EXPERT INSIGHT

Mastering
Microsoft
Power Bl

Expert techniques to create interactive
insights for effective data analytics and
business intelligence

Second Edition

Greg Deckler (pde'I')

Brett Powell

Mastering Microsoft Power Bl
Second Edition

Expert techniques to create interactive insights for
effective data analytics and business intelligence

Greg Deckler
Brett Powell

BIRMINGHAM—MUMBAI

Mastering Microsoft Power Bl
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Devika Battike
Acquisition Editor — Peer Reviews: Saby Dsilva
Project Editor: Amisha Vathare

Content Development Editor: Rebecca Robinson
Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Rekha Nair

Presentation Designer: Ganesh Bhadwalkar

First published: March 2018
Second edition: June 2022

Production reference: 1100622

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-148-4
www . packt.com

http://www.packt.com

Contributors

About the authors

Greg Deckler is a Vice President at Fusion Alliance and has been a consulting services profes-
sional for over 27 years. Recognized as an expert in Power BI, Greg is a six-time Microsoft MVP
for the Data Platform and an active member of the Power BI Community site with over 5,000
solutions authored and hundreds of Quick Measures Gallery submissions. Greg founded the Co-
lumbus Azure ML and Power BI User Group in Columbus, OH in 2016 and holds regular monthly
meetings. Greg is also the author of numerous external tools for Power BI available for free on

his gdeckler GitHub repository.

Iwould like to deeply thank my family, son Rocket, my extended Fusion Alliance family, the dynamic and
vibrant Power BI community as a whole and especially all of the Super Users as well as my user group members.
A special thanks to Brett Powell for all of his support and guidance on this book as well as Power BI Cookbook,
2nd Edition.

Brett Powell is a Microsoft business intelligence consultant and author. Brett has over 12 years
of business intelligence experience across many industries as a developer, architect, and admin-
istrator. Although most known for his Insights Quest blog and the first editions of the Microsoft
Power BI Cookbook and Mastering Microsoft Power BI, Brett primarily focuses on the needs of clients
and project engagements though Frontline Analytics LLC, a Microsoft BI consultancy and Power

BI partner.

I give all glory and praise to my Lord and Savior Jesus Christ. I was alone and lost in sin, but Christ has

forgiven me and granted me a new peace and purpose for my life.

About the reviewer

Eugene Meidinger has been working in business intelligence for over 8 years now, focusing
heavily on business reporting. He speaks regularly at technical conferences, including Pass Summit

and SQLBits. Eugene started his own company in 2018, SQLGene Training, and now produces
training videos for Pluralsight and consults on Power BI.

I would like to thank my husband Miles for supporting me during the nights and weekends I worked on
reviewing this book.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Table of Contents

Preface

xxi
Chapter 1: Planning Power BI Projects 1
Power BI deployment MOdES ...cccccceeereeciisssneeeeeeicisssnneeeiccsssnnseeesccsssssnsseesessssssnssssessees .2
Corporate Bl o 4
Self-Service Visualization e 5
Self-Service Bl « 6
Choosing a deployment mode ¢ 7
Project discovery and INGEStIONccceeeeerrssveneerrccissssnneereecssssssneesecssssnsseseesessssnssssessces .9
Sample Power BI project template ¢ 9
Sample template — Adventure Works Bl e 9
POWET BI PIOJECE TOLES .euuuuueeeiiieiiiirnneetienissssunneieicssssssseesessssssssessessssssssssssssessssssssssssesssssnns 12
Dataset designer o 13
Report authors e 15
Power Bl administrator e 16
Project role collaboration e 17
POWEL BILICENSES .uuvererrunriesssnreicssnneicssnnnesssnnescssnnessssanessssseessssseessssssesssssssessssssessssssssssssaseses 17
Shared capacity 18
Free e 18
Pro e 20
Dedicated capacity e 21

Premium o 21

Table of Contents

Premium Per User o 23
Embedded e 23
Power BI license scenarios e 24

Dataset design

Data warehouse bus matrix ¢ 26
Dataset design process o 27
Select the business process o 28
Declare the grain ¢ 29
Identify the dimensions e 30
Define the facts o 31

Data profiling

Data profiling with Power BI Desktop e 36

Dataset planning

Data transformations e 38

Import, DirectQuery, Live, and Composite datasets e 40

Import mode o 42
DirectQuery/Live mode o 43
Composite mode o 43

Sample project analysis ...

Chapter 2: Preparing Data Sources

.................................

...................

Query folding

Partial query folding e 49

Query design per dataset mode ..
Import mode dataset queries o 52
DirectQuery dataset queries o 53

DirectQuery report execution e 54
Composite datasets o 55
Table storage modes ¢ 57

Data sources ...

.58

Table of Contents vii

Authentication e 59

Data source settings e 61

Privacy levels e 63

Power BI as a data source e 65

Power BI Desktop options e 66
Global options e 68
CURRENT FILE options e 68

SQL VIEWS eueerereerereereeecsessesssssssssssssssssssssssssssssssssssssassnse .70

SQL views versus M queries e 72
SQL view examples o 74

Date dimension view e 75

Mark as date table ¢ 78

Product dimension view ¢ 80
Slowly changing dimensions e 81

SUIMNIMATY tecereennieeeennniertennnieetennsectesssssessssassscssssssssssssssssssssssscssssssssssssssssssssssssssssssssssses .. 81

Chapter 3: Connecting to Sources and Transforming Data with M 83

Types of Power Query M queries .. essesessestnsessesantessesantessssantessssarsessesartesesttstesesaarsssssare 84
Organizing queries e 85
Data source parameters 86
Staging queries o 88
DirectQuery staging e 90
Fact and dimension queries o 91
Source reference only e 91
Excel workbook — Annual Sales Plan e 92
Parameter tables queries ¢ 94
Security table queries ¢ 96

Custom function queries e 97

Creating POWer QUETY M UETIES ...cceeeeeeecssssnnneecccssssssnseeeeccsssssssaseesssssssssssessesssssssssasssssssssns 98
Numeric data types « 98

Item accessin M e 99

viii Table of Contents

Power Query M query examplescceeeeeevnneeeeee. ceesereteettanttttetettnietanistanesanesanenses 100

Trailing three years filter o 101
Combining queries ¢ 102
Incremental refresh for fact tables ¢ 103
Customer history column e 105
Product dimension integration ¢ 107
R and Python script transformation e 111
DAtAflOWS ceuveeriersiensiensuensiensiesssesssesssesssesssesssesssesssesssnsssnsssesssnsssesssesssasssssssssssssassssessnsasenes 112

Power BI Premium dataflow features o 113

Power QUery M editing tOOIS c.ccccvuericrsnercsssnniesssneicsssseresssssecsssescsssssessssssencssassasssnsassssanaes 114

Advanced Editor e 114
Visual Studio Code o 116
Visual Studio e 117

SUIMIMATY cccucecencsccocsconcscssesesocscsncssssssesosssesossesnssassssesssscsssossessisessssssessessesasessesesssssosesessasesses 118

Chapter 4: Designing Import, DirectQuery, and Composite Data Models 119

LD E 1T = N 120
Power BI as a superset of Azure Analysis Services o 121
Dataset objectives o 121
Competing objectives o 123
External factors e 124

The Data Model eeesseeeernnsesennssesenassessnnsssesensssesennsssesennnsesennne eeeensneeeennnnes 124

The Model view o 124
The Data view o 128
The Report view o 129
Fact tables 130
Fact table columns e 131
Fact column data types o 133
Fact-to-dimension relationships e 135
Dimension tables ¢ 138

Hierarchies 139

Table of Contents ix

Custom sort e 141
Parameter tables ¢ 142
Measure groups e 143
Last refreshed date o 145
Measure support logic e 146
Display folders o 148
L BN 103] 4V ... 149

Uniqueness o 149

Ambiguity e 150

Single-direction relationships e 151
Direct flights only e 153

Bidirectional relationships ¢ 154
Shared dimensions e 155
Date dimensions e 156

The CROSSFILTER function e 157

MOdel MeEtadata ceeueeeeeeeeeeeeeeeeeeeeeneeeeeerseccceeseeecesssssscsssssencess ceerreeeeerereeecenernssesssrnsenens 159
Visibility e 159
Column and measure metadata . eessseeeeensssecsrnrssessennnsesennne ceeneseerennnnones eee 160

Default summarization e 160

Data format e 162

Data category e 162
Description e 164

Optimizing data model Performanceeiicicseicssseicssseiicsssseicssssensssssercsssssssssssssssssssens 165

Importe 166

Query caching ¢ 166

Columnar compression e 166

Memory analysis via DMVs and the VertiPaq Analyzer o 168
DirectQuery o 169

Columnstore and HTAP ¢ 170

Automatic aggregations e 171

Table of Contents

Composite o 171
Aggregation tables e 171

Summary savsssavnssnsassase ceessetetetetenestenesersesesnesesnesersenes

Chapter 5: Developing DAX Measures and Security Roles

DAX measure basics ceeeecenseennsesnnsesanseennsesnnsesnnsesnnes

Filter context 179
SQL equivalent o 181

Measure evaluation process o 182

Row context ¢ 184

Scalar and table functions ¢ 186
Related tables ¢ 187

The CALCULATE() function « 188
The FILTER() function 190

DAX variables ¢ 191

Base measures sesessesesesesesesessssssesesesesesesessssase

Measure support expressions e 198
KPI targets « 199

Current and prior periods e 200

................

...... 202

Date intelligence metricsccceeveueeeeerccsscnnnnees
Current versus prior and growth rates e 205

Rolling periods « 206

Calculation GroUPS ..cccvceeecrssniiesssntiessssnticssntiesssseeesssssescssssteesssssessssssssssssssessssssesssssssessanans 207

Dimension MELIICS ceeeeereeeeeeeceeeeceeesccessecesscsssecses ceeeeeensecnanenne

Missing dimensions e 212

RANKING MELTICS auveeeerrieirrsrnneriecissssnneeeieicsssssnseeticcssssnssseessssssssnasees

Dynamic ranking measures o 216

SECUTILY TOLES cevrrunrrrirsnriisssneriissnnescsssneissssnsecssssesessssessssssessssssssssssssessssssssssssssessssnsssesssnsnss 218

Dynamic row-level security e 222

Performance testingcccceeeeeennnee ceeneetieesssnnaasneseaes

Performance analyzer o 225

Table of Contents

xi

DAX Studio e 227

SUMMATY .ceeeerenceenccenncrancrencenes

...... 228

Chapter 6: Planning Power Bl Reports

229

Report planning process

...... 229

Identify the audience ¢ 230

Define the business questions to answer o 231

Confirm that the dataset supports the business questions ¢ 231

Determine interactivity e 232

Define access and distribution e 233

Sketch the report layout ¢ 234

Report architecture diagram e 235
Visualization best practicesccceeeesenees

Choosing the right visual

Tables and matrices versus charts e 242
Chart selection e 244

Visualization anti-patterns e 246

Visual interactions . ceeeresererenessesaresseeane

Editing interactions e 249

............ 251

Drillthrough report pages
Custom labels and the back button e 253
Multi-column drillthrough ¢ 254

Report filter SCOPES ..ceevrrcnnerrercssscnenerecens
Report filter conditions e 259
Report and page filters o 261
Relative date filtering ¢ 263
Visual-level filtering e 265

Top N visual-level filters ¢ 266

BOOKMATKS ccuvveeecrsunneccssneecssnneccssnneees

Selection pane and the Spotlight property ¢ 269

Custom report navigation e 271

xii

Table of Contents

View mode o 272

Live connections to Power BI datasets

Customizing Live connection reports e 275

Switching Live source datasets ¢ 276

Switching between import mode and Live mode datasets e 277

Report design summary

Summary

Chapter 7: Creating and Formatting Visualizations

The Visualizations pane

Slicers

Slicer synchronization e 285
Custom slicer parameters o 287
What-if parameters ¢ 289

Page filter or slicer? e 291

Single-value visuals

The Card visual ¢ 294
The KPI visual ¢ 295
Gauge visual ¢ 296

Map visuals
Bubble map « 298
Filled map ¢ 300

Waterfall chart

Power Platform visuals

...............................

Power Apps for Power Bl « 303
Power Automate for Power Bl ¢ 305

Premium visuals

..308

Scorecard « 308
Paginated reports ¢ 309

Elements

Formatting visualizations .

Table of Contents

xiii

Tooltips e 312
Report page tooltips ¢ 313
Column and line charts o 315
Column and line chart conditional formatting e
Table and matrix visuals e 319
Custom format strings e 321
Table and matrix conditional formatting e 323
Sparklines o 326
Values as rows e 327

Scatter charts ¢ 328

316

Summary ceeneneeennnnnenes . .

Chapter 8: Applying Advanced Analytics

330

331

Al visuals eeeeeeeeeennessererareseeersssesesennenees

Key influencers o 332
Decomposition tree e 336
Q&A 338

Smart narrative e 341

R and Python visualsccceeeeccssecccssnneccssneees

Rvisual e 344
Python visual e 347
ArcGIS Maps for Power BI . cereessnresnanens

...........

.331

CUSTOIN VISUALS .eeevuereereeneeerenneceresseseessssessesssssssessssssssssssssssssssssssssssssssssnsssssssssssssssssnsssssssnee 351

Adding a custom visual e 352

Animation and data storytelling
Play axis for Scatter charts ¢ 355
Pulse chart ¢ 356

ANalytiCs PANE wececvueeecisnerecssnerccssneescssneesssnsnes

Trend line e 359

Forecasting ¢ 362

Quick insights/Analyze

Xiv

Table of Contents

Explain the increase/decrease ¢ 366

Mobile-optimized report PAGESceeeeeeerreseeereeissssneeeenccsssssssseesscssssnnsees .368
SUINIMATY eeerieennceenceennceeenceeanceeancerasccssssessescesascssssccsssssssssssssscsssssssssssssssssssssasssssssssanss 370
Chapter 9: Designing Dashboards 373
Dashboards VEISUS FEPOTLS e.cceecrrrrueeeerrecssssnseericssssssnseereessssssssssessssssssssseessssssssasees 373
Dashboard deSINccccveereriveiicssniiissnticsssneiesssnticsssseiessssssssssstssssssssssssssesssssssssssssssssssans 376

Visual selection ¢ 380

Layout e 382

Navigation pane o 383
Fullscreen mode o 383

Supporting tiles e 384
Dashboard architeCtures ..c.eeeeceeeecsssnticsssneiessssneecssseicssssetessssesesssssssssssessssssssssssssassssans 386

Single-dashboard architecture 386

Multiple-dashboard architecture « 388

Organizational dashboard architecture » 389

Multiple datasets o 392
Dashboard tilesccieeevveieissnriissniicsssnniecssniecsssneeccssseecsssseeesssssesssssssessssssessssssseses .. 393

Tile details and custom links e 394

Real-time data tiles ¢ 396

Dashboard themes ¢ 398

Paginated reports ¢ 399

Excel workbooks e 403
LiVE TEPOTT PAZES wuveeeereersesssnreeeesssssssssseenssssssssssesssssssssssssssessssssssssssssssssssssssasssssssssssssssesssss 405
Mobile-optimized dashboardseeeeeeceiiueeeiiiciiisieneeiiciiiinneetieccsneeeeesecssssesseesesees 408
SUIMIMATY eeurireneeenicrenctenctencteeccteascessscesssscsssscsssscsssscsssscsses 410
Chapter 10: Managing Workspaces and Content 411
WOTKSPACES «euuerneeeiiicisrrnnetiicsisssnneetiessssssssestesscssssssssssssssssssssssssessssssssessssssssasssssens 412

Workspace roles and rights e 414

Viewer role o 416

Table of Contents

XV

Contributor role o 418
Member role o 419
Admin role ¢ 419
Datasets across workspaces ¢ 420

My workspace ¢ 421

Staged deploymentsccceveeeecsnnneee

Workspace datasets o 424

Power BI REST API and PowerShell module o 425
Power BI REST API ¢ 425
Power BI PowerShell module ¢ 428
Workspace and content identifiers o 428
PowerShell sample scripts o 429

Power BI deployment pipelines ¢ 430

Content sensitivity and protectionceeeesseeenne

Information protection e 433

Data loss prevention e 436

Version control cerenenettneessaanaseneeas
OneDrive for Business o 439
Source control for M and DAX code o 441
MSHGQM o 443

Metadata managementc.....

Field descriptions e 445
Creating descriptions e 446
View field descriptions e 447

Metadata Mechanic e 449

Metadata reportingceeeeeseneeccsneeecnnne

Standard metadata reports e 451
Server and database parameters o 452
Querying the DMVs from Power Bl o 452
Integrating and enhancing DMV data e 454
Metadata report pages o 455

422

433

439

444

450

XVi

Table of Contents

Summary

Chapter 11: Managing the On-Premises Data Gateway

On-premises data gateway planning

Top gateway planning tasks e 461
Determining whether a gateway is needed o 462
Identifying where the gateway should be installed o 463
Defining the gateway infrastructure and hardware requirements o 464
Defining gateway roles and permissions ¢ 466
Planning for recovery keys e 467
Standard versus personal mode ¢ 468

Gateway concepts

Gateway clusters o 469
Gateway architectures e 471
Gateway security e 474

Gateway installation and configuration

.................................

The gateway service account e 478
TCP versus HTTPS mode o 479
Connectors ¢ 480

Recovery Keys o 481

..............................

.. 482

Managing gateway clusters
Gateway administrators e 483
Gateway data sources and users e 484

PowerShell support for gateway clusters o 485

Troubleshooting and monitoring gateways

Restoring, migrating, and taking over a gateway o 487
Gateway diagnostics e 488
Gateway monitoring reports 489

Datarefresh ..

..490

Scheduled data refresh « 490

DirectQuery datasets e 492

Table of Contents

Live connections to Analysis Services models o 493
Dashboard cache refresh o 494

SUMMATY .eeeeeennceencennccenncceanecns ceeeseessesensescssesennencnnes

Chapter 12: Deploying Paginated Reports

495

497

Paginated reports in the Power BI SEIVICE ...ccccvuveersaneees
Planning paginated reports 498
Building and publishing paginated reports ¢ 499
Identifying and interacting with paginated reports ¢ 508

Printing, exporting, subscribing, and sharing ¢ 509

Migrating reports to the Power BI SEIVICEcccerureeesraneencens

Inventory e 511

Assess o 512

Plan ¢ 514

Migrate ¢ 514

User Acceptance Testing and final deployment e 515

Planning the Power BI Report Server (PBRS)c......

Feature differences with the Power BI service o 518
Parity with SQL Server Reporting Services e 519
Data sources and connectivity options e 521
Hardware and user licensing e 521
Pro licenses for report authors e 522
Alternative and hybrid deployment models e 522
PBRS reference topology e 524
Scale PBRS e 525

Installing and upgrading PBRSccccccceeeernneencsnneencnnne
Retrieve the PBRS product key ¢ 527
Upgrade cycles o 529

PBRS client applications . cerenestteeesssanasttesessans

Running desktop versions side by side » 531

Power BI mobile applications e 532

.. 498

510

.. 526

xviii

Table of Contents

Summary

Chapter 13: Creating Power Bl Apps and Content Distribution

Content distribution methods

Power BI apps

Licensing apps e 538

App deployment process ¢ 540

User permissions and security 542
Publishing apps e 545

Installing apps e 549

App updates e 551

Apps on Power Bl mobile ¢ 552

Sharing content

.. 554

..........................

Sharing scopes e 558

Sharing versus Power BI apps e 558

. 559

Embedding
Licensing embedding e 559
Publish to web ¢ 560
Secure URL embedding e 562
Microsoft 365 apps ¢ 563

Teams e 563
SharePoint Online o 564
Custom applications e 566

Data alerts

Power Automate integration e 572

................

......................................

Email subscriptions

ANalyze in EXCEl .covuerrueensueensnnensunecsnecsnecssneesseesssnesssneessnsesssscssance

Self-service BI workspaces ..

Self-service content distribution e 578

Risks of self-service BI e 579

...................................

...........

............................

Summary

Table of Contents

Xix

Chapter 14: Administering Power Bl for an Organization

Power BI adminiStrator roleccceeeeeeeeeeenecceeeneccceene

Data governance for POWET Blcccecveiicssneicssneicssssenssssssescsssans

Implementing data governance o 586

Azure Active Directory ceresseteeeeessssnstttttesessssntattesssssens
AAD B2B collaboration ¢ 588
Licensing external users e 590

Conditional access policies e 591

Power BI admin POrtalccceeiccvcericsssericnssneiesssniicssssnesssssescssstsesssssesssssssssssssssssssssessssanes 594

Tenant settings e 595
Usage metrics ¢ 600
Users and Audit logs 601
Premium Per User ¢ 602
Capacity settings e 603
Embed codes ¢ 603
Organizational visuals e 604
Azure connections e 607
Workspaces ¢ 608
Custom branding ¢ 609
Protection metrics e 610
Featured content ¢ 610

USQGe MELTICS TEPOTILS eeeerrrrrveeerrecssssrnnseeriesssssonseseessssssnsassessses

Auditlogs cerereettteeiiisaat et te s st aatteses s baaa e e ses s ssnstastessasans
Audit log monitoring solution e 619

The Power BI REST API for admins ..cceeeeeeeeeeecceeeenecceeeneeceseseeecceenne

SUMMATY .eeurerencrencrenccrancnencenes ceeeeeeenttetanietanietanetansenneesananns

Chapter 15: Building Enterprise Bl with Power Bl Premium

POWETL BI PIEIMIUIN .eeeueenneeeneceeneerencccesecsesecsssscssssesesssesassessnscsnnes

Power BI Premium capabilities o 625

XX

Table of Contents

Premium capacity nodes .
Frontend versus backend resources ¢ 629

Premium capacity estimations ...

Premium capacity administration and allocation

Capacity allocation e 634
Corporate and Self-Service BI capacity e 637
Create, size, and monitor capacities 639
Changing capacity size e 641
Monitoring Premium capacities e 642
Workspace assignment ¢ 644
Premium capacity resource optimization
Data model optimizations e 647
Report and visualization optimizations e 649

Workloads ¢ 650

Life cycle management with Premium

ALM Toolkit deployment e 652
Dataset management with SSMS e 655
Backing up Premium capacities ¢ 658

Summary

..................

. 647

Other Books You May Enjoy

Index

667

Preface

Microsoft Power Bl is a leading business intelligence and analytics platform that supports both
self-service data visualization and exploration as well as enterprise BI deployments. Power BI
consists of cloud services, mobile applications, a data modeling and report authoring application,
and other utilities, including the on-premises data gateway. Additionally, organizations can
deploy Power Bl reports on-premises via the Power BI Report Server and scale their deployments

with Power BI Premium capacity.

This revised and expanded edition provides an end-to-end analysis of the latest Power BI tools
and features, from planning a Power BI project to distributing Power BI apps to large groups of
users. You’ll be familiarized with all the fundamental concepts and see how Power BI datasets,
reports, and dashboards can be designed to deliver insights and rich, interactive experiences.
You'll also become knowledgeable about management and administration topics such as the
allocation of Power BI Premium capacities, Azure Active Directory security groups, conditional
access policies, and staged deployments of Power BI content. This book will encourage you to take
advantage of these powerful features and follow thoughtful, consistent practices in deploying

Power BI for your organization.

Who this book is for

This bookisintended for business intelligence professionals responsible for either the development
of Power BI solutions or the management and administration of a Power BI deployment. BI
developers can use this as a reference guide to features and techniques to enhance their solutions.
Likewise, BI managers interested in a broad conceptual understanding, as well as processes
and practices to inform their delivery of Power BI, will find this a useful resource. Experience in

creating content using Power BI Desktop and sharing content on the Power Bl service is helpful.

xxii Preface

What this book covers

Chapter 1, Planning Power BI Projects, discusses alternative deployment modes for Power BI, team
and project roles, and licensing. Additionally, an example project template and its corresponding

planning and dataset design processes are described.

Chapter 2, Preparing Data Sources, explains foundational concepts such as query folding, query

design, data source preparation and important Power BI Desktop settings.

Chapter 3, Connecting to Sources and Transforming Data with M, depicts the data access layer
supporting a Power BI dataset, including data sources and fact and dimension table queries.
Concepts of the Power Query M language, such as parameters, are explained and examples of

custom M queries involving conditional and dynamic logic are given.

Chapter 4, Designing Import, DirectQuery, and Composite Data Models, reviews the components of the
datamodel layer and design techniques in support of usability, performance, and other objectives.

These topics include relationship cross-filtering, custom sort orders, hierarchies, and metadata.

Chapter 5, Developing DAX Measures and Security Roles, covers the implementation of analysis
expressions reflecting business definitions and common analysis requirements. Primary DAX
functions, concepts, and use cases such as date intelligence, row-level security roles, and

performance testing are examined.

Chapter 6, Planning Power BI Reports, describes a report planning process, data visualization
practices, and report design fundamentals, including visual selection and filter scopes. In addition,

it covers drillthrough report pages, visual interactions, bookmarks, and Live connections.

Chapter 7, Creating and Formatting Visualizations, reviews many standard visuals including slicers,
single-number visuals, maps, waterfall charts, scatter charts, Power Platform visuals and Premium
visuals, as well as how to format visuals, including the use of tooltips, conditional formatting,

custom format strings, and sparklines.

Chapter 8, Applying Advanced Analytics, examines powerful interactive and analytical features,
including Al visuals, R and Python visuals, ArcGIS Maps, custom visuals, animation, and the

Analytics pane. Additionally, it covers Quick Insights and mobile optimized report pages.

Chapter 9, Designing Dashboards, provides guidance on visual selection, layout, and supporting tiles
to drive effective dashboards. Alternative multi-dashboard architectures, such as an organizational
dashboard architecture, are reviewed, as well as the configuration of dashboard tiles and mobile

optimized dashboards.

Preface xxiii

Chapter 10, Managing Workspaces and Content, features the role and administration of workspaces
in the context of Power BI solutions and staged deployments. Additionally, the Power BI REST
API, content management features, and practices are reviewed, including field descriptions and

version history.

Chapter 11, Managing the On-Premises Data Gateway, covers top gateway planning considerations,
including alternative gateway architectures, workloads, and hardware requirements. Gateway
administration processes and tools are described, such as the manage gateways portal, gateway

log files, and PowerShell gateway commands.

Chapter 12, Deploying Paginated Reports, explains how to deploy and migrate paginated reports
to the Power BI service and compares and contrasts the Power BI Report Server with the Power
BI service and provides guidance on deployment topics such as licensing, reference topology,

installation, upgrade cycles, and client applications.

Chapter 13, Creating Power Bl Apps and Content Distribution, walks through the process of publishing
and updating apps for groups of users. Additionally, other common distribution methods are
covered, such as the sharing of reports and dashboards, email subscriptions, data-alert-driven

emails, and embedding Power BI content in SharePoint Online, Teams, and custom applications.

Chapter 14, Administering Power BI for an Organization, highlights data governance for self-service
and corporate BI, Azure Active Directory features such as Conditional Access policies, and the
Power BI admin portal. Details are provided about configuring Power BI service tenant settings

and the tools available to monitor Power BI activities.

Chapter 15, Building Enterprise BI with Power BI Premium, reviews the capabilities of Power BI
Premium and alternative methods for allocating premium capacity. Additionally, administration
and optimization topics are discussed as well as lifecycle management using the ALM Toolkit

and SQL Server Management Studio.

To get the most out of this book

A Power BI Pro license and access to the Power Bl service is necessary to follow many of the topics
and examples in this book. The assignment of the Power BI Service Administrator role within the
Microsoft 365 admin center, as well as administrative access to an on-premises data gateway,
would also be helpful. It’s assumed that readers are familiar with the main user interfaces of

Power Bl Desktop and have some background in business intelligence or information technology.

XXiv Preface

The primary data source for the examples in this book was the AdventureWorks data warehouse
sample database for SQL Server 2019. A SQL Server 2019 Developer Edition database engine
instance was used to host the sample database. For the import mode dataset, an Excel workbook
stored the sales plan data. For the DirectQuery dataset, the sales plan data was stored in the

sample SQL Server database.

The original AdventureWorksDW2019 was customized by adding a schema and multiple views.
The customized version of this database is included in the code bundle for this book as are the

Power BI Desktop files and specific queries and scripts used.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/-

Mastering-Microsoft-Power-BI-Second-Edition. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://static.packt-cdn.com/downloads/9781801811484 _
ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; “Mount the
downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

Ablock of code is set as follows:

let CalculateAge = (BirthDate as date) =>
Date.Year(CurrentDayQuery) - Date.Year(BirthDate)
in CalculateAge

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are highlighted:

let CalculateAge = (BirthDate as date) =>

https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition
https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801811484_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801811484_ColorImages.pdf

Preface XXV

Date.Year(CurrentDayQuery) - Date.Year(BirthDate)
in CalculateAge

Any command-line input or output is written as follows:

Install-Module MicrosoftPowerBIMgmt -Force

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in
menus or dialog boxes, also appear in the text like this. For example: “All workspaces and content

within those workspaces are provided a globally unique identifier (GUID).”

y
bl 4
NS Warnings or important notes appear like this.

J

',@\- Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are

interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

xxvi Preface

Share your thoughts

Once you’ve read Mastering Microsoft Power BI, Second Edition, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://www.packtpub.com/

Planning Power Bl Projects

Power Bl is arobust, flexible business intelligence platform enabling organizations to deploy data
analysis and reporting solutions according to their individual policies and use cases. Organizations
can utilize Power BI to enable self-service data analytics and visualization for business analysts, as
well as deploying enterprise-grade solutions involving technical expertise and advanced security
and scalability features. Likewise, Power BI fully supports both cloud and on-premises data sources
as well as all primary types of reports, ranging from interactive visualizations to pixel-perfect

paginated reports to Excel-based reports.

While specific organizational goals, the data landscape, and specific resource responsibilities
can vary greatly, the underlying concepts, deployment choices, roles, and planning processes for
business intelligence projects remain the same. The long-term success or failure of most Power
BI projects is most highly correlated to the planning, organization, and effective collaboration
of the different stakeholders. Solutions that deliver the most value to the business over time are
the result of thoughtful decisions around the people and processes involved in data governance,

data quality, data modeling, and finally data visualization and distribution.

This chapter explores the various project planning decision topics, roles, and processes critical

to the success of all Power BI projects.
In this chapter, we review the following topics:

e Power Bl deployment modes

e Project discovery and ingestion
e Power BI projectroles

e Power Bl licenses

e Datasetdesign

2 Planning Power BI Projects

e Dataprofiling

e Dataset planning

To begin, we first explore the different deployment modes for Power BI.

Power Bl deployment modes

Prior to the existence and adoption of BI tools capable of supporting self-service scenarios,
business analysts were effectively relegated to the role of “end user” of solutions developed and
maintained from end to end by their information technology department. While this top-down
approach helped ensure that the solution would be secure, accurate, and resource-efficient, it

was also relatively slow and inflexible to adjust to changing requirements.

As a consequence, business analysts commonly utilized the IT-owned solutions as merely a
starting point or data source to their own MS Office-based solutions that business analysts could
maintain. The perceived lack of flexibility and extended timelines sometimes associated with IT-
owned solutions often frustrated business teams, resulting in a lack of adoption and “shadow IT”

scenarios in which business users created their own solutions via Excel and other tools.

Modern business intelligence platforms such as Power BI provide increased opportunities for
the business to participate in the creation and deployment of data assets for the organization.
Organizations can deliver Power BI solutions that require the resources and technical expertise
of a Corporate BI approach, as well as empowering business teams to leverage the self-service
capabilities of the platform. This “self-service” can range widely from enabling teams to access and
analyze certain certified Power BI datasets to empowering business analysts to create their own

end-to-end solutions including their own data transformation workflows and semantic models.

In many scenarios, a combination of corporate IT resources, such as the on-premises data
gateway and Power BI Premium capacity, can be combined with the business users’ knowledge
of requirements and familiarity with data analysis and visualization in order to increase the
velocity of data asset development. More experienced organizations may even utilize multiple
deployment modes depending on the distinct requirements and use cases for Power BI across

different teams and projects.

For example, solutions involving highly sensitive data or targeted at executive leadership are
generally owned from end to end by Corporate BI/IT personnel. However, in scenarios involving
rapidly changing requirements where deep business knowledge is essential, business analysts
familiar with the data are often empowered with sufficient Power BI licenses and resources to

develop their own datasets and reports.

Chapter 1 3

Werefer to standard deployment mode as Corporate B, a deployment mode where the IT department
controls all aspects of the business intelligence platform. Alternative approaches are called self-

service, where the business controls some or all aspects of the business intelligence platform.

Self-service approaches can benefit both IT and business teams, as self-service can reduce IT
resource constraints and project timelines, and provide the business with greater flexibility
and control as analytical needs change. Additionally, Power BI projects can be migrated across
deployment modes over time as required skills and resources change. However, greater levels of
self-service and shared ownership structures generally increase the risk of miscommunication

and introduce issues of version control, quality, and consistency.
These deployment modes are summarized in Figure 1.I:

Reparts and dashboards owmed by 1T

curpﬂrﬂtﬂ Bl + Datascts owned by [T
Self-Service |« Reports and daskboards ovened by business

'U'l'sualizatlﬂn = Datasets owred by 1T

Self-Sarvice '« Reports and dashkoards owmed by business
Bl ¢ Datasets owmed by business

Figure 1.1: Power Bl deployment modes

A Power BI dataset is a semantic data model primarily comprised of data source queries,
relationships between fact and dimension tables, and measure calculations. A semantic data
model adds meaning to the physical, underlying data by adding relationships between data

entities, allowing organizations to extract truth and understanding from their data.

Datasets often contain hierarchies, row-level security roles, and often other metadata such as
calculation groups, detailed row expressions, and other metadata that supports usability and
analysis. Power BI datasets share the heritage and concepts of Analysis Services tabular mode

models and are generally developed using Power BI Desktop, a Windows application.

Microsoft has now positioned Power BI Premium-hosted datasets as their flagship semantic
modeling tool and a “superset” of Analysis Services models. As the “superset” term implies, Power
BI Premium-hosted datasets now support all of the enterprise-grade modeling features of Analysis
Services and there are a number of powerful modeling features, such as composite models and
incremental refresh policies, that are only available via Power BI datasets. Chapter 15, Building

Enterprise BI with Power BI Premium, covers Power BI Premium in more detail.

Now that deployment modes are understood at a high level, let’s take a look at each of the three

deployment modes in greater detail.

4 Planning Power BI Projects

Corporate Bl

The Corporate Bl delivery approach in which the Bl team develops and maintains both the Power
BI dataset (sometimes called a data model) and the required report visualizations is a common
deployment option, particularly for large-scale projects and projects with executive-level sponsors
or stakeholders. This is the approach followed in this chapter and throughout this book, as it
offers maximum control over top BI objectives, such as version control, scalability, usability, and

performance.

Corporate BI can be visualized as shown in Figure 1.2:

A A — A A A — A A
Corporate IT bl
Service

Laata
Warchouse

Datasst

Designer Power Bl

Deskiap

Workspace(s)

I EE—— SE— S — — A — ——

r——_———_—

Figure 1.2: Corporate Bl

As shown in Figure 1.2, all data and Power BI assets are owned by corporate IT and business users

simply consume reports and dashboards published by corporate IT to the Power BI service.

Again, with the Corporate Bl approach, business users are solely consumers of corporate business
intelligence assets. Next, we compare this approach with self-service approaches where business

users are more engaged with the creation and deployment of business intelligence assets.

Chapter 1 5

Self-Service Visualization

In the Self-Service Visualization approach, the dataset is created and maintained by the IT
organization’s BI team, but certain business users with Power BI Pro licenses create reports and
dashboards for consumption by other users. In many scenarios, business analysts are already
comfortable with authoring reports in Power BI Desktop (or, optionally, Excel) and can leverage

their business knowledge to rapidly develop useful visualizations and insights.

With ownership of the dataset, the BI team can be confident that only curated data sources and
standard metric definitions are used in reports and can ensure that the dataset remains available,

performant, and updated or refreshed as per business requirements.

Self-Service Visualization is shown in Figure 1.3:

Corporate IT

Paeeer 1l
Service

SOurce

I Dashisoards
= By
- Report
— :E"_-;u‘r Auther m;,'
S

i
3

L L

e

Biisirigss

}
|

Warehausn

= ‘
Erab s
Power Bl

Devgner ;. ostop

!

SOl
Fystem

‘Worispaos|s)

———_——d

Figure 1.3: Self-Service Visualization
As shown in Figure 1.3, dataset designers within corporate IT still create and manage the Power BI

datasets but business users author and publish reports and dashboards to the Power BI service.

In the next section, we explore the Self-Service Bl approach driven entirely by the business.

6 Planning Power BI Projects

Self-Service Bl

In the Self-Service Bl approach, the Bl organization only contributes essential infrastructure and
monitoring, such as the use of an on-premises data gateway and possibly Power BI Premium
capacity to support the solution. Since the business team maintains control of both the datasets
and the visualization layer, the business team has maximum flexibility to tailor its own solutions

including data source retrieval, transformation, and modeling.

This flexibility, however, can be negated by a lack of technical coding skills and a lack of technical
knowledge such as the relationships between tables in a database. Additionally, business-
controlled datasets can introduce version conflicts with corporate semantic models and generally
lack the resilience, performance, and scalability of IT-owned datasets. Self-Service BI can be

visualized as shown in Figure 1.4:

A A — A A A — — A
Corporate IT -
Service

SOurce

Raporl o ol
Authur Duasktop

--.._,__‘

Dhata
Warehausn
Business
Llzar
SnrTe
Sysbem |
SOurcs i P2 Fesarer Bl
System TSIRNET e ckap

‘Worspaoss)

r————————l
H
-

———_——d

Figure 1.4: Self-Service Visualization

As shown in Figure 1.4, with a completely self-service approach to business intelligence with Power
BI, the business, and not IT, performs all of the functions of dataset design and report authoring.
Now that the three different deployment modes are understood in greater detail, next we cover

choosing between them.

Chapter 1 7

Choosing a deployment mode

Organizations generally choose a standard deployment mode used throughout the business or
choose a particular deployment mode based upon the unique requirements and goals of each

individual Power BI project.

It’s usually necessary or at least beneficial for Corporate BI organizations to own the Power BI
datasets or atleast the datasets that support important, widely distributed reports and dashboards.
This is primarily due to the value of providing a single source of truth built on top of a curated
data source such as a data warehouse as well as the technical skills involved in developing and

managing large or complex datasets.

Additionally, BI organizations require control of datasets to implement security and to maintain
version control. Security and version control often factor into corporate governance policies
or are necessary to maintain compliance with regulations imposed by government agencies.
Therefore, small datasets initially created by business teams are often migrated to the BI team
and either integrated into larger models or rationalized given the equivalent functionality from

an existing dataset.

Larger organizations with experience in deploying and managing Power BI often utilize a mix of
deployment modes depending on the needs of the project and available resources. For example, a
Corporate Bl solution with a set of standard IT-developed reports and dashboards distributed via
a Power Bl app may be extended by assigning Power BI Pro licenses to certain business users who
have experience or training in Power Bl report design. These users could then leverage the existing
datamodel and business definitions maintained by IT to create new reports and dashboards and

distribute this content in a separate Power Bl workspace and/or app.

A workspace is simply a container of datasets, reports, and dashboards in the Power BI cloud
service that can be distributed to large groups of users. A Power BI app represents the published
version of a workspace in the Power Bl service and workspace. Members can choose which items
in the workspace are included in the published Power BI app. See Chapter 10, Managing Application
Workspaces and Content, and Chapter 13, Creating Apps and Content Distribution, for greater detail

on app workspaces and apps, respectively.

Another common scenario is a Proof of Concept (POC). A POC is a small-scale self-service solution
developed by a business user or a team designed to be transitioned to a formal, IT-owned, and
managed solution. Power BI Desktop’s rich graphical interfaces at each layer of the application
(query editor, data model, and report canvas) make it possible and often easy for users to create

useful models and reports with minimal experience and little to no code.

Planning Power BI Projects

It’s much more difficult, of course, to deliver consistent insights across business functions (thatis,

finance, sales, and marketing) and at scale in a secure, governed environment. The IT organization

can enhance the quality and analytical value of these assets, as well as providing robust governance

and administrative controls to ensure that the right data is being accessed by the right people.

The following list of fundamental questions help guide a deployment mode decision:

1.

Who will own the data model?

Experienced dataset designers and other IT professionals are usually required to support
complex data transformations, analytical data modeling, large data sizes, and security rules,

such as RLS roles, as described in Chapter 5, Developing DAX Measures and Security Roles.

If the required data model is relatively small and simple, or if the requirements are unclear,

the business team may be best positioned to create atleast the initial iterations of the model.
The data model could be created with Analysis Services or Power BI Desktop.

Who will own the reports and dashboards?

Experienced Power BI report developers with an understanding of corporate standards
and data visualization best practices can deliver a consistent user experience.

Business users can be trained on report design and development practices and are well
positioned to manage the visualization layer, given their knowledge of business needs

and questions.
How will the Power BI content be managed and distributed?

A staged deployment across development, test, and production environments, as described
in Chapter 8, Managing Application Workspaces and Content, helps to ensure that quality,
validated content is published. This approach is generally exclusive to Corporate BI projects.

Sufficient Power BI Premium capacity is required to support distribution to Power BI free
users and either large datasets or demanding query workloads.

Self-Service BI content can be assigned to Premium capacity, but organizations may wish
to limit the scale or scope of these projects to ensure that provisioned capacity is being

used efficiently.

As covered in this section, deployment modes represent the overall manner in which Power BI

is used within an organization. Now that the different deployment modes for Power BI are fully

understood, we next move on to covering the processes and roles for implementing individual

Power BI projects.

Chapter 1 9

Project discovery and ingestion

An organization’s business intelligence assets are the result of individual projects designed to
accomplish a specific set of goals or answer a specific set of business questions. Thus, the successful

initiation and execution of business intelligence projects is vital to all organizations.

Power BI projects often begin with answering a set of standard questions within a project template
form. Business guidance on these questions informs the BI team of the high-level technical needs
of the project and helps to promote a productive project kickoff. By reviewing the project template,
the BI team can ask the project sponsor or relevant Subject Matter Experts (SMEs) targeted

questions to better understand the current state and the goals of the project.

A sample Power BI project template is provided in the following section.

Sample Power Bl project template

The primary focus of the project planning template and the overall project planning stage is on
the data sources and the scale and structure of the Power Bl dataset required. The project sponsor
or business users may only have an idea of several reports, dashboards, or metrics needed but,
as a Corporate BI project, it’s essential to focus on where the project fits within an overall Bl
architecture and the long-term Return on Investment (ROI) of the solution. For example, BI
teams would look to leverage any existing Power Bl datasets or Analysis Services tabular models

applicable to the project and would be sensitive to version control issues.

The following section provides a completed template for a Power BI project.

Sample template — Adventure Works BI

The template is comprised of two tables. The first table, Table 1.1, answers the essential who and
when questions so that the project can be added to the Bl team’s backlog. The BI team can use this
information to plan their engagements across multiple ongoing and requested Power BI projects

and to respond to project stakeholders, such as Vickie Jacobs, VP of Group Sales, in this example:

Date of Submission 6/6/2022

Project Sponsor Vickie Jacobs, VP of Group Sales
Adventure Works Sales

Primary Stakeholders
Adventure Works Corp

Power BI Author(s) Mark Langford, Sales Analytics Manager

Table 1.1: Project sponsors, stakeholders, and participants

10 Planning Power BI Projects

Identifying stakeholders is critical to the success of business intelligence projects. Stakeholders
define the goals and requirements of the business intelligence project and ultimately determine
success or failure in meeting identified goals. There are often multiple stakeholders for business
intelligence projects and these stakeholders may even span multiple business domains. Start by
identifying the business domains as stakeholders for the business intelligence project and then
identify specific individuals within those domains who can provide the goals and requirements

for the project.

Itis always advantageous to identify a single individual as a special kind of stakeholder, a project
sponsor. Project sponsors secure the funding and assist in the prioritization of resources for

business intelligence projects.

The following table, Table 1.2, is a list of questions that describe the project’s requirements and
scope. It is critical to discover and answer as many of these questions as possible early on in a
business intelligence project in order to set expectations in terms of the cost and duration of the
project. For example, the number of users who are read-only consumers of Power Bl reports and
dashboards and the number of self-service users who need Power BI Pro licenses to create Power
BI content largely impact the total cost of the project. Likewise, the amount of historical data to

include in the dataset (2 years, 5 years?) can significantly impact performance scalability:

Topic # | Question Business Input

Internet Sales, Reseller Sales, and

Can you describe the required the Sales and Margin Plan. We
Data sources | 1 data? (For example, sales, inventory, | need to analyze total corporate
shipping) sales, online and reseller sales, and

compare these results to our plan.

Is all of the data required for
Data sources | 2 | your project available in the data No.

warehouse (SQL Server)?

What other data sources (if any)

contain all or part of the required The Sales and Margin Plan is
Data sources | 3 L .

data (for example, Web, Oracle, maintained in Excel.

Excel)?

Yes, sales managers and associates

S . 4 Should certain users be prevented should only see data for their
ecuri
v from viewing some or all of the data? | sales territory group. VPs of sales,

however, should have global access.

Chapter 1

1

Does the data contain any PCII,

processes (fact tables)?

Security 5 . No, not that ’'m aware of.
HIPAA, GDPR, or other sensitive data?
Approximately, how many years of
Scale 6 Pp . ” vy 3-4.
historical data are needed?
Is it necessary to track the history
of certain dimensions such as
customers or products? For example, .
. ,) Yes, it would be helpful to track
Scale 7 | if a customer’s address changes, is .
. product history.
it necessary to store and report on
both the prior address and the new
address?
How often does the data need to be .
Datarefresh | 8 Daily.
refreshed?
Is there a need to view data in real
Datarefresh |9 . . No.
time (as it changes)?
o Approximately, how many users will
Distribution | 10 . 200.
need to view reports and dashboards?
Approximately, how many users
Distribution |11 | will need to create reports and 3-4.
dashboards?
Will the users be viewing the reports .
. . . Yes, users need the ability to access
Distribution | 12 | and dashboards on mobile devices . . .
the information on their phones.
such as phones or tablets?
Yes, there are daily and weekly
. o sales snapshot reports available on
Version Are there existing reports on the .
13 . the portal. Additionally, our team
control same data? If so, please describe. . .
builds reports in Excel that compare
actuals to the plan.
Version " Is the Power BI solution expected to | Yes, we would like to exclusively use
Control replace these existing reports? Power BI going forward.
. Is there an existing Power Bl dataset
Version .
15 | that targets the same business Not to our knowledge.
Control

Table 1.2: Project questions regarding project’s scope

12 Planning Power BI Projects

Abusiness analystinside the IT organization often partners with the business on completing the
project ingestion template and reviews the current state in order to give greater context to the
template. Prior to the project kickoff meeting, the business analyst usually meets with the Bl team

members to review the template and any additional findings or considerations.

Many questions with greater levels of detail are required as the project moves forward and
therefore the template shouldn’t attempt to be comprehensive or overwhelm business teams.
The specific questions to include should use business-friendly language and serve to call out the

top drivers of project resources and Corporate BI priorities, such as security and version control.

Now that you understand the process and requirements that drive project discovery and ingestion,

we next cover the different roles involved in Power BI projects.

Power Bl project roles

Following the review of the project template and input from the business analyst, members of the
Power Bl team directly engage the project sponsor and other key stakeholders to officially engage in
the project. These stakeholders include SMEs on the data source systems, business team members
knowledgeable about the current state of reporting and analytics, and administrative or governance

personnel with knowledge of organizational policies, available licenses, and current usage.

New Power BI projects of any significant scale and long-term adoption of Power BI within

organizations require Dataset Designers, Report Authors, and Power BI Admin(s), as illustrated

Reparl Authors Poweer BEAdrmings)
Collaborate with:
= Business Users
= Dalasel Designers
Reports-and Dashboards
« Diesign Standards

= Inleraclivity
Mobile Experience

in the following diagram:

Dralasel Desigreer:

Collaborate with:
= 365 Global Admin
= Goveriance Team
+ Bl Team

Tenant Sellings
= Secutily Groups

Premium Caparity

= Capadity Adlocation
Powver Bl Licenses
On-Premises Gateway
Uisage Monitoring
Resource Morilorig
Organizational Policies

« Muobile Optimized
Comlen! PRSI ritu i

* Apps
* Subscriptions
5 Supporl Seli-Service
Metadata * Analyze in Excel

Figure 1.5: Power Bl team roles

Chapter 1 13

Each of the three Power BI project roles and perhaps longer-term roles as part of a business
intelligence team entail a distinct set of skills and responsibilities. It can be advantageous in a
short-term or POC scenario for a single user to serve as both a dataset designer and areport author.
However, the Power BI platform and the multi-faceted nature of Corporate BI deployments are

too broad and dynamic for a single BI professional to adequately fulfill both roles.

It'srecommended that team members either self-select or are assigned distinct roles based on their
existing skills and experience and that each member develops advanced and current knowledge
relevant to their role. For example, individuals with a user experience and user interface (UX/UI)
background are generally best suited to fulfill the Report Author role. Conversely, more technical
developers with a background in coding and data modeling often fulfill the Dataset Designer
role. A Bl manager and/or a project manager can help facilitate effective communication across

roles and between the Bl team and other stakeholders, such as project sponsors.

Let’s now take a closer look at each of the three roles involved in Power BI projects.

Dataset designer

The dataset designer is responsible for the data access layer of the Power BI dataset, including
the authentication to data sources and the M queries used to define the tables of the data model.
Additionally, the dataset designer defines the relationships of the model and any required row-
level security roles and develops the DAX measure expressions for use in reports, such as year-
to-date (YTD) sales.

A Power BI dataset designer often has experience in developing Analysis Services models,
particularly Analysis Services models in tabular mode, as this aligns with the semantic modeling
engine used in Power BI. For organizations utilizing both Analysis Services and Power BI Desktop,
this could be the same individual. Alternatively, business analysts experienced with Power Pivot
for Excel or with the modeling features of Power BI Desktop may also prove to have the skills

required of Power BI dataset designers for self-service scenarios.

Datasets (semantic models) have always been the heart of Power BI solutions as they serve as
the data source responsible for rapidly resolving the report queries generated by reports and
analysis sessions. Power Bl datasets can be designed to import copies of data from multiple data
sources into a compressed, in-memory cache, as well as merely passing report queries back to
a data source system such as Azure Synapse Analytics. Additionally, Power BI dataset designers
can mix both import (in-memory) and DirectQuery storage modes across different tables of a

dataset thus balancing the tradeoffs between the two storage modes.

14 Planning Power BI Projects

In addition to providing a performant and scalable data source that efficiently utilizes resources
(CPU, RAM), datasets must provide a user-friendly interface for report authors and analysts to
quickly produce effective content. Moreover, datasets also typically contain Row-Level Security
(RLS) roles that limit what certain users or groups of users can see and can also contain complex
logic to support certain business rules or report requirements. Datasets are therefore a critical
component of Power BI projects and their design has tremendous implications regarding user

experience, query performance, source system and Power BI resource utilization, and more.

Given the importance of Power BI datasets and the implications of dataset design decisions for
entire environments, many organizations choose to dedicate one or multiple developer roles to
Power BI datasets. These individuals are expected to have advanced- to expert-level knowledge
of Data Analysis eXpressions (DAX) as well as experience with enterprise features such as
aggregation tables, partitions and incremental refresh, and other supporting third-party tools

such as ALM Toolkit. All of these topics are explained in later chapters.

Business analysts or “power users” can often independently learn or receive essential training
to build basic Power BI datasets that meet the needs of their department. However, business
analysts can also struggle to learn coding languages like M and DAX and can fail to appreciate
other goals of a dataset such as resource usage. For this reason, organizations are well advised
to regularly monitor the datasets developed by business teams/analysts and consider adopting

a process for migrating ownership of these datasets from a business team to a Corporate BI team.

It can’t be emphasized strongly enough that Power BI project teams should carefully distinguish
between datasets and reports and maintain a goal of supporting many related reports and
dashboards via high-quality, well-tested or certified datasets. This can be challenging as teams
are generally tasked with developing reports regardless of the source dataset, thus creating a
temptation to simply create a dataset dedicated to the needs of a single report. Over the long
term this “report factory” approach results in both inefficient use of resources (CPU) as well as
confusion and manageability issues with many datasets having slightly different logic and all

needing to be maintained.

Dataset designers should regularly communicate with data source owners or SMEs, as well as
report authors. For example, the dataset designer needs to be aware of changes to data sources so
that data access queries can be revised accordingly, and report authors can advise of any additional
measures or columns necessary to create new reports. Furthermore, the dataset designer should
be aware of the performance and resource utilization of deployed datasets and should work with

the Power Bl admin on issues such as Power BI Premium capacity.

Chapter 1 15

As per Figure 1.5, there are usually relatively few dataset designers in a team compared with
the number of report authors. This is largely due to the organizational objectives of version
control and reusability, which leads to a small number of large datasets. Additionally, robust
dataset development requires knowledge of the M and DAX functional programming languages,
dimensional modeling practices, and business intelligence. Database experienceis also very helpful.
If multiple dataset designers are on a team, they should look to standardize their development

practices so that they can more easily learn and support each other’s solutions.

With the crucial role of the dataset designer understood, we next explore the report author role.

Report authors

Report authors interface directly with the consumers of reports and dashboards or a representative
of this group. In a self-service deployment mode or a hybrid project (business and IT), a small

number of report authors may themselves work within the business.

Above all else, report authors must have a clear understanding of the business questions to be
answered and the measures and attributes (columns) needed to visually analyze and answer
these questions. The report author should also be knowledgeable of visualization best practices,
such as symmetry and minimalism, in addition to any corporate standards for report formatting

and layout.

Power BI Desktop provides arich set of formatting properties and analytical features, giving report
authors granular control over the appearance and behavior of visualizations. Report authors
should be very familiar with all standard capabilities, such as conditional formatting, drilldown,

drillthrough, and cross-highlighting, as they often lead demonstrations or training sessions.

It’s important for report authors to understand the use cases and essential features of the two
alternative report types available in Power Bl — paginated reports and Excel reports. For example,
given the requirements to export or print detail-level data, a report author should be comfortable
in building a paginated report via the Power BI Report Builder. Additionally, report authors should
understand the organization’s policies on custom visuals available in the MS Office store and the

specific use cases for top or popular custom visuals.

It should be clear now that report authors have distinct responsibilities and skillsets compared to
dataset designers. The ability to design intuitive reports and dashboards that are easily understood
by the business is also of critical importance to the success of every Power BI project. Next, we

look at the last critical role, the Power BI administrator.

16 Planning Power BI Projects

Power Bl administrator

As Power Bl has grown its capabilities and become a mission-critical tool for organizations, the role
of a Power Bl administrator (admin) has become increasingly common. Power Bl administrators
are responsible for ensuring Power Bl is utilized effectively and according to the organization’s
policies. For example, Power Bl administrators monitor and troubleshoot dataset refresh failures,
performance issues, user access requests and issues, and the overall health of an organization’s

Premium capacities.

A Power BI administrator is assigned the Power Bl administrator role in Azure Active Directory,
the identity and access control service at the heart of Microsoft’s cloud-based Software as a
Service (SaaS) products. Assignment of the Power Bl administrator role is done in the Microsoft

365 admin center and only Global administrators of Office 365 can assign users to the role.

Users assigned to the Power BI administrator role obtain access to the Power Bl admin portal
and the rights to configure Power BI tenant settings. The Power BI admin portal and tenant
settings are used to enable or disable features, such as exporting data and printing reports and
dashboards. BI and IT managers that oversee Power BI deployments are often assigned to this
role, as the role also provides the ability to manage Power BI Premium capacities and access to

standard monitoring and usage reporting.

The Power Bl admin should have a clear understanding of the organizational policy on the various
tenant settings, such as whether content can be shared with external users. For most tenant
settings, the Power BI administrator can define rules in the Power BI admin portal to include
or exclude specific security groups. For example, external sharing can be disabled for the entire

organization except for a specific security group of users.

Power BI admins must also have a thorough knowledge of permissions, roles, sharing, and
licensing of Power BI in order to resolve common issues related to access. For example, a Power
BI admin would know that build permission to a dataset could be granted to a business analyst

as a less permissive alternative to membership in the workspace of the source dataset.

Most organizations should assign two or more users to the Power BI administrator role and
ensure these users are trained on the administration features specific to this role. Chapter 14,
Administering Power BI for an Organization, contains details on the Power BI admin portal and

other administrative topics.

While Power Bl admins are notinvolved in the day-to-day activities of specific projects, the role is
ultimately critical to the success of all projects, as is the overall collaboration between all project

roles, which we cover in the next section.

Chapter 1 17

Project role collaboration

Communicating and documenting project role assignments during the planning stage promotes
the efficient use of time during the development and operations phases. For organizations
committed to the Power BI platform and perhaps migrating away from a legacy or different BI

platform, project roles may become full-time positions.

For example, BI developers with experience in DAX and Analysis Services tabular models
may transition to permanent dataset designer roles while BI developers experienced in data

visualization and report development may become report authors:

Name Project role

Brett Powell

Dataset Designer

Jennifer Lawrence

Report Author

Anna Sanders

Power BI Administrator

Mark Langford

Report Author

QA Tester

Stacy Loeb

Table 1.3: Project role assignments

Itisimportant for the individuals within all of the various roles to work together and communicate
effectively in order to deliver a successful project outcome. Proper communication and
collaboration are important to all projects but are perhaps even more crucial within the realm of
business intelligence given the distinct nature of the roles involved and the criticality of accurate,

effective reporting to the success of organizations.

With project roles and responsibilities now understood, we next cover the various forms of

licensing for Power BI deployments.

Power Bl licenses

Power BI provides a number of different licensing options that provide flexible and affordable

pricing for individuals and organizations. These licensing options come in two primary categories:

e Shared capacity

e Dedicated capacity

Let us first have a look at shared capacity.

18 Planning Power BI Projects

Shared capacity

Shared capacity is like an apartment building. While each tenant in the building has their own
personal living quarters accessible to only themselves, certain infrastructures such as plumbing,
electrical wiring, and stairways are common to everyone in the building. Shared capacity for Power
BI is similar. Each tenant within the Power BI service has its own area for publishing data and
reporting assets but infrastructure such as memory and processing capacity are shared among
the tenants. Thus, just like a noisy neighbor in an apartment building can affect other tenants,
so too can tenants within shared capacity in the Power BI service impact the performance for

other tenants.
Two licensing options exist for using shared capacity within the Power BI service:

. Free

° Pro

In the next two sections, we look at the differences between free and Pro licensing.

Free

It is possible to use Power BI entirely for free. First, the Power BI Desktop application is always
free to download and use. Licensing does not become a factor until one desires to use the Power
Bl service. However, there is a free version of the Power Bl service license. The free license allows
reports to be published to the Power BI service, however, there are significant limitations with

this approach. Figure 1.6 provides an overview of using Power BI free licensing.

Chapter 1

19

Refresh

Publish
78]
Web

|!ﬂli|

Power Bl

£0.00/maonth

Publish

Report Author
20,00/ month

Figure 1.6: Power Bl free

Wiew

4

External Consumer
S0.00/ month

50,00/ month

&

Internal Consumer

$0.00/month

As shown in Figure 1.6, report authors can use Power BI Desktop to create datasets and reports and

publish these assets to the Power Bl service. However, datasets can only be refreshed from cloud

sources and only from the user’s personal workspace, My Workspace. Refreshing on-premises

data sources is not supported. In addition, sharing content with other internal and external users

is only possible through the Publish to Web feature.

20 Planning Power BI Projects

Itisimportant to understand that the Publish to Web feature does not provide any kind of security
or authentication. Anyone that has the link to the report that has been published using the Publish
to Web feature can access the report anonymously. There are many other features that cannot be

used in the Power Bl service as well, such as subscriptions and comments.

Once the limitations are understood, solely using the free license for Power BI has only limited
uses. Mainly, it is used for testing or performing a proof of concept. However, the free Power
BI service license can be coupled with Power BI Premium to provide a powerful and affordable

solution for enterprises.
Now that the free licensing model is understood, let’s compare it with the pro licensing model.

Pro

The Pro licensing option for Power BI removes the limitations of free licensing when using the

Power BI service. Figure 1.7 presents an overview of Pro licensing.

&

View,
Primt &
Subscribe

External Consumer
$9.39/month

View,
Print &
Subscribe

Publish

Cloud

Refresh

O Premises

&

g
Report Author Internal Consumer
$9.99/month 59.99/month

Figure 1.7: Power Bl Pro

Chapter 1 21

As shown in Figure 1.7, Pro licensing allows users to share reports with both internal and external
users. However, those users also require a Pro license in order to access and view the reports
and datasets. Essentially, anyone that collaborates (views, creates, edits) datasets, reports, and

dashboards must have a Pro license.

Using a Pro license removes all of the restrictions of the free licensing structure and users are able
to utilize the standard features of the Power Bl service including the ability to create subscriptions,
comment, create and use apps, and leverage the Analyze in Excel feature, which exports areport’s

underlying data to Excel in order to support further analysis.

Now that we have explored the free and Pro licensing options associated with shared capacity,

we’ll next look at the licensing models available for dedicated capacity.

Dedicated capacity

In addition to shared capacity licenses, there are also dedicated capacity licenses available for
Power BI. These licenses reserve memory and processing capacity solely for the use of a particular
tenant. In addition, these licenses enable advanced features such as larger datasets, increased
user quotas, more frequent dataset refreshes, paginated reports, goals, scorecards, pipelines, and

embedding of content into corporate applications.
Three licensing options exist for using dedicated capacity within the Power BI service:

e Premium
e Premium Per User

e Embedded

We cover each of these licensing options in detail in the following sections.

Premium

With Power BI Premium, users with Power BI free licenses are able to access and view Power
BI apps of reports and dashboards that have been assigned to Premium capacities. This access
includes consuming the content via the Power BI mobile application as well as fully interacting
with standard Power Bl service features such as using subscriptions and comments. Additionally,
Power BI Pro users can share dashboards with Power Bl free users if the dashboard is contained in
a Premium workspace. Power BI Pro licenses are required for users that create or distribute Power
BI content, such as connecting to published datasets from Power BI Desktop or Excel. Figure 1.8

presents an overview of Premium licensing.

22 Planning Power BI Projects

&

External Consumer
S0.00/month

View,
Print &
Subscribe

Publizh

Cloud

Refresh

r-Pramines

m— |

Report Author Data Internal Consumer
$9.99/month 50.00/month

Figure 1.8: Power Bl Premium

Power BI Premium is purchased in capacity units priced on a per-month basis. These capacity
units are called node types and range in size from a P1 with 25 GB of RAM and eight virtual cores
for $5,000/month to a P5 with 400 GB of RAM and 128 virtual cores for $80,000/month. It is
important to understand that this is dedicated capacity and is charged on a per-month basis
(not per minute or hour). Power BI Premium also includes a license for using Power BI Report

Server on-premises.

An organization may choose to license Power BI Premium capacities for additional or separate
reasons beyond the ability to distribute Power BI content to read-only users without incurring
per-user license costs. Significantly, greater detail on Power BI Premium features and deployment

considerations is included in Chapter 15, Building Enterprise BI with Power BI Premium.

With an entry price point for Power Bl Premium of $5,000 per month, many mid-sized organizations
were priced out of the ability to afford dedicated capacity. Thus, Microsoft recently introduced

Premium Per User pricing, which we cover next.

Chapter 1 23

Premium Per User

Premium Per User (PPU) licensing effectively works identically to Pro licensing except that all

users of a PPU workspace must have a PPU license. An overview of PPU licensing is shown in

Figure 1.9.
ll"l | ;"Iw'
Primt &
L/ ﬁ Subscribe
External Consumer
320/month Share
View,
| Print &
Subscribe
Publizh
Cloud
Cir-Pramiseg Refrosh
a‘ :
Report Author Internal Consumer
420/ Month %20/ Month

Figure 1.9: Power Bl Premium Per User

As shown in Figure 1.9, PPU licensing works the same as Pro licensing except that PPU licensing
adds the additional advanced features of Premium such as increased dataset sizes, increased

refresh frequency, paginated reports, goals, scorecards, and pipelines.

Let’s now take a look at the last dedicated capacity licensing option, Embedded.

Embedded

Power BI Embedded is intended for use by developers and Independent Software Vendors
(ISVs) that use APIs to embed Power BI visuals, reports, and dashboards within their custom
web applications. These applications can then be accessed by external customers. Figure 1.10

provides an overview of Power BI Embedded.

24 Planning Power BI Projects

E=l

-
=y

External Consumer

50.00/manth
Web &
Power Bl o
5750 - 524,000

Pulblish

o

e

(%)

Report Author Data Internal Consumer
59.99/Maonth 50,00/ Month

Figure 1.10: Power Bl Embedded

Similar to Power BI Premium, capacity units or node types for Embedded range in size from an
Al with 3 GB of RAM and a single virtual core for $750 per month to an A6 with 100 GB of RAM
and 32 virtual cores for $24,000 per month. However, different than Premium, Embedded is
charged on a usage basis per minute versus a flat charge per month. The usage-based charge is
attractive to developers and ISVs as this provides greater flexibility and less expense, particularly
during development, since the service can be deprovisioned when development is not occurring.

With the basic licenses for Power Bl understood, let’s next consider how these different licenses

are combined to provide a complete licensing scenario for an organization.

Power Bl license scenarios

The optimal mix of Power BI Pro and Power BI Premium licensing in terms of total cost varies
based on the volume of users and the composition of those users between read-only consumers
of content versus Self-Service Bl users. In relatively small deployments, such as 200 total users,
a Power BI Pro license can be assigned to each user regardless of self-service usage and Power BI
Premium capacity can be avoided.

Chapter 1 25

However, there are other benefits to licensing Power BI Premium capacity that may be necessary

for certain deployments, such as larger datasets or more frequent data refreshes.

If an organization consists of 700 total users with 600 read-only users and 100 self-service users
(content creators), it’s more cost-effective to assign Power BI Pro licenses to the 100 self-service
users and to provision Power BI Premium capacity to support the other 600 users. Likewise, for
alarger organization with 5,000 total users and 4,000 self-service users, the most cost-effective
licensing option is to assign Power Pro licenses to the 4,000 self-service users and to license Power

BI Premium for the remaining 1,000 users.

Several factors drive the amount of Power BI Premium capacity to provision, such as the number
of concurrent users, the complexity of the queries generated, and the number of Concurrent data
refreshes. See Chapter 14, Administering Power BI for an Organization, and Chapter 15, Building
Enterprise BI with Power BI Premium, for additional details on aligning Power BI licenses and

resources with the needs of Power BI deployments.

In the sample project example introduced in the section Sample template — Adventure Works BI,
Power BI Premium is being used. Therefore, only a few users need Power BI Pro licenses to create

and share reports and dashboards.

Referencing Table 1.3, Mark Langford, a data analyst for the sales organization, requires a Pro
license to analyze published datasets from Microsoft Excel. Jennifer Lawrence, a corporate BI
developer and report author for this project, requires a Pro license to publish Power Bl reports to
app workspaces and distribute Power BI apps to users. Finally, Brett Powell as dataset designer

also requires a Power BI Pro license to create and publish the underlying dataset.

Typically, a Power BI administrator is also assigned a Power BI Pro license. Per Table 1.3, Anna
Sanders is the Power BI administrator. However, a Power BI Pro license is not required to be

assigned to the Power BI administrator role.

The approximately 200 Adventure Works sales team users who only need to view the content can
be assigned free licenses and consume the published content via Power BI apps associated with
Power BI Premium capacity. Organizations can obtain more Power BI Pro licenses and Power BI

Premium capacity (virtual cores, RAM) as usage and workloads increase.

We mentioned at the beginning of this chapter that Power BI is a robust, flexible business
intelligence platform and the different licensing options and combinations are a reflection of
that flexibility. In the following sections, we’ll next cover the tools, processes, and overall design

of datasets.

26 Planning Power BI Projects

Dataset design

Designing Power BI datasets is in many respects similar to designing data warehouses. Both
datasets and data warehouses share concepts such as fact and dimension tables, star schemas,
slowly changing dimensions, fact table granularity, and local and foreign keys for building

relationships between tables.

This similarity allows us to use the same proven tools and processes for designing and building
Power BI datasets as are used to design data warehouses. In this section, we cover the tools and

processes used to design Power BI datasets, starting with the data warehouse bus matrix.

Data warehouse bus matrix

The data warehouse bus matrix is a staple of the Ralph Kimball data warehouse architecture, which
provides an incremental and integrated approach to data warehouse design. This architecture, as
per The Data Warehouse Toolkit (Third Edition) by Ralph Kimball, allows for scalable data models,
as multiple business teams or functions often require access to the same business process data

and dimensions.

To promote reusability and project communication, a data warehouse bus matrix of business
processes and shared dimensions is recommended. An example data warehouse bus matrix is

shown in Figure 1.11:

ihpred Diremiom

DUENISE PROCEIIES o+ ._S?yB ‘Jr ‘ﬂ'f fﬁ fs-'F

Il P e
Rzwrbersakea
b Plan
Gl Ll

Ty e £y

L Taiwind

L T "l T -l &

?{m“ f "f L g’j

& Ea

SRt e S

-

IR AR MR AR SE R
Lk L&A

Figure 1.11: Data warehouse bus matrix

Each row in Figure 1.11 reflects an important and recurring business process, such as the monthly
close of the general ledger, and each column represents a business entity, which may relate to
one or several of the business processes. The shaded rows (Internet Sales, Reseller Sales, and
Sales Plan) identify the business processes that will be implemented as their own star schemas

for this project.

Chapter 1 27

The bus matrix can be developed in collaboration with business stakeholders, such as the corporate

finance manager, as well as source system and business intelligence or data warehouse SMEs.

The architecture of the dataset should support future Bl and analytics projects of the organization
involving the given business processes (fact tables) and business entities (dimension tables). For
example, the same dataset containing Internet Sales data should support both an executive’s

sales and revenue dashboard as well a business analyst’s ad hoc analysis via Excel PivotTables.

Additional business processes, such as maintaining product inventory levels, could potentially be
added to the same Power Bl dataset in a future project. Importantly, these future additions could
leverage existing dimension tables, such as a product table, including its source query, column

metadata, and any defined hierarchies.

Each Power BI report is usually tied to a single dataset. Given this 1:1 relationship and the
analytical value of integrated reports across multiple business processes, such as Inventory and
Internet Sales, it’s important to design datasets that can scale to support multiple star schemas.
Consolidating business processes into one or a few datasets also makes solutions more manageable
and is a better use of source system resources, as common tables (for example, Product, Customer)

are only refreshed once.

The data warehouse bus matrix is a proven tool used during the design process of data warehouses
and is just as effective for designing Power BI datasets. We cover this design process in the

next section.

Dataset design process

With the data warehouse bus matrix as a guide, the business intelligence team can work with
representatives from the relevant business teams and project sponsors to complete the following

four-step dataset design process:
1. Select the business process
2. Declare the grain
3. Identify the dimensions
4. Define the facts

In the following sections, we cover each of these steps in detail, starting with selecting the

business process.

28 Planning Power BI Projects

Select the business process

Ultimately, each business process is represented by a fact table with a star schema of many-to-one
relationships to dimensions. In a discovery or requirements gathering process, it can be difficult
to focus on a single business process in isolation as users regularly analyze multiple business

processes simultaneously or need to.

Nonetheless, it’s essential that the dataset being designed reflects low-level business activities
(for example, receiving an online sales order) rather than consolidation or integration of distinct

business processes such as a table with both online and reseller sales data:

e Confirm that the answer provided to the first question of the project template from Table
1.2 regarding data sources is accurate.

¢ In this project, the required business processes are Internet Sales, Reseller Sales, and
Annual Sales and Margin Plan.

e Each of the three business processes corresponds to a fact table to be included in the
Power BI dataset.

e Obtain ahigh-level understanding of the top business questions for each business process.
For example, “What are total sales relative to the Annual Sales Plan and relative to last
year?”.

e Inthisproject, Internet Sales and Reseller Sales are combined into overall corporate sales
and margin KPIs.

e Optionally, reference the data warehouse bus matrix of business processes and their related
dimensions. For example, discuss the integration of inventory data and the insights this
integration may provide.

e In many projects, a choice or compromise has to be made given the limited availability
of certain business processes and the costs or timelines associated with preparing this
data for production use.

e Additionally, business processes (fact tables) are the top drivers of the storage and

processing costs of the dataset and thus should only be included if necessary.

A common anti-pattern (a response to a reoccurring problem that is generally ineffective and
potentially counterproductive) to avoid in Power BI projects is the development of datasets for
specific projects or teams rather than business processes. For example, developing a dataset
exclusively for the marketing team and another dataset created for the sales organization.
Assuming both teams require access to the same sales data, this approach naturally leads to
a waste of resources, as the same sales data is queried and refreshed twice and both datasets

consume storage resources in the Power BI service.

Chapter 1 29

Additionally, this isolated approach leads to manageability and version control issues, as the
datasets may contain variations in transformation or metric logic. Therefore, although the
analytical needs of specific business users or teams are indeed the priority of BI projects, it’s

important to plan for sustainable solutions that can ultimately be shared across teams.

Let’s now look at the next step in the process, declaring the grain.

Declare the grain

The grain of fact tables ultimately governs the level of detail available for analytical queries as
well as the amount of data to be accessed. Higher grains mean more detail while lower grains

mean less detail.

All rows of a fact table should represent the individual business process from step 1 at a certain
level of detail or grain such as the header level or line level of a purchase order. Therefore, each row
should have the same meaning and thus contain values for the same key columns to dimensions

and the same numeric columns.

