.

Once enabled, the business users can begin creating content and publishing the content to their

self-service BI workspace. These users can then begin to distribute that content, as we will cover

in the following section.

Self-service content distribution
Given that each user has a Pro license, members of the Self-Service BI workspace (for example,

the finance team), a user has the full flexibility to view content in the Power BI service or mobile

app, as well as utilizing Pro features, such as Analyze in Excel and email subscriptions.

The users could choose to publish an app from the app workspace and advise workspace

members to only use the published app for any production scenarios, such as printing reports

or dashboards or referencing this content in meetings. As a small team, the users could delegate

the responsibilities for creating and testing the dataset(s), reports, dashboards, scorecards, and

any Excel workbooks hosted within the workspace.

A typical example of Self-Service BI is with advanced power users within finance and accounting

functions. These users often have sophisticated and rapidly changing analytical needs that can’t

easily be translated into corporate BI-owned solutions.

Additionally, the managers or stakeholders of this team’s work may not require access to this

content themselves. For example, the analyst team could produce a monthly financial close

package (that is, a PowerPoint deck) or a project analysis and either present this content in person

or distribute printed materials.

If it has been determined that the business team requires additional resources, such as support

for greater scale or sharing their content with users outside the workspace, the BI/IT team can

consider assigning the workspace to the Power BI Premium capacity.

Additionally, if the needs or the value of the workspace grows, the project could be migrated from

Self-Service BI to one of the other deployment modes. For example, the Power BI dataset created

by the business team could be migrated to an Analysis Services model maintained by the BI team.

Self-service BI can help address certain business issues such as rapidly changing analytical needs.

However, self-service BI is not without its risks.

Chapter 13 579

Risks of self-service BI
Perhaps no greater risk exists in BI than the potential to motivate or drive an incorrect decision.

Several of the earlier chapters in this book, particularly Chapter 1, Planning Power BI Projects, through

Chapter 5, Developing DAX Measures and Security Roles, are dedicated to topics and practices that

aim to reduce that risk.

Although business users and analysts are often comfortable with the visualization layer given
their familiarity with Microsoft 365 apps, the quality and sustainability of this content rests on
the planning, testing, and skills (for example, M queries and DAX measures) applied to the source
dataset. A severe risk, therefore, to Self-Service BI projects is whether the business user(s) can
build and maintain a source dataset that provides consistent, accurate information.

For example, a self-service BI author may not fully understand what definitions are used in a
measure or how filters in a measure and filters in the report interact to produce the numbers in
the report. Thus, the self-service author and users of the self-service content could incorrectly
interpret the meaning of the report.

Another significant risk is a loss of version control and change management. Although business
users may have access to version control systems, such as OneDrive or SharePoint document
libraries, they may not be required to use these systems or appreciate the value of version control.

It’s not uncommon for “self-service” BI solutions to result in a significant level of management
overhead for the BI/IT team, as business users struggle to effectively build and manage their own
content. For example, the business team could submit requests or help desk tickets for IT to help
them write certain DAX measures or to integrate certain sources. Likewise, the reports business
teams create may result in a very high volume of queries or slow, expensive queries.

A final risk is that the self-service solution created may ultimately need to be discarded rather
than migrated. For example, to quickly respond to new and changing analytical needs, the source
dataset and reports may include many inefficient customizations and design patterns.

These customizations can render the solution difficult to support and potentially consume
unnecessary system resources. As more users and reports become dependent on these designs

or anti-patterns, it can be more difficult and costly to migrate to a more sustainable solution.

Summary
This chapter provided a broad overview of Power BI’s different content distribution and data access

methods. Power BI apps were particularly emphasized as they represent the primary distribution

mechanism supporting large groups of users.

Creating Power BI Apps and Content Distribution580

The essential details of utilizing other distribution methods, such as email subscriptions, data

alerts, and sharing reports and dashboards, were also reviewed. Furthermore, guidance was

provided on analyzing datasets in Excel as well as utilizing Power Automate to drive custom

email alerts.

The following chapter looks at Power BI deployments from an administration perspective. This

includes the Power BI service administrator role and the controls available for administrators to

define and manage authentication, monitor user activities, and limit or disable various features.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

14
Administering Power BI for an
Organization

The management and administrative processes described in previous chapters have primarily

reflected the role of corporate business intelligence teams and BI professionals. In this chapter,

the features and processes relevant to IT administrators are reviewed. These features and pro-

cesses help organizations deploy and manage Power BI according to their policies and prefer-

ences. This includes data governance in the context of both self-service BI and corporate BI, the

Power BI admin portal, monitoring user activity and adoption, and the administration of Power

BI Premium capacity.

As in the previous chapter, this chapter exclusively covers the Power BI service. Administrative

topics relevant to on-premises deployments were included in Chapter 12, Deploying the Power BI

Report Server. Additionally, although data governance concepts and implementation guidance

are included, readers are encouraged to review Microsoft documentation for further details on

implementing data governance as part of Power BI deployments.

In this chapter, we will review the following topics:

• The Power BI administrator role

• Data governance for Power BI

• Azure Active Directory

• The Power BI admin portal

• Using metrics reports

Administering Power BI for an Organization582

• Audit logs

• The Power BI REST API for admins

We start with an overview of the Power BI administrator role.

Power BI administrator role
Within organizations, one or more Power BI administrators are responsible for the overall mon-

itoring, configuration, and management of the Power BI tenant. This role was covered briefly in

the Power BI admin section of Chapter 1, Planning Power BI Projects.

As explained in that chapter, Power BI administrators are focused on the overall deployment of

Power BI within an organization in terms of security, governance, and resource utilization. It is

the Power BI administrator’s job to understand the overall organizational policies and governance

regarding data security and management and then implement those policies and governance

within Power BI.

Similar to a database administrator (DBA), a Power BI administrator regularly fields questions

and issues related to stability, performance, and permissions/access. Effective Power BI admins

are therefore fully knowledgeable of the roles, permissions, and licensing in Power BI as well as

tools and techniques for analyzing and troubleshooting performance issues.

Azure Active Directory (AAD) includes a built-in role, Power BI administrator, that can be as-

signed to certain users, typically senior administrators and/or Power BI architects who are tasked

with implementing tenant-level policies and configurations. Users assigned the Power BI admin

role can manage all aspects of Power BI, including Premium capacities, workspaces, audit and

activity logs, feature access, and more.

Assigning roles is performed within the Azure portal (https://portal.azure.com). Once in the

portal, select Azure Active Directory. Select Users under the Manage heading in the left naviga-

tion pane, select a user, and then choose Assigned roles as shown in Figure 14.1:

https://portal.azure.com

Chapter 14 583

Figure 14.1: Assigned roles in the Azure portal

As shown in Figure 14.1, you can then click the Add assignments link to add a role for the user.

The Power BI administrator role is available in the Select role dropdown as shown in Figure 14.2.

Figure 14.2: Assigning the Power BI Administrator role

Administering Power BI for an Organization584

Smaller organizations and organizations getting started with Power BI may not require a dedicated

Power BI administrator as there’s limited content or resources to monitor and manage. Larger

organizations with hundreds or thousands of Power BI users and workspaces, however, may find

a Power BI administrator indispensable. Here are some of the most common tasks assigned to

Power BI administrators:

• Monitor resources such as Power BI Premium capacity, any critical source systems of Power

BI such as an Azure SQL database, any on-premises data gateways, and license availability

• Monitor usage and content such as determining which reports and dashboards are most

heavily accessed across the organization and whether Power BI adoption is increasing or not

• Create and manage workspaces such as assigning or removing groups/users from work-

space roles and assigning or moving workspaces to Premium capacities

• Grant or revoke access to groups to certain Power BI features such as the ability to create

workspaces and use custom visuals

• Troubleshoot issues such as dataset refresh failures, user access/licensing issues, perfor-

mance problems, etc.

A number of different tools are available to Power BI administrators to meet these different tasks,

including the Power BI admin portal, the Power BI Premium Metrics app, the Power Platform

admin center, the Power BI activity log, and more.

Data governance for Power BI
Data governance is defined as a set of policies used to secure an organization’s data, ensure con-

sistent and accurate decision making, and manage access to data. In general, data governance is

applicable to all types of business intelligence (BI), but organizations investing in Power BI for

the long term should consider their data governance strategy and policies in the specific context

of Power BI.

A central component of data governance relates to the three deployment modes described at the

beginning of Chapter 1, Planning Power BI Projects, and seeks to address the following question:

“How can we ensure our data is secure and accurate while still providing the business with the access and

flexibility it needs?”

It’s generally understood that some level of self-service BI (SSBI) is appropriate and beneficial

to empower business users to explore and discover insights into data. Tools, such as Power BI

Desktop, and features in the Power BI service, such as apps, make it easier than ever for business

users to independently analyze data and potentially create and distribute content.

Chapter 14 585

However, experience with enterprise SSBI projects also strongly suggests that IT-owned and man-

aged administrative controls, enterprise-grade BI tools, and data assets, such as data warehouses,

are still very much necessary. In response to the strengths and weaknesses of both traditional

IT-led BI and business-led SSBI, Microsoft has suggested and internally implemented a managed,

self-service approach to data governance.

From a BI architecture standpoint, managed SSBI represents a hybrid approach between the

corporate (enterprise) BI and self-service visualization modes introduced in Chapter 1, Planning

Power BI Projects. As shown in Figure 14.3, certain projects are carried out by the BI/IT department,

while business users have the flexibility to analyze data and create their own reporting:

Figure 14.3: Multi-mode Power BI deployments

The three capabilities of corporate BI projects identified in Figure 14.3 address the limitations or

weaknesses of SSBI projects and tools. These limitations include data accuracy, scalability, complex

data integration processes, and custom distributions of reports to groups of users.

Certain projects requiring these skills and tools such as the integration of multiple source sys-

tems and the scheduled distribution of user-specific reports could be exclusively developed and

managed by IT. Additionally, the business stakeholders for certain projects may prefer or insist

that certain projects are wholly owned by IT.

However, as shown in the Business User Self-Service BI part of Figure 14.3, business users are

still empowered to leverage SSBI tools, such as Power BI Desktop, to conduct their own analysis

and to internally determine requirements within their business unit.

Administering Power BI for an Organization586

Most commonly, business users can leverage an IT-owned asset, such as an Analysis Services

model, thus avoiding the data preparation and modeling components while retaining flexibility

on the visualization layer. This self-service visualization model is very popular and particularly

effective when combined with Excel report connections.

Note that continuous monitoring and data governance policies are in effect across the organization

regardless of corporate BI or business user SSBI. This is very important to detect any anomalies in

user activity and is a first step in migrating a business-developed solution to a corporate BI solution.

For example, monitoring the Microsoft 365 Audit Log data for Power BI may indicate high and

growing adoption of particular reports and dashboards based on a particular Power BI dataset.

Given this query workload, or possibly other future needs for the dataset, such as advanced DAX

measures, it may be appropriate to migrate this dataset to an Analysis Services model maintained

by IT or move the dataset to Premium capacity. An example of this migration process to an Azure

Analysis Services model is included in Chapter 15, Scaling with Premium and Analysis Services.

Let’s now look at how to implement data governance within Power BI deployments.

Implementing data governance
With an overarching strategy in place for deploying Power BI, as shown in the previous section,

concrete tasks can be defined for implementing data governance. These tasks include the following:

1. Identify all data sources and tag sources containing sensitive data

Additional access and oversight policies should be applied to data sources containing sen-

sitive or protected data. The labels assigned to content in the Information protection section

of Chapter 10, Managing Application Workspaces and Content, is an example of data tagging.

2. Determine where critical data sources will be stored

For example, determine whether the data warehouse will be hosted on-premises or in the

cloud. Power BI reporting can be deployed fully on-premises via Power BI Report Server,

fully in the cloud, or organizations can pursue hybrid deployment models.

Additionally, determine whether analytical (OLAP) BI tools such as Analysis Services

and SAP BW will be used with these data sources and whether those tools will be stored

on-premises or in the cloud.

3. Define who can access which data and how this access can be implemented

Chapter 14 587

Defining and managing Microsoft 365 groups or security groups in Azure Active Directory

(AAD) or Active Directory (AD) is strongly recommended. Determine whether data secu-

rity roles will be implemented in a data warehouse source such as Teradata or if row-level

security roles will be implemented in analytical models such as Analysis Services.

4. Develop or obtain monitoring solutions to continuously monitor activities

Visibility to the Microsoft 365 audit log data, as described later in this chapter, is an es-

sential part of this task. Any high-risk or undesired activities should be automatically

detected, enabling swift action.

5. Train business users on data governance and security

This is particularly relevant for any dataset designers within business units who will

leverage Power BI Desktop to access shape and model data.

The extent of data governance policies is driven by the size of the organization, its industry and

associated regulations, and the desired data culture. For example, a large healthcare provider

that wishes to pursue a more conservative data culture will implement many data governance

policies to eliminate security risks and promote data quality and accuracy. However, a small to

mid-sized company in a less regulated industry, and perhaps with fewer IT resources available,

will likely implement less dense governance policies to promote flexibility.

For example, with Power BI Desktop and Power BI Premium capacity, a large analysis model

containing complex M queries and DAX expressions could potentially be created and supported

by a business user or team. However, the dataset designer of this model will need to be familiar

with both the governance policy determining the level of visibility users of the dataset will have,

as well as how to implement the corresponding row-level security roles.

Additionally, business users with Power BI Pro licenses responsible for distributing content such

as via Power BI apps will need to know the security groups that should have access to the app.

Let’s next look at another important component of all Power BI deployments, Azure Active Di-

rectory.

Azure Active Directory
As with other Microsoft Azure services, Power BI relies on Azure Active Directory (AAD) to authenti-

cate and authorize users. Therefore, even if Power BI is the only service being utilized, organizations

can leverage AAD’s rich set of identity management and governance features, such as conditional

access policies, multi-factor authentication (MFA), and business-to-business collaboration.

Administering Power BI for an Organization588

For example, a conditional access policy can be defined within the Azure portal that blocks access

to Power BI based on the user’s network location, or that requires MFA given the location and the

security group of the user. Instructions for creating conditional access policies are covered in the

Conditional access policies section later in this chapter.

Additionally, organizations can invite external users as guest users within their AAD tenant to

allow for seamless distribution of Power BI content to external parties, such as suppliers or cus-

tomers. This subject is covered in the next section, AAD B2B collaboration.

Guidance on configuring AAD security groups to support row-level security (RLS) is included

in the Security roles section of Chapter 5, Developing DAX Measures and Security Roles. This section

reviews other top features of AAD in the context of Power BI deployments.

AAD B2B collaboration
AAD business-to-business (B2B) collaboration enables organizations using AAD to work securely

with users from any organization. Invitations can be sent to external users, whether the user’s

organization uses AAD or not, and once accepted the guest user can leverage their own credentials

to access resources, such as dashboards and reports contained in a Power BI app.

Just like users within the organization, guest users can be added to security groups and these

groups can be referenced in the Power BI service. Prior to the existence of AAD B2B, it was nec-

essary to create identities within AAD for external guest users, or even develop an application

with custom authentication.

A guest user can be added to AAD by sending an invitation from AAD and by sharing content with

the external user from the Power BI service. The first method, referred to as the planned invite

method, involves adding a guest user from within AAD and sending an invitation to the user’s

email address.

In Figure 14.4 from the Azure portal (portal.azure.com), Azure Active Directory has been selected

and the Users | All users page has been accessed:

Figure 14.4: Add a guest user in AAD

http://portal.azure.com

Chapter 14 589

As shown in Figure 14.4, the administrator can click New guest user to add the user, and enter an

invitation message, such as in Figure 14.5:

Figure 14.5: Invite a guest user to AAD

Once the Invite button is clicked, the guest or external user is sent an invitation via email con-

taining the personal message. The user must accept the invitation and, once accepted, the guest

user can be managed and added to security groups for use in Power BI. Adding users to security

groups provides authorization to perform certain activities within the organization or can be used

to exclude groups of users from using certain features as explained in the Tenant settings section

later in this chapter. Guest users are identified in AAD with a User type of Guest.

As an alternative to the planned invite method via AAD just described, an invite to an external user

can also be generated from the Power BI service directly. In this method, commonly referred to

as ad hoc invites, a guest user’s email address is specified when publishing or updating a Power

BI app or when directly sharing Power BI content.

The external user would then receive an email invite to the specific content. Upon accepting this

invite, the external user would be added as a guest user in AAD. Details on distributing content to

users via apps and other methods are included in Chapter 13, Creating Power BI Apps and Content

Distribution.

Administering Power BI for an Organization590

Organizations have the option to completely block sharing with external users via the External

sharing tenant setting in the Power BI admin portal. As shown in Figure 14.6, this setting can be

enabled or disabled for an entire organization, or limited to certain security groups:

Figure 14.6: External sharing tenant setting in Power BI admin portal

In addition to the Power BI admin portal, additional management options for external guest users

are available in AAD. These settings, including whether members in the organization (non-ad-

mins) can invite guest users, are available on the External collaboration settings page of AAD.

External B2B users are limited to consuming content that has been shared or distributed to them.

For example, they can view apps, export data (if allowed by the organization), and create email

subscriptions, but they cannot access workspaces or create and publish their own content. Ad-

ditionally, external users cannot currently access shared content via Power BI mobile apps. The

exact permissions and rights for external users depend upon each organization’s security policies.

Licensing external users
In addition to authentication to the Power BI content, either a Power BI Pro license or Power

Premium capacity is needed to allow the guest user to view the content. The following three

licensing scenarios are supported:

• The app workspace of the Power BI app can be assigned to Power BI Premium capacity

• The guest user can be assigned a Power BI Pro or PPU license by the guest user’s organi-

zation

Chapter 14 591

• A Power BI Pro license can be assigned to the guest user by the sharing organization

In the case of the third option, the Power BI Pro license only allows the user to access content

within the sharing organization. Assigning licenses for guest users is identical to assigning licenses

for organizational users and is performed in the Microsoft 365 portal. Additional information on

licensing is covered in the Power BI licensing section of Chapter 1, Planning Power BI Projects.