During this step, determine what each row of the different business processes represents. For
example, each row of the Internet Sales fact table represents the line of a sales order from a
customer. Conversely, the rows of the Sales and Margin Plan are aggregated to the level of a

Calendar Month, Products Subcategory, and Sales Territory region.

If it’s necessary to apply filters or logic to treat certain rows of a fact table differently than others,
the fact table likely contains multiple business processes (for example, shipments and orders).
Although it’s technically possible to build this logic into DAX measure expressions, well-designed
fact tables benefit Power BI and other data projects and tools over the long term. Thus, in such

circumstances, it is advisable to split the table into two separate tables.
When analyzing the grain of fact tables, consider the following:

e Review and discuss the implications of the chosen grain in terms of dimensionality and
scale

e Higher granularities provide greater levels of dimensionality and thus detail but result
in much larger fact tables

e If a high grain or the maximum grain is chosen, determine the row counts per year and
the storage size of this table once loaded into Power BI datasets

e If a lower grain is chosen, ensure that project stakeholders understand the loss of

dimensionalities, such as the inability to filter for specific products or customers

30 Planning Power BI Projects

In general, a higher granularity is recommended for analytical power and sustainability. If a less
granular design is chosen, such as the header level of a sales order, and this grain later proves
to be insufficient to answer new business questions, then either a new fact table would have to
be added to the dataset or the existing fact table and all of its measures and dependent reports

would have to be replaced.

Once the grains of all fact tables are determined, it is time to move on to the next step and identify

the dimensions.

Identify the dimensions

Dimensions are a natural byproduct of the grain chosen in the previous design process step. A
single sample row from the fact table should clearly indicate the business entities (dimensions)
associated with the given process such as the customer who purchased an individual product on

a certain date and at a certain time via a specific promotion.

Facttables representing alower grain have fewer dimensions. For example, a fact table representing
the header level of a purchase order may identify the vendor but not the individual products

purchased from the vendor.
When analyzing dimensions, consider the following:

e Identify and communicate the dimensions that can be used to filter (aka slice and dice)
each business process.

e The foreign key columns based on the grain chosen in the previous step reference
dimension tables.

e Review asample of all critical dimension tables, such as Product or Customer, and ensure
these tables contain the columns and values necessary or expected.

e Communicate which dimensions can be used to filter multiple business processes
simultaneously. For example, in this project, the Product, Sales Territory, and Date
dimensions can be used to filter all three fact tables.

e The data warehouse bus matrix referenced earlier can be helpful for this step.

e Lookfor any gap between the existing dimension tables and business questions or related
reports.

e For example, existing IT-supported reports may contain embedded logic that creates
columns via Structured Query Language (SQL) that are not stored in the data warehouse.

e Strive to maintain version control for dimension tables and the columns (attributes)

within dimension tables.

Chapter 1 31

e It may be necessary for project stakeholders to adapt or migrate from legacy reports or

an internally maintained source to the Corporate BI source.

A significant challenge to the identity of the dimensions step can be a lack of Master Data
Management (MDM) and alternative versions. MDM is a discipline practiced by organizations
in order to ensure the accuracy, uniformity, semantic consistency, and stewardship of the official

data assets.

For example, the sales organization may maintain its own dimension tables in Excel or Microsoft
Access and its naming conventions and hierarchy structures may represent a conflict or gap with
the existing data warehouse. Additionally, many corporate applications may store their own

versions of common dimensions, such as products and customers.

These issues should be understood and, despite pressure to deliver Bl value quickly or according
to a specific business team’s preferred version, the long-term value of a single definition for an

entire organization as expressed via the bus matrix should not be sacrificed.

With dimensions identified, the final step is to define the fact tables.

Define the facts

The facts represent the numeric columns included in the fact tables. While the dimension columns
from step 3 are used for relationships to dimension tables, the fact columns are used in measures
containing aggregation logic such as the sum of a quantity column and the average of a price

column.
When defining the facts, consider the following:

e Definethe businesslogic for each fact, represented by measures in the dataset. For example,
gross salesis equal to the extended amount on a sales order, and net sales is equal to gross

sales minus discounts.

e Any existing documentation or relevant technical metadata should be reviewed and
validated.

e Similar to the dimensions, any conflicts between existing definitions should be addressed

so that a single definition for a core set of metrics is understood and approved.

e Additionally, a baseline or target source should be identified to validate the accuracy of
the metrics to be created. For example, several months following the project, it should
be possible to compare the results of DAX measures from the Power Bl dataset to an SSRS

report or a SQL query.

32 Planning Power BI Projects

e Ifno variance exists between the two sources, the DAX measures are valid and thus any

doubt or reported discrepancy is due to some other factor

See Chapter 2, Preparing Data Sources, Chapter 3, Connecting Sources and Transforming Data with M,
Chapter 4, Designing Import and DirectQuery Data Models, and Chapter 5, Developing DAX Measures
and Security Roles, for details on the fact table columns to include in Power Bl datasets (for import
or DirectQuery) and the development of DAX metric expressions. The fact definitions from this
step relate closely to the concept of base measures described in Chapter 5, Developing DAX Measures

and Security Roles.

Ultimately, the DAX measures implemented have to tie to the approved definitions, but there are
significant data processing, storage, and performance implications based on how this logic is
computed. In many cases, the Power Bl dataset can provide the same logic as an existing system

but via an alternative methodology that better aligns with Power BI or the specific project need.

This concludes the dataset design process. Next, we cover another important topic related to

datasets, data profiling.

Data profiling

The four-step dataset design process can be immediately followed by a technical analysis of
the source data for the required fact and dimension tables of the dataset. Technical metadata,
including database diagrams and data profiling results, such as the existence of null values in
source columns, are essential for the project planning stage. This information is used to ensure
the Power BI dataset reflects the intended business definitions and is built on a sound and

trusted source.

For example, Figure 1.12 shows a database diagram that describes the schema for the reseller

sales business process:

Chapter 1 33
DlmPrudu:tCateuorv : DlmProdudSuhcateaorv DlrnProdud DlmPrn motion
ProductCategoryKey PraductSubcateganKey Productkey Promotionkey ~
ProductCategoryhliematekey Product Subcategorgal temateKay Productdltematakay PFromotionAltematekey
EnglishPraductCategoryName ErglishPreductSubcataganyNama Productubcategon ey EnglishPromotionMame
SpanishProduciCategaryName SpanishPraductsubeategaryMa... WesghtUnitMeasureCode SpanishPremationame
FrenchProductCategoryName FrenchProductSubcategoryMarme SizelnithMeasureCode FrenchPromctioname
PraductCategaryKey 5 EnglishPraductName 2
SpanishProductame EnglishPromotionType
DlmSaIesTemtanr FrenchProductMame SpanishPromotionType
SalesTarritaryKey SandardCast FrenchPromotion Type v
SalesTerritoryAlternatekey i '_
SalesTerritaryRegian :
ZalesTerritoryCountry =%
SalesTerritoryGroup i B .
SalesTerritorylmage FactReseIIerSales DimCurrency
o e ProductKey = D Resell * Curencykey
] == DimReseller 7 .
i orderDateKey Rasellerkay Currencydlternatel ey
‘ DueDatekey Gaographykey Currencyhlarme
*~ DimEmblovee ShipDatekey Resellerflternatekey
Employeekey Resellerkey Phene
PareniEmplayeekey Employsekey BusinessType
EmployeeMational Daltemate.., Pramotankey Reselleriame
PareniErnplayeeMational DAL, CurrencyKey MumbesEmployeas
f;arl:tls;r:r::cr)'xey SalesTerritoryKey OrdarFrequancy
v IE' SalesOrderhumber Ordaridonth S| DlmGeoura phv
: SalesOrdsrinahamber FirstOndertiear GaagraphyKey -
MidcieName Revigsanhlurnber City
NamaStyle ol

{ = o] OrderQuantity

UnitPrice w el

Figure 1.12: SQL Server database diagram: reseller sales

StateProvinceCode
StateProvinceiarme
CountryRegionCode
EnglishCountryRegionh.. «

The foreign key constraints (the lines between the tables) identify the surrogate key columns used

in the relationships of the Power Bl dataset and the referential integrity of the source database. The

columns used as keys are displayed in Figure 1.12 with small key icons to the left of the column name.

In this schema, the product dimension is modeled as three separate dimension tables—DimProduct,

DimProductSubcategory, and DimProductCategory. Given the priorities of usability, manageability,

and query performance, a single denormalized product dimension table that includes essential

Product Subcategory and Product Category columnsis generally recommended. This reduces

the volume of source queries, relationships, and tables in the data model and improves report

query performance, as fewer relationships must be scanned by the dataset engine.

34 Planning Power BI Projects

Clear visibility of the source system, including referential and data integrity constraints, data
quality, and any MDM processes, is essential. Unlike other popular BI tools, Power Bl is capable
of addressing many data integration and quality issues, particularly with relational database
sources that Power BI can leverage to execute data transformation operations. However, Power BI's
extract, transform, load (ETL) capabilities are not a substitute for data warehouse architecture

and enterprise ETL tools, such as SQL Server Integration Services (SSIS).

For example, it’s the responsibility of the data warehouse to support historical tracking with slowly
changing dimension ETL processes that generate new rows and surrogate keys for a dimension
when certain columns change. To illustrate a standard implementation of slowly changing
dimensions, Figure 1.13 shows the results of a query of the DimProduct table in the Adventure

Works data warehouse returning three rows for one product (FR-M94B-38):

Puodbiriliey mipdeclaioesmekey Pngich®oodan Hame StamlarsCas - LELFCE [SR .) | B 1] ErsdlalE: sl
HH ! FR-RA%0-TR | HI Minutin Foame - Alerk, 1R Bl 041 LESL 1733 T1a W4z 2001000 0T I S00P-1-JE MHAAERICD HInd
Hn l‘;ﬁ‘fﬂ‘:‘;ﬂl = HL Moulsin Pame - Beck. 35 ATl A5 W F314s SULE G0 UL UG 00D 000-13-37 00000500 HULL
£l FR-RFR4N-18 HL Kapcan Fame - B2k 3B T A FA. M 20307-00 30 KL CLFTEnE

Figure 1.13: Historical tracking of dimensions via slowly changing dimension ETL processes

It’s the responsibility of the Power BI team and particularly the dataset designer to accurately
reflect this historical tracking via relationships and DAX measures, such as the count of distinct
products not sold. Like historical tracking, the data warehouse should also reflect all master data
management processes that serve to maintain accurate master data for essential dimensions,

such as customers, products, and employees.

In other words, despite many line of business applications and Enterprise Resource Planning
(ERP), Customer Relationship Management (CRM), Human Resource Management (HRM), and
other large corporate systems that store and process the same master data, the data warehouse
should reflect the centrally governed and cleansed standard. Therefore, creating a Power Bl dataset
that only reflects one of these source systems may later introduce version control issues and,
similar to choosing an incorrect granularity for a fact table, can ultimately require costly and

invasive revisions.

Different tools are available with data profiling capabilities. If the data source is SQL Server, SSIS
can be used to analyze source data intended for use in a project. In Figure 1.14, the Data Profiling

task is used in an SSIS package to analyze the customer dimension table:

Chapter 1 35

el e Dats Flow il Paramet... [Event Handl.. "s— Package Exglo..,

E Dwta Prafiling Task

ay Single Table Quick Profile Form . (] b4

You can profile a table or view on all applicable columns using

§ dafault settings. Choose tha lable and the profilas you want.
ADD.NET Connactien; IogaingsnMSS0LSERVERDEY. AOvaniursiVerkaOw20149 1 u ...
Table or View: [BI).[vDim_Customer] o

Computa; |+] Gelumn Hull Rata Profia
Column Stalistics Profils
Column Value Distibution Erafile
Celumn Langth Distibutian Profile
Column Patbem Profis
|| Candidate Key Profile

for up e 1 ¥ Column keys

[[] Functional Depardency Frafile

fer up e 1 = Columng as Determinan Columnsg

Ok Cancal Halp

Figure 1.14: Data Profiling task in SSIS

The Data Profiling task requires an ADO.NET connection to the data source and can write its
output to an XML file or an SSIS variable. In this example, the ADO.NET data source is the
Adventure Works data warehouse database in SQL Server 2016 and the destination is an XML
file (DataProfilingData.xml).

36 Planning Power BI Projects

Once the task is executed, the XML file can be read via the SQL Server Data Profile Viewer as per
the following example. Note that this application, Data Profile Viewer, requires the installation
of SQL Server and that the Data Profiling task only works with SQL Server data sources. All fact
and dimension table sources can be analyzed quickly for the count and distribution of unique

values, the existence of null values, and other useful statistics.

Each Data Profiling task can be configured to write its results to an XML file on a network location
for access via tools such as the Data Profile Viewer. In the example shown in Figure 1.15, the Data
Profile Viewer is opened from within SSIS to analyze the output of the Data Profiling task for the

customer dimension table:

] Durtas Pootle icwes = O x

% Open 2 Relesh

Fralies [Table Wew) MW ot bl Babo Proddes - fdbo] DS meDustonai] & Encrypted Conmetion TKE) Koan: -5

=g Dale Sources Ciimsn bl Cpunt Wyl Percaniage
lacah CH.S ERVERDE
1§ locahs B0 S ERVERDEY [r——— o B 00 %
y Databace
=1 Bfven bur=Works [IA 114 Kiddlehame THHI a7 FEH %
Tabdes
] " ——
T frib] [Tremd rzemaar Mamesiye o el
F Candudate Key Profiles A il ar s Crearaedd (1] 00000 ¥
Lcuran Lanagih Uk dnchon Frobles -
- Mumi shdrmnAiH 00000 W
Sl Cobumn Wl Ratic Profies oyl o
42 Criumn Pattemn Prfike e n O 0IKI %
i Lo Shabyiey Peoh e P & s
i S ——— L]l e] L] O IKHK %
1| Fonctivnal Depmndeny Praflec] Spameh{lcngabon L] 5 D000 5
Gufte 1E4R1 o
Tika 1 roa i Pt
T 1] £ U0 S
Yeatyinoome n U0 S

Figure 1.15: Data Profile Viewer: column null ratio profiles of DimCustomer table

Identifying and documenting issues in the source data via data profiling is a critical step in the
planning process. For example, the cardinality or count of unique values largely determines the
data size of a column in an import mode dataset. Similarly, the severity of data quality issues

identified impacts whether a DirectQuery dataset is a feasible option.

In general, enterprise Bl teams should utilize enterprise data profiling tools such as those included
with SQL Server. However, basic data profiling tools are also available in Power BI Desktop, which

We cover next.

Data profiling with Power Bl Desktop

Power Bl Desktop includes simple data quality reporting within the Power Query Editor interface.
The Power Query Editor is used to develop queries for connecting to and ingesting data from

source systems and is covered in detail in Chapter 2, Preparing Data Sources.

Chapter 1 37

To access the data quality reporting within Power Query Editor, use the View tab and check the
boxes for Column quality, Column distribution, and Column profile as shown in Figure 1.16:

- Hrme Tamiom Fedd T ‘Wiea Trnlx Helz

v = Forescols Bar Pzsoezacad Column detrbusas = By albow
ﬂ Thow wheinpery [Cohrmm profds -nl i
LHE] s i W Eatamho] oy
Senting: i Dl ey Cekarn N
-1} Ciams Fredsa (== 11] Parmmarism Ataanced Depercdancies
» k] = Talile MédeeColuming (dbs FaitintermnetSalesd, " Revisbosken®er™, "Cirrlor Trat KEngHoa®er”, "Ou Dome i tumdsa "]
.tz Pmdurtiiey -‘L--p!-._ TIrdemnskiy » | 13 Muelateley = [1f3 shiphateiey [| iy Cimtveneriey .
= Valid 160 = Walid 130 | & Vald biirs | = Vald 0 = Valid 108%
il & Error 4% @ Errar M | & Errar ™ & Error % & Ermor o
é ® Ereply a% = FL % = Emply s & Emyily & Emgly
| — T ||||IIIIIIfIIIiIIIiII |||||||||||||||]|||||
25 dmincd. [urig. 0 dofinci d aregue 1 dixfinci & unigoe: dinfinct. § un 0 dimiisci 1000 unigus
1 i ey Lk i AT11ar1o J00r3I0s J17GN
z TR by] Mrliaro 2OITEI0S IEWS
3 E] SRS oG RERIY 20 DS 25863
4 338 G PR P FLLHETE MHTE0S 24501
% T IORTIIET SF1I0EID FaeiHir]] 11003
L k14 Bl ek] AN 0T I a7Pan
L4
Colurrn chabiches Tt Valee distribuben
Ceut =]
Emor o
Erphy L
Dtinet 2
Urmrjus o
P o
i) L)
L1 FQ
L Tal
Ararmou 2B
Standhard it 14 1540, III
. LT =
o 2 2SI EEG 3 R 5

Figure 1.16: Data quality in Power Query Editor

As shown in Figure 1.16, activating the data quality reporting within Power Query Editor displays
many important statistics such as the number of distinct values, the value distribution, and the
percentage of valid values and errors.

While not as comprehensive as some enterprise data quality tools, the data quality reporting
within Power Query Editor is useful as an additional data quality check for data accessed by
Power BI Desktop.

Once source datais profiled, the next natural step is dataset planning as covered in the next section.

38 Planning Power BI Projects

Dataset planning

After the source data is profiled and evaluated against the requirements identified in the four-
step dataset design process, the BI team can further analyze the implementation options for the
dataset. In almost all Power BI projects, even with significant investments in enterprise data
warehouse architecture and ETL tools and processes, some level of additional logic, integration,
or transformation is needed to enhance the quality and value of the source data or to effectively

support a business requirement.

A priority of the dataset planning stage is to determine how the identified data transformation
issues are addressed to support the dataset. Additionally, based on all available information and
requirements, the project team must determine whether to develop an import mode dataset,
DirectQuery dataset, or composite dataset. Import, DirectQuery, and composite datasets are

explained in the section Import, DirectQuery, Live, and Composite Datasets.

The initial step in the dataset planning process is planning for data transformations, which we’ll

review next.

Data transformations

To help clarify the dataset planning process, a diagram such as Figure 1.17 can be created that
identifies the different layers of the data warehouse and Power BI dataset where transformation

and business logic can be implemented:

Dala Sources

Data Warehouse

ETL/ELT Data Transformation Process
Fact and Dimension Tables

501 Views

Power Bl Desktop

4 M Queries

DAX Calculated Tables and Columns

DAX Measures

Figure 1.17: Dataset planning architecture

Chapter 1 39

In some projects, minimal transformation logicis needed and can be easily included in the Power BI
dataset or the SQL views accessed by the dataset. For example, if only a few additional columns are
needed for a dimension table and there’s straightforward guidance on how these columns should
be computed, the IT organization may choose to implement these transformations within Power

BI’s Power Query (M) queries rather than revise the data warehouse, at least in the short term.

If a substantial gap between BI needs and the corporate data warehouse is allowed to persist
and grow due to various factors, such as cost, project expediency, and available data warehouse
skills, then Power BI datasets become more complex to build and maintain. Dataset designers
should regularly analyze and communicate the implications of datasets assuming greater levels

of complexity.

However, if the required transformation logic is complex or extensive with multiple join operations,
row filters, and data type changes, then the IT organization may choose to implement essential
changes in the data warehouse to support the new dataset and future BI projects. For example,
a staging table and a SQL stored procedure may be needed to support a revised nightly update
process, or the creation of an index may be needed to deliver improved query performance for a

DirectQuery dataset.

Ideally, all required data transformation and shaping logic could be implemented in the source
data warehouse and its ETL processes so that Power BI is exclusively used for analytics and
visualization. However, in the reality of scarce IT resources and project delivery timelines, typically
atleast a portion of these issues must be handled through other means, such as SQL view objects

or Power BI’s M query functions.

A best practice is to implement data transformation operations within the data warehouse or
source system. This minimizes the resources required to process an import mode dataset and, for
DirectQuery datasets, can significantly improve query performance, as these operations would

otherwise be executed during report queries.

For many common data sources, such as Oracle and Teradata, M query expressions are translated
into equivalent SQL statements (if possible) and these statements are passed back to the source
system via a process called query folding. See Chapter 2, Preparing Data Sources, for more details

on query folding.

As per the dataset planning architecture diagram, a layer of SQL views should serve as the source
objects to datasets created with Power BI Desktop. By creating a SQL view for each dimension
and fact table of the dataset, the data source owner or administrator is able to identify the views
as dependencies of the source tables and is therefore less likely to implement changes that would

impact the dataset without first consulting the BI team.

40 Planning Power BI Projects

Additionally, the SQL views improve the availability of the dataset, as modifications to the source

tables are much less likely to cause the refresh process to fail.

As a general rule, the BI team and IT organization should avoid the use of DAX for data
transformation and shaping logic, such as DAX calculated tables and calculated columns. The
primary reason for this is that it weakens the link between the dataset and the data source, as these

expressions are processed entirely by the Power Bl dataset after source queries have been executed.

Additionally, the distribution of transformation logic across multiple layers of the solution (SQL,
M, DAX) causes datasets to become less flexible and manageable. Moreover, tables and columns
created via DAX do not benefit from the same compression algorithms applied to standard tables
and columns and thus can represent both a waste of resources as well as a performance penalty

for queries accessing these columns.

In the event that required data transformation logic cannot be implemented directly in the data
warehouse or its ETL or Extract-Load-Transform (ELT) process, a second alternative is to build
thislogicinto the layer of SQL views supporting the Power BI dataset. For example, a SQL view for
the product dimension could be created that joins the Product, Product Subcategory, and Product

Category dimension tables, and this view could be accessed by the Power BI dataset.

As a third option, M functions in the Power BI query expressions could be used to enhance or
transform the data provided by the SQL views. See Chapter 2, Preparing Data Sources, for details

on these functions and the Power BI data access layer generally.

Once data transformation planning is complete, the next step is to determine the mode of the

dataset as explained in the next section.

Import, DirectQuery, Live, and Composite datasets

A subsequentbut closely related step in dataset planning is choosing between the defaultimport
mode, DirectQuery mode, Live mode, or composite mode. In some projects, this is a simple decision
as only one option is feasible or realistic given the known requirements while other projects entail

significant analysis of the pros and cons of either design.

If a data source is considered slow or ill-equipped to handle a high volume of analytical queries,
then an import mode dataset s very likely the preferred option. Likewise, if near real-time visibility
of a data source is an essential business requirement, then DirectQuery or Live mode are the

only options.

Chapter 1 41

The DirectQuery and Live modes are very similar to one another. Both methods do not store data
within the datasetitself but rather query source systems directly to retrieve data based upon user
interaction with reports and dashboards. However, Live mode is only supported for Power Bl

datasets, Analysis Services (both multi-dimensional and tabular), and Dataverse.

When DirectQuery/Live is a feasible option or can be made a feasible option via minimal
modifications, organizations may be attracted to the prospect of leveraging investments in high-
performance database and data warehouse systems. However, the overhead costs and version
control concerns of import mode can be reduced via Power Bl features, such as the dataset refresh
APIs or pipelines discussed in Chapter 10, Managing Application Workspaces and Content, and

incremental data refresh.
The following list of questions can help guide an import versus DirectQuery/Live decision:

1. Isthere asingle data source for our dataset that Power BI supports as a DirectQuery/Live

source?

For example, each fact and dimension table needed by the dataset is stored in a single

data warehouse database, such as Oracle, Teradata, SQL Server, or Azure SQL Database.

The following URL identifies the data sources supported for DirectQuery/Live with Power
B, including sources that are currently only in beta: http://bit.1ly/2AcMp25.

2. If DirectQuery/Live is an option per question 1, is this source capable of supporting the

analytical query workload of Power BI?

For example, although Azure Synapse (formerly Azure SQL Data Warehouse) technically
supports DirectQuery, it’s not recommended to use Azure Synapse as a DirectQuery data
source, given the limitations on the volume of concurrent queries supported and a lack

of query plan caching.

In many other scenarios, the data source may not be optimized for analytical queries,
such as with star schema designs and indexes that target common Bl/reporting queries.
Additionally, if the database is utilized for Online Transaction Processing (OLTP)
workloads and/or other Bl/analytical tools, then it’s necessary to evaluate any potential

impact on these applications and the availability of resources.

3. Isanimportmode datasetfeasible, given the size of the dataset and any requirements for

near real-time visibility of the data source?

http://bit.ly/2AcMp25

42

Planning Power BI Projects

Currently, Power BI Premium supports import mode datasets up to 400 GBin size. However,
the true limit for model sizes in Premium is limited to the total available amount of RAM
within the capacity. In addition, PPU datasets are limited to 100 GB and Pro datasets are
limited to 10 GB. Therefore, truly massive datasets must either use a DirectQuery data

source or a Live connection to an Analysis Services model.

Additionally, Power BI Premium currently supports a maximum of 48 refreshes per day
forimport mode datasets. Therefore, if there’s a need to view data source data for the last

several minutes or seconds, an import mode dataset is not feasible.

If the DirectQuery/Live source is capable of supporting a Power Bl workload as per question
2, is the DirectQuery/Live connection more valuable than the additional performance and

flexibility provided via the import mode?

In other words, if an import mode dataset is feasible, as per question 3, then an organization
should evaluate the trade-offs of the two modes. For example, since an import mode
datasetis hosted in the Power BI service and in a compressed and columnar in-memory
data store, it is likely to provide a performance advantage. This is particularly the case if
the DirectQuery/Live source is hosted on-premises and thus queries from the Power BI
cloud service must pass through the on-premises data gateway reviewed in Chapter 11,

Managing the On-Premises Data Gateway.

Additionally, any future data sources and most future data transformations need to be
integrated into the DirectQuery/Live source. With an import mode dataset, the scheduled
import process can include many data transformations and potentially other data sources

without negatively impacting query performance.

For organizations that have invested in powerful data source systems for Bl workloads, there’s a

strong motivation to leverage this system via DirectQuery/Live. In general, business intelligence

teams and architects are averse to copying data into another data store and thus creating both

another data movement and a source of reporting that must be supported.

Let’s now take a more detailed look at each of the possible dataset modes.

Import mode

Animport mode dataset can include multiple data sources, such as SQL Server, Oracle, and an Excel

file. Since a snapshot of the source data isloaded into the Power BI cloud service, in addition to its

in-memory columnar compressed structure, query performance is usually good for most scenarios.

Chapter 1 43

Another important advantage of import mode datasets is the ability to implement data
transformations without negatively impacting query performance. Unlike DirectQuery/Live
datasets, the operations of data source SQL views and the M queries of import datasets are executed
during the scheduled data refresh process. The Query design per dataset mode section of Chapter 2,

Preparing Data Sources, discusses this issue in greater detail.

Given the performance advantage of the in-memory mode relative to DirectQuery/Live, the ability
to integrate multiple data sources, and the relatively few use cases where real-time visibility is

required, most Power BI datasets are designed using import mode.

Next, we provide more detail about DirectQuery/Live mode.

DirectQuery/Live mode

While DirectQuery and Live connections are different, as explained previously, they are similar
to one another and share common traits, such as not storing data within the dataset itself but
rather querying source systems directly to retrieve data based upon user interaction with reports
and dashboards.

A DirectQuery/Live dataset is traditionally limited to a single data source and serves as merely
a thin semantic layer or interface to simplify the report development and data exploration
experience. DirectQuery/Live datasets translate report queries into compatible queries for the
data source and leverage the data source for query processing, thus eliminating the need to store

and refresh an additional copy of the source data.

A common use case of DirectQuery/Live is to provide near real-time visibility to changes in source
data. For example, a manufacturer may want to monitor activities occurring on a manufacturing

floor and potentially link this monitoring solution to notifications or alerts.

The performance of DirectQuery/Live datasets is strongly influenced by the design and resources
available to the source system. Successful DirectQuery/Live datasets generally result from
performance optimizations implemented in the source system such as via columnstore indexes,

materialized views, and star schema designs that reduce the complexity of report queries.
With import and DirectQuery/Live modes understood, we next cover the relatively new

composite mode.

Composite mode

Composite mode is perhaps the most significant enhancement to Power Bl in recent years as it

enables table-level control over a table’s storage mode (Import, DirectQuery, Dual).

44 Planning Power BI Projects

Storage modes are covered in greater detail in Chapter 2, Preparing Data Sources. When designed
effectively, a composite model can deliver the performance benefits of import (in-memory) models

but also provide scalability for large DirectQuery source systems.

A common design pattern with composite models s to set the storage mode of a massive fact table
to DirectQuery but configure a smaller, targeted aggregation table in import mode and related
dimension tables in dual mode. Power Bl automatically utilizes the in-memory aggregation table
to resolve incoming report queries if the given aggregation table(s) and its related Dual mode

dimension tables contain the necessary data.

Even more recently, Microsoft has unveiled DirectQuery for Power Bl datasets and Azure Analysis
Services. With DirectQuery for Power Bl datasets and Azure Analysis Services, datasets developed
and published to Power BI can be chained or extended to produce new datasets that incorporate

additional import or DirectQuery sources.

With data transformation and data model storage mode decisions made, the dataset planning
process is complete. Let’s now take a look at how these planning processes and decisions apply

to our sample project introduced earlier in this chapter.

Sample project analysis

As per the data refresh questions from the project template (questions 7 and 8), the Power BI
dataset only needs to be refreshed daily—there’s not a need for real-time visibility of the data
source. From a dataset design perspective, this means that the default import mode is sufficient

for this project in terms of latency or data freshness.

The project template from Table 1.2 also advises that an Excel file containing the Annual Sales
Plan must be included in addition to the historical sales data in the SQL Server data warehouse.
Therefore, unless the Annual Sales Plan data can be migrated to the same SQL Server database

containing the Internet Sales and Reseller Sales data, an import mode dataset is the only option.

The data security requirements from the project template can be implemented via simple security
roles and therefore do not materially impact the import or DirectQuery decision. DirectQuery
datasets can support dynamic or user-based security models as well but, given restrictions on the
DAX functions that can be used in security roles for DirectQuery datasets, import mode datasets
can more easily support complex security requirements. However, depending on the data source
and the security applied to that source relative to the requirements of the project, organizations
may leverage existing data source security through a DirectQuery dataset via a single sign-on

with Kerberos delegation.

Chapter 1 45

Finally, the BI team must also consider the scale of the dataset relative to size limitations with
import mode datasets. As per the project template in Table 1.2 (#6), 3-4 years of sales history
needs to be included, and thus the dataset designer needs to determine the size of the Power BI
dataset that would store that data. For example, if Power BI Premium capacity is not available, the
datasetis limited to a max size of 1 GB. If Power BI Premium capacity is available, large datasets
(for example, 10 GB+) potentially containing hundreds of millions of rows can be published to

the Power BI service.

The decision for this project is to develop an import mode dataset and to keep the Excel file
containing the Annual Sales Plan on a secure network location. The BI team will develop a layer
of views to retrieve the required dimension and fact tables from the SQL Server database as well
as connectivity to the Excel file. The business is responsible for maintaining the following Annual
Sales Plan Excel file in its current schema, including any row updates and the insertion of new

rows for future plan years. An excerpt from this file is shown in Figure 1.18:

Calendar ~ Sales Territory Region - Product Subcategory ~ Internet Met Sales - |Internet Met Sales Margin %~ | Reseller Net Sales -
2018-Nov Canada Road Bikes 522,429.387 035974584 587,240.4256
2018-Mov Canada Shorts 5371.8569 064355038 $1,395.4774
J018-Mey Canada Sacks 522,404 0.7DE3MT4 575,053
2018-Mov Canada Tires and Tubes 52,856,178 0.613382 54.7626
2013-Mov Canada Touring Bikes 514,932.3292 0.33759492 £18,242.4315
2018-Mov Canada Wests 5362.9342 0.574668 51,065.8653
2018-0ct Canada Bike Racks 5607392 05674064 $5,514.9505
2018-0ct Canada Bottles and Cages 5423.126 0.7341807 51341574

Figure 1.18: Annual Sales Plan in Excel data table

By using the existing Excel file for the planned sales and margin data rather than integrating this
data into the data warehouse, the project is able to start faster and maintain continuity for the
business team responsible for this source. Similar to collaboration with all data source owners,
the dataset designer could advise the business user or team responsible for the sales plan on the
required structure and the rules for maintaining the data source to allow for integration into

Power BI.

For example, the name and directory of the file, as well as the column names of the Excel data
table, cannot be changed without first communicating these requested revisions. Additionally, the
values of the Sales Territory Region, Product Subcategory, and Calendar Yr-Mo columns
must remain aligned with those used in the data warehouse to support the required actual versus

plan visualizations.

The sales plan includes multiple years and represents a granularity of the month, sales territory

region, and product subcategories.

46 Planning Power BI Projects

In other words, each row represents a unique combination of values from the Calendar Yr-Mo,
Sales Territory Region, and Product Subcategory columns. The Bridge tables section in
Chapter 4, Designing Import and DirectQuery Data Models, describes how these three columns are
used in integrating the Sales Plan data into the dataset containing Internet SalesandReseller

Sales data.

This completes the sample project analysis and concludes this chapter.

Summary

In this chapter, we’ve walked through the primary elements and considerations in planning
a Power BI project. A standard and detailed planning process inclusive of the self-service
capabilities needed or expected, project roles and responsibilities, and the design of the dataset
can significantly reduce the time and cost to develop and maintain the solution. With a sound
foundation of business requirements and technical analysis, a business intelligence team can

confidently move forward into the development stage.

In the next chapter, the two data sources identified in this chapter (SQL Server and Excel) are
accessed to begin the development of an import mode dataset. Source data is retrieved via Power
BI’s M language queries to retrieve the set of required fact and dimension tables. Additionally,
several data transformations and query techniques are applied to enhance the analytical value

of the data and the usability of the dataset.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Preparing Data Sources

This chapter follows on from the dataset planning process described in Chapter 1, Planning BI
Projects, by providing guidance on how to prepare for connecting to and transforming data using
Power Query (M) queries. Power Query queries are written in a data transformation language
commonly called “M” or can be generated via the Power Query Editor user interface. These queries
access data sources and optionally apply data transformation logic to prep the tables for the

Power BI data model.

As mentioned in Chapter 1, Planning BI Projects, to the greatest extent possible data transformation
processes should be implemented within data sources such as Azure SQL and Azure Synapse
SQL rather than via Power BI's data transformation capabilities. The presence of significant data
transformation logic (for example, joins, filters, and new columns) outside of an organization’s
primary data warehouse or “source of truth” makes these solutions more difficult to understand

and support.

Prior to actually connecting to and transforming data, it is critical to understand a number of
important concepts, design principles, data sources, and Power BI Desktop settings as well as

source system preparation.
In this chapter, we cover the following topics:

e Query folding
e Query design per dataset mode
e Datasources

e SQLviews

48 Preparing Data Sources

Before diving into detailed explanations about data sources, SQL views, and M, it is critical that

the reader be familiar with the concept of query folding.

Query folding

Query folding is one of the most powerful and important capabilities of the M language as it
translates M expressions into equivalent query statements for the given source system to process.
With query folding, Power Query (M) serves as a rich abstraction layer for defining both simple
and complex data transformation processes while still leveraging the compute resources of the
source system. When implementing any remaining logic or data transformations via M functions,

atop priority of the dataset designer is to ensure that these operations are folded to the data source.

In the following M query shown in Figure 2.1, a Table.RemoveColumns () M function is applied
against the SQL view for the Internet Sales fact table to exclude three columns that are not

needed for the dataset:
Query Settings X

4 PROPERTIES
Name

Internet Sales

All Properties

4 APPLIED STEPS

Source
Navigation

> Removec ~ " :
Edit Settings

=] Rename
> Delete
Delete Until End

Insert Step After
~ Maove before

Move after

Extract Previous

I :-—'J- View Native Query ﬂ
EE Diagnose

b4 Properties...

Figure 2.1: Power Query Editor: View Native Query

Chapter 2 49

The additional step is translated to a SQL query that simply doesn’t select the three columns. The
specific SQL statement passed to the source system can be accessed by right-clicking the final
step in the Query Settings pane and selecting View Native Query as shown in Figure 2.1. If the
View Native Query option is grayed out, this indicates that the specific step or transformation

is executed with local resources.

Most data sources that can be queried, such as relational databases (e.g. SQL Server, Oracle)
support query folding. Data sources that lack any mechanism for understanding and resolving
queries, such as Excel files and Azure blobs, naturally do not support query folding.. The M queries
against these file sources use local M engine resources and thus the volume of data imported as
well as the complexity of the query should be limited. Other sources, such as SharePoint lists,
Active Directory, and Exchange, support some level of query folding, though significantly less

than relational databases.

Queries may be completely folded to the source system or partially folded as explained in the

next section.

Partial query folding

Dataset designers should check the final step of each query in the dataset to ensure that query
folding is occurring. If all required transformations or logic of an M query cannot be folded into
a single SQL statement, the dataset designer should attempt to re-design the query to obtain as

much query folding as possible.

For example, all common or simple transformations can be implemented in the first few steps
of the query so that View Native Query is visible for as many steps as possible. The remaining
logic can be added as the last step of the query and this locally executed step or transformation
is applied against the results of the SQL statement generated from the last step in which View

Native Query is active.

The Value.NativeQuery() M function can be used to pass a SQL statement to the data source.
However, any further transformations applied to the results of this function in the M query
exclusively use local resources. Therefore, if implemented, the SQL statement passed to the data
source should either include all required logic for the query or return a small result set that can

be further processed with local resources.

With the concept of query folding and its importance understood, we’ll next explore the different

designs and considerations for queries depending upon the mode of the dataset.

50 Preparing Data Sources

Query design per dataset mode

As mentioned in Chapter 1, Planning BI Projects, to the greatest extent possible data transformation
processes should be implemented within data sources such as Azure SQL and Azure Synapse

Analytics rather than via Power BI’s data transformation capabilities.

The presence of significant data transformation logic, such as joins, filters, and new columns,
outside of an organization’s primary data warehouse or “source of truth” makes these solutions
more difficult to understand and support. In addition, source systems are generally provisioned
with more compute resources to handle data transformations and often include secondary data

structures, like indexes, that speed up certain operations such as filters and joins.

If resource or time constraints make it necessary to apply data transformations in Power BI
rather than source systems, Power Query (M) should generally be favored over DAX calculated
columns and tables. Additionally, the Power Query (M) transformations should be documented

and communicated such that this logic or process can later be migrated to a source system.

With respect to query design per dataset mode, many common M queries are the same for both
import and DirectQuery datasets. However, depending on the dataset mode, there can be widely
different implications for the source system resource load (memory, CPU, and disk) and the

performance of the queries from Power BL

Therefore, it’s essential that the dataset planning decisions regarding table storage mode (import,
DirectQuery, Dual) are reflected in the M queries for the dataset. For example, a query that
gets imported into memory only once a night is a much better candidate to implement data
transformations than a query thatis folded back to the source system during report interactions

via DirectQuery.

The M queries supporting a Power BI dataset import mode should exclude, or possibly split,
columns with many unique values, such as a transaction number column, as these columns
consume relatively high levels of memory. A standard design technique for import mode models
is to exclude derived fact table columns with relatively more unique values when these values
can be computed via simple DAX measure expressions based on columns of the same table with

fewer unique values.

In the following example, the SUMX () DAX function is used to compute the Sales Amount measure
based on the Order Quantity and Unit Price columns of the Internet Sales fact table, thus

avoiding the need to import the Sales Amount column:

Chapter 2 51

Internet Sales Amount (Import) =
SUMX('Internet Sales', 'Internet Sales'[Order Quantity]*'Internet
Sales'[Unit Price])

Internet Sales Amount (DirectQuery) = SUM('Internet Sales'[Sales Amount])

As per the second measure, the Sales Amount column would be included in a DirectQuery data
model and the DAX measure for the sales amount would exclusively utilize this column to generate

amore efficient SQL query for the data source.

The import mode model is able to efficiently compute similar SUMX() expressions at scale with
basic arithmetic operators (+, -, *, /) as these operations are supported by the multithreaded
storage engine of the xVelocity in-memory analytics engine. For greater detail on DAX measures

for import and DirectQuery datasets, see Chapter 5, Developing DAX Measures and Security Roles.

The M queries supporting a DirectQuery dataset should generally contain minimal to no
transformation logic as the complexity of the resulting SQL statement may negatively impact
the performance of Power Bl report queries, as well as increasing the resource usage of the data
source. This is especially important for the fact tables and any large dimension tables of the
DirectQuery dataset. Given the central role of the data source for query performance and scalability
of DirectQuery solutions, the Power Bl dataset designer should closely collaborate with the data
source owner or subject matter expert, such as a database administrator, to make the best use of

available source system resources.

With composite models, individual tables are set with distinct storage modes (import, DirectQuery,
Dual) in order to achieve a balance of the benefits of both import and DirectQuery modes. The most
common use case for composite models involves very large fact tables with hundreds of millions or
billions of rows. In a composite model, this large source table can be set as DirectQuery and a much
smaller import mode aggregation table can be added to the model to resolve the most common or
importantreport queries via compressed memory. Power BI composite models with aggregation
tables can dynamically determine if report queries can be resolved by aggregation table(s), which
are typically import mode tables, or if it’s necessary to issue queries to the DirectQuery source
tables.

As noted in the To get the most out of this book section of the Preface, an AdventureWorks data
warehouse sample database (AdventureWorksDW2019) hosted on a local instance of the SQL
Server 2019 database engine is the primary data source for the examples in this book. The PBIX
files included in the code bundle reference localhost\MSSQLSERVERDEY as the name of the
database server and AdventureWorksDW2019 as the name of the database.

52 Preparing Data Sources

Therefore, any attempt to refresh the queries within these PBIX files or create new queries against
this data source results in errors as the user doesn’t have access to this source unless the same

instance name and database name are used within the reader’s own environment.

Additionally, certain objects of the AdventureWorksDW2019 database used in this book, such as
views, are not included in the original downloadable sample database from Microsoft. However,
a backup of the database used for this book was created that includes the custom schema and
views. This file is available in the code samples for this chapter. This file can be downloaded,
unzipped, and the database restored to a local copy or other SQL Server and thus only requires

that the query parameters be changed to point to the correct server and database.

Let’s now take a look at design considerations for import mode dataset queries.

Import mode dataset queries

All M queries of an import mode dataset, or import mode tables in a composite dataset, are
executed once per dataset refresh. Therefore, if sufficient resources are available during the dataset
refresh process, the M queries can contain more complex and resource-intensive operations

without negatively impacting report query performance.

However, as mentioned in the previous section, as a Power BI dataset matures and particularly
when a data warehouse system is available, it’s considered a best practice to migrate M data
transformation logic to the source view or table objects of the data warehouse. If migration of the
data transformation logic to a data warehouse source system is not an option, a Power Bl dataflow
defined in the Power BI service might be a more robust alternative to a complex M query expression
embedded within a dataset. This is particularly the case if the dataflow can utilize premium

capacity and if other datasets may need to leverage the same data transformation workflow.

In this project example with an on-premises SQL Server database, the M queries can utilize the
database server’s resources during each refresh via a query folding process. Query folding simply
means that the M query is translated into the native syntax of the source system and executed

locally by the source system.

In the event that certain M expressions cannot be translated into an equivalent SQL statement for
the given source, these expressions are instead evaluated by the data gateway. A data gateway is
simply software installed on an on-premises server that serves as a bridge between the Power BI
service and on-premises data sources. Data gateways are explored in depth in Chapter 11, Managing

the On-Premises Data Gateway.

Chapter 2 53

If the source database was in the cloud and not on-premises or within an Infrastructure-as-a-
Service (IaaS) virtual machine, a gateway would not be required for the refresh, and resources
in Power BI, such as Power BI Premium capacity hardware, would be used to execute any M
expressions that can’t query fold back to a source. Briefly, IaaS provides on-demand access to
virtual and physical servers, storage, and networking. IaaS is distinct from Platform as a Service
(PaaS) and Software as a Service (SaaS), which provide on-demand access to ready-to-use services

and software.

For import mode datasets, M queries can be partially folded such that a source database is used
to execute only part of the required logic. For example, an M query may contain both simple
transformation steps, such as filtering out rows, as well as more complex logic that references a
custom M function. M functions are just like functions in other programming languages, blocks

of code that perform specific tasks.

In the case of partial folding, a SQL statement is generated for the initial steps of the query, and
the results of this SQL query are then used by the data gateway to process the remaining logic.
All steps (variables) within an M query following a step that cannot be folded are also not folded.
Likewise, any M step following a Value.NativeQuery() function that passes a SQL statement to a

source system is also not folded. See the Query folding section earlier in this chapter for more details.

Next, we’ll consider the designs of DirectQuery dataset queries.

DirectQuery dataset queries

Similar to import mode dataset queries, there are also specific design considerations when dealing
with DirectQuery dataset queries. For DirectQuery datasets or DirectQuery tablesin a composite
dataset, every M query is folded to exclusively utilize the resources of the data source. It should be
noted thatrelatively few data source systems support DirectQuery. In addition, certain M functions
and query logic that lack an equivalent translation for the given data source are not supported.
In these scenarios, the dataset designer can develop alternative M queries that produce the same
target data structure and are supported by the source system or implement the necessary logic

within the source system, such as adding a layer of SQL views, to support the desired dataset.

An additional and fundamental limitation to the scope of M queries for DirectQuery datasets is
the impact on query performance and user experience. Since the native statements representing
M queries must be executed by the source system during report viewing sessions, common
transformations such as converting data types and sorting tables can cause significant

performance degradation.

54 Preparing Data Sources

Additionally, a high volume of sub-optimal native queries passed from Power BI reports can
quickly drive up the resource usage of the source system. Therefore, although it’s often technically
possible to implement similar data transformation logic as import mode datasets using the native
system and DirectQuery, the performance and resource implications of these transformations

frequently prove unacceptable.

Dataset designers of DirectQuery datasets should document the native statements generated by
their M queries. As shown in the Query folding section earlier in this chapter, these queries can
be accessed from the View Native Query command within the Applied Steps pane of the Power
Query Editor in Power BI Desktop. Sharing and reviewing these queries with the data source
owner or a subject matter expert on the data source can often lead to new ideas to improve

performance or data quality.

One powerful technique to optimize DirectQuery performance is via the dynamic Power Query
(M) parameters feature. With dynamic Power Query parameters, the filter selections of the report
user for a common dimension such as department or fiscal year are passed into a performance-

optimized query such as the Where clause of a SQL statement.

Let’s take a closer look at how DirectQuery operates during report execution.

DirectQuery report execution

Because DirectQuery results in queries against the source system for each report interaction by

users, it is important to fully understand the performance and operations of these queries.

In the database trace from SQL Server Profiler shown in Figure 2.2, a DirectQuery dataset has
translated a Power Bl report query into a SQL statement, which joins the SQL statements associated

with the Reseller Sales,Reseller, and Date M queries:

Chapter 2

55

B SOl Srvesn Frafile - (Uil 2 aTLASY

B Tl Eul Niew Replay Incls Wiwoe Faels
S EGEE e FonoE i 0G| EeE @
| Curglizn | GRU| Ferads | TewDalz | Evartsiazs Solabaseha ne| Serverdame

Trreo wtors

“al Bl

SALE s LA
{ o LI cht I sl P T ST Sl eE e pl=Lel adue: lura. .. ATLAS
1 T SELEST AUM[115].[Suleas &L . HIERE RS T B adve lurs. &TLA%
oo IXEE SSLETT SHMC[HIS] [Snlee & S0z o Coien pLlebed advaeturs, .. ATLAS
17 4 am U T e L B B (T | Toerplated [LF (R RTTE 4TLAS
92 4 R EELEC SN (ITLEL (salis & 1 orpleted 'adeactupa... ATLAS
e
slamla-al

ael
wFoct Braclla~dalzs] as [iTablc [B2 <2

coelocT |FTablz]. Datc oo [Dakc|,
lf“xllll—]._'l-lﬂ Kuw | as DA & Eou]
_‘1 AElpl. | LAalsridr Fen s | g [faleedar Fitlh
LA .nl:'ll-li. Calaciare Fen s kwabas] as [Calaiae oo o Revbas],

Figure 2.2: SQL Server Profiler trace - Power Bl DirectQuery report visualization

For DirectQuery datasets, it’s important to understand both the individual queries associated
with each table of the model as well as how the data source is utilizing these queries in resolving
report queries. In this example, the three table queries are used as derived tables to form the
FROM clause of the outer SQL statement. Additionally, though not included in the trace image,

the WHERE clause reflects a slicer (filter) selection for a specific calendar year in a Power Bl report.

We’ll now move on to query design considerations for composite datasets.

Composite datasets

As described in Chapter 1, Planning BI Projects, composite datasets allow mixing DirectQuery mode
tables from different sources and/or DirectQuery mode tables and import mode tables in a single
dataset, such as having the reseller sales table in DirectQuery mode but the internet sales table

in import (in-memory) mode.

56 Preparing Data Sources

With the release of the DirectQuery for PBI datasets and AS feature, multiple connections to
Power BI datasets can be combined within a composite data model or a Power BI dataset can be
modified through a process called chaining. Chaining involves a Power Bl dataset that is extended
through the creation of DAX columns and measures or by combining the dataset with import

mode or other DirectQuery-mode tables.

The use of composite datasets should be considered carefully. Generally, whenever possible, it
is best to design import mode datasets as they provide the best performance and the greatest
amount of flexibility in terms of dataset design. Composite datasets can be useful, however, with

respect to extremely large fact tables or a requirement for near real-time reporting.

When using composite models, the inherent limitations of DirectQuery are still applicable except
that many of these limitations now apply to individual tables instead of the entire dataset. For
example, a calculated column in a DirectQuery table can still only refer to other columns in the
same table. Other DirectQuery limitations apply to the entire dataset if a single table within the
dataset has a storage mode of DirectQuery, such as the unavailability of the Quick Insights feature.

The Quick Insights feature is covered in Chapter 8, Applying Advanced Analytics.

With composite models, the concerns around data security and data privacy are extended to
actually using a report versus solely during data refresh. Because the dataset contains multiple
DirectQuery data sources or DirectQuery and import mode data sources, the underlying queries
between tables can comingle the data from different sources. For example, sensitive information
stored in a spreadsheet could be included in a query sent to a DirectQuery SQL Server relational

database. Corporate security and privacy restrictions may not allow such interaction.

Dataset designers should be particularly cognizant of the encryption levels of data sources in
composite models. It is unwise to allow information retrieved over an encrypted data source
connection to be included in information sent to a data source accessed over an unencrypted

connection.

There are also performance considerations when using composite datasets that are the same or
similar to the performance concerns with pure DirectQuery datasets. However, composite datasets
add an additional layer of performance considerations over simple DirectQuery datasets. This is

because a single visual may send queries to multiple different data sources.

Chapter 2 57

Consider that results from one query may be sent across to a second source via a subsequent query.
This type of scenario can result in a DirectQuery SQL query containing a large number of literal
values that becomes inefficient to include in a WHERE clause or results in multiple SQL queries

involving one SQL query per group value.

Therefore, dataset designers must pay particularly close attention to the cardinality (number of
unique values) of columns in such scenarios. Relatively low cardinality of a few thousand unique
values should not impact performance but as cardinality increases, performance can be reduced

or result in failure to execute the queries successfully.

In addition to the query design considerations for composite models covered thus far, composite

models introduce additional table storage modes.

Table storage modes

Composite models enable dataset creators to configure multiple storage modes across the different
tables of a model thus balancing the benefits of both import (cached) data and DirectQuery.
Typically, composite models also utilize hidden aggregation tables such that all common summary-
level queries are resolved by either a relatively small use of memory or an optimized DirectQuery
object but detailed queries are handled via a large-scale DirectQuery source system. Once a
composite model is created, the Power BI dataset dynamically determines whether incoming

report queries are resolved via imported in-memory cache or the source system via DirectQuery.

With composite models, there are four storage modes available for tables within the dataset. Of
these four, we have already discussed import and DirectQuery modes. Two additional modes are

added for non-calculated tables, Dual and Hybrid.

Dual mode tables are DirectQuery tables where a copy of the table is also kept in memory in
order to support fast access and query performance as if the table were in import-only mode.
Thus, Dual mode allows queries involving import mode-only tables to perform quickly when also
requiring queries to the Dual mode table but still allow the table to participate in DirectQuery-

only queries as well.

Consider a data model thatinvolves fact tables using DirectQuery and imported dimension tables.
In this scenario, the dimension tables should be set to Dual mode in order to support DirectQuery

queries as well as fast performance with import mode queries.

58 Preparing Data Sources

Hybrid tables are tables that contain one or more import mode partitions as well as a single
DirectQuery partition. Note that table partitions are simply a way to divide portions of data within
the table. For example, incremental refresh adds additional table partitions so that the data within

each incremental refresh partition can be processed separately from the initial load of the data.

This means that a single table can contain alarge base load of data as well as data resulting from
incremental refreshes. This data can be queried quickly because the data exists in memory within
the dataset. However, the data within the table also supports near real-time visibility via its
DirectQuery partition. Thus, queries against the table retrieve data from the one or more import

mode partitions as well as the most recent data that has not been imported via DirectQuery.

Hybrid tables are a relatively new development but present an attractive design alternative where
the dataset remains largely import but allows for near real-time data visibility as well. Hybrid
tables should not be confused with Dual mode tables. Dual mode simply allows data model tables
to be available for report visuals that may query both import and DirectQuery tables within the
data model while Hybrid tables allow a single table to retrieve data from import mode partitions

as well as via DirectQuery.

Data sources

Data source connectivity is one of the strengths of Power BI, due to the vast list of standard data
source connectors included in Power BI Desktop. In addition, numerous industry standards such
as Open Data Protocol (OData), Open Database Connectivity (ODBC), and Object Linking
and Embedding Database (OLE DB) are supported. The breadth of data connectivity options is
further bolstered by the ability for developers to create custom Power BI data connectors for a

specific application, service, or data source.

Although a Power Bl dataset can connect to multiple sources ranging from Azure Synapse Analytics
to a text file, solution architects and developers should strive to build solutions on a single, well-
supported source such as a data warehouse database system that already contains the necessary
data integrations as well as reflects data integrity constraints and quality processes. Power Bl
datasets that connect to several distinct sources, and particularly to less stable sources like files and

folders, are much more prone to data quality and refresh errors and are more difficult to support.

Power BI’s data connectors are consistently extended and improved with each monthly release of
Power BI Desktop. New data sources are commonly added as a preview release feature (beta) and
previous Preview connectors are moved from Preview to general availability. Generally available

connectors are those that are considered fully functional and stable.

Chapter 2 59

In the following example from the November 2021 release of Power Bl Desktop, Figure 2.3 shows
that four new connectors have been released to Preview while three other connectors that are

already generally available have been updated:

Data connectivity and preparation

¢ Azure Synapse Analytics (New Connector) - Preview

Google Sheets (New Connector) = Preview

Azure Cosmos DB V2 (New Connector) | Preview

Delta Sharing (New Connector) = Preview

Google BigQuery (Connector Update)

Cognite Data Fusion (Connector Update)

Dremio Cloud (Connector Update)

Figure 2.3: Preview and generally available data connectors in Power Bl Desktop

Preview connectors should only be used for testing purposes, as differences between the preview
release and the subsequent generally available connector may cause queries dependent on the

preview version to fail.

Regardless of the data connector used, all data connectors share certain common elements within
Power BI Desktop, including such things as authentication caching, data source settings, and

privacy levels as covered in the following sections.

Authentication

All data sources require some type of authentication, even if the authentication is simply
anonymous such as publicly available web pages. Power BI Desktop saves a data source credential,
or sign-in identity, for each data source connection used. These credentials and settings are not

stored in the PBIX file but rather on the local computer specific to the given user.

Solution architects and developers should carefully consider which identity or principle is used
to authenticate to the data source, which permissions have been granted to this account, and
how this identity or credential is maintained. The main outcome of an authentication policy or
process is to ensure that solutions utilize a system identity available to the IT/BI team and do not

have a dependency on an individual user’s account permissions.

60 Preparing Data Sources

For example, if SQL Server or Azure SQL Database is the source system, a Bl team may create a
SQLlogin and user with the minimal permissions necessary to read the objects within the scope
of the solution. The password for this SQL login could be stored in Azure Key Vault and revised
every 3-6 months by the IT/BI team.

An authentication dialog specific to the data source is rendered if the user hasn’t accessed the
data source before or if the user has removed existing permissions to the data source in Power
BI Desktop’s Data source settings menu. In the following example shown in Figure 2.4, a Sql.
Database() M query function references the AdventureWorksDW2019 SQL Server database on the
localhost\MSSQLSERVERDEV SQL Server instance.

In this scenario, the user has not previously accessed this data source (or has cleared existing source
permissions), and thus executing this query prompts the user to configure the authentication to

this source as shown in Figure 2.4:

Windours localhost\mssglserverdev; AdventorWorksDW2019

Diakabigse I We couldn't authenticate with the credentials provided. Plesse try again
Use your Windows credentials to access this database

acoont

& Use rrry cuerent credentials

O use alternate credentials

Seloct which leval o apply these settings to

localhostymssglserverdey

hacalhostyresghisnendey
lecalhostynssghenverdev dcvantoriWorksDIW2019
Bark | Comnectl | Cancal '|

Figure 2.4: Edit authentication credentials in Power Bl Desktop

Most relational database sources have similar authentication options. For SQL Server, the user
can choose between the default Windows authentication (that is, Use my current credentials),
Database authentication if the database is in Mixed Mode (SQL user or Windows authentication),

or Microsoft account if SQL Server is running in Microsoft Azure.

Chapter 2 61

Additionally, the credentials can be saved exclusively to the specific database or be reused for
other databases on the same server as shown in Figure 2.4 in the dropdown under Select which

level to apply these settings to.

Once authentication is configured, the authentication settings for a data source can be accessed

via the Data source settings menu within Power BI Desktop.

Data source settings

The Data source settings menu provides access to the authentication and privacy levels configured
for each data source within the current file and the saved permissions available to all of the user’s

Power BI Desktop files.

This menu can be accessed under the Transform data dropdown on the Home tab of Power BI

Desktop’s Report view or from the Home tab of the Power Query Editor, as shown in Figure 2.5:

1 H = o Ll ||"|:|- EQIto
_ Hame Transfoem Add Calumn Wi Teals Help
= T Lo p— t [=] L L Praperties =H
-t - n = L pr Advanced Editor
Clase & Mew Recenl Enter Diata saurce Manage Redresh Chaose
Apply™ Source ™ Spurces ™ Data settings Farameters = Preview ™ pase Columns =
Clos= Mew Queny Data Sources | Farameters Chuery Manage

Data source settings
Manage settings for data sources that you have connected to using Power Bl Desktop.
O Data sources in current file = Globel permissions

Search dohg source s-?m'ngs

localhostymssglserverdey

Expart PRIDS | Edit Permissions.. |"_'Ieu' Permissions

Figure 2.5: Data source settings menu in Power Query Editor

62 Preparing Data Sources

In this example, the user chose to save the Windows authentication to the SQL Server instance,
localhost\mssqlserverdev, rather than the specific database (AdventureWorksDW2019) on the
server. The Edit Permissions... command button provides the ability to revise the authentication,

such as from Windows to Database, or to enter a new User name and Password.

The Edit... button of the Edit Permissions dialog, highlighted in Figure 2.6, prompts the same
SQL Server credential menu used when originally configuring the method of authentication to

the data source:
Edit Permissions X

localhostimssqlserverdey

Credentials

Type: Not Specified

Edit.. Delete

Windows localhost\mssglserverdev

Datab Use your Windows credentials to access this database.
Jatabase

* Use my current credentials
M soft O Use alternate credentials

User name

Password

Figure 2.6: Edit credentials accessed via Edit Permissions

Many organizations set policies requiring users to regularly revise their usernames or passwords
for certain data sources. Once these credentials are updated, the user should utilize the Edit
Permissions menu to ensure that the updated credentials are used for M queries against the data
source. Depending on the security policy of the data source, repeated failures to authenticate due

to outdated credentials can cause the user’s account to be temporarily locked out of the data source.

Having mentioned that the Data source settings menu also provides access to the privacy levels

of data sources, we will explain these next.

Chapter 2 63

Privacy levels

In addition to the authentication method and user credentials, Power Bl also stores a privacy level
for each data source. Privacy levels define the isolation level of data sources and thus restrict the
integration of data sources in M queries. For example, in the absence of privacy levels, an M query
that merges a CSV file with a publicly available online database could result in the data from the

CSV file being passed to the online database to execute the operation.

Although such behavior is preferable from a query performance and resource utilization standpoint,
the CSV file may contain sensitive information that should never leave the organization or
even an individual user’s machine. Applying privacy levels, such as private for the CSV file and
public for the online database, isolates the two sources during query execution, thus preventing

unauthorized access to sensitive data.

The privacy level of a data source can be accessed from the same Edit Permissions dialog available

in the Data source settings menu as shown in Figure 2.7:

Data source setti ngs Edit Permissions *
Manage settings for data sources localhostymssglserverdey
Credentials

O Diata sources in current file
Type: Mot Specified

Learch dota sowrce seftings Edit | [ielete

localhostymssglserverdey

Encryption

Privacy Level

Crrganizational
Mone
Pulblic
Organizational

[ueries for this
Private

Revoke Approvals

Export FBIDS || Edit Permissions.. | Clear Femissons |~ |

Figure 2.7: Privacy Level options per data source

[3 Cance

64 Preparing Data Sources

The default Privacy Level for data sources is None. Therefore, dataset designers should revise
privacy levels when first configuring data sources in Power BI Desktop based on the security

policies for the given sources.
Four privacy levels are available:

e None: The privacy level applied is inherited from a separate data source, or not applied if
the separate parent source has not been configured. For example, the privacy level for an
Excel workbook stored on a network directory could be set to None, yet the isolation level of

Private would be enforced if a data source for the root directory of the file is set to Private.

e Public: Apublicdata sourceis notisolated from other public sources, but data transfer from
organizational and private data sources to public data sources is prevented. Public source

data can be transferred to an organizational data source but not to a private data source.

e Organizational: An organizational data source is isolated from all public data sources
butis visible to other organizational data sources. For example, if a CSV file is marked as
Organizational, then a query thatintegrates this source with an organizational SQL Server

database can transfer this data to the database server to execute the query.

e Private: A Private data source is completely isolated from all other data sources. Data
from the Private data source is not transferred to any other data sources, and data from

public sources is not transferred to the Private source.

In this project, the Excel workbook containing the Annual Sales Plan is not merged with any
queries accessing the SQL Server data warehouse and thus the privacy levels do not impact any
queries. However, as with all other data security issues, such as Row-Level Security (RLS) roles,
the dataset designer should be mindful of privacy levels and apply the appropriate setting per

data source.

Restrictive privacy levels may prevent query folding from occurring and thus significantly reduce
performance and reliability. For example, if an Excel workbook is isolated from a SQL Server data
source due to a Private privacy level, then the local resources available to the M engine are used
to execute this operation rather than the SQL Server database engine. If the source data retrieved
from SQL Server is large enough, the resource requirements to load this data and then execute

this operation locally could cause the query to fail.

With the essentials of data sources within Power Bl understood, we’ll next cover perhaps one of

the most important data sources for Power BI, the Power BI service itself.

Chapter 2 65

Power Bl as a data source

Dozens of cloud services are available to Power BI as data sources, such as Google Analytics and
Dynamics 365. Most importantly for this project, the Power BI service is a fully supported data
source enabling report development in Power BI Desktop against published datasets. As shown
in Figure 2.8, the datasets contained in Power BI workspaces in which the user is a member are
exposed as data sources:

Select a dataset to create a report B
Al B=cent My datasets Ll Sasrch

D Mo Eraiai raritaeng TRATIET Winrks e Refrachsd Reoralifaiiy

E ProwiBHCaokboak] 15 mf, goeckhar g, CAMLPUG 11621, 5016 P

u Lasarn Foewsar Bl Jnd Efitizn :::“.- "\"l.'w: gieckker gebi.. Leen Powser Bl 2ead B, 11721 128504 PR

E Ak aTua pber bber gpcde Brbwsn e ek DAY 949,21, 4 Ak05 PM

E diFosairs - gdacklar gada.. by Workspaco H238 DIEE A

u Prosaia B Dok 115 - gideckler gabi.. CAMLPUG [Deesdop.. 11016/21, TO2:AE P

E Pomsn B Cascbdbuak 1 15 = yebeckhar goh.. CARMLMMS [Taa] 116,21, 65251 Pl

E LeamiForsaB 2 rdBditizn - goecklar gah.. Liaen Powser B 20ad E. 1, 120090 P

Figure 2.8: Power Bl service data connector in Power Bl Desktop

Connecting to a dataset published to Power BI establishes a live connection for the given report,
just like connections to Analysis Services. With live connections, all data retrieval and modeling
capabilities are disabled and the queries associated with report visualizations are executed against

the source dataset.

In certain scenarios it’s necessary or useful to integrate a portion of one Power BI dataset into
a different dataset. In these cases, the XMLA endpoint can be used to connect to a Power BI
dataset as though it’s an Analysis Services database and pass a DAX query to support table(s) in
the source dataset.

Additionally, the Power BI composite models feature now supports the ability to connect to
multiple Power BI datasets and/or Analysis Services models from the same Power BI dataset.
For example, if inventory and sales data is stored in separate PBI datasets and the requirement
is to display inventory and sales visuals in the same report, connections to both datasets can be
defined in Power BI Desktop and converted from Live connections to DirectQuery data sources.
As shown in Figure 2.8, within the Power BI service, datasets can be endorsed as either Certified
or Promoted.

66 Preparing Data Sources

Endorsed datasets are presented at the top of the dialog with Certified datasets displayed first
and then Promoted datasets. Organizations should adopt a process of certifying datasets in order
to distinguish enterprise data assets from other potentially less trustworthy data. Endorsing or

featuring content is further discussed in Chapter 14, Administering Power BI for an Organization.

Leveraging published datasets as the sources for reports provides natural isolation between the
dataset design and report development processes. For example, a dataset designer can implement
changes to alocal Power BI Desktop file, such as the creation of new DAX measures, and re-publish
the dataset to make these measures available to report authors. Additionally, such connections
provide report authors with visibility of the latest successful refresh of the dataset if the dataset

is configured in import mode.

Before moving on from data sources, we’ll next cover some important Power BI Desktop options

that should be configured prior to starting query development.

Power Bl Desktop options

Dataset designers should be aware of the global and current file settings available in Power BI
Desktop. Among other options, these settings include the implementation of the privacy levels
described earlier, the DAX functions available to DirectQuery datasets, auto-recovery, preview

features, and whether M queries are executed serially or in parallel.
Power BI Desktop options can be accessed from the File menu by doing the following:

1. Choose File in the ribbon
2. Choose Options and settings
3. Choose Options

These steps open the Options dialog in Power BI Desktop. Choosing Privacy from the left

navigation of the Options dialog presents the Privacy Levels options as shown in Figure 2.9:

Chapter 2 67

Options

GLOBAL Privacy Levels

Data Load Always combine data according to your Privacy Level settings for each

SOUCe
Power Query Editar
T O Combine data according to each file's Privacy Level settings

DirectQuery O Always ignore Privacy Level settings (33

R scripting

Learn more about Privacy Levels
Python seripting
Security
Privacy
Regional Settings
Updates
Usage Data
Diagnostics
Preview features
AULO recovery

Repaort settings

CURREMT FILE

Data Load
RHJI onal Settis G
Privacy

Auto recovery oK Cancal

Figure 2.9: Power Bl Desktop options - GLOBAL| Privacy

By setting the global Privacy Levels option to Always combine data according to your Privacy
Level settings for each source, the current file privacy setting options are disabled. For all
development and project activities, it’s recommended to apply the privacy levels established
per data source rather than each PBIX file’s privacy settings (the second option) or to Always

ignore Privacy Level settings.

68 Preparing Data Sources

It’s outside the scope of this chapter to provide comprehensive details of every Power BI Desktop
option, but the following two sections recommend settings that are relevant to dataset design.

We start with global options (settings applied to all Power BI files).

Global options

Global options only need to be set once and concern fundamental settings, including data source

privacy levels and security:

1. For Security, under Native Database Queries, check the box for Require user approval
for new native database queries. Under ArcGIS for Power BI, check the box for Use
ArcGIS Maps for Power BI.

2. Setthe Privacy option to Always combine data according to your Privacy Level settings

for each source.

3. For Power Query Editor options, check the boxes for Display the Query Settings pane
and Display the Formula Bar.

4. When finished, click the OK button in the bottom-right corner of the Options dialog to
apply these settings.

Note that it may be necessary to restart Power BI Desktop for the revised settings to take effect.

Next, we cover options that should be set for the current file.

CURRENT FILE options
The CURRENT FILE options must be set per Power BI Desktop file and are particularly important

when creating a new dataset:

1. Click on Data Load under CURRENT FILE

2. Under Type Detection, disable the option to Detect column types and headers for
unstructured sources

3. Under Relationships, disable all options, including Import of relationships from
data sources on first load, Update or delete relationships when refreshing data, and
Autodetect new relationships after data is loaded

4. Under Time intelligence, disable the Auto date/time option

5. For larger import datasets with many queries, disable the checkbox for Enable parallel
loading of tables under Parallel loading of tables

6. Click the OK button in the bottom-right corner of the Options dialog to apply these

settings

Chapter 2 69

Your CURRENT FILE | Data Load settings should look like Figure 2.10:

Options X
GLOBAL " Type Detection

Data Load [Detect column types and headers for unstructured scurces

Pover Query Editor Relationships

DirectCuery [Impart relationships from deta sources on first load (0

R scripting L pct ir delete relationships when refreshing data (1)

Python scripting O Autodetect new relationships after data is loaded (0

5 L
ecurity Learn mone

Privacy) .)
Time intelligence

L] Auto dateftime (71 Learn maora

Regional Settings

Updates
Usage Data Background Data
Dlagnostics w Allow data previews to downdoad in the background

Proview featuros

Parallel loading of tables

Auto
e [Enabsle parallel loading of tables {7

Report settings
Q&A
CURRENT FILE ¥ Turn on Of&A to ask natural language questions about Leamn
Data Load yewr data (0 iore

Regional Settings L] Share your synonyms with everyone in yaur arg

Privacy

Auto recovery

0K Cancel

Figure 2.10: Power Bl Desktop Options - CURRENT FILE | Data Load settings

Note that some of these same settings can be applied at the GLOBAL level as well, such as Type
Detection and Relationships settings. The dataset designer should explicitly apply the appropriate
data types within the M queries, accessing any unstructured sources, such as Excel files. Likewise,
the dataset designer should have access to data source documentation or subject matter experts

regarding table relationships.

70 Preparing Data Sources

Furthermore, the columns and hierarchies of the dataset’s date dimension table can be used
instead of the automatic internal date tables associated with the Auto Date/Time option. The
creation of automatic date/time hierarchies for every date or date/time field within a dataset can
significantly increase the size of import mode datasets due to the generally high cardinality of

date and date/time columns.

Large Power BI datasets with multiple fact tables can contain many queries, which, if executed
in parallel, can overwhelm the resources of the source system, resulting in a data refresh failure.
Disabling the parallel loading of tables, therefore, improves the availability of the dataset and

reduces the impact of the refresh process on the source server.

When Power BI Desktop is being used for report development rather than dataset development,
the Query reduction settings in the CURRENT FILE options can benefit the user experience.
These options, including the Disabling of cross-highlighting/filtering by default and enabling
Add an Apply button for each slicer to apply changes when you’re ready and Add a single
Apply button to the filter pane to apply changes at once, result in fewer report queries being
generated. Particularly for large and DirectQuery datasets, these options can contribute to more

efficient and responsive self-service experiences with reports.

This concludes the overview of data sources and data source settings. We’ll next move on to

another important subject in data preparation prior to the creation of actual queries, SQL views.

SQL views

As described in the Dataset planning section of Chapter 1, Planning Power BI Projects, a set of SQL
views should be created within the data source and these SQL views, rather than the database
tables, should be accessed by the Power BI dataset. SQL views are essentially virtual tables that
provide an abstraction layer from the underlying database tables. SQL views can be used to merge
database tables and to limit the number of columns, thus preventing such transformations from

occurring within Power Query queries.

Each fact and dimension table required by the Power Bl dataset should have its own SQL view and
its own M query within the dataset that references this view. The SQL views should preferably
be assigned to a dedicated database schema and identify the dimension or fact table represented

as shown in Figure 2.11:

Chapter 2 71

=] i AdventureWorksDW2019
+ Database Diagrams
Tables
Views
+ System Views
Bl.vDim_Account
Bl.wDim_Currency
; Bl.wDim_Customer

+

+ [+

Figure 2.11: Views assigned to Bl schema in SQL Server

A common practice is to create a database schema specific to the given dataset being created
or to the specific set of reports and dashboards required for a project. However, as suggested
in the Data warehouse bus matrix section of Chapter 1, Planning Power BI Projects, there shouldn’t
be multiple versions of dimensions and facts across separate datasets—version control is a top
long-term deliverable for the BI team. Therefore, a single database schema with a generic name

(BI in this example) is recommended.

The existence of SQL views declares a dependency to source tables that are visible to the data source
owner. In the event that a change to the source tables of a view is needed or planned, the SQL view
can be adjusted, thus avoiding any impact on the Power Bl dataset, such as a refresh failure or an
unexpected change in the data retrieved. As shown in Figure 2.12, a view (BI.vDim_Promotion)is

identified as a dependent object of the DimPromotion dimension table:

ﬁ Object Dependendies - DimPromoetion
Select a page (1) * i) Help
M Generad

{El Dbjmsts thal depend on [DimPromation]
_) Objects on which [DimPromotion] dapands

Dependenciss
= HEIF muoticn
e

Figure 2.12: SQL Server Object Dependencies

72 Preparing Data Sources

For mature data warehouse sources, the simple query logic contained in each SQL view is sufficient
to support the needs of the dataset. However, with Power BI (and Analysis Services tabular), BI
teams can also leverage M functions to further enhance the value of this data. Such enhancements
are covered in the M query examples section of Chapter 3, Connecting to Sources and Transforming
Data with M. For now, we’ll move on to the subject of the differences between using SQL views

versus M queries for data transformation.

SQL views versus M queries

A common question in Power BI projects specific to data retrieval is whether to implement any
remaining transformation logic outside the data source in SQL views, within the M queries of the
dataset, or both. For Analysis Services projects prior to SQL Server 2017, the layer of SQL views
was the only option to implement any transformations and some BI teams may prefer this more

familiar language and approach.

In some scenarios, the dataset author doesn’t have the permissions necessary to create or alter
SQL views in the source database. In other scenarios, the dataset author may be stronger or more
comfortable with M queries relative to SQL. Additionally, given the expanded role of M queries
in the Microsoft ecosystem, such as in Dataverse and Azure Data Factory (ADF) pipelines, other

BI teams may see long-term value in M queries for lightweight data transformation needs.

Ideally, an organization’s data warehouse already includes the necessary data transformations
and thus minimal transformation is required within SQL or M. In this scenario, the M query for
the table can simply reference the SQL view of the table, which itself contains minimal to no

transformations, and inherit all required columns and logic.

As a secondary alternative, the SQL views can be modified to efficiently implement the required
logic, thusisolating this code to the data source. As a third design option, M queries can implement
the required logic and, via query folding, generate a SQL statement for execution by the source.
Yet another design option, though less than ideal due to transformation logic existing in two
different places and languages, is to implement part of the required logic in the SQL view and

the remaining logic in the M query.

The guiding principle of the data retrieval process for the import mode dataset is to leverage
the resources and architecture of the data source. The M queries of the Power BI dataset, which
access the layer of SQL views in the source system, ultimately represent the fact and dimension
tables of the data model exposed for report development and ad hoc analysis. This model should
address all data transformation needs, thus avoiding the need for DAX-calculated columns and
DAX-calculated tables.

Chapter 2 73

Additionally, the data model in Power BI (or Analysis Services) should remain aligned with
the architecture and definitions of the data warehouse. If a gap is created by embedding data
transformation logic (for example, new columns) into the Power BI dataset that is not present
in the data warehouse, plans should be made to eventually migrate this logic back to the data

warehouse in order to restore alignment.

In other words, a user or tool should be able to return the same results of a Power Bl report based on
the Power Bl dataset by issuing a SQL query against the source data warehouse. This is particularly

essential in environments with other BI and reporting tools built on top of the data warehouse.

Ifit’s necessary to use both SQL views and M functions to implement the data transformation logic,
then both queries should be documented and, when possible, this logic should be consolidated

closer to the data source.

As shown in Figure 1.16, Dataset planning architecture, from Chapter 1, Planning Power BI Projects,
there are six layers in which data logic can be implemented. This figure is repeated as Figure 2.13

for convenience:

rehouse

ETLELT Data Transformation Process
Fact and Dimension Tables

oL Wiews

Fower Bl Desktop

M Clueries
DAX Calculated Tables and Columns

DAX Measures

Figure 2.13: Dataset planning architecture

Data retrieval processes should strive to leverage the resources of data sources and avoid or
minimize the use of local resources. For example, a derived column implemented within either
SQL Views (layer 3) or M Queries (layer 4) that folds its logic to the data source is preferable to
a column created by DAX Calculated Tables and Columns (layer 5).

74 Preparing Data Sources

Likewise, if data transformation logic is included within M queries (for example, joins or group
by), it’s important to ensure these operations are being executed by the source system as described
in the Query folding section earlier in this chapter. These considerations are especially critical for
large tables given the relatively limited resources (for example, CPU and memory) of a Power BI

dataset or the data gateway if applicable.

Additionally, the dimension and fact tables of the Power Bl dataset and any DAX measures created
should represent a single version for the organization—not a customization for a specific team
or project sponsor. Therefore, although the combination of SQL views and M queries provides
significant flexibility for implementing data transformations and logic, over time this logic should
be incorporated into corporate data warehouses and Extract-Transform-Load (ETL) processes

so that all business intelligence tools have access to a common data source.

Incrementally migrate transformation logic closer to the corporate data warehouse over time. For
example, a custom column that’s originally created within an M query via the Table.AddColumn()
function and a conditional expression (if. . .then) could subsequently be builtinto the SQL view

supporting the table, thus eliminating the need for the M query logic.

In the second and final stage, the column could be added to the dimension or fact table of the
corporate data warehouse and the conditional expression could be implemented within a standard
data warehouse ETL package or stored procedure. This final migration stage would eliminate the
need for the SQL view logic, improve the durability and performance of the data retrieval process,

and in some scenarios also increase the feasibility of a DirectQuery dataset.

With the differences between SQL views and M queries understood, let’s next explore some

examples of SQL views.

SQL view examples

As mentioned, the capabilities of source data systems, such as the creation of SQL views in SQL
Server, should be leveraged when possible to transform data. Each SQL view should only retrieve
the columns required for the dimension or fact table. If necessary, the views should apply business-

friendly, unambiguous column aliases with spaces and proper casing.

Dimension table views should include the surrogate key used for the relationship-to-fact tables.
As shown by the product dimension example later in this section, include the business or natural

key column if historical tracking must be maintained.

Chapter 2 75

Fact table views should include the foreign key columns for the relationships to the dimension
tables, the fact columns needed for measures, and a WHERE clause to only retrieve the required
rows, such as the prior three years. Given the size of many data warehouse fact tables and the
differences in how this data can best be accessed, as per the Query design per dataset mode section
earlier in this chapter, dataset designers should ensure that the corresponding SQL views are

efficient and appropriate for the dataset.

A robust date dimension table is critical for almost all datasets and thus its SQL view and/or M
query has a few unique requirements. For example, date dimension tables should include integer
columns that can define the default sort order of weekdays as well as sequentially increasing

integer columns to support date intelligence expressions.

The date table should also include a natural hierarchy of columns (thatis, Year, Year-Qtr, Year-
Mo, Year-Wk) for both the Gregorian (standard) calendar as well as any custom fiscal calendar.
These columns enable simple drill-up/down experiences in Power Bl and report visualizations at

different date granularities that span multiple time periods, such as the prior two years by week.

Given the static nature of the date (and time) dimension tables, their minimal size, and their
near-universal application in reports and dashboards, it’s usually a good use of IT/BI resources
to enhance the source date table in the data warehouse. This could include any derived columns
currently supported via SQL views or M queries as well as columns uniquely valuable to the

organization, such as company holidays.

Any dynamic columns, such as Calendar Month Status (Current Month,Prior Month), canbe
computed within a SQL-stored procedure or an ETL package and this processing can be scheduled

to update the source date table daily.

For our first example, we take a look at building a date dimension view.

Date dimension view
Nearly all data models include some sort of date table due to the importance of tracking metrics
important to an organization over time. Table 2.1 shows sample data from a date dimension SQL

view that includes several columns needed by the Power BI dataset:

76 Preparing Data Sources

Calen- X
Cal- Calendar | Calen- Prior
Calendar | Calendar Calendar | dar Year
Date endar Month dar Year Calendar
Year Yr-Qtr Yr-Wk Month
Yr-Mo Status Status Year Date
Number

Prior Current
2022- 2022-
2/26/2022 2022 2022-Q1 110 Calendar | Calendar 2/26/2021

Feb ‘WK9
Month Year

Prior Current
2022- 2022-
2/27/2022 | 2022 2022-Q1 110 Calendar | Calendar 2/27/2021

Feb WK9
Month Year

Prior Current
2022- 2022-
2/28/2022 2022 2022-Q1 110 Calendar | Calendar 2/28/2021

Feb WK9
Month Year

Current Current
2022- 2022-
3/1/2022 2022 2022-Q1 111 Calendar | Calendar | 3/1/2021

Mar WK9
Month Year

Table 2.1: Sample date dimension columns

The Calendar Year Month Number column can be used to define the default sort order of the
Calendar Yr-Mo column and can also support date intelligence DAX measure expressions that
select a specific time frame, such as the trailing four months. Likewise, a Prior Calendar Year
Date (or prior fiscal year date) column can be referenced in date intelligence measure

expressions.

The Calendar Month Status and Calendar Year Status columns make it easy for report
authors to define common filter conditions, such as the current and prior month or the current

year excluding the current month.

Additionally, since the values for these columns are updated either by a daily job in the source
database or computed within the SQL view for the date dimension, the filter conditions for these

columns only need to be set once.

Power BI Desktop supports relative date filtering conditions for date columns by default. Similar
tothe Calendar Month StatusandCalendar Year Status columnsidentified earlier, this feature
is also useful in defining many common report filter conditions, such as the last 20 days. However,
relative date filtering is not comprehensive in the conditions it supports and thus it often doesn’t

support specific report requirements.

Chapter 2 77

Dataset developers should work with data warehouse developers and/or data engineers in the
organization to ensure that the date dimension table contains the logical columns necessary to
simplify report development and avoid the need for report authors to regularly update the date
filters in their reports. As one example, an organization that runs on a fiscal calendar distinct from
the standard Gregorian calendar can benefit from columns that can filter for the current fiscal
period or the latest closed period. Additional details regarding relative date filtering are available

in Chapter 7, Creating and Formatting Visualizations.

The following SQL statement from the date dimension view (BI.vDim_Date) leverages the CURRENT_
TIMESTAMP () function to compute two dynamic columns (Calendar Year Statusand Calendar
Month Status) and the DATEPART() function to retrieve the date rows from January 1st of three

years ago through to the current date:

SELECT
D.[FullDateAlternateKey]

CASE
WHEN YEAR(D.[FullDateAlternateKey])
'Current Calendar Year'
WHEN YEAR(D.[FullDateAlternateKey])
'"Prior Calendar Year'
WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT TIMESTAMP)-2 THEN
'2 Yrs Prior Calendar Year'
WHEN YEAR(D.[FullDateAlternateKey])
'3 Yrs Prior Calendar Year'
ELSE 'Other Calendar Year'
END AS [Calendar Year Status]

YEAR(CURRENT_TIMESTAMP) THEN

YEAR(CURRENT_TIMESTAMP)-1 THEN

YEAR(CURRENT_TIMESTAMP)-3 THEN

CASE

WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(CURRENT_TIMESTAMP) AND
MONTH(D. [FullDateAlternateKey]) = MONTH(CURRENT_TIMESTAMP) THEN 'Current
Calendar Month'

WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH, -
1,CAST(CURRENT_TIMESTAMP AS date))) AND

MONTH(D. [FullDateAlternateKey]) = MONTH(DATEADD(MONTH, -1,CAST(CURRENT
TIMESTAMP AS date))) THEN 'Prior Calendar Month'

WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH, -
2,CAST(CURRENT TIMESTAMP AS date))) AND

MONTH(D. [FullDateAlternateKey]) = MONTH(DATEADD(MONTH, -2, CAST (CURRENT_

78 Preparing Data Sources

TIMESTAMP AS date))) THEN '2 Mo Prior Calendar Month'

WHEN YEAR(D.[FullDateAlternateKey]) = YEAR(DATEADD(MONTH, -
3,CAST(CURRENT_TIMESTAMP AS date))) AND

MONTH(D.[FullDateAlternateKey]) = MONTH(DATEADD(MONTH, -3, CAST(CURRENT_
TIMESTAMP AS date))) THEN '3 Mo Prior Calendar Month'
ELSE 'Other Calendar Month'
END AS [Calendar Month Status]
FROM
DBO.DimDate as D
WHERE

D.[CalendarYear] >= DATEPART(YEAR,CURRENT_TIMESTAMP)-3 AND
D.[FullDateAlternateKey] <= CAST(CURRENT_TIMESTAMP as date);

Provided that the scheduled refresh of the import mode dataset is successful, reports with filter
conditions defined against the dynamic date columns, such as Calendar Month Status, are

updated automatically.

If the date columns in the SQL Server data source are only available as integers in YYYYMMDD format,

the following T-SQL expression can be used to produce a date data type within the SQL view:

CONVERT (date,CAST(F.OrderDateKey AS nvarchar(8)),112)

However, the Mark as date table feature can be used to leverage existing YYYYMMDD integer columns

for date relationships, as described in the following section.

Mark as date table

The DAX query language used by Power Bl datasets comes with many time intelligence functions
for creating analytical measures such as DATESBETWEEN(), DATEADD(), and DATESYTD(). In order to

effectively utilize these functions, the dataset must have a table explicitly defined as a date table.

Most data warehouses store date columns as integers for query performance reasons. For example,
an Order Date Key column on a fact table would store the 20180225 (YYYYMMDD) value as an
integer data type to represent February 25th, 2018. Likewise, an existing date dimension table
in the data warehouse usually also contains a YYYYMMDD date key column to support the join to

these fact tables in SQL queries.

If this date dimension table also contains a date column and meets essential data integrity criteria,
the Mark as date table feature in Power BI Desktop can be used to leverage existing integer/whole

number columns representing dates for relationships.

Chapter 2 79

In Figure 2.14, the Date table has been selected in the Fields list in Power BI Desktop and the Mark
as date table icon has been selected from the Table tools tab of the ribbon:

Madeling View Help External Tools Table tools
T rz.—d
=] 2 B8 e

Mark &= date Manage Mew Guick Mew MNew

Lakvhe relationships myeasure measure column table

Calendars Redatianships Calculatiors

*

Mark as date table

Select 8 colurmn to be used for the date. The colurmn must be of the dals type ‘date’ and musl contain only

unigue vabpes. Learn maore

Date column

Date v

w Walidated successfully

‘When you mark this as a date table, the buili-in date tables that were associated with this table are removed
Wisuals or DX expressions referring to thern may break.

Laarn how to fix visuals and DAY esprassions

Ok Cancel

Figure 2.14: Mark as Date Table

As shown in Figure 2.14, the column named Date, which is stored as a Date data type, has been
specified as the Date column to be used by the Mark as date table feature. Power BI validates

that this column meets the required criteria to function properly.

In addition to relationships based on YYYYMMDD columns, this feature enables DAX time intelligence
functions, such as SAMEPERIODLASTYEAR(), to work properly. Power BI uses the date column

specified by the model author in the Mark as date table setting in executing these expressions.

To utilize the Mark as date table feature, the Date column (Date data type) specified for the Mark
as date table feature must meet the following criteria:

e Nonull values.

e No duplicate values.

e Contiguous date values:

e There mustbe a single date value for each date from the earliest date to the latest
date. In other words, there can’t be any gaps or missing dates.

o Ifadate/time column is used, the timestamp must be the same for each value of

the column.

80 Preparing Data Sources

We’ll now move on to a second SQL view example for the product dimension.

Product dimension view

As shown in the database diagram schema referenced in Chapter 1, Planning Power BI Projects, it’s
recommended to provide a consolidated or de-normalized dimension for datasets. In the following
view (BI.vDim_Product), three product dimension tables are joined and alogical column, Product

Category Group, is created to support a common reporting and analysis need:

SELECT
P.ProductKey as 'Product Key'
, P.ProductAlternateKey as 'Product Alternate Key'
, P.EnglishProductName AS 'Product Name'
,» ISNULL(S.EnglishProductSubcategoryName, ‘'Undefined') 'Product
Subcategory'
,» ISNULL(C.EnglishProductCategoryName, 'Undefined') AS 'Product Category'
, CASE
WHEN C.EnglishProductCategoryName = 'Bikes' THEN 'Bikes'
WHEN C.EnglishProductCategoryName IS NULL THEN 'Undefined’
ELSE 'Non-Bikes'
END AS 'Product Category Group'
FROM
DBO.DimProduct AS P
LEFT JOIN DBO.DimProductSubcategory AS S
ON P.ProductSubcategoryKey = S.ProductSubcategoryKey
LEFT JOIN DBO.DimProductCategory AS C
ON S.ProductCategoryKey = C.ProductCategoryKey

In this example, it’s necessary to use LEFT JOIN since the product dimension table in the data
warehouse allows for null values in the foreign key column (ProductSubcategoryKey). Retrieving
the product rows that haven’t yet been assigned a subcategory or category is necessary for certain
reports that highlight future products. For these products, an ISNULL () function is used to replace
null values with an undefined value. Additionally, similar to the Date view, a CASE expression is

used to generate a column that groups the product rows into two categories (Bikes and Non-Bikes).

An additional aspect of the product dimension is that it is an example of a slowly changing
dimension. The implications of slowly changing dimensions as related to SQL views and queries

are covered in the following section.

Chapter 2 81

Slowly changing dimensions

As discussed in Chapter 1, Planning Power BI Projects, the historical tracking of core business entities,
such as customers and products, via slowly changing dimension ETL processes is an essential
requirement for data warehouses. While the ability to insert and update rows based on changes
in specific columns is well outside the scope of this chapter, we do wish to cover slowly changing

dimensions as related to the development of Power BI data queries.

The product dimension view retrieves both the surrogate key column used for relationships in
the dataset as well as the business key that uniquely identifies the given product or customer,
respectively. For example, as shown in Table 2.2, the same product (FR-M94B-38) is represented

by three product dimension rows (304, 305, 306) due to changes in its list price over time:

Product Product Product Product Product Product Product

Key Alternate Key | Name List Price Start Date | End Date | Status
HL Mountain

304 FR-M94B-38 Frame — $1,191 7/1/2011 12/28/2011 | NULL
Black, 38
HL Mountain

305 FR-M94B-38 | Frame — $1,227 12/29/2011 | 12/27/2012 | NULL
Black, 38
HL Mountain

306 FR-M94B-38 Frame — $1,350 12/28/2012 | NULL Current
Black, 38

Table 2.2: Slowly changing dimension processing applied to product dimension

DAX measures reference the business key or alternate key column of these dimension tables to
compute the distinct count of these entities. For dimensions without slowly changing dimension
processing applied, the foreign key column of the related fact table can be used to compute the
distinct count of dimension values associated with the given fact or event. Greater detail on these

measures is included in Chapter 5, Developing DAX Measures and Security Roles.

Summary

In this chapter, we’ve covered a number of important concepts, design principles, data source
settings, and source system preparation. This includes query folding, query design considerations
per dataset mode, important Power BI Desktop configuration settings, data source privacy levels,

and the layer of SQL views within a database source.

82 Preparing Data Sources

Understanding these concepts and properly preparing source systems greatly aids the process of

connecting to and transforming data using Power BIL.

In the next chapter, we’ll leverage the prepared source systems and design techniques described

in this chapter to connect to source systems and transform their data using Power Query (M).

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Connecting to Sources and
Transforming Data with M

This chapter follows the environment and data source preparation described in Chapter 2, Preparing
Data Sources, by implementing Power Query (M) queries in a new Power BI Desktop file to retrieve
the required fact and dimension tables. Power Query queries are written in a data transformation
language commonly called “M” or can be generated via the Power Query Editor user interface.
These queries access data sources and optionally apply data transformation logic to prep the

tables for the Power BI data model.

Power Query (M) expressions are becoming ubiquitous throughout the entire Microsoft data
platform. These expressions are used with dataflows, which are reusable by multiple Power
BI datasets. They are also supported by Azure Data Factory (ADF) meaning that data mashup
processes that begin in Power BI can be scaled up if necessary. Finally, M queries underpin

dataflows within Dataverse, Microsoft’s operational data store.

The M query language includes hundreds of functions and several books have been written
regarding the language and its use. The greater purpose of this chapter is to understand M queries
in the context of a corporate Power BI solution that primarily leverages an IT-managed data

warehouse.

In this chapter, we use SQL Server and an Excel file as primary data sources for Power Query
(M) queries. Parameters and variables are used to access a set of SQL views reflecting the data
warehouse tables inside a SQL Server database and the Annual Sales Plan data contained in an

Excel workbook.

84 Connecting to Sources and Transforming Data with M

Additional M queries are developed to support relationships between the sales plan and
dimension tables and to promote greater usability and manageability of the dataset. Examples of
implementing data transformations and logic within M queries, such as the creation of a dynamic
customer history segment column, are included. Finally, reusable queries called dataflows are
covered, as well as tools for editing and managing M queries, such as extensions for Visual Studio
and Visual Studio Code.

In this chapter, we cover the following topics:

e Types of Power Query M queries
e Creating Power Query M queries
e Power Query M query examples

e Dataflows

e Power Query M query editing tools

Let’s start by looking at the different types of M queries.

Types of Power Query M queries

In Chapter 2, Preparing Data Sources, SQL views were created, data sources configured, and the
Power BI Desktop environment options applied. With these tasks accomplished, the dataset
designer can finally start developing the data retrieval queries and parameters of the dataset.
Power Query (M) queries are the means by which data sources are connected to and dataimported
into Power Bl datasets. M queries are necessary to connect to data sources such as SQL views and

can also perform data transformation as required.

The Power Query M language is a functional coding language more formally called the Power
Query Formula Language. M includes over 700 functions that are used to connect to data and
perform transformations of that data. The lines of M code that connect to and transform data

are called a query.
There are a number of different types of queries that serve different purposes, including:

e Data source parameters

e Staging queries

e Factand dimension queries
e Parameter table queries

e Security table queries

e Custom function queries

Chapter 3 85

This section explores each of these types of queries in detail. However, before delving into these
different types of queries, it is important to understand how queries can be organized in order to

achieve solutions that are more easily understood and maintained over time.

Organizing queries

Within the Power Query Editor of Power Bl Desktop, group folders are used to organize M queries
into common categories such as Data Source Parameters, Staging Queries, Parameter Tables,
Fact Table Queries, Dimension Table Queries, and Bridge Table Queries as shown in Figure 3.1:

= g b SOl) Pl v, PO

: Ll Rl Pl
Srmaeerr e AT ITERTEOF Y

Sy e TR TR,

e T = 55 Do - ok Lok - oy e]
B b shin et LT B BoLen s L [Eg— -
s - L B Te—mn E s Torrersy
By Sl Crrriery [T s vt
e Jaww— L wllee [orser=ar e
Ty Pir i ek D Rl
W s [" = -
E gy e i 1A i
Sim A [e [apEreaw e
AL bR T ER N —. " S -
e i BT " b -
Ty Ty [RS T " - —— -
ek Tabded M) Boden Pemhal " i -
BT Tratsil - [T Frodasi Sairgs
: i1 L s [s o Sa e e
s i rder_ ks ek gy & = Frmai ks =
e L]
Mt P B T "
™ a s -
P v G » S e
e, 1 B K PR - —— i b =
24 et s Tt Lo 1] v i Ty " Ladgq Ly -
Leisia, Topisks e [1 B il S __. -

Figure 3.1: Power Query Editor in Power Bl Desktop with group folders

New groups are created by right-clicking a query in the Queries pane and then choosing Move To
Group and finally New Group. Once groups are created, queries can be moved between groups
by dragging and dropping or by right-clicking the query, choosing Move to Group, and then

selecting the desired group.

The parameters and queries displayed in italics are included in the refresh process of the dataset
but not loaded to the dataset within Power BI Desktop. For example, the AdWorksSQLServer
query displayed in Figure 3.1 merely exposes the objects of the SQL Server database via the Sql.
Database() M function for other queries to reference. This query, along with the data source
parameters, is in italics and is used to streamline the data retrieval process such that a single

change can be implemented to update many dependent queries.

86 Connecting to Sources and Transforming Data with M

Right-click a query or parameter in the Queries pane to expose the Enable load and Include in

report refresh properties as shown in Figure 3.2:

4 Staging Queries [3]
T AdWorksSQLServer

L B
A% SalesPlanFilel © COPY
== Paste
=1, CurrentDa
iz yQ X Delete
b Parameter Tab —j Rename

4 Fact Table Que Enable load
1 Internet Salef|—‘ Include in report refresh

Figure 3.2: Enable load and Include in report refresh

For many datasets, the only queries that should be loaded to the data model are the dimension
and fact table queries and certain parameter table queries. In addition, there may be instances
where data within the source system is static, or unchanging. In these cases, there is no reason
to refresh the data within the dataset after the initial load and thus the Include in report refresh

option can be unchecked in order to save system resources and reduce refresh times.

We'll now take a detailed look at the different types of M queries, starting with data source

parameters.

Data source parameters

In the previous section, Figure 3.1 displayed a group called Data Source Parameters. Parameters are
special M queries that do not access an external data source and only return a scalar or individual

value, such as a specific date, number, or string of text characters.

The primary use case for parameters is to centrally define a common and important value, such
as a server name or the name of a database, and then reference that parameter value in multiple
other queries. Like global variables, parameters improve the manageability of large datasets as
the dataset designer can simply revise a single parameter’s value rather than manually modify

many queries individually.

Additionally, Power Bl dataset authors can use parameters to only load a sample of a table’s source
data to the local Power BI Desktop file and later load the entire table to the published Power BI
dataset. For example, starting and ending date parameters could be created and embedded in an

M expression that applies a filter condition when loading a table.

Chapter 3 87

The local Power BI Desktop file could use parameter values only representing a single month or
year date range, but the published dataset could load multiple years based on revised starting and
ending date parameter values. The dataset author or team can manipulate the parameter values
manually in the Power BI service or a script could be used that modifies the parameters via the
Power BI REST API. The Power BI REST API is described in the Power BI REST API and PowerShell
module section of Chapter 10, Managing Workspaces and Content.

Query parameters can be created and modified via the Manage Parameters dialog available on
the Home tab of the Power Query Editor. Figure 3.3 shows the Manage Parameters dialog, which
identifies the six parameters defined for the SQL Server database and the Microsoft Excel workbook:

Tran:form Add Calumn Wiew Tools Helg

r— = Propenies
Jﬁl g
= '+ savanced Edivor
MNew Recent Enler Diata sowrce Manage Refresh
Source ™ Sparces ™ Data settings Farameters = || Preview ™ il i
New Dueny Data Sources | Parameters Cuery
Manage Parameters Name
Maw ProdServer
*-El_ ProdSarver - Dascription
W8 Daviervar
A DanDB
% ProdDB ¥ Required
#f SabesPlanDirectary Type
a8 CalesPlanFile il
Suggested Values
List of values -

1 localhost MSSQLEERVERPROD
2 |ecalhort MESSOLSERVERDEY
3 lecafhost pMSSOQLSERVERTEST

Drelault Value

localhestMESOLSERVERPROD

Current value

localhostyMESOLSERVERPROD

Figure 3.3: Manage Parameters in Power Query Editor

88 Connecting to Sources and Transforming Data with M

For this dataset, development and production environment database parameters (for example,
ProdServer and ProdDB) are configured with a list of valid possible values to make it easy and
error-free when switching data sources. For the same purpose, both the name of the Excel
workbook containing the annual Sales and Margin Plan and its file directory are also stored as

parameters.

The Suggested Values dropdown provides the option to allow any value to be entered manually,
for a value to be selected from a hardcoded list of valid values, and for a query that returns a list
(avalue type in M, such as a table and a record) to dynamically populate a list of valid parameter
values. Given the small number of valid server names in this example and the infrequency of
changing production and development server names, the three suggested values have been entered

manually.

Parameters are often used with Power BI Template files to enable business users to customize
their own reports with pre-defined and pre-filtered queries and measures. For example, the user
would open a template and select a specific department, and this selection would be used to filter

the M queries of the dataset.

Additionally, parameters can be useful in defining the values used in the filtering conditions of
queries, such as the starting and ending dates, and in the calculation logic used to create custom
columns in M queries. Parameters are usually only used by other queries and thus not loaded
(italic font in Figure 3.3) but they can be loaded to the data model as individual tables with a
single column and a single row. If loaded, the parameters can be accessed by DAX expressions

just like other tables in the model.

We’ll now turn our attention to staging queries.

Staging queries

With the data source parameters configured, staging queries are used to expose the data sources to
the dimension and fact table queries of the dataset. For example, the AdWorksSQLServer staging
query merely passes the production server and production database parameter values into the
Sql.Database() M function as shown in Figure 3.1. This query results in a table containing the
schemas and objects stored in the database, including the SQL views supporting the fact and

dimension tables.

Chapter 3 89

The SalesPlanFilePath staging query used for the Annual Sales Plan Excel workbook source is very
similar in that it merely references the file name and file directory parameters to form a complete
file path, as shown in Figure 3.4:

Chaenies £31] < & || = salesPlanbirectery & "\" 8 SalesPlanFile

Data Saurce Parameters [B]
a Staging Cueras [3]
5 AdWarksSOServer
A SolpePianFilePoth LA\ Users\gdeckler\Documents' Ad®orks Sales Budget.xsa

Figure 3.4: Annual Sales Plan Staging Query—Excel Workbook

The third and final staging query, CurrentDateQry, simply computes the current date as a date
value as shown in Figure 3.5:

Chueries [31] ¢ fx = DateTime.Date(DateTine . Locallow{})

™

Data Source Parameters (6]
4 Staging Quereas [3]
T AdWarksSOL arer

B SalecPlanFilePath 12f29/2021

= CurrentDayCine

Figure 3.5: Current date staging query

Just like parameters, the results of staging queries, such as CurrentDateQry, can be referenced
by other queries, such as the filtering condition of a fact table. In the following sample M query,
the Table.SelectRows () function is used in the Internet Sales query to only retrieve rows where
the Order Date column is less than or equal to the value of the CurrentDateQry (for example
12/29/2021):
let
Source = AdWorksSQLServer,
ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
CurrentDateFilter = Table.SelectRows(ISales, each [Order Date] <=
CurrentDateQry)
in

CurrentDateFilter

90 Connecting to Sources and Transforming Data with M

In this simple example, the same filter condition can easily be built into the SQL view (vFact_
InternetSales), supporting the fact table, and this approach would generally be preferable.
However, it’s important to note that the M engine is able to convert the final query variable
(CurrentDateFilter), including the reference to the staging query (CurrentDateQry), into a

single SQL statement via query folding.

In some data transformation scenarios, particularly with rapid iterations and agile project
lifecycles, it may be preferable to at least temporarily utilize efficient M queries within the Power
BI dataset (or Analysis Services model) rather than implement modifications to the data source

(for example, data warehouse tables or views).

As covered in the Query folding section of Chapter 2, Preparing Data Sources, if it’s necessary to
use M to implement query transformations or logic, the dataset designer should be vigilant in
ensuring this logic is folded into a SQL statement and thus executed by the source system. This
is particularly important for large queries retrieving millions of rows, given the limited resources
of the data gateway server (if applicable) or any provisioned capacities (hardware) with Power

BI Premium.

Staging queries can also be used with DirectQuery queries.

DirectQuery staging

Itis possible to use staging queries even when working with DirectQuery. The database staging
query for a DirectQuery dataset is slightly different than an import mode dataset. For this query,

an additional variable is added to the let expression, as shown in the following example:

let
Source = Sql.Database(ProdServer, ProdDB),
DummyVariable = null

in

Source

The additional variable (DummyVariable) is ignored by the query and the same Sql.Database()
function that references the server and database parameters for the import mode dataset can

also be used for the DirectQuery dataset.

With parameters and staging queries defined, we can now focus on the main data queries for our

facts and dimensions.

Chapter 3 91

Fact and dimension queries

All of the work performed thus far has really been preparation work for creating the queries that

connect to and import the data of interest, the tables for our facts and dimensions.

For import mode datasets, the M query is executed upon a scheduled refresh and the query results
are loaded into a compressed, columnar format. DirectQuery mode datasets and import queries
with the Enable load property disabled or not set (see the Organizing queries section in this chapter)
only define the SQL statement representing the given dimension or fact tables. The DirectQuery
data source utilizes these SQL statements to create SQL queries necessary to resolve report queries,

such as joining the Internet Sales query with the Product query.

With proper preparation, most M queries should simply access a single SQL view, apply minimal
to no transformations, and then expose the results of this query to the dataset as a dimension or

fact table. Such queries are referred to as source reference-only queries.

Source reference only

The following M query shown in Figure 3.6 references the SQL view (BI.vDim_Customer) via the

staging query (AdWorksSQLServer) and does not apply any further transformations:
Cueries [31] ¢ = Source{ [Schama="BI", Itam="viim_Custonar™]}[Data]

Cisla Sounce Paramelers [5] |

o Stageng Queries [3] | Advarced Editar
E AdWarksSLiener

#r SolesPionFilefath C U STDFT"IE‘T

22 CorreratDayQey

Pasarnater Tabhes [4]

let
Fact Tabla Cuenes [3] Saurce = &dworkssHServer,
e - EI_wDim_Customar = Sourced[Schama="8I°, Item="vOiw_Customer”] }[Data]
4 Dimension Table CQuernes [12] i
= Account EI_wDim Customar
B Curmeny
T Customar

Figure 3.6: Customer dimension query

As shown in Figure 3.6, the Customer query accesses the unique M record associated with the
schema (BI) and SQL view (vDim_Customer) from the table produced by the staging query
(AdwWorksSQLServer). This record contains all field names of the staging table query including
the Data field that stores the SQL view. Referencing the Data field of the M record retrieves the
results of the SQL view.

92 Connecting to Sources and Transforming Data with M

Since no M transformations are applied, the M query reflects the source SQL view, and changes
to the SQL view such as the removal of a column are automatically carried over to the Power BI
dataset upon the next refresh. The one-to-one relationship between the SQL view and the M
query is one of the primary reasons to favor implementing, or migrating, data transformation
logic to the data warehouse source rather than in the Power BI dataset.

Connecting to data warehouse databases such as Azure SQL Database or Azure SQL Managed
Instance should generally result in simple M query expressions with little to no transformations
required. Semi-structured and unstructured sources such as JSON and Excel files naturally require
more transformations to prepare the data for analysis. We’ll next look at a more complex query

resulting from connecting to an unstructured data source, Microsoft Excel.

Excel workbook — Annual Sales Plan

As demonstrated in the previous section, fact and dimension queries for structured data sources
such as SQL Server should generally involve source reference-only queries. However, for the import
mode dataset, the annual Sales and Margin Plan data is retrieved from a table object within an

Excel workbook, an unstructured data source.

In the following fact table query shown in Figure 3.7 (Sales and Margin Plan), the SalesPlanFilePath

staging query is referenced within an Excel.Workbook() data access function:

| Advanced Editer O x

Sa|e5 and MarQin P|an Displo:,rOp'_i:m's - e

1) Excel.wWorkbook{) references SalesPlanFilsPath staging query
ata types
Last Update 1272572821 (GID)

/
let
Workbook = Excel.wWorkbook(File.Contents{SalesrlanFilePath),trus,true),
PlanThl = Workbook{[Iten="PlanTbl®Kind="Table"]}[Data],
DataTypes = Table.TransforaColumn Types(FlanThl,
{

{"calendar ¥r-Mo", type text},

{"calendar ¥r-Mo Sort", Intéd.Type},

{"vear", Intéd.Typel,

{"sales Territory Region™, type text},

{"Internet Net Sales™, Currency.Typel,

{"Internet Net Sales Margin %", type number},

{"Reseller Net Sales™; Currency.Type},

{"Reseller Net Sales Hargin X", type number},

{"Intarret Margin §7, Currency.Typel,

{"Reseller Margin $", Currency.Type}

Y
¥
DataTypes

+" Mo syntax errors have been detected.

Done Camel

Figure 3.7: Sales and Margin Plan query from Excel workbook source

Chapter 3 93

As covered in the Power BI Desktop options section in Chapter 2, Preparing Data Sources, the automatic
data type detection option for unstructured sources should be disabled. Structured data sources
such as SQL Server explicitly define the data types for columns. For unstructured data sources,
the automatic data type detection feature attempts to analyze and determine the appropriate

data type for each column.

With automatic data type detection disabled, it is necessary to explicitly define the appropriate
data type for each column of the Excel table via the Table.TransformColumnTypes () function.
The Int64.Type, Currency.Type, and type number arguments used in this function correspond

to the Whole Number, Fixed Decimal Number, and Decimal Number data types, respectively.

For a DirectQuery dataset, the Sales and Margin Plan data would be retrieved from a SQL view

within the same database as the other fact and dimension tables as shown in Figure 3.8:

| Advanced Editor
Sales and Margin Plan

l=t
Source = AdWorkssgLServer,
SalesMarginPlan = Scurce{[Schema = "BI", Item = "vFact_tdeorksSalesPlan”]}[Data]

salesMarginPlan

Figure 3.8: Sales and Margin Plan M query for DirectQuery dataset

The cost and time required to integrate the Sales and Margin Plan data into the data warehouse
database are one of the reasons that the default import mode dataset was chosen for this project.
The limitation of a single database within a single data source is currently one of the primary
limiting factors for DirectQuery datasets. In Figure 3.9, an error is thrown when trying to utilize

two databases from the same database server for a DirectQuery dataset:
Apply query changes

i DE DimEmployes
Connecting to tables from more than one databass isn't supporied in
Direciueny mode

1. Bl vFact Reseler3alas
Connecting to tables from more than one databass 50T supporied in
DiractQusry mode.

Figure 3.9: DirectQuery limitation - Single Database

94 Connecting to Sources and Transforming Data with M

This DirectQuery limitation can be overcome by using composite data models but this adds

additional complexity that is generally unwarranted in this scenario.

Let’s next look at queries designed to create tables that assist with building relationships within

a data model.

Parameter tables queries

Parameter table queries are developed for usability and manageability purposes.

From a usability standpoint, the Date Intelligence Metrics and Adventure Works Sales serve to
consolidate related measures in the Fields list that will be exposed to report authors and analysts
such that these users don’t have to scroll or hunt for measures. Additionally, the Current Date
query is used to provide reports with a text message advising of the latest data refresh date. From
a manageability standpoint, the Measure Support query is used to centralize intermediate or

branching DAX expressions that are referenced by many DAX measures.

As shown in Figure 3.10, a trivial expression is used for three of the four queries since the purpose

of the query is simply to provide a table name to the data model:

Py i £ K = Table,DastincT{Reglores:]

| Acfaanred Edrior
Dara Sourcs Pammsosn J9]

SEaging D |5

- fe sl D rirdak cTerrifrme T iTals
Pacameter Tanls M BridgeSalesTerritoryRegion
Fct Tabde: Duseries ; "'_"‘ﬂ
i Talie s (1] ¥ it ==
% Carmis Asgions = Tebtla Zalsctiolumes [Salas Tercifory™, “SalsaTerriforyd@sglon”],
a Eiribomn Tabsks Chusts [TrtinctRagione = Teals.Cdxtinct[Amgion |
. 3 Ly =
B ul b lmmota e Hagran ¥
z - 4 Frarce E st inctheglens
¥ Hrogeludgetinte iy
0 L
#y BrdgeRrcucTheb B Hh
e Crarnies ! Horthemi
! Huotbrard
9 Sceshessri
Sttt

Figure 3.10: Adventure Works Sales Parameter Tables query

The Date Intelligence Metrics, Adventure Works Sales, and Measure Support queries all retrieve
ablank value and the Include in report refresh property is disabled. The following two chapters
demonstrate how these blank tables are utilized as data model metadata, and DAX measures are
added to the dataset in Chapter 4, Designing Import and DirectQuery Data Models, and Chapter 5,
Developing DAX Measures and Security Roles, respectively.

Chapter 3 95

The Current Date query is the only parameter table query executed with each report refresh. The
following M script for the Current Date query produces a table with one column and one record,

representing the current date as of the time of execution:

let
RefreshDateTime = DateTime.LocalNow(),
TimeZoneOffset = -5,

RefreshDateTimeAdjusted = RefreshDateTime +
#tduration(@,TimeZoneOffset,0,0),

RefreshDateAdjusted = DateTime.Date(RefreshDateTimeAdjusted),

TableCreate = Table.FromRecords({[CurrentDate =
RefreshDateAdjusted]}),

DateType = Table.TransformColumnTypes(TableCreate,{"CurrentDate", type
date})

in

DateType

All reported times in Microsoft Azure are expressed in Coordinated Universal Time (UTC).
Therefore, timezone adjustment logic can be built into the M query to ensure the last refreshed

date message reflects the local timezone.

In the preceding example, five hours are reduced from the DateTime.LocalNow() function,
reflecting the variance between US Eastern Standard Time and UTC. The adjusted datetime

value is then converted into a date value and a table is built based on this modified date value.

As shown in Figure 3.11, the Current Date query is used by a DAX measure to advise of the last
refreshed date:

» ¢ & Fields =
f'""'i.':- -"'"fa-'-n ; = I
AOVENTURE WORKS g 1 . B | F Search
-
cyclea 5

g E i IEI Date Intelligence ketrics
LI 1 [Last Rafresh s
2 a I_ ast Befresh |:|

> B Account

Last Refreshed: 12/30/2021 BB Adventure Warks Sales

Figure 3.11: Parameter Tables in Fields list and data refresh message

Calculating the current date and time in the Power BI query captures the date and time at the

time of refresh and can potentially be used as a support query for other queries within the dataset.

96 Connecting to Sources and Transforming Data with M

The Current Date DAX expression simply surfaces this information within the report while

adding additional context for the report viewers.

The DAX expression supporting the last refreshed message is as follows:

Last Refresh Msg =

VAR _ CurrentDateValue = MAX('Current Date'[CurrentDate])
RETURN

"Last Refreshed: " & __ CurrentDateValue

An additional example of using DAX to return a string value for title or label purposes is included

in the Drill-through report pages section of Chapter 6, Planning Power BI Reports.

As datasets grow larger and more complex, Bl teams or dataset designers may add or revise group
names to better organize M queries. For example, the four parameter group queries in this section

serve three separate functions (fields list, last refreshed date, and DAX logic centralization).

To experienced Power Bl and Analysis Services Tabular developers, a parameter table is understood
as a custom table of parameter values loaded to a model and exposed to the reporting interface.
DAX measures can be authored to detect which value (parameter) has been selected by the user
(for example, 10% growth, 20% growth) and dynamically compute the corresponding result. For
this dataset, the concept of parameter tables is extended to include any query that is loaded to

the data model but not related to any other table in the data model.

Most large Power Bl datasets include data source parameters, staging queries, fact and dimension
queries, relationship table queries, and parameter tables queries. We’ll next cover two optional

types of queries, security table queries and custom function queries.

Security table queries

Security table queries support the inclusion of tables for the express purpose of implementing
row-level security (RLS) for the dataset. Such queries may be required in circumstances where
each user should only see their own data. In these circumstances a security table can import the
user principal names (UPNSs) of users with access to reports built against the dataset. Typically
the UPNs are the same values as user email addresses and the DAX function USERPRINCIPALNAME ()
can be used to retrieve this value for applying security or other filtering requirement in the Power

BI service.

Based on the data security needs for this project described in Chapter 1, Planning Power BI Projects,

it’s not necessary to retrieve any tables for the purpose of implementing an RLS role.

Chapter 3 97

As shown in the Sample Power BI project template section in Chapter 1, Planning Power BI Projects,
the sales managers and associates should only have access to their Sales Territory groups, while

the vice presidents should have global access.

With these simple requirements, the security groups of users (for example, North America, Europe,
and the Pacific region) can be created and assigned to corresponding RLS roles defined in the data
model. See Chapter 5, Developing DAX Measures and Security Roles, for details on implementing

these security roles.

In projects with more complex or granular security requirements, it’s often necessary to load
additional tables to the data model such as a Users table and a Permissions table. For example,
if users were to be restricted to specific postal codes rather than sales territory groups, a dynamic,
table-driven approach that applies filters based on the user issuing the report request would be

preferable to creating (and maintaining) a high volume of distinct RLS roles and security groups.

Given the importance of dynamic (user-based) security, particularly for large-scale datasets,
detailed examples of implementing dynamic security for both import and DirectQuery datasets

are included in Chapter 5, Developing DAX Measures and Security Roles.

We’ll next look at another optional query type, custom function queries.

Custom function queries

Since the Power Query (M) language is a functional programming language, itis possible to create
custom functions as queries. These queries allow the creation of reusable code that can be used
to perform repeated data transformations, such as custom parsing, or perform calculations. In
the simple example below, a custom function is defined for calculating the age of customers in

the Customer table:

let CalculateAge = (BirthDate as date) =>
Date.Year(CurrentDayQuery) - Date.Year(BirthDate)
in CalculateAge

This custom function takes a single parameter, BirthDate, which must be a date data type. The
Date.Year function is used on both the CurrentDayQuery reference and the BirthDate parameter
with the latter subtracted from the former in order to return the number of years. This function
can be saved as a query called GetAge and used within a custom column formula within the

Customer table as follows:

= GetAge([BirthDate])

98 Connecting to Sources and Transforming Data with M

Additional examples and uses for custom functions can be found in the official Microsoft

documentation at the following link: https://bit.1ly/33VIfRz.

You should now understand all of the various types of Power Query (M) queries that can be

created during dataset development. We’ll next look at more specific details regarding M queries.

Creating Power Query M queries

As mentioned, the M language is a functional programming language that includes over 700
functions. Similar to other programming languages, M has its own specific syntax, structure,
operators, and data types that must be used when coding. Experienced Power Query (M)
developers, for example, are very familiar with Lists, Records, and Tables and common use cases

and M functions available for working with these specific types.

While a full exploration of the entire M language is beyond the scope of this book, there are
a number of important subjects regarding M that we cover in the following sections as well
as providing readers with examples of more complex M queries. For readers interested in fully
understanding the M language, we refer them to the official Power Query M language specification
found here: https://bit.1ly/3vmFSyr.

We’ll first take a look at numeric data types in M.

Numeric data types

For structured data sources, such as SQL Server, the source column data types determine the data
types applied in Power BI. For example, a currency or money data type in SQL Server results in
a Fixed Decimal Number data type in Power BI. Likewise, the integer data types in SQL Server
resultin a Whole Number data type and the numeric and decimal data types in SQL Server result

in Decimal Number data types in Power BI.

When an M queryisloaded to the data model in a Power Bl dataset, a Fixed Decimal Number data
type is the equivalent of a (19,4) numeric or decimal data type in SQL Server. With four digits to
the right of the decimal place, the use of the Fixed Decimal Number data type avoids rounding
errors. The Decimal Number data type is equivalent to a floating point or approximate data type

with a limit of 15 significant digits.

Given the potential for rounding errors with Decimal Number data types and the performance
advantage of Fixed Decimal Number data types, if four digits of precision is sufficient, the Fixed
Decimal Number data type is recommended to store numbers with fractional components. All

integer or whole number numeric columns should be stored as Whole Number types in Power BI.

https://bit.ly/33VJfRz
https://bit.ly/3vmFSyr

Chapter 3 99

Numeric columns in M queries can be set to Whole Number, Fixed Decimal Number, and Decimal
Number data types via the following expressions, respectively—Int64.Type, Currency.Type,
and type number. The Table.TransformColumnTypes() function is used in the following M
query example to convert the data types of the Discount Amount, Sales Amount, and Extended

Amount columns:

let
Source = AdWorksSQLServer,
Sales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
TypeChanges = Table.TransformColumnTypes(Sales,
{
{"Discount Amount", Inté64.Type}, // Whole Number
{"Sales Amount", Currency.Type}, // Fixed Decimal Number
{"Extended Amount", type number} // Decimal Number
)
in
TypeChanges

As M s a case-sensitive language, the data type expressions must be entered in the exact case, such
as type number rather than Type Number. Note that single-line and multiline comments can be

included in M queries. See the M query examples section later in this chapter for additional details.

Given the impact on performance and the potential for rounding errors, it’s important to check
the numeric data types defined for each column of large fact tables. Additional details on data

types are included in Chapter 4, Designing Import and DirectQuery Data Models.

Next, we’ll look at item (record) access using M.

ltem access in M

Accessing records from tables, items from lists, and values from records are fundamental to M
query development. In the following example, the results of the BI.vDim_Account SQL view are
returned to Power Bl using a slightly different M syntax than the customer dimension query from

the previous section:

let
Source = AdWorksSQLServer,
AccountRecord = Source{[Name = "BI.vDim_Account"]},
Account = AccountRecord[Data]

in

Account

100 Connecting to Sources and Transforming Data with M

For this query, a record is retrieved from the AdWorksSQLServer staging query based only on the
Name column. The Data field of this record is then accessed in a separate variable (Account) to
return the results of the BI.vDim_Account SQL view to Power BI. Bl teams or the dataset designer

can decide on a standard method for accessing the items exposed from a data source staging query.

The following sample code retrieves the "Cherry" string value from an M list:

let
Source = {"Apple","Banana","Cherry","Dates"},
ItemFromList = Source{2}

in

ItemFromList

M is a zero-based system such that Source{0} would return the "Apple" value and Source{4}
would return an error since there are only four items in the list. Zero-based access also applies to
extracting characters from a text value. For example, the Text.Range("Brett",2,2) M expression

returns the et characters.

The list value type in M is an ordered sequence of values. There are many functions available for
analyzing and transforming list values, such as List.Count() and List.Distinct(). List functions
that aggregate the values they contain (for example, List.Average()) are often used within
grouping queries that invoke the Table.Group() function. For a definitive list of all M functions,

we refer the reader to the Power Query M function reference found here: https://bit.1ly/3bLKI1M.

Next we’ll look at perhaps one of the most important aspects of M, query folding.

Power Query M query examples

As demonstrated in the examples thus far, the combination of a mature data warehouse and a layer
of SQL view objects within this source may eliminate any need for further data transformations.
However, Power Bl dataset designers should still be familiar with the fundamentals of M queries

and their most common use cases, as it’s often necessary to further extend and enhance source data.

The following sections demonstrate three common data transformation scenarios that can
be implemented in M. Beyond retrieving the correct results, the M queries also generate SQL
statements for execution by the source system via query folding, and comments are included for

longer-term maintenance purposes.

If you’re new to M query development, you can create a blank query from the Other category of

data source connectors available within the Get Data dialog.

https://bit.ly/3bLKJ1M

Chapter 3 101

Alternatively, you can duplicate an existing query via the right-click context menu of a query in

the Power Query Editor and then rename and revise the duplicate query.

Trailing three years filter

The objective of this example is to retrieve dates from three years prior to the current year through
the current date. For example, on December 30th, 2021, the query should retrieve January Ist,
2018 through December 30th, 2021. This requirement ensures that three full years of historical

data, plus the current year, is always available to support reporting.

The starting date and current date values for the filter condition are computed via Date and
DateTime M functions and assigned variables names (StartDate, CurrentDate). Since the
starting date is always January Ist, it’s only necessary to compute the starting year and pass this

value to the #date constructor.

Finally, the two date variables are passed to the Table.SelectRows () function to implement the

filter on the Reseller Sales fact table view:

let

//Trailing Three Year Date Values
CurrentDate = DateTime.Date(DateTime.LocalNow(),
StartYear = Date.Year(CurrentDate)-3,
StartDate = #date(StartYear,1,1),

//Reseller Sales View

Source = AdWorksSQLServer,

ResellerSales = Source{[Schema = "BI", Item = "vFact_ResellerSales"]}
[Data],
//Trailing Three Year Filter

FilterResellerSales =

Table.SelectRows(ResellerSales, each Date.From([OrderDate]) >=

StartDate and Date.From([OrderDate]) <= CurrentDate)
in

FilterResellerSales

As shown in the View Native Query dialog available in the Applied Steps window of the Power
Query Editor, the custom filter condition is translated into a T-SQL statement for the source SQL

Server database to execute:

from [BI].[vFact_ResellerSales] as [_]

where [_].[OrderDate] >= convert(datetime2, '2018-01-01 00:00:00') and
[_].[OrderDate] < convert(datetime2, '2021-12-31 00:00:00')

102 Connecting to Sources and Transforming Data with M

Note that the order of the variables in the expression doesn’t impact the final query. For example,
the two Reseller Sales view variables could be specified prior to the three date variables and the
final FilterResellerSales variable would still generate the same SQL query. Additionally, be
advised that M is a case-sensitive language. For example, referencing the variable defined as

StartDate via the name Startdate results in a failure.

Single-line comments can be entered in M queries following the double forward slash (//)
characters as per the trailing three years example. Multiline or delimited comments start with

the (/*) characters and end with the (*/) characters, just like T-SQL queries for SQL Server.

If the requirement was only to retrieve the trailing three years of data relative to the current date
(for example, December 30th, 2018 through December 30th, 2021) the StartDate variable could

be computed via the Date.AddYears () function, as follows:

//Trailing three years (e.g. October 18th, 2018 through October 18, 2021)
CurrentDate = DateTime.Date(DateTime.LocalNow()),
StartDate = Date.AddYears(CurrentDate, -3)

Finally, note that the standard AdventureWorksDW database only has reseller sales through 2013
sousing the Date.AddYears () function to subtract years from the CurrentDate variable calculation

is necessary if you wish to display results from a standard AdventureWorksDW database.

In our next example, we use this trailing three years query but extend it so that in test and

production environments all years are loaded.

Combining queries

Multiple queries can be combined (appended) to one another through the use of the Table.
Combine function. This function can be extremely useful in situations such as Folder queries,
where multiple files with the same format need to be appended together into a single table within

the data model.

In this example, a parameter called Mode has been created with a list of available parameter values
of Dev, Test, and Prod. The following query checks the value of this parameter. If the parameter
is set to Dev, then only the trailing three years are returned using the query from the previous
example. Otherwise, the query from the previous example is combined with a table expression
that retrieves all additional years. The two table expressions are appended to one another using

the Table.Combine function:

let
//Trailing Three Year Date Values

Chapter 3 103

CurrentDate = DateTime.Date(DateTime.LocalNow()),
StartYear = Date.Year(CurrentDate)-3,
StartDate = #date(StartYear,1,1),

Results =
if Mode = "Dev"
then Trailing3Years
else
Table.Combine(

{

Trailing3Years,
Table.SelectRows(

AdWorksSQLServer{[Schema = "BI", Item =
"vFact_ResellerSales"]}[Data],

each Date.From([OrderDate]) < StartDate)

in
Results

In this example, the Trailing3Years query would be set to notload into the data model and this
query would be used as the main fact table for reseller sales. By using this approach, developers
can work with a much smaller local dataset and then easily include all required data when the
dataset moves from development to testing and production environments. Staging deployments
in this manner is discussed in the Staged deployments section of Chapter 10, Managing Workspaces

and Content.

This example also demonstrates the use of if statements, which have an overall format of:
if <true/false expression> then <expression> else <expression>
In this example, the use of an if statement prevents the query from including all rows from

the vFact_ResellerSales table when the Mode is set to Dev, providing faster data loading for

developers and a smaller overall dataset size.
Our next example also deals with fact tables and involves incremental refresh.

Incremental refresh for fact tables

Incremental refresh is a power Power BI feature that can greatly decrease refresh times for

extremely large fact tables.

104 Connecting to Sources and Transforming Data with M

Incremental refresh allows only part of the data (new and changed) within a table to be refreshed
versus reloading all rows during every refresh cycle, which is the default refresh behavior for

Power BI.

Using incremental refresh requires the use of two reserved parameters names, RangeStart and
RangeEnd. These parameters must be defined as a type of date/time. In the following example, the
internet sales query is modified to include filtering specific to the implementation of incremental

refresh:

let

Source = AdWorksSQLServer,

InternetSales = Source{[Schema="BI",Item="vFact_InternetSales"]}
[Data],

FilterRows = Table.SelectRows(InternetSales, each [OrderDateKey] >
ConvertDateKey(RangeStart) and [OrderDateKey] <= ConvertDateKey(RangeEnd))
in

FilterRows

The code in the FilterRows step uses the Table.SelectRows () function in conjunction with
the RangeStart and RangeEnd parameters as well as a custom function, ConvertDateKey. The
ConvertDateKey function is necessary because the OrderDateKey surrogate key column is used.
The OrderDateKey column is a surrogate key column because it stores the date as an integer value

in the form of YYYYMMMDD instead of as a date or date/time data type.

The ConvertDateKey custom function code is provided next:

let ConvertDateKey = (DateTime as datetime) =>

Date.Year(DateTime) * 10000 + Date.Month(DateTime) * 100 + Date.
Day(DateTime)
in

ConvertDateKey

When filtering the table using the RangeStart and RangeEnd parameters, itis important that only
one of the comparison conditions contains an equal to (=) clause. Otherwise, duplicate data may
result since certain rows of data may fulfill the end condition of one refresh cycle and the start

condition of the next refresh cycle.

The initial refresh cycle for that datasetloads all rows of data within the dataset and the RangeStart
parameter is set automatically by the service. The subsequent refresh cycle sets the RangeEnd
parameter to the current date and time such that only new and updated data is added to the
data table.

Chapter 3 105

Next, we'll turn our attention to M query examples for dimensions, starting with the customer

query.

Customer history column

In this example, the goal is to add a column to the customer dimension table that groups the
customers into four categories based on the date of their first purchase. Specifically, the new
column needs to leverage the existing first purchase date column and assign the customer rows
to one of the following four categories—First Year Customer, Second Year Customer, Third Year

Customer, and Legacy Customer.

Since the column is computed daily with each scheduled refresh, it is used by the sales and

marketing teams to focus their efforts on new and older customer segments.

A combination of date functions and conditional logic (if. .then. .else) is used with the Table.

AddColumn() function to produce the new column:

let
// Customer History Date Bands
CurrentDate = DateTime.Date(DateTime.LocalNow()),
OneYearAgo = Date.AddYears(CurrentDate,-1),
TwoYearsAgo = Date.AddYears(CurrentDate,-2),
ThreeYearsAgo = Date.AddYears(CurrentDate,-3),
//Customer Dimension
Source = AdWorksSQLServer,
Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],
CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment",
each
if [DateFirstPurchase] >= OneYearAgo then "First Year Customer"
else if [DateFirstPurchase] >= TwoYearsAgo and [Customer First
Purchase Date] < OneYearAgo then "Second Year Customer”

else if [DateFirstPurchase] >= ThreeYearsAgo and [Customer First
Purchase Date] < TwoYearsAgo then "Third Year Customer”

else "Legacy Customer", type text)
in

CustomerHistoryColumn

106 Connecting to Sources and Transforming Data with M

As shown in Figure 3.13 from the Power Query Editor, the Customer History Segment column

produces one of four text values based on the DateFirstPurchase column:

, 133 CustomerKey el ' DateFirstPurchase [~ - Customer History Segment [~
3f2 11381 61202011 Legacy Customer

383 11282 11/3/2012 Third Year Customer

384 11383 1/1/2014 First Year Customer

385 11384 /22013 Second Year Customer

Figure 3.12: Customer History Segment column in Power Query Editor

Like the previous M query example of a trailing three year filter, the conditional logic for the

derived customer column is also translated into T-SQL via query folding:

[_].[DateFirstPurchase] as [DateFirstPurchase],
[_].[CommuteDistance] as [CommuteDistance],
case
when [_].[DateFirstPurchase] >= convert(date, '2013-12-30')
then 'First Year Customer'

when [_].[DateFirstPurchase] >= convert(date, '2012-12-30') and
[_].[DateFirstPurchase] < convert(date, '2013-12-30")
then 'Second Year Customer'

when [_].[DateFirstPurchase] >= convert(date, '2011-12-30') and
[_].[DateFirstPurchase] < convert(date, '2012-12-30")

then 'Third Year Customer’
else 'Legacy Customer'
end as [Customer History Segment]

from [BI].[vDim_Customer] as [_]

The two dynamic columns (Calendar Year Status and Calendar Month Status) included in

the date dimension SQL view earlier in this chapter could also be computed via M functions.

We'll now provide additional details regarding the final parameter to the Table.AddColumn()

function, in this case type text.

Derived column data types

The final parameter to the Table.AddColumn() function is optional but should be specified to

define the data type of the new column.

Chapter 3 107

In the Customer History Segment column example, the new column is defined as a text data type.
If a whole number column was created, an Int64. Type would be specified, such as the following

example:
MyNewColumn = Table.AddColumn(Product, "My Column", each 5, Int64.Type)
If the data type of the column is not defined in the Table.AddColumn() function or later in the

query via the Table.TransformColumnTypes () function, the new column is set as an Any data

type, as shown in the following screenshot:

Data Type: Any ~
£ Use First Row as Headers ~

%5, Replace Values

Transform
My Column -
1
1

Figure 3.13: Data Type of Any

Columns of the Any data type are loaded to the data model as a text data type. Dataset designers
should ensure that each column in every query has a data type specified. In other words, as a best

practice, the Any (that is, unknown) data type should not be allowed in M queries.

We’ll now move on to providing an additional M query example for the product dimension.

Product dimension integration

The SQL view for the product dimension referenced in Chapter 2, Preparing Data Sources, contained

the following four operations:

1. Join the Product, ProductSubcategory, and ProductCategory dimension tables into a
single query

2. Create a custom product category group column (for example, Bikes versus Non-Bikes)

3. Apply report-friendly column names with spaces and proper casing

4. Replace any null values in the Product Subcategory and Product Category columns

with the 'Undefined’ value

108 Connecting to Sources and Transforming Data with M

Like almost all operations available to SQL SELECT queries, the same query can also be created
via M functions. If the SQL view for the product dimension cannot be created within the data

source, the following M query produces the same results:

let
Source = AdWorksSQLServer,
//Product Dimension Table Views
Product = Source{[Schema = "BI", Item = "vDim_Product"]}[Data],
ProductSubCat = Source{[Schema = "BI", Item = "vDim_
ProductSubcategory"]}[Data],
ProductCat = Source{[Schema = "BI", Item = "vDim_ProductCategory"]}
[Data],
//Product Outer Joins
ProductJoinSubCat = Table.
NestedJoin(Product, "ProductSubcategoryKey",ProductSubCat,
"ProductSubcategoryKey", "ProductSubCatTableCol",JoinKind.LeftOuter),
ProductJoinSubCatCol = Table.
ExpandTableColumn(ProductJoinSubCat, "ProductSubCatTableCol",
{"EnglishProductSubcategoryName",
"ProductCategoryKey"}, {"Product Subcategory", "ProductCategoryKey"}),

ProductJoinCat = Table.NestedJoin(ProductJoinSubCatCol,
"ProductCategoryKey",ProductCat,
"ProductCategoryKey", "ProductCatTableCol",JoinKind.LeftOuter),
ProductJoinCatCol = Table.ExpandTableColumn(ProductJoinCat,
"ProductCatTableCol", {"EnglishProductCategoryName"},{"Product
Category"}),
//Select and Rename Columns
ProductDimCols = Table.SelectColumns(ProductJoinCatCol,
{"ProductKey", "ProductAlternateKey",
"EnglishProductName","Product Subcategory","Product Category"}),
ProductDimRenameCols = Table.RenameColumns(ProductDimCols, {
{"ProductKey", "Product Key"},{"ProductAlternateKey","Product

Alternate Key"},{"EnglishProductName", "Product Name"}

1
//Product Category Group Column

ProductCatGroupCol = Table.AddColumn(ProductDimRenameCols,
"Product Category Group", each

if [Product Category] = "Bikes" then "Bikes"

Chapter 3 109

else if [Product Category] = null then "Undefined"
else "Non-Bikes"
,type text),
//Remove Null Values
UndefinedCatAndSubcat = Table.ReplaceValue(ProductCatGroupCol,null,
"Undefined",Replacer.ReplaceValue,{"Product Subcategory","Product
Category"})
in
UndefinedCatAndSubcat

The three product dimension tables in the dbo schema of the data warehouse are referenced from

the AdWorksSQLServer staging query described earlier in this chapter.

The Table.NestedJoin() functionisused to execute the equivalent of the LEFT JOIN operations
from the SQL view, and the Table.ExpandTableColumn() function extracts and renames the

required Product Subcategory and Product Category columns.

Following the selection and renaming of columns, the Product Category group column is
created via a conditional expression within the Table.AddColumn() function. Finally, the
Table.ReplaceValue() function replaces any null values in the Product Category and Product
Subcategory columns with the 'Undefined’' text string. The Power Query Editor provides a

preview of the results as shown in Figure 3.14:

3 Premdoct Koy = | & Prodock Bemsie Koy - | F Proviard Hamae = | W Pruwdact Seboriegery = | B Prodoe Calegory = | &y Proshutt Celegery Seoup

L M WAL} WL Mounisis Frame - S, 18 Wousien fremes Eormpaneris For-Bikm

AR FE- W GLS-1F HI ETamfs el LT - T uE T Ly
BI0 E-PEIA-EX Fozsd- 150 Foad B Bian b
- n - S EER T Forumd 17000 P, i3 Eaud B Bl -

Figure 3.14: Power Query Editor preview of Product M query

Despite the additional steps and complexity of this query relative to the previous M query examples
(trailing three years filter, Customer History Segment column), the entire query is translated
into a single SQL statement and executed by the source SQL Server database. The View Native
Query option in the Applied Steps pane of the Power Query Editor reveals the specific syntax of
the SQL statement generated via query folding:

select [_].[ProductKey] as [Product Key],
[_].[ProductAlternateKey] as [Product Alternate Key],
[_].[EnglishProductName] as [Product Name],
case

when [_].[EnglishProductSubcategoryName] is null

110 Connecting to Sources and Transforming Data with M

then 'Undefined’
else [_].[EnglishProductSubcategoryName]
end as [Product Subcategory],
case
when [_].[EnglishProductCategoryName] is null
then 'Undefined’
else [_].[EnglishProductCategoryName]
end as [Product Category],
case

when [_].[EnglishProductCategoryName] = 'Bikes' and [_].
[EnglishProductCategoryName] is not null

then 'Bikes’
when [_].[EnglishProductCategoryName] is null
then 'Undefined'
else 'Non-Bikes'
end as [Product Category Group]

from

Note thata dedicated SQL view objectin the Bl schema (for example, BI.vDim_ProductSubcategory)
is accessed for each of the three product dimension tables. As per the SQL views section of Chapter
2, Preparing Data Sources, it’s recommended to always access SQL views from Power BI datasets,

as this declares a dependency with the source tables.

Note that the Table. Join() function could not be used in this scenario given the requirement for
aleft outer join and the presence of common column names. With a left outer join, the presence
of common column names, such as ProductSubcategoryKey or ProductCategoryKey, for the

tables in the join operation would cause an error.

Although a left outer join is the default behavior of the Table.NestedJoin() function, it’s
recommended to explicitly specify the join kind (for example, JoinKind.Inner, JoinKind.
LeftOuter, or JoinKind.LeftAnti) as per the ProductJoinSubCat and ProductJoinCat variables
of the M query. As a refresher of the types of joins available in Power Query, please refer to the
following link: https://bit.1ly/3wWqulK.

Note that, in general, if the Table.Join function can be used then it should be preferred over
Table.NestedJoin. The reason is that Table.NestedJoin uses local resources to perform the
join operation while Table.Join can be folded back to the source system and is thus generally
more performant. Itis worth noting then that the Merge operation available in the Power Query

Editor graphical user interface (GUI) performs a Table.NestedJoin by default.

https://bit.ly/3wWquJK

Chapter 3 m

Whenever any unstructured or business user-owned data sources are used as sources for a Power
Bl dataset, it’s usually appropriate to implement additional data quality and error-handling logic

within the M query.

For example, a step that invokes the Table.Distinct() function could be added to the Sales
and Margin Plan query that retrieves data from the Excel workbook to remove any duplicate
rows. Additionally, the third parameter of the Table.SelectColumns() function (for example,
MissingField.UseNull) can be used to account for scenarios in which source columns have

been renamed or removed.

While the M language provides extensive data transformation capabilities on its own, some
experienced data professionals may be more comfortable with other languages like R and Python.

We cover this topic in the next example.

R and Python script transformation
It’s possible to execute an R or Python script within an M query as part of a data transformation

process.

As shown in Figure 3.15, the Run R script and Run Python script commands are available on the

Transform tab of the Power Query Editor in Power BI Desktop:

Wiarope Callinunsg 4= 25 Trgomanmetny = L)
= ll:: A |
Extract * e Founding *
Statistics standard Scientific . g Drate fime Duration
Parse ™ = - = Infoomation = “ = -
Column Mumber Column Date & Tirme Colurmn
Run R script

Enter R scripts into the editor to transform and shape your data,

Script

'dataset’ holds the input data for this script

Figure 3.15: Run R script and Run Python script commands in Power Query Editor

To execute an R script or Python script in Power BI Desktop, R or Python need to be installed
on the local machine as well as any packages used by the script. If the data gateway is used, R,
Python, and appropriate packages must be installed on the server running the data gateway as
well. Most importantly, for the scripts to work properly when the dataset is published to the

Power BI service, the privacy levels for the data sources need to be set to Public.

112 Connecting to Sources and Transforming Data with M

For most organizations, this limitation rules out the use of R and Python scripts for data
transformations in Power BI. Additionally, the presence of R and Python scripts adds another

layer of complexity to a solution that already includes SQL, M, and DAX.

Let’s next look at another way to create Power Query (M) queries using dataflows.

Dataflows

Simply stated, dataflows are Power Query M queries created in the Power Bl service. For non-My
Workspace workspaces, the Power BI service provides an interface nearly identical to the Power

Query Editor in Power BI Desktop for creating and editing Power Query queries.

Dataflows access source systems in the same manner as Power Query queries created in Power
Query Editor within Power BI Desktop. However, the data ingested from these queries for import
mode dataflows is stored in Dataverse-compliant folders within an Azure Data Lake Storage Gen2

instance. Dataflows can also be created for DirectQuery access to source systems.

There are several key advantages to the use of dataflows within enterprise BI. Chief among these
advantages is reusability. Once created, a dataflow can be used as a data source within multiple
different Power BI Desktop files during dataset design. Power Bl dataflows are an option when using

the Get data feature in both Power BI Desktop and Power Query Editor as shown in Figure 3.16:

| la o5 Ly

Get Excel PowerBl SQL
data ~ Rvorkbook datasets Server

Common data sources

Excel workbook

|-'-|J'_|[§; Power Bl datasets

I [%5 Power Bl dataflows I
Dataverse

Figure 3.16: Power Bl dataflows as a data source

This means that the data transformation logic within a query can be created once and leveraged
across multiple different datasets, making the creation of datasets more efficient, more

standardized, and less error-prone.

Chapter 3 13

The second key advantage of dataflows for import mode datasets is that the dataflow isolates the
source systems from the Power BI datasets. This means that refreshes from Power Bl datasets pull
from the Azure Data Lake Storage Gen2 instance instead of the source systems themselves, keeping

theloading of data refreshes from multiple Power BI datasets from impacting the source systems.

The dataflow can be refreshed once, and then refreshes in all Power BI datasets utilizing the
dataflow only impact the highly scalable Azure Data Lake Storage Gen2 instance and not the
source systems. This is even more important if the source data system accessed by the dataflow

is on-premises and requires a data gateway.

Since the data pulled by Power BI Desktop datasets isin an Azure Data Lake Storage Gen2 instance,
no data gateway is required for refreshing these datasets. The data gateway is only required when

refreshing the dataflow itself.

The isolation of the source data systems from the Power BI datasets also has an advantage in
terms of security. Instead of providing access credentials for data source systems to multiple
dataset designers, the enterprise BI team can now simply provide authorization credentials to

the dataflow and not the source systems.

While an idealized state for enterprise BI would include a single data warehouse and a
corresponding single Power BI dataset for reporting purposes, such an idealized state is often
not possible. For example, a customized product list might be stored by the marketing team in
a SharePoint site and this data is not planned to be included in the corporate data warehouse
any time soon. However, this list is applicable to multiple Power BI datasets that support sales,

marketing, and supply chain.

In such a situation, a single dataflow could be created that connects to this source file and applies the
necessary transforms. The sales, marketing, and supply chain datasets could then all connect to this

one dataflow such that any updates to this central source naturally flow to all dependent datasets.

As mentioned, dataflows provide several key advantages. When used within Power BI Premium,

additional features are exposed and available for dataflows.

Power Bl Premium dataflow features

Power BI Premium supports additional dataflow features, including the Enhanced compute
engine, DirectQuery, Computed entities, Linked entities, Incremental refresh, and machine

learning capabilities in the form of AutoML.

114 Connecting to Sources and Transforming Data with M

The enhanced compute engine can dramatically decrease refresh speeds for complex
transformations such as joins, group by, filter, and distinct operations. As previously mentioned,
creating dataflows for DirectQuery sources is supported but only in Premium. It is important to
note that composite models that have both import and DirectQuery sources currently do not

support the inclusion of dataflows as a data source within these composite models.

Computed entities allow you to perform in-storage computations, combining data from
multiple dataflows into a new, merged entity or enhancing an existing entity. For example, a
Product dataflow could be enhanced by adding information from Product Category and Product

Subcategory dataflows.

Similar to computed entities, linked entities allow you to reference other dataflows in order to
perform calculations (computed entities) or establish a table that serves as a single source of

truth for other dataflows.

Finally, AutoML automates the data science behind the creation of machine learning (ML) models,

enabling the automatic recognition of patterns, sentiment analysis, and other ML use cases.

To wrap up this chapter, we’ll explore the different editing tools used to create M queries.

Power Query M editing tools
Similar to other languages and project types, code-editing tools are available to support the

development, documentation, and version control of M queries.

In addition to the Advanced Editor within Power BI Desktop and the dataflows editing interface
of the Power BI service, dataset designers can use Visual Studio or Visual Studio Code to author
and manage the M queries for Power Bl and other Microsoft projects. These tools include common

development features, such as IntelliSense, syntax highlighting, and integrated source control.
We’ll explore the different tools supporting M query development in the following sections.

Advanced Editor

In Power BI Desktop and for dataflows in the Power BI service, the M code for each query can be

accessed from the Advanced Editor window within the Power Query Editor.