Let’s now look at securing access through the use of conditional access policies.

Conditional access policies
Administrators of AAD can configure conditional access policies to restrict user access to Power

BI based on the user or security group, the IP address of the user sign-in attempt, the device

platform of the user, and other factors.

A common scenario supported by conditional access policies is to either block access to Power BI

from outside the corporate network or to require multi-factor authentication (MFA) for these

external sign-in attempts. As a robust, enterprise-grade feature, organizations can use conditional

access policies in conjunction with security groups to implement specific data governance policies.

Each AAD conditional access policy is composed of one or more conditions and one or more con-

trols. The conditions define the context of the sign-in attempt such as the security group of the

user and the user’s IP address, while the controls determine the action to take given the context.

For example, a policy could be configured for the entire organization and all non-trusted IP ad-

dresses (the conditions) that requires MFA to access Power BI (the control). The Azure portal

provides a simple user interface for configuring the conditions and controls of each conditional

access policy.

The following steps and supporting screenshots describe the creation of an AAD conditional

access policy that requires MFA for users from the sales team accessing Power BI from outside

the corporate network:

1. Log in to the Azure portal (portal.azure.com) and select Azure Active Directory from

the main menu.

http://portal.azure.com

Administering Power BI for an Organization592

2. In the left-hand navigation under the Manage section, select Security and then select

Conditional Access, as shown Figure 14.7:

Figure 14.7: Conditional access in AAD

3. Select the New policy icon at the top, select Create new policy, and enter a name for the

policy, such as Sales Team External Access MFA.

4. Under Assignments, set the Users or workload identities property to Include an Azure

AD security group (such as AdWorks DW Sales Team).

5. Under Assignments, set the Cloud apps or actions property to Power BI Service.

6. Under Assignments, set the Conditions property and configure the Locations to Include

locations of Any location and Exclude locations of All trusted locations. With this defi-

nition, the policy will apply to all IP addresses not defined as trusted locations in AAD.

7. Under Access controls, set the Grant property and select the checkbox to require MFA.

8. Finally, set the Enable policy property at the bottom to On and click the Create command

button:

Chapter 14 593

Figure 14.8: Configure a new Azure AD conditional access policy

The minimum requirements to create new conditional access policies are the Users or workload

identities property, the Cloud apps or actions property (Power BI service), and at least one ac-

cess control. As with all security implementations, conditional access policies should be tested

and validated.

In Figure 14.8, a user within the AdWorks DW Sales Team could attempt to log in to Power BI

from outside the corporate network. The user should be prompted (challenged) to authenticate

by providing a mobile device number and entering an access code sent via text message.

It’s important to remember that conditional access policies are in addition to the user permissions

defined in the Power BI service and the RLS roles created in Power BI datasets or Analysis Services

data models. The User permissions and security section in Chapter 13, Creating Power BI Apps and

Content Distribution, contains additional information on these security layers.

AAD conditional access policies require either an Enterprise Mobility and Security E5 license

or Azure AD Premium P2 license. Enterprise Mobility and Security (EMS) E5 licenses include

Azure AD Premium P2 as well as Microsoft Intune, Microsoft’s mobile device management service.

Additional information on features, licensing, and pricing for EMS is available at the following

URL: http://bit.ly/2lmHDZt.

http://bit.ly/2lmHDZt

Administering Power BI for an Organization594

Let’s now look specifically at administering Power BI via the admin portal.

Power BI admin portal
The Power BI admin portal provides controls for administrators to manage the Power BI tenant

for their organization. This includes settings governing who in the organization can utilize which

features, how Power BI Premium capacity is allocated, and other settings such as embed codes

and custom visuals.

The admin portal is accessible to Microsoft 365 global administrators and users mapped to the

Power BI administrator role. The Power BI administrator role and the assignment of a user to

this role in Microsoft 365 were described in the Power BI project roles section of Chapter 1, Planning

Power BI Projects.

To open the admin portal, log in to the Power BI service and select the Admin portal item from

the Settings (gear icon) menu in the top right, as shown in Figure 14.9:

Figure 14.9: Admin portal in the Settings menu

Note that depending on screen resolution and zoom settings, the gear, bell, and other icons may

not appear and instead be replaced by ellipses (…). In this case, click the ellipses, then choose

Settings and then Admin portal.

All Power BI users, including Power BI free users, are able to access the admin portal. However,

users who are not admins can only view the Capacity settings page. Power BI administrators

and Microsoft 365 global administrators have view and edit access to all of the pages shown in

Figure 14.10:

Chapter 14 595

Figure 14.10: Admin portal pages

Administrators of Power BI most commonly utilize the Tenant settings and Capacity settings

as described in the Tenant settings and Power BI Premium capacities sections later in this chapter.

However, the admin portal can also be used to manage any approved custom visuals for the or-

ganization, as well as any embed codes associated with the Publish to web feature described in

Chapter 13, Creating Power BI Apps and Content Distribution.

Let’s take a look at the pages of the admin portal, starting with Tenant settings.

Tenant settings
The Tenant settings page of the admin portal allows administrators to enable or disable various

features of the Power BI service. For example, an administrator could disable the Publish to web

feature described in Chapter 13, Creating Power BI Apps and Content Distribution, for the entire or-

ganization. Likewise, the administrator could allow only a certain security group to embed Power

BI content in Software as a Service (SaaS) applications such as SharePoint Online.

Administering Power BI for an Organization596

There are over 80 tenant settings currently available in the admin portal and more settings are

continually added on a consistent basis. While a detailed explanation of each of these settings is

beyond the scope of this book, Chapter 12 of Learn Power BI, 2nd Edition contains a comprehensive

list and explanation of all tenant settings present at the time of publication (February 2022).

All of the tenant settings provide certain controls while certain tenant settings also provide con-

trols specific to the particular tenant setting. For example, all tenant settings provide a control to

enable or disable the tenant setting (feature) within the Power BI tenant. If Disabled, the feature

is not available within the Power BI tenant. If Enabled, the feature can be applied to The entire

organization or to Specific security groups. In addition, the option is provided to Except specific

security groups as shown in Figure 14.11:

Figure 14.11: Common tenant setting controls

If a tenant setting is Enabled, as shown in Figure 14.11, it is recommended that the feature be

relegated to Specific security groups unless it is deemed appropriate to allow the tenant set-

ting for The entire organization. Power BI administrators should consult with their enterprise

network and security teams regarding whether each tenant setting should be enabled and for

which security groups.

For example, a common scenario is that only specific security groups should be allowed to export

data. In this case, the Specific security groups radio button can be selected, and the security

groups selected that should be able to export data.

In other scenarios, the feature should apply to the whole organization except certain groups

of users. For example, the organization may want to enable a feature for all internal users but

exclude external users. In this case, external users could be added to an External users security

group. The radio button for The entire organization would be selected and then the checkbox

for Except specific security groups would be checked. Finally, the External users security group

could be selected to be excluded.

Chapter 14 597

Tenant settings are broken down into the following 23 groups:

1. Help and support settings

2. Workspace settings

3. Information protection

4. Export and sharing settings

5. Discovery settings

6. Content pack and app settings

7. Integration settings

8. Power BI visuals

9. R and Python visuals settings

10. Audit and usage settings

11. Dashboard settings

12. Developer settings

13. Admin API settings

14. Dataflow settings

15. Template app settings

16. Q&A settings

17. Dataset Security

18. Advanced networking

19. Goals settings

20. User experience experiments

21. Share data with your Microsoft 365 services

22. Insights settings

23. Quick measure suggestions

Seven of these groups, R and Python visuals settings, Dashboard settings, Dataflow settings,

Dataset Security, Goals settings, User experience experiments, and Share data with your Mi-

crosoft 365 services, only contain a single setting that essentially enables or disables the feature.

For example, the single settings for R and Python visuals settings, Dataflow settings, and Goals

settings simply either allow or disallow the use of R and Python visuals, dataflows, and goals

respectively.

Administering Power BI for an Organization598

The Help and support settings group controls custom support links, email notifications of outages,

whether users are allowed to try paid features, and whether a custom message is shown when

users publish reports. These settings should be reviewed carefully and in coordination with IT

administration and help desk resources.

The Workspace settings group enables or disables users to create workspaces, use datasets across

workspaces, and configure how workspace upgrades are performed. Of particular interest are

the Create workspaces and Use datasets across workspaces settings. The Create workspaces

setting should only be enabled for the enterprise BI team and those users trusted and authorized

by that team. Enabling the ability to use datasets across workspaces is also the preferred setting

for enterprises as this allows greater security and separation of concerns between data modelers

and report authors.

The Information protection settings impact the use of sensitivity labels within the tenant. Sen-

sitivity labels were discussed in the Information protection section of Chapter 10, Managing Work-

spaces and Content, and these settings should be reviewed carefully if using Microsoft Information

Protection.

From a data security perspective, the Export and sharing settings group is perhaps most import-

ant. The settings in this group provide granular control over export formats such as downloading

report (.pbix) files or exporting to Excel or CSV files.

In addition, the Allow Azure Active Directory guest users to access Power BI, Invite external

users to your organization, Allow Azure Active Directory guest users to edit and manage con-

tent in the organization, Show Azure Active Directory guests in lists of suggested people, and

External sharing settings provide granular control over if and how external users can access the

Power BI tenant. Obviously, the first setting regarding AAD guest users would need to be enabled

for the AAD B2B scenario discussed earlier in this chapter.

The Export and sharing settings group also includes other critical settings such as Publish to

web, Printing, Email subscriptions and Microsoft Teams integration settings. Many organi-

zations choose to disable the Publish to web feature for the entire organization. Additionally,

only certain security groups may be allowed to share content in Teams or to print hard copies of

reports and dashboards.

The Discovery settings group controls whether content that users do not have access to can be

returned in search results or otherwise discovered by users. Enabling discoverability can help

promote a data culture where users can find and request access to interesting content.

Chapter 14 599

The Content pack and app settings group is another important group of tenant settings. The

settings in this group control whether apps can be published to the entire organization and

whether apps can be pushed to end users. The impact of these settings being enabled or disabled

was discussed in the App deployment process section of Chapter 13, Creating Power BI Apps and

Content Distribution.

The Integration settings group controls whether certain visuals can be used as well as single

sign-on (SSO) integration for Snowflake, Redshift, and the data gateway. Settings are available

to enable or disable the ArcGIS Maps for Power BI, Azure Maps, and other map visuals. These

visuals were discussed in Chapter 7 and Chapter 8. Also, importantly, this group contains a setting

to enable Analyze in Excel for on-premises datasets. Analyze in Excel was discussed in Chapter

13, Creating Power BI Apps and Content Distribution.

The Power BI visuals group controls the use of custom visuals within the organization. Notably,

visuals added to Organizational visuals (discussed later in this chapter) are generally not im-

pacted by these settings.

The Audit and usage settings group controls the creation of audit logs and usage metrics within

the tenant. For example, the collection of Per-user data in usage metrics for content creators

can be enabled or disabled. It is highly recommended to enable the Create audit logs for internal

activity auditing and compliance setting.

There are four settings available in the Developer settings group that control the embedding of

content in apps as well as the use of service principals. Recall that the use of service principals for

embedding was discussed the Custom applications section of Chapter 13, Creating Power BI Apps

and Content Distribution.

The Admin API settings group controls whether service principals can use the Power BI admin

APIs as well as the content of API responses.

The Template app settings group controls the use and availability of template apps. Template

apps are intended for partners and ISVs to easily create Power BI apps and then deploy those apps

to any Power BI customer. Template apps can be published to the Power BI Apps marketplace and

to Microsoft AppSource. More information about template apps can be found at the following

link: https://bit.ly/36yntoj.

There are two settings in the Q&A settings group. The first setting, Review questions, allows

dataset owners to review questions asked via Q&A within the Power BI service.

https://bit.ly/36yntoj

Administering Power BI for an Organization600

Enabling this feature helps dataset owners tune their synonyms and data model to provide more

relevant answers to users. The second setting, Synonym sharing, allows Q&A synonyms to be

shared within the organization. Synonym sharing can reduce the time required to configure

synonyms within a data model by leveraging previous work by colleagues.

The Advanced networking group allows blocking public internet access as well as the ability to

configure a Private Link. Azure Private Link enables accessing Azure Platform as a Service (PaaS)

applications like Power BI over a private endpoint on your virtual network. More information

about Azure Private Link can be found here: https://bit.ly/3NqqHec.

The Insights settings and Quick measure suggestions groups are currently in preview. These

settings deal with the ability to request insights within a report as well as the ability to use natural

language to write DAX measures.

Moving on from tenant settings, we next explore the Usage metrics page.

Usage metrics
The Usage metrics page of the admin portal provides admins with a Power BI dashboard of several

top metrics, such as the most viewed dashboards and the most viewed dashboards by workspace.

However, the dashboard cannot be modified, and the tiles of the dashboard are not linked to any

underlying reports or separate dashboards to support further analysis. Given these limitations,

alternative monitoring solutions are recommended, such as the Microsoft 365 audit logs and

usage metric datasets specific to Power BI apps. Details of both monitoring options are included

in the Usage metrics reports section as well as the following section discussing the Users and Audit

logs pages.

https://bit.ly/3NqqHec

Chapter 14 601

Users and Audit logs
The Users and Audit logs pages simply provide links to the Microsoft 365 admin center. In the

Microsoft 365 admin center, Power BI users can be added, removed, and managed. Audit logs

record activity that occurs within the Power BI service such as publishing reports, sharing reports,

and viewing dashboards.

Audit logging is important to organizations and can greatly benefit security and governance. For

example, audit logs may be regularly reviewed to identify potentially high-risk activities such

as sharing with external users, data exports, or logins from odd locations or at odd times (such

as 3 AM).

In addition, audit logs can help identify users and content that is potentially important for the

business intelligence team to be aware of and possibly move to a more managed solution. For

example, the audit logs could reveal that a report in a single user’s My Workspace is being shared

with a large audience and that the report is regularly viewed by many important business users

within the organization. In such a circumstance, it would be advisable for the business intelligence

team to contact the user regarding the report and determine if it is a candidate to be moved to a

workspace under the control of the BI team.

If audit logging is enabled for the organization via the Create audit logs for internal activity and

auditing and compliance tenant setting discussed earlier in the Tenant settings section of this

chapter, then this audit log data can be retrieved from the Microsoft 365 Security & Compliance

Center or via PowerShell. Additional information regarding audit logs is included in the Audit

logs section of this chapter.

We now take a look at the Premium Per User settings.

Administering Power BI for an Organization602

Premium Per User
Premium Per User (PPU) licensing is the licensing method that grants features previously rele-

gated to Premium capacities to individual users on a per user basis. The Premium Per User page

contains the settings shown in Figure 14.12:

Figure 14.12: Premium Per User settings

Two of the Premium rights granted by PPU licensing include automatic page refresh and the

XMLA endpoint.

Automatic page refresh allows a web browser viewing a dashboard or report page to automati-

cally refresh after a certain amount of time. This capability is often used to display a dashboard

of information on a large screen for the purposes of monitoring critical events.

Chapter 14 603

For example, such a solution might be used within a warehouse for monitoring the shipping and

receiving of goods or within a manufacturing facility to monitor the status of machines.

The XMLA endpoint is what enables connectivity between tabular data models and other tools

and services. Here, the XMLA endpoint can be set to Off, Read Only, or Read Write.

Some organizations might consider the ability to access their Power BI datasets from a tool exter-

nal to the Power BI service a security risk and thus set this setting to Off. However, this disables

certain functionality, such as Analyze in Excel. At a minimum, the XMLA Endpoint must be set to

Read Only for Analyze in Excel to function. If using the ALM Toolkit for deployments of dataset

changes, as explained in the ALM Toolkit Deployment section of Chapter 15, Building Enterprise BI

with Power BI Premium, the XMLA Endpoint would need to be set to Read Write since the ALM

Toolkit writes updates to datasets.

We now look at capacity settings.

Capacity settings
Capacity settings control dedicated capacities within the Power BI service. Microsoft 365 global

admins and Power BI administrators can view, create, and manage all Power BI Premium capacities

from the Capacity settings page. This includes the ability to create, resize, and monitor capacities

as well as bulk assign workspaces to capacities.

Capacity settings are discussed in detail in the Create, size, and monitor capacities section of Chapter

15, Scaling with Power BI Premium.

We now turn our attention to the Embed Codes page.

Embed codes
Embed codes are created and stored in the Power BI service when the Publish to web feature is

utilized. As described in the Publish to web section of Chapter 13, Creating Power BI Apps and Content

Distribution, this feature allows a Power BI report to be embedded in any website or shared via

URL on the public internet.

Administering Power BI for an Organization604

Users with edit rights to the workspace of the Publish to web content are able to manage the em-

bed codes themselves from within the workspace. However, the admin portal provides visibility

and access to embed codes across all workspaces, as shown in Figure 14.13:

Figure 14.13: Embed Codes in Power BI admin portal

Once an embed code is selected, the Power BI admin can view the report in a browser or remove

the embed code via the View on web and Delete actions in the header. The Embed Codes page

can be helpful to periodically monitor the usage of the Publish to web feature and for scenarios

in which data was included in a Publish to web report that shouldn’t have been, and thus needs

to be removed.

Next, we explore the Organizational visuals page.

Organizational visuals
The Organizational visuals page allows admins to upload and manage custom visuals (.pbiviz

files) that have been approved for use within the organization. Organizations can enforce that only

custom visuals included within the organizational visuals list can be used in reports published

to their Power BI tenant using tenant settings in the Power BI visuals group.