Chapter 3 115

With the Power Query Editor open, select a query of interest from the list of queries on the left
and click on the Advanced Editor icon from the Home tab to access the Advanced Editor dialog

shown in Figure 3.17:

Ir -
“ Tran=form Add Cohumm e Took Helg
=W . —

FL Frogeite:s [~ m| T
wt Lo 5. oy
Close & Hew Recent Brvier Dafa soumoe Manage Hafresh Choose Hemose Keen Remowe
Apply™ Source ™ Soamces ™ [Liaka sethings Farameters ™ Freoew ™ Manage: = Cabmmns™ Columns™ Fows=™ Hoss ™
Cloz= M= ey Cata Scurces Fammeters Cuery Manags Columns REducs Rows
Cueries [36] i Adwanced Editor u #

Dty Source Pary
* .

Staging Clueries P r':ld U C L Display Optiars_-| @

Paramebor Talkibes

Fact Tale Cuierisg
Updated 127382821 (Greg Deckler)

4 Cumension Table Aaddad Product Colar-Class Columm via CalorClass wariabla
"1 Acoount o
lat
i Cumrency Scurce = AddorksSQLServer,
—_— Prodisct = Saurce([Schema="dbo” Ttem="Dintroduct”]} Data],
Custormer :
CelorClazs =
T Dates Table . addCalumn (Product, "Praduct Color-Class™, @ach

[Color] & “-" & [Class]. type text)

— Emplayes

ColorClass

' Mo syntax arrors hawe been detected.

i Sl Terrilory —_—
A Dere Careced
GE:,.-IJHI“ Iy

Figure 3.17: Advanced Editor in Power Bl Desktop

Experienced M query authors often use the data transformation icons available in the Power
Query Editor to quickly produce an initial version of one or a few of the requirements of the query.
The author then uses the Advanced Editor or an external M editing tool to analyze the M code
generated by the Power Query Editor and can revise or enhance this code, such as by changing

variable names or utilizing optional parameters of certain M functions.

For the most common and simple data transformation tasks, such as filtering out rows based
on one value of a column (for example, State = "Kansas"), the M code generated by the Power
Query Editor usually requires minimal revision. For more complex queries with custom or less
common requirements, the Power Query Editor graphical interface is less helpful and a greater

level of direct M development is necessary.

116 Connecting to Sources and Transforming Data with M

While the Advanced Editor is convenient, it lacks proper source control integration, a deficiency

that can be solved through the use of alternative tools such as Visual Studio Code.

Visual Studio Code

Visual Studio Code is a free, lightweight code-editing tool from Microsoft that’s available on all

platforms (Windows, Mac, and Linux). An extension for Visual Studio Code, Power Query / M

Language, provides code-editing support for the Power Query M language as shown in Figure 3.18:
File Edit Sedection Wew Go B Jeminal Helo et poy ¢ Wisuad Shuda Codie

EXTE! PE ¥ L) T Proafiacijoy X

k—ﬂll!‘ Frleiakurs in Matk-takion

= |NSTALLED

Power Query £ M Language

Figure 3.18: M query in Visual Studio Code

In this example, the same Product query viewed in the Advanced Editor of Power BI Desktop
has been copied into a Visual Studio Code file and saved with a (. pq) file extension. Once saved
with a supported file extension, code-editing features, such as colorization, auto-closing, and
surrounding detection, are applied. M query files can be opened and saved with the following

four file extensions—.m, .M, .pq, and . PQ.

It must be noted that M code developed in Visual Studio Code cannot be used directly by Power
BI. The code must be copied from Visual Studio Code or a source control repository and pasted
into Advanced Editor. However, experienced enterprise BI teams recognize the importance of
proper version control, especially as it relates to changes to underlying data tables and data

transformations.

Since the . pq file extension is used by the Power Query SDX for Visual Studio, this file extension
is recommended for storing M queries in Visual Studio Code, as well as in Visual Studio, which

we’ll cover in the next section.

Chapter 3 117

Visual Studio

Visual Studio is the full-featured version of the more lightweight Visual Studio Code and is a
premier integrated development environment (IDE) in wide use throughout the technology
industry. For Visual Studio 2015 and later, the Power Query SDK can be used to create data
connector and M query projects, as shown in Figure 3.19:

Create a new project e 2
Becent project templates ANl languisges . & plathorms -
EL tntegration Serdces Project &, PO Rl

A biari PO file

0 wWindores Forms App LA

Figure 3.19: Power Query project types in Visual Studio

With a new PQ file solution and project in Visual Studio, the M queries of a Power Bl dataset can
be added as separate (.pq) files, as shown in Figure 3.20:

w Fila Edit Miew Project Buidd Debug Test Analyze Toels Extensions

Window Help Search (Cirl=0) P

AdWorks En
- F-a@f |- b Atach. - 08 | @B L0] -
P s * Ba o-29@
T Updated 12/38/2821 (Greg Deckler) Wl <earch alution Explerer (Carl+
:. Added Product Color-Class Column via ColorClass variable 3 Solution 'AdWorks Enterprise |
:5_ *f Bridge Table Queries
g Data Seurce Parameters
- let - Dimension Table Quernies
Source = AdWorksSQLServer, D Praduct pq
Product = Source{[5chema="dbo",Item="DimProduct"]}[Data],

ColorClass =
= Table.AddColumn{Product, "Product Color-Class", each

[Color] & "-" & [Class], type text)
in

ColorClass

Figure 3.20: Power Query project in Visual Studio 2019

Unlike the extension for Visual Studio Code, the file extension type for Power Query projects
is exclusively to (.pg. Most importantly, full M language IntelliSense is supported, making it
dramatically easier to find M functions relevant to specific data transformation operations.

IntelliSense is the general term for code-editing features such as code completion, content assist
(parameter information), and code hinting.

118 Connecting to Sources and Transforming Data with M

Moreover, unlike the extension for Visual Studio Code, M queries can be executed from within
Visual Studio via the Power Query SDK for Visual Studio. To execute an M query in Visual Studio,
such as in the preceding example, click the Start button on the toolbar (green play icon) or press
the F5 key.

You can also right-click the Power Query project (for example, AdWorks Enterprise Import) to
configure properties of the M query project, such as the maximum output rows to return and

whether native queries can be executed.

Toinstall the Power Query SDK for Visual Studio, access the Visual Studio Marketplace (Extensions

| Manage Extensions) and search for the name of the extension (Power Query SDK).

The Power Query SDK for Visual Studio enables standard integration with source control and

project management tools, such as Azure DevOps services (formerly Visual Studio Team Services).

This completes our exploration of connecting to sources and transforming data with M.

Summary

In this chapter, we’ve covered many of the components of the data retrieval process used to
support the dataset for this project as described in Chapter 1, Planning Power BI Projects. This
included constructing a data access layer and retrieval process for a dataset and using M queries

used to define and load the dimension and fact tables of the dataset.

In the next chapter, we’ll leverage the M queries and design techniques described in this chapter

to create import and DirectQuery data models.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Designing Import, DirectQuery,
and Composite Data Models

This chapter utilizes the queries described in Chapter 3, Connecting To Sources And Transforming
Data With M, to create import, DirectQuery, and composite data models. Relationships are created
between fact and dimension tables to enable business users to analyze the fact data for both
Internet Sales and Reseller Sales simultaneously by using common dimension tables and across
multiple business dates. In addition, business users can compare these fact tables against the

Annual Sales and Margin Plan.

This chapter also contains recommended practices for model metadata such as assigning data
categories to columns and providing users with a simplified field list. Finally, we review common

performance analysis tools and optimization techniques for import and DirectQuery data models.

As described in the Dataset planning section of Chapter 1, Planning Power BI Projects, data models
can have modes of either import, DirectQuery, or composite. The implications of the design
choices for data models significantly influence many factors of Power BI solutions including
optimizations applied to source systems to support DirectQuery access and the configuration of

incremental data refresh for import mode fact tables.
In this chapter, we review the following topics:

e Datasetlayers
e Thedatamodel
e Relationships

e Model metadata

120 Designing Import, DirectQuery, and Composite Data Models

e Optimizing performance

We start by taking a look at the different layers within data models (datasets).

Dataset layers

As covered in Chapter 1, Planning Power BI Projects, and Chapter 3, Connecting To Sources And
Transforming Data With M, Power BI datasets are composed of three tightly integrated layers,

which are all included within a Power BI Desktop file.

The first layer, the M queries described in Chapter 2, Preparing Data Sources, connect to data
sources and optionally apply data cleansing and transformation processes to this source data to

support the Data Model.

The second layer, the Data Model and the subject of this chapter, primarily involves the
relationships defined between fact and dimension tables, hierarchies reflecting multiple levels

of granularity of a dimension, and metadata properties such as the sort order applied to columns.

The final layer of datasets is discussed in Chapter 5, Developing DAX Measures and Security Roles,
Data Analysis Expressions (DAX) measures. DAX measures leverage the Data Model to deliver

analytical insights for presentation in Power BI and other tools.

The term Data Model is often used instead of dataset, particularly in the context of Analysis

Services. Analysis Services Tabular models include the same three layers as Power BI datasets.

In other contexts, however, Data Model refers exclusively to the relationships, measures, and
metadata, but not the source queries. For this reason, and given the use of the term datasets in

the Power BI service, the term dataset (and dataset designer) is recommended.

Figure 4.1 summarizes the role of each of the three dataset layers:

* Data Access
Data Transformation

« Relationships '

Data Metadata

Model

Calculation Logic
» Security Filters

Measures

Figure 4.1: Three layers of datasets

Chapter 4 121

At the Data Model layer, all data integration and transformations should be complete. For example,
while itis certainly possible to create additional columns and tables via DAX calculated columns
and tables, other tools such as data warehouse databases, SQL view objects, and M queries are

almost always better suited for this need.

Ensure that each layer of the datasetis being used for its intended role. For example, DAX measures
should not contain complex logic that attempts to work around data quality issues that can be
addressed at the source or in a transformation within a source query. Likewise, DAX measure
expressions should not be limited by incorrect data types (for example, a number stored as text) or
missing columns on the date table. Dataset designers and data source owners can work together

to keep the analytical layers of datasets focused exclusively on analytics.

Before diving into an exploration of the objectives for datasets, we first update the guidance from
the first edition of this book.

Power Bl as a superset of Azure Analysis Services

In the first edition of this book, organizations would typically use Power BI for small and simple
self-service datasets but provision Azure Analysis Services (AAS) or SQL Server Analysis Services
(SSAS) resources for large models requiring enterprise features such as partitions and object-level
security. Microsoft has now closed prior feature and scalability gaps with Analysis Services and

added powerful modeling features exclusive to Power BI Premium-hosted datasets.

For example, only a Power Bl dataset can be designed to blend import and DirectQuery data sources
(composite models), to include one or multiple aggregation tables to accelerate performance
over large sources, and only a Power BI dataset can have incremental refresh policies managed

by the Power BI service.

Given the new modeling scenarios supported by Power Bl exclusive features as well as the reduced
management overhead provided by incremental refresh policies, new enterprise models are now
typically deployed to Power BI Premium workspaces. Likewise, existing Analysis Services models
are commonly migrated to Power BI Premium to take advantage of new enterprise modeling

features and to align with Microsoft’s product roadmap.

We now move on to dataset objectives.

Dataset objectives
The intent of a Power BI dataset is to provide a central “source of truth” data source that’s easy
to use for report authors and analysts, applies all required security policies, and reliably delivers

adequate performance at the required scale.

122 Designing Import, DirectQuery, and Composite Data Models

For both Power BI projects and longer-term deployments, it’s critical to distinguish Power BI
datasets from Power Bl reports and dashboards. Although Power BI Desktop is used to develop both
datasets and reports, a Power Bl datasetis a tabular Analysis Services Data Model internally. Power
BI reports, which are also saved as . pbix files, only connect to the dataset and thus exclusively

leverage Power BI Desktop’s visualization features, such as bookmarks and slicer visuals.

As per Chapter 1, Planning Power BI Projects, datasets and reports are also associated with unique
technical and non-technical skills. A Power Bl report developer, for example, should understand
visualization standards, the essential logic and structure of the dataset, and how to distribute
this content via Power BI Apps. However, the report developer doesn’t necessarily need to know

any programming languages and can iterate very quickly on reports and dashboards.

Given that the dataset serves as the bridge between data sources and analytical queries, it’s
important to proactively evaluate datasets relative to longer-term objectives. Large, consolidated
datasets should be designed to support multiple teams and projects and to provide a standard
version or definition of core metrics. Although organizations may enable business users to create
datasets for specific use cases, corporate BI solutions should not utilize datasets like individual

reports for projects or teams.

Table 4.1 summarizes the primary objectives of datasets and identifies the questions that can be

used to evaluate a dataset in relation to each objective:

Objective Success criteria

User interface How difficult is it for business users to build a report from scratch?

Are users able to easily find the measures and columns needed?

Version control | Do the measures align with an official, documented definition?

Are the same dimensions reused across multiple business processes?

Data security Have row-level security (RLS) roles been implemented and thoroughly tested?

Are Azure Activity Directory (AAD) security groups used to implement

security?

Performance Are users able to interact with reports at the speed of thought or, at a minimum,

atan acceptable level of performance?
Are the base or primary DAX measures efficient?

Has a repeatable, performance testing process with baseline queries been

created?

Chapter 4 123

Scalability Can the dataset support additional business processes and/or history?

Can the dataset support additional users and workloads?

Analytics Does the dataset deliver advanced insights (out of the box)?

Are any local (report-level) measures or complex filters being used?

Availability What s the level of confidence in the data sources and the data retrieval

process?

Are there dependencies that can be removed or potential errors that can be

trapped?

Is the dataset being backed up regularly?

Manageability | How difficult is it to implement changes or to troubleshoot issues?

Can existing data transformation and analytical logic be consolidated?

Table 4.1: Dataset objectives

Several of the objectives are self-explanatory, but others, such as availability and manageability,
are sometimes overlooked. For example, the same business logic may be built into many individual
DAX measures, making the dataset more difficult to maintain as requirements change. Additionally,
there may be certain hardcoded dependencies within the M queries that could cause a dataset
refresh to fail. Dataset designers and BI teams must balance the need to deliver business value

quickly while not compromising the sustainability of the solution.

To simplify individual measures and improve manageability, common logic can be built into a
small subset of hidden DAX measures. The DAX measures visible in the fields list can reference
these hidden measures and thus automatically update if any changes are necessary. This is very
similar to parameters and data source staging queries in M as per Chapter 3, Connecting To Sources
And Transforming Data With M. Examples of centralizing DAX logic are provided later in this

chapter within the Parameter tables section.

Now that we have covered dataset objectives, we next consider how objectives might compete
with one another.

Competing objectives

As a datasetis expanded to support more dimension and fact tables, advanced analytics, and more

business users, it may be necessary to compromise certain objectives in order to deliver others.

124 Designing Import, DirectQuery, and Composite Data Models

A common example is the desire to maintain in-memory performance over very large source
tables in the hundreds of millions or even billions of rows. In this case, as it may not be technically
feasible or desirable to support the scalability with in-memory import mode tables, a composite
model could be created containing a DirectQuery reference to the large fact table and an import

(in-memory) aggregation table designed to resolve common, summary-level report queries.

In addition to competing objectives, external factors can also influence dataset design.

External factors

Justlike any other database, a well-designed Power BI dataset may still fail to deliver its objectives
due to external factors. For example, Power Bl reports can be created with wide, data-extract like
table visuals which resultin expensive, inefficient queries given the columnar data store of Power
Bl datasets. Likewise, report authors may try to include 12-15 or more visualizations on the same
report page resulting in throttling or performance issues as many users attempt to access this

report page concurrently.

Additionally, even when the compression of an import mode dataset is maximized and the DAX
measures are efficient, there may be insufficient hardware resources available to support the
given reporting workload. It’s the responsibility of the Power BI admin, as described in Chapter
1, Planning Power BI Projects, and potentially any delegated capacity administrators to utilize the
monitoring capabilities of Power BI and to provision the necessary resources to ensure sufficient

performance.

Now that the various design objectives, considerations, and external factors are understood, we

turn our attention to the dataset or data model itself.

The Data Model

The Data Model layer of the Power Bl dataset consists of the Model view, the Data view, and the
Fields list exposed in the Report view. Each of the three views in Power BI Desktop is accessible
via anicon in the top-left menu below the toolbar, although the Data view is exclusively available

to import mode and composite datasets.

Let’s first take a look at the Model view.

The Model view

The Model view provides the equivalent of a database diagram specific to the tables loaded to
the dataset. The relationship lines and icons identify the cardinality of the relationship such as

the parent table (1) having a one-to-many (*) relationship with the child table.

Chapter 4 125

A solid line indicates that the relationship is active, while a dotted line denotes an inactive

relationship that can only be activated via the USERELATIONSHIP () DAX expression.

The arrow icons on the relationship lines advise whether cross-filtering is single-directional (one
arrow — one way) or bidirectional (two arrows). Composite models introduced the concept of
limited or weak relationships. Weak relationships are displayed with breaks in the relationship

line at either end and semi-circle line endings.

Figure 4.2 displays an example of the Model view. In Figure 4.2, only the Reseller to Reseller Sales

relationship is bidirectional and the relationships between all tables are active:

Reseller IO Reseller Sales & Product o
=~ 1 . .
ResellerKey A%\ \‘ CarrierTrackingNumber =1 Product Subcategory
Expand ™ - CurrencyKey N ProductKey 0\
-
L CustomerPOMNumber I Expand v
% 2 DiscountAmount *
DueDate
* *
[DueDateKey T
Employee C R FIopioyeRkey o Currency O
J > ExtendedAmount {
1 1
EmployeeKey & > Freight CurrencyKey 7}
Expand Collapse Expand

Figure 4.2: Model view

As shown in Figure 4.2 referencing the Reseller Sales tab, multiple views or layouts for the model
can be created in the Model view. Creating multiple layout diagrams such as one per fact table is
a good practice similar to creating and maintaining bus matrix documentation. Particularly with
larger models involving many tables, the ability to quickly view a model layout to understand
the tables and relationships relevant to a given scenario such as the Reseller Sales table and its

relationships makes the dataset more manageable.

Also shown in Figure 4.2, the bidirectional cross-filtering relationship between the Reseller table
and the Reseller Sales table, a filter applied to the Employee table would filter the Reseller Sales

table and then also filter the Reseller dimension table.

126 Designing Import, DirectQuery, and Composite Data Models

Any column with a slashed circle and arc icon next to it on the right indicates that the column
is not visible in the Report view. For certain tables that are only used for internal logic, such as
bridge tables or measure support, the entire table can be hidden by clicking the circle and arc
(“eyeball”) icon to the right of the table name. Certain settings, such as Custom format strings,

can only be accessed via the Model view’s Properties pane.

Double-clicking arelationship line, or right-clicking the relationship line and choosing Properties,
displays the Edit relationship dialog which displays and allows you to modify the columns
defining the relationship, the Cardinality (One to one 1:1, One to many 1:*, Many to one *:1,
Many to many *:*), the Cross-filter direction (Single or Both), and whether the relationship is

active or passive. The Edit relationship dialog is shown in Figure 4.3.
Edit relationship *

Select tables and columns that are related.

Reseller Sales =
Froductiey OrderDateley DueDateey ShipDatekey hasellerkey Employeeiey PromotionEey
27 Jaflalas 20713218 A0 1aF15 413 J82]
zz 20110122 20110210 20110205 403 282 i
e 2110429 20113210 20120205 403 282 1
< 2
Reseller N
Resellerkey GeographyKey Resellerbliernatekey Phone BusinessType ReseflerMame Murnb
2 B35 AWOOOO00a2 170-555-0127 Zoexcialty Bike Shop Progressive Sports
12 25 AWDIOD012 112-3535-0151 Warnzhouse Bikes and Motartilkas
15 474 AWDODOD01E AA0-555-0132 Ware howse Cataleg Stare
< >
Cardinality Criss filter direction
Marty to ane {71) = | Hoth -
o bake thic relationship active O] Apply sacurity filtar in bath directions

ak Cancsl

Figure 4.3: Edit relationship dialog

Chapter 4 127

The bidirectional relationship between Reseller and Reseller Sales from this example is only
intended to demonstrate the graphical representation of relationships in the Model view.
Bidirectional relationships (Both) should only be applied in specific scenarios, as described in

the Bidirectional relationships section later in this chapter.

Figure 4.4 displays the Model view for a similar data model built as a composite data model.

Reseller CA Product ol
155 ﬁl Reseller Sales oot
Resellerkey] i Productkey
EhRi '| CurrencyKey b - s
i P Kpand
<k DueDatekKey * - > f
o EmployeeKey s — .
. . <> * *C 0y Currency ol
Employee o - Productiey -
. v
1 J PromotionKey -0 CurrencyKey

Employeekey
Expand ™ Expand

*
s
e
el Date N
Datelkey
Expand

Figure 4.4: Composite data model

In Figure 4.4, the Reseller, Employee, Product and Currency tables are import mode tables. The
Reseller Sales table is a DirectQuery mode table as designated by the solid bar above the table
name. Finally, the Date table is a a Dual mode table, meaning that this table supports both import

and DirectQuery. Dual mode tables have a dashed line above their table names.

Notice thattherelationship lines are broken between the Reseller Sales table and the import mode
tables. This designates a weak relationship between these tables since they are using different

Storage modes.

However, since the Dates table is Dual mode, its relationship with Reseller Sales is not a weak
relationship since both support DirectQuery. Itis important to note that only DirectQuery tables

can be switched to Dual mode using the Advanced section of the Model view’s Properties pane.

We next explore the Data view.

128 Designing Import, DirectQuery, and Composite Data Models

The Data view

The Data view provides visibility to the imported rows for each table as well as important metadata,
such as the count of rows and the distinct values for columns. In Figure 4.5, the Freight column
of the Reseller Sales table has been selected in the Data view, as indicated by the vertical bar to

the left of the table icon at the top left:

I - A Fields
uctiancardCost | = [TotalProductCost | = | Salesdmount | = | TawAmt |- _:l Car o
iz ARE. 70A3 AR TOET IEFA7Sd SAS.9835 EFIARSS ¢ * Search
o= 44033453 £A13.1463 i419.4589 4335557 Eio4aes ¢ o~ BB Reseller
=6 SFEd, 083 Sd, Fods SEP4704 S699gEs Spigess ¢ EH Ressller Sales
SIE2.4057 L16T 4857 Sagy 06y 5147151 L4 o5 o CamerTrackngMumber
52.171.28432 521712942 32145862 SIFLFSF EE3EMD i Curencykey
3120278 120378 £70 18585 316148 E0504T § Fustome Poumber
S17F 1997 51T, 1¥I7 FIFREEAMGE A[4.7ESS ELARAT ¢
¥ DiscowntAmournt
A1#1, 4857 S1AT.ARET SIRT MY ATAFIE S450RT e
54251463 S419. 1465 4194568 SIA5SET S10.4865 > LE] DweDat
511.7248 5317244 £28.8404 52,5072 s07n Disalatakey
54131453 54131463 34154585 3335567 EIOMEES Efmployeckey
Ad 11453 24130463 34194588 A315%87 S10.4865 % ExtendedAmount
L3172 317244 528 R40d 22,3072 MLF2E E Freight
SAI7LEM2 $2,171.0942 $LI4696F FIFLTST SSLEAME [

Figure 4.5: Data view

Metadata of the column and/or table selected is displayed at the bottom of the Data view window.
For example, selecting the Freight column as per Figure 4.4 results in a status message noting
60,855 rows for the Reseller Sales table and 1,416 distinct values for the Freight column. If only
the table name is selected from the Fields List, only the count of rows imported to the table is

displayed at the bottom.

The count of rows, and particularly the count of distinct values in a column, is of critical importance
to import mode datasets. Columns with many unique values, such as primary keys or highly
precise numeric columns (that is, 3.123456), consume much more memory than columns with
many repeating values. Additionally, as a columnar database, the columns with a larger memory
footprint also require more time to scan in order to resolve report queries.

DirectQuery datasets do not include the Data view and thus common modeling features, such
as setting the data format of columns and measures, can only be accessed via the Column tools
tab in the Report view. The dataset designer of a DirectQuery dataset would select the column or
measure from the Fields list in the Report view and then access the relevant metadata property
from the Column tools tab, such as Data category and Sort by column.

Chapter 4 129

The availability of the Data view and its supporting metadata (for example, count of rows, discount
count of values) is a modeling convenience of import mode datasets over DirectQuery datasets.
In the absence of the Data view, DirectQuery modelers can use table report visuals on the Report

view to sample or preview the values and formatting of columns and measures.

We now explore the final view, the Report view.

The Report view

The Report view is primarily used for developing visualizations, but it also supports modeling

features, such as the creation of user-defined hierarchies. Figure 4.6 is a screenshot of a DirectQuery

dataset where the City column of the Customer table is selected in the Fields list:

gelecke '.
Fle Harme st Medeirg Wiew Hela External Tocds Tabie tools Column toals
Dy 55 Fommat | Feat wl E Sommarncation | Doen't summarnize = EI'_T: Y = |
o - = - : St by Liwta Mensge
il ri i -0 & ata . Oy "
|] pata catemony. { cry kv otz - redatiorslngs
Sierina Fasmaiisg "ropa Zai oo Fumtoya= e i
| < 4 Fields
1= =ra
== B | B search
2 TE 1
k-
i | b e RNy
E =
T =] BB Crmlbinrrem
B visuals: wih wour daty .rk E
X Acurmcl irm 1
Swbaci o ciaeg batci o e Melce pane i the eport cera
Acdirualiral
BinthDate
- —
'
b T Bty

Figure 4.6: Modeling options in Report view

The modeling features in the Report view are broken up between four different tabs, the Modeling
tab, Table tools tab, Column tools tab, and Measure tools tab (not shown in Figure 4.6 but

appearing instead of Column tools when a measure is selected).

The Column tools tab of the Report view provides access to column metadata for both import and
DirectQuery tables while the Measures tools tab provides access to similar metadata for measures.
As shown in Figure 4.6, the Data Category and Default Summarization metadata properties for

the City column have been set to City and Don’t summarize, respectively.

The Modeling tab of the Report view provides import and DirectQuery datasets access to common
modeling features, such as managing relationships, creating new DAX measures and columns,
and accessing RLS roles, although some of these functions are available on the Table tools and

Column tools tabs as well, such as Manage relationships.

130 Designing Import, DirectQuery, and Composite Data Models

In terms of data modeling, the Model view and the Manage relationships dialog shown in Figure
4.7 are the most fundamental interfaces as these definitions impact the behavior of DAX measures

and report queries:

Manage relationships X
Active From: Table [Column] Tao: Table [Column)

o Employes (SalesTerritoryKey) Sales Territory (SalesTerritoryKey)

W Internet Sales (DusDateKey) Date |DatcKey)

o Reseller sales (Currencykeay) Currency [Currencykey)

o Reweller Sales (DusDateey) Date |Datekey)

o Reseller Sales (Employeskey) Employee |Employeekey)

o Reseller Sales [ProductXey) Product {Froductkey)

o Reseller Sales [Resellerkey) Reseller [Reselleriey]

W Sales and Margin Flan {5ales Territory Region) Sales Territory (SalesTerritoryRegion)

e | | Aurtodetect.. Edit.. [t
Clese

Figure 4.7: Manage relationships dialog

Relationships can be created, edited, and deleted from the Manage relationships dialog. For larger
models with many tables and relationships, the dataset designer can utilize both the Manage

relationships dialog and the Model view.

With the various different views explained, we next turn our attention to the different types of

tables present in most data models, starting with fact tables.

Fact tables

There are three fact tables for this dataset—Internet Sales, Reseller Sales, and the Sales
and Margin Plan. The ability to analyze and filter two or all three of these tables concurrently
via common dimensions, such as Date, Product, and Sales Territory,is what gives this dataset

its analytical value to the business.

Chapter 4 131

A Power Bl report could contain visualizations comparing total Adventure Works Sales (Internet
Sales plusReseller Sales) totheoverall Sales and Margin Plan. This same report could also
include detailed visualizations that explain higher-level outcomes, such as the growth in online

customers or changes in the Reseller Sales margin rates:

SHARED DIMEMSIONS

BUSIMESS PROCESSES | Currency | Customer | Date | Employee Product | Promotion | Reseller | Sales Territory
Internet Sales v ¥ v | W ¥
Ressller Sales v v LA ¥ v v
Sales and Margin Plan v ¥ v

Figure 4.8: Data Warehouse Bus Matrix

Each checkmark symbol in Figure 4.8 represents the existence of a relationship implemented either
directly between the fact and dimension tables in the Data Model or, in the case of the Sales and
Margin Plan,via bridge tables. See Chapter 1, Planning Power BI Projects, for more details on the

Data Warehouse Bus Matrix.

The Sales and Margin Planis at a lower grain (less granular) than the Internet Sales and
Reseller Sales facttables and thus cannot be filtered directly by columns such as Product Name.
For the Sales and Margin Planfacttable, an alternative model design, including bridge tables and
conditional DAX measures, is used to support cross-filtering from the Product, Sales Territory,

and Date dimension tables. See the Bridge tables section later in this chapter for more details.

We next provide more detail related to fact table columns.

Fact table columns

Fact tables should only contain columns that are needed for relationships to dimension tables and
numeric columns that are referenced by DAX measures. In some models, an additional column
thatisn’t modeled in a dimension table and is needed for analysis, such as Sales Order Number,

may also be included in a fact table.

Given their size and central role in the dataset, fact tables often receive much greater analysis to
deliver optimal performance and scalability. Extremely large fact tables may be good candidates
for DirectQuery mode tables within a composite model if their size exceeds the capacity of an

import mode only dataset.

132 Designing Import, DirectQuery, and Composite Data Models

Figure 4.9 showsaT-SQL query of the Reseller Sales source fact table where columns are computed
that produce the same values as the ExtendedAmount, SalesAmount, and TotalProductCost

columns:

-1SELECT
FORMAT (SUM(F.ExtendedAmount), 'C", "en-us')[Extended Amount]
FORMAT (SUM(F .OrderQuantity*F.UnitPrice), 'C", "en-us') [Extended Amount Calc]
B FORMAT (SUM(F .SalesAmount),'C", "en-us'}[Sales Amount]
= FORMAT (SUM((F.OrderQuantity*F.UnitPrice)-F.DiscountAmount), 'C", "en-us')[Sales Amount Calc]
N FORMAT (SUM(F.TotalProductCost), 'C", "en-us’) [Total Product Cost]
= FORMAT (SUM(F.OrderQuantity*F.ProductStandardCost), 'C’, 'en-us")[Total Prod Cost Calc]
FROM [AdventurelorksDW2@19].[dbo].[FactResellerSales] as F;
Yo w
Results @ﬁ Messages

Extended Amount Extended Amount Calc Sales Amount Sales AmountCale Total Product Cost Total Prod Cost Cale
580,978,104 87 $80,978,104 87 $80,450,596.98 $80,450 596 94 $79,980,114.38 $79,980,114.38

Figure 4.9: Reseller Sales fact column logic

Only the UnitPrice, OrderQuantity, DiscountAmount, and ProductStandardCost columns are
needed for the import mode dataset since DAX measures can be written to embed the necessary
logic (for example, UnitPrice * OrderQuantity) for the ExtendedAmount, SalesAmount, and

TotalProductCost columns.

By not importing these columns to the Data Model, a significant amount of data storage is
saved and query performance is not compromised. Columns with few unique values, such as
OrderQuantity, can be highly compressed by import mode datasets and thus are lightweight to

store and fast to scan to resolve report queries.

The same three columns can also be removed from the Internet Sales fact table. The SUMX()
function is used in the DAX measures and only references the source columns (OrderQuantity,
UnitPrice, and ProductStandardCost).

The $0.04 difference between the sum of the Sales Amount column and the Sales Amount Calc
expression is caused by the DiscountAmount column being stored as a float (approximate) data
type. In almost every scenario, a variance this small ($.04 out of $80.4 M) is acceptable to obtain

the scalability benefit of not importing a fact table column.

Chapter 4 133

If the SQL View for the fact table is exclusively utilized by this dataset, then the three columns can
be removed there. If the SQL View cannot be modified, then the three columns can be removed
via an M query:

let

Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),

BI_vFact_ResellerSales = Source{[Schema="BI",Item="vFact_
ResellerSales"]}[Data],

RemoveColumns = Table.RemoveColumns(BI_vFact_
ResellerSales,{"ExtendedAmount"”, "TotalProductCost", "SalesAmount"})
in

RemoveColumns

The Table.RemoveColumns() function excludes three columns from the source SQL View, as
these columns only represent derived values from other columns that are included in the query.
Therefore, for an import mode dataset, DAX measures can be written to efficiently implement

these simple calculations via the source columns, such asUnit Price and Order Quantity.

However, for a DirectQuery dataset, these derived columns (for example, TotalProductCost)
would not be removed due to the performance advantage of the SUM() SQL expressions referencing
individual columns. The following chapter, Chapter 5, Developing DAX Measures and Security Roles,

contains details on implementing these DAX measures and other measure expressions.

Along with understanding fact columns, it is also important to pay attention to fact column data

types.

Fact column data types

It’s essential that the numeric columns of fact tables are assigned to the appropriate data types.
All integer columns, such as OrderQuantity, should be stored as a Whole number data type,
and decimal numbers are stored as either a Fixed decimal number or as a Decimal number. If
four decimal places is sufficient precision, a Fixed decimal number type should be used to avoid

rounding errors and the additional storage and performance costs of the Decimal number type.

134 Designing Import, DirectQuery, and Composite Data Models

In Figure 4.10, the Freight column is stored as a Fixed decimal number type and, thus, despite a

format of six decimal places, only four significant digits are displayed to the right of the decimal

place:
File Home Help Extermal Tools Table tools Column tools
é;l Froight 5% Farmal | Currency - E 5un"r|.:'uaL||.l||| Sum w
(T [} = L]
3| Fixed degimal num_. « S ~% 2.0 |8 o [pata category | Uncategorzad o |,
SEruciur Farmatting Propartiog
|l o
= | TntalProductCost | = | Salasdmount = @ TawAmt i mlﬂh‘t - DrderDate - [1IEANEY] -
E BT E1.B6G3 5499 S0.39% S0 124800 RIS26/2007 120000 A6 22015 120000 AM
g 583 18582 LA i gacl En1adeo0 f1/292019 120000 AN 20013 1200000 Al
H
B e 318563 #4939 AZozaes Eozdec0 §1/207003 120000 AN FT2013 120000 Au

Figure 4.10: Fixed decimal number data type

Dataset designers should check the numeric columns of fact tables and ensure that the appropriate
data type has been assigned for each column. For example, certain scientific columns may require
the deep precision available for decimal number types (15 significant digits), while accounting
or financial columns generally need to be exact and thus the internal (19, 4) data type of a Fixed

decimal number type is appropriate.

Note that the result of aggregated expressions against this fixed decimal column is a number of
the same type and, therefore, to avoid overflow calculation errors, also needs to fit the (19, 4) data
type. The Numeric Datatypes section in Chapter 3, Connecting to Sources and Transforming Data with
M, provides details on the relationship between M data types and data types in the Data Model,

as well as the function for converting column types in M queries.

The Data view shown in Figure 4.10 is not available for DirectQuery datasets. For DirectQuery
datasets, the data types of columns should be set and managed at the data source table level
such that Power BI only reflects these types. Revising data types during report query execution,
either via SQL views in the data source or the M queries in Power BI, can significantly degrade

the performance of DirectQuery datasets.

Finishing our exploration of fact tables, we next explain fact-to-dimension relationships.

Chapter 4 135

Fact-to-dimension relationships

Data models often follow a star schema pattern where multiple dimension tables are related to
a single fact table thus forming a “star” pattern when viewed visually. An example of this “star”

is shown in Figure 4.2.

To create the Data Model relationships identified in the Data Warehouse Bus Matrix from Figure
4.8, follow these steps:
1. Click Manage Relationships from the Modeling tab in the Report view.

2. From the Manage relationships dialog, click the New... command button at the bottom

to open the Create relationship dialog.

3. Choose the fact table, such as Internet Sales, for the top table via the dropdown and

then select the dimension table as shown in Figure 4.11:
Create relationship e

Select tabdes and colurnins that are related.

Intarnat Sales -

Prodectey OrdesiDateloy Dmliartekey Shiphiatekey Custoemer ey Promaticnkey Currencyny

irs Z0IX0124 ZEEXOA0S 20230204 14w I plid)

irg 20130129 20230210 20120205 15319 I Rl

LF 202 a0i3d 20232212 202207 16374 i 1aa

< >
Curmancy =

Currencykey Currencyfliemateley Currencyflame

1 AFA Atghari

4 OZ0 Algesian Dirar

1 ARS Argentine Peso
Cardirality Cross fifter dinsction
Many to one (*:1) * | Sangle -
® Make this relationship active Appdy securty filtar in both directions

Az refereritial integrity

[

Figure 4.11: Creating a relationship for the import mode dataset

136

Designing Import, DirectQuery, and Composite Data Models

If the relationship columns have the same name, such as CurrencyKey in this example,
Power BI automatically selects the columns to define the relationship. Almost all rela-
tionships follow this Many to one(*:1) or fact-to-dimension pattern with the Cross-filter

direction property set to Single and the relationship set to active.

The two columns used for defining each relationship should be of the same data type. In
most relationships, both columns are of the whole number data type as only a numeric
value can be used with slowly changing dimensions. For example, a ProductKey column
could use the values 12, 17, and 27 to represent three time periods for a single product as

certain attributes of the product changed over time.

As more relationships are created, it can be helpful to switch to the Model view and move
or organize the dimension tables around the fact table. The Model view can make it clear
when additional relationships need to be defined and can be useful in explaining the

model to report authors and users.

Click the OK button to create the relationship and repeat this process to build the planned
star schema relationships for both the Internet Sales and Reseller Sales facttables,

as shown in Figure 4.12:

s I — . .
Product o Promotion & !
Product Sul ! !
~ -y " + Te 2Tl - -w
roduct subcategory " " Promationkey
Productkey ey % * |
Expand
Expand Internet Sales & :
CurrencyKey
=1 I = .
Date B L g e p CustomerKey : Customer ol
1
— Z DueDatekey -
ateKey 1=k . oy Customerkey
OrderDateKey
Year Month ’
1 b % Productkey i Expand ™
Expand ™ .)
omotionke
* romotionKey
[SalesTerritaryKey .
| = .
Sales Territory o . 2 ShipDatekey [B] Currency S
} Expand ~ —1
q | " onr ol
SalesTerritaryKey vy CurrencyKey =y

Expand "

Expand ™

Figure 4.12: Internet Sales relationships

Allrelationships from Internet Sales to a dimension table are active (solid line) except for two

additional relationships to the Date dimension table.

Chapter 4 137

In this dataset, the OrderDate is used as the active relationship, but two additional inactive (dotted-
line) relationships are created based on the DueDate and ShipDate columns of the fact table. DAX
measures can be created to invoke these alternative relationships via the USERELATIONSHIP()

DAX function, as shown in the following example:

Internet Net Sales (Due Date) = CALCULATE([Internet Net Sales],
USERELATIONSHIP('Internet Sales'[DueDateKey], 'Date’[DateKey]))

Internet Net Sales (Ship Date) = CALCULATE([Internet Net
Sales],USERELATIONSHIP('Internet Sales'[ShipDateKey], 'Date’[DateKey]))

The inactive relationships and their corresponding measures enable report visualizations based

on a single date dimension table, such as the following table:

H13-Oct 201 3-Mov 2013-Dec 20714-Jan 2014-Feb Total

Internet Net Sales £1,673,29341 §1.78092006 %1 874,360.29 54563472 £29 358 677.22
Internet Met Sales (Due Date) | 51,524 74303 §1.822 940,29 £1972871.34 $609.26249 1583223 $29.358.677.22
Internet Mot Sales (Ship Date) | 31556 E16.34 §1B35967.47 82,001, 72250 §2E944676 3771635 $29,358,677.22

Figure 4.13: Measures with active and inactive relationships

In this scenario, the Internet Net Sales measure uses the active relationship based on Order
Date by default, but the other measures override this relationship via the CALCULATE() and
USERELATIONSHIP() functions.

A common alternative approach to inactive relationships is to load additional date dimension
tables and create active relationships for each additional date column in the fact table (for example,
DueDate, ShipDate) to these tables. The columns for these additional date tables can be named
to avoid confusion with other date columns (for example, Ship Date Calendar Year) and some

teams or organizations are more comfortable with table relationships than DAX measures.

Additionally, this design allows for intuitive matrix-style visualizations with two separate date
dimensions (ShipDate, OrderDate) on the x and y axes filtering a single measure via active

relationships.

For DirectQuery datasets, the Assume referential integrity relationship property is critical for
performance as this determines whether inner- or outer-join SQL statements are generated to
resolve report queries. Assume referential integrity means that the column on the one side of
the relationship is never null or blank and that a corresponding value always exists on the many

side of the relationship.

138 Designing Import, DirectQuery, and Composite Data Models

When enabled, as shown in Figure 4.14, inner-join SQL queries are passed to the source system

when report queries require columns or logic from both tables of the relationship:

Cardinality Cross filtter direction

Many to one (*:1) * || Single

¥ Make this relationship active Apply securty filter in both directions
¥ Aszsume referential integrity Learn more

Figure 4.14: Assume referential integrity

If Assume referential integrity is not enabled, outer-join SQL queries are generated to ensure that
all necessary rows from the fact table or many sides of the relationship are retrieved to resolve

the report query.

The query optimizers within supported DirectQuery sources, such as SQL Server and Oracle, are
able to produce much more efficient query execution plans when presented with inner-join SQL
statements. Of course, improved performance is of no value if the outer join is necessary to return
the correct results, thus it’s essential for referential integrity violations in the source system to
be addressed.

Having finished our exploration of fact tables, we next turn our attention to dimension tables.

Dimension tables

The columns of dimension tables give the measures from the fact tables context, such as Internet
Net Sales by sales territory country and calendar year. More advanced dimension columns, such
as the Customer History Segment column, described in Chapter 3, Connecting to Sources and

Transforming Data with M, can instantly give report visualizations meaning and insight.

In addition to their application within report visuals, such as the date axis of charts, dimension
columns are frequently used to set the filter conditions of an entire report, a report page, or a
specific visual of a report page. By default, Power BI lists dimension tables alphabetically in the

Fields list and also lists column names of tables alphabetically.

Just as dataset designers must ensure that all common DAX measures are included in the dataset,
dataset designers must also ensure that the necessary dimension columns are available to group,

filter, and generally interact with the dataset.

Two of the top usability features for dimension tables include hierarchies and custom sorting.
When implemented, these features enable users to explore datasets more easily, such as drilling

up, down, and through the columns of a hierarchy.

Chapter 4 139

Additionally, the Sort by column feature serves to generate logical report layouts, such as the

months of the year from January through December.

Justas we provided greater detail regarding fact tables in the previous sections, additional details
are provided about dimension tables in the following sections, starting with an explanation of

hierarchies.

Hierarchies

Dimension tables often contain hierarchical information where data in one column represents the
parent of another column. Such constructs are referred to as hierarchies and can be seen in the
Product dimension table where the Product Category Group column is the parent of the Product

Category column, which in turn is the parent of the Product Subcategory column.

To create a hierarchy, select the column in the Fields list that represents the top level of the
hierarchy and use the ellipsis to the right of the column name or right-click the column and select

the Create hierarchy option, as shown in Figure 4.15:

~E Product
OdJ Product Category

I:] Pemdiimt Cabmmmis Comism
Check
O rp

0 p Create hierarchy

New measure
Oxr

Figure 4.15: Creating a hierarchy

In this example, the Product Category Group column is the top level of the hierarchy and
Product Category is its child or lower level. Likewise, the Product Subcategory column is a
child of Product Category and the Product Name column is the lowest level of the hierarchy

under Product Subcategory.

To add columns to the hierarchy, click the ellipsis to the right of the given column or use the
right-click context menu to choose the Add to hierarchy option. Alternatively, the child columns
can be dragged and dropped onto the name of the hierarchy by holding down the left mouse
button when selecting the column. The levels of the columns can also be adjusted from within

the hierarchy by dragging and dropping column names.

140 Designing Import, DirectQuery, and Composite Data Models

Dimension tables often contain hierarchical data, such as dates (year, quarter, month, week,
day) and geographies (country, state/province, city, zip code). As shown in the Date dimension
view section of Chapter 2, Preparing Data Sources, natural date hierarchies in which each column
value has only one parent (for example, 2017-Sep) are strongly recommended. Unnatural date
hierarchies can be confusing in reports as itisn’t clear which parent value (2015, 2016, 2017?)

a given child value, such as September, belongs to.

Once the hierarchy is created, a single click of the hierarchy name in the fields list adds all the
columns and their respective levels to the report visualization. In Figure 4.16, all four columns of
the Product Hierarchy are added to the Axis of a column chart to supportdrilling and interactive

filter behavior in Power BI:

N R =TT = LR Iﬁl e I ~ 2 T, Product Hierarchy
fl Proi t
nternet Met Sales by Product Category Group i = e
. K-axis
B0 _ “ Product Category
H Product Hierarchy X roduct sul
y - roduct Subcatego
‘E 200 Product Category Group X gory
]
12 Praduct Category X = Product Name
5 B
5 $10M Product Subcategaory x O Product Line
g Y
; C1M EERERE ®] > Product List Price
$0M M — : | Product Madel
Bikes Mon-Bikes Y-axis
IS Rl ot R IR O Product Mame
Internet Met Sales R

| % Product Reorder Point

Figure 4.16: Hierarchy in Report visual

Certain columns or levels of the hierarchy can optionally be removed from the specific visual.
For example, if the report developer only wishes to include Product Category and Product
Subcategory in a particular visual, the other two columns can be removed from the Axis field

well via the delete (X) icons.

The DAX language includes a set of parent and child functions, such as PATH() and PATHITEM(),
that can be used to create hierarchy columns when a dimension table contains a Parent Key
column. Common examples of this include an organizational structure with multiple levels of
management or a chart of financial accounts. Creating these columns via DAX functions is one of

the few examples when DAX-calculated columns may be preferable to other alternatives.

Another topic often related to dimension tables is custom sorting, which we explore in the

next section.

Chapter 4 141

Custom sort

Most dimension columns used in reports contain text values, and, by default, Power BI sorts
these values alphabetically. To ensure these columns follow their logical order (for example, Jan,
Feb, Mar) in report visualizations, it’s necessary to store a corresponding numeric column in the
same dimension table and at the same granularity. For example, in addition to a Month Name
column that contains the 12 text values for the names of the months, a Month Number column
is included in the date dimension with the value of 1 for every row with the January value for

Month Name, and so forth.

To set a custom sort order for a column, select the column in the Fields list in the Report view
and then click the dropdown for the Sort by column icon under the Column tools tab. Choose
the supporting column that contains the integer values, such as Month Name, as shown in the

following screenshot:

Column tools

-
Z Summarization ‘ Don't summarize v Eﬁ .LE

Sort by Data
columnv groups~

E Data category lUncategorized

Properties
Month Name

Calendar Quarter
* | Day of Month | = | Day of Year |~ | Week of

Figure 4.17: Sort by column

Most columns used as a Sort by column are not needed for report visualizations and can be
hidden from the fields list. Per the Date dimension view section in Chapter 2, Preparing Data Sources,
sequentially increasing integer columns are recommended for natural hierarchy columns, such as

Year Month, as these columns can support both logical sorting and date intelligence calculations.

Although the Month Name and Weekday Name columns are the most common examples for custom
sorting, other dimension tables may also require hidden columns to support a custom or logical
sort order. In the following example, an integer column is added to the Customer dimension M

query to support the logical sort order of the Customer History Segment column:

/*Preceding M query variables not included*/
//Customer History Segment Column

CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment",

142 Designing Import, DirectQuery, and Composite Data Models

each
if [DateFirstPurchase] >= OneYearAgo then "First Year Customer"

else if [DateFirstPurchase] >= TwoYearsAgo and [DateFirstPurchase] <
OneYearAgo then "Second Year Customer"

else if [DateFirstPurchase] >= ThreeYearsAgo and [DateFirstPurchase] <
TwoYearsAgo then "Third Year Customer”

else "Legacy Customer", type text),
//Customer History Segment Column Sort

CustomerHistColSort = Table.AddColumn(CustomerHistoryColumn, "Customer
History Segment Sort", each

if [DateFirstPurchase] >= OneYearAgo then 1

else if [DateFirstPurchase] >= TwoYearsAgo and [DateFirstPurchase] <
OneYearAgo then 2

else if [DateFirstPurchase] >= ThreeYearsAgo and [DateFirstPurchase] <
TwoYearsAgo then 3 else 4, Int64.Type)
in
CustomerHistColSort
With the integer column (Customer History Segment Sort) added to the Customer dimension
table and the Sort by column property of the Customer History Segment column set to reference
this column, Power BI reports visualize the Customer History Segment column by the logical

order of the four possible values (First Year Customer,Second Year Customer, Third Year

Customer, and Legacy Customer) by default.

Having covered both fact and dimension tables in detail, we next explore parameter tables.

Parameter tables

Parameter tables are often used to store and organize measures. As such, unlike relationship tables,

there are no relationships between the four parameter tables and any other tables in the model.

Figure 4.18 shows the four parameter tables in the model:

Chapter 4 143

Adventure Works Sales & : Date Intelligence Met... =
> Durnmy g 2 Durmirny ™y
_E| Internet MNet Sales Mix 3% |E| Internet Met Sales (PY YTD)

j Intermel Net Sales Plan Amit |E| Internet Met Sales (FY)
j Reseller Met Sales Mix % E| Last Refresh Msg

] Total Margin Amt (] Reseller Net Sales (CY)
Collapsa «~ Collapse

Measure Support o Current Date G
2. Dummy CurrentDate

j Current User

Collapse -~ Collapse ™

Figure 4.18: Parameter tables

As shown in Figure 4.18, the four parameter tables are Adventure Works Sales,Date Intelligence
Metrics, Measure Support, and Current Date. Let’s take a closer look at these different

measure groups.

Measure groups

The Date Intelligence and Adventure Works Sales tables only serve to provide an intuitive
name for users to find related DAX measures. For example, several of the most important DAX
measures of the dataset include both Internet Sales and Reseller Sales. It wouldn’t make
sense for consolidated measures, such as Total Net Sales, to be found under the Internet

Sales or Reseller Sales facttables in the field list.

144 Designing Import, DirectQuery, and Composite Data Models

For similar usability reasons, Date Intelligence Metrics provides an intuitive name for users
and report developers to find measures, such as year-to-date, prior year-to-date, and year-over-
year growth. The two parameter tables, Date Intelligence Metrics and Adventure Works
Sales, effectively serve as display folders, as shown in Figure 4.19, a screenshot of the Fields list

from the Report view:

Fields 2

L Search

> B Adventure Works Sales

» B Date Intelligence Metrics

> ﬁ':_l.l"'_'""_f

A ﬂ LS o &y
Figure 4.19: Fields list with parameter tables

To obtain the calculator symbol icon in the fields list, all columns have to be hidden from the
Report view and at least one DAX measure must reference the table in its Home Table property.
Once these two conditions are met, the show/hide pane arrow of the fields list highlighted in the

image can be clicked to refresh the Fields list.

In this example, the Adventure Works Sales and Date Intelligence Metrics tables both
contain only a single column (named Dummy) that can be hidden via the right-click context menu
accessible in the Model view, the Fields list of the Report view, and for import datasets the Data

view as well.

The columns of the three fact tables (Internet Sales,Reseller Sales,and Sales and Margin
Plan) are also hidden to provide users with an intuitive display of groups of measures at the top

of the fields list followed by dimensions and their hierarchies.

The Home table for a measure can be set by selecting it from the fields list and choosing a table
from the Home table dropdown on the Modeling tab in the Report view. As shown in Figure
4.20, the Internet Net Sales (PY YTD) measureis selected and Date Intelligence Metrics

is configured as its Home table:

Chapter 4 145

File Home |reert l".-1|.:-c]le-|i|||:_; Wiew Help External Tools Table toals
{’; Marmm Intarmeat Met Sales . 5%‘ Format | ‘Whole number - El Dala calegory | Uncategornized
"'J"L\H-:!no I..:b-:| Jate ntelliqence be ul $ w 4 ::.:'é L :
Sedect & table your measure shauld be stored in Fomnatong Fropertes
I }{ g 1 Internet Wet Sales (PY ¥TO) =
2 VAR _ Date = HAax{'Date'[Date])
w3 3 RETURM
4 CALCULETE]
- 5 [Internet Met Sales],
= E FILTER
7 ALL('Date"y,
B ‘mate”[Calendar Year] = MAX['Date”[Calendar Year]y - 1 &%
] 'Date” [Date] <= DATE(YEAH(_ Date) - 1, MONTH(_ Date), D&aY([_ Date))
-]
1 1

Figure 4.20: Home table property for DAX measures

Having explored the Adventure Works Sales andDate Intelligence Metrics parameter tables,

we next explore the Current Date table.

Last refreshed date

The Current Date table, as described in the Data source parameters section of Chapter 3, Connecting
to Sources and Transforming Data with M, contains only one column and one row, representing
the date at the time the source M query was executed. With this date value computed with each
datasetrefresh and loaded into the Data Model, a DAX measure can be written to expose the date
to the Power Bl report visuals. Figure 4.21 shows a screenshot from the Report view. A measure
named Last Refresh Msguses a DAX variable to reference the parameter table and then passes

this variable to a text string:

[in] X + ||l Last Refreshed Msg =

2 VAR _ CurrentDateValue = MAX{'Current Date'[CurrentDate])
3 RETURH
4 "Last Refreshed: " & _ cCurrentDatevalue

e

Last Refreshed: 1/7/2022

Figure 4.21: Last refreshed message via the parameter table

146 Designing Import, DirectQuery, and Composite Data Models

It’'s common to include alast refreshed text message on atleast one report page of every published
report. In the event the source dataset has failed to refresh for several days or longer, the text
message advises users of the issue. See Chapter 5, Developing DAX Measures and Security Roles, for

more information on DAX variables.

For DirectQuery datasets, the M query for the CurrentDate parameter table uses standard SQL

syntax within the Value.NativeQuery() function, such as the following:

let Source = AdWorksSQLServer,

View = Value.NativeQuery(Source, "Select CAST(Current_Timestamp as
date) as [CurrentDate]")

in View

The Source variable references the AdWorksSQLServer staging query, as described in the previous
chapter. The Data source parameters section of Chapter 3, Connecting to Sources and Transforming
Data with M, contains the M query for the CurrentDate parameter table in the import mode

datasets.

Our last parameter table is the Measure Support table, which we detail in the following section.

Measure support logic

The purpose of the Measure Support table is to centralize DAX expressions that can be reused
by other measures. Since DAX variables are limited to the scope of individual measures, a set of

hidden, intermediate measures avoids the need to declare variables for each measure.

The intermediate, or branching, DAX measure expressions also make it easy and less error-prone
toimplement a change as all dependent DAX measures are updated automatically. In this way, the
Measure Support table serves a similar function to the parameter and staging query expressions,

described in the previous chapter, for M queries.

For this dataset, DAX expressions containing the ISFILTERED() and ISCROSSFILTERED() functions
can be used to determine the granularity of the filter context for the Product, Sales Territory,
and Date dimension tables. If the user or report developer has applied a filter at a granularity not
supported by the Sales and Margin Plan fact table, such as an individual product or date, a
blank should be returned to avoid confusion and incorrect actual versus plan comparisons. The
following DAX measure tests the filter context of the Date dimension table and returns one of

two possible text values—Plan Grainor Actual Grain:

Date Grain Plan Filter Test =
SWITCH(TRUE(),

Chapter 4 147

NOT(ISCROSSFILTERED('Date')),"Plan Grain",

ISFILTERED('Date'[Week of Year]) ||
ISFILTERED('Date’[Date]) ||
ISFILTERED('Date’' [Weekday Name]) ||
ISFILTERED('Date'[Calendar Yr-Wk]), "Actual Grain",

"Plan Grain"

Similar filter test measures can be created for the Sales Territoryand Product dimension tables.
All such measures should be hidden from the Report view, and the Home table property should
be set to Measure Support. Once these dimension-specific measures have been defined, a final

support measure can integrate their results, as shown in the following example:

Plan Grain Status =

IF(
[Date Grain Plan Filter Test] = "Plan Grain" &&
[Product Grain Plan Filter Test] = "Plan Grain" &&
[Sales Territory Grain Plan Filter Test] = "Plan Grain",
"Plan Grain",
"Actual Grain"
)

Given the logic built into the hidden measure support expressions, DAX measures can reference
the results and deliver the intended conditional behavior in report visualizations, as shown in

the following example of a variance-to-plan measure:

Internet Net Sales Var to Plan =

IF(
[Plan Grain Status] = "Actual Grain",
BLANK(),
[Internet Net Sales] - [Internet Net Sales Plan Amt]

These support measures can be used to ensure that if users are operating at a granularity or filter

not supported by the calculations that blank values are returned versus incorrect values.

With all four parameter tables explained, we next cover an alternative method of organizing

measures, Display folders.

148 Designing Import, DirectQuery, and Composite Data Models

Display folders
With the advent of the Display folder metadata property for columns and measures, it is now
possible to use a single parameter table for all measures and also maintain an organized structure.

As shown in Figure 4.22, the Properties pane of the Model view can be used to set the Display

folder property:
Properties > Fields
-]
Home table /~ Search
Calculations v
Deseription

Enter a description
Internet Net Sales (Y YTD)

|E| Internet Mat Sales (PY)

[0 Reseller Sales
Reseller Net Sales (CY)

Enter a comma-separated list of synonyms Reseller Net Sales (PY YTD) &

for QA
Reseller Met Sales (PY)
E Dummy)
Dizplay folder B Internet Sales
Date Intelligence Metrics\Reseller Sales Intarnat Discount Amaount
Internat Gross Sales
|5 hidden

Intarnat Met Salas

No O—

Internet Met Sales [Due Date)

Figure 4.22: Display folders

In Figure 4.22, the Home table for all measures is a table called Calculations and the Display folder
property for theReseller Net Sales (PY YTD) measure hasbeen setto Date Intelligence Metrics\
Reseller Sales. Thus, multiple folder levels are supported through the use of the backslash ()
character to designate subfolders. Once a Display folder is created, measures can be organized into

the display folders by dragging and dropping the measures within the Fields pane of the Model view.

Whether multiple parameter tables are used or display folders is a design decision and one
approach may work better than another depending upon the business.

Chapter 4 149

However, if display folders are used, it is recommended to keep the folder hierarchy relatively flat
(only one or two levels) in order to not frustrate users by requiring them to expand many folders
in order to reach a particular measure.

We have now detailed all of the different types of tables within a data model as well as alternative

methods for organizing measures. The next section explores the relationships between these tables.

Relationships

Relationships play a central role in the analytical behavior and performance of the dataset. Based
on the filters applied at the report layer and the DAX expressions contained in the measures,
relationships determine the set of active rows for each table of the model that must be evaluated.
Therefore, it’s critical that dataset designers understand how relationships drive report behavior
via cross-filtering and the rules that relationships in Power Bl must adhere to, such as uniqueness

and non ambiguity, as discussed in the next section.

Uniqueness

Relationships in Power Bl data models are always defined between single columns in two separate
tables. While Power Bl does support direct many-to-many relationships, it is recommended that
relationships with a cardinality of many-to-many be avoided because this implies that the related
columns both contain duplicate values for the related columns. Relationships based on columns
containing duplicate values on both sides of the relationship can resultin poor performance and

incorrect or unexpected results, and are generally indicative of poor or messy data models.

Abetter design practice is to instead use relationship tables with unique values in order to relate
the many-to-many table relationships. Thus, a good design practice is that one of the two columns
defining a relationship uniquely identifies the rows of its table, such as the CurrencyKey column
from the Currency table in the Fact-to-dimension relationships section earlier in this chapter.

However, Power BI and Analysis Services tabular models do not enforce or require referential
integrity as with relationship uniqueness. For example, a sales fact table can contain transactions
for a customer that are not present in the customer dimension table. In such a circumstance, no
error message is thrown and DAX measures that sum the sales table still result in the correct amount,
including the new customer’s transactions. Instead, a blank row is added to the customer dimension
table by default for these scenarios (also known as early-arriving facts) and this row is visible when

the measure is grouped by columns from the customer dimension table in report visualizations.

If missing dimensions are an issue, the dataset designer can work with the data source owner
and/or the data warehouse team to apply a standard foreign key value (for example, -1) to these
new dimension members within an extract-transform-load (ETL) process and a corresponding

row can be added to dimensions with an unknown value for each column.

150 Designing Import, DirectQuery, and Composite Data Models

In the rare event that a text column is used for a relationship, note that DAX is not case-sensitive
like the M language. For example, M functions that remove duplicates, such as Table.Distinct(),
may resultin unique text values (from M’s perspective), such as Apple and APPLE. However, when

these values are loaded to the data model, these values are considered duplicates.

To resolve this issue, a standard casing format can be applied to the column within a Table.
TransformColumns () function via text functions, such as Text.Proper() and Text.Upper().
Removing duplicates after the standard casing transformation results in a column of unique

values for the data model.

Along with uniqueness, another important topic related to relationships is ambiguity, which we

explore in the next section.

Ambiguity

Data model relationships must result in a single, unambiguous filter path across the tables of
the model. In other words, a filter applied to one table must follow a single path to filter another
table—the filter context cannot branch off into multiple intermediate tables prior to filtering a
final table. In Figure 4.23, the Model view only shows one of the two relationships to the Auto

Accidents fact table is allowed to be active (solid line) versus inactive (dashed line):
Auto Owners @

Auto Owner 1D

[1 . 1 \‘
J

Collapse v

Automobiles o - L Insurance Policies
*

Auto 1D * Auto Owner ID

Auto Owner ID 1 T z Insurance D

Car Auto Accidents 7o ¢ Policy
Collapse ™ v Collapse #~

w

L Auto ID :
% fl Date *-E
Z Insurance 1D

Location

Figure 4.23: Ambiguous relationships avoided

Chapter 4 151

When a filter is applied to the Auto Owners table, the inactive relationship between Insurance
Polices and Auto Accidents provides a single, unambiguous filter path from Auto Owners to
Auto Accidents via relationships with the Automobiles table. If the model author tries to set
both relationships to the Auto Accidents table as active, Power BI rejects this relationship and

advises of the ambiguity it would create, as shown in Figure 4.24:
Cardinality Cross filter direction
Plany o one (1) = Single 4

& Make this relationship aclive

You can't create a direct active relationship between fSuto Accidents and Insurance Policies because that would
*irntmdl.lm ambiguity betwsan tables Auto Cemaers and Auto .ﬁ.rridpmxl'n maka this ralationship active, deactivata

or delete one of the relationships between Auto Cwners and Auto Accidents first.

Figure 4.24: Ambiguity error in the Edit relationship dialog

Given the active relationship between the Automobiles and Auto Accidents tables, if the
relationship between Insurance Policies and Auto Accidents was active, the Auto Owners
table would have two separate paths to filter the Auto Accidents table (via Insurance Policies

or via Automobiles).

With uniqueness and ambiguity understood, we now explain single-direction relationships in

greater detail.

Single-direction relationships

Single-direction cross-filtering relationships are the most common in Power BI datasets and
particularly for data models with more than one fact table. In this dataset, whether import or
DirectQuery, all relationships are defined with single direction cross-filtering except for the
relationships from Sales Territory, Product, and Date to their corresponding bridge tables,

as described in the following section on bidirectional relationships.

152 Designing Import, DirectQuery, and Composite Data Models

Figure 4.25 shows a layout of the Model view that includes three of the seven dimension tables

related to Reseller Sales:

Reseller oy - Reseller Sales o : Sales Territory
Resellerkey N 1] CurrencyKey N -1 SalesTerritoryKey
Expand - DueDateKey SalesTerritoryRegion
S w
EmployeeKey Expand v
- > OrderDateKey
ProductKey s
*
PromotionKey
— . . k
Employee o ResellerKey
SalesTerritoryKey
1
EmployeeKey o\ 2 ShipDateKey

Figure 4.25: Single-direction relationships

As you can see from the arrow icons in the Model view shown in Figure 4.25, the filter context
in single-direction relationships exclusively navigates from the one side of a relationship to the

many side.

In the absence of any DAX expressions that override the default cross-filtering behavior, tables
on the one side of single-direction relationships are not filtered or impacted by filters applied to

the table on the many side of the relationship.

For example, the Employee table has 296 unique rows based on its EmployeeKey column. A measure,
such asCount of Employees, thatreferences this column always returns the 296 value regardless

of any filters applied to other tables in the model.

There are, of course, valid business scenarios for allowing the filter context of the related fact
table to impact dimension measures, such as the Count of Employees or the Distinct Count

of Product Subcategories.

Chapter 4 153

Dataset designers can support these requirements by default via bidirectional cross-filtering
relationships, but in most scenarios this isn’t necessary or appropriate. Instead, for these DAX
measures, the CROSSFILTER() function can be applied to override the default single-direction
cross-filtering. See The CROSSFILTER Function section for the function syntax and a use

case example.
In the next section, we explore the implications of unnecessary complexity when defining

relationships between tables.

Direct flights only
For the most common and data-intensive report queries, always look to eliminate any unnecessary

intermediate relationships between dimension tables and fact tables.

In Figure 4.26, the Reseller table must filter an intermediate table (Reseller Keys) prior to
filtering the Reseller Sales fact table:

9

Reseller ot Reseller Keys [Reseller Sales
AddressLine1 1 Resellerkey 1 CurrencyKey R
AddressLine2 Expand ™ 7] DueDate

2 AnnualRevenue - DueDateKey
2 AnnualSales EmployeeKey
BankName 1 OrderDate

BusinessType * > OrderDateKey

Figure 4.26: Anti-pattern: intermediate table relationships

Removing the intermediate table (connecting flight), Reseller Keys in this example, can
significantly improve performance by reducing the scan operations required of the DAX query
engine. The performance benefit is particularly acute with larger fact tables and dimensions
with many unique values. For small fact tables, such as a budget or plan table of 3,000 rows,

intermediate tables can be used without negatively impacting performance.

Now that we have explored single-direction relationships, we next cover bidirectional relationships.

154 Designing Import, DirectQuery, and Composite Data Models

Bidirectional relationships

Bidirectional cross-filtering enables the filter context of a table on the many side of a relationship
to flow to the one side of the relationship. A common use case for bidirectional relationships is

represented in Figure 4.27:

Customers A Accounts gt

CustomerlD AccountGroup
CustomerMame L AccountlD
AccountType
Collapse < Collapse -~
1 1
. - L)
* *
Customerfccount oo Transactions o
AccountlD Account| [
CustomerlD ad E Amount

l Tranzactionl D

Collapse #™ Collapse <™

Figure 4.27: Bidirectional cross-filtering for a many-to-many relationship

In this model, a customer can have many accounts and an individual account can be associated
with many customers. Given the many-to-many relationship between Customers and Accounts,
a bridge table (CustomerAccount) is created that contains the combinations of customer and

account key values.

Due to the many-to one relationship between CustomerAccount and Accounts, a filter applied
to the Customers table only impacts the Transactions fact table if bidirectional cross-filtering
is enabled from CustomerAccount to Accounts. Without this bidirectional relationship, a filter
applied to the Customers table would only impact the CustomerAccount table as single-direction

relationships only flow from the one side of the relationship to the many.

Chapter 4 155

Although powerful, and preferable for certain use cases, bidirectional relationships can lead to
unexpected or undesired query results. Additionally, the DAX CROSSFILTER() function makes it

possible to selectively implement bidirectional relationship behavior for specific measures.

We now explore the implications of bidirectional relationships in the context of shared dimension

tables.

Shared dimensions

In this dataset, the Sales Territory,Product,Date,Currency, and Promotion dimension tables
are related to both the Internet Sales andReseller Sales facttables. As shown in Figure 3.28,
these relationships and the three dimension tables specific to either fact table all have single-

direction cross-filtering enabled:

_'r'l’:Fhlan :‘-?:mllllllr Salem _'-:nllmrcﬁlllq B Curomer
Fren s ri . =
- K
L . —
- I |
[Empiery ee F a L L D .
Eusl Eut
. 1
E K3
B E ko E TET R]
|
'

[E]Sates lenriory] Preducl] Gwsa] Currency] - | Mromssan

Figure 4.28: Shared dimension tables

Unlike the shared dimensions, the Reseller and Employee dimension tables are exclusively
related to the Reseller Sales fact table and the Customer dimension is exclusively related to
the Internet Sales fact table. This is a common scenario for larger models in that fact tables

both share dimensions and maintain their own exclusive relationships to certain dimension tables.

In general, it’'s recommended to avoid bidirectional relationships between shared dimensions and
fact tables when there are also dimension tables exclusive to certain fact tables. This is because
such relationships generate filter contexts that business users often don’t expect or desire and

that don’t add analytical value.

156 Designing Import, DirectQuery, and Composite Data Models

For example, if the relationship between Promotion and Reseller Sales was revised to allow for
bidirectional cross-filtering, a report that analyzed internet sales by customers would be impacted
by the filter selections of the Reseller and Employee dimension tables even though these two

tables are not related to Internet Sales.

In this example, the filter context would flow from the Reseller and/or Employee tables to
Reseller Sales but then, via the bidirectional relationship with Promotion, also filter the
Promotion table, and finally filter the Internet Sales fact table.

In almost all scenarios, the business would expect the Reseller and Employee tables to only filter
theReseller Sales measures. For the rare cases in which this filtering behavior is useful or needed,

bidirectional cross-filtering can be enabled for specific measures via the CROSSFILTER() function.

A better use case for bidirectional relationships is between the exclusive dimension tables and
their fact tables, such as from Reseller toReseller Sales or from Customer to Internet Sales.
These bidirectional relationships aren’t required given the CROSSFILTER() function and other
options available in DAX, but they allow simple measures against these dimensions, such as the
count of resellers to reflect the filter selections applied to other Reseller Sales dimensions, such

as Sales Territory and Product.

Bidirectional cross-filtering is also not allowed for certain relationships due to the ambiguity this
would create. In this dataset, Power BI Desktop rejects bidirectional relationships between the
Sales Territory, Product, and Date dimension tables with the Internet Sales and Reseller
Sales fact tables because this would create more than one filter path to the Sales and Margin

Plan fact table.

For example, a bidirectional relationship between Sales Territory and Reseller Sales
would allow the Product table to either filter the Sales and Margin Plan table via the Product
Subcategory bridge table, or filter the Reseller Sales table and then utilize the new bidirectional
relationship to filter the Sales Territory table and thenits bridge table to the Sales and Margin
Plan table. Rather than guess at the correct or intended filter behavior, Power BI throws an error

and identifies the tables associated with the ambiguous condition.
Similar to shared dimensions, date dimensions also deserve special consideration when it comes

to bidirectional relationships and we explain this in the next section.

Date dimensions

Relationships between fact tables and date dimension tables should always use single-direction

cross-filtering.

Chapter 4 157

If bidirectional cross-filtering is used with date dimension tables, then filtered selections of other
dimension tables related to the given fact table, such as Promotion or Product, reduce the date

table rows available for date intelligence calculations.

Similar to the example with shared dimensions, although this adjusted filter context is technically
correct, it often produces unexpected or undesired results, such as only the dates in which internet

sales transactions were associated with a specific promotion type.

Note that the bidirectional relationship with the Date dimension table in this dataset is between
the Date table and the bridge table containing unique month values. The bridge tables are hidden

from the Report view and are not used to filter the Date table.

With the perils of bidirectional relationships understood, there are times when bidirectional
filtering is appropriate. Thus, we now explain how bidirectional filtering can be implemented
using the CROSSFILTER function.

The CROSSFILTER function

Similar to the USERELATIONSHIP () function that can invoke an inactive relationship for a specific
DAX measure, the CROSSFILTER() function can be used to implement a specific cross-filtering
behavior (single, bidirectional, none) for a specific measure. The cross-filtering behavior specified

in the measure overrides the default cross-filtering behavior defined for the relationship.

In Figure 4.29, an Employee Count measure only references the Employee dimension table and
therefore is not impacted by the filter selections of the Sales Territory Country slicer due to

the single direction relationship between Employee and Reseller Sales:

SalesTerritoryCountry
Australia
Canada
France

MA

United Kingdom

Employee Count Employee Count (CF) United States

Figure 4.29: Bidirectional cross-filtering via the DAX CROSSFILTER function

The Employee Count (CF) measure, however, does adjust toreflect the Sales Territory Country
selections as well as any other dimension table filter selections that impact the Reseller Sales

fact table, such as the Date, Product, and Promotion dimension tables.

158 Designing Import, DirectQuery, and Composite Data Models

In this example, the Reseller Sales fact table s first filtered to the set of Reseller Sales rows
associated with the Germany and United Kingdom sales territory countries. This filtered set of
Reseller Salesrowsisthen used to filter the Employee table resulting in three distinct employee
key values. The value of 3 represents the three salespeople associated with the Reseller Sales

of Germany and United Kingdom.

In the absence of any filter selections in the report, the Employee Count and Employee Count
(CF) measures return the same results (thatis, 290 distinct IDs). The bidirectional cross-filtering
only occurs when either a filter selection has been applied to a related dimension table in the

report or within the DAX measure itself.

If the intent is to only count the distinct employee IDs associated with Reseller Sales and to

respect filter selections on related dimensions, the DAX measure can be written as follows:

CALCULATE(DISTINCTCOUNT(Employee[EmployeeAlternateKey]), 'Reseller Sales')

See the Dimension metrics section of Chapter 5, Developing DAX Measures and Security Roles, for

more details.

The syntax for CROSSFILTER() is also very similar to USERELATIONSHIP(), as shown by the
following code block:

Employee Count = DISTINCTCOUNT(('Employee'[EmployeeAlternateKey]))

Employee Count (CF) =
CALCULATE(
DISTINCTCOUNT('Employee' [EmployeeAlternateKey]),
CROSSFILTER('Reseller Sales'[EmployeeKey], 'Employee’'[EmployeeKey],
Both)

The EmployeeAlternateKey column represents the business key or natural key of the employee.
The EmployeeKey column uniquely identifies each row of the Employee table and is used in the
relationship with Reseller Sales. Given the slowly changing dimension process, which adds a
new employee row when certain attributes of an employee change, it’s necessary to reference the

EmployeeAlternateKey column in the DISTINCTCOUNT () measures to only count each employee once.

The third parameter to CROSSFILTER() can be set to OneWay, Both, or None. Given the potential
for unexpected or undesired results when applying bidirectional cross-filtering relationships to
models with multiple fact tables, it’s generally recommended to selectively enable bidirectional

cross-filtering per measure, such as in the preceding example.

Chapter 4 159

There may be valid use cases for both single-direction and bidirectional cross-filtering relationships,
such as the two measures seen here. Including these alternative measures in the dataset doesn’t
violate the version control objective but does entail additional user training and documentation.
Areportdeveloper or business analyst can regularly provide brief tutorials or updated documents

on these measures and other dataset customizations.

We have now completed our exploration of relationships. The next section covers another aspect

of data models, model metadata.

Model metadata

Metadata is simply the concept of data or information about data. In Power BI, metadata is

available for tables, columns, and measures within a dataset.

The consistent and complete application of metadata properties, such as Default summarization
and Data category, greatly affect the usability of a dataset. With a solid foundation of tables,
column data types, and relationships in place, dataset designers and Bl teams should consider all
primary metadata properties and their implications for user experience as well as any additional

functionality they can provide.

In the following sections, we explore many of the most important types of model metadata,

starting with the visibility of tables and columns.

Visibility
Data modelers can define the visibility of tables, columns, and measures within a dataset. In other

words, each of these elements can either be visible or hidden to report authors and business users

within the Report view.

Every table, column, and measure thatisn’t explicitly needed in the Report view should be hidden.
This usually includes all relationship columns and any measure support tables and measure

expressions.

If a column is rarely needed or only needed for a specific report, it can be temporarily unhidden
to allow for this report to be developed and then hidden again to maximize usability. Numeric
fact table columns that are referenced by DAX measures (for example, quantity) should be hidden

from the fields list, as the measures can be used for visualizing this data.

As discussed in the Parameter tables section, when all columns of a table are hidden from the
Reportview and at least one DAX measure identifies the given table as its home table, a measure

group icon (calculator symbol) appears in the fields list.

160 Designing Import, DirectQuery, and Composite Data Models

This clear differentiation between the measures and dimension columns (attributes) is

recommended, especially if business users are developing their own reports based on the dataset.

Tables with both visible columns and measures force business users and report developers to
navigate between these different elements in the fields list. This can be onerous given the volume
of DAX measures for common fact tables. If it’s necessary to expose one or a few fact table columns
permanently, consider migrating some or all of the DAX measures for the table to a parameter

table to simplify navigation.

Visibility applies to tables, columns, and measures. We nextlook at additional metadata available

to just columns and measures.

Column and measure metadata

Dataset designers should review the columns and measures of each table exposed to the Report
view and ensure that appropriate metadata properties have been configured. These settings,
including any custom sorting described earlier in the Custom sort section of this chapter, only

need to be applied once and can significantly improve the usability of the dataset.

In the following sections, we explore some of the more important metadata settings for columns
and measures. Some of these apply only to columns, such as the Default summarization setting

explained in the next section.

Default summarization

As mentioned, the Default summarization property only applies to columns and controls the

default aggregation applied to a column such as sum, average, first, last, and so on.

The Default summarization property should be revised from Power BI’s default setting to the
Do not summarize value for all columns. Power BI applies a Default summarization setting of
Sum for all columns with a numeric data type (whole number, fixed decimal number, decimal

number) when a table is first loaded to the data model.

As shown in Figure 4.30, a summation symbol ¥ appears next to the field name in the fields list if

a Default summarization other than Do not Summarize is enabled:

Chapter 4 161

Eulumn toals
IE Summarization | Sum B I EQ El% = 1=
Data

=] Lot by Manage
=1 Duata categaon Incat r - :
j N Uncategorizad LU = RIS relaticnships
Praperties oot [Relatioriships
Fields
= || Preduct Line | - | |Product Dealer Price | - | Pro —
= l XL Search
1 532,334
1 S50, 744 2 Product Cost
1 L7 gad E Product Days To Manufacture
4 R SE00.2525 I ¥ Product Dealer Price l
4 R G724

Procduct Descriplicn
Figure 4.30: Default summarization for numeric columns

Asillustrated in Figure 4.30, the Default summarization property for a column can be accessed via
the Column tools tab of the Data view. Additionally, as with other metadata properties, Default

summarization can also be accessed from the Report view.

As mentioned in the Data view section earlier, implementing metadata changes, such as Default
summarization and Data category, via the Column tools tab from the Report view is the only

option for DirectQuery models.

If a user selects a column with Default summarization enabled, the aggregation specified by
the property (for example, Sum, Average) is returned rather than the grouping behavior of Do
not summarize. In many cases, the numeric column is only used to group measures, such as
Internet Net Sales by Product Dealer Price, and DAX measures can be written for any

needed calculation logic.

Additionally, Default summarization can create confusion, such as when a user expects a sum
aggregation based on the summation symbol but the model author has applied an alternative
default summarization (for example, Minimum, Average). Alternatively, the names assigned to DAX

measures, such as Average Product Dealer Price, make it clear which aggregation is being applied.

162 Designing Import, DirectQuery, and Composite Data Models

For these reasons, it’s recommended to convert the default summarization setting to Do not
summarize. A broader concept of this recommendation is to build essential DAX measure
expressions into the dataset, as described in Chapter 5, Developing DAX Measures and Security

Roles, to make Power BI datasets more flexible and powerful for users and report developers.

While the Default summarization metadata setting only applies to columns since measures
inherently aggregate column information or otherwise return scalar (single) values, the Data

format setting applies to both columns and measures as explained in the next section.

Data format

The Data format setting controls how data is displayed to users when viewed in report visuals.

The default formatting Power BI applies to columns and measures should also be revised to a
corporate standard or a format applicable to the column or measure. For example, the default
full date format of “Friday July 1, 2011” can be revised to the more compact (mm/dd/yyyy)
format of 7/1/2011. Likewise, the currency format for measures calculating financial data can be
revised to display two or no decimal places and the thousands separator can also be added to

numeric measures.

In addition to standard data formats such as Whole Number, Currency, Percentage and so on,
Custom formats are also supported. In the Properties pane of the Model view under Formatting
and then Format, you can choose to have a Custom format. Choosing a Custom format allows
you to enter a custom display format such as 00:00:00, for example, which can be useful for

displaying duration formats such as hh:mm:ss.

Business users and report developers do not have the ability to change column and measure
formatting when connecting to the published dataset from Power BI or Excel. Therefore, it’s
important to choose widely accepted data formats and formats that lend themselves to intuitive

data visualizations.

We next explore another setting applicable to both columns and measures, the Data category

setting.

Data category
The Data category setting allows data modelers to tag columns and measures as specific types
of information. Setting the data category changes the behavior of these columns and measures

within Power BI.

Chapter 4 163

By default, Power Bl does not assign columns or measures to any of the 13 available data categories.
Assigning geographic categories, such as City, helps Power BI determine how to display these
values on map visualizations. For example, certain city names, such as Washington, are also
associated with state or province names and without an assigned data category, map visuals

would have to guess whether to plot the city or the state.

Currently 10 of the 13 column data categories are related to geography, including County, Country,

Continent, City, Latitude, Longitude, Postal code, Address, Place, and State or Province.

The Web URL Data Category can be used to enable the initiation of emails from Power BI report
visuals. In Figure 4.31, the Employee Email Link column contains mailto values (thatis,mailto://

John@adworks . com) and the URL icon property under Values has been set to On:

FirstMame LastMame Employee Email Link
-

Alan Dhrayar

Alejandre Mobue =

Alay Mayberg =
Alice Ciccu =
Army Albsaris =

Figure 4.31: Web URL data category for Employee Email Link column

Without specifying the Web URL data category of the Employee Email Link column, the values
appear as normal text. With the Web URL data category specified, the full mailto link is displayed
in the table visual by default and this can also be used to initiate an email. Both the Web URL data
category specification and the URL icon property (set to On) are required to display the email icon.

The Image URL data category can be used to expose images in report visualizations, such as with

a slicer visualization set to an Orientation of Horizontal as shown in Figure 4.32:

Y/
AN

Figure 4.32: Image URL Data Category used for Chiclet slicer visual

mailto://John@adworks.com
mailto://John@adworks.com

164 Designing Import, DirectQuery, and Composite Data Models

The Barcode data category, the only other non-geographic category beyond Web URL and Image

URL, can be used by Power BI mobile applications to scan individual items from mobile devices.

Next, we cover another important metadata field, Description.

Description
The Description metadata property lets data modelers provide short explanations and information

about elements in the data model.

Descriptions can be added to the tables, columns, and measures of a data model to aid users during
report development. Once descriptions have been applied and the dataset has been published
to the Power BI service, users connected to the dataset via reports can view the descriptions as
they hover over the fields in the fields list. This feature is particularly useful in communicating
the business logic contained in measures, such as whether discounts are included or excluded

in the Internet Net Sales measure.

Although field descriptions are recommended, particularly for measures that contain custom
or complex logic, they are not a substitute for the formal documentation of a dataset. In most
scenarios, the field description is only used as a convenient reminder of the essential logic or
meaning and thus can be more concise than the official corporate definition of the column

Oor measure.

In Figure 4.33, areport author is connected to a published Power Bl dataset and has hovered over

the Internet Gross Product Margin measure:

¢ & Fields
= 5
il | A~ Search
<
B =
= =) j Intarmet Met Sales (Due Datea
Mama [Internet Sales Gross Product Margin] | | ﬂ Intermet Met Sales (Shap Date)
Description Gross Sales minus Preduct Costs. Gross Sales EJ intemet Sales Gross Produet Margin
. I E A aslEy & LI |
excludes discounts and Product Costs excludes
freight cost.) E OrderDate

Figure 4.33: Field descriptions as tooltips in the Fields list

The descriptions can only be viewed from Power BI Desktop or the Power BI service. Field

descriptions are exclusive to the fields list and are not displayed in visuals on the report canvas.

Chapter 4 165

Descriptions can be applied by using the Properties pane of the Model view as shown in Figure 4.34:

Properties » Fields

Search
S General | i

[5 Intemet MNet Sales {Due Date)

E] Intermet Met Sales (Ship Date)
Intermet Sales Gross Product Margin
Home table OrderDate

Mame

Internet Sales Grozs Product bMargin

Internet Sales L DrderDatekey

¥ OrderQua ity

Description

ProductKey
Gross 5ales minus Product Costs. Gross Sales > ProductStandardCost
excludes discounts and Product Costs]
excludes freight cost Promotionkey

> SalesAmount

Figure 4.34: Properties pane of the Model view

Users connected to the dataset via Live connections can view the descriptions via the Properties

pane. In this context, the Name and Description properties are read-only.

This completes our exploration of metadata property settings. In the following section, we provide

advice around optimizing the performance of datasets.

Optimizing data model performance

One of the main reasons for creating a dataset, particularly an import mode dataset, is to provide
a performant data source for reports and dashboards. Although Power BI supports traditional
reporting workloads, such as email subscriptions and view-only usage, Power BI empowers
users to explore and interact with reports and datasets. The responsiveness of visuals for this
self-service workload is largely driven by fundamental data model design decisions, as explained

in the following subsections.

Additional performance factors outside the scope of this chapter include the hardware resources
allocated to the dataset, such as with Power BI Premium capacities (v-cores, RAM), the efficiency
of the DAX measures created for the dataset, the design of the Power BI reports that query the

dataset, and the volume and timing of queries generated by users.

166 Designing Import, DirectQuery, and Composite Data Models

We first take a look at optimizing import mode datasets.

Import

The performance of an import mode dataset is largely driven by fundamental design decisions,
such as the granularity of fact and dimension tables. For example, large dimension tables with
more than a million unique values, such as customer IDs or product IDs produce much less

performant report queries than small dimensions with only 100 to 1,000 unique values.

Likewise, DAX measures that access columns containing thousands of unique values perform much
more slowly than measures that reference columns with only a few unique values. A simplistic
but effective understanding is that higher levels of cardinality (unique values) result in greater
memory consumption viareduced compression and CPUs require additional time to scan greater

amounts of memory.

Animport mode designer should be cautious about the performance implications of relationships
to large dimension tables. Although usability is somewhat compromised, a separate but less
granular dimension containing only the most common columns can be created to drive more
efficient report queries. For example, business users may rarely need to access individual product
Stock Keeping Units (SKUs) and would prefer the performance benefit provided by a smaller

dimension table that contains only product categories and product subcategories.

Query caching

For Premium and Embedded workloads, the Power BI service supports automatic query caching
that can be enabled or disabled via the Settings page for each dataset. When enabled, this feature

automatically caches the queries associated with the initial opening of a report by each user.

Query caching is only available for import mode datasets and respects personal bookmarks,
persistent filters, and security rules. The query cache resets during scheduled dataset refreshes
and this can result in performance degradation in the event of multiple dataset refreshes occurring
simultaneously or if the capacity is heavily loaded. While it is recommended to enable this feature,

enterprise BI teams should be aware of these considerations.

We nextlook at another important consideration for import mode datasets, columnar compression.

Columnar compression
Power BI uses the xVelocity In-Memory Analytics Engine (previously known as VertiPaq) for
datasets. This engine applies several techniques to achieve 10X or greater data compression, thus

minimizing the amount of memory required to be scanned to return query results.

Chapter 4 167

To optimize columnar compression, it’s important to understand the columnar layout and internal
storage of import mode datasets. Power BI creates individual segments of approximately one
million rows and stores separate memory structures for column data, the dictionary of unique

values for columns, relationships, and hierarchies.

In Figure 4.35, three segments are used to store a fact table of 2.8 million rows:

Db Ot tales Dider 2

1 M Rows

Sagment 3 §
1 M Rowe

Figure 4.35: Columnar storage of import mode datasets

Since only the columns required for a query are scanned during query execution, a relatively
expensive column in terms of memory consumption (due to many unique values), such as Order #,

can be stored in the dataset without negatively impacting queries that only access other columns.

Removing fact table columns or reducing the cardinality of fact table columns that are not used
in queries or relationships nonetheless benefits the storage size and resources required to refresh
the dataset. Fewer fact table columns may also enable Power Bl to find a more optimal sort order

for compression and thus benefit the query performance.

Eliminate any DAX-calculated column on fact tables as these columns are not compressed as
efficiently asimported columns. If necessary, replace DAX-calculated columns with the equivalent

expression in the source M query or SQL View.

Additionally, as per the Fact table columns section earlier in this chapter, remove columns that
can be computed within DAX measures via simple expressions (+,-,/,¥). For example, the Sales

column from Figure 4.36 can be excluded from the import dataset given the Price and Qty columns.

During query execution over tables with more than one segment, one CPU thread is associated
per segment. This parallelization is limited by the number of CPUs available to the dataset (for
example, Power BI Premium P1 with four backend v-cores), and the number of segments required

to resolve the query.

168 Designing Import, DirectQuery, and Composite Data Models

Therefore, ideally, the rows of fact tables can be ordered such that only a portion of the segments
are required to resolve queries. Using the example of the 2.8 M-row fact table, a query that’s filtered
on the year 2017 would only require one CPU thread and would only scan the required column

segments within Segment 3.

The internal order of fact table rows cannot be dictated by the dataset designer as Power BI
determines the optimal order that leads to the highest compression during dataset refreshes.
However, dataset designers can add a sorting transformation to the M query of a fact table (Table.
Sort()) such that Power BI, at a minimum, considers this particular order during its processing.
Such a sorting operation can be expensive in terms of the time taken to refresh import mode

datasets but may prove beneficial to report query performance.

Whether Power BI used the particular sort order can be determined by analyzing the memory
footprint of the sorted column before and after the data is loaded. If the size of the sorted column
is significantly reduced following the refresh operation, Power BI took advantage of the specified

sort order.

Given the importance of columnar compression for import-mode datasets, we next explain tools
and techniques for analyzing the internal workings of the xVelocity In-Memory Analytics Engine

in greater detail via Data Management Views (DMVs) and the VertiPaq Analyzer.

Memory analysis via DMVs and the VertiPaq Analyzer

DMVs are Analysis Services queries that return information about server operations, server health,

and data model objects at the time the queries are run.

The same DMVs that provide information about Analysis Services tabular databases are also
available for Power BI datasets. Querying these DMVs can provide schema information, such
as the columns used to define relationships, the definitions of DAX measures, and the memory

usage of columns and other structures.

From a memory analysis standpoint, the two most important DMVs are DISCOVER_STORAGE_
TABLE_COLUMNS and DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS.

These and other DMVs are at the heart of VertiPaq Analyzer, a set of open-source libraries that
expose statistical information about tabular models. The use of VertiPaq Analyzer within DAX
Studio is shown in Figure 4.36 with the dictionary size of each column of a Power BI dataset
retrieved via the DISCOVER_STORAGE_TABLE_COLUMNS DMV:

Chapter 4 169

DasStuidia - 2.14.0

b W I

e Exgort ey Export Fian S0 JI."l-\l:,lI—.l
Metrics Metrics JMetrics [ata Benchmark Profiler in Bacel
Cueryl.dax X
Metadata = 0 1
25fbT344 -4 26T-1596-ad02 * VerliPaq Analyzer Metrics
W Mode Tablas | Columns | Relationships | Partitions | Surmmary
b Tahla-Calumn Rows Cardnality l:'.nl Siza Data Dictionary
M Adverture Works Sales | ntarnat Salec-Salestnd erflumbsar |E:I:l,‘.*.ll-! ZTHER 1,174, 759 VALAMD 324687
BridqeBudget Date CauntryAags-Flagimaga & [1,065, 768 8 1,065 664
BridgePreductiubtat CountryFags-SalesTermritonyCowntry B] 1,065, V65 & 1065664
Customer-EmailAddr 4 91 36,976 725,173
BridgeSalesTerntoryRegion Customer-EmailAd dress 18,454 15,484 110,063 ava 251
ntarmet Sales Lustamarkay TR 14.aba Bh(250 1AL 558, 546

Figure 4.36: Dictionary size by column

The use of VertiPaq Analyzer can quickly expose columns with high Cardinality and large

Dictionary sizes that may be good candidates for exclusion from the dataset.

This concludes our exploration of performance optimization for import mode datasets and we

next move on to DirectQuery mode datasets.

DirectQuery

Dataset designers have less control over the performance of pure DirectQuery datasets given that

data storage and query execution is the responsibility of the source system.

However, dataset designers can ensure that the DAX functions used in measures take advantage
of the source system resources and can partner with source system owners and experts to test
alternative data source optimizations, such as the columnstore index for SQL Server. In SQL Server,
columstore indexes use column-based data storage and query processing and can achieve gains up
to 10 times the query performance and 10 times the compression versus traditional row-oriented

storage and uncompressed data respectively.

Additionally, as advised earlier regarding the Assume referential integrity relationship property,

performance can be significantly improved by generating inner-join SQL statements.

Let’s now take a deeper look at optimizing DirectQuery datasets.

170 Designing Import, DirectQuery, and Composite Data Models

Columnstore and HTAP

Business intelligence queries generated from tools such as Power BI are more suited for columnar
data stores and most DirectQuery source systems offer a columnar feature to deliver improved
query performance. For Microsoft SQL Server, the columnstore index is recommended for large
fact tables and this index eliminates the need to maintain traditional B-tree indexes or to apply

row or page compression.

Additionally, a combination of non-clustered columnstore indexes and in-memory table
technologies can be used to support Hybrid Transactional and Analytical Processing (HTAP)
workloads. HTAP refers to the tools and features that enable live data to be analyzed without
affecting transactional operations. HTAP features include memory-optimized tables, natively

compiled stored procedures, and clustered columnstore indexes.

For example, the Power BI queries against the DirectQuery dataset would utilize the columnstore
index withoutimpacting the OnLine Transactional Processing (OLTP) workload of the database.
OLTP refers to the traditional transaction operations of databases that facilitate and manage

transaction-oriented applications.

The details of these features and configurations are outside the scope of this book but at a minimum
the owners or experts on the DirectQuery data source should be engaged on the performance of

the Power BI dataset.

The following URL provides guidance on designing columnstore indexes for SQL Server database
services (for example, Azure SQL Database, Azure SQL Data Warehouse) and on-premises SQL

Server database environments: http://bit.1ly/2EQon@q.

The Related Tasks section of the Columnstore indexes — Design guidance documentation referenced
in the preceding URL contains links for the T-SQL DDL statements associated with implementing
the columnstore index. In most scenarios, the dataset designer in a Power BI project or the author
of an Analysis Services model is not responsible for or authorized to optimize data sources using

methods such as a columnstore index.

However, the dataset designer can regularly collaborate with the responsible subject matter
expert or team as the demands and requirements of the dataset change. For example, the dataset
designer can use tools such as DAX Studio and SQL Server Profiler, as described in Microsoft Power
BI Cookbook 2nd Edition (https://www.amazon.com/Microsoft-Power-Cookbook-expertise-
hands/dp/1801813043), to capture the common or important SQL queries generated by Power

Bl reports and then share this information with the data warehouse team.

http://bit.ly/2EQon0q
https://www.amazon.com/Microsoft-Power-Cookbook-expertise-hands/dp/1801813043
https://www.amazon.com/Microsoft-Power-Cookbook-expertise-hands/dp/1801813043

Chapter 4 171

Alternatively, the database or data warehouse team can run a trace against a data source system
as per the DirectQuery report execution section of Chapter 2, Preparing Data Sources, during a test
query workload from Power BI. This trace data could be used to identify the specific columns, tables,

or expressions associated with slow queries and thus inform database modification decisions.

Let’s next look at automatic aggregations.

Automatic aggregations

Automatic aggregations are a new feature (currently in preview) that uses machine learning
(ML) to continuously train and optimize ML algorithms to intelligently cache aggregations in
memory. When enabled, automatic aggregations can improve query performance by reducing

DirectQuery queries against the source system.

Automatic aggregations train the ML model during scheduled refreshes of the dataset at either
a Day or Week interval. The first scheduled refresh during the specified interval thus becomes
a refresh of the dataset as well as a training operation for the ML model. During these training
operations, Power BI evaluates the query log in order to retrain the ML algorithms regarding

which aggregations are most import to cache in memory.

Composite

Composite models, which blend import mode and DirectQuery mode tables, may be useful when
dealing with extremely large fact tables with potentially trillions of rows, or even millions or
billions of rows, that cannot comfortably fit into an import-only data model due to memory

limitations or other constraints.

Power Bl has a specific feature designed to help optimize data model performance thatis specific to
composite data models. Dataset designers can leverage this feature, which is specifically designed
to help speed up the performance of DirectQuery tables and calculations. The feature is called

aggregation tables, which we explore in the following subsection.

Aggregation tables

Aggregation tables are a feature of composite data models specifically targeted at improving the
performance of the DirectQuery components of the data model. Aggregation tables allow the
dataset designer to create summary tables of pre-aggregated measures that are stored locally

within the data model in either import or dual storage mode.

These aggregation tables allow simple aggregations, like sums and averages, to be retrieved from

the aggregation for certain levels of granularity.

172 Designing Import, DirectQuery, and Composite Data Models

Only when the granularity of the aggregation table is exceeded, such as reporting against a
particular product SKU in the case of an aggregation table grouped by product category and
product subcategory, will DirectQuery operations occur. In general, filtering or displaying detail
columns not included in the aggregation table will cause DirectQuery operations against the

source system.

While not strictly needed given the number of rows in the Reseller Sales table, an aggregation
table was created in the composite version of the data model. The aggregation table can be created
using SQL or in Power Query. In this case, for demonstration purposes, we chose to use Power
Query:

let

Source = #"Reseller Sales",

GroupRows = Table.Group(Source, {"OrderDateKey", "ResellerKey",
"SalesTerritoryKey"}, {{"Sum of OrderQuantity", each List.
Sum([OrderQuantity]), type nullable number}, {"Sum of Unit Price", each
List.Sum([UnitPrice]), type nullable number}, {"Sum of DiscountAmount”,
each List.Sum([DiscountAmount]), type nullable number}, {"Count of Sales",
each Table.RowCount(_), Int64.Type}}),

ChangedType = Table.TransformColumnTypes(GroupRows, {{"Sum of Unit
Price", Currency.Type}})
in

ChangedType

Chapter 4 173

It is critical to double-check the data types for the aggregation columns as they must have the
same data type as the column on which the aggregation is based. The aggregation table, Reseller
Sales Aggregation,ishidden, the storage mode set to Import, and relationships are created to the

corresponding dimension tables, Date, Reseller, and Sales Territory, asshown in Figure 4.37:

E Data Tl B Recellr e '—Fl'u Sales Teritory &
Dlabetsy ! Brstberiey : SaleaTerrton Gy
|
i |
I
Wkl ok
raj Aaseller Sales Aggreg... "
T o is ch
r ‘&:.I
o)
‘-{l
= sum of Discounthmours R
Z Sumof OrderCuantiy e
T Sum of Unk Frice e

Figure 4.37: Aggregation table relationships

If not already, the dimension tables, Date, Reseller, and Sales Territory, should all be set
to a storage mode of Dual as shown in Figure 4.38. Since these tables must operate against the
DirectQuery Reseller Sales table as well as the import mode Reseller Sales Aggregation

table, a storage mode of Dual ensures that query performance is optimized under all circumstances.

174 Designing Import, DirectQuery, and Composite Data Models

To configure aggregations, use the Fields pane of the Model view and either from the ellipses menu
to the right of the table name or by right-clicking the table name, choose Manage aggregations.

This opens the Manage aggregations dialog as shown in Figure 4.38:

Manage aggregations bt

Aggregations scceleraie query performancs bo unlock big-daie sets. Lesrn mors

Aggregation tahla Prececkices G

Ressller Sales Aqoregation | |1

AGGREGATION COLUMHMN SUMMARIZATHON DETAIL TABLE DETAN COLUMHN

Count of Salas iCnnt tabla rows T | [Reseller Salas - = [
OrderDatekey Croupby * | [Reseller Salec = | DirgherDategey | [
Fesallarkey GraupBy * | Resaller Salas | Resellarkay - | [
salesTerritonfey GroupBy = | Reseller Salas = | FBalesTerritoryKey | @
Surm of Decountdimownt [Sum * | Peseller Sales = | Discountfmount - E

This table will be hidden it aggregations are set because aggregation tables must be hidden,

Fopk Al Canoe

Figure 4.38: Aggregation table relationships

As shown in Figure 4.38, in all cases, the DETAIL TABLE and DETAIL COLUMN settings for each
aggregation table column should reflect the original source column in the corresponding fact
table. Grouping columns like OrderDateKey, ResellerKey, and SalesTerritoryKey should be
set to a SUMMARIZATION of GroupBy while table row counts like Count of Sales should be
set to Count table rows. Other aggregations should be set to their designated aggregation (Sum,
Count, Max, Min).

Once aggregations are set, you can consider the aggregation table as a sort of surrogate for
the actual fact table for the designated aggregations and specified grain. Thus, queries for the
aggregations contained within the local (import mode) aggregation table are used instead of
querying the DirectQuery source when those aggregations are as granular as (or less than) the

aggregation table.

Chapter 4 175

Aggregations at a higher granularity (more granular) than the aggregation table circumvent the

aggregation table and directly use the DirectQuery source instead.

This concludes our analysis and advice on optimizing data model performance. As one can see,
many different features are included in Power BI that allow dataset designers to optimize the

performance of datasets used for analysis and reporting.

Summary

This chapter built on the queries from Chapter 3, Connecting To Sources And Transforming Data
With M, to implement import, DirectQuery, and composite analytical data models. Relationships
were created between fact and dimension tables as well as between bridge tables and the Sales

and Margin Plan to enable actual versus plan reporting and analysis.

Additionally, the fundamentals of designing Power Bl models were reviewed and detailed guidance
on metadata and the DMVs available for analyzing memory usage was provided. Finally, guidance

was provided for optimizing the performance of import, DirectQuery, and composite data models.

The following chapter continues to build on the dataset for this project by developing analytical
measures and security models. The DAX expressions implemented in the next chapter directly
leverage the relationships defined in this chapter and ultimately drive the visualizations and user

experience demonstrated in later chapters.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Developing DAX Measures and
Security Roles

This chapter details the implementation of DAX measures and security roles for the dataset de-
veloped in the previous two chapters. We first create a set of base measures for each business
process that represents business definitions such as gross and net sales, cost of sales, and margin
percentages. These base measures are then leveraged in the development of date intelligence
calculations including year-to-date (YTD) and year-over-year (YOY) growth. Additionally, a set
of custom measures is created, including exceptions, rankings, and KPI targets, to further extract

insights from the dataset and simplify report visualizations.

This chapter also contains examples of dynamic security models in which the identity of the
logged-in user is used to filter the dataset. Finally, guidance is provided on testing the performance

of DAX expressions with DAX Studio.
In this chapter, we’ll review the following topics:

e DAXmeasure basics

e Basemeasures

e Dateintelligence metrics
e Calculation groups

e Dimension metrics

e Ranking metrics

e Securityroles

e Performance testing

178 Developing DAX Measures and Security Roles

Minimal experience or technical skill is required to grasp the essentials of star schema dimensional
modeling and to create a basic Power BI dataset containing fact-to-dim relationships and a set
of basic DAX measures. However, even with a well-designed data warehouse reflecting a robust
data transformation process, business requirements for more complex analytical logic and secu-
rity are unavoidable. To meet these requirements, it’s essential to maintain a solid foundational
knowledge of DAX and its concepts of filter context and row context. Thus, we start with a review

of the basics concepts that underpin DAX measures.

DAX measure basics

All analytical expressions ranging from simple sums and averages to custom, complex statistical
analyses should be implemented within DAX measures. Although it’s technically possible to
utilize the default summarization property of columns for some basic measures, well-developed
datasets should embed calculation logic into DAX measure definitions thus improving clarity

and reusability.

The need for the rapid deployment of complex yet efficient and manageable DAX measures, que-
ries, and security roles underscores earlier guidance regarding the value of an experienced Power
Bl dataset developer to deliver enterprise-grade solutions. Organizations are strongly advised to
appreciate DAX as a functional programming language (not just Excel formulas) that is central
to Power BI solutions and thus take steps to ensure that Power Bl dataset developers possess the
required knowledge and skills with DAX. These steps may involve certification exams, detailed

technical interviews, and internal skill development and evaluation.

For example, a seasoned dataset developer should be capable of quickly translating common
filtering and aggregation logic found in SQL queries and/or Excel formulas into DAX expressions
that return the same numbers. Moreover, professional dataset developers utilize tools beyond
Power BI Desktop such as Tabular Editor, DAX Studio, and ALM Toolkit to more productively
develop, analyze, and deploy their DAX code, respectively.

Most measure expressions reference and aggregate the numeric columns of fact tables, which are
hidden from the Report View, as we have seen in the previous chapter. Additional DAX measures
caninclude filtering conditions that supplement or override any filters applied in Power Bl reports,

such as the net sales amount for first-year customers only.

Chapter 5 179

Measures are also commonly used to count the number of dimension members that meet cer-
tain criteria such as customers who are associated with sales transactions in a given time frame.
Additionally, with functions such as SELECTEDVALUE (), DAX measures are often used to display
a text value or a date value such as the name of a product currently being filtered in a report or a

date reflecting when the source data was refreshed.

Just like the M query language, DAX is a rich, functional language that supports variables and
external expression references. Multiple variables can be defined within a DAX measure to im-
prove readability, and the results of other measures can be referenced as well, such as the Plan
Grain Status measure in Chapter 4, Designing Import, DirectQuery, and Composite Data Models.
These layers of abstraction and the built-in code editing features of Power BI Desktop, including
IntelliSense and colorization, enable dataset designers to embed powerful, yet sustainable, logic

into datasets.

In addition to the DAX measures authored for a Power BI dataset, Power BI Desktop’s Analytics
pane can be used to create metrics specific to a given visual, such as a trend line, min, max, and
an average of a metric on a line chart. The Analytics pane is reviewed in Chapter 8, Applying Ad-

vanced Report Features.

We now take a detailed look at perhaps the mostimportant topic when discussing DAX measures,

filter context.

Filter context

Whenever there’s a question or doubt about a certain number on a Power Bl report, an early step
in troubleshooting scenarios is understanding the filter context applicable to the given number.
Filter context refers to the filters applied during the evaluation of a measure. The filter context
limits the set of rows for each table in the data model that is available to be evaluated for each

value displayed in report visualizations.

For example, each value of a Power BI chart that analyzes a sales amount measured by a Product
Category column is usually unique because a different set of rows (filter context) of the sales fact

table was available to the measure when calculating each value.

180 Developing DAX Measures and Security Roles

In Figure 5.1, five distinct filters representing five dimension tables have been applied to a matrix

visual of the Internet Gross Sales measure:

Sales Territory Group A ? Filters oD
B rurope
Morth America L Search

Filters on thiz page
Froduct Category Married aingle Total

Promotion Type

Accessories {282 302 £5E4 is Volume Discount

Bikes | 241923 4168441 $410,364

Clothing {790 $708 $1.498 ,

Total $242,095 $169,451 $412,445 Aud datahelas here

Filters on all pages

Calendar Year
is 2013 or 2014

Figure 5.1: Filtered Power Bl report

Filters applied to the Promotion, Date, Product, Customer, and Sales Territory dimension
tables all flow across their relationships to filter the Internet Sales fact table. The Internet
Gross Sales measure is a simple SUMX() expression described in the base measures and is thus

evaluated against the Internet Sales rowsremaining from these filters.

The filters applied come from external sources (those filters not applied within the visual itself
such as Product Category and Marital Status in Figure 5.1) can be viewed by clicking on the filter

icon shown when a visual is selected on the canvas, as shown in Figure 5.2:

\
N Filters and slicers affecting this visual

Calendar Year
is 2013 or 2014

Promotion Type
is Volume Discount

SalesTerritoryGroup
is Europe

Figure 5.2: Filter icon

Chapter 5 181

Each individual value in Power Bl reports is computed independently. For example, the $242,995
subtotal value shown in Figure 5.1 is not filtered by the Product Category column like other

values in the matrix, and it’s not calculated as the sum of the three cells in the Married column.

This value is computed using the MaritalStatus column of the Customers table with a value of
Married, as well as the other filters applied from the Sales Territory Group slicer and the fil-
ters in the Filters pane. See the Measure evaluation process section for details on the DAX engine’s

execution process.

To help better explain filter context, we now look at an equivalent SQL statement for the matrix

values shown in Figure 5.1.

SQL equivalent

To help understand filter context and to validate certain reports or DAX measures, it can be helpful
to compare Power Bl reports to SQL statements. The following SQL statement returns the same
six values of the Power BI matrix (excluding the subtotals) via standard inner joins and WHERE
clause conditions. Similar to the external filters for a visual, WHERE clauses in SQL statements serve

to filter the base set of rows in a table available for further calculations:

SELECT
P.[Product Category]
, C.[Customer Marital Status]
, FORMAT(SUM(F.[Unit Price] * F.[Order Quantity]), '$#,###"') AS [Internet
Gross Sales]
FROM BI.vFact_InternetSales as F
INNER JOIN BI.vDim_FinDate as D on F.[Order Date Key] = D.[Date Key]
INNER JOIN BI.vDim_Promotion as Promo on F.[Promotion Key] = Promo.
[Promotion Key]
INNER JOIN BI.vDim_Product as P on F.[Product Key] = P.[Product Key]
INNER JOIN BI.vDim_Customer as C on F.[Customer Key] = C.[Customer Key]
INNER JOIN BI.vDim_SalesTerritory as S on F.[Sales Territory Key] =
S.[Sales Territory Key]
WHERE D.[Calendar Year Status] in ('Prior Calendar Year', 'Current
Calendar Year')
and S.[Sales Territory Group] = 'Europe' and
Promo.[Promotion Type] in ('Excess Inventory', 'Volume Discount')
GROUP BY
P.[Product Category], C.[Customer Marital Status]

182 Developing DAX Measures and Security Roles

In this example, the SQL statement’s WHERE clause implements the Power Bl report’s slicer visual
filter and its report- and page-level filters. The GROUP BY clause accounts for the row and column

filters of the matrix visual.

Although certain SQL concepts and examples are applicable, DAX is distinct from SQL and other
languages, such as MDX (Multi-Dimensional eXpressions). Additionally, since Power Blimport
mode datasets are stored in a columnar format, SQL developers experienced with row-based tables

and B-tree indexes have to revise their design patterns in developing DAX measures and queries.

With filter context understood, another important and related topic with regard to DAX measures

is the process by which measures are calculated.

Measure evaluation process

The measure evaluation process defines how calculations are performed when computing the
value of measures. Each value in Figure 5.1, such as the $708 from the matrix visual, is computed

according to the following four-step process:
1. Initial Filter Context

a. Thisincludes all filters applied within and outside the report canvas by the report
author

b. Selections on slicer visuals and the rows and columns of the table and matrix
visuals represent on-canvas filters

c. Report, page, visual, and drill-through filters represent off-canvas filters that also

contribute to the initial filter context
2. Filter Context Modified via DAX

a. For base measures and other simplistic expressions, the initial filter context from
the report is left unchanged

b. Formore complex measures, the CALCULATE () function is invoked to further modify
the initial filter context

C. Via CALCULATE(), the initial filter context can be removed, replaced, or supple-
mented with an additional filter condition

d. In the event of a conflict between the initial filter context from the report (for
example, slicers, report-level filters) and the filter condition embedded in the

DAX measure, by default, the DAX measure overrides the report filter condition

Chapter 5 183

3. Relationship Cross-Filtering

a. With each table filtered from steps 1 and 2, the filter context is transferred across

cross-filtering relationships

b. Inmostcases, the filtered dimension tables filter the related fact tables via single

direction cross-filtering

c. However, as described in Chapter 4, Designing Import, DirectQuery, and Composite
Data Models, bidirectional cross-filtering allows the filter context to also transfer

from the many side of a relationship to the one side
4. Measure Logic Computation

a. The computation logic of the measure (for example, DISTINCTCOUNT (),
COUNTROWS ()) is finally evaluated against the remaining active rows for the given

table or column referenced

b. For common and base measures, this is simply the set of remaining or active fact

table rows

c. However, as shown in the following Dimension metrics section, other DAX measures
reference dimension tables, and thusit’simportant to understand how these tables

are impacted by relationship filtering and DAX expressions

This four-step process is repeated for each value of the report independently. Consequently, re-
ports and visuals that are dense in values require more computing resources to refresh and update
based on user filter selections. Large tabular report visuals with many columns and rows are
particularly notorious for slow performance, as this forces the DAX engine to compute hundreds

or thousands of individual values.

Although report authors and business analysts might not create DAX measures, it’s important
that they have a basic understanding of the filter context and measure evaluation processes. For
example, the report author should understand the cross-filtering relationships of the data model
(single or bidirectional) and how certain DAX measures impact the filters applied in reports. Sim-
ilarly, business analysts should be able to explain to business users why certain report behaviors

and results occur.

For example, since bidirectional cross-filtering relationships are generally avoided by dataset
developers for performance and unexpected behavior reasons as described in Chapter 4, Design-
ing Import, DirectQuery, and Composite Data Models, a common question raised by report authors
and users is why a particular dimension or slicer isn’t impacted by the filter selection on another

dimension or slicer.

184 Developing DAX Measures and Security Roles

Users may expect the list of possible product names on one slicer visual to be reduced by the

selection of a fiscal year on a different slicer.

The reason and explanation are simply that the two slicers reflecting different dimension tables
in the model may both filter the same fact table(s) and thus impact fact table-based measure
calculations but that these filters end at the fact table and there’s no direct relationship between

the two dimension tables.

We’ll next move on to explaining an additional base concept regarding measures, row context.

Row context

In addition to filter context, it is also important to understand the concept of row context and
the ability in DAX to transition from row context to filter context. Row context is an evaluation
context that always contains a single row. Row context is present for calculated columns as well
as DAX iterator functions such as FILTER() and SUMX(), which execute their expressions per row

of a given table.

The set of rows to evaluate from a table is always defined by the filter context, which was described
earlier in this chapter. The expression parameter of iterating functions (aggregation functions
ending in X such as SUMX and AVERAGEX) can aggregate the rows of a table or can invoke the filter
context of the specific row being iterated upon via the CALCULATE () function or a measure refer-

ence. Evoking filter context is further explained in the following paragraphs.

Calculated DAX columns are used to illustrate row context. In Figure 5.3, four calculated columns

have been added to a Date table and reference the Weekday Sort column:

spitkory Waslelr 1 LCALC 1] KRR [l kb

[am o wedkdn RaTEEr - mesmbd T oE T g ol - Mty Mk B L CARE - a ey s s P L s iy raTba Fim L -

Figure 5.3: The row context in calculated columns

All four calculated columns simply add the value 1 to the Weekday Number column, but achieve

their results via distinct expressions:

Weekday Number Plus 1 (SUM) = SUM('Date'[Weekday Number]) + 1

Weekday Number Plus 1 CALC = CALCULATE(SUM('Date’'[Weekday Number])) + 1

Chapter 5 185

Weekday Number Plus 1 Measure = [Weekday Number Summed] + 1

Weekday Number Plus 1 = 'Date’'[Weekday Number]+1

The Weekday Number Plus 1 CALC column and the Weekday Number Plus 1 Measure column
represent the concept of context transition. These two columns invoke the filter context (context
transition) of the given row via the CALCULATE() function or implicitly via the reference of an
existing measure, respectively. Context transition is simply when row context is replaced with
filter context. To explain this more clearly, let’s expand upon how each calculation uses row and

filter context:

e Weekday Number Plus 1 (SUM) is calculated using row context. However, because the
SUM function evaluates all rows visible to the current filter context, this calculated column
computes the sum of all rows for the Weekday Number column plus one and repeats this

value for each row.

e Weekday Number Plus 1 CALC embeds a SUM() function within the CALCULATE() func-
tion prior to adding one. As explained further in the CALCULATE() function section in
this chapter, the CALCULATE () function replaces or modifies the current filter context. In
this case, since the CALCULATE () function has no filter parameter, the only purpose of the
CALCULATE() function is context transition where the row context is transitioned into a

filter context of a single row.

e Weekday Number Plus 1 Measure references an existing measure that sums the Weekday
Number column and then adds one. Referencing a measure within a DAX calculation adds
an implicit CALCULATE () and thus the same context transition occurs as with the Weekday

Number Plus 1 CALC measure.

e Weekday Number Plus 1 references the Weekday Number column of the Date table and
adds one. Here only row context s active and thus only the Weekday Number column value

in the current row is used in the calculation.

The Weekday Number Plus 1 (SUM) expression demonstrates that aggregation functions, in
the absence of CALCULATE () or the implicit CALCULATE () when invoking measures, ignore row
context. The three other columns all operate on a per-row basis (row context) but achieve their
results via three different methods. The Weekday Number Plus 1 column represents the default
behavior of expressions executing in a row context such as calculated columns, FILTER(), and

other iterating DAX functions.

186 Developing DAX Measures and Security Roles

To develop more complex DAX measures, it can be necessary to ignore the row context of the input
table, such as the Weekday Number Plus 1 (SUM) example, or explicitly invoke the row context

of the table depending upon the circumstances and desired resulting value.

Row context, filter context, and context transition can be confusing for those new to DAX and
are thus important subjects to bear in mind when learning to create DAX calculated columns
and measures. Similarly, another important topic is understanding the difference between DAX

functions that return scalar values and tables.

Scalar and table functions

The majority of DAX functions return a single value based on an aggregation or a logical evaluation
of a table or column. For example, the COUNTROWS () and DISTINCTCOUNT () functions return indi-

vidual numeric values based on a single table and a single column input parameter, respectively.

DAX functions that return individual values as their output, including information functions,
such as ISBLANK () and LOOKUPVALUE (), are referred to as scalar functions. For relatively simple
datasets and at early stages in projects, most DAX measures reference a single scalar function

with no other modifications, such as the use of CALCULATE().

In addition to scalar functions, many DAX functions return a table as the output value. The tables
returned by these functions, such as FILTER() and ALL(), are used as input parameters to other
DAX measure expressions to impact the filter context under which the measure is executed via
the CALCULATE() function.

The DAX language has been extended to support many powerful table functions, such as TOPN(),
INTERSECT(), and UNION(), thus providing further support for authoring DAX measures. It is

important to note that DAX measures cannot return a table as a value.

In addition to serving as table input parameters to DAX measures, the results of DAX table func-
tions can be returned and exposed to client reporting tools. The most common example of this
is the use of the SUMMARIZECOLUMNS () function to return a grouping of certain dataset dimension
attributes and certain measures as aggregations to support a data region (e.g. table visual) in a
paginated report. Paginated reports are covered in more detail in Chapter 12, Deploying Paginated

Reports.

Additionally, DAX table functions can return a summarized or filtered table within a Power BI
dataset based on the other tables in the dataset. Such DAX-created tables are known as calcu-

lated tables.

Chapter 5 187

As models grow in complexity and as model authors become more familiar with DAX, new mea-
sures increasingly leverage a combination of scalar functions (or existing measures based on scalar
functions) and table functions. As per the DAX variables section later in this chapter, both scalar
and table values (based on scalar and table functions, respectively) can be stored as variables to

further support abstraction and readability.

With scalar and table functions understood, we’ll next turn our attention to an example of the

use of DAX table functions with respect to related tables.

Related tables

DAX measure calculations respect the row context formed by relationships between tables. Thus, it
is possible to reference other tables in the data model from within a row context via the RELATED()
and RELATEDTABLE () functions.

Figure 5.4 shows the Data View of an import mode dataset where three calculated columns have
been added to a Date dimension table with expressions referencing the Freight column of the
Internet Sales facttable:

X \/ 1 Related Internet Freight Cost Column = SUMX{RELATEDTABLE(Internet Sales”),[Internet Sales Freight Cost])

b

Date T Related Internet Freight Cost (Sum) |~ |Related Internet Freight Cost Ealtimn - | Internet Sales Freight Cost Measure |~
12/29/2010 $3,669,843.0455 361.9337 $361.9337
12/30/2010 42,935 8724364 3482882 5348 2882
12/31,/2010 $3,669,548.0455 3753047 $375.3047
1/1/2011 51,457,939.2187 175.9136 5178.9136
1/2/2011 $3,669,843.0455 375.3047 8$375.3047
1/3/2011 52,935,878,4364 357.8272 5357.8272

Figure 5.4: Row context with RELATEDTABLE()
The DAX expressions used for each column are as follows:
Related Internet Freight Cost (Sum) = SUMX(RELATEDTABLE('Internet

Sales'), (SUM('Internet Sales'[Freight])))

Related Internet Freight Cost Column = SUMX(RELATEDTABLE('Internet
Sales'),[Freight])

Related Internet Freight Cost Measure = SUMX(RELATEDTABLE('Internet
Sales'),[Internet Sales Freight Cost])

188 Developing DAX Measures and Security Roles

For reference, the formula for the Internet Sales Freight Cost measure is simply:

Internet Sales Freight Cost = SUM('Internet Sales'[Freight])

OnlyRelated Internet Sales Freight Cost ColumnandRelated Internet Sales Freight
Cost Measurereturn the correct freight costamount for each date. The Related Internet Freight
Cost (Sum) column computes the total freight cost on the entire Internet Sales table and uses

this value for each related row before summing the result.

For example, five rows on the Internet Sales table have a date of 12/29/2010 and the sum of
the Freight column on the Internet Sales tableis $733,969.61. Given that the SUM() function
ignores row context, the SUMX() function, calculates a value of $3,669,848 for that date, which
is the result of five (rows) multiplied by $733,969.61.

Related Internet Freight Cost Column returns the correct amount since the value of the
Freight column for each row is evaluated within the row context and then the amounts in these

rows are summed by the SUMX() function.

Related Internet Sales Freight Cost Measure also returns the correct amount, which may
seem odd since Related Internet Freight Cost (Sum) essentially simply substitutes in the
formula contained within the Internet Sales Freight Cost measure. However, recall that

measures implicitly invoke CALCULATE () and thus preserve row context via context transition.

The RELATEDTABLE () function is used to reference tables on the many side of one-to-many rela-
tionships. Likewise, the RELATED() function is used to reference tables on the one side of many-

to-one relationships.

For example, a calculated column or the row context of an iterating function such as SUMX() on
the Internet Sales fact table would use RELATED() to access a dimension table and apply logic

referencing the dimension table per row of the Internet Sales table.

We now turn our attention to a specific DAX function that we briefly covered in previous sections,
the CALCULATE () function.

The CALCULATE() function

The CALCULATE () function is perhaps the mostimportant function in DAX as it enables the author
to modify the filter context under which a measure is evaluated. Regardless of the fields used and

filters applied in reports, the filter parameter input(s) to CALCULATE() is applied.

Specifically, the CALCULATE () function either adds a filter to a measure expression (for example,
Color = "Red"),ignores the filters from a table or column (for example, ALL(Product)), or up-

dates/overwrites the filters applied within a report to the filter parameter specified in CALCULATE ().

Chapter 5 189

The syntax of CALCULATE () is the following:

CALCULATE(<expression>, <filterl>, <filter2>, ..).

Any number of filter parameters can be specified including no filter parameters such as
CALCULATE(SUM(Sales[Sales Amount])). When multiple filter parameters are specified, the
function respects all of them together as a single condition via internal AND logic. Thus, rows
resulting from the specified filter context must meet the criteria of the first filter, the criteria of

the second filter, and so on.

The expression parameter is evaluated based on the new and final filter context applied via the
filter parameters. In the following measure, any filter applied to any column from the Product

or Sales Territory tables are ignored by the calculation:

Internet Sales Row Count (Ignore Product and Territory) =

CALCULATE (COUNTROWS (' Internet Sales'),ALL('Product'),ALL('Sales
Territory'))

The preceding measure represents one simple example of a table function (ALL()) being used in
conjunction with a scalar function (COUNTROWS ()) via CALCULATE(), as described in the previous

section, Scalar and table functions.

There are multiple forms of the ALL() function beyond ALL(table). The ALL() function can
be used to ignore the values from a single column or multiple columns, such as the following
two examples: (A11('Customer'[Customer City]) and ALL('Customer'[Customer City],

'Customer'[Customer Country]).

Additionally, the ALLEXCEPT () function only allows certain columns specified to impact the filter
context, and the ALLSELECTED() function ignores filters from inside a query but allows filters from
outside the query. Finally, the REMOVEFILTERS() function allows certain filters to be removed
when executing the CALCULATE () function.

Just as the CALCULATE () function is used to modify the filter context of scalar value expressions,
the CALCULATETABLE() function is used to modify the filter context of expressions that return
tables. For example, the following expression returns all columns from the product dimension

table and only the rows that match the two filter parameter conditions specified:

CALCULATETABLE('Product’,
"Product’'[Product Category] = "Bikes",
"Product ' [Product Dealer Price] > 2100)

190 Developing DAX Measures and Security Roles

The modified table result from CALCULATETABLE () can then be used as a parameter input to an-
other table function such as FILTER() or as a filter parameter to CALCULATE().

The FILTER() function

The FILTER() function is one of the most important and powerful functions in DAX in that it al-
lows complex logic to fully define the set of rows of a table. FILTER() accepts a table as an input

and returns a table with each row respecting its defined condition.

The FILTER() function is almost always used as a parameter to a CALCULATE () function and can
add to the existing filter context or redefine the filter context by invoking ALL (), ALLEXCEPT(), or
ALLSELECTED() as its table input. The date intelligence measures described later in this chapter
utilize FILTER() to fully define the set of Date rows for the filter context.

In the following DAX measure, the FILTER() function is utilized against the Date table and im-

plements a condition based on the existing Internet Gross Sales measure:

Days with over 15K Gross Internet Sales =
CALCULATE (COUNTROWS ('Date'),
FILTER('Date', [Internet Gross Sales] > 15000))

With respect to the use of CALCULATE, the ability to directly reference DAX measures is unique to
the FILTER() function. For example, the following measure expression is not allowed by the DAX
engine: CALCULATE (COUNTROWS('Date'), [Internet Gross Sales] > 15000). Thisis because

the standard filter clause of the CALCULATE function cannot directly reference measures.

TheDays with over 15K Gross Internet Sales measure and the Internet Gross Salesbase

measure are used to create the visuals shown in Figure 5.5:

Date niemet Gross Sales Days with over 15K Gross Intemet Sales -

1/4/2001 37,157 2 3 2
17272014 15012 1

17372011 £14.213 . f L ;
Fied . Drays with over 15K Gross [nternet Sales

1472011 37,858

1/5/2011 37,858

14672011 §20.910 1 alendar ¥ear

12om 10557

1482017 14,313 20 SO0 #HI3 “ 1
182011 £14,135

1107201 57157 2006 ENOR AR E01R ION4
AT _$25048 |

Tatal §7.075,5268 232

Figure 5.5: DAX measure with FILTER

Chapter 5 191

Given that the FILTER() function simply references the Date table and does not remove any
filters via ALL (), the measure executes on each date contained in the matrix visual to return a 1
or a blank. When no dates are on the visual, such as the subtotal row or the card visual, the total

number of days that meet the condition (232 for the year 2011) is returned.

If the Internet Gross Sales measure was not included in the table visual, by default, Power
BI would only display the dates with a 1 value for the Days with over a 15K Gross Internet

Sales measure.

Given both its iterative (row-by-row) execution and the potential to apply complex measures
to each row, it’s important to use the FILTER() function carefully. For example, DAX measures
should not use FILTER() directly against large fact tables since the filter condition must be eval-
uated for every row of the fact table, which may be millions, billions, or even trillions of rows.
Additionally, FILTER() should not be used when it’s not needed for simple measures such as the

following two examples:

CALCULATE([Internet Gross Sales], 'Product'[Product Category] = "Bikes")

CALCULATE([Reseller Gross Sales], 'Product'[Product Color] IN {"Red",
"White"},Promotion[Discount Percentage] > .25).

With two of the mostimportant DAX functions, CALCULATE () and FILTER(), explained, we’ll next

cover the last important base DAX concept, variables.

DAX variables

Variables can be defined within DAX measures and primarily serve to improve the readability of
DAX expressions. Rather than creating and referencing separate DAX measures, variables provide

an inline option, thereby limiting the volume of distinct measures in a dataset.

As a basic example of variable syntax, the Last Refreshed measure described in the Parameter
tables queries section of Chapter 3, Connecting to Sources and Transforming Data with M, uses a DAX

variable in its expression, as follows:

Last Refresh Msg =

VAR _ CurrentDateValue = MAX('Current Date'[CurrentDate])
RETURN

"Last Refreshed: " & __ CurrentDateValue

The VAR function is used to name a variable and the RETURN keyword allows for the variable’s

result to be referenced by this name.

192 Developing DAX Measures and Security Roles

In this example, the __CurrentDateValue variable retrieves the date stored in the CurrentDate

parameter table, and a string of text is concatenated with the variable to generate the text message.

Variables can sometimes improve the performance of slow measures. Variables are only evalu-
ated once and their resulting values (a scalar value or a table) can be referenced multiple times

within a measure.

Measures that produce fewer storage engine queries almost always execute faster and make better
use of hardware resources. Therefore, any DAX measure or query that makes multiple references

to the same expression logic can be a good candidate for DAX variables.

A common use case for DAX variables is to split up the components of an otherwise more complex
DAX expression. In the following example, six DAX variables are used to produce a filtered distinct

count of accessory products and a filtered distinct count of clothing products:

Reseller High Value Accessory and Clothing Products =

/*

Accessory category products with over 20K in net sales and over 32% net
margin since last year

Clothing category products with over 55K in net sales and over 28% net
margin since last year
Enable filtering from dimension tables related to Reseller Sales
*/
VAR __AccessorySales = 30000
VAR _ AccessoryNetMargin = .32
VAR _ ClothingSales = 50000
VAR _ ClothingNetMargin = .28
//Distinct Accessory Products
VAR __AccessoryProducts =
CALCULATE(
DISTINCTCOUNT('Product'[ProductAlternateKey]),
FILTER(
SUMMARIZE (
CALCULATETABLE('Reseller Sales',
'Date’[Calendar Year] IN {2014, 2013},
'"Product’'[Product Category] = "Accessories"
)>
"Product ' [ProductAlternateKey]
)

Chapter 5 193

[Reseller Net Margin %] >= __ AccessoryNetMargin && [Reseller
Net Sales] >= _ AccessorySales
)

)
//Distinct Clothing Products

VAR _ ClothingProducts =

CALCULATE(
DISTINCTCOUNT('Product'[ProductAlternateKey]),
FILTER(

SUMMARIZE (

CALCULATETABLE('Reseller Sales',
'Date'[Calendar Year] IN {2014, 2013},
'Product’'[Product Category] = "Clothing"

)

"Product’' [ProductAlternateKey]

)>

[Reseller Net Margin %] >= _ ClothingNetMargin && [Reseller Net
Sales] > _ ClothingSales

)

)
RETURN

__AccessoryProducts + __ClothingProducts

With the variables named and evaluated, the RETURN keyword simply adds the results of the two
distinct count expressions contained within the __AccessoryProducts and _ ClothingProducts
variables. The multi-line comment at the top of the expression denoted by /* and */ makes the

DAX measure easier to understand in the future.

Single-line comments have been added using // to precede the distinct accessory and clothing
products. With the variables declared in this structure, it becomes very easy to adjust the mea-

sure to different input thresholds such as a higher or lower net sales value or net margin rates.

The most efficient filtering conditions of measures should be implemented in measures first. Ef-
ficient filter conditions are those that don’t require the FILTER() function, such as the Calendar
Year and Product Category filter conditions in the Reseller High Value Accessory and

Clothing Products measure.

194 Developing DAX Measures and Security Roles

Simple filters that do not require the FILTER() function are known as Boolean (true/false) ex-
pressions. Boolean expressions are more efficient because import mode datasets consist of tables
represented by in-memory column stores, which are explicitly optimized to efficiently filter col-

umns based upon Boolean expressions.

However, Boolean expressions come with a number of restrictions. Namely Boolean expressions

cannot:

e Compare columns to other columns
e Reference a measure
e Usenested CALCULATE () functions

e Use functions that scan or return a table

Once sufficient filters have been applied, more-complex but less-performant filtering conditions

can operate on smaller sets of data, thus limiting their impact on query performance.

APower Bl report can leverage the measure in a visual-level filter to only display the specific prod-
ucts that meet the criteria of the measure. In Figure 5.6, only six products (two accessories, four
clothing) are displayed given the filter on the Reseller High Value Accessory and Clothing

Products measure:

iy Brodu il Y Fesrdad My M Reaslls High Vsl

-1

Hyp=rmaon Pxch 3. Tl LA

L S e ¥.8% -

Figure 5.6: Variable-based DAX measure as a visual-level filter

The filter context of the Reseller Sales facttableisrespected via the SUMMARIZE () function. Just
like bidirectional cross-filtering via the CROSSFILTER() function and bidirectional relationships,
other dimensions related to the Reseller Sales fact table can be used for filtering the measure.
For example, a filter on the SalesTerritoryCountry column for the United States would result

in only five products.

Chapter 5 195

It’s necessary to reference the alternate key of the product dimension given the implementation
of slowly changing dimension logic, as described in Chapter 1, Planning Power BI Projects, since
a single product can have multiple rows in its dimension table, reflecting various changes such
as with list prices and product weight. These unique product keys would be reflected in the fact
table, and so using the product key column would result in counting different versions of the

same product multiple times.

In addition to scalar values like DAX measures, DAX variables can also store table values such
as a specific set of customer key values or filter a set of product rows. DAX measures can then

reference and apply aggregation functions against this set of tables.

In the following example, two distinct sets of customer keys (tables) are computed via variables

and then combined via the UNION() function to drive the filter context of the measure:

Internet Sales Married and Accessory Customers =
VAR _ MarriedCustomers =
SUMMARIZE (
CALCULATETABLE('Internet Sales',
"Customer'[MaritalStatus] = "Married"),
'Customer' [CustomerAlternateKey])
VAR __ AccessoryCustomersThisYear =
SUMMARIZE (
CALCULATETABLE('Internet Sales',

'Date'[Calendar Year] = 2013, 'Product’'[Product Category] =
"Accessories"),

'Customer ' [CustomerAlternateKey])

VAR _ TargetCustomerSet = DISTINCT(UNION(__MarriedCustomers,
AccessoryCustomersThisYear))

RETURN
CALCULATE(DISTINCTCOUNT('Customer'[CustomerAlternateKey]),
__TargetCustomerSet)

The DISTINCT() function is applied against the result of the UNION() function since duplicate
rows are retained by the UNION() function in DAX. Note that the UNION() function simply appends
two or more tables together, returning a single table. The DISTINCT () function returns a table of

unique values (either unique rows in a table or the unique values in a single column).

196 Developing DAX Measures and Security Roles

Just like the previous example with variables, the SUMMARIZE () function is used to both embed
filter conditions and respect the filter context of the Internet Sales fact table. In this example,
SUMMARIZE () allows selections on dimension tables related to the Internet Sales fact table,

such as Sales Territory to also impact the measure.

Figure 5.7 shows a matrix visual in a Power Bl report where the Sales Territory Country col-
umn from the Sales Territory dimension is used as the column header and the results from

the measure reflect each individual country:

United States Austraba United Kingdom Germmany France Canada

Internet Sales Marmed and Accessory Custormers | TO16 Mg 1775 1607 15497 1382

Internet Sales Orders 9567 B8 303 2484 2484 3375

Figure 5.7: Table-valued DAX variable-based measure

The filter context embedded into both variables (__MarriedCustomers and

AccessoryCustomersThisYear) of the measure provides the equivalent behavior of bidirectional
cross-filtering between Internet Sales and the Customer dimension. The SUMMARIZE () function
is used rather than CROSSFILTER() when given a performance advantage. See the Performance

testing section later in this chapter for additional details on performance testing.

The combination of table-valued DAX variables and set-based DAX functions such as UNION(),
INTERSECT(), and EXCEPT() supports a wide variety of analytical operations. Authors of DAX
measures should familiarize themselves with the essentials of DAX as a query language, partic-
ularly the SUMMARIZE () and SUMMARIZECOLUMNS () functions. Custom tables resulting from DAX
queries are often needed by DAX measure expressions and can also be used in other applications
such as SSRS.

This completes our exploration of all of the base concepts with respect to DAX measures. Next,

we use the knowledge from this section to develop the base measures for our dataset.

Base measures

Before any custom or complex DAX measures can be developed, a set of relatively simple base
measures must be implemented first. These measures represent the metrics from the Define the
facts section of Chapter 1, Planning Power BI Projects, and thus contain validated and approved

business definitions.

Chapter 5 197

For Adventure Works, a set of base measures related to sales, cost, and margins are applicable to

both the Internet Sales and Reseller Sales facttables, such as the following:

Reseller Gross Sales = SUMX('Reseller Sales', 'Reseller Sales'[UnitPrice]
* 'Reseller Sales'[OrderQuantity])

Reseller Sales Discounts = SUM('Reseller Sales'[DiscountAmount])

Reseller Net Sales = [Reseller Gross Sales] - [Reseller Sales Discounts]
Reseller Sales Product Cost = SUMX('Reseller Sales', 'Reseller
Sales'[OrderQuantity] * 'Reseller Sales'[ProductStandardCost])

Reseller Sales Freight Cost = SUM('Reseller Sales'[Freight])

Reseller Cost of Sales = [Reseller Sales Product Cost] + [Reseller Sales
Freight Cost]

Reseller Gross Product Margin = [Reseller Gross Sales] - [Reseller Sales
Product Cost]

Reseller Gross Product Margin % = DIVIDE([Reseller Gross Product
Margin],[Reseller Gross Sales])

Reseller Net Product Margin = [Reseller Net Sales] - [Reseller Sales
Product Cost]

Reseller Net Product Margin % = DIVIDE([Reseller Net Product

Margin], [Reseller Net Sales])

Reseller Gross Margin = [Reseller Gross Sales] - [Reseller Cost of Sales]
Reseller Gross Margin % = DIVIDE([Reseller Gross Margin],[Reseller Gross
Sales])

Reseller Net Margin = [Reseller Net Sales] - [Reseller Cost of Sales]
Reseller Net Margin % = DIVIDE([Reseller Net Margin],[Reseller Net Sales])

As shown in the Fact table columns section from Chapter 4, Designing Import, DirectQuery, and Compos-
ite Data Models, three fact table columns (ExtendedAmount, SalesAmount,and TotalProductCost)

were excluded from the Power BI fact table to save resources. The SUMX () function is used to com-
pute the equivalent values from these three columns to support the Gross Sales, Net Sales,

and Product Cost measures, respectively.

Sales discounts and freight costs, both simple sums of their respective fact table columns, are the
two measures that create differences among the base measures. Discounts separate gross sales
from net sales and freight costs separate the cost of sales from product costs only. The distinct
definitions of the base measures support common analysis needs, such as the profitability (mar-

gin) of sales inclusive or exclusive of freight costs.

198 Developing DAX Measures and Security Roles

With base measures created for both the Reseller Sales and Internet Sales fact tables, an
additional set of base measures can be created for Adventure Works as an organization. Several
of these measures can simply sum the Reseller Salesand Internet Sales measures as shown

in the following examples:

AdWorks Net Sales = [Internet Net Sales] + [Reseller Net Sales]

AdWorks Cost of Sales = [Internet Cost of Sales] + [Reseller Cost of
Sales]

AdWorks Net Margin = [AdWorks Net Sales] - [AdWorks Cost of Sales]
AdWorks Net Margin % = DIVIDE([AdWorks Net Margin], [AdWorks Net Sales])

Additional DAX measures with specific filtering or evaluation logic such as date intelligence
metrics can reference the base measures in their expressions. Via this measure branching, any
subsequent changes to the definition of the base measures are automatically reflected in other
dependent measures. Additionally, the readability of the custom measures is improved, as these

expressions only contain their specific logic.

With our base measures created, we can next create supporting measures.

Measure support expressions

Large and complex Power BI datasets with many measures may have one or multiple measure
support tables. As shown in the previous chapters, these hidden tables don’t contain data and

aren’t refreshed with the dataset, but serve as the home table for commonly used DAX expressions.

Unlike DAX variables, hidden DAX measure expressions are globally available to other DAX mea-
sures and queries. Measure support expressions, therefore, serve as a staging and consolidation

layer to simplify DAX measures.
The measure support table may contain any of the following types of expressions:

o KPItargets
e Current and prior periods

e Filter context information

The two measures described in the Measure support logic section of Chapter 4, Designing Import,
DirectQuery, and Composite Data Models, represent the filter context information type of measure

support.

Chapter 5 199

These measures typically use the ISFILTERED() or ISCROSSFILTERED() functions and are refer-
enced within conditional expressions of other measures. Additionally, the USERPRINCIPALNAME ()
function is a good candidate for the Measure Support table if dynamic RLS is needed, or if other,
user-based functionality is built into the dataset. The USERPRINCIPALNAME () function is covered

in more detail in the Dynamic row-level security section later in this chapter.

The ISFILTERED() function is used to test whether an individual column or a table is directly
filtered only. The ISCROSSFILTERED() function, however, tests whether an individual column or

a table is either directly filtered or if it’s filtered via its relationship to another table in the model,

Let’s now look at the first of our support measures, a target for a KPI visual.

KPI targets

The standard Key Performance Indicator (KPI) visual in Power BI Desktop compares an indicator
measure relative to a specified target value, which may also be a measure. The variance between
the indicator and the target is displayed in the visual and is used to drive the color formatting

(for example, red = bad; green = good).

For many measures, a corresponding target measure may need to be created that applies some
calculation logic to an existing measure. The following measure is simply 10% greater than the

previous year’s year-to-date net sales:

Target: 10% Above PY YTD Internet Sales = [Internet Net Sales (PY YTD)] *
1.10

In a standard KPI visual, the target measure is displayed as the goal and used to calculate the
variance percentage between the indicator and the target. In Figure 5.8, a $16.35M indicator value
for Internet Net Sales (YTD)is154.43% higher than the 10% growth target measure of $6.43M:

Internet Net Sales (YTD vs. 10) Growth)

16.35M-

Goal: 6.43M (+154.43%)

Figure 5.8: Standard KPI visual

Several other common visuals in Power BI benefit from target measures, including the bullet
chart and the gauge visual. Several of these visuals can use multiple target measures to define

alternative thresholds, such as the min and max values displayed.

200 Developing DAX Measures and Security Roles

In certain scenarios, a dedicated table of corporate target measures can be added to a dataset. For
example, a table may contain columns for expected or target customer counts, products sold, and
other metrics at a given date’s granularity. Target measures can be created to access the values

of this table via utility functions, such as LOOKUPVALUE ().

The LOOKUPVALUE () function returns a scalar value from a single column that results from filtering
rows of a table based on specified criteria. In other words, LOOKUPVALUE () provides the means to
return a single “cell,” similar to Excel’s VLOOKUP function. LOOKUPVALUE () is particularly useful

because it ignores the current filter context.

As shown in the examples in the following section, the LOOKUPVALUE () function can be relied on
to provide the same input value to other measures, such as a date or a number referring to specific

date rows, regardless of any filters applied in the report.

Let’s take a look at using the LOOKUPVALUE () function for current and prior period support mea-

sures.

Current and prior periods

A common requirement of date intelligence metrics is to compare the YTD total for a measure
versus the equivalent time period of the prior year. For example, on November 14,2017, the visual

would compare January through October of 2017 versus January through October of 2016.

Without any external filtering, however, a standard YTD measure would include the 14 days of
November in 2017 and would capture the entire year of 2016 if the year 2016 was in the filter
context. To deliver equivalent or apples-to-apples comparisons of equal time periods, the filter

context of measures can be further customized.

The following measures retrieve the year-to-date net sales through the prior calendar month
and prior calendar week. For example, throughout the month of November, the YTD Last Month
measure would, at most, only retrieve the net sales through the month of October. Likewise, the
YTD Last Week measure would, at most, only include the net sales through the end of the prior

week of the year (45):

Prior Calendar Month Number =
VAR __ CurrentDay = TODAY()
RETURN
IF (LOOKUPVALUE('Date'[Month Number], 'Date’'[Date],__CurrentDay) = 1,
12,
LOOKUPVALUE ('Date ' [Month Number], 'Date’'[Date],__CurrentDay)-1

Chapter 5 201

)
Prior Calendar Week Number =
VAR __ CurrentDay = TODAY()
RETURN
IF (LOOKUPVALUE('Date' [Week of Year], 'Date'[Date],__ CurrentDay) = 1,
CALCULATE(MAX('Date' [Week of
Year]),FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar
Year]) - 1)),
LOOKUPVALUE ('Date' [Week of Year], 'Date'[Date],__CurrentDay)-1
)
Internet Net Sales (YTD Last Month) =
IF([Prior Calendar Month Number] <> 12,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'), 'Date’'[Calendar
Year] = MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date’'[Month Number] <= [Prior Calendar Month Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),
'Date’[Calendar Year] = MAX('Date'[Calendar Year])-1 & 'Date’[Date]
<= MAX('Date'[Date]) && 'Date'[Month Number] <= [Prior Calendar Month
Number]))
)
Internet Net Sales (YTD Last Week) =
VAR __ CurrentWeek = LOOKUPVALUE('Date'[Week of
Year], 'Date’' [Date], TODAY())
RETURN
IF(__CurrentWeek <> 1,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'), 'Date’'[Calendar
Year] = MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date’'[Week of Year] <= [Prior Calendar Week Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'), 'Date’'[Calendar
Year] = MAX('Date'[Calendar Year])-1 & & 'Date'[Date] <= MAX('Date'[Date])
&& 'Date'[Week of Year] <= [Prior Calendar Week Number]))

)

For any prior calendar year in the filter context, the (YTD Last Month) measure would only
include January through October for this given year. Likewise, the (YTD Last Week) measure
would only include weeks 1 through 45 of the given year. By embedding this dynamic filtering

logic, it’s possible to use these measures in report visuals without applying any additional filters.

202 Developing DAX Measures and Security Roles

The TODAY() function combined with the LOOKUPVALUE () function makes it possible to retrieve
values at query time relative to the current date. In the previous example, the month and week
number columns of the current year (for example, October = 10) are queried via LOOKUPVALUE ()

based on the current date.

With these values retrieved, subtracting one from the results provides the value associated with
the prior month and prior week, respectively. These measures are then referenced in the FILTER()

function of their respective year-to-date measures.

Similar to this simple example, dynamically computed dates and other values make it possible

to create measures for the current date and yesterday:

Internet Net Sales (Today) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date’[Date] = TODAY()))

Internet Net Sales (Yesterday) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date’[Date] = TODAY()-1))

Along with the date intelligence metrics described in the following section, arich set of date-based
metrics gives users of Power Bl reports and dashboards visibility for both short- and long-term

results.

Date intelligence metrics

Date intelligence metrics are typically the first set of measures to be added to a dataset following
base measures. These measures reference the base measures and add a custom filtering condition
to the Date dimension table, thus providing visibility to multiple distinct time intervals, such as

year-to-date and the previous year-to-date.

Given their built-in date filtering logic, Power Bl reports and dashboards can be developed faster

and without manual maintenance costs of updating date filter conditions.