For example, an organization may have proprietary custom visuals developed internally, which

it wishes to expose to business users. Alternatively, the organization may wish to define a set of

approved custom visuals, such as only the custom visuals that have been certified by Microsoft.

The process of obtaining custom visuals via Microsoft AppSource and the details of certified cus-

tom visuals are included in the Custom visuals section of Chapter 8, Applying Advanced Analytics.

Chapter 14 605

In Figure 14.14, the Pulse Chart custom visual has been added as a custom organizational visual

from the Organizational visuals page of the Power BI admin portal:

Figure 14.14: Add organizational custom visual

As shown in Figure 14.14, visuals can be added from AppSource or from a file (.pbiviz). In addi-

tion, organizational visuals can be automatically configured to appear in the Visualization pane

of Power BI Desktop users by selecting a visual and clicking the Enable for Visualization Pane

link in the header. The Visualization Pane property column shows whether or not this setting

is enabled for each visual.

In Figure 14.15, the Visualization Pane property has been enabled for the Pulse Chart visual and

thus the Pulse Chart visual is listed in the default list of visualizations available for report creation:

Figure 14.15: Organizational visual enabled for the Visualization pane in Power BI Desktop

Organizational visuals not enabled with the Visualization Pane setting can still be accessed and

used by Power BI Desktop users.

Administering Power BI for an Organization606

Once the custom visual has been uploaded as an organizational custom visual, it will be acces-

sible to users in Power BI Desktop. In Figure 14.16, when adding a custom visual as described in

the Adding a custom visual section of Chapter 8, Applying Advanced Analytics, the user has selected

the Organizational visuals tab:

Figure 14.16: Organizational visuals in Power BI Desktop

Notably, adding an organizational visual in this manner does not add the custom visual as part of

the default set of visuals but rather below a faint, dotted line as is usually the case when adding

custom visuals. This is shown in Figure 14.17:

Figure 14.17: Organizational visual not enabled for the Visualization pane in Power BI Desktop

Overall, it is generally a good idea for organizations to standardize on a set of allowed custom

visuals and to then disable the Allow visuals created using the Power BI SDK and Add and use

certified visuals only (block uncertified) tenant settings found in the Power BI visuals group.

Chapter 14 607

A business process can be developed to request, certify, and add additional visuals as necessary.

The Power BI administrator would participate in this process and ultimately be the individual

that adds the visual to the list of approved organizational visuals.

Such standardization ensures that reports remain similarly designed and that business users

are appropriately aware and understand how to interpret and use visuals found in reports. In

addition, this rigor can help ensure that security and compliance concerns are also addressed to

prevent unintended data loss.

We next look at the Azure connections page.

Azure connections
The Azure connections page contains three settings related to using your own Azure storage

accounts for Power BI as shown in Figure 14.18:

Figure 14.18: Azure connections page

Administering Power BI for an Organization608

By default, data used in Power BI is stored internally by the Power BI service. However, with the

implementation of dataflows to use Azure Data Lake Storage Gen2 (ADLS Gen2), it is now possi-

ble to store your dataflows within your own ADLS Gen2 storage accounts versus default internal

Power BI provisioned storage.

Using your own ADLS Gen2 storage account can be beneficial. Power BI stores dataflow data in

Common Data Model (CDM) format. This format captures metadata about the data created by

dataflows. This can be useful in scenarios involving automation, monitoring, extensibility, and

backups. In addition, this can help ensure that multiple roles within the organization such as

analysts, data scientists, and other data professionals are working with and reusing the same

set of curated data.

Let’s now turn our attention to the Workspaces page of the admin portal.

Workspaces
The Workspaces page provides a centralized view of all workspaces provisioned within the Power

BI tenant, providing administrators a central hub for managing these workspaces.

For example, in Figure 14.19, an administrator is using the Workspaces page to Recover an Or-

phaned workspace:

Figure 14.19: Recover orphaned workspace

Orphaned workspaces are workspaces that have no active AAD user as a member or administra-

tor. This can happen if the user who created the workspace subsequently left the organization.

Workspace recovery allows an administrator to be assigned so that the workspace content can

be inspected and a decision made whether to assign a new owner to the workspace, migrate the

content to a different workspace, or simply remove the workspace entirely.

Chapter 14 609

As shown in Figure 14.19, administrators can also view users assigned to workspaces and even

add and remove admins, members, and contributors of workspaces via the Access menu option.

The Details and Edit menu options provide information such as the workspace ID and the ability

to edit the name and description of the workspace respectively.

We now look at the Custom branding page.

Custom branding
The Custom branding page can be used to customize the look and feel of the Power BI service.

Only three customizations are possible, adding a Logo, a Cover image, and a Theme color, as

shown in Figure 14.20:

Figure 14.20: Recover orphaned workspace

The Logo and Theme color affect the very top of Power BI service pages with the chosen logo

image displayed at the top left of the page and the background color of the entire header bar set

to the chosen Theme color. If configured, the Cover image is displayed as a banner image on the

Home page of the Power BI service.

Administering Power BI for an Organization610

Let’s next look at the Protection metrics page.

Protection metrics
The Protection metrics page displays a simple report that graphs how sensitivity labels are applied

to content and is most useful if the organization has deployed sensitivity labels and associated

information policies as described in the Information protection section of Chapter 10, Managing

Workspaces and Content.

As discussed in that chapter, sensitivity labels serve to alert end users to the privacy level of the

information they are viewing and can also include protection settings to encrypt the content. The

page also includes a link to open the Microsoft Defender for Cloud Apps portal for additional

metrics and reporting.

The final page available in the admin portal is the Featured content page, so let’s finish this

section by looking at it now.

Featured content
The Featured content page provides a centralized view of all content that has been set to be fea-

tured on the Power BI Home page. Reports, dashboards, and other content can be set as Feature

on Home via their Settings panes as shown in Figure 14.21:

Figure 14.21: Feature on Home

Chapter 14 611

In this example, the Utilization report has been set to Feature on Home and appears on the Power

BI Home page in the Featured section as shown in Figure 14.22.

Figure 14.22: Featured report tile

Note that if no content is featured, then the Featured section of the Home page does not appear.

Also, who can feature content within the Power BI tenant is controlled by the Featured content

tenant setting found in the Export and sharing settings group.

This completes our tour of the Power BI admin portal. We now provide additional information

regarding usage metric reports.

Usage metrics reports
The Power BI service provides standard usage metrics reports for both dashboards and reports.

These reports, which themselves are Power BI reports, provide quick insights into fundamental

user adoption questions, such as how often the published content is being viewed and which

users are viewing the content the most.

These read-only reports can be generated for specific dashboards and reports and can also be

personalized (edited) by saving a copy. Once a copy of a usage metrics report has been saved, a

Power BI dataset of usage metrics is created for either all the dashboards or all the reports in the

workspace. The usage metrics datasets, which are updated by the Power BI service for the last

90 days of activity, and the saved usage reports can then serve as a foundation for a lightweight

but robust monitoring solution for the workspace.

Administering Power BI for an Organization612

For example, the Global Sales app described in the previous chapter contains several dashboards

and reports, with some of the reports containing multiple report pages. The following process

and supporting images detail the creation and viewing of usage metrics reports:

1. Access the workspace in the Power BI service containing the content to monitor. A Power

BI Pro license and edit rights to the workspace are required to access usage metrics data.

2. From the Content page, select View usage metrics report from the three vertical dots

menu for a report, dashboard, or scorecard as shown in Figure 14.23:

Figure 14.23: View usage metrics report

3. Once prompted that the usage metrics are ready, click the View usage metrics report

button as shown in Figure 14.24. Alternatively, click the View usage metrics report icon

again for any of the dashboards or reports in the workspace.

Figure 14.24: Usage metrics ready

Chapter 14 613

4. A Power BI report containing usage metrics for the selected dashboard or report is dis-

played, such as the report shown in Figure 14.25:

Figure 14.25: Report usage metrics report

5. Figure 14.25 shows a usage metrics report for a report. Four report pages are included.

6. The Report usage page includes information such as report views, unique viewers, and

trends over time. In addition, information regarding how the report is distributed and

what platforms users are using to view the report is included as well as individual user

statistics. The Per-user data in usage metrics for content creators tenant setting in the

Audit and usage settings group is enabled.

7. The Report performance page includes information regarding how fast the report opens

for users. The report list provides statistics regarding all reports in the workspace includ-

ing report usage across the entire workspace as well as individual report usage statistics.

The FAQ page simply provides definitions for the different metrics and answers to other

frequently asked questions.

8. At this point, usage metrics reports specific to either all reports, all dashboards or all

scorecards in the workspace will be accessible on demand via the View usage metrics

report action depending upon the content type chosen in step 2.

Administering Power BI for an Organization614

9. Repeat step 2 for the other types of content in the workspace but note that paginated

reports do not support usage metrics. Usage metrics reports look different depending

upon the content type. For example, Figure 14.26 shows a portion of a dashboard’s usage

metrics report.

Figure 14.26: Dashboard usage metrics report

With the usage metrics report opened, the Filters pane can be used to adjust the reports, dash-

boards, and scorecards included in the report although these are identified by their globally unique

identifiers (GUIDs) and not their names. These are the same GUIDs as discussed in the Workspace

and content identifiers section of Chapter 10, Managing Workspaces and Content.

Usage metrics reports are an effective way to monitor the adoption of Power BI content within

the enterprise and identify performance issues. Although useful for workspaces that support

many users or important scenarios (such as executive dashboards), usage metrics reports are

ultimately limited to individual workspaces.

Chapter 14 615

Additionally, the usage metrics don’t include other activities of interest to administrators, such as

when the newly scheduled refresh is configured or when a data source from a gateway is removed.

A more comprehensive monitoring dataset inclusive of all workspaces and all Power BI activities

is available via the Microsoft 365 audit logs for Power BI, as described in the following section.

Audit logs
Power BI activities stored in the Microsoft 365 audit logs provide administrators with a complete

view of user activities in the Power BI service. Each log event record identifies the user, the date

and time of the activity, the type of activity, such as the printing of a report page, and the item

in Power BI, such as the report that was printed. This level of detail at the tenant level across all

primary activities helps administrators answer both high-level usage and adoption questions,

as well as targeted compliance questions.

For example, the audit logs could prove that the volume of users and their level of engagement

with Power BI reports and dashboards is increasing and thus that additional capacity is required

or that the organization might benefit from a move to Premium capacity. Alternatively, an ad-

ministrator could investigate the activities of just a few users to ensure they’re only engaging in

activities aligned with their role.

As explained in the User and audit logs section of this chapter, audit logs should be regularly

reviewed to identify potentially high-risk activities such as sharing with external users, data

exports, or logins from odd locations and times. In addition, audit logs can help identify users

and content that is potentially important for the business intelligence team to be aware of and

possibly move to a more managed solution.

Because Power BI uses the centralized Microsoft 365 audit logs, Power BI activities can leverage

other integrated solutions within Microsoft 365 and Azure. For example, Azure Sentinel can be

used to identify anomalous activities within Power BI via machine learning/artificial intelligence,

thus automating the process of regularly reviewing the audit log.

Perhaps most importantly, by using audit logs, an IT organization can understand what Power BI

content is being utilized by the business. In the event that a few reports or dashboards become

very popular, some level of engagement may be appropriate to ensure the underlying dataset is

accurate and secure or the content migrated to an IT-supported solution.

Once enabled in the Power BI admin portal, the audit log data can be retrieved on an ad hoc basis

or, more commonly, retrieved on a recurring basis as part of a continuous monitoring and gover-

nance solution. To minimize the setup and maintenance of these monitoring solutions, Microsoft

has made available PowerShell scripts that export Power BI audit log data to a CSV file format.

Administering Power BI for an Organization616

The first step in utilizing the audit logs is to enable audit log searching within the Microsoft 365

Compliance Center. This can be done at the following link: https://compliance.microsoft.com/

auditlogsearch. If auditing is not turned on for the tenant, a link is present to Start recording

user and admin activity. Click that link and after approximately one hour, activity will start

being recorded.

Next, enable the Create audit logs for internal activity auditing and compliance setting in

the Power BI admin portal. This setting is in the Audit and usage settings group of the Tenant

settings page.

Once the audit log setting is enabled, user activities start to be recorded in the audit logs with a

delay of 12 hours or less from their occurrence and will be stored for 90 days. This log data can be

accessed directly from the Microsoft 365 Compliance Center or remotely via PowerShell scripts. In

terms of direct or ad hoc access, a Microsoft 365 global administrator or a user with permission to

the Compliance Center can log in to Microsoft 365 and navigate to the URL, https://compliance.

microsoft.com/auditlogsearch.

Alternatively, a link to the Microsoft 365 admin center is provided on the Audit logs page of the

Power BI admin portal. This links directly to the audit log search interface of the Compliance Center.

From the audit log search page, users can configure a search for a Date and time range, specific

Activities, and specific Users, as shown in Figure 14.27:

Figure 14.27: Audit log search configuration

https://compliance.microsoft.com/auditlogsearch
https://compliance.microsoft.com/auditlogsearch
https://compliance.microsoft.com/auditlogsearch
https://compliance.microsoft.com/auditlogsearch

Chapter 14 617

Once configured, clicking the Search button returns audit log activities that meet the specified

criteria as shown in Figure 14.28:

Figure 14.28: Audit log search in Security & Compliance Center

Click the Export dropdown and then Download all results in order to download a CSV file of the

audit log search results. The CSV file contains four columns, CreationDate, UserIds, Operations,

and AuditData.

The CreationDate column is a date and time stamp for the activity in Coordinated Universal

Time (UTC) format, while the UserIds column contains the UPN of the user performing the

activity shown in the Operations column, such as ViewReport.

The AuditData column contains additional information in JSON format, such as the following:

{

"Id":"0c20ca7f-24b5-48df-bbd6-94e1b9d4a7e4",

"RecordType":20,

"CreationTime":"2022-03-29T17:43:55",

"Operation":"ViewReport",

"OrganizationId":"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

"UserType":0,

"UserKey":"10030000819AD21A",

"Workload":"PowerBI",

"UserId":"user@fakedomain.com",

"ClientIP":"xx.xxx.xxx.xxx",

"UserAgent":"Mozilla\/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit\/537.36 (KHTML, like Gecko) Chrome\/99.0.4844.74
Safari\/537.36 Edg\/99.0.1150.55",

Administering Power BI for an Organization618

"Activity":"ViewReport",

"ItemName":"GitHub",

"WorkSpaceName":"Github",

"DatasetName":"GitHub",

"ReportName":"GitHub",

"WorkspaceId":"xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

"AppName":"Github",

"ObjectId":"GitHub",

"DatasetId":" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx ",

"ReportId":" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx ",

"IsSuccess":true,

"ReportType":"PowerBIReport",

"RequestId":" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx ",

"ActivityId":" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx ",

"AppReportId":" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx ",

"DistributionMethod":"Apps",

"ConsumptionMethod":"Power BI Web"

}

As shown in the preceding activity record associated with viewing a report via an app, many more

attributes of the activity are available in the audit logs that aren’t displayed from the main audit

log search results interface. To view these additional details from the audit log search page, click

on a specific activity.

Object IDs such as WorkspaceID and DatasetID can be used to programmatically manage Power

BI content via the Power BI REST API, as described in the Staged deployments section of Chapter

10, Managing Application Workspaces and Content.

A BI team would expect the creation and deletion of datasets and gateways to be infrequent

activities relative to the creation and deletion of reports and dashboards. If many datasets are

being created, this could be a sign of inefficient resource utilization and version control issues.

For example, rather than four reports using live connections to a single published dataset, each

report may have its own dataset that requires its own resources and data refresh schedule (if

import mode).

Excluding global admins, an Exchange Online license is required to access the auditing section

of the Microsoft 365 Compliance Center. Additionally, administrators who are not global admins

need to be mapped to a role that provides access to the audit log. This is done on the Permissions

& roles page of the Compliance Center.

Chapter 14 619

There are currently hundreds of distinct Power BI activities tracked in the audit logs, including

the sharing of dashboards and reports, any updates to an organization’s Power BI settings (tenant

settings), and activities related to the management of Power BI Premium capacities. The list of

Power BI activities audited and their descriptions is available and kept updated at the following

URL: http://bit.ly/2skXjAB.

The maximum date range for an audit log search is 90 days and the date/time of each activity is

presented in UTC format. Additionally, a maximum of 50,000 events can be displayed per audit

log search. Given these limitations and the manual nature of audit log searches, a scheduled log

retrieval process is necessary to support a more robust monitoring solution.

Audit log monitoring solution
To internally develop a monitoring solution based on the audit log data, a PowerShell script that

searches and exports the audit log data to a CSV file can be scheduled. This CSV file is then used

as the source of an extract-transform-load (ETL) or extract-load-transform (ELT) process to

persist the log data in a source system, such as a SQL Server database or, on a small scale, a Power

BI dataset using a Folder query. Finally, Power BI Desktop can be used to implement remaining

lightweight transformations, create DAX measures, and develop monitoring reports.

When developing an audit log monitoring solution for Power BI, the first step is to choose be-

tween the Unified Audit Log (all Microsoft 365 audit activities) and the Power BI Activity Log.

While both log sources contain all Power BI auditing activities, it is highly recommended to use

the Power BI Activity Log since this log only contains Power BI activities and does not require a

global administrator role to access. In the example that follows, we use the Power BI Activity Log.

To use the PowerShell script, you must install the MicrosoftPowerBIMgmt PowerShell module.