The following four measures apply custom filter contexts to either return the current year, month,
and week by default, or the latest of these time intervals given the date filters applied in a report:
Internet Net Sales (CY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar
Year]) && 'Date'[Date] >= MIN('Date'[Date]) && 'Date'[Date] <=
MAX('Date'[Date])))

Internet Net Sales (YTD) = CALCULATE([Internet Net Sales],

Chapter 5 203

FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
'Date ' [Date] <= MAX('Date'[Date])))

Internet Net Sales (MTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date’'[Year Month Number] = MAX('Date'[Year Month
Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (WTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date'[Year Week Number] = MAX('Date'[Year Week
Number]) && 'Date’'[Date] <= MAX('Date'[Date])))

As explained in the Row context section of this chapter, the use of the MIN() and MAX() functions
within the FILTER() function invokes the filter context of the report query. For example, if a
report page is filtered to the second quarter of 2016 (2016-Q2), the CY measure only returns the
sales from these three months while the YTD measure includes both the first and second quarter
of 2016. The month-to-date (MTD) and week-to-date (WTD) measures return the sales for June of
2016 and week 27 of 2016, the last month and week in the filter context.

The Date dimension table only contains rows through the current date. Therefore, in the absence
of any other date filters applied in a report, these measures default to the current YTD, MTD, and

WTD totals for net sales as per Figure 5.9:

5,145.91 1,874,360.29 16,351,550.34
Internet Met Sales (WTD) Internet Met Sales (MTD) Internet Net Sales (YTD)

Figure 5.9: Date intelligence metrics for the last full year in the dataset (2013)
The CY measure returns the same value as the YTD measure when no other date filters are applied.

The MTD and WTD measures both reference a numeric column on the Date table that corresponds
to the given granularity. For example, December of 2013 and January of 2014 are represented by
the values 108 and 109 in the Year Month Number column. As shown in the previous chapter,
these sequential columns are critical for date intelligence and are also used by the Sort By col-

umn property.

The following set of DAX measures return the prior year, month, and week given the filter context

of the report:

Internet Net Sales (PY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date"'), CONTAINS(VALUES('Date'[Prior Year
Date]), 'Date'[Prior Year Date], 'Date’'[Date])))

204 Developing DAX Measures and Security Roles

Internet Net Sales (PYTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 &&
'Date'[Date] <= MAX('Date'[Prior Year Date])))

Internet Net Sales (PMTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date'[Year Month Number] = MAX('Date'[Year Month
Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Month Date])))

Internet Net Sales (PWTD) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'), 'Date'[Year Week Number] = MAX('Date'[Year Week
Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Week Date])))

The Calendar Year,Year Month Number, and Year Week Number columns used by the current
period measures are also referenced by the prior period measures. However, the prior period
measures subtract a value of one from the result of the MAX() function to navigate to the given

preceding period.

In the Internet Net Sales (PY) measure, the CONTAINS() function used within the filtering
parameter of the FILTER() function returns a true or false value for each prior calendar year
date based on the date column. The CONTAINS () function returns true if the date column reflects
the filter context of the report query and thus only the corresponding prior year dates are passed

to FILTER() as the modified filter context.

DAX provides a number of functions dedicated to date intelligence, such as DATEADD() and
SAMEPERIODLASTYEAR(). These functions are much less verbose than the techniques from these
examples, but they’re also generally limited to standard calendars. The approach described in this
section leveraging DAX functions, such as FILTER() and ALL(), can also be applied to financial
calendars. Additionally, the filter navigation (for example, MAX() - 1) implemented in the prior

period measures is applicable to more advanced date intelligence expressions.

Each prior period measure references a column containing date values that have been adjusted
relative to the date column. Figure 5.10 of the Date dimension query in Power Query Editor high-

lights these three columns relative to the date column:

Chapter 5 205

t -I:Iuh:- = | B Prior Year Date | = Prior Month Date o 175 Prior Week Date -
2/1/2005 1/1/2004 12/2/2004 12/25/2004
1/2/2005 1252004 12/2/2004 12/26/ 2004
14342005 143 2004 1243/ 300 12/27 a0
14 05 154, 000 1.2 £ 20 12428, 7004
1572005 17542004 124502004 12/28/2004
176/ 2005 1/6/2004 12/6,/2004 12/30/2004
/7 2005 1/7 /2004 12/7/ 3002 12/31, 004
15/ FO05 1/5/ 2004 1245/ 2009 I/1/2005
18 05 15 004 120593004 1/ 05

1/10,2005 10,2004 12/10/3004 132005
17112005 11172004 127113004 1A/ 3005

Figure 5.10: Prior date columns in the date dimension

Given the value of date intelligence measures and the relatively static nature of the date dimension,
it’s recommended to develop a robust date dimension table. If the necessary columns cannot be
implemented in the source database itself, the columns can be computed within the SQL view

or the M query of the Date table.

Sample M query examples are available in the companion PBIX files for this book on GitHub
(https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition)
and detailed instructions are provided in Chapter 6 of Power BI Cookbook, 2nd Edition.

Let’s now look at a different type of date intelligence measure that compares prior years.

Current versus prior and growth rates

With date intelligence measures developed for the current and prior periods, growth or variance
measures can be added to the dataset, comparing the two values. In the following example, a
year-over-year (YOY) and a year-over-year year-to-date (YOY YTD) measure have been created

based on the current year and prior year measures from the preceding section:

Internet Net Sales (YOY) = [Internet Net Sales (CY)] - [Internet Net Sales
(PY)]

Internet Net Sales (YOY YTD) = [Internet Net Sales (YTD)] - [Internet Net
Sales (PYTD)]

https://github.com/PacktPublishing/-Mastering-Microsoft-Power-BI-Second-Edition

206 Developing DAX Measures and Security Roles

Finally, growth percentage measures can be added, which express the variance between the
current and prior period measures as a percentage of the prior period. The following measures

reference the above YOY measures as the numerator within a DIVIDE () function:

Internet Net Sales (YOY %) = DIVIDE([Internet Net Sales (YOY)],[Internet
Net Sales (PY)])

Internet Net Sales (YOY YTD %) = DIVIDE([Internet Net Sales (YOY
YTD)], [Internet Net Sales (PYTD)])

The DIVIDE () function returns a blank value if the denominator is zero or a blank value by default.
The divide operator (/), however, returns an infinity value when dividing by zero or a blank. Given
the superior error-handling behavior and performance advantages of DIVIDE (), the DIVIDE()

function is recommended for computing division in DAX.

Another popular category of date intelligence measures deals with rolling date periods so let’s

look at those next.

Rolling periods

Rolling periods, sometimes referred to as trailing averages, are very common in datasets, as they
help to smooth outindividual outliers and analyze longer-term trends. For example, a significant
business event or variance 10 months ago has a relatively small impact on a trailing 12-month
total. Additionally, this variance does not impact trailing 30-day or 3-, 6-, and 9-month rolling

period measures.

The following two measures capture the trailing 60 days of sales history and the 60 days of history
prior to the trailing 60 days:

Internet Net Sales (Trailing 60 Days) =
VAR _ MaxDate = MAX('Date'[Date])
VAR __ StartDate = _ MaxDate - 59

RETURN

CALCULATE([Internet Net Sales],FILTER(ALL('Date'), 'Date'[Date] >=
StartDate && 'Date'[Date] <= __ MaxDate))

Internet Net Sales Trailing (60 to 120 Days) =
VAR __ MaxDate = MAX('Date'[Date])
VAR _ _EndDate = _ MaxDate - 60
VAR _ StartDate = __EndDate - 59

Chapter 5 207

RETURN

CALCULATE([Internet Net Sales],FILTER(ALL('Date'), 'Date'[Date] >=
StartDate && 'Date'[Date] <= __ _EndDate))

The two 60-day measures compute the dates for the filter condition within DAX variables and
then pass these values into the FILTER() function. The two measures help to answer the question
“Is Internet sales growth accelerating?” With this logic, the value for the trailing 60 days measure
on November 15th, 2013 includes Internet sales since September 17th, 2013. The 60-to-120-days
measure, however, includes sales history from July 19th, 2013 through September 16th, 2013.

Rolling period or trailing average measures generally require the sequential numeric date dimension
columns in the date suggested in both previous chapters. Very similar to the prior period measures
from the previous section (for example, PY YTD), rolling period measures can reference sequential

columns for the given granularity and modify the date filter by adding or subtracting values.

In the next section, we take a look at a different way to create groups of measures called calcu-

lation groups.

Calculation groups

Calculation groups are a data modeling feature that enable common expression logic to be cen-
tralized and leveraged by other measures when needed in reports. In this section, we cover the
creation of the same basic date intelligence from the previous section, Date intelligence metrics,

but use calculation groups.

In the previous section, we covered the creation of basic date intelligence metrics for Internet
Net Sales.However, supporting eight common date intelligence expressions for each of 24 base
measures would imply adding 192 (8*24) distinct measures to the dataset, thus adding both de-
velopment time and complexity for report authors and analysts. Calculation groups address this
issue by allowing report authors to reuse common expressions such as year-to-date for whichever

base measure it’s needed for.

Calculation groups allow the creation of general calculation formulas that can be applied to any
explicit measure within the data model. Thus, a single set of 8 basic date intelligence metrics
could be created (CY, YTD, MTD, WTD, PY, PYTD, PMTD, PWTD) as a calculation group and this calculation

group could be applied to all 24 base measures.

Calculation groups and certain other dataset objects such as detail-row expressions can only be
created in external tools (outside of Power BI Desktop) such as Tabular Editor. Detail row expres-

sions enable custom drillthrough actions in MDX-based client tools such as via PivotTables in Excel.

208

Developing DAX Measures and Security Roles

For example, the SELECTCOLUMNS () function could be used in a Detail Rows Expression to select

the dimension attributes most valued in a drillthrough scenario such as Customer ID and Sales

Order Number. Excel report users are able to simply double-click values in their Excel PivotTa-

bles to access a table containing the detail row expression attributes for the given filters applied.

Figure 5.11 shows a calculation group being created in Tabular Editor v2:

Fide Edit Mew Model Cakulabion fem Tools
2 0 | G | Perspective: (All objects)

LiB|&

o|[@z] m % (e

w

Tables e
* BB Inlemetl Sales
» B Ressllar Sales
» A Dat= Intelbgence Metrics
» [Adverdure Works Sales
* R Measure Suppor

#
2
3
]

Currency
Customer
Diats
Employee
Product
Fessllar
Sales Terrory
Promaotion
BrdgeSales TembaryReguon
BrdgeProductSubCat
Sales and Margin Plan
» fff CountryFlags
» F BedgeSudgetDate
» [Dates
» [Dates2
w 5] Date Inteligence Melrics (CG)

w L Calculation [fems

= Current Year
Year o Dale

Month to Date
Wiesk fo Date
Pravious Year
Previous Year [o Date
Previous Manth to Date
Frevious Week (o Dale .

*
*
*
*
*
*
*
*
*
*
#
*

e e e e e st e

| N EEN 5N £ E 3 B

= Tranglation; (Mo franslation) = | Filker

Eupression Editor Advanced Scipling

v X %*-h A g |2 7= | Propetty: Expression
1| CALCULATE
Z SELECTEDMEASURE() ,
E] FILTER{
1 ALL['Date"},
o 'Date’ [Calendar Year] =
& h-?..'l: 'Date’[Calendar Year]) &8
7 ‘Dotz’ [Dete] »= MIN{ ‘Date’[Dote]) 88
8 ‘Date’ [Date] <= MAX({ 'Date” [Date]
]
12
a8
~ Basic
Descriphion
Mame
Cirdinal
w Metadata
Error Mezsage
Object Type
= Qptions
Exprassion

Format String Expresson

Hame

The

narme of this chjgcl Warning: Changing the name can braak formuls logic

Figure 5.11: Creating a calculation group in Tabular Editor

Once deployed to the model, calculation groups appear as a table in the Fields pane with a sin-

gle named column. This column represents the collection of calculation items defined for the

calculation group.

Chapter 5 209

Figure 5.12 shows a matrix with a calculation group used with four different base measures si-

multaneously. In each case, the specified calculations are performed on each measure separately.

Year Current Year Monthto Previous Previous Previous | 3§ -~ 7 I Adventure Works Sales
Date Month to Week to Year E |.H.H E I]]:ﬂ E mﬂ » [E Date Intelligence Metrics
Date Date E m E IH:E: @ IE » B8 BridgeBudgetDate
2012 = » B CountryFlags
Internet Gross Sales| §5,842485 $624502 $537,956 $40,074 $7.075526 Mm=E ® O H SE e
Urrenc
Internet Net Sales $5,842485 $624502 $537956 S40074 47075526 g @ dg A o 3
Ressller Gross Sales | $27,979,882 $1,990,258 32,862,647 $16,429,054 Pl BriiE s
Reseller Net Sales $27.921,671 1,987,873 $2,880,753 §16,288,442 EEEBAER & csome
2013 Py & 52 > B, Date
Internet Gross Sales $16351550 $1,874360 $1780920 $212370 $5839,631 y E =AL8 e
e 1
Internet Wet Sales §16,351,550 11,874,360 31,780,920 $212370 $5839631 @ EZ @ o oo . e :
Reseller Gross Sales | $36,569,169 $3.429174 $3 328,632 427,979,882 @ Date Intelligence
Reseller Met Sales | 536240485 $3.416.235 $3.314.601 $27,921,671 Riows * % Dates1
2014 e wow >R Dates2
Internet Gross Sales 345,695 $16,351,550
. > B Employes
Internet Met Sales $45,695 $16,351,550 Calumns ;
Reseller Gross Sales $36,569 169 > B Internet Sales
Reseller Net Sales §36,240,485 Date Intelligence » X 0 B Measure Support
.. . > B Product
e »> B Promeation
Internet Gross Sales X & 5 g8 pocoller
Internat Mat Sales R > B, Reseller Sales
Reseller Gross Sales K > BB sales and Margin Flan
Reseller Met Sales N > B sales Temitary

Figure 5.12: Calculation group used with multiple measures in a matrix

The equivalent calculation items for the basic date intelligence metrics covered earlier in this

chapter are as follows:

Current Year

CALCULATE (SELECTEDMEASURE (), FILTER(ALL('Date'), 'Date'[Calendar Year]

= MAX('Date'[Calendar Year]) && 'Date’'[Date] >= MIN('Date'[Date]) &&
'Date’'[Date] <= MAX('Date'[Date])))

Year to Date

CALCULATE (SELECTEDMEASURE(), FILTER(ALL('Date'), 'Date’'[Calendar Year] =
MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date])))

Month to Date

CALCULATE (SELECTEDMEASURE (), FILTER(ALL('Date'),'Date'[Year Month Number]
= MAX('Date'[Year Month Number]) && 'Date'[Date] <= MAX('Date'[Date])))
Week to Date

CALCULATE(SELECTEDMEASURE (), FILTER(ALL('Date'),'Date'[Year Week Number] =
MAX('Date'[Year Week Number]) && 'Date’'[Date] <= MAX('Date'[Date])))
Previous Year

CALCULATE (SELECTEDMEASURE (), FILTER(ALL('Date'),
CONTAINS(VALUES('Date'[Prior Year Date]), 'Date'[Prior Year

210 Developing DAX Measures and Security Roles

Date], 'Date'[Date])))

Previous Year to Date

CALCULATE (SELECTEDMEASURE(), FILTER(ALL('Date'), 'Date’'[Calendar Year] =
MAX('Date'[Calendar Year])-1 & 'Date’'[Date] <= MAX('Date'[Prior Year
Date])))

Previous Month to Date

CALCULATE (SELECTEDMEASURE (), FILTER(ALL('Date'), 'Date'[Year Month Number]
= MAX('Date'[Year Month Number])-1 & 'Date'[Date] <= MAX('Date'[Prior
Month Date])))

Previous Week to Date

CALCULATE (SELECTEDMEASURE(), FILTER(ALL('Date'), 'Date’'[Year Week Number] =
MAX('Date’[Year Week Number])-1 & 'Date'[Date] <= MAX('Date'[Prior Week
Date])))

As you can seeg, in each instance, the explicit measure such as Internet Net Sales has been
replaced with the DAX function SELECTEDMEASURE (). The SELECTEDMEASURE () function is a
placeholder that represents the current measure in the context of the calculation item. Three
additional special functions are available to calculation items including SELECTEDMEASURENAME,
ISSELECTEDMEASURE, and SELECTEDMEASUREFORMATSTRING.

SELECTEDMEASURENAME is used to determine the measure in context by name. ISSELECTEDMEASURE
is used to determine if the measure in context is contained within a list of measures.

SELECTEDMEASUREFORMATSTRING is used to retrieve the format string of the measure in context.

Each calculation item in a calculation group can only operate on a single explicit measure. In ad-
dition, calculation item formulas do not support the use of VAR and RETURN statements. That said,

the YOY and YOY% calculations can be added to the calculation group with the following equations:

YOY

CALCULATE (SELECTEDMEASURE (), FILTER(ALL('Date'), 'Date'[Calendar Year]
= MAX('Date'[Calendar Year]) && 'Date'[Date] >= MIN('Date'[Date]) &&
'Date’[Date] <= MAX('Date'[Date])))

CALCULATE (SELECTEDMEASURE (),FILTER(ALL('Date"),
CONTAINS(VALUES('Date'[Prior Year Date]), 'Date'[Prior Year
Date], 'Date'[Date])))

YOY%

DIVIDE (CALCULATE(SELECTEDMEASURE(),FILTER(ALL('Date’),
'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
'Date'[Date] >= MIN('Date'[Date]) && 'Date’'[Date] <=

Chapter 5 211

MAX('Date’[Date]))), CALCULATE(SELECTEDMEASURE(),FILTER(ALL(' 'Date'),
CONTAINS(VALUES('Date'[Prior Year Date]), 'Date'[Prior Year
Date], 'Date'[Date]))))

Data modelers should consider calculation groups for repetitive measures such as date intelligence
metrics. However, because calculation items can only refer to a single measure within their for-
mulas, calculation groups are limited in their utility. Furthermore, the appearance of calculation
groups as a table and the inability to see their formulas within Power BI Desktop or Excel can be

confusing to report authors and business users unfamiliar with the functionality.

Even with calculation groups handling common expressions (YTD, YOY), given the volume of dis-
tinct business questions that datasets and specifically DAX measures are tasked with addressing,
it can be challenging to avoid the development of hundreds or even thousands of DAX measures.
Over time such a high volume of DAX measures can make a dataset more difficult to support and,
even with a thoughtful display folder structure, can complicate the user experience of report

authors and analysts.

Report-scoped measures in Power Bl reports are one method that organizations can use to avoid
an excessive volume of DAX measures within datasets. If a certain calculation or set of calcula-
tions is only applicable to a particular report or a few reports and isn’t expected to be used in the
future for self-service analysis or other reports then it may be preferable to implement these DAX

measures in the report rather than the Power BI dataset.

In these instances, depending on the complexity of the measure(s) and the experience and com-
fort level of the report author with DAX, either the report author or the dataset developer could

obtain access to the Power BI report file (. pbix) to add the measures.

This completes our exploration of calculation groups. We’ll next move on to exploring measures

that make calculations based upon dimension tables.

Dimension metrics
The majority of DAX measures apply aggregating functions to numeric columns of fact tables.
However, several of the most important metrics of a dataset are those that focus on dimension

tables, such as the count of customers who’ve purchased and those who haven’t.

It can also be necessary to count the distinct values of a dimension column such as the number

of postal codes sold to or the number of distinct marketing promotions over a period of time.

In the dataset for this project, the customer dimension table is exclusive to the Internet Sales

fact table, and the measure should only count customers with internet sales history.

212 Developing DAX Measures and Security Roles

Additionally, slowly changing dimension logic has been implemented so that a single customer de-
fined by the CustomerAlternateKey column could have multiple rows defined by the CustomerKey

column.

The following two DAX measures count the number of unique customers and products with

internet sales history:

Internet Sales Customer Count =
CALCULATE (DISTINCTCOUNT('Customer'[CustomerAlternateKey]), 'Internet
Sales')

Internet Sales Products Sold Count =
CALCULATE(DISTINCTCOUNT('Product'[ProductAlternateKey]), 'Internet Sales')

By invoking the Internet Sales fact table as a filtering parameter to CALCULATE(), any filter

applied to a related dimension table such as Sales Territory alsoimpacts the measure.

This behavior is the same as bidirectional cross-filtering between the Internet Sales and
Customer tables. However, in the event that no filters have been applied in the reporting tool
(for example, Power BI or Excel), the Internet Sales table filter ensures that only customers

with Internet Sales histories are counted.

Let’s next look at an additional aspect of measures focused on dimensions, missing dimensions.

Missing dimensions
Missing dimension measures are commonly used in churn and exception reporting and analyses.

Missing dimension metrics attempt to identify what dimension values are not present within a

given set of fact table rows.

For example, a report may be needed that displays the specific products that haven’t sold or the
past customers who haven’t made a purchase in a given filter context. Additionally, missing di-
mension measures give greater meaning to other dimension measures. For instance, the count
of products sold in a period may not be as useful without knowing how many products were not

sold over this same period.

The following DAX measures count the number of unique customers without Internet Sales
history:
Internet Sales Customers Missing =

CALCULATE (DISTINCTCOUNT('Customer'[CustomerAlternateKey]),
FILTER(VALUES('Customer'[CustomerAlternateKey]),

Chapter 5

213

ISEMPTY(RELATEDTABLE('Internet Sales'))))

Internet Sales Products Missing =

CALCULATE(DISTINCTCOUNT('Product'[ProductAlternateKey]),

FILTER(VALUES('Product'[ProductAlternateKey]),

ISEMPTY (RELATEDTABLE('Internet Sales'))))

The Internet Sales Customers Missing measure referencesthe Internet Sales facttablelike

the customer count measure does, but only within the ISEMPTY () function. The ISEMPTY () func-

tion operates as the filter parameter of the FILTER() function and returns a true or a false value

for each distinct CustomerAlternateKey provided by the VALUES () function. Only the customer

rows without any related rows in the Internet Sales fact table are marked as true and this

filtered set of customer rows is passed to the DISTINCTCOUNT () function. The same methodology

is applied to the Internet Sales Products Missing measure.

The following matrix visual shown in Figure 5.13 has been filtered to five calendar quarters and

broken out by the Sales Territory Group:

SalesTemtonyGroup 2073-07
Eurgpa
Intermet Sales Cudicmer Cownl 1.09¢
Intermet Sales Customers Bissing 17,387
A

Internet Sales Customer Cownt
Intermel Sales Customend BMissing 18 484

Maorth Amenca

Intermet Sales Customer Count 1,663

Internet Sales Customers b S5Img 18821
Pacific

Infermiet Sales Customer Coamit ThE

Internet Sales Customers Bissing 172
Internet Sales Customer Count 3523
Internet Sales Customers Missing 14,961

18484

2490
15,904

1,086
17,368
5,021
13,463

2013-03

1,375
16,9049

201 3-04

1818
16,666

18454

2881
15,603

1,216
17,168
6,015
12,469

Figure 5.13: Internet Sales Customers and Customers Missing

201401

197
18,287

16444

485
17,999

152
18,332
B34
17,650

Tatal

5,427
12,057

18,484

5925
o 556

31,580
14,904
17,935

549

Any other dimension table with a relationship to the Internet Sales facttable, such asPromotion

and Product, could also be used to filter the metrics.

In this dataset, the customer dimension has 18,484 unique customers as defined by the

CustomerAlternateKey. Therefore, the sum of the customer count and customers missing mea-

sures is always equal to 18,484.

214 Developing DAX Measures and Security Roles

As explained in the Filter context section of this chapter, the subtotal values execute in their own
filter context. For example, only 549 customers did not make an online purchase in any of the

four quarters, while over 12,000 customers did not make a purchase in each of the four quarters.

Once core dimension metrics have been established such as in the previous examples, additional
metrics can be developed that leverage their logic. The following measures identify the count
of first-year internet sales customers and the count of accessories products that have not sold
online, respectively:

Internet Sales First Year Customer Count = CALCULATE([Internet Sales

Customer Count], 'Customer'[Customer History Segment] = "First Year
Customer")

Internet Sales Products Missing (Accessories) = CALCULATE([Internet Sales
Products Missing], 'Product'[Product Category] = "Accessories")

Dimension metrics, just like the base measures described earlier, may be used in reporting by
themselves or may be referenced by other measures. This branching of measures underlines the

importance of clearly defining, documenting, and testing the foundational measures of a dataset.

In the next section we look at another common category of measures, those that deal with ranking.

Ranking metrics

Many reports and analyses are built around the ranking of dimensions relative to measures, such
as the top 10 salespeople based on YTD sales. Ranking measures can also help deliver cleaner and
more intuitive report visualizations as they substitute small integer values for large numbers
and decimal places. Ranking measures can be as simple as specifying a column and a measure,

or more complex with unique ranking logic applied in distinct filter contexts.

Ranking measures in DAX are implemented via the RANKX() function, which is an iterator like
SUMX() and FILTER(). As an iterating function, two required input parameters include a table
and the expression to be evaluated for each row of the table. The following two measures rank

products based on the Internet Net Sales measure:

Internet Net Sales Product Rank =
RANKX(ALL('Product'[ProductAlternateKey]),[Internet Net Sales],,DESC,Skip)

Internet Net Sales Product Rank (All Products) =
VAR __ProdRankTable =
ALL('Product'[ProductAlternateKey], 'Product'[Product

Chapter 5 215

Name], 'Product' [Product Category Group], 'Product’'[Product
Category], 'Product’'[Product Subcategory], 'Product’'[Product Name])
RETURN

RANKX(__ProdRankTable, [Internet Net Sales],,DESC,Skip)

As with date intelligence and other measures, ALL () is used to remove the filters applied to a table.
The ALL() function both removes a filter and returns a table that can then be evaluated by other
functions. ALL () can remove filters from an entire table, multiple columns of the same table, or a
single column from a table. Additionally, the ALLEXCEPT () function can be used to remove filters

from the current and any future columns of a table, except for one or a specific set of columns.

In the Internet Net Sales Product Rank measure, the ALL() function returns a table of the
unique product’s alternate key values. Since only a single column is referenced by ALL() in this

measure, other columns from the Product dimension table are allowed into the filter context.

For example, in Figure 5.14, the Product Category column impacts the Internet Net Sales
Product Rank measure so that the HL-U509-R product is ranked first given that it’s the high-

est-selling product in the Accessories category:

Product Product Interrnet Met Internet Net Sales Intermet Net Sales Product
Category Alternate Key Sales Product Rank Rank (All Products)

Bikes BRK-PM38S-42 $99,264.21 o4 54
Bikes BK-M3B5-40 49849472 55 55
Bikes BK-T4400-60 $98,402.85 56 56
Accessories HL-US09-R £78,027.70 1 57
Accessories HL-US09-B $74,353.75 2 58
Accessories HL-US09 17295415 3 59
Bikes BEK-R50E-52 $66,917.58 57 &0

Figure 5.14: Ranking measures

The Internet Net Sales Product Rank (All Products) measure, however, ranks the product
relative to all other products including products in the Bikes category. The group of columns
specified in the ALL () function (the table parameter to RANKX()) defines the set of rows that the

ranking expression is evaluated against.

For ranking and certain other scenarios, it’s necessary to apply alternative logic for subtotals. For
example, the total row of the previous table visual would show a ranking value of 1 without any
modification to the DAX. A common pattern to address subtotal values is to check whether an

individual item of a column is in the filter context via HASONEVALUE ().

216 Developing DAX Measures and Security Roles

The following revised measure uses an IF () conditional function to apply the ranking for indi-

vidual products, but otherwise returns a blank value:

Internet Net Sales Product Rank (Revised) =

IF (HASONEVALUE('Product’ [ProductAlternateKey]),
RANKX(ALL("Product'[ProductAlternateKey]), [Internet Net
Sales],,DESC,Skip),BLANK())

As shown in this example, it’s essential to understand the intended ranking logic and it may be
necessary to store alternative ranking measures to suit the requirements of different reports and

projects.

The RANKX () function has five parameters, but only the first two—the table and the expression
to evaluate—are required. In this example, the third parameter is skipped via the comma and

the measure is set to rank in descending order of the expression.

Additionally, the final parameter (Skip or Dense) determines how tie values are treated. For exam-
ple, if two products are tied for the highest sales, both products are ranked 1, and the next-highest
productis ranked 3. Descending order and the skip tie behavior are both defaults, butit’s a good

practice to explicitly define these settings in the measures.

We next look at a specific type of ranking measure that can dynamically calculate ranks based

upon how the user interacts with the report.

Dynamic ranking measures

The ranking measures in the previous section are specific to individual products. These measures
cannot be used, for example, to rank product subcategories or product categories. Rather than
develop many separate measures targeted at one specific column, logic can be embedded in DAX

measures to dynamically adjust to the columns in the filter context.

In the following measure, a ranking is applied based on the filter context from three levels of a

product hierarchy:

Internet Net Sales Product Rank (Conditional) =
VAR _ ProductFilter = ISFILTERED('Product’'[Product Name])
VAR __ SubCatFilter = ISFILTERED('Product'[Product Subcategory])
VAR __CatFilter = ISFILTERED('Product'[Product Category])
RETURN
SWITCH(TRUE(),
__ProductFilter = TRUE(), RANKX(ALL('Product'[Product Name]),[Internet

Chapter 5 217

Net Sales],,DESC,Skip),

__SubCatFilter = TRUE(), RANKX(ALL('Product'[Product
Subcategory]), [Internet Net Sales],,DESC,Skip),

__CatFilter = TRUE(), RANKX(ALL('Product'[Product Category]),[Internet
Net Sales],,DESC,Skip),

BLANK())

The measure checks for the existence of a filter on the Product Name,Product Subcategory, and
Product Category columns within a SWITCH() function via the ISFILTERED() function. The
first logical condition to evaluate as true results in the corresponding RANKX() expression being

executed. If no condition is found to be true, then the BLANK () value is returned.

The dynamic ranking measure can be used in report visuals that drill up/down through the prod-
uct hierarchy or in separate visuals dedicated to specific columns. Drilling within Power Bl is

covered in later chapters.

In Figure 5.15, distinct table visuals representing the three levels of the product hierarchy utilize

the Internet Net Sales Product Rank (Conditional) measure:

Product Cotegory Onkne Sales Rark Froduct Subcategory Ondine Sales Rank Product Mame Online Sakes Bank
- - -

Bikes 1 Road Bikes 1 Pl ritain-200 Black, 46 1

Alcesiaries 2 Mountain Bikes 2 Mounbsin-200 Black, 42 2

Clathing 3 Tourirg Bikes 3 b riLain - 200 Silver, 38 3

Tires and Tubws 4 B it - 200 Silver, 46 4

Halmets 5 belouritan-200 Black, 33 5

Figure 5.15: Dynamic ranking measure

For the visuals in the preceding table, a shorter and more intuitive name was used instead of the

full measure name (Internet Net Sales Product Rank (Conditional)).

To change the name of a measure or column used in a report visual, double-click the name of the
measure or column in the Values bucket of the Visualizations pane. The revised name only applies

to the specific visual, and hovering over the revised name identifies the source measure or column.

Similar to the Internet Net Sales Product Rank measure from the previous section, the con-
ditional measure allows for other columns to impact the filter context. For example, if both the
Product Category and Product Subcategory columns are included in the same table visual,
the conditional measure ranks the subcategories relative to other subcategories of the same

Product Category.

218 Developing DAX Measures and Security Roles

With this dataset, the Tires and Tubes subcategory, which is ranked fourth overall as per the
above table, would be ranked number one for the Accessories product category. Next, we wrap

up our coverage of different types of measures with a section on report-scoped measures.

Security roles

In addition to DAX’s utility for creating measures, DAX is also required when defining security
roles within a dataset. Per Chapter 1, Planning Power BI Projects, the required data security for this
project is to limit the visibility of the Adventure Works sales team users to their respective sales
territory groups. There are three sales territory groups (North America Sales Group, Europe
Sales Group, and Pacific Sales Group), and, as described in the previous chapter, cross-filter-
ing relationships exist between the Sales Territory dimension table and all three fact tables

(Internet Sales,Reseller Sales,andSales and Margin Plan).

Therefore, security roles with a filter condition on the given sales territory group also filter
the fact tables, and business users mapped to these roles only see data associated with their

Sales Territory group.

Security roles are defined in Power BI Desktop via the Manage roles dialog of the Modeling tab

as shown in Figure 5.16:

Manage roles

Liate

Dynamic Security = . E .
Date Intelligence Matrics . [SalesTerritoryGroup] = "Europe

Eurcpe Sales Group

Date Intel Metrics (CG
Maorth America Sales Group i I Eo b J

: Dates1
Pacific Sales Group

Dates2

{reate Delete Employes

Internet Sales
Measure Support
Product

Prometion

Raseller

Reseller Sales

Sales and Margin Plan

——————

k. | Filter the data that this role can see by enteri

_ Sakes Temitony

that returns a True/False value, For exarmple:

Saleslernitony_ountnes

Figure 5.16: Managing security roles

Chapter 5 219

In this example model, the Sales Territory dimension table has a single-direction one-to-
many relationship with the Internet Sales andReseller Sales facttables. For the Sales and
Margin Planfacttable, the Sales Territory filter first flows to the bridge table and then uses a
bidirectional cross-filtering relationship from the Sales Territory bridgeto Sales and Margin
Plan. Therefore, a user mapped to the Europe Sales Group role only has access to the Internet

Sales, Reseller Sales,and Sales Plan data associated with Europe.

Just like a filter selection on a column of the Sales Territory table in a report, a security filter
also flows across the cross-filtering relationships of the data model. However, unlike report filters,
security filters cannot be overridden by DAX measures. Security filters are applied to all report
queries for the given dataset and any additional filtering logic or DAX expression respects the

security role definition.

Given the automatic filtering of security role conditions, it’s important to implement efficient se-
curity filters and to test the performance of security roles. For example, a complex filter condition
applied against a large dimension table could significantly degrade the performance of reports

and dashboards for users or groups mapped to this security role.

In addition to defining security roles, security roles can also be tested in Power BI Desktop via
the View as roles command on the Modeling tab. In Figure 5.17, a chart that displays sales by the
sales territory country is only displaying the countries associated with the Europe Sales Group

due to the View as roles selection:

@ Mow viewing as: Europe Sales Group

AdWorks Met Sales by SalesTerritoryCountry

View as roles

Linited Kingdom ST.TM

[Mone

France AN

O Other user

Gerrany _ $4.90 » Eurcpe Sales Group

[] Morth America Sales Group

SalesTerritoryCountry

M ¥ | FaM SEM S

HAdWarks Net Sal -
ST Sy Ll Pacific Sales Group

Figure 5.17: View as roles in Power Bl Desktop

220 Developing DAX Measures and Security Roles

Similar to the View as roles feature in Power BI Desktop, a Test as role option is available in the
Power BI service. This feature can be accessed from the ellipsis next to each Row Level Security
(RLS) role in the Security dialog for the dataset.

Additionally, other users can test the security roles by connecting to published Power BI apps.
In this testing scenario, the user would not be a member of the workspace, but a member of an
Azure Active Directory Security Group, which is mapped to a security role of the dataset. The
reason why test users should not be a member of a workspace is covered in detail in Chapter 10,

Managing Workspaces and Content.

For this project, and as a strongly recommended general practice, Azure Active Directory (AAD)
security groups should be created for the users accessing Power BI content. AAD security groups
are the enterprise solution for controlling security across all systems that authenticate with AAD.
While it is possible to use Microsoft 365 groups with security roles, Microsoft 365 groups are not

areplacement for AAD security groups.
Figure 5.18 displays the properties of a North America Sales security group:

'I' North America Sales | Properties

Group
<4

© Overview

General settings

7+ Diagnose and solve problems

Group name * (O

Morth America Sales

Manage
lI! Properties Group description (@
North America Sales Organization
&% Members
&2 Owners Group type
Security

& Roles and administrators

Membership type * |(0
8 Administrative units _
Assigned

Figure 5.18: The Azure Active Directory security group

Chapter 5 221

Users can be added or removed from AAD security groups in the Azure portal or via PowerShell
scripts. PowerShell and other administration topics are covered in Chapter 14, Administering Power

BI for an Organization.

The Assigned membership type can be used but alternatively, a Dynamic User membership type
can be created based on a membership rule query. With Dynamic User AAD security groups, a

user can be automatically added or removed from groups as their role in the organization changes.

The AAD security groups can then be mapped to their respective security roles for the published
dataset in Power BI. In Figure 5.19, the North America Sales AAD security group is recognized as

a potential group to be added as a member of the North America Sales Group RLS role:

hastering Power BI - Test Warkspace > Row-Leval Security

Row-Lavel Security

O P .
Europe ales Sroup (4] lernbiers (0]
" 1 . 5
Narth America Sales Group (0) Peaple or grouas who belong to this role

Pacitic 5ales Group (0] Nerth Americs

Marth America Sales

Figure 5.19: Member assignment to row-level security roles

With the AAD security groups created and mapped to their corresponding RLS roles of the Power
BI dataset, security filters are applied based on the user’s membership to the AAD group. When
RLS roles have been applied to a dataset, the users accessing the reports and dashboards based

on that dataset need to be mapped to at least one of the roles.

For example, if a Power Bl app is distributed to a user who is notincluded in one of the AAD security
groups mapped to one of the RLS roles, and this user account is not mapped individually to one of

these RLS roles, the user receives an error message in the Power Bl service as shown in Figure 5.20:

™

You don't have access boeause row lovel security (RLS) was applicd.
Flease cantact the owner to ask far permission,

Figure 5.20: Error message: User not mapped to an RLS role

222 Developing DAX Measures and Security Roles

In the event that a user is mapped to multiple RLS roles, such as both the North America Sales
Group and the Europe Sales Group, that user sees data for both Sales Territory groups (and
not Pacific Sales Group). For users that require access to the entire dataset, such as administra-
tors or executives, an RLS role can be created on the dataset that doesn’t include any filters on

any of the tables.

Chapter 13, Creating Power BI Apps and Content Distribution, and Chapter 14, Administering Power
BI for an Organization, contain additional details on AAD’s relationship to Power BI and the role

of security groups in securely distributing Power BI content to users.

Dynamic row-level security

The security model discussed thus far relies on users being a member of static groups or security
roles. While appropriate for many datasets, other scenarios require a more user-specific meth-
odology in which the identity of the report user is determined dynamically and this value is used

to apply filter conditions.

Dynamic row level security implementations involve defining a single security role which uses
the USERPRINCIPALNAME () DAX function to retrieve the identity (the UPN) of the connected user.
This identity value is then used to filter a typically hidden table in the model which maps indi-

viduals to the dimensions they’re allowed to access.

For example, a user and a permissions table could be added to the dataset (and hidden) so that
the user table would first filter the permissions table, and the permissions table would then filter

the dimension to be secured, such as a Sales Territory Country.

Figure 5.21 shows an example of a permissions table where Jen Lawrence is associated with Germany,
Australia,and theUnited States, and thus should only have visibility to these countries in any

Power Bl report or dashboard built on top of the dataset:

Data Source Parameters [6] T_ 2 User Principal Narme = a% Sales Territory Country -
a4 Security Table Queries [3] | BretiPowell@adventureworks.com | Canada
'j Sales Country Permissions 2 BrettPowell@adwentureworks.oom United States
— Users 1 Jealawrence@adventuieworks com Garmany

— 5 . . anannrn@amrmurmrks.rnm Autralia
SalesTerritoryCountries

; laplawrance@stventureworks. com Dnited States
Staging Quenss [7]

Figure 5.21: User permissions table

Chapter 5 223

The other two tables in the Security Table Queries query group include a Users query with a
distinctlist of User Principal Names (UPNs) and a SalesTerritoryCountries query that contains
adistinctlist of the values in the SalesTerritoryCountry columnin the Sales Territory query.
The SalesTerritoryCountries tableis necessary because the Sales Territory dimension table

is more granular than the country one.

The SalesTerritoryCountry table receives the filter context from the permissions table and uses
a simple one-to-many cross-filtering relationship with the Sales Territory dimension table
to filter the fact tables.

The dynamic RLS role is defined with the User Principal Name column of the Users table equal
to the USERPRINCIPALNAME () function.

[User Principal Name] = USERPRINCIPALNAME ()

The relationships, and, more specifically, the cross-filtering from the Sales Country Permissions

table, deliver the intended filter context for the given user.

In Figure 5.22, a bidirectional cross-filtering relationship is defined between Sales Country
Permissions and SalesTerritoryCountries so thatonly the countries associated with the user

filter the Sales Territory dimension table:

Users ol SalesTerritoryCountries &
User Principal Name "y Ll SalesTerrtoryCountry N
Expand - Expand
1 1
I\ J
- -
- b il
| T
* *
= . = | i o
Sales Country Permis... & Sales Territory @
s ™ @ SalesTerritoryCountry
Sales Territory Country) *
User Principal Mame g SalesTerritaryKey

£ i SalesTerritoryRegion
Wpanc

Expand

Figure 5.22: Dynamic RLS model relationships

224 Developing DAX Measures and Security Roles

The Apply security filter in both directions property of the bidirectional relationship between

Sales Country Permissions and SalesTerritoryCountries should be enabled. This property

and the relationships-based filtering design are applicable to both import and DirectQuery data-
sets. All three security tables should be hidden from the Report View.

With users or groups assigned to the dynamic security role in the Power BI service, the role can
be tested via the Test as role feature in Power BI. In Figure 5.23, the user Brett is able to test the
dynamic role as himself (Canada, United States), but can also view the dynamic role as though

any other user is logged in, viewing the reports:

Mow viewing as: Dynamic Security

SELECT PERSON that in Tearns 4 Getinsights [Subscribe

| AdWorks Net Sales by SalesTerritoryCountry

I-l—i‘h-‘d c‘tm‘.
Canada - L16M

£k 200 F4084 a0
AdWorks Nel Sales

OR 5ELELCT RALE

= Dynamnic Security [2)

O Europe Salas Group (o)

D Morth Armenca Sales Group gy
[rFacific Sales Group (o

SalesTerritaryCountry

Figure 5.23: Testing dynamic row-level security in Power Bl

It can be useful to create a dedicated security testing report that can be leveraged as security roles
are created and modified. The report may contain multiple pages of visualizations representing

all primary tables and any sensitive metrics or columns from across the dataset.

On this project, a business analyst or a QA tester can be mapped onto the security role and use the

report to confirm that the filter context from the security role has been implemented successfully.

We’ll now move on to discussing how to performance test DAX calculations.

Chapter 5 225

Performance testing

Given that DAX measures can implement complex business logic and are dynamically calculated
as users interact with reports, the performance of these calculations is a critical component of

providing a good user experience.

There are often many available methods of implementing business logic and custom filter contexts
into DAX measures. Although these alternatives deliver the essential functional requirements, they
can have very different performance characteristics, which can ultimately impact user experience
and the scalability of a dataset.

When migrating a self-service dataset to a corporate solution or preparing a large and highly
utilized dataset, it’s always a good practice to test common queries and the DAX measures used

by those queries.

For example, the same common dimension grouping (for example, Product Category and Year)
and the same filter context (Year = 2018) could produce dramatically different performance
results based on the measures used in the query, such as Internet Net Sales versus Count
of Customers. The alternative performance statistics associated with different measures such
as duration and the count of storage engine queries generated could then be used to focus per-

formance tuning efforts.

In some cases, the DAX measures associated with slow queries cannot be significantly improved,

but the data obtained from the performance testing results can drive other changes.

For example, report authors could be advised to only use certain measures in less performance-in-
tensive visuals such as cards, or in reports that have been substantially filtered. In a DirectQuery
model, the data source owner of the dataset may be able to implement changes to the specific

columns accessed via the slow-performing measures.

Let’s first look at how to use the Performance analyzer within Power BI Desktop in order to

collect performance statistics about DAX calculations.

Performance analyzer

The performance of DAX measures in the context of report queries reflecting Power BI visual-
izations is essential to the scalability of the dataset and the user experience. To assist with trou-
bleshooting and testing performance, the Performance Analyzer has been added to Power BI

Desktop thus making it easy to quickly isolate and analyze slow performing queries and metrics.

226 Developing DAX Measures and Security Roles

As shown in Figure 5.24, the Performance analyzer pane can be accessed from the View menu

of the ribbon in Power BI Desktop.

Help External Tools Farmat Data / Drill

= Gridlines - [_B | |

im_ i Aa = u : Y L O L-f-':- =7
QR 7 CTEET | TR U

z Snap to grid 5 7
Page Mabile Filters Bookmarks SelectionfPerfarmance] Sync
R |zt Lock abjects analyzer |slicers

Show pares

% Performance analyzer >3
2 U 1 = () Refresh vis @ 5t
Days over 15K Gross Internat S s

& A

1 & Clear [Export
$ Calntor T
8,094 Mame Duration [ms] it
* ¥ ! w5 1 am s
:f’ff i Recording .
$22.913 a0 0B anio H o (. Refreshed visual =
S ig o | B tard 23

55,842,485 201 DA query 8

Visual display 2B
Orthes 216
[y Copy aquery
Bl Sticer 208
Bl Table 405

Figure 5.24: Performance analyzer in Power Bl Desktop

As shown in Figure 5.23, once the Performance analyzer pane is activated, you can click the
Start recording link to begin capturing performance statistics as you interact with the report. In
Figure 5.23, performance recording was started and then the Refresh visuals link was pressed.
The statistics for this action were recorded in the Refreshed visual section of the Performance
analyzer. After that a value was selected in the slicer visual. The statistics for this action were

recorded in the Changed a slicer section of the Performance analyzer.

The Performance analyzer logs the duration of report user interactions with the report in milli-
seconds (ms). Clicking on an individual performance item within the Performance analyzer log
highlights (selects) the visual within the report. The individual item can be expanded to see more
detailed statistics including the timings for the DAX query, Visual display, and Other. The under-
lying DAX query sent to the data model can be copied to the clipboard using the Copy query link.

The entire Performance analyzer log can be exported to a JSON file by clicking the Export link.
This exported JSON file can then be easily imported into DAX Studio via the Load Perf Data icon
onits Home tab for further evaluation and testing. Once you are finished collecting performance

information, you can stop recording performance statistics by clicking on the Stop link.

Using the Performance analyzer pane, data modelers and report authors can quickly understand
the measures and visuals that are creating performance issues within the report including how
user interactions affect performance. In addition, studying the underlying DAX queries sent to

the data model is an excellent way to learn optimal DAX coding strategies.

Chapter 5 227

While the Performance analyzer is powerful, there are still times when external tools such as DAX

Studio provide additional performance insights.

DAX Studio

DAX Studio is a lightweight, open source client tool for executing DAX queries against Power BI
datasets and other sources that share the Microsoft Analysis Services Tabular database engine,

such as SSAS in Tabular mode and Azure Analysis Services.

DAX Studio exposes the metadata of the source model (for example, tables, measures, hierarchies),
includes reference panes for DAX functions and Tabular Dynamic Management Views (DMVs),
and also provides query formatting, syntax highlighting, and IntelliSense for developing DAX

queries.

Additionally, DAX Studio supports performance tuning as it can execute traces against its data
sources and displays useful performance statistics, as well as the query plans used to execute

the query.

The Server timings and Query plan panes in DAX Studio expose the storage engine and formula
engine query plans, respectively. The formula engine processes data but cannot retrieve data
from the tables of a dataset. Within tabular models, the storage engine is solely responsible for

data retrieval.

In most performance testing scenarios, the storage engine versus formula engine results of a trace
(for example, 50 ms in the storage engine, 10 ms in the formula engine) lead the user to focus on

either the slowest storage engine queries or the most expensive operations in the formula engine.

For these reasons, despite improvements to DAX authoring in SQL Server Management Studio
(SSMS), DAX Studio is very commonly used by Microsoft BI developers in Analysis Services and
Power BI environments. Specifically, BI developers store the DAX queries created within DAX
Studio as .dax or .msdax files and later open these files from DAX Studio for performance testing

or troubleshooting scenarios.

For example, a team may have a DAX query that returns the count of rows for three fact tables of
adatamodel by calendar date and use this query to troubleshoot issues related to a data-loading
process. Additionally, just as M queries saved within . pq files can be added to version control

systems, DAX query files can be added to version control systems, such as Azure DevOps.

DAX Studio can be downloaded from http://daxstudio.org.

http://daxstudio.org

228 Developing DAX Measures and Security Roles

Summary

This chapter developed and described several common classes of DAX measures, including base
measures, date intelligence metrics, dimension metrics, and ranking metrics. These measures

utilized the fact and dimension tables developed in previous chapters.

In addition to detailed measure examples, the primary concepts of the DAX were reviewed and
standard row-level security (RLS) and dynamic RLS (DRLS) models were shared. Finally, perfor-
mance testing and tuning tools, including the Performance analyzer pane and DAX Studio were

presented.

In the following chapter, Power Bl reports are created, which leverage the dataset that has been
incrementally developed since Chapter 2 and 3. Report-authoring features, such as the visualiza-
tion types in Power BI Desktop, access the DAX measures from this chapter and the dimensions

from previous chapters to deliver business insights and intuitive, self-service functionality.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Planning Power Bl Reports

Effective and sustainable Power Bl reports and Power Bl solutions more generally reflect thoughtful
planning and process. To this end, this chapter contains foundational concepts and features to
support the design of Power Bl reports including visualization best practices, report filter scopes,

and Live connections to Power BI datasets.
In this chapter, we review the following topics:

e Report planning process

e Visualization best practices

e Choosing the right visual

e Visual interactions

e Drillthrough report pages

e Reportfilter scopes

e Bookmarks

e Live connections to Power Bl datasets

e Report design summary

Before jumping into creating visuals, it is important to properly plan reports in order to ensure a
good user experience and maximize the value to the business. Thus, we’ll first take a look at the

report planning process.

Report planning process

Power BI reports can take on a variety of forms and use cases, ranging from executive-level

dashboard layouts to highly detailed and focused reports.

230 Planning Power BI Reports

Prior to designing and developing Power Bl reports, some level of planning and documentation
is recommended to ensure that the reports are well aligned with the needs of the users and the

organization.
Effective report planning can be encapsulated in the following six steps:

1. Identify the audience
Define the business questions to answer

Confirm that the dataset supports the business questions

2

3

4. Determine interactivity

5. Define access and distribution
6

Sketch the report layout

Let’s look at each of these steps in turn, starting with identifying report users.

Identify the audience

When developing reports, the report author should have a clear understanding of the different

consumers of the report and their priorities and use cases.

For example, analysts often place a high value on the ability of the report to help them tell a story
about the data. Storytelling refers to the ability to focus on a key KPI or data element and then
explain how and why that KPI is lower or higher than expected, an outlier compared to previous
years, or represents a significant trend. Therefore, analysts often require significant flexibility to
filter and interact with more detailed reports. Thus, reports used by analysts generally include

more slicer visuals and may include table or matrix visuals as well.

Conversely, senior managers generally prefer less self-service interactivity and value simple,
intuitive visuals, such as KPIs. Senior managers are less focused on storytelling and more focused
on the ability to manage their business area or organization from a “single pane of glass.” The
term “single pane of glass” is the theoretical ability to distill and expose all of the important

information regarding complex systems to a single report or tool.

Separating reports by user role or group serves to keep reports focused for users and more
manageable for BI teams. In many scenarios, an organizational hierarchy provides a natural

demarcation such that reports can be designed for specific roles or levels within an organization.

In the project example for the Adventure Works sales team, reports could align with the Sales

Territory hierarchy (SalesTerritoryGroup | SalesTerritoryCountry | SalesTerritoryRegion).

Chapter 6 231

The vice president of group sales generally values high-value corporate-wide metrics and
intuitive dashboard reports. A sales analyst in the United States, however, likely needs to break

out individual regions and even analyze specific ZIP codes or individual products.

We’ll now move on to defining the business questions that the report should answer.

Define the business questions to answer

In addition to knowing one’s audience, it is also critical to understand the exact questions the

report should be able to answer for the business.

Confirm with the business user(s) or project sponsors that the report has the correct scope and
the appropriate focus. A report architecture diagram described in the subsequent section, Report
architecture diagram, can support this communication. For example, the user could be advised
that a particular business question or metricis included in a different report but featured on the

same dashboard and is easily accessible within the same Power BI app.

The most important business question (for example, what were our sales?) is addressed in the
top-left corner of the report, likely with a KPI or similar visual. Similar to separating reports by

user role or group, a report should not attempt to resolve widely disparate business questions.

Assingle report certainly can contain visuals reflecting distinct fact tables and business processes
such as customer service interactions, product inventories, and shipping or delivery orders.
However, for most reports it’s best that the visuals within the report align to the same or very
similar business processes such as Internet Sales and Reseller Sales. The need to summarize and
integrate visuals from multiple business processes is often best addressed by Power Bl dashboards,

not reports, as described in Chapter 9, Designing Dashboards.

Once the business questions are verified, the next step is to confirm that the dataset supports

the desired questions.

Confirm that the dataset supports the business questions

The report author should ensure that the dataset includes necessary measures such as year-
over-year (YOY) sales and the dimension columns (for example, Product Category) necessary

to visualize the business questions.

In order to both develop an accurate report and to support questions from consumers of the
report, report authors should have a solid understanding of the Power Bl dataset. This knowledge
includes the logic and business definitions of DAX measures, the relationships defined between

fact and dimension tables, and any data transformation logic applied to the source data.

232 Planning Power BI Reports

In many projects, report authors regularly collaborate with business stakeholders or project
sponsors in gathering requirements and demonstrating report iterations. Therefore, the authors
need to explain the values and behaviors of Power Bl reports as well as any current limitations in

the dataset, such as the years of history supported and any DAX logic or measures not yet created.

If a gap exists between the dataset and the measures required for the report, the team can
determine whether the dataset should be extended or whether the measure should be created
local to the report. For example, with Power BI Live connections, only measures can be created
within Power BI Live connection reports. Any new columns, tables, or modifications to existing

tables or columns must be implemented within the source dataset.

The set of base measures described in Chapter 5, Developing DAX Measures and Security Roles, as
well as the dynamic date dimension columns described in Chapter 2, Connecting to Sources and
Transforming Data with M (for example, Calendar Month Status = 'Prior Calendar Month'),

should support the most common needs of reports.

If a measure required for a report is considered to be common to other future reports, and if
the measure doesn’t violate the single corporate definition of an existing measure, the measure
should generally be added to the dataset. However, if the report requirement is considered rare
or if a measure definition has been approved only for the specific report, then the measure(s) can

be created local to the report.

For version control and manageability reasons, report authors should not have to implement
complex filtering logic or develop many local report measures. Report authors should communicate
with dataset designers and the overall team if a significant gap exists or is developing between

reports and the dataset.

Once the dataset is confirmed to support the desired business questions, the next step is to determine

the report type and mobile features based on the desired report interactions and access methods.

Determine interactivity

Although Power Bl reports developed in Power BI Desktop are increasingly the defaultreport type
for new reports given their modern user experience and relative ease of development, Power BI
also fully supports paginated reports, formerly SQL Server Reporting Services (SSRS) reports,

as well as Excel-based reports.

In many instances, particularly when reports are being migrated from legacy systems and/or
business processes, the features of these alternative report types more closely align with the

requirements and priorities of the report users.

Chapter 6 233

Choosing the incorrect report type can lead to delayed delivery timelines and frustrated
stakeholders who may assume that features from current or past BI tools are supported by Power
Bl reports.

For example, if printing or distributing multiple pages of report data is a top priority, then a
paginated report developed in Power BI Report Builder would be the appropriate report type.
Similarly, if the intent is to support an existing Excel report that contains significant cell-level
formatting and logic such as a financial statement, it would make sense to continue to leverage
Excel but switch the data source to a Power BI dataset.

In many cases a combination of the features of multiple report types is needed or valued such
as both visual interaction and exporting out multiple pages of details. In these scenarios, report
authors and BI teams should consider options of providing Power BI apps containing multiple
report types as well as integrated reports via the paginated report visual discussed in Chapter 7,

Creating and Formatting Visuals.

Conversely, Power Bl reports created in Power BI Desktop are visually interactive by default and
report authors have many options to empower report users to analyze and explore the data in
reports to derive their own insights. Thus, if a high degree of interactivity and exploration are the

priority, then reports developed in Power BI Desktop are likely the correct choice.

Report authors and BI teams should be transparent with users and stakeholders about the
differences and trade-offs between the different report types. In scenarios in which one of the
three report types isn’t the clear choice, the BI/IT team and the primary stakeholders can reach a
consensus on the type of report to be developed. Alternatively, it can be determined that multiple
report types will be required, such as an interactive Power Bl report as well as a paginated report,

and possibly an Excel report too.

After the interactivity of the report is determined, the next step is to define the access

and distribution.

Define access and distribution

Power Bl report content can be accessed from a variety of form factors ranging from smartphones
and tablets up to large screens in conference rooms and office hallways. Additionally, report
content can be integrated within PowerPoint slide decks and delivered to end users via email
subscriptions and data-based alerts thus limiting or avoiding the need for users to navigate to

relevant content in the Power BI service.

Report authors should be familiar with the rich mobile layout features available in Power BI
Desktop as well as options for email subscriptions such delivering paginated report data as

attached CSV or Excel files via subscriptions.

234 Planning Power BI Reports

Once the access and distribution methods are confirmed, the final step is to create a sketch of

the report layout.

Sketch the report layout
It is often beneficial to create a sketch of the basic layout of a report. Such a sketch should be
completed for at least the primary page of the report and should document the position and

relative size of visuals on the report canvas (page).

Figure 6.1 shows a sample sketch created within a PowerPoint presentation file via the standard

shape objects:

Sales Wzrin %
1O YT
Sales by Product
Gl Margin % Salez warsus Plarn by Manth cimﬁ?ir}.;.n
Vo) [¥%) e
Calendar Yoar Mo Shicers
Margin % by
Sales and Margin ¥ Comaarizon by Countey ﬂF'r.:dl,:t
[ategary
Breakdown
Diszritzutiar of Unit Prices

Figure 6.1: Sample report layout sketch

As per the sample layout, the critical sales and margin measures are located in the top-left corner
of the report page. Slicer (filter) visuals are planned for below these KPI or card visuals and other
visuals add further context. Greater space is allocated to the two visuals in the middle of the page

given their importance to the report.

The report layout sketch can be used exclusively for planning purposes or can be set as the
background for a report page. For example, a PowerPoint slide of the same shapes, background

shading, and borders can be saved to a network directory as a PNG file.

In Power BI Desktop, the PNG file can be imported via the Image formatting option under Canvas
background on the Format pane or via the insert an image icon on the Home tab in Report
view. Page background images with proper alignment, spacing, and colors can expedite quality

report development.

Chapter 6 235

Be willing to modify a report layout or even start afresh with a new layout based on user feedback.
Unlike dataset development, which can require significant time and expertise (for example, DAX,
M, and SQL), reports can be developed in a rapid, agile delivery methodology. Report authors can
engage directly with users on these iterations and, although recommended practices and corporate

standards can be communicated, ultimately, the functional value to the user is the top priority.

It’s important to distinguish flexibility in report layout and visualization from the report’s target
users and business questions. Second and third iterations of reports should not, for example,

call for fundamentally different measures or new report pages to support different user groups.

Report authors and BI teams can work with users and project sponsors to maintain the scope of
IT-supported reports. The interactivity built into Power Bl reports and the self-service capabilities
provided by Power BI Pro licenses can broaden the reach of projects without requiring new or

additional reports.

This completes the report planning process. Next, we’ll look at a tool that can aid in the report

planning process — a report architecture diagram.

Report architecture diagram

Similar to the data warehouse bus matrix described in Chapter 1, Planning Power BI Projects, a
report architecture diagram can be helpful in planning and communicating Power BI projects
with both business and IT stakeholders. This diagram serves to maintain the scope and focus of

individual reports.

For example, certain business questions or entities (such as Customer, Product) can be assigned
to dedicated reports and the individual pages of these reports can visualize these questions or

entities at varying levels of detail.

Most commonly, a single report page, such as that represented in Figure 6.1, addresses the top
priority of a report at a summary level. This page includes cards and/or KPI visuals at the top left

of the page and charts rather than tables or matrices that visualize these metrics at a high level.

Additional report pages, usually a maximum of 3-4, are designed to provide a greater level of
detail supporting the summary page. With this report structure, a user can naturally start their
analysis from an intuitive and visually appealing summary page and then, if necessary, navigate

to pages exposing greater levels of detail.

In addition to supporting report pages with greater detail, drillthrough report pages can be
designed to display the details for an individual item, such as a specific product or a combination

of items, for example, the year 2018 and a specific product.

236 Planning Power BI Reports

Drillthrough report pages are simply report pages that include drillthrough filters and are detailed
in the Drillthrough report pages section of this chapter, which provides details and examples of

this feature.

In the absence of a report architecture or diagram, reports can quickly become less user-friendly
as many report pages are added that address unrelated business questions. Additionally, the
lack of scope or focus for a report can lead to duplicated efforts with the same business question

being visualized in multiple reports.

Guidance from stakeholders on the visuals to be included in or featured on a dashboard can
strongly inform the report design process. For example, in the case where several dashboard tiles
are closely related (such as profitability %), then it’s likely that a separate report with 3-4 pages
should be designed to support further analysis of each tile.

Conversely, if only one dashboard tile relates to a particular business question or entity, such as

resellers, then the supporting report may only need 1-2 pages and provide relatively less detail.

In the basic example shown in Figure 6.2, four reports and one dashboard are planned for the

German sales team:

Reporks

GErmany Earmar Germany GOrFTLIny
Cinlires Cushome s hlargir- Anziysis Resellar &na Sales ws. Men

Figure 6.2: Sample report architecture diagram

In the example shown in Figure 6.2, report visuals contained in four Germany sales reports are
pinned as tiles in the Germany Sales and Margin dashboard. By default, this would link the
reports to the dashboard such that a user could access the details of any of the four reports by

clicking on a related dashboard tile.

Visuals from a single report can be pinned as tiles to multiple dashboards. Additionally, a
dashboard tile can be linked to a separate dashboard or to a separate report in the Power BI
service. Chapter 9, Designing Dashboards, includes additional details and examples of Power BI

report and dashboard architectures.

Chapter 6 237

The four reports and the dashboard from the preceding example could be included in a dedicated
app workspace for the German sales team or within a broader workspace that supports multiple

sales teams and related content (for example, marketing) in the organization.

Information on workspaces and content distribution via apps is provided in Chapter 10, Managing
Application Workspaces and Content, and Chapter 14, Creating Power BI Apps and Content Distribution.
The following section describes Live connection reports to Power BI datasets published to the

Power BI service.

It’s important to understand and communicate the differences between Power BI reports and
dashboards. Although Power BI report pages can appear as “dashboards” to users, dashboards
created in the Power BI service serve an important and distinct role of providing a single pane of

glass to highlight key performance indicators and the mostimportant visuals for an organization.

Simply stated, dashboards are a feature of the Power BI service that allow visuals from multiple
reports to be pinned to a single canvas. Dashboards are covered in detail in Chapter 9, Designing
Dashboards.

This completes the report planning section and we’ll now turn our attention to additional

considerations when designing reports, starting with visualization best practices.

Visualization best practices

Effective reports are much more than simply answering documented business questions with the
available measures and columns of the dataset. Reports also need to be visually appealing and
provide alogical structure that aids in navigation and readability. Business users of all backgrounds

appreciate a report that is clear, concise, and aesthetically pleasing.

Now that the report planning phase described is complete, the following list of 15 visualization

best practices can guide the report development process:

1. Avoid clutter and minimize non-essential details: Each visual should align with the
purpose of the report—to gain insight into a business question. Visualizations should

not represent wild guesses or functionality that the author finds interesting.

Eliminate report elements that aren’t essential for improving understanding. Gridlines,
legends, axis labels, text boxes, and images can often be limited or removed. The report

should be understandable at a glance, without supporting documentation or explanation.

A simple but helpful test is to view a Power Bl report on a laptop screen from a distance

of 12 to 15 feet, such as from the opposite end of a conference room.

238

Planning Power BI Reports

At this distance, it is impossible to read any small text, and only the shapes, curves, and
colors are useful for deriving meaning. If the report is still meaningful, this suggests the

report is effectively designed visually.

Provide simple, clear titles on report pages and visuals: Text boxes can be used to name

or describe the report, report page, and provide the last-refreshed date.

For chart visuals, use the length of lines and the two-dimensional position of points
to aid visual comprehension: On line charts, users can easily perceive trends and the
divergence of lines relative to each other. On column or bar charts, users can easily
distinguish relative differences in the length of bars. On scatter charts, users can quickly

interpret the two-dimensional position of data points relative to each other.

The purpose of these two attributes (line length and 2-D position) as the primary
communication mechanism is to guide the user to an accurate assessment with minimal
effort. Other visual attributes, such as color, shape, and size, can also be beneficial,
particularly when these properties are driven by the data, such as with conditional

formatting (data-driven colors/formatting) and KPIs.

However, line length and 2-D position (X, Y coordinates) have a natural advantage in visual
perception. For example, the differences between three items on a clustered column chart

are much more obvious than the same three items presented on a pie chart.

Position and group visuals to provide logical navigation across the canvas: The most
important visuals should be positioned in the top-left corner of each report page. If
multiple visuals are closely related, consider grouping them within a shape object.

Use soft, natural colors for most visuals: Avoid overwhelming users with highly saturated
bright or dark colors. Only use more pronounced colors when it’s necessary to make an

item stand out, such as conditional formatting.

Note that some organizations may have standards that require colorblind-friendly color
schemes or other color and formatting requirements for visually impaired viewers such

as requiring both a symbol and a color.

Only apply distinct colors to items in chart visuals when the colors convey meaning:
For example, three colors might be useful for the data points of three separate product

categories.

Chapter 6 239

10.

Align visuals to common horizontal and vertical pixel positions: For example, if a visual
in the top-left corner of a page has horizontal and vertical coordinate position values of
20 and 40, respectively, then other visuals on the left side of the canvas should also have
a horizontal position of 20. Likewise, the top visual(s) on the right side of the canvas

should align with the left visuals at a vertical position of 40.

Distribute visuals vertically and horizontally to create an equal amount of space
between visuals: The amount of spacing should be adequate to clearly distinguish the
visuals as separate entities. With one or multiple visuals selected in Power BI Desktop, a

Format tab appears on the ribbon as per Figure 6.3:
Modeling View Help External Tools Format

= g
5B AEE
Bring Send Selection Align G

forward v~ backward v v

Arrange
Figure 6.3: Alignment, distribution, and Z-order format options

The format options (Bring forward and Send backward (Z-order)), as well as the Align
option, are consistent with common MS Office applications, such as Excel and PowerPoint.
Between these formatting options and the four properties available under the General
sub-pane of the Visualizations pane for all visuals (Horizontal position, Vertical position,
Width, and Height), report authors can ensure that visuals are properly aligned and spaced.

The Gridlines and Snap to grid options under the View tab also support alignment.

The Selection setting displays the Selection pane, allowing report authors to set layer
order, show or hide visuals, and set the tab order. When multiple visuals are selected
simultaneously (by selecting visuals while holding down the Ctrl key) the Group feature
becomes active, allowing visuals to be grouped together and thereafter moved around

the canvas as a single unit.

Choose a page background color that naturally contrasts with visuals, such as the

default white background.

For column and bar charts, sort visuals by their measure to provide an implicit ranking
by the given measure: This sorting is only applicable to nominal categories, such as
product categories, when the individual items in the category don’t need to follow a

custom sort order.

240 Planning Power BI Reports

11. Fill the available report canvas space; avoid large blank spaces on report pages.

12. Provide supporting context via tooltips and additional lines in charts, such as target
values and the min, max, and average: Several measures related to a given visual can
be displayed via tooltips without incurring performance penalties. The Analytics pane

provides several support lines, including a trend line and a predictive forecast line.

13. All report pages should follow a common design theme and color palette: Preferably,
all reports in a project and even for an organization should follow the same basic design
guidelines. A Themes area is available on the View tab when in Report view within Power
BI Desktop and exposes options for importing a report theme or customizing the current

theme, as shown in Figure 6.4:

File Home Insert Madeling View Help External
Aa Aa Ma Aa Aa
Ilusied [lalmslid E Intuska)| Rukuutal] [Buduutsllf|*

This report
. Aa
a2 lnlualil

Power B

Aa A Aa Aa

hilulil Inlualal| |Inksalsl

Aa Aa Aa Aa

Ruluntal] Wukoulol] Baloslall| |Faksatsl

Aa Aa Aa Aa

Ruluaal] [Dalualul] (InBushul] (fudsal:}

Aa Aa Aa Aa

COPRTH | Calualal] alualall] |nln la

Aa Aa

lals 1l n luluainl

B Browse for themes
Therme gallery
T
P

Customize current theme

-
A Haow to create a theme

Figure 6.4: Themes

Chapter 6 241

14.

15.

Custom report themes allow organizations to apply a custom set of formatting properties
to Power BI reports. For example, an organization can embed its corporate colors into a
report theme (a JSON file) to apply this set of colors to all Power Bl reports. Additionally,
more elaborate formatting properties can be specified in report themes to standardize

report development, such as the font family and font sizes.

Existing report themes are available for download from the Power BI Report Theme Gallery
(http://bit.1ly/2pyUKpl). Additionally, there are other community tools for customizing
themes, as covered in the article Power BI Theme Generators (https://community.powerbi.
com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899).

The quantitative scale for column and bar charts should start at zero: Custom
quantitative scales, such as from 12% to 15%, can be applied to line, scatter, and bubble

charts to emphasize specific ranges of values. However, this is generally not a good idea.

Consider two items, Product A and Product B, of a clustered column chart with margin
percentage values of 32% and 34%, respectively. With a base of zero, the two items would
correctly appear similar for the given measure. However, if the base value of the visual
starts at 31% and the maximum value of the scale is set to 35%, Product B would visually
appear as a dramatically higher value. This distortion is the reason that quantitative scales

for column and bar charts should start at zero.

Lines should only be used to connectinterval scale data points, such as time series and
ordered bins of values: A line should not, for example, represent the sales for different
product categories. A line should, however, represent the sales of products by unit price
bins (for example, $0 to $10, or $10 to $20).

In addition to visualization best practices, there are also certain practices to avoid. Thus, next,

we will explore visualization anti-patterns.

Choosing the right visual

With the report planning phase completed, an essential task of the report author is to choose the

visual(s) best suited to gain insight into the particular questions within the scope of the report.

The choice of the visualization type, such as a column chart or a matrix visual, should closely align

with the most important use case, the message to deliver, and the data relationship to represent.

Visualization types have distinct advantages in terms of visual perception and types of data

relationships such as part-to-whole and comparisons. Additionally, although several formatting

options are common to all visuals, certain options such as the line style (solid, dashed, or dotted)

of a line chart are exclusive to specific visuals.

http://bit.ly/2pyUKpl
https://community.powerbi.com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899
https://community.powerbi.com/t5/Community-Blog/Power-BI-Theme-Generators/ba-p/2265899

242 Planning Power BI Reports

A standard visual selection process is as follows:

1. Planand document the business question(s) and related measures and dimension columns
2. Determine whether a table, a chart, or both are needed to best visualize this data

3. Ifachartisneeded, choose the chart visual that’s best aligned with the relationship (for

example, trend, comparison, or correlation)

Following these three steps helps to ensure that effective reports are developed with efficient
resources. Many other visualization and analysis features can be used to further enhance reports,

but these should only supplement report planning and design.

Power BI currently supports 40 standard visualizations, and hundreds of custom visualizations
are available in AppSource, Microsoft’s online marketplace. The standard visuals are aligned
with the most common analytical representations, including trend, rankings, part-to-whole,
exceptions, geospatial, and distribution. Several of these visuals can be further enhanced via the

Analytics pane.

Finally, advanced visualizations are included that support machine learning elements, Power
Platform integration, paginated reports, Q&A capabilities, and integration with R and Python.

Refer to the following chapter for additional details on basic, custom, and advanced visuals.

Let’s first take a look at when to use tables and matrices versus charts.

Tables and matrices versus charts

An initial step in the visualization selection process is to determine whether a table, a chart, or
a combination of both is most appropriate. Power BI’s table visual provides simple row groups
of dimension values and measures, and the matrix visual supports both row and column field
inputs similar to pivot tables in Excel. Both the table and matrix visuals have been significantly

enhanced to provide granular controls over layouts, subtotals, field formatting, and more.

Both the table and the matrix visuals are superior to charts in enabling users to look up specific
data points. However, despite conditional formatting options available to table and matrix
visuals, charts are superior to table and matrix visuals in displaying trends, comparisons, and

large volumes of distinct data points.

Chapter 6 243

The following matrix visual shown in Figure 6.5 breaks down the AdWorks Net Sales measure

by two product dimension columns and two promotion dimension columns:

Promation Type New Product Volume Discount Total
Product Category Group 15% 20% Total 2% 5% 10% 15% Total
= Bikes $458,091 $612,325 $1,070,416 $4,412,702 $763,929 $69,993 $5,246,624 $6,317,040
Bikes $458091 $612,325 $1,070,416 $4412702 $763,929 $69,993 $5,246,624 $6,317,040
El Non-Bikes $483,750 $273,714 $54,155 $1,737 $813,357 $813,357
Accessories $83,618 $42,347 $3,226 $120,192 $129,192
Clothing $238,480 $194,968 $50,930 $1,737 $486,114 5$486,114
Components $161,652 $36,399 $198,050 $198,050
Total $458,091 $612,325 $1,070,416 $4,896,452 $1,037,643 $124,149 $1,737 $6,059,981 $7,130,396

Figure 6.5: Matrix visual

The product hierarchy created in Chapter 4, Designing Import, DirectQuery, and Composite Data
Models, is used as the rows’ input and a promotion table hierarchy is used as the columns’ input.
Via the expand all down feature for both the rows and the columns, the matrix provides easy

access to specific data points, including subtotals by both product categories and promotion types.

Although it’s possible to visualize the same data with a chart, a matrix visual (or a table visual)

makes it easy to locate individual values and to display the exact values with no rounding.

Additionally, if a table or matrix is needed to reference individual values, but less precision is
required, the field formatting card in the formatting pane allows the report author to define the
display units (for example, thousands (K) or millions (M)) and the number of decimal places for
the measure. The same two formatting properties (display units and value decimal places) are

also accessible for chart visuals via the data labels formatting card in the formatting pane.

Matrix features, such as showing values (for example, multiple metrics) as individual rows, as
a percentage of column or row totals, and full control over subtotals positions Power BI matrix

visuals as an alternative to many Excel pivot tables and matrix displays in paginated reports.

Additionally, table and matrix visuals are interactive such that user selections on arow, a specific

value, or a row or column header filter other visuals or can even drillthrough to other report pages.

244 Planning Power BI Reports

The following line chart visual, Figure 6.6, breaks down the AdWorks Net Sales measure according
to the calendar year week:

BN kel Mot hilei by Pooi Shie'db sed Lalbialai 1 O

B g M 2
-,
-
-,

Figure 6.6: Line chart visual

With 21 different data points displayed, the periodic spikes of the line help to identify the specific
weeks with relatively higher net sales. The drawback or trade-off of this visual relative to the
prior matrix visual is the lack of subtotals and the loss of precision given the rounding to one

decimal place.

Line charts are uniquely advantaged to call out patterns, trends, and exceptions in measures
across time. More generally, chart visualizations (for example, bar, column, and scatter) are
recommended over table and matrix visuals when the shape or position of the data, such as

trends, comparisons, correlations, and exceptions, is more valuable than the individual values.

With a date hierarchy or the date columns in the chart axis input field, the concatenate labels
property in the x axis formatting card should be turned off to provide the grouped layout as per
the precedingline chart example. Additionally, also included in the line chart example visual, the

vertical gridlines can be turned on to separate the parent values (for example, 2013-Feb).

Let’s now turn our attention to chart selection.

Chart selection

Within Power BI Desktop, there are many different types of charts, including line, column, bar,
scatter, bubble, pie, doughnut, waterfall, and funnel. Different charts are better at displaying
different types of information to report viewers.

Chart visuals can broadly be categorized into the following four types of data relationships:

1. Comparison: How items compare against each other or over time

2. Relationship: How items relate (or correlate) to one another across multiple variables

Chapter 6

245

3. Distribution: The most common values for a variable and the concentration of values

within a range

4. Composition: The portion of a total that an item represents relative to other items, possibly

over time

The following table, Table 6.1, associates specific visuals with these categories and briefly describes

their top use cases:

Chart Category Notes
Line Comparison e Display the fluctuation and trend of a value over time.
e Compare the trends of multiple items over time.
Column and | Comparison e Rankitems based on a value and display precise data
bar points.
e Useabar chartif there are many items or if item data
labels are long.
Combination | Comparison e Compare items against two values with different scales.
e For example, display sales by country as columns
across time, but also show the margin % as a line on the
secondary axis.
Scatter and | Relationship e Display the relative position of items (data points) on two
bubble values, such as products by sales and sales growth %.
e Optionally drive the size of data points by a third variable.
Histograms | Distribution e Display a frequency distribution such as the count of
items sold by different list prices or list price bins on the
x axis.
e In Power BI, use a column chart, line chart, or custom
visual.
Pie and Composition e Commonly used for part-to-whole relationships.
doughnut e Column, bar, and stacked columns and bar charts are
recommended alternatives.
Waterfall Composition e Use waterfall charts to break out the changes in a value
and funnel over time by category.

Use funnel charts to display variances in the stages of a

process.

Table 6.1: Chart visuals by category

246 Planning Power BI Reports

As a table of chart types, map visuals, and the three standard single number visuals provided
in Power BI Desktop—Cards, Gauge, and KPI—are excluded as these visuals are generally used
for different purposes. For example, single number visuals are commonly used in dashboards,
mobile-optimized reports, and in the top-left section of report pages to deliver easy access to

important individual metrics.

The standard single number visuals (Card, Gauge, and KPI) can also be used to create data alerts
when these visuals are pinned to Power Bl dashboards. Alerts can be created and managed in both
the Power Bl service and on the Power Bl mobile application. With an alert set on a dashboard tile
representing one of these visuals, whenever the number of the visual crosses a defined condition

(for example, above 100), a notification is raised and optionally an email can be sent as well.

Details on standard map visuals are included in the Map visuals section of Chapter 7, Creating
and Formatting Visualizations, and the ArcGIS Map visual for Power Bl is reviewed in Chapter 8,

Applying Advanced Report Features.

There are several publicly available resources on visualization practices and visual selection.
The Chart Suggestions diagram from Extreme Presentation (http://bit.ly/1x1Xh1x) provides

additional details on the visuals and visual categories described in this section.

Additionally, the SQL BI team provides a Power BI Visuals reference (http://bit.1ly/2ndtcZj) that
categorizes visuals at a more granular level than the table in this section. Finally, Zebra BI provides

an interactive Power BI report for chart selection (https://zebrabi.com/chart-selector/).

The next subject related to report design deals with how visuals interact with one another.

Visualization anti-patterns

In addition to report planning and generally aligning reports with visualization best practices,
it can be helpful to acknowledge and avoid several common visualization anti-patterns. Anti-
patterns are common practices that negatively impact the quality, usability, performance, and

other aspects of a report.

For many reports, particularly when report development time and Power Bl experience are limited,
simply avoiding these anti-patterns coupled with adequate planning and appropriate visual type

choices is sufficient to deliver quality, sustainable content.

http://bit.ly/1xlXh1x
http://bit.ly/2ndtcZj
https://zebrabi.com/chart-selector/

Chapter 6 247

The most common visualization anti-patterns include the following:

1.

A cluttered interface of many visuals and report elements that are complex or difficult to
interpret: This is often the result of too many visuals per report page or too high a precision
being displayed. Report visuals should be separated across distinct reports, report pages,
and bookmarks to both improve usability as well as limit the volume of concurrent queries.
Alack of structure, order, and consistency: Each report page should naturally guide the
user from the essential top-left visuals to the supporting visuals. A failure to align visuals
or to provide proper spacing and borders can make reports appear disorganized. Mixing
widely disparate grains of detail on the same report page can be disorienting to users.

High-density and/or high-detail visualizations, such as large table visuals or thousands
of points on a scatter chart or map: The need for a scrollbar is a strong indication that a
visual contains too many values. A table visual should not be used as a raw data extract
of many columns and rows. High-density visuals, such as line and scatter charts with

thousands of data points, can cause poor performance.

Figure 6.7, showing a table visual with seven dimension columns and three measures, is

an example of a data extract anti-pattern:

fabmTriimrpliralilip LpneniglE LT PrdFame LIAMIEE Proesobivs e Prondiil Hane I TR T P Wy, I
P a0l udad Wargm Frogfha]
Huge K
b -1 R Faby Slartrar W Moenons lanp-lesg R =LLED =Tl
Laga ferea B4
Saridi gy 1 R kg PAapegr b (o “oalsy I Ly g S41d El G
3] or

Feariralin [-1 K 21211 S biFs

Data exceeds the limit

dainrails [=1Riee ETRE] &1 R
F— -] R Wrapr ok b b Lanpe, Sape diria e g sy Do, (AR] i1 T
ferniliaia [-1 B il s [Ak 61 6
drrtrafin [l Kl YalE 1l 57. 45
PR 0] WS oty S b [Bk Bulila L] LER al B

3o
Figure 6.7: Data extract anti-pattern

The small scrollbar on the right indicates that many rows are not displayed. Additionally,
the Export data option available from the ellipses (...) menu of the visual prompts the

warning message (Data exceeds the limit), suggesting the visual contains too much data.

248 Planning Power BI Reports

4. The excessive use of fancy or complex visuals and images: Reports can be aesthetic and
engaging, but the priority should be to inform users, not to impress them. For example, a

column chart or a stacked column chart is usually more effective than a treemap.

5. Suboptimal visual choices such as pie charts, donut charts, and gauges: Column or
bar charts are easier to interpret than the circular shapes of pie and donut charts. KPI
visuals provide more context than gauge visuals, including the trend of the indicator value.
Additionally, report authors sometimes utilize table and matrix visuals when a column

or line chart would better highlight the differences between items or the overall trend.

6. The misuse of colors, such as utilizing more than five colors and overwhelming users
with highly saturated colors: Colors should be used selectively and only when the few

alternative colors convey meaning.

7. Ahigh volume of report pages such as 10 or more: Reports with many pages are generally
less focused and more difficult to browse by end users. Report authors should consider
dividing report pages into more focused or targeted reports and using bookmarks and

buttons to further reduce the volume of report pages.

Justasimportant as following visualization best practices and avoiding visualization anti-patterns

is choosing the right visualization.

Visual interactions

Power BI reports are highly interactive by nature, allowing users to click on data points within
visuals and cross-filter or highlight other filters on the page. When planning and designing reports,
it is important to keep this default behavior in mind and consider whether or not the default

visual interaction behavior should be changed.

By default, the filter selections applied to a single visual, such as clicking a bar on a column chart
or arow on a table, impact all other data visualizations on the given report page with relationships

to the selection.

In Figure 6.8, the bar representing the United States sales territory country has been selected and
this causes the product category chart to highlight the portion of each product category related
to the United States sales territory country ($45M):

Chapter 6 249

Intermet Met Sales by Sales Territory Countryg Resedler Met Sales by Product Categong
e

SEPd

chedKimd: LA

tHil

il L L Lo |

S Comzrneris. Oothmg ACIESTHE

Figure 6.8: Visual interactions - Highlighting

Multiple values from the same column can be selected (for example, France and Canada) by
holding down the Ctrl key and the values from separate columns of the same visual, such as the
dimension columns of a table visual, can also cross-filter other visuals on the report page. The
ability to drive visual interactions from the selections of two or more visuals (for example, United

States and Bikes) is also supported.

The highlight interaction option from the preceding example is available and enabled by default
for column, bar, treemap, pie, and donut charts. Only the filter and the no interaction options

are available for cards, KPIs, and line and scatter chart visuals.

As per prior chapters, the Sales Territory, Product, and Date dimension tables are related to
all three fact tables—Internet Sales,Reseller Sales,andSales and Margin Plan. Therefore,
the filters and selections applied to the columns of these tables simultaneously impact measures

from other fact tables.

This integration within the dataset supports robust analyses but can also require some training or
explanation to users as users may not initially expect or understand the cross-filtering behavior.
If thisis the case, or if a different interaction between visuals is desired, report authors can modify

the default behavior by editing the interactions.

Editing interactions

Report authors can modify the visual interaction behavior such that selections (user clicks) on
certain visuals don’t impact other visuals or only impact certain visuals. Additionally, for the
visuals set to the highlight interaction by default, report authors can revise the interaction behavior

to filter.

250 Planning Power BI Reports

In Figure 6.9, the United States selection in the middle bar chart has no impact on the multi-row

car visual but causes a filter interaction (rather than highlight) on the product category chart:

Tinpernet et Salus by Sakes Tarrilony Courtry ¥ Resnlker Net Saies Ly Product Caegory L1008 B9 174
Adlorks Met Salkes

unec e | T 5.4

Tk Adiorks Bet Margin %

S80.450.597
ted K priom Reseller Net Sakes

e £20,35R.677.22
miernet Mok sales

T
L rd] —
Al Componenty Uolhng oo os

.

T g Mo
Figure 6.9: Edit interactions in Power Bl Desktop

To edit visual interactions, select the visual that receives the selections and then enable the Edit
interactions command under the Format tab in Power BI Desktop. In this example, the None
interaction icon has been selected for the multi-row card visual as indicated by the circle with a
slash through it below the visual. The Filter interaction icon has been selected for the Product
Category column chart as similarly indicated by the left-most icon below the visual. To disable

editing interactions, simply return to the Format tab and click the Editinteractions command again.

Like the preceding example, it’s often appropriate to disable visual interactions from impacting
cards or KPIs. These values can be impacted exclusively by the filters defined outside of the report
canvas, such as report- and page-level filters, and do not change during user sessions like other

visuals on the page.

Regardless of the design decision, if users regularly interact with reports, such as clicking on slicers
and other visuals, it’s important to briefly review or explain the visual interaction behavior. This
is especially necessary with new users and with more customized designs, such as two or three

visuals with interactions enabled and two or three visuals with interactions disabled.

In addition to interactions between visuals on the same page, visuals can also interact with one

another between different report pages via drillthrough report pages.

Chapter 6 251

Drillthrough report pages

A well-designed Power Bl report of summary-level visualizations may itself sufficiently address
user questions. However, it’s often the case that users need the ability to view the details behind
particular data points of interest, such as the sales orders for a specific product, customer, or fiscal

period that seems high or low relative to expectations.

Drillthrough report pages are typically hidden by default and accessed via the right-click context
menu of visuals for items of interest, such as an individual bar on a bar chart. These report pages
enable users to continue and often complete their own analysis at a detailed level and thus can

reduce the need to create or support traditional paginated or extract-like detail reports.

As per Figure 6.10, a report page has been designed with a drillthrough filter set to the Product
Name column. This drillthrough page automatically applies filters from the source report page’s
Product Name column, such as Road-250 Black, 44.

O oo bene wsadka52 Bk, 11

< whrmlirdan b
o amall

A

Ea H

_'- e la™ N
5342}{ 33 G4 $913K B Eammaw
AT N hew A Vor b o s Bkl ST Rdatognn 0T S G@
Q&R E 40
ok “rar [A ul-
k" 41314 %
(1 5 R
S
Sl dal b o
ol e
- S T
Al kool P | B "
Por bl ™o g padmn= e -1-.-|:|-1:'-:l['l.-'4-..l.|'-lll‘.-.'14-.l|-..l:-..1-."1'l. - —
B Ful-la T gz ks 8 F PRI O

Figure 6.10: Drillthrough report page

252 Planning Power BI Reports

Drillthrough filters are set at the bottom of the Visualizations pane in the Drill through section

of the Build visual sub-pane, as shown in Figure 6.10.

With the drillthrough report page configured, when the Product Name column is exposed on
a separate page within the report, the user has a right-click option to drill to this page as per
Figure 6.11:

AdWorks Net Sales by Product Hierarchy

B0

Figure 6.11: Drillthrough source page

Only the column or columns specified in the Drill through section of the Visualizations pane

(drillthrough filters) can be used as drill columns.

For example, even if the ProductAlternateKey column has a 1-to-1relationship with the Product
Name column, the drillthrough option is not available to visuals based on the ProductAlternateKey
column unless ProductAlternateKey is also specified as a drillthrough filter, like the Product Name
column. Therefore, if some report visuals use Product Name and others use ProductAlternateKey,
both columns can be configured as Drill through filters on the drillthrough report page to support

both scenarios.

In the preceding example, the user has drilled down through the four levels of the product
hierarchy created in Chapter 4, Designing Import and DirectQuery Data Models (Product Category
Group, Product Category, Product Subcategory, and Product Name), to display a bar chart by

the Product Name column.

The same right-click drillthrough option is exposed via table, matrix, and other chart visuals,

including scatter charts, stacked column and bar charts, column charts, and bar charts.

Chapter 6 253

The bottom-level column of a hierarchy, such as the preceding Product Name example, is often

a good candidate to support a drillthrough report page.

For example, a common analysis pattern is to apply a few slicer selections and then drill down
through the hierarchy levels built into chart and matrix visuals. Each level of the hierarchy provides
supporting context for its parent value, but ultimately, the report user wants to investigate a
specific value (for example, Customer 123) or a specific combination of values (Customer 123
and Calendar Year 2018).

The use of drillthrough report pages can create certain challenges with regard to navigation by
reportviewers. In addition, users unfamiliar with Power Bl Desktop may notintuitively understand
the context in which they are viewing a report page. Both of these issues are addressed in the

next section.

Custom labels and the back button

Two of the most important components of the drillthrough report page shown in Figure 6.10
include the custom Product Name label and back button image at the top of the report page.

The Product Name message at the top of the page uses the following DAX measure expression:

Selected Product Name =

VAR __ ProdName = SELECTEDVALUE('Product'[Product Name], "Multiple
Product Names")
RETURN

"Product Name:

& __ProdName

The SELECTEDVALUE () function returns either the single value currently selected for a given column
or an alternative expression if multiple values have been selected. For drillthrough report pages,
it’s a given that the drill column only has a single value as each drillthrough column is limited

to a single value.

To provide a dynamic label or title to the page, the DAX variable containing the Product Name
expression is concatenated with a text string. In this example, the Selected Product Name measure
is displayed in a card visual. Alternatively, the Selected Product Name measure could be used
as a dynamic title for the visual. Although card visuals can be used to display text messages and
dates, a text box also supports DAX measures and importantly provides much greater formatting

control to define how the message appears on the canvas.

254 Planning Power BI Reports

The custom back button image was added to the report via the insert image command on the
Insert tab of Report view. Once positioned in the top left of the page, selecting the image exposes

the image formatting cards. As per Figure 6.12, the Action card is enabled, and Type is set to Back:

Format image »

| £ Search

Image General

> Style

~v Action E
v Action
Type
‘ Back hd |

Figure 6.12: Back button image formatting

Power BI Desktop adds a back button arrow shape by default when a drillthrough page is created,
but this shape is less intuitive for users than the custom image. With the back button configured,
Ctrl + click is used to return to the source page in Power BI Desktop. Only a single click is needed

to use the back button in the Power BI service.

The single-row table at the bottom of the drillthrough report page shown in Figure 6.10 has been
filtered to only display the current, active values of the product. As described in the Slowly changing
dimensions section of Chapter 2, Connecting to Sources and Transforming Data with M, the Products

table contains multiple rows per product, representing different points in time.

To ensure that only one row is displayed by the table visual, a visual-level filter was applied, setting
the Product Status column equal to Current. Alternatively, the visual-level filter condition could

specify that the Product End Date column is Blank via an advanced filter condition.

Thus far, we have covered drillthrough report pages consisting of a single drillthrough column.

However, it is possible to include multiple columns in drillthrough report pages.

Multi-column drillthrough
In many scenarios, a more specific filter context is needed for drillthrough report pages to
resolve analyses. For example, the user may be interested in one specific year for a given Product

Subcategory column.

Chapter 6 255

To support these needs, multiple columns can be added as drillthrough page filters. When one
or both columns are exposed in a report visual on a separate page, the drillthrough right-click

option can be used to apply multiple filter selections to the drillthrough page.

In the stacked column chart of Internet Sales by Year and Product Subcategory shown in Figure
6.13, right-clicking on the Road Bikes column for 2011 ($5.7M) exposes the Drill through option
to the Figure 6.13 drillthrough report page:

Internet Met Sales by Year and Product Subcategory

S15M
S10R
Bhoea ok kil
incd orls
!ﬁ.rﬂ [=-8 T
= Dbl g Faura B15
Al o
LB |
Sumrranm
S0 . Cogry
2011 012 i3

Product Subcate... & Nountain Bikes @ Aoad Bikes & Tousing Bikes

Figure 6.13: Drillthrough by multiple columns

The Drill through report page filters for both the Year and Product Subcategory columns. Report
visuals that only expose one of these two columns can still drill to this multi-column drillthrough
report page. In this scenario, no filter would be applied to the column not contained in the source

visual.

256 Planning Power BI Reports

Executing the drillthrough action from the preceding chart results in the drillthrough report
page filtered for both column values. As shown in Figure 6.14, with Keep all filters toggled on,
all filters from the source visual are passed to the drillthrough report page, including the most

specific filters for Product Subcategory of Road Bikes and Year of 2011:

Drrill through
,_'_-'l' D =

Froduct Subcalegory
= Fload Bikes

FProduvct Calagory

1= Effma

i SO N F, ar 2011
THAY

@ 20T

Figure 6.14: Multi-column drillthrough report page

The drillthrough report page in this scenario is designed to display the values of the two drill-
through columns and provide supporting analysis for this given filter context. The choice to keep
all filters should be considered carefully as this may confuse users who do not understand that
this behavior preserves all existing source visual filters, including those outside of the specific,

user-chosen context when drilling.

In Figure 6.15, $3M of the $5.7M of Internet Net Sales from the source page occursin the second
half of the year, as identified in a card visual and also visualized by the last 6 calendar months of

2011in a stacked column chart to break out the product models for the Road Bikes subcategory:

Chapter 6 257

Year: 2011 Q3 and Q4

Product Subcategory: Road Bikes S3M S4M

el Nel Saak Trangds Rresclier Mt Sabes Trends

I |
AR H
- ! l
e .. r

Srredieet Wiodal & Arogd-1700 98sewd- 1700 0 B - B mArerdatn Pezdert Model & Rresi- 17901 = lead-1H 8B rewd-L00
Figure 6.15: Multi-column drillthrough report page

In Figure 6.15, the user obtains details on both Internet Net Sales and Reseller Net Sales
for the given Year and Product Subcategory. Visuals that utilize measures from any fact table
(for example, Sales Plan) with a cross-filtering relationship to the drillthrough column tables

can be added to the drillthrough report page to provide additional context.

In addition to stacked column charts, matrix visuals are also a common choice for initiating a
drillthrough action based on two columns. For example, the Year column could be the columns
input and the Product Subcategory could be the rows input for a matrix visual. Additionally, a
pie chart with the two columns used in the legend and detailed input fields can also be used to

drill through based on two columns.

With the concept of drillthrough filters explained, we can delve further into the subject of the

different types of filters and filter scopes available in reports.

Report filter scopes

Within Power BI Desktop, the Filters pane provides access to three different filter scopes, filters
on all pages, filters on the current page, and filters on the current visual. In addition, a fourth

filter scope can be set in the Visualizations pane, using drillthrough filters.

258 Planning Power BI Reports

Filter scopes simply refer to what is impacted by the filter, either just the visual, the whole report
page, the entire report, or only when drilling into a visual’s information. A fundamental skill
and practice in Power BI report development is utilizing the report filter scopes and the filter

conditions available to each scope.

For example, a report intended for the European sales team can be filtered at the report level for
the European sales territory group and specific report pages can be filtered for France, Germany,
and the United Kingdom. Reports can be further customized by implementing filter conditions
to specific visuals, applying more complex filter conditions, and providing drillthrough report

pages to reflect the details of a unique item, such as a product or a customer.

Report filter scopes are defined outside of the report canvas and therefore provide report authors
with the option to eliminate or reduce the need for on-canvas user selections as well as the canvas
space associated with slicer visuals. This can provide a better user experience with less interaction

required by users as well as larger visuals with easier-to-read font sizes.

In addition to meeting functional requirements and delivering a simplified user experience, report
filter scopes can also benefit performance. Using the European sales report as an example, the
simple filter conditions of Sales Territory Group = Europe (Report-level filter) and Sales Territory
Country = France (Page-level filter) are efficiently implemented by the Power Bl in-memory engine
(import mode) and almost all the DirectQuery data sources. Even if the DAX measures used on the

report page for France are complex, the report filters contribute to acceptable or good performance.

With a visual selected on the canvas in Report view, the Filters and Visualizations panes present

the following four input field wells:

1. Filters on all pages: The filter conditions defined impact all visuals on all report pages.

The scope of these filters is the entire report

2. Filters on this page: The filter conditions defined impact all visuals on the given report
page. The scope of these filters is a single page. Report-level filter conditions are respected
by the page-level filters as well. Any drillthrough filter conditions defined for the report
page are also respected.

3. Filters on this visual: The filter conditions defined only impact the specific visual selected.
The scope of these filters is a single visual. Report- and page-level filter conditions are
respected by the visual-level filters as well. Any drillthrough filter conditions defined for

the report page of the given visual are also respected.

Chapter 6 259

4. Drill-through: The filter condition, a single value from a column, impacts all visuals
on the given report page. The scope of these filters is the entire page. Report-level filter
conditions are respected by the drillthrough filters as well. Any page- and visual-level

filter conditions are also respected.

As per prior chapters, filters are applied to Power BI visuals via the relationships defined in the
dataset (via single or bidirectional cross-filtering) as well as any filtering logic embedded in DAX
measures. All four of the preceding filters (Report, Page, Visual, and Drill through) contribute
to the initial filter context, as described in the Measure evaluation process section of Chapter 5,

Developing DAX Measures and Security Roles.

Therefore, justlike filters applied on the report canvas (for example, Slicers), the filter logic of DAX
measures can supplement, remove, or replace these filters’ conditions. In the event of a conflict
between any report filter and a DAX measure expression that utilizes the CALCULATE () function,

the DAX expression supersedes or overrides the report filter.

Let’s now explore the different filter conditions that can be applied to each scope.

Report filter conditions

Different types of filter conditions can be defined for the distinct filter scopes. For example, report-
and page-level filters are limited to relatively simple filter conditions that reference individual
columns of a dataset. However, more complex and powerful conditions, such as filtering by the
results of a DAX measure and top N filters (such as the three largest or five smallest values), can

be applied via visual-level filters.

The following outline and matrix (filter conditions by filter scope) summarize the filtering

functionality supported:

1. Basic: A single equality condition for a column to a single value or set of values, such as
“is North America or Europe”; a single inequality condition for a column to a single value
or set of values, such as “is not $25 or $35.”

2. Advanced: Several condition rules per data type, such as “starts with” for text and “is
greater than or equal to” for numbers; supports filtering for blank and non-blank values;
optionally, apply multiple conditions per column via logical operators (and, or).

3. Relative Date: Supports three filter condition rules (is in this, is in the last, and is in the next)
for days, weeks, months, and years. Partial period and complete period filter conditions can

be defined. The same filter condition rules are available to slicers with date data type columns.

260 Planning Power BI Reports

4. Top N: Filter a visual to a defined number of top or bottom values of a column based on
their values for a measure. For example, the top 10 products based on net sales can be set
as a visual-level filter condition.

5. Filter by Measure: Filter a visual by applying advanced filtering conditions to the results
of a DAX measure. For example, greater than 45% on the Internet Net Margin % measure

can be set as a visual-level filter condition.

Table 6.2 summarizes the preceding filter conditions available to each of the three primary report

filter scopes:

Filter Conditions Report Level | PageLevel | Visual Level
Basic Yes Yes Yes
Advanced Yes Yes Yes
Relative Date Yes Yes Yes
Top N No No Yes
Filter by Measure | No No Yes

Table 6.2: Filter conditions by filter scope

Multiple filter conditions can be defined per report filter scope. For example, a report-level filter
could include two basic filter conditions and an advanced filter condition. Additionally, the same
column can be used in multiple filter scopes, such as a report-level filter and a page-level filter

on the product subcategory column.

All defined filter conditions are applied to the visuals within their scope provided that the DAX
measures included in the visuals don’t contain filtering logic in conflict with the report filter
conditions. Additionally, the columns and measures referenced in the filter conditions do not need
to be displayed in the report visuals. For the top N filtering condition, the column to be filtered
only has to be displayed in the visual when the filter condition is initially defined.

A good indicator of Power BI development and solution-specific knowledge is the ability to
accurately interpret the filters being applied to a given visual on a report page. This includes all
Power BI report filters (report-level, page-level, and visual-level), any slicer selections or cross-
highlighting, the filter logic of the DAX measures, the cross-filtering applied via relationships in
the data model, and any filter logic built into the M queries of the dataset. Complex reports and
datasets utilize all or many of these different layers in various combinations to ultimately affect

the values displayed in report visuals.

Chapter 6 261

BI teams generally want to limit the complexity built into reports, both for users and the report
authors or developers responsible for the reports. For example, if visual-level filter conditions are
applied to many visuals of a report, the filter condition for each visual must be modified if the
requirement(s) of the report change or the columns or measures used by the filter condition change.
Dataset designers and data warehouse teams can often implement changes or enhancements to

simplify the filter conditions needed by report authors.

As one example, a filter condition implemented in multiple reports that specifies several product
categories (hardcoded) could be replaced with a new column in the product dimension table. The
new column would distinguish the group of product categories that meet the desired criteria
relative to those that don’t, and logic could be built into the data source or retrieval process to

dynamically include additional product categories that later meet the given criteria.

Drillthrough filters, which are used to define drillthrough report pages as described in the previous
section, are unique in that they can be used to implement basic filtering conditions at the page
level as well as their more common filtering of a single column value. This can enable a report

page to serve a dual purpose, both as a standard report page as well as a drillthrough page.

For example, three countries can be selected in a drillthrough filter condition and the visuals on
the report page reflect these three countries. Such a page may be useful for displaying European

countries such as the United Kingdom, France, and Germany.

However, a user can only drill to the report page from the context of a single column value. The
source drillthrough value (for example, Germany), replaces the three countries in the previous

filter condition on the drillthrough page when the drillthrough action is executed.

Additionally, multiple columns can be used as drillthrough filters and the values of both columns
from a separate report page are applied to the drillthrough page when a drillthrough action is
executed. If only one value is present from the source report page, the drillthrough action only

filters this column and removes any filter defined for the other drillthrough filter column.

Report and page filters

Report- and page-level filters (Filters on all pages and Filters on this page from the Report filter
scopes section) are most commonly used to apply the fundamental filter context for the report.
Columns with few unique values, such as SalesTerritoryCountry, are good candidates for report-
level filters, while more granular columns such as SalesTerritoryRegion are better suited for

page-level filters.

262 Planning Power BI Reports

In Figure 6.16, the individual report pages are named according to the report and page filters

applied:
USA Northeast Northwest Central Southeast Southwest

Figure 6.16: Power Bl report pages

In the absence of any custom DAX measures that retrieve the filter selections applied, users of
the report do not typically see the applied report-, page-, and visual-level filters. Therefore, it’s
important to assign intuitive names to each report page as per Figure 6.16 and to include a brief

title for each report page via a text box.

Figure 6.17 shows the Report and Page filters applied to the Northeast report page of a United

States sales report:

Y Filters D
L Search

Filters on this page
SalesTerritoryRegion

is Northeast

Add data fields here

Filters on all pages

Year Status
is Current Year or is Prior Year

Figure 6.17: Report- and page-level filters

Eachreport page is filtered for a different sales territory region except the USA page, which would
only contain a Country page filter since the USA page covers multiple sales territories (Northeast,

Northwest, Central, Southeast, and Southwest).

Chapter 6 263

The Year Status column, as described in the Date dimension view section of Chapter 2, Preparing
Data Sources, restricts all visuals to only the current and prior year. One or two years of history
is sufficient for many reports given the pace of change in business environments and strategies.
Additionally, the report-level date filter promotes both query performance and low maintenance

since the dates filtered reflect the latest dataset refresh.

Report filters are not a long-term substitute for poor data quality or a suboptimal dataset (data
model or retrieval queries). If it’s necessary to implement many filter conditions or complex
filtering conditions within reports to return accurate results, the dataset or the source system

itself should likely be revised.

Similarly, if many filter conditions or complex filter conditions are needed to retrieve the desired
results, the dataset can likely be enhanced (for example, a new column, new measure) to simplify

or eliminate these report filter conditions.

Power BI report authors should communicate to the dataset designer(s) and BI team whenever
complex or convoluted report filters are being applied. Given limited team resources, it may be
sufficient to use report filters to support rare or uncommon reports. For common reporting needs,
however, it’s generally appropriate to build or revise the necessary logic in the data source or

dataset.

We’ll now move on to exploring the use cases for relative date filtering within Power Bl reports.

Relative date filtering

Relative date filtering refers to the ability to enable date filters relative to the current date and
time. Relative date filtering is available for date columns at all filter scopes (report, page, and

visual) and for slicer visuals.

These dynamic filter conditions, such as the last 30 days (relative to the current date), promote
both data freshness and query performance since the minimal amount of history required can be
retrieved. Additionally, relative date filters can often avoid the need to add dynamically computed

columns to a date dimension table or implement date filter conditions in DAX measures.

In Figure 6.18, five report pages are dedicated to a specific relative date filter condition:

Last 12 Maonths Last 12 Weeks This Month Next 12 Weeks Next 12 Months

Figure 6.18: Relative date filter conditions per page

264 Planning Power BI Reports

A page-level filter is used for each report page with the following conditions, as per Figure 6.19:
Filters on this page

Date
1182021 - 1232022

Filter type 1
Retative dale o

Show ibems when the value

i% ir [P Bt
12
wWeekE e

w Include {oday

Figure 6.19: Relative date filter condition

As 0f 1/23/2022 (the current date when the report was viewed), the five report pages are filtered
to the following date ranges with the Include today option enabled:

e Isinthelast12 months, 1/24/2021 through 1/23/2022

e Isinthelast 12 weeks, 11/1/2021 through 1/23/2022

e Isin this month, 1/1/2022 through 1/31/2022

e Isinthe next12 months, 1/23/2022 through 1/22/2023

e Isin the next 12 weeks, 1/23/2022 through 4/16/2022

Areport design such as this would make it simple for users to analyze immediate, near-term, and

longer-term trends and issues.
Three types of relative date filter conditions can be set:

1. isinthelast
2. inthis

3. isinthenext

Chapter 6 265

Each of these filter conditions supports days, weeks, months, and years intervals. For the is in
the last and is in the next filter conditions, calendar weeks, calendar months, and calendar
years conditions can also be specified. These last three intervals represent full or completed

calendar periods only.

For example, as of January 23, 2022, the last one-calendar month and last one-calendar year
would include all dates of December 2021 and all dates of 2021, respectively. The week of 1/16/2022
through 1/22/2022 would represent the last one-calendar week.

In the next section, we explore filters scoped to individual visuals or visual-level filtering.

Visual-level filtering

Visual-level filters (Filters on this visual from the Report filter scopes section) provide the most
powerful filter conditions in Power BI exclusive of custom filter conditions specified in DAX

expressions.

Unlike report- and page-level filters, DAX measures can be used in visual-level filter conditions,
such as net sales greater than $5,000. Additionally, top N filter conditions can be implemented
referencing a column and measure that are included or excluded from the visual as per the Top

N visual-level filters section following this example.

In Figure 6.20, a table visual of customers has been filtered according to the Internet Net Sales

and Internet Sales Orders measures:

Dimicreprdberaniebey FrotHane Laofdsme inbemel SelesChoen Iplormed Ret Saes Cusdormess Sale Aack BT Mot ol
ST B4 11 ¥ [<han G % 13,800 ET o Sl Thd DL
TR AT Lamrl il L 1k e 11

: - e : il Bresrresn Sakay Jedary
balal P Lo} ¥ 1

EEMRMETRRAR Y

Figure 6.20: Table with visual-level filters applied

Specifically, the visual only displays items (customers) with more than $12,000 in Internet Net
Sales and more than five Internet Sales Orders. As per the Customer Sales Rank measure, certain

customers that meet the net sales condition are excluded based on the sales order condition.

Unlike the top N visual-level filter condition, filters based on measures, such as the conditions
shown in Figure 6.20, are only applied when items (for example, customers or products) are

displayed on the visual.

266 Planning Power BI Reports

By removing the customer columns, the remaining measures (Internet Sales Orders and
Internet Net Sales) would not be filtered by the visual-level filter conditions. In other words,
the visual-level filters based on measures are only applied against the dimension column or

columns in the visual, such as CustomerAlternateKey or FirstName.

Although analytically powerful, report authors should exercise caution with visual-level filters.
From a usability standpoint, reports can become confusing when visuals on the same report page
reflect different filter conditions. If used, report authors should include the visual-level filters as
part of the visual’s Title, such as “Customers with Internet Net Sales greater than 12K and more

than 5 orders.”

Additionally, executing complex filter conditions against large or dense report visuals can result
in performance degradation. If a complex filter condition is repeatedly needed at the visual level,

it’s likely the case that the dataset should be modified to include some or all of this logic.
We complete our look at visual-level filtering with an example of the use of Top N filtering.

Top N visual-level filters

In Figure 6.21, a table visual is filtered based on the top five products for the Internet Net Sales
(PYTD) measure:

Freshaci Hars Iripam K Dnles (VT bresrier er Tabem [B0R FTDY ioneries e Tabes [RONY VTR K gl | Marrms
PR e 300 Blark, 13 55072 AT 1™ 1o 5 by irwerre Ry Sake DY
Fbanrar- 200 Aok, 48 wad T Rl {1kt 1] 1234% Fincr Tpe: -
P anlare- 300 Sl e, G S e dEdsAn 1454%
R) Bk, 52 4451340 [ERCEE Top a
Fred- rul Bedl, 4E (LAY &L - 1N =
Tl IERL IR [EEEERES, [IR AT
T]
[T

i rred Fied Saken {FYTES

Fpphy Hiler

Figure 6.21: Top N visual-level filter

For this visual, the Internet Net Sales (PYTD) measure used for the filter condition is not one of
the three measures displayed. Nonetheless, the Top N condition filters out all products, including
some of the top-selling products for the current year that weren’t one of the top five products in

the prior year.

Chapter 6 267

With a Top N filter defined between a column and a measure, the report author can optionally
remove the column being filtered from the visual or replace it with a different column. For example,
the $3,193,810 in Internet Net Sales (YTD) associated with the top five products from the prior

year could be visualized by Occupation instead of Product Name.

Alternatively, all columns except the Internet Net Sales (YID) measure could be removed from
the table visual, and a card or KPI visual could be used to visualize the $3,193,810 value. The
column referenced by the Top N filter condition only needs to be included in the visual when the

filter condition is originally defined.

The TOPN() DAX function emulates top N filtering by returning a filtered table based on an
expression (such as a net sales measure). As a table, the results of this function can be passed as
a filter argument to CALCULATE () in a separate measure. For example, a measure could be created

to compute the sales for the top 100 customers based on Internet Net Sales (PYTD).

In addition to filtering scopes, another report planning and design consideration involves the

use of bookmarks.

Bookmarks

Bookmarks enable report authors to save specific states of reports for easy access and sharing with
others. For example, an important or common view of a report page thatinvolves filter conditions
across several columns can be saved as a bookmark for easy access at a later time via a command

button, the bookmark navigator control, or the bookmark dropdown in the Power BI service.

By persisting the exact state of a report page, such as whether a visual is visible, bookmarks enable
report authors to deliver application-like experiences for their users. For example, rather than
expecting or asking users to navigate to separate report pages or to apply certain filters, bookmarks

containing these different visuals and filter contexts could be readily available to the user.

By default, bookmarks represent the entire state of areport page, including all filter selections and
the properties of the visuals (for example, hidden or not). However, bookmarks can also optionally
be associated with only a few visuals on a report page. Additionally, report authors can choose to
avoid persisting any filter or slicer selections and rather only save visual properties on the page.
These granular controls, along with the Selections pane and linking support from images and

shapes, enable report authors to create rich and compelling user experiences.

268 Planning Power BI Reports

In Figure 6.22,12 bookmarks have been created for a European sales report:

Bookmarks x Wisualizathons

Baihd el

1 l ,i:--\.-. :_- l__hll._-_c"'

Geprmary: Bben Dok oo

Drill through
AALDE Sone Yy

srarny: Tocharking Mk L ':l_
Figure 6.22: Bookmarks pane

Bookmarks are created via the Add icon at the top of the Bookmarks pane. With the Bookmarks
pane visible via the View tab in Report view, a report author can develop a report page with the
filters and visual layout required and then click the Add icon to save these settings as a bookmark.
As per Figure 6.22, the ellipsis at the right of the bookmark’s name can be used to Update bookmarks
toreflect the current state and to Rename and Delete bookmarks. Additionally, bookmarks can be
grouped together. For example, all of the United Kingdom bookmarks are grouped into a single

folder that can be expanded or collapsed.

The second group of bookmark options, underneath the Group option, allows report authors to
customize what is stored by the bookmark. The Data category includes the report-, page-, and
visual-level filters, slicer selections, the drill location if a visual has been drilled into, any cross-
highlighting of other visuals, and any sort of orders applied to visuals. The Display category
includes whether a visual is hidden or not, the Spotlight property, Focus mode, and the Show
Data view. By disabling the Data category for a bookmark, a user’s selections on slicers or other
visuals are not overridden when the bookmark is accessed. Finally, the Current page option

determines whether the user is automatically navigated to the current page.

Chapter 6 269

The third group of bookmark options, immediately beneath the Current page option, controls
the scope of the bookmark to either apply to All visuals on the page or only to specific, Selected
visuals. These options provide the report author with flexibility when creating the report and

are often used in storytelling to walk others through interesting insights.

The creative use of bookmarks can help reduce the number of report pages and duplicate visuals
required for reports. For example, all 12 of the bookmarks shown in Figure 6.7 reference the same
page. Thus, instead of creating 4 pages with duplicate visuals and the only difference being the
country, bookmarks allow a single page to service an overall summary of all of Europe as well as

each individual country — France, Germany, and the United Kingdom.

Selection pane and the Spotlight property

The Selection pane and the Spotlight property for visuals are both closely related features to
Bookmarks. The Selection pane is accessed via the View tab in Report view and displays all objects
of the selected report page, including visuals, images, and shapes. Although most commonly
used with Bookmarks, the Selection pane is also helpful when developing report pages that
contain many visuals and objects. Selecting an object from the Selection pane provides access
to the properties associated with that object (for example, field inputs and formatting cards) as

though the object was selected on the report canvas.

In Figure 6.23, the Slicer visuals originally used to create the bookmarks are hidden for each bookmark

since the bookmarks handle filtering to the correct Country and Product Category selections:

Selection s Boockmarks
i
Laped ket D oHTie -+ A 10
P Shoas: ol ik Eurmzs Summarny
rr Eur (AT "
E we Bk j Bl
I
g
=2 K r T
m
LinE e i3]
| L 4 b
i K v W

Figure 6.23: Selection pane and the Bookmarks pane

270 Planning Power BI Reports

In the Selection pane, the icons next to the visuals toggle between Show (eye symbol) and
Hide (eye symbol with slash). The ellipses menu next to the Show/Hide toggle icon provides the
ability to Group visuals as well as a Summarize feature. Grouping allows visuals to be organized
together. For example, in Figure 6.23, the Slicer visuals have been grouped into a Hidden group.
The Show/Hide toggle can then be set for the entire group instead of each visual independently.
The Summarize option generates a Smart narrative visual for the selected visual.

The Spotlight property, accessed via the ellipsis in the corner of any visual, draws attention to
the specific visual by making all other visuals on the report page fade into the background.

Spotlight is particularly useful in supporting presentations via Bookmarks. For example, in the
Vview mode described later in this section, one bookmark could display a report page of visuals
normally and the following bookmark could highlight a single visual to call out a specific finding
or an important trend or result. Spotlight may also be helpful for presenters in explaining more
complex visuals with multiple metrics and/or dimension columns.

As an alternative to Spotlight, Focus mode can also be saved as a bookmark. Focus mode can
be applied via the diagonal arrow icon in the corner of chart visuals and fills the entire report
canvas with a single visual.

In Figure 6.24, the Spotlight property has been enabled for a scatter chart on the Europe report page:

LETEEEERNS | EEEY TP TN Tar gt L LT ERLIE el oy 1
o
-—n e e Sdw
w] -
= LRI = N] - e
+ - + -t aa
e th L L = .\..i\.u."uu .
o
L
|
| '
=
-
FE S ke 5 a a
o 1 T
£ 0
HE g ot el Pt
L R FL]

Seoma: B g WY awE K L
L 1

Figure 6.24: Report page with Spotlight enabled on the scatter chart

Chapter 6 271

In Figure 6.24, the other visuals (four cards and a bar chart) are still visible, but the scatter chart
is emphasized via the Spotlight property. With Spotlight enabled, the report author could add
a bookmark with an intuitive name (for example, Europe Summary: Customer Segment and
Country Scatter) to save this specific view. Referencing this bookmark in a meeting or presentation

makes it easier to explain the meaning and insights of the scatter chart.

While bookmarks are useful on their own for preserving the state of visuals and filtering, bookmarks

can also be used as an aid to navigate within a set of report pages.

Custom report navigation

Bookmarks can also be assigned as links to shapes and images. With multiple bookmarks created
across multiple report pages, a visual table of contents can be created to aid the user’s navigation
of areport. Rather than opening and browsing the Bookmarks pane, users can simply clickimages
or shapes associated with specific bookmarks, and a back button can be used to return to the

Table of contents page.

In Figure 6.25, nine images have been positioned within a rectangle shape and linked to bookmarks

in the report:

Summary Bikes Only |Excluding Bikes

S LRSS L
rAin™ | Tain™ | TZEin™

]
\

Figure 6.25: Custom navigation to bookmarks

Three rectangle shapes and three line shapes are used to form the matrix of icons and three text
boxes display the headers. Shapes, images, and text boxes can be added from the Insert tab of
Report view. With a shape, image, or text box selected, the Format tab appears in the ribbon,
allowing the author to align and distribute the objects, as well as moving certain objects forward
or backward on the canvas. Grouping similar objects within shapes is a common practice for

improving usability.

In addition to the Format tab, when a shape, image, or text box is selected, the Visualizations

paneis replaced with a Format shape, Format image, and Format text box pane, respectively.

272 Planning Power BI Reports

With an image or a shape selected, an Action formatting card can be enabled to choose between
Back, Bookmark, Page navigation, Q&A, or Web URL actions. In Figure 6.26, the France flag
image positioned under the Bikes Only heading is linked to the France: Bikes Only bookmark:

Foermnal rmage L

* Rle
= RSN m‘

v Bt
Thypes

Bovkrrunk =
Mok

Fromezz. Biura Snilp

hona =

Figure 6.26: Link formatting card for images and shapes

The combination of custom navigation and bookmarks representing many specific views or reports
pages contributes to an easier, more productive experience for users. When designed properly,
the user often doesn’t need to know which page or bookmark to navigate to or which filters to

apply as this logic is already built into the report.

In addition to using bookmarks for report navigation via images, shapes, and buttons, a special

view mode exists, which is especially useful for presentations.

View mode

The View icon in the Bookmarks pane can be used in both Power BI Desktop and in the Power
BI service to navigate between visuals similar to a slideshow. When View mode is enabled, a
navigation bar similar to that shown in Figure 6.27 appears at the bottom of the canvas and the
user can close other panes and/or launch full-screen mode in the Power BI service to further

support the presentation:

Chapter 6 273

Bookmark 1 of 12 Europe: Summary > X
Figure 6.27: View mode navigation

As per Figure 6.27, the number and order of bookmarks, bookmark names, and navigation arrows
are included in the View mode navigation. Bookmarks are ordered based on their position in the
Bookmarks pane from the top to the bottom. To revise the order, drag and drop bookmarks to
higher or lower positions in the Bookmarks pane, or select a bookmark and use the up and down

arrow icons to adjust the order of the bookmark.

We now consider report development using Live connections to Power BI datasets.

Live connections to Power Bl datasets

An optional but very important report planning and design decision is whether or not to develop
the data model and report visuals within the same Power BI Desktop file or to separate the report
from the dataset into separate files. As a general recommendation, if there’s any possibility that
additional reports will be needed in the future based on the same dataset, the dataset and report

should be separated into separate files and likely separate workspaces as well.

With Live connections to Power BI datasets, report authors can develop reports in Power Bl
Desktop files containing only the visualization layer (report pages of visuals) while leveraging
a single, “golden” dataset. Increasingly organizations will isolate these source datasets, which
are typically maintained by an IT or Bl department, into Power BI workspaces that only the IT or
BI organization has edit rights to. Report authors and users of these source datasets are granted

read and optionally build permission to these dataset.

The dataset (data layer) already includes the data retrieval supporting tables and columns, the data
model relationships, and the DAX measures or calculations as described in previous chapters. Once
the Live connection reportis developed and published to Power BI, it maintains its connection to

the source dataset and is refreshed with the refresh schedule configured for the dataset.

In the absence of using Live connection reports to Power Bl datasets, users within teams would be
forced to create multiple versions of the same dataset in order to create different reports. As both
a report and a dataset, each individual report would require its own scheduled refresh process
(in import mode), its own data storage, and would create version control problems as the report

author could modify the underlying dataset.

Live connection reports therefore severely reduce resource requirements and promote a single
version of the truth. Moreover, Live connection reports facilitate the isolation of report design

and development from dataset design and development.

274 Planning Power BI Reports

Most Power Bl report authors are notinterested in, or responsible for, dataset design topics, such
as dataretrieval with M queries, data modeling, and DAX measures. Likewise, a dataset designer
is often less interested in, or responsible for, visualization best practices and engagement with

the actual users of reports and dashboards.

As advised in Chapter 1, Planning Power BI Projects, the alternative roles (dataset designer and
report author) need to collaborate regularly, such as identifying measures or columns that need

to be added to the dataset to support reports and dashboards.

To create a Live connection report with a published Power BI dataset as the source, the report
author needs a Power BI Pro license. Additionally, the tenant setting Allow live connections
under the Export and sharing settings section must be enabled. Finally, if the tenant setting
Use datasets across workspaces under the Workspace settings section is configured, then the
Live connection reports can be published to a different workspace than where the underlying

dataset is published.

In Figure 6.28, the report author can Live connect to datasets in many different workspaces:

Select a dataget to create & report

AN Fec=nt

O Home Endorscmsent Dhvane Warkspace

E Poews E Beleas Ha - rege Pomer Bl Baleane Plar
CHE_RI_SabiAndFing = SOy C ook brask

E aming Dwis L [y e et

E Shiwammeng Senee Dals Greyury Lo book

Chapoama [= = Srag oy Masroring Power B
E Lamecagie Anphyiis - Fuim Lt Lk g erp e onalance

Figure 6.28: Creating a Live connection to the Power Bl dataset

Chapter 6 275

After selecting the Power Bl datasets from the list of Power Platform sources within the Get Data

dialog, the list of the workspaces of which the report author is a member is prompted.

In this example, either double-clicking a dataset or selecting a dataset and clicking the Create
button establishes the Live connection as per the status bar (lower right-hand corner) in Power

BI Desktop, as shown in Figure 6.29:

Connected live to the Power Bl dataset: Chapter03 in Mastering Power Bl Make changes to this model

Figure 6.29: Live connection status bar

When connected in Live mode, the Fields pane that lists the columns, measures, and tables in the
datasetis exposed in Report view and the tables and relationships are shown in the Relationship

view. However, the Data view is not available.

In the past, Live reports were always limited to a single data model as a source. However, with
the advent of composite models and DirectQuery for Power BI datasets, a local model can be
added to a Live connection report, as discussed in Chapter 4, Designing Import, DirectQuery, and

Composite Data Models.

It’s possible to create reports based on Power BI datasets within the Power BI online service.
However, the .pbix files for these reports cannot be downloaded and thus, all edits must be
implemented within the service without version history. Additionally, several important report
authoring features in Power B Desktop are not supported in the service, including the alignment

of objects and local report measures.

Given these considerations, Power BI Desktop is recommended for any report development
beyond personal or ad hoc use. Guidance on version history for Power BI Desktop files (reports

and datasets) is included in Chapter 10, Managing Application Workspaces and Content.

We continue our exploration of Live connection reports by reviewing the ability to customize

such reports.

Customizing Live connection reports

Although data modeling and retrieval capabilities are removed in purely Live connection reports
(non-composite model), report authors can create new measures specific to the given report via

the New measure icon under the Modeling and Table tools tabs.

Additionally, report authors can change the names of measures and columns displayed in reports

using the field wells for visualization in the Visualizations pane.

276 Planning Power BI Reports

In Figure 6.30, the Internet Net Sales measure and the SalesTerritoryCountry column have

been renamed to Net Sales and Country, respectively:

Axis

Cauntry K

Legend

Add data fields here
Internel Sales [Internet Mel 3alaes]

Met Sales Rl

Figure 6.30: Renamed measure and column in visual

Double-clicking the name of the column or measure in the field well(s) for the visual exposes an
input box for the revised name. As per the preceding diagram, the revised names appear in the
report visual and the Tooltips in the field wells indicate the source column or measure. In this
example, the Internet Net Sales measure, with a home table of the Internet Sales facttable,

is the source for the Net Sales alias name.

Although the flexibility to create measures and apply names within reports is helpful and
appropriate in certain scenarios, these revisions can create complexity and version control issues.
For example, users can become accustomed to specific measures and names that the dataset
designer is not aware of and that may conflict with other measures or names in the dataset.
Therefore, it’s generally recommended to incorporate the necessary measure logic and standard

names into the source dataset.

Next, we look at two different scenarios involving switching between or to Live datasets, starting

with switching from one Live source dataset to another.

Switching Live source datasets

In many project scenarios, a Power BI report is initially built against a development or testing
dataset. After this report has been validated or received the proper approvals, the report’s source
dataset can be switched to a production dataset and the report can then be published to the

production workspace used for distributing Power BI content to users.

To switch the Power Bl dataset of a Live connection report, click Data Source settings under the

Transform data drop-down menu on the Home tab, as shown in Figure 6.31:

Chapter 6 277

ey ki Faterrml Toern
L B LT =y B — - il
N o T _ —| "I'} -1 T _-_I u :
1 =1 ol LD E s =
S Bl D s SE v Tarifires gt Y
S 1dla srprLgaT datg

Figure 6.31: Data source settings for a Live connection report

The same dialog is presented as shown in Figure 6.28. Simply select a different dataset and click
the Create button. See Chapter 10, Managing Application Workspaces and Content, for details on
Power BI project life cycles, such as migrating from development to production environments

and version control.

Next, we look at another dataset switching scenario, this time between an import mode dataset

and a Live source dataset.

Switching between import mode and Live mode datasets

Another common scenario is that report development begins with an import mode dataset for
creating report visuals as a proof-of-concept (POC). Subsequently, as the project progresses, it

becomes advantageous to separate data modeling from report development.

It’s possible to convert an import mode dataset that contains report visuals in the same file into two

separate artifacts, a dataset and areport connected to this dataset, using the following procedure:

1. Publish the dataset with the report to a workspace in the Power BI service.
2. Make a copy of the PBIX file containing the dataset and the report visuals.

3. In the copied PBIX file, open Power Query Editor and delete all source queries. Ensure
that all dataset tables are removed from the file.

4. Exit Power Query Editor and return to Power BI Desktop. The report visuals should now
(temporarily) return an error.

5. Onthe Home tab of Report view, click Power BI Datasets in the Data section of the ribbon

and connect your file to the dataset published as part of step 1.

The report visuals should load normally as though the data was still local to the file and now the

report has a Live connection to the Power Bl dataset.

278 Planning Power BI Reports

This concludes our advice regarding Live connections to Power BI datasets. We’ll next explore

the topic of some best practices with regard to visualizations.

Report design summary

As a data visualization and analytics platform, Power BI provides a vast array of features and

functionality for report authors to develop compelling content that helps users to derive insights.

Given the volume of features and possible formatting configurations, report authors and Bl teams
generally want to follow a set of report planning and design practices to ensure that report content
of a consistent quality is delivered to stakeholders. These practices include report planning in

terms of scope, users, and use cases, data visualization practices, and the selection of visuals.

The Report planning process, Visualization best practices, and Choosing the right visual sections earlier
in this chapter provided details on many of the recommended practices to develop effective
and sustainable report content. As a standard summary-level review of report creation, at the
conclusion of a development phase and prior to deployment, the following list of questions
should be asked:

1. Does the report have a clear scope and use case?

The report addresses specific business questions of value to specific users or teams that
consume the report. The relationship and distinction between this report and other
reports or dashboards that the users have access to are understood. The pages of the
report naturally relate to one another to address the same or closely related business

questions, perhaps at alternative levels of detail.
2. Have standard visualization practices been followed?

The visuals have proper spacing, alignment, and symmetry. The reports use colors
selectively and there are clear titles on report pages and visuals. The report is intuitive

and not cluttered with unnecessary details
3. Have the right visuals been chosen to represent the data?

Tables and matrices were used when cross-referencing or looking up individual values
was necessary. The type of data relationship to represent (for example, comparison) and
the relative advantages of the different visuals, such as line charts for the trends of a value,

drove the visual choice.

Chapter 6 279

4.

Does the report enable the user to easily apply filters and explore the data?

Slicer visuals for common or important columns have been utilized and are easily accessible
to users. The filtering and cross-highlighting interactions between the visuals on the report
pages have been considered and configured appropriately. Hierarchies of columns have

been built into certain visuals to allow a simple drill-up and drill-down experience
Does the report aid the user in identifying insights or exceptions?

Dynamic formatting, such as with KPI visuals and conditional formatting rules and
techniques, has been applied. Tooltips have been added to report visuals to provide the
user with additional context by hovering over the visual, such as the columns in a column

chart or the data points in a line chart.
Have simple and sustainable filter conditions been applied at the appropriate scope?

Report- and page-level filter scopes have been applied to minimize the resources required
by the queries generated by the report. Visual-level filters are only used when the visual
needs to reflect an alternative filter context of the report- and page-level filter scopes.
Report filter conditions are not being used to address issues with data quality or the
source dataset. Efforts have been made (or will be made) to enhance the source dataset
to better support the report. Filter conditions on the date dimension are dynamic and
sustainable (for example, Current Year and Prior Year) rather than hardcoded values
(for example, 2018 and 2017).

This concludes our exploration of the report planning process and other important concepts

related to report planning and design.

Summary

In this chapter, we walked through the fundamental components of Power BI report planning

and design, including visualization best practices, Live connections to Power Bl datasets, and the

filter scopes available in Power BI Desktop. We also reviewed the overall report planning process

and introduced the report architecture diagram as a tool to aid in that planning.

The following chapter is also dedicated to report development, but goes well beyond the

fundamental design concepts and features introduced in this chapter. The next chapter explores

the basics of report authoring, including an exploration of the different visuals and formatting

features available during report development.

280 Planning Power BI Reports

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Creating and Formatting
Visualizations

With the report planning and design phases described in the previous chapter completed, this
chapter dives into report development. This includes the creation and formatting of standard
Power BI visuals such as slicers, cards, and maps as well as supporting elements such as text

boxes, buttons, shapes, and images.

Visualizations are the building blocks of reports. A combination of distinct visuals, each with their
own formatting and data represented at different granularities and filter contexts, enables Power
Bl reports to generate insights and to support data story telling. The ability to create and apply

formatting to visualizations is fundamental knowledge for all report authors.
In this chapter, we review the following topics:

e The Visualizations pane
o Slicers

e Single-value visuals

e Map visuals

o Waterfall charts

e Power Platform visuals
e Premium visuals

e Elements

e Formatting visualizations

282 Creating and Formatting Visualizations

We start with a brief overview of the Visualizations pane.

The Visualizations pane

While in the Report view, the Visualizations pane provides the primary interface for creating and
formatting visuals. The Visualizations pane includes three sub-panes, the Build visual, Format,

and Analytics panes, as shown in Figure 7.1:

Visualizations »

7 R

Figure 7.1: The Visualizations pane’s sub-panes

Build visual

As shown in Figure 7.1, the Build visual sub-pane is located on the left, the Format sub-pane
in the center, and the Analytics sub-pane on the right. The Analytics sub-pane is discussed in
greater depth in the next chapter.

The Build visual sub-pane, as its name suggests, is used for creating visuals. By default, 40 icons
representing different visualization types are displayed and can be used to create visuals. In
addition, when a visual is selected on the report page, the Build visual sub-pane presents one or

more field wells used to configure the visual as shown in Figure 7.2:
Axis

Year Month K

Legend

Add date fields here

Values
Internet Net Sales v X
Reseller Net Sales X

Figure 7.2: Field wells

Field wells are simply areas where columns and measures from the Fields pane can be dragged
and dropped. In Figure 7.2, a column chart visual has three main field wells, Axis, Legend, and

Values. Depending on the visual, field wells accept one or multiple columns and/or measures.

Chapter 7 283

Once a visualization is created and selected on the report canvas, the Format sub-pane provides
two tabs, Visual and General, used to configure various properties such as size, position, colors,

and font sizes as shown in Figure 7.3:

Format visual

7 R

I 2 Search ‘

Visual General

~ Properties

W Size
Height
352
Width

Lock aspect ratio

> Position

Figure 7.3: Format sub-pane

As shown in Figure 7.3, each tab includes multiple sections, such as the Properties section, and
each section includes one or more format cards such as Size and Position. The Format sub-pane

is explored in greater depth in the Formatting visualizations section later in this chapter.

With a basic overview of the Visualizations pane complete, we move on to an exploration of

specific visualization types, starting with slicers.

Slicers

Slicer visuals are interactive controls added to the report canvas to enable report users to apply
their own filter selections to an individual report page. Given their power and flexible support for

multiple data types, slicers have been a staple of Power Bl interactive reports for years.

Slicers are a central element of self-service functionality in Power BI in addition to the visual
interaction behavior described in the previous chapter. The standard slicer visual displays the
unique values of a single column enabling report users to apply their own filter selections to all

or some visuals on a report page.

284 Creating and Formatting Visualizations

However, although slicer visuals are still fully supported and a great addition to many reports,
Power BI now also supports a Filters pane that can be exposed to users to deliver essential self-
service filtering without requiring additional report canvas space or additional queries. Given
the availability and advantages of the Filters pane, report authors should only use slicers for the
most common or frequently used fields for filtering. Fields that are less frequently used to apply

filters can be added to the Filters pane.

Power BI Desktop provides several formatting and filter condition options available based on the
data type of the column. Figure 7.4 contains three sample slicer visuals with each slicer representing

a different data type (text, number, date):

Sales Territory Country Product List Price Date

. Australia $500 $2,500 Last v 30 Days “
Canada

M France O_O £8 12/25/2021 - 1/23/2022
Germany
NA

United Kingdom
United States

Figure 7.4: Slicer visuals

In this example, the three slicers filter for two sales territory countries (Australia and France), a
range of product list prices ($500 to $2,500), and the last 30 Days inclusive of the current date
(12/25/2021 to 1/23/2022). Filter condition rules are available for numeric and date columns in

slicers, such as greater than or equal to $500 and after 5/1/2021, respectively.

See the Report filter conditions and Relative date filtering sections from the previous chapter for

additional details on relative date filters.

By default, Multi-select with CTRL is enabled on the Selection card of Slicer settings. This
setting requires users to hold down the Ctrl key to select multiple items. For slicer visuals with
many unique values, and when users regularly need to exclude only one or a few items, enabling

the Show “Select all” option can improve usability.

Additionally, for slicers based on text data-type columns, users can search for values via the ellipsis
menu (...) that appears at the top right or bottom right of the visual. Alternatively, a search box
can be activated by toggling the Search settings to On in the Options card of Slicer settings.

To preserve space on the report canvas, the slicer visual supports a drop-down option for all
column data types. In Figure 7.5, a single value is selected for the country and date slicers but

multiple values are selected for the price slicer:

Chapter 7 285

Sales Territory Country o Product List Price e Date o

Canada ot Multiple selections

Figure 7.5: Slicer visuals as dropdown

The drop-down option is most applicable for columns with many unique values. In addition, it’s

recommended to group slicer visuals together near the edge of a report page.

Slicers are most commonly aligned on the left side of the page below the visuals in the top-
left corner. If vertical canvas space is limited, slicers displayed in list format can be presented
horizontally rather than vertically. The Orientation formatting property (Vertical or Horizontal)

is available on the General formatting card.

One of the most powerful features of slicers is the ability to filter both the current report page
and optionally other report pages from a single slicer visual. The details of utilizing this feature,

referred to as Slicer synchronization, are included in the following section.

Slicer synchronization

By default, slicer visuals only filter the other visuals on the same report page. However, via the
Sync slicers pane, report designers can synchronize a slicer visual to also filter all other report
pages or only specific report pages. This feature eliminates the need to include the same slicer

on multiple report pages and thus simplifies the user experience.

For example, a common report may utilize three slicers (for example, Year, Product Category, Sales
Country) and include four report pages. With slicer synchronization configured, the report user
would only need to select values from these slicers on a single report page and the visuals from

all four report pages would be updated to reflect these selections.

The Sync slicers pane can be accessed from the View tab of the ribbon in the Report view as

shown in Figure 7.6:

View Help External Tools

Iﬁ |:| |:| Gridlines ? Filters F‘@ Performance analyzer
. o .

:| . T Mobile |:| Snap to grid I:I Bookmarky &y Sync slicers

view v layout I:' Lock objects [r'k Selection

Scale to fit Mobile Page options Show panes

Figure 7.6: Sync slicers pane

286 Creating and Formatting Visualizations

Once selected as per Figure 7.6, the Sync slicers pane appears to the right of the report page. A
slicer visual from the current report page can then be selected to configure its synchronization

with other pages.

In Figure 7.7, the SalesTerritoryGroup slicer has been selected but has not yet been synchronized

with other report pages:

SalesTerritoryGraup

R “ | ¢ Syncslicers B K

Acdd and svncwith a2l pages,
L AT . arselect specfic pages:
Fage namsa > o

Figure 5.9 | |

S13}|14

Fugure 5.0 | |
Fn;._.n:_h .11 | |
Figure 5.3 l |
Fll__."';ll’l’;l G.14 | |
F-g..re 515 | |
Figure 5.17 | |
Fhyure 5.18 | |

Figure 7.7: Sync slicers pane with slicer selected

To quickly synchronize the slicer to all other report pages, simply click the Add and sync with all
pages link above the Sync (double arrows) and Visible (eyeball) icons. In this example, the Add
and sync with all pages command would apply checkmarks under the Sync and Visible icons
for all four report pages. You could then uncheck the Visible icons for the different pages. The
Sales Territory Group slicer would now filter all report pages but would only be visible on pages

where the Visible icon is checked.

Several other report design features are accessible from the View tab, such as the Bookmarks and
Selection panes, show Gridlines, and Snap to grid. The Gridlines and Snap to grid features simply
aid in the positioning and alignment of visuals on the report canvas while the Bookmarks and

the Selection panes are described in the Bookmarks section of Chapter 6, Planning Power BI Reports.

For reports with several report pages and common slicers, a single report page can be dedicated

to slicer selections and not contain any other visuals.

Chapter 7 287

Report designers can configure synchronization for each slicer on this page and instruct users to

only use this page for applying their filter selections for all pages on the report.

Moreover, a back button can be added to report pages allowing the user to easily navigate back to
the dedicated slicer report page. An example of using a back button is included in the Drillthrough
report pages section of Chapter 6, Planning Power BI Reports, and additional information isincluded

in the Embellishments section of this chapter.

Next, we look at a distinct use case for slicers involving custom slicer parameters.

Custom slicer parameters

A powerful use case for slicer visuals is to expose a custom list of parameter values and drive
one or multiple DAX measures based on the user’s selection. In the example shown in Figure
7.8, a slicer visual contains six date intelligence periods, and a custom DAX measure used in the
central Card visual, User Selected Internet Net Sales, references the date intelligence measure

corresponding to the user’s selection:

Oate Perod Selection e {5 145
Manth to Date nternet Net Sales (WTD)
@ Frior Month to Da
: Weak to Date $1,874,360
fear ta Date nternet Met Sales [MTD)

$16,351,550

§1,780,920 s
F L 1212 370
Uzer Selected Internet Net Sales

nternet Met Sales [PWTD)
$1,780,920

nternet Mat Sales (PMTDY)

$5,842 485

nternet Met Sales (FYTD)
Figure 7.8: Slicer as a measure parameter

The table used for the slicer values could be defined within a source system and retrieved during
data refresh like other tables. Alternatively, since the parameter values are unlikely to change,
the table could be created within Power BI Desktop using an Enter data query and loaded to the
model but not included in a data refresh. Like all parameter tables, no relationships would be

defined with other tables.

The custom measure User Selected Internet Net Sales utilizes the SELECTEDVALUE() and
SWITCH() functions to retrieve the user selection and then apply the appropriate date intelligence

measure.

288 Creating and Formatting Visualizations

In this implementation, a DAX variable is used to store the period selection value, as per the

following expression:

User Selected Internet Net Sales =

VAR _ PeriodSelection = SELECTEDVALUE('Date Parameter'[Date Period
Selection], "Year to Date")

RETURN
SWITCH(TRUE(),
__PeriodSelection = "Week to Date", [Internet Net Sales (WTD)],
__PeriodSelection = "Month to Date", [Internet Net Sales (MTD)],
__PeriodSelection = "Year to Date", [Internet Net Sales (YTD)],
__PeriodSelection = "Prior Week to Date", [Internet Net Sales
(PWTD)],
__PeriodSelection = "Prior Month to Date", [Internet Net Sales
(PMTD)],
__PeriodSelection = "Prior Year to Date", [Internet Net Sales
(PYTD)]
)

The second parameter to the SELECTEDVALUE () function ensures that the Year to Date measure
is used if multiple values have been selected or if no values have been selected. In Figure 7.8, the
radio buttons indicate that the Single select option has been set to On in the Selection card of
the Slicer settings in order to avoid multiple selections. The Single select option disables the

default behavior of allowing multiple selections within a slicer.

If several additional DAX measures are driven by the parameter selection, a dedicated measure
could be created that only retrieves the selected value. This supporting measure would then
eliminate the need for the variable since the support measure could be referenced directly within
the SWITCH() function.

See Chapter 5, Developing DAX Measures and Security Roles, for example expressions of date
intelligence measures as well as measure support expressions. Of course, it’s possible to fully define
each date intelligence expression within the parameter-driven measure but, for manageability
reasons, it’s almost always preferable to leverage an existing measure. This is particularly the

recommendation when the required measures represent common logic, such as month-to-date.

In addition to using source system tables or Enter data queries to create parameter tables, Power

BI provides an alternative means known as What-if parameters.

Chapter 7 289

What-if parameters

What-if parameters provide a user interface for more easily creating parameter tables than the
custom slicer parameter demonstrated in the previous section. This option is currently limited
to numeric parameter values but automatically creates a single-column table, slicer, and DAX

measure that retrieves the slicer’s input value.

In Figure 7.9, two What-if parameters are used to calculate alternative unit price and unit cost

values thereby driving a hypothetical product margin % measure:

vt Sokm Unk Frics Grossth bt St Und Coaid Groevthy

O O
intemet Gross Margin % vy, Price and Greasth Cont Scenaric

- N,
HTE —== . o
L 5 L
~% ey S 1
T IIJ-. e ———————
T o 1145
u r_..-‘
1%
330 43
-__I___
S HLEK
AL
J5ER
16 =
1136 A ! | i | | A A1 4-AEp
#r L

Figure 7.9: What-if parameters applied in report visuals

By adjusting the two slider bars, a user is able to quickly model an alternative gross product
margin % scenario, as illustrated by the dotted line in Figure 7.9. The slider bar for modifying a

single value is unique to slicers for What-if parameter columns.

290 Creating and Formatting Visualizations

To create a What-if parameter, click the New parameter icon on the Modeling tab in the Report

view to launch the dialog shown in Figure 7.10:

What-if parameter

MName

Internet Sales Unit Price €

Data type

Fixed decimal number »

Minimum Maximum

0 . 0.20 g
Increment Default

'0.01 : | ' 0

~ Add slicer to this page

OK Cancel

Figure 7.10: Creating a What-if parameter

Based on the minimum, maximum, and increment input values specified, a new table with a
single column of values is created within the Power BI dataset. For the Internet Sales Unit
Price Growth parameter, this column has 21 rows from O to .2 with each value representing a
full percentage point (for example, 0%, 1%, 2%...20%). These tables are actually calculated tables

created using DAX with formulas as follows:

Internet Sales Unit Price Growth = GENERATESERIES(CURRENCY(®),
CURRENCY(®.2), CURRENCY(9.01))

Internet Sales Unit Cost Growth = GENERATESERIES(CURRENCY (@),
CURRENCY(@.2), CURRENCY(0.01))

Additionally, a new DAX measure is created automatically to retrieve the user selection, as per

the following expressions:

Internet Sales Unit Price Growth Value = SELECTEDVALUE('Internet Sales
Unit Price Growth'[Internet Sales Unit Price Growth], ©0)

Internet Sales Unit Cost Growth Value = SELECTEDVALUE('Internet Sales Unit
Cost Growth'[Internet Sales Unit Cost Growth], ©)

Chapter 7 291

With the second argument to both functions set to 0, both growth values return zero if a selection
hasn’t been made or if multiple values have been selected. The only remaining step is to create

one or more measures that reference the parameter values in their calculation logic.

In this example, the Unit Price and Unit Cost growth parameters are applied to gross sales and
product cost scenario measures, respectively. These two scenario measures are then used to
compute a product margin scenario measure and a product margin % scenario measure, per the

following expressions:

Internet Gross Sales Scenario = [Internet Gross Sales] * (1 + [Internet
Sales Unit Price Growth Valuel])

Internet Sales Product Cost Scenario = [Internet Cost of Sales] * (1 +
[Internet Sales Unit Cost Growth Value])

Internet Gross Product Margin Scenario = [Internet Gross Sales Scenario] -
[Internet Sales Product Cost Scenario]

Internet Gross Product Margin % Scenario = DIVIDE([Internet Gross Product
Margin Scenario], [Internet Gross Sales Scenario])

Although it’s possible and sometimes necessary to create parameter columns and measures
manually, the What-if parameter feature in Power BI Desktop can simplify this process for many
modeling scenarios. Additionally, the slider bar slicer exclusive to the What-if parameter columns

is the most user-friendly option for selecting parameter values.

To change the range of values available to the parameter, select the Parameter column in the

Fields pane and modify the min, max, or increment arguments to the GENERATESERIES () function.

Considering that both slicers and the Filters pane covered in the previous chapter can both filter
an entire report page, you may be curious as to when to use one or the other, so we explore that

topic in the next section.

Page filter or slicer?