This can be done by opening PowerShell and running the following command:

Install-Module -Name MicrosoftPowerBIMgmt -Scope CurrentUser

The Scope parameter is highly recommended as the module should only be accessible to and

used by the Power BI administrator. To export the last 12 hours of data, the following PowerShell

script can be used to export the audit log data to a CSV file in the C:\PowerBIAuditLogs directory:

Login-PowerBI

$Current = Get-Date

$Begin = $CurrentDate.AddHours(-12)

$dateString = $CurrentDate.ToString("yyyy_MM_dd_HH_mm")

$csvFile = "C:\PowerBIAuditLogs\" + $dateString + ".csv"

http://bit.ly/2skXjAB

Administering Power BI for an Organization620

$StartTime = $Begin.ToUniversal().ToString("yyyy-MM-ddTHH:mm:ss")

$EndTime = $CurrentDate.ToUniversal().ToString("yyyy-MM-ddTHH:mm:ss")

$activities = Get-PowerBIActivityEvent -StartDateTime $StartTime
-EndDateTime $EndTime | ConvertFrom-Json | Export-Csv $csvFile

This PowerShell script (.ps1 file) can be executed on a schedule of every 12 hours. An ETL (or

ELT) process could then be executed to access the CSV file and load the new data to a data source

such as an Azure SQL database. The import and transformation could be done using Azure Data

Factory. Alternatively, Power BI Desktop could use a Folder query to import all files within the

C:\PowerBIAuditLogs folder.

The results of each audit log search can contain duplicate rows. However, the Id column included

in the search results can be used to eliminate these duplicate rows. 24 columns of information

are available in the CSV file.

With a sound data retrieval process in place, DAX measures could be authored, such as the count

of active users, the average number of users per day and per month, and the count of created

reports or dashboards.

To support security and compliance, measures and visualizations could be created targeting

high-risk or undesirable activities, such as exporting report visual data or publishing reports

to the web. For example, a card visual representing the count of data export activities could be

pinned to a Power BI dashboard and a data alert could be configured against this dashboard tile.

An out-of-the-box Power BI monitoring solution is expected later this year that could potentially

eliminate the need to develop and support a custom monitoring solution from scratch. None-

theless, as every organization and Power BI environment is unique, administrators may evaluate

whether this new solution provides sufficient flexibility and control to serve as an alternative to

an internally developed and maintained monitoring solution.

Note that in addition to the MicrosoftPowerBIMgmt PowerShell module, administrative actions

are also available via the Power BI REST API and supporting .NET Client library for Microsoft

Power BI public REST endpoints.

The Power BI REST API for admins
Although the Power BI admin portal and the Power Platform Admin Center portal provide easy

graphical tools for common and simple administrative tasks, the Power BI REST APIs provide

programmatic access to many administration-focused endpoints, such as for retrieving artifact

access for a given user, restoring deleted workspaces, and rotating encrypting keys.

Chapter 14 621

Power BI administrators and BI/IT managers are therefore encouraged to review the documen-

tation on the Power BI REST APIs (https://docs.microsoft.com/en-us/rest/api/power-bi)

and to consider incorporating these APIs into standard admin processes.

One relatively new and very powerful admin API is GetGroupsAsAdmin. This API can be called to

retrieve up to 5,000 workspaces and include the users, reports, dashboards, datasets, dataflows,

and workbooks associated with each given workspace. The JSON output of this single API call

can then be loaded to a monitoring SQL database or potentially directly to a monitoring report-

ing solution to provide easy, centralized visibility to all the primary artifacts within a Power BI

environment.

There are several methods for calling the Power BI REST APIs but perhaps the most familiar and

straightforward option is to use the Invoke-PowerBIRestMethod cmdlet included with the Power

BI Management PowerShell module. With this cmdlet, the admin can simply pass a text string

variable to the URL parameter and specify the appropriate API method for the Method parameter

(GET, POST, PUT, DELETE).

In the following snippet from a PowerShell script, a custom URL text string is created and passed

to the Invoke-PowerBIRestMethod cmdlet in order to retrieve up to 5,000 active workspaces

along with their associated dashboards, reports, datasets, and users:

$PBIGroupsFile = "C:\Users\bpowell\Admin\BIAdminArtifacts\
PowerBIWorkspaces.json"

$ActiveGroupsURLExPersonal = '/admin/groups?$top=5000&' +
'$filter=type eq' + " 'Workspace'" + ' and state eq' + " 'Active'" +
'&$expand=dashboards,reports,datasets,users'

#Retrieve workspace data (with expanded values) and write to the JSON file

Invoke-PowerBIRestMethod -Url $ActiveGroupsURLExPersonal -Method Get |
Out-File $PBIGroupsFile

This completes our review of activities related to administering Power BI for an organization.

Summary
This chapter reviewed the features and processes applicable to administering Power BI for an

organization. These included the configuration of tenant settings in the Power BI admin portal,

analyzing the usage of Power BI assets, and monitoring overall user activity via the Microsoft 365

audit logs. Additionally, important administrative capabilities of Azure Active Directory, such as

conditional access policies and external guest users, were also described.

https://docs.microsoft.com/en-us/rest/api/power-bi

Administering Power BI for an Organization622

The following chapter looks at the options for scaling Power BI to support increased user adoption,

larger datasets, and enterprise BI solutions through the use of Premium capacities. This includes

methodologies for allocating Power BI Premium capacity to workloads, leveraging the additional

benefits of Power BI Premium, and other activities related to using Power BI at scale.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

15
Building Enterprise BI with
Power BI Premium

For many organizations, the deployment of Power BI entails surfacing mission-critical KPIs over

vast sets of data as well as empowering business users as part of a data culture. Power BI Premium

is designed to meet these needs via a workload-based pricing model and scalable, enterprise-

grade semantic modeling and reporting features.

While Power BI projects may begin as a proof-of-concept or as a self-service solution developed

by a business analyst, the features exclusive to Power BI Premium capacity, such as large datasets,

paginated reports, and the XMLA endpoint are often necessary to meet performance, scalability,

and application life cycle needs of enterprise solutions.

Power BI Premium represents Microsoft’s flagship business intelligence suite, including a superset

of Analysis Services semantic modeling features, a paginated reporting service offering the pixel-

perfect enterprise reporting features of Reporting Services, and additional workloads including

artificial intelligence and dataflows.

This chapter focuses on a review of the capabilities enabled by Power BI Premium capacities and

the top considerations in provisioning and using this capacity. In addition, subjects such as life

cycle management, data management, and disaster recovery are also addressed.

In this chapter, we will review the following topics:

• Power BI Premium

• Premium capacity nodes

• Premium capacity estimations

Building Enterprise BI with Power BI Premium624

• Premium capacity administration and allocation

• Premium capacity resource optimization

• Life cycle management with Premium

Power BI Premium
Power BI Premium consists of dedicated capacity (hardware) that an organization can provision

to host some or all of its Power BI content (datasets, reports, scorecards, and dashboards). As an

alternative to the free clusters of capacity provided by Microsoft and shared by many organizations,

Premium capacities are isolated to a specific organization and thus are not impacted by the use

of Power BI by other organizations.

As flexible platform and software as a service (SaaS) architectures become the norm, organizations

increasingly value the ability to focus their efforts on building the right solutions for their

stakeholders with the appropriate amount of resources and with minimal to no infrastructure

maintenance. Power BI Premium capacity aligns well with these new expectations as it enables

an organization to provision and deploy enterprise-scale resources it requires in seconds and

avoids the need to configure or maintain the underlying hardware

With Power BI Premium, organizations can utilize their provisioned capacity as needed and are not

constrained by the limits imposed on shared (free) capacity, such as a max of 1 GB dataset sizes and

eight (8) refreshes per day. Additionally, as a cloud service managed by Microsoft, organizations

have great flexibility to scale, allocate, and manage Premium resources according to their preferred

allocation methodology and changing requirements.

The top benefit of Power BI Premium is the ability to provide read-only access to Power BI Free

users and thus cost-effectively scale Power BI deployments based on workloads rather than

individual user accounts. This is particularly essential for large organizations with thousands

of users, the majority of which only need the ability to infrequently view and optionally interact

with content. Thus, an IT organization can assign a Power BI Free license to all users and decide

which relatively small group of users should be assigned Power BI Pro licenses for developing

and publishing content.

When Power BI content is hosted in a Premium capacity, the users consuming content such as via

Power BI apps can view and interact with the content, such as making filter selections on a report

or viewing a mobile-optimized dashboard on Power BI mobile applications without requiring a

paid license. Thus, Power BI Premium enables organizations to limit the assignment of Power BI

Pro users to those who create and distribute content.

Chapter 15 625

Additionally, Power BI Premium capacity can be used to deliver Power BI content to users in

applications and environments outside of the Power BI service. For example, Premium capacity

can be used to embed Power BI visuals in custom applications, in other SaaS applications such

as SharePoint Online, and to license Power BI Report Server (PBRS). Details regarding PBRS and

alternative content distribution methods are included in Chapter 12, Deploying Paginated Reports,

and Chapter 13, Creating Power BI Apps and Content Distribution, respectively.

The Premium capacity-based licensing model, which currently starts at $4,995 per month for a

P1 SKU, implies the following three fundamental questions:

1. How much Premium capacity should be provisioned?

2. How should provisioned capacity be allocated?

3. What can be done to minimize capacity utilization and thus resource costs?

Guidance and consideration of these questions are included in the following sections.

Premium Embedded (EM) SKUs, which are exclusive to embedding Power BI content in

applications or services such as SharePoint Online, have a lower starting price point and fewer

resources. EM SKUs were discussed in the Embedding section of Chapter 13, Creating Power BI Apps

and Content Distribution. As most organizations will leverage the Power BI service and mobile apps

for large-scale deployments, Power BI Premium P SKUs are the focus of this chapter.

Power BI Premium capabilities
Power BI Premium provides many additional capabilities beyond the ability to distribute content

to read-only Power BI Free users. For example, Premium capacity or Premium Per User (PPU)

licensing would be required to migrate SSRS, Cognos, or other similar types of reports to paginated

reports in the Power BI service. Likewise, the limits of 1 GB of in-memory dataset size and only

8 refreshes per day may not be sufficient for many scenarios. Power BI Premium unlocks these

resource limitations and exposes many other features, including artificial intelligence, and a rich

suite of tool support via the XMLA endpoint.

Table 15.1 identifies additional features of Premium capacities as well as Premium Per User (PPU)

licenses:

Feature License Type

1 Enable Power BI users to view content without a license Premium

2 Licensing for Power BI Report Server (PBRS) Premium

3 Multi-geo deployment Premium

Building Enterprise BI with Power BI Premium626

4 Bring your own key (BYOK) Premium

5 Autoscale add-on Premium

6 Increased model size limit of 100 GB (PPU) and 400 GB (Premium) Premium and PPU

7 Paginated reports in the Power BI service Premium and PPU

8 Advanced AI (AutoML and Azure Cognitive Services) Premium and PPU

9 XMLA endpoint (read/write) Premium and PPU

10 Enhanced dataflow functionality (enhanced compute engine,

DirectQuery, linked, and computed entities)

Premium and PPU

11 Application life cycle management (pipelines) Premium and PPU

12 100 TB maximum storage Premium and PPU

13 Maximum scheduled refreshes of 48 times per day (note: refreshes

can be more frequent using the API endpoint)

Premium and PPU

14 Backup and restore datasets Premium and PPU

Table 15.1: Power BI Premium features

Some of the capabilities identified in this table enable completely new scenarios for projects

involving Power BI datasets created with Power BI Desktop. For example, up to 400 GB datasets

can be hosted in Premium capacity. Likewise, a dataset can be configured to refresh every 30

minutes in Premium capacity.

The integration of advanced artificial intelligence enables organizations to apply machine

learning and other cognitive services models to their datasets, enabling predictive capabilities for

categorization and regression as well as sentiment analysis, text analytics, and vision capabilities.

The ability to publish SQL Server Reporting Services (SSRS) reports, also referred to as paginated

reports (RDL reports), to the Power BI service is especially valuable for organizations with

significant SSRS investments. Without this capability, these organizations were previously

required to deploy the Power BI Report Server (or an SSRS server), as described in Chapter 12,

Deploying Paginated Reports.

Additionally, connectivity parity with Analysis Services, as provided by the XMLA endpoint, allows

BI developers to utilize rich and familiar model development and management tools, including

SQL Server Management Studio (SSMS), Tabular Editor, ALM Toolkit, DAX Studio, and Visual

Studio, as they would with Analysis Services models. Additionally, the standard XMLA protocol

allows for other popular BI reporting tools such as Tableau to leverage a Power BI dataset as a

data source.

Chapter 15 627

The dataflow capabilities enabled by the enhanced compute engine allow the use of DirectQuery

in dataflows as well as incremental refreshes. The enhanced compute engine also drastically

improves data refresh speeds when performing costly data transformation operations such as joins,

distinct rows, and grouping. Finally, linked and computed entities enable the reuse of dataflows

within other dataflows as well as the pre-aggregation of data into new tables, respectively.

To support the largest Power BI deployments, the multi-geo feature of Power BI Premium allows

Premium capacities to be assigned to different regions, allowing datasets and reports to be located

closer to users in different geographies and thus achieve a better overall performance.

Note that BYOK allows organizations to use their own encryption keys, making it easier to meet

compliance requirements and exercise more control over their data assets, and that the 100 TB

storage limit for Premium capacities is a per-capacity node.

Finally, the autoscale feature allows additional processing power to be added temporarily

depending upon the load within the Premium capacity. Autoscaling allows Premium capacities

to remain performant during peak load times.

Let’s now take a closer look at Power BI Premium capacities.

Premium capacity nodes
A Premium capacity node can be thought of as a fully managed server in the Azure cloud that runs

the Power BI service, including all frontend and backend operations such as loading a report and

refreshing a dataset, respectively. The capacity node is dedicated and isolated to the organization

that provisioned the capacity, and the same user experience and functionality are delivered as

the shared (free) capacity provided by the Power BI Service.

Each capacity node has a set of processing and memory resources (v-cores and RAM), bandwidth

limits, and a cost that aligns with these resources. For example, a P1 capacity node includes 8

v-cores and 25 GB of RAM at a cost of $4,995 per month, while a P2 capacity includes 16 v-cores

and 50 GB of RAM at a cost of $9,995 per month.

When workspaces containing Power BI content (datasets, reports, and dashboards) are assigned

to Premium capacity nodes, the resources of the given capacity node are used to execute Power

BI activities associated with this content, such as query processing and data refresh operations.

Depending upon how Power BI datasets and results are architected, different resources are more

important than others.

Building Enterprise BI with Power BI Premium628

For example, if Power BI reports utilize a DirectQuery dataset or a live connection to an Analysis

Services model, then the amount of RAM provided per capacity is much less important than the

limits on the number of connections and the max page renders at peak times. In such deployments,

the resources provisioned for the data source system (CPU cores, clock speed, and RAM), as well

as the latency and bandwidth of the connection between the source system and the data center

region of the Power BI tenant, would largely drive query performance.

The following table identifies the resources associated with the eight EM and P Premium capacity

nodes currently available as well as their equivalent A capacities:

Capacity

SKUs

Total

v-cores

Backend

v-cores

Frontend

v-cores

RAM

(GB)

DirectQuery/

Live

connections

(per second)

Max

memory

per query

(GB)

Model

refresh

parallelism

EM1/A1 1 0.5 0.5 3 3.75 1 5

EM2/A2 2 1 1 5 7.5 2 10

EM3/A3 4 2 2 10 15 2 20

P1/A4 8 4 4 25 30 6 40

P2/A5 16 8 8 50 60 6 80

P3/A6 32 16 16 100 120 10 160

P4/A7 64 32 32 200 240 10 320

P5/A8 128 64 64 400 480 10 640

Table 15.2: Premium capacity nodes

The differences between P, EM, and A SKUs were discussed in the Embedding section of Chapter

13, Creating Power BI Apps and Content Distribution. As mentioned there, EM SKUs are exclusive to

embedding Power BI content in external applications (custom, Teams, SharePoint) and do not

support viewing the content in the Power BI service or Power BI mobile apps without a license.

Given their more limited workloads, EM SKUs have significantly fewer resources and cost less

to provision. Premium P SKUs (P1, P2, P3, P4, P5), however, support both embedding content in

applications and the usage of the Power BI Service. As shown in Table 15.2, the largest Premium

capacity node (P5) includes 128 v-cores and 400 GB of RAM.

Chapter 15 629

The dataset size limitation for Power BI Premium of 400 GB reflects the maximum amount of

memory available within Premium capacity nodes. In other words, dataset sizes are limited based

on the maximum amount of memory available within the capacity. For example, a P2 Premium

capacity could support several 45 GB datasets but would not support a 55 GB dataset given its

50 GB limit.

This per-dataset limit associated with Premium Capacity Generation 2 represents a dramatic

leap in scalability relative to the per-capacity limits of the first generation of Premium capacity.

Keep in mind that some memory must be reserved for dataset refreshes and queries, and thus the

maximum permitted dataset size may be smaller than the total amount of memory for the capacity.

Some of the limits in Table 15.2 only apply to certain dataset modes. For example, the DirectQuery/

Live connections (per second), and Max memory per query (GB) are applicable to DirectQuery/

Live mode connections, while Model refresh parallelism applies to import mode datasets. Model

refresh parallelism refers to the number of objects (tables) that can be refreshed at the same time.

We now further explain additional columns in Table 15.2, specifically, the differences between

frontend and backend resources.

Frontend versus backend resources
It’s important to understand the composition of frontend and backend resources in relation to

Power BI workloads. For example, although a P2 capacity provides 16 total v-cores, only 8 backend

cores are dedicated to processing queries, refreshing datasets, and the server-side rendering of

reports.

Additionally, only the backend of a Premium capacity node, such as the 50 GB of RAM for a P2

capacity, is exclusive to the provisioning organization. If Power BI is only being used to create

reports and dashboards against DirectQuery or Live connection sources, then these backend

resources are less important and the connection limit (60 per second for a P2 capacity) would

be the most relevant resource to understand and monitor.

The frontend cores (8 for a P2) are shared with other organizations in a pool of servers responsible

for the web service, the management of reports and dashboards, uploads/downloads, and the

user experience in navigating the Power BI service. Organizations that utilize Power BI datasets

in the default import (in-memory) mode will want to ensure that sufficient RAM and backend

cores are available to support both the data refresh process and the query workloads.

Building Enterprise BI with Power BI Premium630

Figure 15.1 illustrates the distribution of frontend and backend resources for a Premium capacity

node (P2):

Figure 15.1: Power BI Premium capacity node

As shown in Figure 15.1, the backend of a capacity node can be thought of as a dedicated server or

virtual machine with a fixed amount of CPU and RAM. It’s the backend server that is responsible

for the most resource-intensive or heavy lifting operations and thus should always be considered

in relation to the resource needs of import mode datasets assigned to the given capacity.

In Power BI Premium Generation 1 (Gen1), the backend v-cores were reserved physical computing

nodes dedicated to a particular Power BI Premium capacity. However, in Power BI Generation

2 (Gen2), these backend resources are physical nodes within regional clusters that service all

Premium capacities within that region. This new architecture has significant advantages in terms

of performance and monitoring.

For example, because the limitations of different capacity SKUs listed in Table 15.2 are no longer

based on physical constraints, as they were in Gen1, but rather a set of rules that the Power BI

service enforces, administrators no longer need to monitor their capacities as closely as before.

Instead of monitoring capacities to observe whether the capacity was approaching the limits of its

resources, administrators are instead simply notified when capacity limits have been reached, thus

significantly reducing the overhead required by administrators to maintain optimal performance.

A factor of 2.5X (times) is generally used to size the RAM requirements of in-memory Power BI

datasets. For example, a 10 GB Power BI dataset (.PBIX), would require 25 GB of RAM (10 * 2.5 =

25). This estimate is based on 10 GB to store the dataset in-memory, another 10 GB for a copy of

the dataset that is created during full refresh/processing operations, and an extra 5 GB to support

temporary memory structures that can be required to resolve user queries.

Chapter 15 631

Note that this example is exclusive to import mode datasets hosted in the Power BI Premium

capacity (the backend resources). A separate architecture and considerations for capacity nodes

apply when query requests are routed to Analysis Services models via Live connection or a

DirectQuery data source such as Teradata or SAP HANA.

From a Premium capacity perspective, in these scenarios, the BI team would need to determine via

load testing and the usage metrics described in the Monitoring Premium capacities section later in

this chapter whether the query throughput limit (DirectQuery/ Live connections per second from

Table 15.2) to these sources is sufficient. If this throughput level is sufficient, yet performance is still

unacceptable, several other components of the overall solution could represent the performance

bottleneck and could be evaluated separately.

The other components or factors impacting performance include the design of the data model, the

efficiency or complexity of DAX measures, the design of the data source, the design of Power BI

reports (for example, quantity and type of visuals), the resources and performance of the gateway

server(s) if applicable, the network connection between the Power BI service and the data source,

and the level of user interactivity with reports.

Techniques and practices to optimize data models and the visualization layer in Power BI are

provided in the Data model optimizations and Report and visualization optimizations sections later

in this chapter, respectively.

With the basics of Premium capacities understood, we next turn our attention to answering one

of the three primary questions regarding Premium capacities introduced at the beginning of this

chapter: how much Premium capacity should be provisioned?

Premium capacity estimations
The volume of factors involved in Premium capacity utilization makes it difficult to forecast the

amount of Premium capacity (and thus cost) required. This complexity is particularly acute for

large deployments with diverse use cases to support.

Additionally, for organizations relatively new to Power BI, the level and growth of user adoption,

as well as the requirements for future projects, can be unclear. In the past, Microsoft provided

an online tool to estimate which capacities would be needed for estimated workloads. However,

that online tool no longer exists. Instead, use the guidance in this section to estimate Premium

capacity requirements and then use the Monitoring Premium capacities section later in this chapter

to determine whether additional resources are necessary.

Building Enterprise BI with Power BI Premium632

Recall from the previous section that the important capacity limits from Table 15.2 vary per dataset

storage mode and usage. Available RAM is highly important to import mode datasets while

somewhat less important for DirectQuery/Live datasets. Also, consider that resource requirements

are not simply defined based on the number of concurrent users.

For example, 1,000 users viewing a single report with one visual is vastly different from 1,000

users viewing 100 reports, each with 10 different visuals. Add to this the variability of resource

requirements based upon the complexity and efficiency of data transformation operations and/

or DAX calculations as well as RLS rules and it is easy to understand the complexity of providing

clear estimates in all circumstances.

For import models, it is important to realize that these models must be fully loaded into available

memory in order to facilitate refreshing and querying. In addition to the size of these data models,

it is important to consider how many active, heavily used, data models will exist within the

capacity. Enough memory should be available to allow all such datasets to be loaded into memory

at the same time in order to maximize performance.

Referencing the 2.5X factor mentioned in the last section, thus, if two 10 GB datasets are heavily

used by the organization, then this would require a total of 50 GB or a P2 node. Alternatively,

organizations may instead choose to deploy two P1 nodes and dedicate a dataset to each node. By

using multiple capacities, organizations can isolate workloads and thereby guarantee resources

for priority datasets and reports.

Import mode datasets are also constrained by the model refresh parallelism (how many models can

be refreshed simultaneously), but in Gen2 are no longer constrained by the number of concurrent

refreshes. In Gen1, the maximum number of concurrent refreshes was 1.5X the number of backend

v-cores, rounded up.

For DirectQuery and Live connection datasets, the DirectQuery/Live connections per second and

maximum memory per query are two primary constraints, but also consider that these datasets

can require significant v-core resources and even memory when evaluating complex RLS rules

and DAX measure calculations.

Finally, dataflows and paginated reports.

Given the complexity of estimating required capacity sizes, a fiscally conservative approach

would be to develop initial assets as part of shared capacity. Subsequently, the organization could

purchase equivalent A SKUs for test purposes, which is why the A SKUs were included in Table 15.2.

Chapter 15 633

A SKUs are charged on an hourly basis and require no minimum commitment. These A SKUs are

thus an inexpensive way to load test workloads. Load testing can be executed using a PowerShell

script or, for more complex scenarios, performed within Visual Studio. The Power BI Dedicated

Capacity Load Assessment Tool can be downloaded from the following link: https://bit.

ly/3tG66aR.

Power BI Embedded A SKU’s can be purchased within the Azure portal, while Power BI EM and P

SKUs are purchased within the Microsoft 365 Admin Center under the Billing section.

With an approach to capacity estimation provided, we next turn our attention to capacity

administration and the second of the three primary questions regarding Premium capacities

introduced at the beginning of this chapter: how should provisioned capacity be allocated?

Premium capacity administration and allocation
One of the most important responsibilities of a Power BI administrator is the management of

Power BI Premium capacities. From a Power BI administration perspective, Power BI Premium

can be thought of as an organization’s dedicated hardware resources to support the use of the

Power BI service.

Not all of an organization’s content needs to be hosted in Premium capacity. However, these

resources enable the distribution of content to read-only Power BI Free users and they provide

more consistent performance, among other scalability and management benefits.

Microsoft 365 global administrators and users assigned to the Power BI service administrator role

automatically have the right to administer Premium capacities in the Power BI admin portal. An

administrator’s role in relation to Premium capacity is to ensure that the provisioned resources

are utilized according to the organization’s policies, and that sufficient resources are available

to support the existing workload.

Power BI Premium administrators should be familiar with the following list of responsibilities:

1. Create a new capacity with the available (purchased) v-cores

An organization may choose to dedicate a Premium capacity to a specific project or

application. In other scenarios, one capacity could be dedicated to self-service projects

while another capacity could be used by corporate BI projects.

2. Grant capacity assignment permissions to users or security groups of users

https://bit.ly/3tG66aR
https://bit.ly/3tG66aR

Building Enterprise BI with Power BI Premium634

This enables Power BI Pro users who are also administrators of workspaces to assign

their workspaces to Premium capacity. This setting can also be disabled or enabled for

the entire organization.

3. Assign workspaces to Premium capacity, or remove a workspace from Premium

capacity, in the Power BI admin portal

This is an alternative and complementary approach to capacity assignment permissions.

Power BI service administrators can manage existing capacities and assign workspaces

in bulk. These bulk assignments can be by user, by a security group of users, or for the

entire organization.

4. Monitor the usage metrics of Premium capacities to ensure sufficient resources are

available

An app is available for monitoring Premium capacities. More information about this app

can be found at the following link: https://bit.ly/3EmzbPu.

5. Change the size of an existing capacity to a larger (scale up) or smaller (scale down)

capacity node

As more users and content utilize a specific capacity, it may be necessary to scale up or

allocate certain workspaces to a different Premium capacity or shared (free) capacity.

6. Assign a user or group of users as capacity administrators for a capacity

This can be appropriate to support large, enterprise deployments with multiple capacities

and many app workspaces.

Given the importance of performance to any BI project, as well as the cost of Power BI Premium

capacities, BI/IT teams need to plan for an efficient, manageable allocation of Premium capacity.

This allocation plan and any project-specific decisions need to be communicated to the Premium

administrator(s) for implementation. The following sections describe the responsibilities

identified here and related considerations in greater detail.

Capacity allocation
Power BI Premium provides organizations with significant flexibility for both allocating their

resources to Premium capacities, as well as assigning Power BI content to those capacities.

https://bit.ly/3EmzbPu

Chapter 15 635

Although it’s possible to broadly assign all workspaces (and thus all content) of an organization

to a single Premium capacity, most organizations will want to efficiently allocate and manage

these resources.

For example, certain Power BI reports and dashboards that are utilized by executives or which

contribute to important business processes might be identified and prioritized for Premium

capacity. In an initial deployment of a Premium capacity, a BI/IT team may exclusively assign the

workspaces associated with content considered mission-critical to this capacity. This capacity

may remain isolated to the specific workload(s) or, based on testing and monitoring, the BI team

may determine that sufficient resources are available to support additional workspaces and their

associated resource requirements.

Similar to provisioning a Premium capacity exclusive to high-value content, a Premium capacity

may be provisioned due to the unique requirements of a particular solution. As one example, a new

Power BI dataset may be developed that represents a data source or business process not currently

supported in the data warehouse. In this scenario, a large import mode Power BI dataset, perhaps

initially developed by the business team, would serve as the source for reports and dashboards

that require distribution to many Power BI Free users or even the entire organization. Given these

characteristics, a Premium capacity node could be provisioned and dedicated to the app workspace

hosting this dataset and its visualizations so that no other solution could impact its performance.

A single Premium capacity can be provisioned and created for an organization, or, for larger and

more diverse deployments, multiple Premium capacities can be created with different sizes (CPU,

memory, bandwidth) appropriate for their specific workloads.

In terms of allocating resources to Premium capacities, an organization is only limited by the

number of virtual cores (v-cores) that have been purchased. For example, an organization could

initially purchase a P2 capacity, which includes 16 v-cores. Once purchased, a P2 capacity could be

created in the Capacity settings page of the Admin portal that utilizes all of these cores. However,

at some later date, this capacity could be changed to a P1 capacity that only uses 8 v-cores. This

would allow the organization to create a second P1 capacity given the 8 remaining v-cores available.

Alternatively, a second P2 capacity could be purchased, providing another 16 v-cores. With 32

total v-cores purchased by the organization, an existing P2 capacity could be increased to a P3

capacity (32 v-cores).

Building Enterprise BI with Power BI Premium636

Figure 15.2 illustrates this example of capacity allocation:

Figure 15.2: Power BI Premium capacity allocation

Regardless of the Premium SKU (P1, P2, P3, P4, or P5), the combination of SKUs purchased in the
Microsoft 365 admin center, or the number of specific SKUs (instances), an organization can use
the total number of v-cores purchased as it wishes. For example, purchasing a P3 SKU provides
32 v-cores, the same as purchasing four instances of a P1 SKU (8 X 4 = 32).

For organizations getting started with Power BI and that are comfortable with actively managing
their Premium capacities, individual instances of the P1 SKU with no annual commitment (month-
to-month) could make sense. For example, a single P1 instance could be purchased to start and
then, if it’s determined that more resources are needed, a second P1 instance could be purchased,
making 16 cores available for either a P2 capacity or two P1 capacities.

In this diagram, an organization has chosen to isolate the sales and purchasing workspaces to their
own P1 capacities with eight v-cores each. This isolation ensures that the resources required for
one workspace, such as the user’s connection to the Sales app, do not impact the other workspace
(Purchasing). Additionally, the Finance and Marketing workspaces have been left in shared (free)
capacity for now but could later be assigned to Capacity A or Capacity B if sufficient resources
are available.

Whether Power BI workspaces are allocated to Premium capacity or shared capacity is transparent
to end users. For example, the same login and content navigation experience in the Power BI service
and Power BI mobile apps applies to both Premium and shared capacity. Therefore, organizations
can selectively allocate certain workspaces, such as production workspaces accessed by many

Power BI Free users, to Premium capacity while allowing other small or team workspaces to

remain in the shared capacity.

Chapter 15 637

The following section describes a capacity planning method.

Corporate and Self-Service BI capacity
As described in the Data governance for Power BI section of Chapter 14, Administering Power BI for an

Organization, certain projects will likely be wholly owned by the BI/IT team, including the report

and visualization layer. Other projects, however, may be owned by business units or teams but

still require or benefit from IT-provided resources, such as the on-premises data gateway and

Premium capacity.

The BI team can manage a continuous life cycle over both project types (Corporate BI, Self-Service

BI) by validating use cases or requirements for Premium capacity. Additionally, the migration of

Power BI content across distinct Premium capacities could become part of a standard migration

process from a self-service solution to a corporate BI-owned solution.

The provisioning and allocation of Power BI Premium capacity can further reflect an organization’s

support for both Corporate and Self-Service BI solutions. Typically, the Power BI content created

and managed by IT is considered mission-critical to the organization or is accessed by a high

volume of users. Self-service BI solutions, however, tend to utilize smaller datasets and usually

need to be accessible to a smaller group of users.

In the following example shown in Figure 15.3, the allocation includes two Premium capacities, a

P3, and a P2, dedicated to Corporate BI Capacity and Self-Service BI Capacity content, respectively:

Figure 15.3: Power BI Premium Capacity allocation: Corporate and Self-Service BI

Building Enterprise BI with Power BI Premium638

As shown in Figure 15.3, the Sales and Finance workspaces have been assigned to a P3 capacity

dedicated to corporate BI solutions.

The Human Resources and Purchasing workspaces, however, have been assigned to a P2 Premium

capacity dedicated to self-service BI projects. For example, certain Power BI Pro users in these

departments have developed datasets and reports that have proven to be valuable to several

stakeholders. The assignment of these workspaces to Premium capacity enables these users

to make this content accessible to a wider audience, such as the 20 Power BI Free users in the

Purchasing department.

Remember that not all workspaces need to consume Premium capacity resources. A team of Power

BI Pro users may collaborate within a workspace and still be effective with the content hosted in

shared capacity. Premium capacity is only needed in scenarios requiring broad distribution to

read-only Power BI Free users or when the additional capabilities (for example, large datasets)

identified in the Power BI Premium capabilities section earlier in this chapter are required.

In the event that one of the self-service solutions needs to be migrated to the corporate BI team,

the BI team could re-assign the workspace to the existing P3 capacity. Alternatively, to avoid

consuming any additional resources of the existing P3 capacity and potentially impacting these

workloads, a new corporate BI capacity could be created for the workspace or the capacity

expanded to a P4.

BI teams consistently need to evaluate the trade-offs involved with isolating projects/solutions

to specific Premium capacities. Assigning a single workspace or multiple related workspaces to

a dedicated capacity ensures that no other project or activity impacts performances. However,

many dedicated Premium capacities may become onerous to manage and could be an inefficient

use of resources if the Power BI workload doesn’t fully utilize the resources.

Ultimately, teams will need to monitor capacity resource utilization and either re-allocate and

re-assign capacities and workspaces, respectively, or provision additional Premium resources

(v-cores) and scale up existing capacities. Scaling up and scaling out activities are discussed in

the next section, which covers creating, sizing, and monitoring capacities.

Chapter 15 639

Create, size, and monitor capacities
Microsoft 365 global admins and Power BI service administrators can view, create, and manage

all Power BI Premium capacities via the Admin portal, as discussed in Chapter 14, Administering

Power BI for an Organization.

In Figure 15.4, the Capacity settings page from the Admin portal is shown:

Figure 15.4: Admin portal’s Capacity settings page

As shown in Figure 5.4, 16 v-cores have been provisioned for the organization and a single P1

capacity has been created, which consumes half of these cores.

Building Enterprise BI with Power BI Premium640

A Set up new capacity button is located above the list of Premium capacities that have been

configured. Clicking the Set up new capacity button launches a setup window, as shown in

Figure 15.5:

Figure 15.5: Set up new Premium capacity

Chapter 15 641

In this example, eight v-cores are available for the new capacity, and thus a P1 capacity requiring

eight v-cores can be created. The capacity is named and the capacity administrator(s) for the

new capacity are defined.

The Capacity size dropdown exposes all capacity sizes, but sizes requiring more v-cores than the

volume of v-cores currently available cannot be selected. Once these properties are configured,

click the Create button to complete the process.

Note that the Capacity size and Capacity admins properties are required to set up the new capacity.

Each capacity must have at least one capacity admin, who has full administrative rights to the

given capacity. These users do not have to be a Microsoft 365 global admin or a Power BI service

administrator. Users assigned as capacity administrators have the same administrative rights to

the given capacity as Power BI service administrators, such as the ability to change capacity sizes,

assigning workspaces to the capacity as well as user assignment permissions.

For example, a Power BI Pro user could be assigned as a capacity admin and could access this

capacity via the Admin portal just like a Power BI admin. However, only the capacities for which

the user is a capacity admin would appear on the Capacity settings page. Additionally, other

pages of the Admin portal, such as Tenant settings, would not be visible or accessible to the

capacity admin.

As mentioned, capacity admins are capable of changing capacity sizes and settings, so let’s look

at those topics next.

Changing capacity size
At some point after a capacity has been created, it may be necessary to change the size of the

capacity. For example, given the increased adoption of Power BI, the P1 SKU may be insufficient

to support the current workload, and thus an additional eight v-cores could be purchased with

the intent to scale up the existing capacity to a P2 capacity size (16 v-cores). Alternatively, an

administrator may wish to view the recent utilization of a Premium capacity to help determine

whether additional app workspaces can be assigned to the capacity.

Building Enterprise BI with Power BI Premium642

To change a capacity size and to view the utilization for a capacity, click the name of the capacity

from the Capacity settings page shown in Figure 15.4. In Figure 15.6, a capacity was selected and

then the Change size button clicked in order to expose the Change size pane:

Figure 15.6: Changing the capacity size

The Change size pane contains a dropdown used for setting the capacity size. In this scenario,

eight additional v-cores are available, meaning that the P1 capacity could be changed to a P2

capacity in just a few clicks.

Alternatively, instead of changing sizes manually, as shown in Figure 15.6, an option exists to

autoscale Premium capacities. Autoscaling is an optional feature with an additional cost that

allows capacities to automatically scale up by adding additional v-cores once certain thresholds

are exceeded. Using autoscale can help ensure optimal performance during peak hours. Additional

information about autoscale can be found at the following link: https://bit.ly/3J2bb4S.

With the creation and sizing of capacities understood, we next look at monitoring Premium

capacities.

Monitoring Premium capacities
As mentioned previously, Gen2 of Power BI Premium capacities has reduced the need to constantly

monitor capacity nodes since the performance of backend resources are no longer physically

constrained.

https://bit.ly/3J2bb4S

Chapter 15 643

That said, it is still important to monitor capacities in order to identify problematic queries or

datasets and reports receiving increased traffic.

An app is available for monitoring all capacities to which a user is a capacity admin. This app is

available in AppSource as the Power BI Premium Capacity Utilization and Metrics app, as shown

in Figure 15.7:

Figure 15.7: Changing capacity size

This app allows capacity admins to understand the usage of datasets, dataflows, paginated reports,

and other content within Power BI Premium Gen2 capacities, as well as important metrics such as

memory utilization and v-core processing time. A link to the app is included under the Capacity

usage report section of the settings for a capacity. Additional information about this app is

available at the following link: https://bit.ly/377d0Qu.

https://bit.ly/377d0Qu

Building Enterprise BI with Power BI Premium644

In addition to the monitoring of utilization and metrics, Premium capacities also include the

ability to send notifications when certain important metrics have been reached or exceeded. This

is done in the notifications section after clicking on a specific capacity from the Capacity settings

page of the Admin portal, as shown in Figure 15.8:

Figure 15.8: Notification settings

As shown in Figure 15.8, instead of the constant need to monitor capacities typical of Gen1, Gen2

allows for less rigorous monitoring via notifications. Capacity admins can choose thresholds for

notifications as well as for important events such as autoscaling.

Let’s next take a look at assigning workspaces to capacities.

Workspace assignment
Just as organizations have the flexibility to allocate their purchased v-cores across one or multiple

Premium capacities, there are also multiple options for assigning workspaces to Premium capacity.

Chapter 15 645

To bulk assign multiple workspaces to a capacity within the Admin portal, navigate to a specific

capacity by clicking on the capacity name from the Capacity settings page of the Admin portal,

expand the Workspaces assigned to this capacity section, and then click the Assign workspaces

link, as shown in Figure 15.9:

Figure 15.9: Assigning workspaces

Clicking this link exposes the Assign workspaces pane as shown in Figure 15.10:

Figure 15.10: Assign workspaces pane

As shown in Figure 15.10, all workspaces for the entire organization can be bulk assigned to the

capacity. In addition, specific workspaces or all workspaces created by specific users can also be

assigned. If applied to specific users, any existing workspaces assigned to those users, including

workspaces already in a separate capacity, will be moved to the capacity assigned.

Building Enterprise BI with Power BI Premium646

As an alternative or complementary approach to assigning workspaces in the Admin portal,

administrators of a capacity can also grant users or groups of users permission to assign workspaces

to Premium capacity. This is done in the Contributor permissions section for a capacity. In Figure

15.11, a user (gdeckler) is granted contributor permissions to a Premium capacity:

Figure 15.11: Contributor permissions

Users granted this permission will also require administrative rights to any workspace they wish

to assign to Premium capacity. Workspace assignment is performed by workspace administrators

via the Premium tab of the Setting pane for a workspace, as shown in Figure 15.12:

Figure 15.12: Assigning to Premium per capacity

Chapter 15 647

The differences between workspace administrators and members were described in the Workspace

roles and rights section of Chapter 10, Managing Workspaces and Content.

This completes our coverage of the administration and allocation tasks for Premium capacities.

We now turn our attention to the final primary question regarding Premium capacities introduced

at the beginning of this chapter: what can be done to minimize capacity utilization and, thus,

resource costs?

Premium capacity resource optimization
Given the cost of Premium capacity, BI teams will want to follow practices to ensure that these

resources are actually required and not being used inefficiently. For example, with large import

mode datasets, a simple design change such as the removal of unused columns from a fact table

can significantly reduce the size of the dataset and, hence, the amount of memory needed.

By following a series of recommended practices in terms of both modeling and report design, fewer

Premium capacity resources will be required to deliver the same query performance and scale.

With small-scale self-service BI datasets and reports, performance tuning and optimization are

usually not necessary. Nonetheless, as these models and reports can later take on greater scale

and importance, a basic review of the solution can be applied before the content is assigned to

Premium capacity.

The following two sections identify several of the top data modeling and report design practices

to efficiently utilize Premium capacity resources.

Data model optimizations
For many data models, particularly those that were developed as part of pilot projects or by

business users, a number of modifications can be implemented to reduce resource requirements

or improve query performance. Therefore, prior to concluding that a certain amount of Premium

capacity is required, data models can be evaluated against a number of standard design practices

and optimization techniques such as the following:

1. Avoid duplicate or near-duplicate data models

Design and maintain a consolidated, standardized dataset (data model) of fact and

dimension tables that can support many reports. Multiple datasets that represent near

duplicates of the same source data and logic will require their own resources for refreshes

and will also be difficult to manage and maintain version control.

Building Enterprise BI with Power BI Premium648

2. Remove tables and columns that aren’t needed by the model

For import mode models, columns with unique values (cardinality) will be the most expensive

to store and scan at query time. The Fact table columns section of Chapter 4, Designing Import,

DirectQuery, and Composite Data Models provides examples of avoiding derived columns that,

for import mode models, can be efficiently implemented via DAX measures.

3. Reduce the precision and cardinality of columns when possible

If four digits to the right of the decimal place are sufficient precision, revise a column’s data

type from a Decimal number to a Fixed decimal number (19, 4). Apply rounding if even

less precision is required. Split columns containing multiple values, such as a datetime

column, into separate columns (date and time).

4. Limit or avoid high cardinality relationships, such as dimension tables with over 1.5

million rows

Consider splitting very large dimension tables into two tables and defining relationships

between these tables and the fact table. The less granular table (such as Product

Subcategory grain) could support most reports while the more granular table (such as

Product) could be used only when this granularity is required.

5. Avoid expensive DAX measures

Avoid measures that require a high volume of context transitions (from row to filter

context) or that cause an unnecessary number of evaluations. For example, only define

DAX variables that will always be required for the expression and that can be used to

replace other expressions. Additionally, rather than embedding complex logic in measures,

particularly logic that involves materializing large temporary tables or iterating over large

tables, look for opportunities to revise the model such as with new attributes to keep the

DAX measures simple and efficient.

6. Use whole number (integer) data types instead of text data types whenever possible

7. If the data model uses a DirectQuery data source, optimize this source

For example, implement indexes or columnar technologies available, such as the Clustered

Columnstore Index for SQL Server. Additionally, ensure that the source database supports

referential integrity and that the DirectQuery model assumes referential integrity in its

defined relationships. This will result in inner join queries to the source. Additionally,

consider whether an in-memory or even a DirectQuery aggregation table could be used

to improve the performance of common or high priority report queries.

Chapter 15 649

8. Avoid or limit DISTINCTCOUNT() measures against high cardinality columns

For example, create the DISTINCTCOUNT() measure expression against the natural key or

business key column identifying the dimension member (such as Customer ABC), rather

than the columns used in the fact-to-dimension relationship. With slowly changing

dimension processes, the relationship columns could store many more unique values per

dimension member and thus reduce performance. Additionally, if a slight deviation from

the exact result is tolerable, the APPROXIMATEDISTINCTCOUNT() function can be considered

a more performant alternative to DISTINCTCOUNT().

9. Avoid the use of calculated DAX columns on fact tables

Create these columns in the source system or in the queries used to load the model to allow

for better data compression. For DirectQuery models, avoid the use of DAX calculated

columns for all tables.

In addition to dataset optimizations, it is also important to consider report and visualization

optimizations.

Report and visualization optimizations
A well-designed analytical model with ample resources can still struggle to produce adequate

performance due to an inefficient visualization layer. The following list of techniques can be

applied to Power BI reports and dashboards to reduce the query workload and avoid slower

resource-intensive queries:

1. Create dashboards on top of reports to leverage cached query results representing the

latest data refresh

Unlike dashboards, report queries are sent and executed on the fly when Power BI reports

are loaded. Multiple dashboards can be linked together as described in Chapter 9, Designing

Dashboards. If the dataset uses a DirectQuery or Live connection, take advantage of the

scheduled cache refresh, as described in the Dashboard cache refresh section of Chapter 11,

Managing the On-Premises Data Gateway.

2. Avoid report visuals that return large amounts of data such as tables with thousands

of rows and many columns

Report visuals that require scrolling or which represent a data extract format should be

filtered and summarized. Report visuals that return more data points than necessary to

address their business question can be modified to a lower granularity.

Building Enterprise BI with Power BI Premium650

For example, a dense scatter chart of individual products could be modified to use the

less granular product subcategories column.

3. Ensure that filters are being applied to reports so that only the required data is returned

Apply report-level filters to only return the time periods needed (such as current year

and last year). Use visual-level filters such as a top N filter, as described in the Visual-level

filtering section of Chapter 8, Creating and Formatting Visualizations.

4. Limit the volume of visuals used on a given report page

Optionally, remove the interactions between visuals (cross-highlighting) to further reduce

report queries.

5. Understand which DAX measures are less performant and only use these measures

when required

For example, only use expensive measures in card visuals or within highly filtered visuals

exposing only a few distinct numbers.

Following these best practices for reports will help optimize the use of Premium capacity resources.

In addition, the capacity settings themselves can be tuned in order to optimize resource workloads.

Workloads
Power BI Premium was originally exclusive to datasets but has been expanded to include three

additional workloads: Paginated Reports, AI, and Dataflows. Power BI administrators have the

option of configuring settings specific to each of these workloads. Workloads settings are available

for Premium capacities in the Workloads section after navigating to a specific capacity from the

Capacity settings page of the Admin portal. These settings are shown in Figure 15.13:

Chapter 15 651

Figure 15.13: Workloads settings

Configuring Premium capacity workload settings is an important tool for ensuring that Premium

capacity resources are being allocated to the highest priority workloads and to avoid or mitigate the

impact of inefficient or resource-intensive queries and artifacts on the overall Premium capacity.

Building Enterprise BI with Power BI Premium652

For example, setting threshold values for both the Query Memory Limit % and the Max Result

Row Set Count dataset settings can help avoid capacity resources being allocated to poorly

designed queries or ‘data extract’ style reports. Likewise, the Minimum refresh interval dataset

setting can be used to avoid report authors from configuring reports that would generate a high

and unnecessary volume of queries against a DirectQuery source system. Additional information

on Workloads can be found at the following link: https://bit.ly/379PEK3.

The three primary questions regarding Premiums capacities have now been covered. However, there

are additional secondary considerations for Premium capacities, such as life cycle management.

Life cycle management with Premium
In addition to the enhanced life cycle management capabilities of Power BI Premium described

in the Power BI deployment pipelines section of Chapter 10, Managing Workspaces and Content, the

write capabilities of the XMLA endpoint enable additional capabilities with regard to life cycle

management of datasets assigned to Premium capacities.

Specifically, given the write capabilities of the XMLA endpoint, the recommended tool for

deploying incremental changes to datasets becomes the ALM Toolkit from MAQ Software, which

is based on the BISM Normalizer by Christian Wade.

ALM Toolkit deployment
ALM Toolkit is a free, open source tool that enables the object-level comparison of source and

target datasets and the incremental deployment of changes such as new or revised DAX measures.

ALM Toolkit can be downloaded from http://alm-toolkit.com.

Once downloaded, simply run the .msi installer file to install. After installation, ALM Toolkit is

available from the External tools tab of Power BI Desktop, as shown in Figure 15.14:

Figure 15.14: ALM Toolkit as available through External Tools

https://bit.ly/379PEK3
http://alm-toolkit.com

Chapter 15 653

Open a Power BI Desktop file and then launch ALM Toolkit from the ribbon on the External

tools tab. Once opened, click the Compare button to display the Connections dialog shown in

Figure 15.15:

Figure 15.15: ALM Toolkit Connections dialog

Building Enterprise BI with Power BI Premium654

As shown in Figure 15.15, the local dataset open in Power BI Desktop serves as the Source and is

compared with a Target dataset in the Power BI service. Clicking the OK button compares the

Target with the Source in order to ascertain any differences between the data models.

As shown in Figure 15.16, a new measure, New Account Measure, has been added to the local data

model but does not exist in the Target dataset published to the Power BI service.

Figure 15.16: ALM Toolkit comparison of data models

Use the Select Actions dropdown shown in Figure 15.16 to select Create all objects Missing in

Target, as shown in Figure 15.17:

Figure 15.17: ALM Toolkit Select Actions dropdown

Chapter 15 655

Next, click the Validate Selection button and, once validated, click the OK button. Finally, click

the Update button to deploy the changes to the published dataset in the Power BI service.

In this example, changes made by a developer to a local copy of the Power BI Desktop (.pbix)

file were deployed to a workspace assigned to the Development stage of a Power BI Deployment

pipeline. As discussed in the Power BI deployment pipelines section of Chapter 10, Managing

Workspaces and Content, these changes could then be promoted to the workspace assigned to the

Test stage and finally, to the Production stage.

Using ALM Toolkit to deploy changes to Power BI datasets is particularly important when using

incremental refresh. Incremental refresh creates an additional partition within the dataset for

each incremental refresh cycle. In addition, because of this, datasets using incremental refresh

cannot be downloaded from the Power BI service.

Without the use of ALM Toolkit, if model changes are required, the local Power BI Desktop file

would need to be fully refreshed and then republished to the Power BI service, removing all

incremental refresh partitions and effectively “starting over” with regard to incremental refreshes.

For large, complex data models, this could be a costly and time-consuming exercise, especially

if only minor changes have been made.

Additionally, there’s often a scenario in which certain objects in the source dataset, such as query

parameters, need to remain different than the target dataset. ALM Toolkit makes it easy to exclude

certain differences and deploy only the changes required.

Documentation for ALM Toolkit can be found at the following link: https://bit.ly/3f95ODQ.

We next take a look at another life cycle scenario enabled by the XMLA endpoint.

Dataset management with SSMS
With the XMLA endpoint feature of Power BI Premium, it is possible to connect to datasets

published to the Power BI service from within SQL Server Management Studio (SSMS). To

accomplish this, follow these steps:

https://bit.ly/3f95ODQ

Building Enterprise BI with Power BI Premium656

1. First, open Settings for a workspace and navigate to the Premium tab, as shown in Figure

15.18:

Figure 15.18: Premium Workspace Connection

2. Use the Copy button to copy the workspace connection

3. Open SSMS

4. In the Connect to Server dialog, choose Analysis Services in the Server type field and

paste the copied connection string into the Server name field, as shown in Figure 15.19:

Chapter 15 657

Figure 15.19: SQL Server Connection

5. As shown in Figure 15.19, choose Azure Active Directory - Password in the Authentication

field, enter a username and password, and then click the Connect button

6. The datasets published to the workspace are available in the Object Explorer pane of

SSMS, as shown in Figure 15.20:

Figure 15.20: SSMS Object Explorer

Building Enterprise BI with Power BI Premium658

The datasets within the workspace can now be managed within SSMS as if they were any other

Analysis Services tabular cube.

For example, the data warehouse team might need to reload the entire sales history for the past

5 years to correct an issue found by an external audit. However, the incremental refresh policy in

Power BI is only loading the last 1-2 months’ worth of data. Using SSMS via the XMLA endpoint,

the older partitions can be manually refreshed for the historical data by viewing the partitions

for the dataset, as shown in Figure 15.21:

Figure 15.21: Partitions within SSMS

Note that PowerShell scripts and the SqlServer PowerShell module can also be used as a means

to handle these custom refresh scenarios and to potentially supplement incremental refresh

policies managed by Power BI.

We will now look at a final topic regarding the life cycle of Premium capacity datasets – backup

and restoration.

Backing up Premium capacities
The release to general availability (GA) support for backing up and restoring Power BI Premium

and PPU datasets closed an important gap with Analysis Services and also provides a mechanism

for migration from an Analysis Services model to Power BI Premium.

Either SSMS or the Analysis Services cmdlets for PowerShell can be used to back up and restore

datasets published to the Power BI service using the XMLA endpoints. For example, once connected

to a Power BI workspace, as explained in the previous section, the Back Up and Restore options

become available for datasets published to Premium capacities, including PPU workspaces, as

shown in Figure 15.22:

Chapter 15 659

Figure 15.22: Back Up and Restore options for datasets

To use the Back Up and Restore features, you must register an Azure Data Lake Gen2 (ADLS

Gen2) storage account for the tenant or at the workspace level. These settings were discussed in

the Azure connections section of Chapter 14, Administering Power BI for an Organization. Offline

backups can be obtained by using Azure Storage Explorer to download backup files from the

connected ADLS Gen2 storage.

Backups performed place backup files (.abf files) into a power-bi-backup container within the

ADLS Gen2 storage container. A folder is created in this container with the same name as the

workspace. In the event that a workspace is renamed, the corresponding backup folder is also

automatically renamed to match. To conduct a restore, the backup files must also be placed in

that same folder.

Workspace users who have write or administrator permissions can perform backups of datasets

within that workspace. This includes users who are members of the admin, member, and

contributor roles discussed in the Workspace roles and rights section of Chapter 10, Managing

Workspaces and Content. In addition, users with direct write permissions to a dataset can back up

that dataset. Only workspace admins, members, and contributors can restore a dataset.

Building Enterprise BI with Power BI Premium660

As mentioned, the ability to back up and restore datasets published to the Power BI service enables

a migration path for Analysis Services workloads. In addition, backup and restore operations

might be undertaken in the event of tenant migration, data corruption, or for regulatory-based

data retention requirements.

This concludes our analysis of life cycle management for Premium capacities as well as our

exploration of building enterprise BI with Power BI Premium.

Summary
This chapter reviewed Power BI Premium as the primary means to deploy Power BI at scale and

with enterprise BI tools and controls. The features and administration of Power BI Premium were

described, as well as the factors to account for inefficiently provisioning and allocating Premium

capacity. Finally, life cycle management concerns particular to Premium capacity features were

explored.

This book has been all about how to enable enterprise-level business intelligence using Power BI,

and this chapter highlighted some of the exclusive features that Power BI Premium provides in

pursuit of this goal. We hope you have enjoyed this book and are now confident in how to apply

this knowledge within your own organization.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Power BI

Greg Deckler

ISBN: 9781801811958

• Get up and running quickly with Power BI

• Understand and plan your business intelligence projects

• Connect to and transform data using Power Query

• Create data models optimized for analysis and reporting

• Perform simple and complex DAX calculations to enhance analysis

• Discover business insights and create professional reports

• Collaborate via Power BI dashboards, apps, goals, and scorecards

• Deploy and govern Power BI, including using deployment pipelines

https://www.packtpub.com/product/learn-power-bi/9781801811958

Other Book You May Enjoy664

Microsoft Power BI Cookbook

Greg Deckler

Brett Powell

ISBN: 9781801813044

• Cleanse, stage, and integrate your data sources with Power Query (M)

• Remove data complexities and provide users with intuitive, self-service BI capabilities

• Build business logic and analysis into your solutions via the DAX programming language

and dashboard-ready calculations

• Implement aggregation tables to accelerate query performance over large data sources

• Create and integrate paginated reports

• Understand the differences and implications of DirectQuery, live connections, Import,

and Composite model datasets

• Integrate other Microsoft data tools into your Power BI solution

https://www.packtpub.com/product/microsoft-power-bi-cookbook/9781801813044

Other Books You May Enjoy 665

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to help

them share their insight with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Mastering Microsoft Power BI, Second Edition, we’d love to hear your thoughts!

If you purchased the book from Amazon, please click here to go straight to the Amazon

review page for this book and share your feedback or leave a review on the site that you purchased

it from.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1801811482
https://packt.link/r/1801811482

Index

A
Active Directory (AD) 587
administration, Power BI Premium 633
Admin role 419, 420
aggregation tables 171-175
AI splits 337
AI visuals 331, 332

Decomposition tree visual 336-338
Q&A visualization 338-340
smart narrative visual 341, 342

ALM Toolkit 652
deployment 653-655
download link 652
reference link 655

Analytics pane 179, 358, 359
Forecasting feature 362, 364
Trend line 359-362

Analyze in Excel 575-577
animation, adding 355
Quick Insights feature 56, 364, 365

app deployment process 540, 541
application lifecycle management (ALM) 439
app owns data 567
ArcGIS Maps for Power BI visual 348-351
ArcGIS Map visual 297
artificial intelligence (AI) 331

key influencers visual 332-336
Assume Referential Integrity 169

audit logs 615, 617
monitoring solution 619, 620

automatic aggregations 171
Auto ML features 332
autoscale

reference link 642
Azure Active Directory

(AAD) 220, 414, 582, 587
business-to-business (B2B)

collaboration 588-590
conditional access policies 591, 593
external users, licensing 590
registering, reference link 567

Azure Active Directory Security Group 220
Azure Analysis Services

Power BI, as superset 121
Azure Data Factory (ADF) 72
Azure map visual

reference link 297
Azure portal

URL 582
Azure Private Link

reference link 600
Azure service principals, creation and

registration
reference link 567

B
base measures

expressions 198
implementing 196, 197

Index668

bidirectional relationships 154, 155
date dimension tables 156
implementing, with CROSSFILTER

function 157, 158
shared dimension tables 155, 156

bookmarks 267, 268
custom report navigation 271, 272
Selection pane 269
Spotlight property 269-271
View icon 272, 273

Boolean expressions 194
restrictions 194

bubble map visual 298, 299

C
calculated tables 187
CALCULATE() function 188, 189
calculation groups 207-211
capacity allocation, Power

BI Premium 634-636
capacities, creating 639, 641
capacities, monitoring 642, 644
capacities, sizing 639, 641
capacity size, modifying 641, 642
Corporate 637, 638
Self-Service BI 637, 638
workspace assignment 644-647

capacity estimations 631, 632
capacity nodes 627-629
capacity resource optimization 647

data model optimizations 647-649
report and visualization

optimizations 649, 650
workloads 650-652

cardinality 57
Card visuals 294

chaining 56
charts

selecting 244-246
versus matrices 242
versus tables 242

Cmdlets 428
column charts

conditional formatting 316, 317
formatting 315, 316

columns metadata 160
Data category 162, 164
Data format 162
Default summarization 160-162
Descriptions 164, 165

columnstore 170
comma-separated value (CSV) file 346, 512
Common Data Model (CDM) 608
composite data models

aggregation tables 171-175
performance, optimizing 171

composite datasets 55-57
table storage modes 57

conditional formatting
column chart 316, 317
line chart 317-319
rules, applying to table and

matrix visuals 323-326
content

distributing, via embedding 559
sharing 554-557

content distribution 536
methods 536-538

Contributor role 418
CROSSFILTER function

used, for implementing bidirectional
relationship 157, 158

Index 669

current periods 200-202
versus prior periods 205, 206

custom applications
embedding 566-570

custom format strings 321-323
custom slicer parameters 287, 288
custom visual 351

adding 352-354

D
dashboard

architectures 386
design 376
versus reports 373-376

dashboard architectures 386
multiple-dashboard architecture 388, 389
multiple datasets 392, 393
organizational dashboard

architecture 389-392
single-dashboard architecture 386-388

dashboard cache refresh 494, 495
dashboard, design 376-380

layout 382
supporting tiles 384, 385
visual selection 380-382

dashboard layout 382
fullscreen mode 383, 384
navigation pane 383

dashboard tiles 393, 394
custom links 394, 395
details 394, 395
Excel workbooks 403-405
paginated reports 399-402
real-time data tiles 396-398
themes 398, 399

data alerts 570, 571

Power Automate integration 572, 573
Data Analysis eXpressions (DAX) 14, 120
database administrator (DBA) 582
Data category 162, 164
dataflows 112, 113
Data format settings 162
dataframe variable 346
DataGateway 52, 111, 485
data governance

for Power BI 584-586
data loss prevention (DLP) 436-438
Data Management Views (DMVs) 168
Data Mining parser 451
Data Model 120, 124

Data view 128
Model view 124-127
performance, optimizing 165
Report view 129, 130

data profiling 32-36
using, with Power BI Desktop 36, 37

data refresh 490
data relationships, chart visuals

comparison 244
composition 245
distribution 245
relationship 244

dataset design 26 27
business process. selecting 28
data warehouse bus matrix 26, 27
dimensions, identifying 30, 31
facts, identifying 31, 32
grain, declaring 29

dataset layers 120, 121
dataset management

with SSMS 655-658

Index670

dataset mode
query, designing 50, 52

dataset objectives 121-123
competing 123
external factors 124

dataset planning 38
Composite mode 40, 43
data transformations, planning for 38-40
DirectQuery/Live mode 41-43
Import mode 40-43

data sources 58, 59
authentication 59, 60
Power BI Desktop, options 66, 68
privacy levels 63, 64
settings 61, 62

data storytelling 355
Data view 124, 128
date dimension tables 157
date dimension view

building 75-78
date intelligence metrics 202-205

current periods, versus
prior periods 205, 206

growth rates 205, 206
rolling periods 206, 207

DAX fusion 313
DAX measure basics 178, 179

CALCULATE() function 188, 189
evaluation process 182, 183
filter context 179-181
FILTER() function 190, 191
row context 184-186
scalar function 186
table function 186
variables, defining 191-196

DAX Studio 227

reference link 227
Decomposition tree visual 336-338
dedicated capacity, Power BI licenses

Embedded licensing 23, 24
licensing options 21
Premium licensing options 21, 22
Premium Per User (PPU) licensing 23

Default summarization 160-162
Descriptions 164, 165
detail-row expressions 207
dimension metrics 211, 212

missing dimension 212-214
dimension tables 138, 139

custom sort 141, 142
hierarchies 139, 140

DirectQuery
datasets, publishing 492, 493
dataset queries 53, 54
report, executing 54
staging 90

DirectQuery mode datasets
automatic aggregations 171
columnstore 170, 171
HTAP 170, 171
performance, optimizing 169

direct sharing
versus Power BI apps 558

DMV data
enhancing 454, 455
integrating 454, 455

DMVs, Power BI
querying 452, 453

drill-through filters 252
drill-through report pages 251, 252

back button 253, 254

Index 671

custom labels 253, 254
multi-column, including 254-257

Drive Time feature 349
Dual mode tables 57
Dynamic Management Views (DMVs) 227
dynamic ranking measures 216, 217
dynamic row-level security 222-224

E
email subscriptions 574, 575
embedding 559

licensing considerations 559, 560
embedding scenarios

custom applications 566-570
Microsoft 365 apps 563
Publish to web 560, 561
secure URL embedding feature 562

Enable load property 91
Enter data query 287
Enterprise Mobility and Security (EMS) 593
expressions, types

current and prior periods 200-202
KPI targets 199, 200

extract-transform-load (ETL) 74, 149, 619

F
facts and dimensions queries 91

Excel workbook, Annual Sales
Plan 92-94

source reference only 91, 92
fact tables 130, 131

column data types 133, 134
columns 131-133

fact-to-dimension relationships 135-138
fake user 567
field descriptions 445

creating 446, 447
viewing 447-449

Filled map visual 297-301
filter context 179-181

SQL equivalent 181
FILTER() function 190, 191
Filters pane 284

usage, exploring 291-294
Fit to Screen option 384
focus mode 379
formatting options, visualizations 312

column and line charts 315, 316
scatter charts 328-330
table and matrix visuals 319-321
tooltips 312, 313

G
Gauge visual 296
Gen2 metrics app

reference link 643
General Data Protection

Regulation (GDPR) 436, 439
generally available (GA) 520
Geographic Information Systems (GIS) 348
Get Reports 429
global administrators 594

globally unique identifier (GUID) 428
global options 68
Global sales dashboard 380, 382

Index672

H
Health Insurance Portability and

Accountability Act (HIPAA) 436, 438
hindcasting 364
hybrid tables 58
Hybrid Transactional and Analytical

Processing (HTAP) 170
HyperText Markup Language (HTML) 499

I
import mode dataset queries 52, 53
import mode datasets

columnar compression 166, 168
memory analysis via Data Management

Views (DMVs) 168, 169
memory analysis via VertiPaq

Analyzer 168, 169
performance, optimizing 166
query caching 166

independent software vendors (ISVs) 23
Infrastructure-as-a-Service (IaaS) 53
integrated development environments

(IDEs) 344
Internet Sales query 91

K
key influencers visual 332-336
key performance indicators (KPIs) 388
KPI targets 199, 200
KPI visual 295

L
life cycle management, Power BI

Premium 652

ALM Toolkit deployment 652-655
dataset management, with SSMS 655-658
Premium Capacities, backing up 658-660

line charts
conditional formatting 316-319
formatting 315, 316

Live connections
datasets, switching 276, 277
on-premises SQL Server Analysis Services

(SSAS) models , accessing via 493
reports, customizing 275, 276
to Power BI datasets 273, 275

live report pages 405-407

M
machine learning (ML) 114, 171
map visuals

bubble map 298, 299
exploring 297
Filled map 300, 301

Mark as date table 78-80
Master Data Management (MDM) 31
matrices

versus charts 242
measure evaluation process 182, 183
measure metadata 160

Data category 162, 164
Data format 162
Descriptions 164, 165

Member role 419
metadata management 444, 445

field descriptions 445
reporting 450, 451
report pages 455

Metadata Mechanic 449
download link 449

Index 673

Microsoft 365 admin center
reference link 433

Microsoft 365 apps 563
embedding, in SharePoint Online 564-566
embedding, working for Teams 563, 564

Microsoft Defender for Cloud Apps 610
migration phases, of report to Power BI

service
assess 512, 513
final deployment 515
inventory 511, 512
migrate 515
Plan 514
User Acceptance Testing 515

missing dimension 212-214
mobile-optimized dashboards 408, 410
mobile-optimized report pages 368-370
model metadata 159

visibility 159, 160
Model view 124-127
M queries

versus SQL views 72-74
MSHGQM tool 443

download link 444
Multi-Dimensional eXpressions (MDX) 182
multi-factor authentication (MFA) 587, 591
multiple-dashboard architecture 388, 389
Multipurpose Internet Mail

Extension (MIME) 499
Multi-row card visual 294
My workspace 421

N
node types 22

O
object-level security (OLS) 544
Object Linking and Embedding Database

(OLE DB) 58
Office Online Server (OOS) 516
OneDrive for Business 439-441
OnLine Transactional Processing

(OLTP) 41, 170
on-premises data gateway

administrators 483
architectures 471-474
clusters 469-471
clusters, managing 482, 483
concepts 469
configuration 476
connectors 480, 481
data sources and users 484, 485
diagnostics 488, 489
infrastructure and hardware requirements,

defining 464-466
installation 476-478
installation location, identifying 463, 464
migrating 487
monitoring 486
monitoring reports 489, 490
need, determining 462
PowerShell support 485, 486
recovery keys, planning for 467
Recovery Keys tab 481, 482
restoring 487
roles and permissions, defining 466, 467
security 474-476
service account 478, 479
standard, versus personal mode 468, 469
taking over 487
TCP, versus HTTPS mode 479, 480

Index674

troubleshooting 486
on-premises data gateway

planning 458-461
top gateway planning tasks 461

on-premises SQL Server Analysis Services
(SSAS) models

accessing, via Live connections 493
Open Database Connectivity (ODBC) 58
Open Data Protocol (OData) 58
OpenStreetMap base map 349
organizational dashboard

architecture 389-392

P
paginated reports

building 499-507
exporting 509
identifying 508
in Power BI service 498
interacting with 508
planning 498, 499
printing 509, 510
publishing 499-507
sharing 509, 510
subscribing 509, 510

paginated reports (RDL reports) 626
paginated report visual 309, 310
parameter tables 142, 143

Display folders 148, 149
last refreshed date 145, 146
measure groups 143-145
Measure Support table 146, 147

partial query folding 49
PBRS client applications 530, 531

desktop versions, running side by side 531
mobile versions 532

performance analyzer
using 225, 226

personally identifiable information (PII) 436
Platform-as-a-Service (PaaS) 53, 518, 600
Play axis

for Scatter charts 355, 356
Power Apps visual

example, using in Power
BI Desktop 303-305

Power BI
administrator role 582-584
as data sources 65, 66
as superset, of Azure Analysis Services 121
audit logs 615-617
data governance 584- 586
data governance, implementing 586, 587
Power Automate 305-308
usage metric reports 611-615

Power BI, admin portal 594, 595
Azure connections page 607, 608
capacity settings page 603
Custom branding page 609, 610
Embed Codes page 603, 604
Featured content page 610, 611
Organizational visuals page 604-607
Premium Per User (PPU) 602, 603
Protection metrics page 610
Tenant settings page 595-600
Usage metrics page 600
Users and Audit logs page 601
Workspaces page 608, 609

Power BI apps 538
deployment process 540, 541
installing 549, 550
licensing 538, 539
publishing 545-549
security 542-545

Index 675

updating 551, 552
users permission 542-545
versus direct sharing 558
viewing, on mobile devices 552-554

Power BI, benefits 433
data loss prevention (DLP) 436
information protection 433-436

Power BI datasets
Import mode and Live mode datasets,

switching between 277
Live connections 273-275

Power BI Dedicated Capacity Load
Assessment Tool

download link 633
Power BI deployment modes 2, 3

Corporate BI delivery approach 4
selecting 7, 8
Self-Service Visualization approach 5, 6

Power BI deployment pipelines 430,-433
Power BI Desktop

CURRENT FILE options 68-70
data profiling with 36, 37
global options 68

Power BI licenses
dedicated capacity 21
scenarios 24, 25
shared capacity 18, 20

Power BI PowerShell module 425, 428
Power BI Premium 624

administration 633
administrators, responsibilities 633, 634
benefit 624
capabilities 625-627
capacity allocation 634-636
capacity estimations 631, 632
capacity nodes 627-629
capacity resource optimization 647

dataflow features 113, 114
life cycle management 652

Power BI Premium Capacity Metrics app
reference link 634

Power BI project roles 12, 13
dataset designer 13, 14
Power BI administrator 16
project role collaboration 17
report authors 15

Power BI projects
discovery and ingestion 9
template 9

Power BI projects template 9
adventure Works BI 9-12

Power BI Report Server (PBRS)
client applications 530, 531
connectivity options 521
data sources 521
deploying 522
hardware and user licensing 521, 522
hybrid deployment models 523, 524
installing 526, 527
planning 516-518
product key, retrieving 527, 529
pro licenses, for report authors 522
reference topology 524, 525
scale PBRS 525, 526
upgrade cycles 529, 530
upgrading 526, 527

Power BI REST API 425, 427
documentation link 425
for admins 620, 621
reference link 620

Power BI service
feature differences 518, 519
paginated reports 498
reports, migrating to 510

Index676

PowerBI workloads
frontend resources, versus backend

resources 629-631
Power KPI custom visuals 377
Power Platform admin center 468
Power Platform visuals 302, 303
Power Query Editor 85
Power Query M

editing tools 114
queries 84

Power Query M, editing tools 114
Advanced Editor 114, 115
Visual Studio 117, 118
Visual Studio Code 116

Power Query M, queries
combining 102, 103
creating 98
custom function queries 97
data source parameters 86-88
examples 100
facts and dimensions queries 91
numeric data types 98, 99
organizing 85, 86
parameter tables queries 94-96
security table queries 96
staging 88-90
types 84, 85
used, for accessing items 99, 100

Power Query M, queries examples 100
customer history column 105, 106
derived column data types 106, 107
for product dimension integration 107-111
incremental refresh, for fact tables 103, 104
R and Python script transformation 111
three years filter, trailing 101, 102

PowerShell Core
download link 485

Premium Capacities
backing up 658-660

premium capacity-based
licensing model 625

Premium Embedded SKUs (EM) 625
Premium Per User (PPU) 602
Premium Per User (PPU) licenses 559
premium visuals 308

paginated report 309, 310
Scorecard 308, 309

prior periods 200-202
versus current periods 205, 206

product dimension view 80
proof-of-concept (POC) 7
Publish to web feature 560, 561

reference link 562
Pulse chart custom visual

animation capabilities, exploring 356-358
Push Datasets 397
Python script options 347
Python visual 342-348

download link 347

Q
Q&A visualization 338-340
query

designing, per dataset mode 50-52
query folding 39-52, 90

partial query folding 49
Quick insights feature 56, 364, 365

increase/decrease, explaining 366-368

Index 677

R
ranking metrics 214-216

dynamic ranking measures 216, 217
RColorBrewer package 346
RDL Migration Tool

reference link 513
related tables 187, 188
relationships 149

ambiguity 150, 151
bidirectional relationships 154, 155
single-direction relationships 151-153
uniqueness 149, 150

relative date filtering 263, 264
Report Definition Language

(RDL) 309, 310, 499
report design

summarizing 278, 279
report filter scopes 257, 259

filter conditions, applying 259-261
relative date filtering 263, 264
report- and page-level filters 261-263
visual-level filtering 265

reporting elements
exploring 310-312

report planning process 229
access and distribution, defining 233
audience, identifying 230, 231
business questions, defining to answer 231
dataset support to business questions,

checking 231, 232
interactivity, determining 232, 233
report architecture diagram 235-237
report layout, sketching 234, 235
steps 230

reports
versus dashboard 373-376

Report Server Database
reference link 526

Report view 124, 129, 130
rolling periods 206, 207
row context 184-186
row-level security (RLS) 415, 544
Row Level Security (RLS) 64, 220, 415, 544
R visual 342, 346

download link 344

S
sample project analysis 44, 45
scalar function 186, 187
Scatter charts 328-330

Play axis 355, 356
scheduled data refresh 490-492
Scorecard 308, 309
Secure URL embedding 562
security roles 218-222

dynamic row-level security 222-224
Selection pane, bookmarks 269
Self-Service 3
self-service BI workspaces 577

content distribution 578
risks 579

Server Management Studio (SSMS)
dataset management 655-658

Service Principal Name (SPN) 493
Shape map visuals

reference link 297
shared capacity, Power BI licenses 18

Free licensing 18-20

Index678

Pro licensing 20, 21
shared content 554-557
shared dashboard

scopes 558
shared dimension tables 155, 156
SharePoint Online

embedding 564-566
single-dashboard architecture 386, 387
single-direction relationships 151-153
single number visuals

Card visuals 294
Gauge visual 296
KPI visual 295

single sign-on (SSO) 461
slicer 283, 284

custom slicer parameters 287, 288
synchronization 285-287
usage, exploring 291-294
What-if parameters 289-291

smart narrative visual 341, 342
SnowballC 346
Software as a Service (SaaS) 16, 53, 595, 624
solid-state drives (SSD) 464
source control

for M and DAX code 441, 442
sparklines 326, 327
Spotlight property, Bookmarks 270
SQL equivalent 181, 182
SQL Server Analysis Services (SSAS) 121
SQL Server Integration Services (SSIS) 34
SQL Server Management

Studio (SSMS) 227, 493, 626
SQL Server Report Services (SSRS) 309, 626

parity with 519, 520

SQL views 70-72
examples 74, 75
slowly changing dimensions 81
versus M queries 72-74

SQL views, examples
date dimension view, building 75-78
Mark as date table 78-80
product dimension view 80

staged deployments 422
lifecycle process 423
workspace datasets 424, 425

standard metadata reports 451
server and database parameters 452

standard mode
versus personal mode 468, 469

Stock Keeping Units (SKUs) 166, 560
subject matter experts (SMEs) 9

T
table and matrix visuals

conditional formatting rules,
applying 323-326

custom format strings 321-323
formatting 319-321
scatter chart 328, 330
sparklines 326, 327
values as rows, displaying 327, 328

table function 186, 187
tables

versus charts 242-244
versus matrices 242-244

table storage modes 57
Teams

embedding, working 563, 564
tm package 346

Index 679

tooltips 312, 313
report page tooltips 313, 315

trailing averages 206

U
user acceptance testing (UAT) 422

V
version control 439
VertiPaq Analyzer 168
Viewer role 416, 417
View mode, Bookmarks 272
View Native Query 49
virtual private network (VPN) 464
visual interactions

editing 249, 250
visualization

best practices 237-241
formatting 312

visualization anti-patterns 246-248
chart selection 244
tables and matrices, versus charts 243

Visualizations pane
overview 282, 283

visual-level filtering 265
top N visual-level filters 266

visuals
selecting 241, 242

Visual Studio Team Services (VSTS) 439

W
waterfall chart 301, 302
Web Data Connector (WDC) (Get Data | Web)

462

What-if parameters 289-291
wordcloud package 346
workloads

reference link 652
workspaces 412, 413

content identifiers, identifying 428, 429
datasets 420
My Workspace 421
PowerShell scripts 429, 430
role, in life cycle of Power BI content 413
roles and rights 414, 415

workspaces roles 414
Admin role 419, 420
Contributor role 418
Member role 419
Viewer role 416, 417

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Planning Power BI Projects
	Power BI deployment modes
	Corporate BI
	Self-Service Visualization
	Self-Service BI
	Choosing a deployment mode

	Project discovery and ingestion
	Sample Power BI project template
	Sample template – Adventure Works BI

	Power BI project roles
	Dataset designer
	Report authors
	Power BI administrator
	Project role collaboration

	Power BI licenses
	Shared capacity
	Free
	Pro

	Dedicated capacity
	Premium
	Premium Per User
	Embedded

	Power BI license scenarios

	Dataset design
	Data warehouse bus matrix
	Dataset design process
	Select the business process
	Declare the grain
	Identify the dimensions
	Define the facts

	Data profiling
	Data profiling with Power BI Desktop

	Dataset planning
	Data transformations
	Import, DirectQuery, Live, and Composite datasets
	Import mode
	DirectQuery/Live mode
	Composite mode

	Sample project analysis
	Summary

	Chapter 2: Preparing Data Sources
	Query folding
	Partial query folding

	Query design per dataset mode
	Import mode dataset queries
	DirectQuery dataset queries
	DirectQuery report execution

	Composite datasets
	Table storage modes

	Data sources
	Authentication
	Data source settings
	Privacy levels
	Power BI as a data source
	Power BI Desktop options
	Global options
	CURRENT FILE options

	SQL views
	SQL views versus M queries
	SQL view examples
	Date dimension view
	Mark as date table
	Product dimension view

	Slowly changing dimensions

	Summary

	Chapter 3: Connecting to Sources and Transforming Data with M
	Types of Power Query M queries
	Organizing queries
	Data source parameters
	Staging queries
	DirectQuery staging

	Fact and dimension queries
	Source reference only
	Excel workbook – Annual Sales Plan

	Parameter tables queries
	Security table queries
	Custom function queries

	Creating Power Query M queries
	Numeric data types
	Item access in M

	Power Query M query examples
	Trailing three years filter
	Combining queries
	Incremental refresh for fact tables
	Customer history column
	Product dimension integration
	R and Python script transformation

	Dataflows
	Power BI Premium dataflow features

	Power Query M editing tools
	Advanced Editor
	Visual Studio Code
	Visual Studio

	Summary

	Chapter 4: Designing Import, DirectQuery, and Composite Data Models
	Dataset layers
	Power BI as a superset of Azure Analysis Services
	Dataset objectives
	Competing objectives
	External factors

	The Data Model
	The Model view
	The Data view
	The Report view
	Fact tables
	Fact table columns
	Fact column data types
	Fact-to-dimension relationships

	Dimension tables
	Hierarchies
	Custom sort

	Parameter tables
	Measure groups
	Last refreshed date
	Measure support logic
	Display folders

	Relationships
	Uniqueness
	Ambiguity
	Single-direction relationships
	Direct flights only

	Bidirectional relationships
	Shared dimensions
	Date dimensions

	The CROSSFILTER function

	Model metadata
	Visibility

	Column and measure metadata
	Default summarization
	Data format
	Data category

	Description

	Optimizing data model performance
	Import
	Query caching
	Columnar compression
	Memory analysis via DMVs and the VertiPaq Analyzer

	DirectQuery
	Columnstore and HTAP
	Automatic aggregations

	Composite
	Aggregation tables

	Summary

	Chapter 5: Developing DAX Measures and Security Roles
	DAX measure basics
	Filter context
	SQL equivalent

	Measure evaluation process
	Row context
	Scalar and table functions
	Related tables

	The CALCULATE() function
	The FILTER() function

	DAX variables

	Base measures
	Measure support expressions
	KPI targets
	Current and prior periods

	Date intelligence metrics
	Current versus prior and growth rates
	Rolling periods

	Calculation groups
	Dimension metrics
	Missing dimensions

	Ranking metrics
	Dynamic ranking measures

	Security roles
	Dynamic row-level security

	Performance testing
	Performance analyzer
	DAX Studio

	Summary

	Chapter 6: Planning Power BI Reports
	Report planning process
	Identify the audience
	Define the business questions to answer
	Confirm that the dataset supports the business questions
	Determine interactivity
	Define access and distribution
	Sketch the report layout
	Report architecture diagram

	Visualization best practices
	Choosing the right visual
	Tables and matrices versus charts
	Chart selection
	Visualization anti-patterns

	Visual interactions
	Editing interactions

	Drillthrough report pages
	Custom labels and the back button
	Multi-column drillthrough

	Report filter scopes
	Report filter conditions
	Report and page filters
	Relative date filtering
	Visual-level filtering
	Top N visual-level filters

	Bookmarks
	Selection pane and the Spotlight property
	Custom report navigation
	View mode

	Live connections to Power BI datasets
	Customizing Live connection reports
	Switching Live source datasets
	Switching between import mode and Live mode datasets

	Report design summary
	Summary

	Chapter 7: Creating and Formatting Visualizations
	The Visualizations pane
	Slicers
	Slicer synchronization
	Custom slicer parameters
	What-if parameters
	Page filter or slicer?

	Single-value visuals
	The Card visual
	The KPI visual
	Gauge visual

	Map visuals
	Bubble map
	Filled map

	Waterfall chart
	Power Platform visuals
	Power Apps for Power BI
	Power Automate for Power BI

	Premium visuals
	Scorecard
	Paginated reports

	Elements
	Formatting visualizations
	Tooltips
	Report page tooltips

	Column and line charts
	Column and line chart conditional formatting

	Table and matrix visuals
	Custom format strings
	Table and matrix conditional formatting
	Sparklines
	Values as rows

	Scatter charts

	Summary

	Chapter 8: Applying Advanced Analytics
	AI visuals
	Key influencers
	Decomposition tree
	Q&A
	Smart narrative

	R and Python visuals
	R visual
	Python visual

	ArcGIS Maps for Power BI
	Custom visuals
	Adding a custom visual

	Animation and data storytelling
	Play axis for Scatter charts
	Pulse chart

	Analytics pane
	Trend line
	Forecasting

	Quick insights/Analyze
	Explain the increase/decrease

	Mobile-optimized report pages
	Summary

	Chapter 9: Designing Dashboards
	Dashboards versus reports
	Dashboard design
	Visual selection
	Layout
	Navigation pane
	Fullscreen mode

	Supporting tiles

	Dashboard architectures
	Single-dashboard architecture
	Multiple-dashboard architecture
	Organizational dashboard architecture
	Multiple datasets

	Dashboard tiles
	Tile details and custom links
	Real-time data tiles
	Dashboard themes
	Paginated reports
	Excel workbooks

	Live report pages
	Mobile-optimized dashboards
	Summary

	Chapter 10: Managing Workspaces and Content
	Workspaces
	Workspace roles and rights
	Viewer role
	Contributor role
	Member role
	Admin role

	Datasets across workspaces
	My workspace

	Staged deployments
	Workspace datasets
	Power BI REST API and PowerShell module
	Power BI REST API
	Power BI PowerShell module
	Workspace and content identifiers
	PowerShell sample scripts

	Power BI deployment pipelines

	Content sensitivity and protection
	Information protection
	Data loss prevention

	Version control
	OneDrive for Business
	Source control for M and DAX code
	MSHGQM

	Metadata management
	Field descriptions
	Creating descriptions
	View field descriptions

	Metadata Mechanic

	Metadata reporting
	Standard metadata reports
	Server and database parameters
	Querying the DMVs from Power BI
	Integrating and enhancing DMV data
	Metadata report pages

	Summary

	Chapter 11: Managing the On-Premises Data Gateway
	On-premises data gateway planning
	Top gateway planning tasks
	Determining whether a gateway is needed
	Identifying where the gateway should be installed
	Defining the gateway infrastructure and hardware requirements
	Defining gateway roles and permissions
	Planning for recovery keys

	Standard versus personal mode

	Gateway concepts
	Gateway clusters
	Gateway architectures
	Gateway security

	Gateway installation and configuration
	The gateway service account
	TCP versus HTTPS mode
	Connectors
	Recovery Keys

	Managing gateway clusters
	Gateway administrators
	Gateway data sources and users
	PowerShell support for gateway clusters

	Troubleshooting and monitoring gateways
	Restoring, migrating, and taking over a gateway
	Gateway diagnostics
	Gateway monitoring reports

	Data refresh
	Scheduled data refresh
	DirectQuery datasets
	Live connections to Analysis Services models
	Dashboard cache refresh

	Summary

	Chapter 12: Deploying Paginated Reports
	Paginated reports in the Power BI service
	Planning paginated reports
	Building and publishing paginated reports
	Identifying and interacting with paginated reports
	Printing, exporting, subscribing, and sharing

	Migrating reports to the Power BI service
	Inventory
	Assess
	Plan
	Migrate
	User Acceptance Testing and final deployment

	Planning the Power BI Report Server (PBRS)
	Feature differences with the Power BI service
	Parity with SQL Server Reporting Services
	Data sources and connectivity options
	Hardware and user licensing
	Pro licenses for report authors

	Alternative and hybrid deployment models
	PBRS reference topology
	Scale PBRS

	Installing and upgrading PBRS
	Retrieve the PBRS product key
	Upgrade cycles

	PBRS client applications
	Running desktop versions side by side
	Power BI mobile applications

	Summary

	Chapter 13: Creating Power BI Apps and Content Distribution
	Content distribution methods
	Power BI apps
	Licensing apps
	App deployment process
	User permissions and security
	Publishing apps
	Installing apps
	App updates
	Apps on Power BI mobile

	Sharing content
	Sharing scopes
	Sharing versus Power BI apps

	Embedding
	Licensing embedding
	Publish to web
	Secure URL embedding
	Microsoft 365 apps
	Teams
	SharePoint Online

	Custom applications

	Data alerts
	Power Automate integration

	Email subscriptions
	Analyze in Excel
	Self-service BI workspaces
	Self-service content distribution
	Risks of self-service BI

	Summary

	Chapter 14: Administering Power BI for an Organization
	Power BI administrator role
	Data governance for Power BI
	Implementing data governance

	Azure Active Directory
	AAD B2B collaboration
	Licensing external users

	Conditional access policies

	Power BI admin portal
	Tenant settings
	Usage metrics
	Users and Audit logs
	Premium Per User
	Capacity settings
	Embed codes
	Organizational visuals
	Azure connections
	Workspaces
	Custom branding
	Protection metrics
	Featured content

	Usage metrics reports
	Audit logs
	Audit log monitoring solution

	The Power BI REST API for admins
	Summary

	Chapter 15: Building Enterprise BI with Power BI Premium
	Power BI Premium
	Power BI Premium capabilities

	Premium capacity nodes
	Frontend versus backend resources

	Premium capacity estimations
	Premium capacity administration and allocation
	Capacity allocation
	Corporate and Self-Service BI capacity

	Create, size, and monitor capacities
	Changing capacity size
	Monitoring Premium capacities

	Workspace assignment

	Premium capacity resource optimization
	Data model optimizations
	Report and visualization optimizations
	Workloads

	Life cycle management with Premium
	ALM Toolkit deployment
	Dataset management with SSMS
	Backing up Premium capacities

	Summary

	Other Books You May Enjoy
	Index