Slicer visuals can serve as an alternative to distinct or dedicated report pages. With a slicer, a user
has the flexibility to select one or multiple values on the same report page, such as Northeast and
Southwest sales territories, without needing to navigate to a dedicated page. Additionally, by

consolidating dedicated report pages, slicers can simplify report development and management.

292 Creating and Formatting Visualizations

Slicers are often the best choice when there’s nothing unique to the different values of the slicer.
For example, if all sales regions are always analyzed by the same measures, dimensions, and
visuals, it may be unnecessary to duplicate these pages of visuals. Slicers are also very helpful or
necessary when users regularly need to analyze the data by the same dimensions or by custom

dimensions, such as price and date ranges.

While the Filters pane can be exposed to users and serve the same function as slicers, this can
be less intuitive and require more training for end users. Conversely, the benefit of utilizing the

Filters pane for this function is that more report canvas space is available for non-slicer visuals.

In general, slicer visuals that consume a small amount of canvas, such as dropdowns, are preferable
for dimensions that the user is expected to regularly apply filters on. Less common or “nice to
have” filters can generally be added to the filter pane rather than slicer visuals to preserve canvas

space and to avoid unnecessary queries.

As shown in Figure 7.11, the Filters pane allows filters to be hidden or locked by report authors

via the circle and arc (eyeball) icon and lock icon respectively:
Filters on this page

Year v XA
is 2013 ol =

Figure 7.11: Filter pane filter locking and hiding

Dedicated report pages are valuable for supporting email subscriptions, data alerts, and dashboard
visuals specific to a particular value such as a sales region. As shown in Figure 7.12, when in the
Power BI service, an email subscription can be set to any of the report pages within the USA
SALES AND MARGIN report:

Chapter 7 293

Subscribe to emails
USA SALES AND MARGIN

™ Southwest B Runnow @) on W
Subscrics

.l Grogory Daclder = Entar amall addresces

Subject

Southwess

Include an optional message

Repart page
Southrmeyl e

LISA,
Marth=a
Morthwest

Central

| Southeaet

Figure 7.12: Email subscription in Power Bl

As one example, the visuals from the Northeast report page could potentially be pinned to a
Northeast dashboard (or another dashboard) and used in data alerts and notifications for the
Northeast team as well. These region-specific capabilities are made possible by the distinct report

pages of visuals filtered for the given sales territory region.

294 Creating and Formatting Visualizations

If using dedicated report pages, it is likely that the report author will want to hide the Filters

pane entirely as shown in Figure 7.13 or, alternatively, lock all of the filters within the Filters pane.

Y Filters E »

Figure 7.13: Hiding the Filters pane when viewing report

This completes our review of slicers. We next turn our attention to visuals designed to primarily

feature single number values.

Single-value visuals

Single-value visuals are a class of visuals which prominently display an important value such as
the YTD Sales or the % Variance to Plan. These visuals are typically positioned at the top and left
sections of report pages and are commonly pinned to dashboards in the Power BI service. Though
simple relative to other visuals, single value visuals are often the first visuals users perceive and
these values relative to their expectations determine whether or not other visuals in the report

are analyzed.

The Card visual

Card visuals present a single Fields field well that accepts a single column or measure. Card visuals
are most often used to prominently display a single numeric value, such as an important business
metric. While perhaps more limited and visually unappealing than the KPI and Gauge visual, Card

visuals are valued for their simplicity and ability to drive data alerts within the Power BI service.

That said, Card visuals do include the ability to conditionally format the color for the displayed
value and label, providing the ability to serve as a rudimentary KPI visual displaying different

colors depending upon the overall health of the chosen metric.

Additionally, Card visuals can also display text. This is a powerful feature when combined with

measures, as demonstrated in the Drillthrough report pages section of the previous chapter.

Note that a version of the Card visual exists for displaying multiple numeric or text values called
the Multi-row card visual. The Multi-row card visual also includes a single Fields field well but

accepts multiple columns and/or measures.

We now turn our attention to the standard KPI visual.

Chapter 7 295

The KPI visual

The standard KPI visual packs a tremendous amount of information within a single visual. The
KPI visual is popular for displaying key business metrics given its ability to display the current
value of a business metric, the metric’s trend over time, and progress towards a specified goal all

within a compact form factor.

As shown in Figure 7.14, the KPI visual presents three field wells for Indicator, Trend axis, and

Target goals:

Total Net Sales YTD vs. Plan Indicator

AdWorks Net Sales (YTD) » X

C5 OM: | oo

Goal: $3.2M (+55.1%)
(0 Calendar Yr-Mo VX

Target goals

..

Total Net Sales Goal (YTD) v X

Figure 7.14: KPI visual

The Indicator field well accepts a single column or measure and is displayed as the large numeric
value in the center of the visual. The Trend axis field well accepts a single numeric or date column
and drives the shaded, sloping area behind the Indicator value. Both the Indicator and Trend
axis field wells must be populated for the KPI visual to display.

Optionally, the Target goals field well accepts one or more columns and/or measures. Most often,
a single goal is used. Including a Target goal provides conditional color formatting based on
whether the current Indicator value is higher, the same as, or lower than the Target goal. In
addition, the value of the Target goal is displayed beneath the Indicator value as well as the

variance (%) between the Indicator and Target goal.

Similar to the KPI visual, we next take a look at the Gauge visual.

296 Creating and Formatting Visualizations

Gauge visual

The Gauge visualis similar to the KPI visual in that a particular metric can be compared againsta
target value. The Gauge visual may be preferred over the KPIvisualin the event that an appropriate
trend axis is unavailable. However, a downside to the Gauge visual is that it takes up a large

amount of space relative to the amount of information presented.

As shown in Figure 7.15, the Gauge visual presents five field wells:

Tidad Kol S TV T v Phas Yelue
=1.22K Bty Bl Salea (FTO)] o %
L TE TR B
=
S"‘}GM Erchd fita Pailds hiire
£0.0M =1

L e Ty

ard gata Helds Fore

larg#l velu=

Il Met Saley Laowt (7 10| = X

Toeod g

A data Teakds e

Figure 7.15: Gauge visual

Of the five field wells displayed in Figure 7.15, only the Value field well is required. The column or

measure in the Value field well is shown as the central number within the Gauge visual ($5.0M).

Adding a Target value adds a line on the gauge and displays the target value ($3.22M). Alternatively,
the column or measure used as the Target value can instead be used as the Maximum value so

that the gauge is completely full once the target value is reached.

Power BI automatically selects minimum and maximum values for the gauge if the Minimum
value and Maximum value field wells are left unconfigured. An optional Tooltips field well is
available for the Gauge visual. Tooltips are covered in greater detail in the Formatting visualizations

section of this chapter.

We now move on from single number visuals to explore the various map visuals available within

Power BI Desktop.

Chapter 7 297

Map visuals

Power BI currently provides five map visuals including the Map, Filled map, Shape map (in

preview), Azure map (in preview), and the ArcGIS Maps for Power BL

The map visual plots location points as bubbles over a world map and varies the size of the
bubbles based on a value. The bubbles on these maps can also be broken out across a dimension

to provide additional context.

The Filled map and Shape map visuals are forms of heat maps that use color and color intensity

to distinguish specific areas of a map by a value, such as postal codes by population.

The Azure map visual is similar to the map visual in that it displays bubbles on a world map.
The Azure map supports different base layers like satellite and road as well as many different
settings including a display of live traffic data. While still in preview, continued enhancements

to this visual could position the Azure Map as the standard for geospatial analysis in Power BI.

The ArcGIS map visual is the most powerful of the available geospatial visualizations and several
custom map visuals are available in the App Store including the Globe Map, Flow Map, Icon Map,
Mapbox Visual, Drilldown Choropleth, Drilldown Cartogram, Route map, and Google Maps for
Power BI. See Chapter 8, Applying Advanced Analytics, for details on the ArcGIS map visual and

using custom visuals.

The Shape map and Azure map visuals are currently still in preview and thus should only be
used for testing purposes. The following URL provides documentation on the Shape map visual:
http://bit.1ly/2zS2afU. The following URL provides documentation on the Azure map visual:
https://bit.1ly/3H3KEIL.

As per the Data category section in Chapter 4, Designing Import, DirectQuery, and Composite Data
Models, it’s important to assign geographic data categories to columns. This information aids the
map visuals in plotting the correct location when a value is associated with multiple locations

(ambiguous locations).

Data categories can be assigned to columns from the Column tools tab in the Data view or the
Report view. For DirectQuery datasets, these metadata properties can only be assigned from
the Report view. Report authors should engage the dataset designer or BI team responsible for

a dataset if data categories have not been assigned to columns needed for report development.

http://bit.ly/2zS2afU
https://bit.ly/3H3kEIL

298 Creating and Formatting Visualizations

Additionally, for bubble and Filled map visuals, hierarchies can be added to the Location field
well to avoid ambiguous results. For example, by adding the hierarchy shown in Figure 7.16 to the
Location field well, the map visuals only use the locations associated with their parent values,

such as only the states of Australia.
Location
Country Name X

State/Province Name v X

City VX

Figure 7.16: Geographic hierarchies in map visuals

For greater precision and performance with map visuals (excluding the Shape map), latitude and

longitude input field wells are available as alternative inputs to Location.

We now take a more detailed look at the Bubble map visual.

Bubble map

Bubble maps are particularly useful when embedding an additional dimension column or category
to thelegend input. When a geographic boundary column, such as country or postal code, is used
as the location input, the added dimension converts the bubbles to pie charts of varying sizes.
Larger pie charts reflect the measure used for the Size input field and the components of each pie

are color-coded to a value from the legend column providing even greater context.

The map visual shown in Figure 7.17 uses the postal code as thelocation input, the Internet Net

Sales measure as the size input, and the Customer History Segment column as the legend input:

Chapter 7 299

Figure 7.17: Map visual

For this map, the Grayscale theme is applied from the Style card in the Map settings category.
The bubble map also includes a color saturation input to help distinguish bubbles beyond their

relative sizes. This input, however, can only be used when the legend field well is not used.

See the Customer history column section of Chapter 3, Connecting to Sources and Transforming Data

with M, for details on creating a history segment column within an M query.

Next, we explore the Filled map visual.

300 Creating and Formatting Visualizations

Filled map

AFilled map visual includes several of the same formatting properties of a bubble map but utilizes
color as its primary means to contrast locations. In the Filled map example shown in Figure 7.18,
a gradient color scheme has been applied via the Colors card in the Fill colors category of the
Format pane to highlight individual states based on the Internet Net Sales measure:

Wl b By Caueryy e VTR ELE

O Sam

LT ST

[JL= SR
W AT
1
Hpall
L} LR e
B N s Pl
=1
A AU sRALLL
DT B SR e SR
LY
T
e
bl ey

Figure 7.18: Filled map visual with gradient colors

Exactly like the color scheme described in the column and line chart conditional formatting section
later in this chapter, three distinct numeric values and colors are assigned to the Minimum, Center,
and Maximum properties. For this visual, the values of $1M, $2M, and $3M are associated with
red, yellow, and green respectively; causing the South Australia state to appear as red (low value)

while the New South Wales state is green (high value).

Additionally, like the previous bubble map example, a grayscale map-style theme has been applied

and the auto-zoom property has been disabled.

Chapter 7 301

Other map themes, such as dark, light, road, and aerial, are also available for filled and bubble
maps. These alternative themes, particularly when contrasted with the bright or rich colors of a

Filled map, can significantly add to the aesthetic appeal of a report.

As per the drill-up/down icons above the visual, a hierarchy of geographical columns (Country,
State, City) has been added to the Location field well. These additional columns help the Bing
Maps API to display the correctlocation, such as only Victoria in Australia. Note that whenever a
hierarchy is included in an appropriate visualization’s field well, the drill-up/down icons allow

report viewers to move between the various levels of the hierarchy.

To ensure that Bing Maps respects the parent column (for example, Country) when plotting child
locations (for example, States/Provinces), the user can enable the drill mode via the drill-down
button in the top-right corner of the visual. With drill mode enabled, the user can click the specific
parent value on the map, such as the United States, and Bing plots states by only searching for

states within the United States.

Alternatively, with drill mode not enabled, the user can click the expand all down one level icon
at the top left of the visual. From the initial state of the parent value (country), this also plots the
states within each parent value. The other drill option at the top left of the visual, the go to the

next level drill, only plots the child values without the context of the parent value.

Moving on from map visuals, we next expound upon the Waterfall chart visual.

Waterfall chart

The waterfall chart is one of the most powerful standard visuals in Power BI given its ability to

compute and format the variances of individual items between two periods by default.

The items representing the largest variances are displayed as columns of varying length, sorted
and formatted with either an increase (green), no change (yellow), or decrease (red) color. This
built-in logic and conditional formatting make waterfall charts both easy to create and intuitive

for users.

302 Creating and Formatting Visualizations

In Figure 7.19, the Internet Net Sales of the last two completed months are broken down by

SalesTerritoryCountry:

neernal Nt Sakes by Country: Last Complte Paried v, Prior Pariod
31 EEOK

£oK
e C—
2K
81, 600K o .
§1 AT
=1 BI0K
$1 800K

51, 7RK

04 Sl Ausiala Uniled Fracwe Othie Cenece WE0d 20 5-Dec
karsgtom e

Figure 7.19: Waterfall chart with breakdown

The waterfall chartin Figure 7.19 was created by placing the Internet Net Sales measure applied
to the Values field well, and placing the Year Month and SalesTerritoryCountry columns into
the Category and Breakdown input fields, respectively. The waterfall chart naturally walks the
user from the starting point category on the left (2013-Nov) to the ending point category on the
right (2013-Dec).

As per Figure 7.19, hovering the cursor over a bar results in the details for this item being displayed
as a tooltip. In this example, hovering over the ($52K) green bar for Australia displays Internet
Net Sales for both months, the variance, and the variance as a percentage. These four tooltip

values are provided by default and report authors can optionally add measures to the Tooltips

field well to deliver even greater context.

We now turn our attention to another powerful analytical visual, the Key influencers visualization.

Power Platform visuals

Power Bl is part of a larger suite of products known as the Power Platform. In addition to Power

BI, the Power Platform is comprised of Power Apps, Power Automate, and Power Virtual Agents.

Chapter 7 303

The Power Platform is designed to support low-code and no code development by business
analysts familiar with MS Office tools like Excel butis also extensible to support complex, custom
solutions involving application development skills and processes. Power Automate is used to
design and run workflows and Robotic Process Automation (RPA). Finally, Power Virtual Agents

provides a platform for creating intelligent, automated agents.

Over the last few years, Microsoft has worked steadily to create seamless integration between
the various Power Platform tools as well as Dataverse, Microsoft’s business data object/entity
store. In terms of Power BI, this has meant the introduction of standard visuals for Power Apps
and Power Automate, thus enabling Power Bl report users to act based on their analyses without

ever leaving Power BI.

For example, after analyzing recent sales trends on one report page, a user could increase the
sales budget via an integrated Power App that contains budget information on a separate report
page. Likewise, a button could be added to a Power BI report page that enables a user to trigger

a Power Automate workflow that refreshes a Power BI dataset.

We start by looking at an example of using the Power Apps visual in Power BI Desktop.

Power Apps for Power Bl

As mentioned, Power Apps allows for the creation of low-code/no-code applications and web
portals. Power Apps is a cloud-first environment and the latest of a long line of forms-based

collaboration technologies that include Exchange Forms, Outlook Forms, and SharePoint.

Figure 7.20 shows the Power Apps for Power BI visual after being configured to have the
ResellerName column from the Resellers table in the PowerApps Data field well within the

Visualizations pane.

¥ Coe

Choose an existing ap or create a new one

PowerApps Studio will open in a new browser tab.

Figure 7.20: Power Apps for Power Bl visual

304 Creating and Formatting Visualizations

As shown in Figure 7.20, the Dataverse environment for the app can be selected in the upper-right
corner of the visual, in this case, the coe environment. Existing Power Apps can be chosen by
clicking the Choose app option or a new Power App can be created using the Create new option.
In either case, the data included in the PowerApps Data field well for the visual is available to

the Power App.

Choosing the Create new option launches a browser window that navigates to the make . powerapps.
comwebsite and allows the report author to create a new Power App. The new Power App includes

a default screen with a gallery control as shown in Figure 7.21.

A Bicyele Association "
A Bike Store *
A Cyele Shap)
& Great Bicycle Coampany >
A Typical Bike Shop by
Beceptable Sabes & Service ¥
Accessories Network ;)
Acclaimed Bicycle Company e
Ace Bicycle Supphy >
Action Bicycle Specialists)
Active Cycling by
Active Lite Toys o

Figure 7.21: Power app displayed in the Power Apps for Power Bl visual

Details regarding creating a Power App are beyond the scope of this book but Chapter 13 of Power

BI Cookbook 2nd Edition provides a more complete example.

http://make.powerapps.com
http://make.powerapps.com

Chapter 7 305

Once the Power App is created or chosen, the Power App can be saved and shared with others.
Once this is done, the Power App is displayed within the Power App for Power BI visual within
Power BI Desktop.

Moving on, we next take a look at the Power Automate visual for Power BI.

Power Automate for Power Bl

Power Automate is Microsoft’s cloud-based workflow and RPA platform. The Power Automate
for Power BI allows Power Automate flows to be initiated from Power BI Desktop. These flows

can utilize data from the Power BI model exposed to the Power Automate for Power BI visual.

Figure 7.22 shows the Power Automate for Power BI visual after adding the visual to the report
page and placing the EmailAddress column from the Customer table into the Power Automate

data field well within the Visualizations pane.

EErT .
:'. Covpor cizte

Creeia m buion Hal iiggems ssomried iméa sibord D Fowsr M. Loamn Ko =
™ Sn A 34 030K

E] s M, Faroas

i Zpadight
Mrag s Badris. rewsciesd B g e | lonmosms! Eowhe's s Tty Bt s

{3] Bl us pour Faoer

S SR i e A OO0 { | v O D95, wigrad, e S00r T ek sobOng 10 Cinais”
m Pl

G'ﬁ Apgh and shas
-

i ALy o] e Fpee 1o e e Bkeoe ma e howes e e acih e
rapo reeders wi e socsee bo e i

I::I Forret powr bafion
Pasors prd Formost your Fosesr dadomsds tubon

Figure 7.22: Power Automate for Power Bl visual

306 Creating and Formatting Visualizations

As shown in Figure 7.22, once data fields are added to the Power Automate data field well, the
ellipses menu is used to Edit the Power Automate flow. Choosing the Edit option exposes the
interface shown in Figure 7.23, allowing the user to choose an existing flow or create an entirely

new flow from a template.

¢, Do m mpoa

Lbrrnenf Prscer Snameoaie

Poracs S0 inmipd ain=s yodi mkght Al

4 B = @ 4 @

Updrie an Coul iazk bom Sovyd @ Teares revssge from gl an Fves ke o Erpretoind
e HI Frvaces 7 i Troas Forees 154
By e oy ook Es Yicoank

=3

« B

Creams s vk froen Porsaer Bl

Figure 7.23: Power Automate for Power Bl visual Edit screen

The New menu shown in Figure 7.23 provides two options, Template and Instant cloud flow. In
this case, the Instant cloud flow option was selected and a simple flow was created to send links

to a web-based survey. This flow is shown in Figure 7.24.

Chapter 7

307

ﬂ ".rm..rbl dala =

Lerd an emad (V2]

d Feowsny Bl dala =

| s Apply oo esch i Empihgdnes |

Frofhzem i oy per rddand poreciioa

Fomt *~ =B Il A=Es # L
Wioiddl o mired compheing thia brial sures
o] Edwariielry Tt g s sl

ﬂ Lhisr i ﬂ Linar redred |ﬂ Lbat i |ﬂ Tmaili=j
|ﬂ] Prusoier B ﬂ Py ﬂ Prrasrr Bl ﬂ mnitiy ﬂ Hvem
fl P

A i L

0
uLl.rn-lrtll

Figure 7.24: Power Automate for Power Bl visual Edit screen

In Figure 7.24, the EmailAddress data exposed to the Power Automate for Power Bl visual via the

Power Automate data field well is used as the To address for the email. Note the tooltip indicates

that the email will be sent to each selected email address. The simple flow includes a Subject and

an email Body that includes a link to a survey.

Once the flow is saved and shared, the Power Automate for Power BI visual displays a button

that can be used by Power Bl report viewers as shown in Figure 7.25.

> Send Survey Email

Figure 7.25: Power Automate for Power Bl visual configured

308 Creating and Formatting Visualizations

Like other Power Bl visuals, the Power Automate for Power Bl visual is interactive and filtered by
other report visuals. This means that the report viewer can select data appearing in other visuals
on the report page and this cross-filters the Power Automate for Power BI visual, meaning that

upon clicking Send Survey Email, an email is generated for each customer email address.

In addition to integration with other Power Platform offerings, Microsoft has also introduced

visuals specific to Premium (capacity-based) offerings, and we take a look at these next.

Premium visuals

As Microsoft’s Power BI Premium offering has matured, Microsoft has added two standard Power
Bl visuals that support features exclusive to capacity-based Power Bl licenses, including Power BI
Premium and Premium Per User (PPU). These visuals are the Scorecard visual and the Paginated

report visual.

We begin by looking at the Scorecard visual.

Scorecard

Scorecards are a relatively recent addition to Power BI that support the display and tracking
of Goals within Power BI Premium and PPU. Goals allow you to create and track multiple key
business metrics and objectives in a single place via a Scorecard. Both Goals and Scorecards are

covered in more detail in later chapters.
Figure 7.26 shows an unconfigured Scorecard visual added to a Power Bl report page.

Add a scorecard to this report

Track progress against your goals—right in this
report.

Create new scorecard

Connect to an existing scorecard

Figure 7.26: Scorecard visual

As shown in Figure 7.26, two options are present, Create new scorecard and Connect to an
existing scorecard. Figure 7.27 shows the same visual after being configured to Connect to an

existing scorecard.

Chapter 7 309

Lisaarmt Pomevar B Tried Bdfitian 7 o] a 1 1 a
Leani remrcka [X EH = rmk sk bert maned Coergdered
Mame Ceamprn Stxten Vidue Fragrsay Dise clake Sriec
15050 a0 .
Cama ke Srad Firdan B et fia e = 3 Do, 32501

.":-i. 53ty

3ad Groal ﬂ wLERE S Pk rianed A% o = Y|

Figure 7.27: Configured Scorecard visual

As shown in Figure 7.27, a simple scorecard consisting of two goals is displayed in the Scorecard
visual. The Scorecard visual is completely interactive, allowing the report viewer to interact with
the scorecard as if viewing the scorecard in the Power Bl service. Options are included to Edit the

scorecard, Replace scorecard, and open the scorecard in the Power BI service.

In addition to the Scorecard visual, another premium visual is the Paginated report visual.

Paginated reporits

Paginated reports have along and storied history at Microsoft, having first appeared in SQL Server
Reporting Services (SSRS) in 2004. Paginated reports use an XML-based language called Report
Definition Language (RDL). With the paginated report visual now available in Power BI Desktop,
the unique benefits of paginated reports such as exporting high volumes of data and multi-page

report documents can be integrated within Power Bl reports.

While Power Bl reports are optimized to be highly interactive and allow self-service exploration of
data by users, paginated reports allow pixel-perfect formatting that report designers can optimize
for screens, printing, and PDF generation. Paginated reports are explored in greater detail in

Chapter 12, Deploying Paginated Reports.

Figure 7.28 shows an unconfigured Paginated report visual added to a Power BI Desktop

report page.

All the benefits of paginated reports at
your fingertips—print with ease, maintain
a tidy layout, and mare.

Cannect to report

Figure 7.28: Configured Scorecard visual

310 Creating and Formatting Visualizations

Clicking on the Connect to report button within the Paginated report visual as shown in Figure

7.28 opens the Embed a paginated report dialog shown in Figure 7.29.

Eméedd = paginalnd rmpart
ST Bade el o ' [T TS e
#ooount Ledger Babwnoes Ak vemaeed s DU 2018

Sl Paarmedms o

Figure 7.29: Select paginated report

As shown in Figure 7.29, any paginated reports published in the Power BI service to which the
report author has permissions is displayed in the Embed a paginated report interface. Selecting
a paginated report activates the Set Parameters button.

Parameters are an optional feature of paginated reports that allow a single report to display
different data, such as for a specific customer or division. Once parameters, if any, are set the
report can be displayed using a button.

Moving on from premium visuals, we next explore reporting elements such as text boxes, shapes,

images, and buttons.

Elements

In addition to visuals, Power BI Desktop includes the ability to add elements such as text boxes,

shapes, images, and buttons to report pages.

Elements can be added to report pages using the Insert tab of the ribbon when in the Report

view as shown in Figure 7.30:

File Home Insert Modeling View Help External Tools
G odtd I W® 2 A5
New ew More Paginated Power Power Automate Text Buttons Shapes Image
page v wsual visuals v wsualsv report Apps (preview) box v v

Pages Visuals Power Platform Elements

Figure 7.30: Select paginated report

Chapter 7 311

Elements share common traits and features. For example, buttons, shapes, and images all include
the ability to activate a bookmark when clicked on as demonstrated in the Custom labels and the

back button and Custom report navigation sections of the previous chapter.

In addition, selecting a text box, button, shape, orimage on areport page replaces the Visualizations
pane with a Format text box, Format button, Format shape, and Formatimage pane respectively.
This pane works identically to the Format sub-pane of the Visualizations pane as described in

the Visualizations pane section earlier in this chapter.

Elements are often used as navigation features between pages in a report due to the ability to
configure the Action format card for buttons, shapes, and images for settings such as Back,

Bookmark, Drill through, and Page navigation in addition to Q&A and Web URL actions.

In fact, the Buttons element includes a special Navigator feature that allows the report author
to automatically add multiple buttons for each page or each bookmark in a report as shown in
Figure 7.31:

_:.-I: |5 '
L A Erkin

- - =

' L | =1

[B I

—= Heghl miow

T Ramst

&) pacx

I wdperrmdea

_- HER
e
Boakraar:

L b

-'.F Hawmgai >

HE g Cerv e
Haobrrm b reygalee

Figure 7.31: Navigator button options

312 Creating and Formatting Visualizations

As shown in Figure 7.31, there are nine different buttons available. However, realize that the only
difference between these buttons is the icon and default Action configured, both of which can

be changed after creating the button.

Other uses for elements include stylizing the report to more clearly separate report areas, such as
the example from the Custom report navigation section of the previous chapter. In addition, text
boxes are often used to display static text such as areport title or other instructional information

for report viewers.

There are many other creative ways that elements can be used within Power BI reports such as
referencing a DAX measure from a text box in order to display a custom message or value such asa
title or date refreshed. Readers are encouraged to explore blog articles and other online materials

for additional ideas and inspiration.

With many of the default visualizations and elements explained, we next discuss formatting

visualizations.

Formatting visualizations

One of the final steps in report development is configuring the formatting options for each visual.
Several of these options, such as data labels, background colors, borders, and titles are common
to all visuals and are often essential to aid comprehension. Several other formatting options,
such as fill point for scatter charts, are exclusive to particular visuals and report authors are well

served to be familiar with these features.

In addition to giving reports a professional appearance, features such as tooltips can be used to
provide visuals with additional or supporting context. Furthermore, formatting features can be

used to implement conditional logic to dynamically drive the color of data points by their values.

We start by exploring how Tooltips can aid in providing additional context and insights to

report viewers.

Tooltips

Chart and map visuals include a Tooltips field well in the Visualizations pane to allow report
authors to define additional measures that display when the user hovers over the items in the
visual. These tooltip values reflect the same filter context of the data labels for the visual and
thus provide the user with additional context. In Figure 7.32, five measures have been added to

the Tooltips field well for a column chart:

Chapter 7 313

Imemed Net Sales by Year Month
31 7AM

51 .56

106

oW
2013 Jui ad-bug 201E-Sep 20150l Fat B

Figure 7.32: Additional measures displayed as tooltips

By hovering over the column for online net sales in October of 2013, the tooltip is displayed, which
includes both the Internet Net Sales measure used for the chart as well as the five tooltip
measures. In the absence of the tooltips, the user may have to search for other reports or visuals

to find this information or may miss important insights related to the visual.

Tooltips are a great way to enhance the analytical value of a visual without adding complexity
or clutter. Additionally, given the features of the DAX query engine, such as DAX fusion, the
additional measures displayed as tooltips generally do not negatively impact performance. DAX
fusion occurs automatically when the measures displayed are based on the same fact table and
the DAX query engine can optimize the query plan to generate a single storage engine query for

all measures.

Next, we take a look at a special type of tooltip, report page tooltips.

Report page tooltips

The standard tooltips described in the previous section may be sufficient for most reporting
scenarios. However, Power BI Desktop also provides report page tooltips that allow report authors
to display a custom page of report visuals as an alternative to the default tooltips. The following

steps can be used to configure a report page tooltip:

314

Creating and Formatting Visualizations

Add a new blank report page to a report.

On the Format pane for the report page, enable the Allow use as tooltip property under

the Page information formatting card.
Also on the Format pane, specify a Type of Tooltip under Canvas settings as per Figure 7.33:

Format page

2 Search
“ Page infommatcn

Mamse
Frgufe 5032
Allres LS a5 1oallip O il

Allor LrEA 3

Rewan todetaull

“ Canvas seftings

Taodtip e

Figure 7.33: Report page tooltip

On the tooltip page from step 3, set Page view to Actual size via the Page view icon on
the View tab.

From the Fields pane of the tooltip page, drag a measure or multiple measures to the tooltip
Fields field well. Columns can also be specified as tooltip fields (for example, Product

Name).

Create report visuals on the tooltip report page that relate to the Tooltip field well
measure(s) or column(s). For example, if the tooltip page supports a sales measure,
consider building visuals that display sales versus plan, budget, or sales growth measures.

Given the limited size of the tooltip report page, KPI and Card visuals are recommended.

Chapter 7 315

By default, other visuals in the report that utilize the measure(s) or column(s) specified as tooltip

fields in step 5 display the tooltip report page when the user hovers over the items of the visual.

The Type of Tooltip from step 3 is not required for utilizing tooltip report pages. However, this
property makes the purpose of the page clear to the other report authors and has been provided
by the Power BI team as a good starting point for most report page tooltips. Likewise, viewing
the report page tooltip in Actual size as per step 4 is technically not required but is very helpful
in designing these pages as the report author can better gauge how the tooltip will be displayed

to end users.

Alternatively, a Tooltips formatting card is available on the General tab of the Format pane for
charts and map visuals. This formatting card can be used to specify a particular tooltip report page
for the given visual or to disable tooltips. The Type of tooltip can be specified such as a Report
page or Default. If Default is selected, the visual displays the default tooltips as described in the

previous section.

We next take a closer look at formatting column and line charts.

Column and line charts

Line, column, and bar charts are the most common chart visualization types given their advantages
in visual perception, as explained in the Visualization best practices section of this chapter. Power Bl
includes clustered and stacked versions of column and bar charts in addition to two combination

charts that display both a line and either a clustered or stacked column.

Note that the difference between clustered and stacked charts involves how the Legend impacts
the columns and bars. With clustered charts, the Legend adds additional columns or bars to the
axis within the axis groupings. Conversely, with stacked charts, the Legend creates groups within

a single bar or column for each axis group.

The ribbon chart visualization represents a variation of the stacked column chart. Unlike the
stacked column chart, the ribbon chart sorts the category items within each column based on

their values and connects the items across columns with a ribbon.

316 Creating and Formatting Visualizations

Figure 7.34 shows an example of a ribbon chart. Four product subcategories are displayed across

months by Internet Net Sales:

st Nl Sl by YWaar Monih and Product Bubeatenery

=
Hraarg
3 o L

FTER] ™ 2013-faig TR o
Tem Monlh
Predoci Subcrnpory Wisks Sowcr B Macdey @hahs R : Lo et

Ry calepery melt

Figure 7.34: Ribbon chart

The Ties and Tubes subcategory overtook the Helmets subcategory in July 2013 to become the
top-selling product subcategory in the visual. As per the tooltip included in the preceding image,
hovering over the curved ribbon connecting the months on the X-axis displays the values for
each month, the variance and percentage change between the months, and the change in rank
for the given category (for example, from second to first for Tires and Tubes). Insights into the
rankings of categories and their changes across periods wouldn’t be as easily identified in a

standard stacked column chart.

The ribbons formatting card allows for spacing, transparency, and a border to further aid
comprehension. As shown in Figure 7.34, the ribbon Border is enabled, the Connector transparency
of the ribbon is set to 50%, and the ribbon Spacing is set to 5. Currently, unlike the stacked
column chart, the ribbon chart doesn’tinclude a Y-axis to identify the total value of each column.

Additionally, the individual ribbons are currently distinguished by color.

Let’s next take a look at conditional formatting for these charts.

Column and line chart conditional formatting

Column and line charts are two of the most common visuals in reports given their flexibility and
advantages in visualizing comparisons and trends. However, these classic visuals don’t have to
be static or simple—report authors can embed custom rules to dynamically drive formatting

properties based on source data.

Chapter 7 317

Similar to tooltips, conditional formatting techniques help users more quickly derive insights
from visuals without the added complexity of more data points or additional visuals, so let’s start

by exploring conditional formatting for column charts.

Column chart conditional formatting

To apply conditional formatting, use the fx formatting option in the Colors format card under
the Columns section. In Figure 7.35, the Internet Net Margin % measure is used as the Colors

setting with a Format style of Gradient:

“ inualizxiione *
Bewfavlt calar - Columns
ol v sl
HRLLE o S :_: |_;F -_i::
|'L1ul] W 5 .
|.-] b
Whral b= ey A bars e ong [T R PRl T] o
| wemH W Mt ta - brorem |
Thramiirag
Lo L [TR
LT T
| P <l v | dMmee =~ Vigeache ||l -
T oanman b EALH
g awal = Sl e RS R T
e L]
SO TUHE R TEH DS T e o
Iy
Reea M g

Figure 7.35: Diverging data color formatting

With the Add a middle color property enabled, this rule associates three colors (red, yellow,
and green) with Minimum, Middle, and Maximum values. This rule makes it easy for users to
distinguish the columns, such as fiscal periods or product categories, associated with low, average,

and high product margins.

By switching Format style to Rules, a rule can be specified for only a minimum and a maximum
value. This can be useful to change the color of a column only when a threshold is reached. In
other words, the chart displays, at most, two distinct colors with one of the colors (for example,

red) flagging the exceptions.

Note that the fx option for driving the conditional formatting for colors applies to many other
visuals than just column and line charts and the interface is identical to that shown in Figure

7.35. However, conditional formatting for line charts works differently so let’s look at that next.

318 Creating and Formatting Visualizations

Line chart conditional formatting

Conditional formatting can be applied to line charts by applying distinct colors to separate DAX
measures. In the following example, a DAX measure is created that only returns the sales per

order value when its value is below $325,000:

Internet Net Sales Below $325K =
VAR _ Sales = [Internet Net Sales]
RETURN

IF(__Sales < 325000, Sales,BLANK())

Using this measure and the Internet Net Sales measure on the same line chart allows for

separate colors to be applied as shown in Figure 7.36:

Intemel Mel Zawa |rand

-

bl

A\

Figure 7.36: Contrasting colors for line chart measures

Chapter 7 319

For this example, a green color is used for the Internet Net Sales measure and red for the
Internet Net Sales Below $325K measure. Additionally, the below $325K line can be formatted
with a slightly larger stroke width and a dashed line style via the Shape card as shown in Figure
7.36.Theline chart appears as a single line that changes colors and styles when it goes below $325K.

The stroke width, join type, line style, and marker shape formatting properties provide a wide range
of options for contrasting lines beyond their colors. These additional properties are recommended

to aid general comprehension and to support users who cannot easily distinguish colors.

Let’s next take a look at formatting for table and matrix visuals.

Table and matrix visuals

As per the Choosing the visual section earlier in this chapter, table and matrix visuals are best suited
for identifying and displaying precise values. A classic example of a matrix visual is when a user
needs to view the values of a metric at multiple levels of a hierarchy such as the sales dollars for

individual products, product subcategory, and category.

While Power BI reports are most known for their graphically rich visualizations, the table and
matrix visuals have also received significant enhancements over the past few years to give report

authors granular control over the layout and formatting of these visuals.

For example, a matrix visual can be designed in a Power BI report to generally replicate and
potentially improve upon a PivotTable report in Excel or a matrix data region in a SQL Server

Reporting Services (SSRS) report.

320 Creating and Formatting Visualizations

Table and matrix visuals also support the same Display units and Value decimal places formatting
properties as other visuals. In Figure 7.37, both measures have been formatted to display their

values in terms of millions with one decimal place:

o B T i

Apply =Dags 10

Eharien

bl Diigeas Sefers

FipEdy W0 i md #
Sl i ksl B
Umien Tardrey Gimam e Gecan Sxea bwwmad Wad kluyge fuppdy 0 walues m
-
P p— AR B Al
FaniK T 51 Dl el
Firne A 3N
Tetal SEh 4 1IN o
Bacdogrodiird
-
Adgyrateal
Deagtap Litils
Bl oy

Wl el pioees

1

Figure 7.37: Display units and Value decimal places for table and matrix visuals

As shown in Figure 7.37, these properties are available within the Specific column category of
the Format pane. Display units options range from Thousands (K) to Trillions (T). By default,
the Display units property is set to None for table and matrix visuals and Value decimal places
is blank.

Prior to the availability of the Display units and Value decimal places properties, it was necessary
to use the FORMAT () function in separate DAX measures to display custom formats in table or
matrix visuals. The following two measures apply a custom rounded currency format to the

results of the Internet Net Sales measure:

Internet Net Sales (Format Thousands) = FORMAT([Internet Net
Sales],"$0,.0K")

Chapter 7 321

Internet Net Sales (Format Millions) = FORMAT([Internet Net
Sales],"$0,,.0M")

Both measures use the FORMAT () function to convert the input value (the Internet Net Sales
measure) to a string in a custom, rounded format. Specifically, the comma or commas immediately
to the left of the decimal are used to divide the value by 1,000 and round as necessary. The
zero to the right of the decimal displays a digit or a zero. For example, the $541,613 value would
be displayed as $541.6K and $0.5M by the format thousands and format millions of measures,

respectively.

In addition to the visual format settings and FORMAT () function, another method is available to

precisely control how values are displayed, custom format strings.

Custom format strings

The obvious disadvantage of using the FORMAT () function is that numeric values are converted
to text. However, while still an intern at Microsoft, Chelsie Eiden implemented custom

format strings.

Custom format strings accept the same kinds of format strings as used in the FORMAT () function
(suchas"$@,, .0M" for millions and "mmmm" for long month names like January) but preserve the

underlying data type of the column or measure.

Custom format strings can be entered into the Format dropdown while in the Report view on the
Column tools or Measure tools tabs. Alternatively, while in the Model view, select a column or
measure and in the Properties pane, in the Formatting section, set Format to Custom and then

enter a Custom format as shown in Figure 7.38:

“~ Formatting

Format

Custom v

Custom format Learn more

$0,.0\K
Example: $123.5K

Figure 7.38: Display units and decimal places for table and matrix visuals

322 Creating and Formatting Visualizations

Custom format strings can be used for a variety of purposes, such as displaying numbers in
duration format (hh:mm:ss). The following measure takes a column called Duration given in
seconds and applies a transformation to locate hours, minutes, and seconds in particular orders of
ten. This code can be used with a custom format string of 80:00: 00 in order to display a duration

in hh:mm:ss format.

Chelsie Eiden's Duration =
// Duration formatting
// * @konstatinos 1/25/2016
// * Given a number of seconds, returns a format of "hh:mm:ss"
//
// We start with a duration in number of seconds
VAR __SecondsDuration = SUM([Duration])
VAR _ Sign = SIGN(__SecondsDuration)
VAR __ Duration = ABS(__SecondsDuration)
// There are 3,600 seconds in an hour
VAR _ Hours = INT (__Duration / 3600)
// There are 60 seconds in a minute
VAR _ Minutes = INT (MOD(__ Duration - (_ Hours * 3600),3600) / 60)
// Remaining seconds are the remainder of the seconds
// divided by 60 after subtracting out the hours
// We round up here to get a whole number
VAR _ Seconds = ROUNDUP(MOD (MOD(_ Duration - (_ Hours * 3600),3600),
60),0)
RETURN
// We put the hours, minutes and seconds into the proper "place"
(__Hours * 10000 + _ Minutes * 100 + _ Seconds) * _ Sign

Additional uses of custom format strings can allow otherwise seemingly impossible things such as
displaying dates and date-time values in the Y-axis of a chart. Such a chartis useful, for example,
when attempting to chart at what time of day certain events occur across multiple days or on

what days events occurred across years or months.

The following column definition using a Date column as input can be used with a custom format

string of 0\ /00\ /0000 in order to display dates on the Y-axis.

DatesInY = MONTH([Date]) * 1000000 + DAY([Date]) * 10000 + YEAR([Date])

Chapter 7 323

Since the Y-axis of charts only supports numeric values, custom format strings such as this are

required in order to display dates and date times within the Y-axis.

It must be stressed that custom format strings are a general feature of columns and measures and

thus can be used in all types of visuals, not just tables, matrixes, and charts.

We now turn our attention to conditional formatting for tables and matrixes.

Table and matrix conditional formatting

Aswith charts, default and custom conditional formatting rules can be applied to table and matrix
visuals to make it easier to identify exceptions and outlier values. Power BI currently supports
Background color, Font color, Data bars, Icons, and Web URL conditional formatting for table

and matrix visuals.

To apply conditional formatting to a table or matrix, click the drop-down arrow next to the field
name of the measure or column (for example, Internet Net Sales) in the Values field well of
the Visualizations pane. A Conditional formatting menu item appears with an arrow providing

access to the different types of conditional formatting.

In Figure 7.39, data bar conditional formatting has been applied to four measures related to

internet sales:

Sakes Territory Country Internet Met Sales Internet Sales Customer Count Internet Sales Orders Internet Met Sales (YOY YTD %)
Australia B R N R -1 0 S R [17%
Canada a 5307605 [169 55 [46%
France 5645,066 (DD 356 = 359 | SE%
Germany scoscse [335 330 | 7%
United Kingdam B ;o a: [N 405 | 2o,
United States S I - I --: | -42%
Total $5,842.485 3,255 1,269 7%

Figure 7.39: Data bar conditional formatting

The length of the data bars helps to call out high or low values and alternative colors can be
applied per measure. The direction of data bars is particularly helpful in distinguishing negative
from positive values as per the Internet Net Sales (YOY YTD %) measure in the preceding

example visual.

For large table and matrix visuals with many values, or when the relative differences between
values are more important than the individual values themselves, the option to show only the

data bar can be very useful.

324 Creating and Formatting Visualizations

Custom conditional formatting rules can be applied to the background and font color scales of
table and matrix visual cells similar to Microsoft Excel. In Figure 7.40, Rules are defined to format
the background cells of a measure as green if over 25%, yellow when between -25% and 25%, and
red if the value is less than -25%:

Background color - Internet Met Sales (YOY YTD %)

Famrat syle Apoly o

H.’l'. .|.|-'|'. any =

‘What fieddl shioadd we bace chis on?

Irmarreey Mt Sakgs AF0A YT R -

Rides Il Fipamse Corlod D T e e

Frile w T | w ||-2= i - [T |l Jiw
| w0l Famwaer: - it TR = W

Funism| - o om ey | R ol (B surkr o (i |l - i W

Figure 7.40: Custom conditional formatting rules

The conditional formatting rules are evaluated from the bottom to the top. Therefore, if a cell
meets the condition of multiple rules, the lower rule is applied. The order of rules can be adjusted

via the up and down arrows to the right of the color icons.

Multiple conditional formatting types can be applied against the same measure. For example,
the same three conditional rules used for the background color scales in the preceding image
could also be implemented as font color rules. However, the font colors specified for each rule
(for example, white) could be chosen to contrast with the conditional background colors (for

example, red) to further help call attention to the value.

DAX measures are also supported as inputs to conditional formatting rules. This functionality
makes it easier to implement more complex rules, such as greater than the prior year-to-date

sales value or a different color based upon the margin % of different product categories.

For example, the following Internet Net Margin % Color supporting measure can be created
toreturn 2, 1, or @ depending upon the Product Category and desired Internet Net Margin %

measure value.

Internet Net Margin % Color =
VAR __ Category = MAX('Product'[Product Category])
VAR __Margin = [Internet Net Margin %]

Chapter 7 325

RETURN

SWITCH(TRUE,
__Category = "Bikes" && _ Margin >= .40,"Green",
__Category = "Bikes" && __Margin >= .35,"Yellow",
_ Category = "Bikes" && _ Margin < .35,"Red",
__Category = "Clothing" && _ Margin >= .35,"#00ff00",
__Category = "Clothing" && _ Margin >= .30,"#ffffee",
_ Category = "Clothing" && _ Margin < .30,"#ff0000",
__Category = "Accessories" && _ Margin >= .65,"Red",
__Category = "Accessories" & & _ Margin >= .60,"Yellow",
__ Category = "Accessories" && _ Margin < .60, "Red"

)

In this example, a different target margin % is desirable for different product categories. As shown,

either standard color names or hexadecimal color codes can be used as return values.

This measure can be used for field value-based background color conditional formatting as shown

in Figure 7.41:

Background color - Internet Net Margin %

Format style Apply to

Field value v Values only v

What field should we base this on?

Internet Net Margin % Color v

Figure 7.41: Conditional formatting based on field values

When applied to a simple table, the result is shown in Figure 7.42:

Product Category Internet Net Margin %

Accessories 60.1%
Bikes 38.0%
Clothing S 3%
Total 38.9%

Figure 7.42: Background conditional formatting for a table

326 Creating and Formatting Visualizations

As shown in Figure 7.42, even though Clothing has the lowest net margin % for internet sales, the
background color is green because the 37.5% value is above the target threshold of 35% specified
in the Internet Net Margin % Color measure. Conversely, Accessories and Bikes are colored
yellow because they do not meet the desired margin % thresholds for these categories.

Let’s next look at a highly desired feature for tables and matrixes that was recently added to

Power BI, Sparklines!

Sparklines

Sparklines are small line charts drawn without axes or coordinates that help visualize the shape
of variations (usually over time) of some metric. Sparklines have long been a staple in Excel and
were one of the most requested features for Power BI Desktop, being prized for their ability to
convey analytical insights with a miniscule form factor.

Recently, Microsoft added Sparklines to Power BI. When a table or matrix visualization is selected,
the Sparkline feature becomes active on the Insert tab of the ribbon while in the Report view as

shown in Figure 7.43:

A DR =

Text Buttons Shapes Image Add a
box v v sparkline

Sparklines are simple charts you can add to column cells in a
table or matrix to easily show trends and make comparisons.

Figure 7.43: Add a sparkline option

Clicking on the Add a sparkline option shown in Figure 7.43 presents a dialog for configuring the

Sparkline as shown in Figure 7.44:

Add a sparkline

Spaarklires g admphe cherts yoa Can Sod bo ool umine s tebde
of itrin. L i

f-muin SUMMATEEICien

ntEmEl Met Mangin %

N-axiu

Whairth MHama

Creats

Figure 7.44: Add a sparkline dialog

Chapter 7 327

As shown in Figure 7.44, the Internet Net Margin % measure is being compared across the
months of the year. When added to our simple table visual from Figure 7.42, we can now observe
the variances of the Internet Net Margin % measure over time along with our color-coded,

aggregate values during that time span as shown in Figure 7.45:

Juck Catennny . Intemei Mei Barnin I wri Mt Margin ¥ by Monih Hame Values 3 m Diate Parar
& L1 F
e GdHE - Product Category K i Dates]
Chathiirg G b - 3 . Dates?
ok ! K 5 ; Hi= e
ey T Intermat Met Margin %~ X =4
#* Interneat Met Margi.,, » Raericae Tisid
Rename for this vissal

il threugh

Maove

Crass-repart
Edit sparkline

Figure 7.45: Sparklines added to a table visual

As shown in Figure 7.45, the sparkline is added to the Values field well of the table visualization

with options available for removing, renaming, moving, and editing the sparkline.

The table visual shown in Figure 7.45 packs a lot of analytical insights but consumes minimal
report page real estate. Report viewers can observe the trend of the important metric across
multiple product categories as well as easily see the health of that metric over the specified time

period (in this case, the year 2013).

We next turn our attention to a feature exclusive to matrix visualizations, the ability to display

measures as rows.

Values as rows

A common form for matrix visuals is to display categories or hierarchies as rows and measures
as columns. However, the reverse, displaying multiple measures as rows, particularly with one
or multiple date dimension fields across the columns, is a very common layout for Excel pivot

table reports.

328 Creating and Formatting Visualizations

Matrix visuals in Power BI Desktop support the important ability to show measures as rows. In

Figure 7.46, the matrix visual breaks out six DAX measures by a date hierarchy across the columns:

Calendar Y¥r-Qtr 2013-N 2013-02 Total
20713-Jan 2073-Feb 2013-Mar Total 2073-Apr 2013-May 2013-lun Total

AdWorks Net Sales $£3,523.340 54084520 55007481 $13,605,142 $3328730 $4767754 $57154127 $13,250,019 $26,855,162
Reselier Met Sales $2605,651 $4212972 54047574 $10,926196 $2282116 53483161 §351094% $9276,226 $20202 422
Interret Mt Sales $857.690 47715349 $1.040007 2678945 11045023 912845093 81643778 $3,973,793 56,652,740
AdWorks Net Margin % 231% 110% LG43 0.44% 10.44% 9.12% N23% 10.27% 5.29%
Rezeller Net Margin % -9.3% -B.3% -94% =9.0% -2.6% -1.9% -1.6% =2.0% =5.8%
Internet Ket Mangin % 3B.5% 309,1% 39.2% 318.9% 35.0% 38.5% IBTR 38.8% 3B.9%

Figure 7.46: Values on rows in matrix visual

To enable this feature in Power BI, simply enable the Switch values to rows feature within the
matrix visual’s Options card located in the Values section of the Visualizations pane’s Format

sub-pane.

Scatter charts

Scatter charts are very effective at explaining the relationship or correlation between items against
two variables. Optionally, a third variable can be used to drive the size of the data points and

thereby convert the visual to a bubble chart.

Chapter 7 329

In Figure 7.47, three countries from the Sales Territory Country column are used as the details

input to a scatter chart:

irfermed and Rl ber Bt Safers by Sabes Teeninrg Coundny snd Frodust Subestegany

.

Irgeired P R es

L 5 _'_- L= |_ |_|. 21
Fotl b o i,
Frechect Subvpliegery WY b= i R N puve] ke

Figure 7.47: Scatter chart

To provide additional detail, three product subcategories are included in the legend input, such
that nine total points (3 x 3) are plotted on the chart. The scatter chart naturally calls out the
differences among the items based on their X position (Reseller Net Sales) and Y position
(Internet Net Sales).

330 Creating and Formatting Visualizations

Moreover, to make the visual even easier to interpret, the marker shapes have been customized
for each product subcategory (for example, triangles, diamonds, squares) and the size of the

shapes have been increased to 40%.

By default, Power BI applies different colors to the items in the legend. If the legend is not used,
the report author can customize the colors of the individual items from the details input column.
Although color can be effective for differentiating values, customized marker shapes, such as this

example, are helpful for users with visual disabilities.

This concludes our exploration of building and formatting visuals within Power BI. While we
cannot hope to cover the myriad of formatting options available for every visual, as there are
literally hundreds of available format cards, this chapter has provided a good overview of how

to build and format many of the standard visualizations within Power BI Desktop.

Summary

Building on the foundation of the previous chapter regarding Power BI report planning, this
described how to create and format the basic building blocks of reports, Power BI visualizations.
We initially provided an overview of the Visualizations pane thatis foundational to building and
formatting visuals, introduced the configuration and utility of numerous standard visuals and
elements, and finally provided numerous examples of important formatting functionality such

as conditional formatting, Sparklines, and custom format strings.

The following chapter builds upon the foundational knowledge of this chapter to introduce more

advanced visualizations, analytics, and mobile support.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Applying Advanced Analytics

The previous two chapters focused on foundational knowledge regarding Power Bl report planning,
design, and how to create and format visualizations. This chapter builds upon that foundation
to demonstrate how the advanced analytical capabilities of Power BI can create an even more
compelling user experience and assist users in exploring data to derive insights. This includes
a review of artificial intelligence (AI) powered visuals, custom visuals, animation, and other

analytics features with Power BI Desktop and the service.
In this chapter, we will review the following topics:

e Alvisuals

e ArcGIS Maps for Power BI

¢ Rand Python visuals

e Custom visuals

e Animation and data storytelling
e Analytics pane

e Quickinsights/Analyze

e Mobile-optimized report pages

Al visuals

Artificial intelligence (AI) visuals incorporate aspects of machine learning such as pattern
recognition and natural (human) language parsing. Machine learning is a form of Al that uses

statistical models and algorithms to analyze and make inferences from complex data patterns.

332 Applying Advanced Analytics

In the past, the application of Al or machine learning required a data scientist, but Microsoft has
made tremendous strides in democratizing machine learning within Power BI both with the Auto
ML features of dataflows in the Power Bl service and Al visuals within Power BI Desktop. The use

of the advanced capabilities of Al visuals can add analytical punch to many reports.
Power BI Desktop contains four Al visuals as follows:

e Keyinfluencers
e Decomposition tree
. Q&A

e Smartnarrative

We explore each of these visuals in turn, starting with the key influencers visual.

Key influencers

The key influencers visual is a powerful analytic tool included as a standard visual within Power
BI Desktop. This visual can be complex to work with and is often best used by report authors to
quickly identify interesting analytic insights that deserve further investigation. The report author

can then create simple visuals and stories that highlight these analytical insights.

The key influencers visual uses machine learning algorithms to analyze and find patterns within
the data. These patterns are then presented back to the report author as key influencers that

impact a particular metric as well as clustering into Top segments.

In Figure 8.1, the key influencers visual has been configured to analyze the Internet Net Sales
measure by placing numerous columns from the Customer table into the Explain by field well in

order to identify what factors impact Internet Net Sales to be higher or lower:

Chapter 8 333

Ky inBoenirs o amgments e Nt i

Wi rlmnom e Pl Sl 1o D hans T B wiveal
<] =
= 4 &
Wiy T ARG OF indeTen -
W b SR by T Ml Sk o reey iapls o e — .
e T WAy i = i1 o
i | Kl @ e Crrmen e pobaraha oo perage | E MEMEM
P Vo Tt =
T Bk b R LS
Sl AL F I:!-\H' ZE E' E ;_:':'. " o~ D
Lale] S 4
. EAEl R Py E =
[e
et i GlEe D
= 3
Tl e wwar Gand o IR K i Fridh
':' MLEATRET ML S0k
3 v P -]
Do Teerlp incoem k]
g chorrw 12000 =0 I_\.’a:'_' E‘ wE Enplam Iy
¥ Frisramion
FIK Tusnmer Hminey heqresn
sl FEdihy BOO0Te:
HE; ﬂ,..‘.. a i latons
(53
:\.r" lllfﬂjll.;p}'\--'ﬂ n.'ﬂ.P"n.!
"":4__|'."' r_.._"' ""i? TulafChetdean
v o % 1
I i F i e Ty :.|-|_.||'l‘-|' Laanychar
Sxsbry Impetk Couei [] Ol e st o S ol Bt H lli'.lurﬂ-l:l.rg
. . B “ " CounirgepablaTie
Expand by

Tlummerfearmainiey

Figure 8.1: A key influencers visual

334 Applying Advanced Analytics

As shown in Figure 8.1, the single largest factor that impacts Internet Net Sales to Decrease
is that the Customer History Segment column has a value of First Year Customer. The second
mostimpactful factor is that the CountryRegionName of the customer is United States. Additional
high impacts are an Education of Partial High School, TotalChildren of more than 4, and a

decrease in Customer Yearly Income.

For each of these key influencers, a graphic is presented that helps explain the insight further.
This visual is generally a column chart or scatter chart and includes a text narrative at the top

that puts the insight into words.

In Figure 8.1, note that the analysis can be performed for What influences Internet Net Sales to
either Decrease or Increase. Additionally, Counts have been enabled on the Analysis formatting
card. Enabling Counts displays a ring around each circle that represents the count of records that
form the key influencer. The key influencers can then be sorted by Impact or Count in the lower

left of the visual.

Special attention should be paid to the Expand by field well. As shown in Figure 8.1, the
CustomerAlternateKey field has been used in the Expand by field well. To understand the
function of the Expand by field well, consider that the measure or summarized column placed

in the Analyze field well is automatically analyzed at the detail level of the Explain by columns.

Depending on the data, this level may be overly summarized and thus not suitable for a machine
learning regression model. Machine learning models tend to work best with more data. Thus, in
order to increase the detail level analyzed, the Expand by field can be used. By using a unique
key for each customer, this effectively forces the data to not summarize and thus the machine

learning algorithm executes at the most detailed grain for the table.

Chapter 8 335

In addition to the Key influencers tab, a Top segments tab is also populated by the Key influencers
visual as shown in Figure 8.2:

Ky InPusrcens Tog s e

When m Indee Mel Salen e iRl ko b L

it Tiparad 7 st b e sk thesen Iy Awerags of Traermst B Sakeg aead propsslatioen 52

Srkock @ wapmenk ko s e etk

. Sl b R (SR] Ll
Asoge ol rsve AT (=] LR [FLEN] ANENd LE-=g]
Fopedoion ram 1= b e 152 10aa Fe

Figure 8.2: A key influencers visual, Top segments

336 Applying Advanced Analytics

Top segments use clustering algorithms to identify clusters where the Analyze metric is lower
or higher than the average of the overall dataset. In Figure 8.2, six segments are presented that
include the Average of Internet Net Sales as well as a Population count of the number of rows
included in each segment. The size of each bubble corresponds to the Population count. Therefore,
we can quickly see visually that Segment 2 is more impactful than Segment 1 since the measure

value is similar, but Segment 2 has almost 3 times the number of occurrences.

Clicking on Segment 2 presents additional information about the segment, including the attribute
values that correspond to the segment as shown in Figure 8.3:

By brflaerecer ToOp Segiesms

W o AT et e v By e Lo

=0 [k | @ e a3 il TR
Py 3 Hhe weerngs et et Sl b 53TRE T i 510 H e v fuae i ol esuscm
AR

Emribpaw Heliep Soprees | o el .

e £ B e TR

Caliare s Yrady s © =2 [HEE

Tali"s O Al B A ELA

Figure 8.3: Top segments, details

As shown in Figure 8.3, the attributes that make up Segment 2 are when the Customer History
Segment is First Year Customer and the Customer Yearly Income is less than or equal to 30000.
Clear, detailed information is presented identifying the average Internet Net Sales for the
segment, the difference from the overall average, the number of data points within the segment,

and the percentage of the overall data within the segment (19.7%).

The key influencers visualization is not the only Power Bl visual thatleverages machine learning

technology. Another such visual is the Decomposition tree visualization that we will explore next.

Decomposition tree
The Decomposition tree visual is another advanced visual that incorporates machine learning

technology.

Chapter 8 337

The Decomposition tree visual is another visual that is perhaps best used by report authors to
perform ad hoc data and root cause analysis, in order to quickly gain insights into data that can

then be presented to users in a more intuitive and straightforward fashion.

In Figure 8.4, the key influencers visual from Figure 8.1 has been converted to a Decomposition

tree visual:

Lisdied HehE T 1
]

e P e e [FR ST T

T .

Irdwrrad: Wk Satem

. T P L o v
hirs? Yoar Custorrser At
L] _ LT
1 F] [} i .r
O o e
e

L
Fartial | ‘.-II Srfra

Weragerem

Figure 8.4: A decomposition tree visual

As shown in Figure 8.4, at each level of the hierarchy data bars are displayed along with category
values and amounts. A + icon is present for each category value. Clicking on this + icon allows

you to manually drill into any category not already present in the visual.

In addition, you can instead choose to let the visual guide you through the analysis by displaying
the next hierarchy level that has the highest or lowest value for the metric. These High value
and Low value options are known as Al splits and can be disabled in the Analysis format card

for the visual.

Hierarchy levels can be removed by clicking the X icon at the top of each column. Note also that
as a hierarchy level is expanded, the sub-heading under the main column heading displays the

expanded category value, which is displayed in bold within the visual itself.

338 Applying Advanced Analytics

Moving on from the advanced machine learning visuals, we will next explore two visuals that
leverage Power BI’s natural language (human language versus a constructed, artificial language)

features, starting with the Q&A visual.

Q&A

The Q&A visualization represents Microsoft’s investments in natural language technology that
can transform the user experience from selecting elements with a mouse to simply speaking or
typing in their questions. Common questions and terms that business users are familiar with can

be associated with metrics and attributes of the source Power BI dataset.

As with other advanced visuals such as key influencers and Decomposition tree, the Q&A visual
is perhaps best suited for report authors attempting to quickly understand and tease out analytical
insights from the data. The ability to ask natural language questions and generate visuals based

upon those questions is quite powerful.

A Q&A visual can be added to a report page by using the Visualizations pane or by double-clicking

the report canvas. Figure 8.5 shows an example of an unconfigured Q&A visual:

(i} Help &8 und Add synonyms now | X

! [Ask & question about your data a
Try one of theze to get started

top oooupations by customer sales rank

top customer first narmmes by AdWosrdis net
margin %

C mer last names by internet net
miargin %

what is the resaller cost of sales by product

sae

what is the intermet grots margin by praduct
siyle

Shovw all sugaestions

Figure 8.5: A Q&A visual

Chapter 8 339

Selecting one of the default example questions or typing a question into the Ask a question about
your data text box generates a visual. By default, the type of visual is most often a column or bar
chart but particular visuals can be specified as part of the question. In Figure 8.6, the requested

visual is a pie chart:
1 Halp Toam fhim Ok el bnhn & csanched A mis

._'rﬂl"'.lh'lF-'.Fu'Fr'l"-:.'.'ﬂquTr i3
prosdent sine a5 e chan

Poced iy Shre

Figure 8.6: A Q&A visual result

As shown in Figure 8.6, if the report author likes the visual created, the visual can be added as a
standard visual to the report page simply by clicking on the Turn this Q&A result into a standard

visual icon to the immediate right of the question text box.

340 Applying Advanced Analytics

Clicking on the gear icon or clicking on the Add synonyms now button shown in Figure 8.5 opens

the Q&A setup dialog as shown in Figure 8.7:

= Oy whup Grttitg started
Geineg s
| l -~
i I?’ e
£
R Fishl < pranaprve Flrwia ipra=dn
i gL
k] e el el s o aprEsine (o Fosmwry uwitron s pwp e fuevw ok ared (e
mach QLA the Spideard isblsy n yo drt [T T R
e
Fleld spraspnis Berslican qia=riade
CUROEST QRS
b -
Tenrh A Slugop=tr SEbsE
Taach D8, o s wbarelare] qenaBonms aind L P et e o s Ley acichen
paopiE mghi we mrpgEind Qe
Tanshi RN i Ll b L

Figure 8.7: A Q&A visual result

As shown in Figure 8.7, the Q&A setup dialog allows the report author to create synonyms, review
questions asked by report viewers, train Q&A to better understand questions, and add or remove

suggested questions. A full treatment of Q&A setup is beyond the scope of this chapter but a

detailed recipe for setting up and preparing Q&A is included in Chapter 5 of Power BI Cookbook,
2nd Edition.

Enterprise business intelligence teams should consider the implications of introducing Q&A
to report viewers carefully. Achieving good Q&A results depends heavily on configuring

synonyms correctly.

While proper, intuitive naming of columns and measures can help, generally there are many
synonyms that are required to be configured and maintained over time. In addition, itis imperative
that enterprise business intelligence teams monitor the questions being asked by the business

users and the results returned from those queries.

In addition to the Q&A visual, another visual that leverages the natural language capabilities of

Power Bl is the smart narrative visual.

Chapter 8 341

Smart narrative

The smart narrative visual is another impressive visualization that can save report authors a
lot of time and energy. The smart narrative visual creates a natural language (human language)

summary of an entire report page or an individual visual.

In Figure 8.8, the report page shown in Figure 6.10 from Chapter 6, Planning Power BI Reports, was
duplicated. A blank area of the canvas was clicked and then the smart narrative visual is chosen

from the Visualizations pane. The smart narrative visual then generated the text shown in

Figure 8.8:
soemeene | CRERGEP) Product Name: Road-250 Black. 44
b 13 P ke
el $342K 0 33.9% $913.3.. -8.6%
o o I='-'""=.:." e Iremet Mef Sabes YT el Mot Mg Resebar et Spies o7TD Parusber Phat i arzyn %

higha: shan inrra tulmn Irencds

b o &l 1 B
st Foaaslbar i S e v

457 174 = GI0E T

e Ly TE B, FisTE N
: — b 100E
i i i ii iii E
536
Tre S ST Rl AN Al 2 d A AN ey KA ki S0 bal 3 d Sy A SRS AId LK1 A Fidw AXd Lee

Figure 8.8: The smart narrative result

The smart narrative visual can be customized by the report author to add additional text and
insights. In Figure 8.8 the custom value Adworks net margin % was added to the smart narrative
visual using the + Value dialog and corresponding custom text added to the visual, AdWorks
Net Margin % was. Custom values created via the + Value pane can be reviewed and removed

via the Review pane.

Smart narrative visuals can also be used on individual report visuals. To create a corresponding
smart narrative visual for an individual report visual, simply right-click the report visual and
choose Summarize. Most standard visuals are supported such as bar, column, and line charts.
However, more advanced visuals like waterfall charts and decomposition trees, for example, are

not supported and have the Summarize option greyed out.

342 Applying Advanced Analytics

The smart narrative visual provides all of the standard text box controls for formatting text as
well as all of the standard text box formatting options via the Format text box pane. This makes
the smart narrative visual highly customizable. While this may make it seem like the smart
narrative visual is just a simple text box, all of the underlined values and analysis are updated

each time the report data is refreshed!

We now turn our attention to two additional visuals that integrate the powerful data analytics

capabilities of the R and Python programming languages.

R and Python visuals

The R and Python programming languages both have strong data analysis and visualization
capabilities. This makes these languages a natural fit for data analysis and visualization tools
such as Power BI Desktop. In addition to other integration options, such as the ability to use R and

Python in Power Query, Power BI Desktop also provides standard visuals for both R and Python.

In order to use the R and Python visuals, you must first install the R and Python programming
languages and ensure that the R scripting and Python scripting options are configured in the

GLOBAL options (File | Options and settings | Options) as shown in Figure 8.9:

Chapter 8

343

Options

GLOBAL

Data Load
Power Cruery Edibor
Diractluery

R seripting
Python scnpting
Security

Privacy

Heglonal Settengs
Updates

Usage Data
Diagnostics
Preview features
Mgt PRCONE Y

Raport settings

CURRENT FILE
Data Load
Regional Settings
Privacy
Aubs recovery

>

R script options
T choose a homa directory for R, sefact 2 detectad B installation from the
drop-down kg, or select Othar and browse 1o the location you want,
Detected B horme directories!

CA\Program Files Micresoft\R ClientyR_SERVERY =

Howr tio enstall B

To chaase which R integrated development ervironment [IDE} you want
Poever Bl Desktop to launch, select a detacted IDE from the drop-down list, or
salect Cther to browse toancther IDE on your machine.

Detiecled ADES:
Defauly O5 program for B files b

Learn more about B IDEs

Change termporary storage location

Mote: Samatimas, R custom viswals automatically install additional packages.
For those to work, the temporary storage fobder name must be witten in
Latin charactars (elters in the English alphatst)

e

Figure 8.9: R scripting options

344 Applying Advanced Analytics

As shown in Figure 8.9, Power Bl attempts to detect any installed R and Python program language
installations and integrated development environments (IDEs). Once you have the R and Python
languages installed and configured, you are ready to add an R or Python visual to a report page.
Adding an R or Python visual to a report page for the first time results in a security prompt as

shown in Figure 8.10:

Enable script visuals X

You need to enable script visuals to begin creating R script. Script
visuals can execute script code that may contain security or privacy
risks.

‘ Enable | | Cancel |

Figure 8.10: R and Python Enable script visuals message

The prompt in Figure 8.10 is displayed once per report when using R and Python visuals and is
intended to alert the report author that enabling scripts has potential security and privacy risks.
In addition, each time a report containing R and Python visuals is opened within Power BI Desktop

the same prompt is opened.

While integration with the R and Python languages adds a tremendous amount of analytical and
visual capabilities to Power BI, enterprise business intelligence teams should carefully consider
the use of R and Python within their Power BI projects. While the Power BI service supports the
most popular R and Python packages/modules, not every package or module is fully supported

in the service.

In addition, once included in a Power Bl file, other report authors or editors are required to have
the R or Python language installed on their computers with the required packages and modules
installed. Given the frequency of changes to both R and Python and the potential for code to work
on one version of R and Python and not another, enterprise business intelligence teams that use

R and Python should standardize the use of specific versions and allowed packages and modules.

We now take a closer look at using R visuals.

R visual

The R language and runtime can be downloaded from the R Project for Statistical Computing
website (https://cran.r-project.org/bin/windows/base/) or Microsoft (https://www.
microsoft.com/en-us/download/details.aspx?id=51205). Once R is installed and the Power

BI R script options configured, R visuals can be added to report pages in Power BI Desktop.

https://cran.r-project.org/bin/windows/base/
https://www.microsoft.com/en-us/download/details.aspx?id=51205
https://www.microsoft.com/en-us/download/details.aspx?id=51205

Chapter 8 345

In Figure 8.11 the Product Name column from the Products table has been added to the Values

field well for the R visual and a word cloud has been created using the R language:

T

g

r [- =
nut'm
road €
e O
£

& Cuphcets rows will b semoved from the dats x
& Pagt
foFipaLrais
rouirelmords Ioud
Frsasr |
sckorfzarceldatmat] 1))
wordn <- tw_map|worén, skripHbdtespace]
wOrS e TH_Sapiwerds, CHPTMTL_Cran s Fermary Dol |
wTrdE <- te_map|worea, rescssfmsbers
woldg <~ 19 map[werdd, rescusRERCiLSL DT
wtrdi 4- e map|werid, reecveverch, abopsactsd Sergliaacl]
wordy <- 18 mapwords, steslonssTt)
w0 M DT SCRIGmily B, %), BEn, s SasH, Fd DO, (F O a b RS . FOT, e, 1%, SR P, L U AL S —

colorssbreser.pal(l, "Darkd™))
Figure 8.11: R visual

As shown in Figure 8.11, selecting an R visual opens an R script editor pane at the bottom of the
canvas when in the Report view. This script editor allows the input of R code. Four icons are
present in the upper-right corner of the R script editor. From left to right, these icons perform
the following functions:

e The chevron icon expands or collapses the R script editor pane

e The arrow icon opens the R script in the configured IDE

e Thegearicon opens the Power Bl Desktop Options (File | Options and settings | Options)

e Theruniconrenders the R visual

The full code listed in the R script editor from Figure 8.11 is provided here:

346 Applying Advanced Analytics

require(tm)

require(wordcloud)

require(RColorBrewer)

words <- Corpus(VectorSource(dataset[,1]))

words <- tm_map(words, stripWhitespace)

words <- tm _map(words, content_ transformer(tolower))

words <- tm_map(words, removeNumbers)

words <- tm_map(words, removePunctuation)

words <- tm_map(words, removeWords, stopwords("english"))
words <- tm_map(words, stemDocument)

wordcloud(words, scale=c(5,0.75), max.words=50, random.order=FALSE, rot.
per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Note the warning message displayed in Figure 8.11, Duplicate rows will be removed from the data.
A similar message is repeated in the first comment within the script editor. Removing duplicate

rows is done for performance reasons and cannot be overridden.

The next two comment lines display the pre-processing that occurs for the script. A dataframe
variable called dataset is created from the columns and measures present in the Values field
well, in this case just the Product Name column. Then, the unique function is used to return only
distinct rows within the data frame. Itis important to note that while these are comments within

the code, these commands are in fact executed on the data prior to the rest of the script running.

The required packages, in this case tm, wordcloud, RColorBrewer, and SnowballC, were installed
using the R console application outside of Power BI Desktop. While inside the R console, you can

use the install.packages command to install packages:

install.packages("package name")

Since the R script editor lacks any real debugging features, it is often advantageous to use an
external integrated development environment (IDE) to develop the R code. Clicking on the arrow
iconin the upper-right corner of the R script editor pane opens the code within the configured IDE
and also creates a temporary comma-separated value (CSV) file that holds the data configured

for the visual.

The same dataset variable is initialized using the read.csv function with this temporary file
specified as the source. Once you are finished debugging the R script, you must copy and paste

the R code from the IDE back into the R script editor pane.

Chapter 8 347

Using Python visual is similar to using R visual so let’s look at that next.

Python visual

Python visuals operate identically to R visuals except that the scripting language used is Python.
The Python language and runtime can be downloaded from the python.org website (https://
www . python.org/downloads/windows/) or the Microsoft Store (https://www.microsoft.com/
en-us/p/python-39/9p7qfgmjrfp7). Once Python is installed and the Power BI Python script

options configured, Python visuals can be added to report pages in Power BI Desktop.

In Figure 8.12 the CountryRegionName column from the Geography table and the Internet Sales
Customer Count measure from the Internet Sales table have been added to the Values field

well for the Python visual and a simple bar chart created using the Python language.

Counfyhscmehisrs amd bnfersl Sabes Cusionees Coenl

Uremd St
e —
TV i _
e (N
Carordin _

6 1m0 2000 00 4000 GOGD SO0C VOO0 BOO

Figure 8.12: The Python visual

Figure 8.12 displays the Python script editor pane as collapsed. The Python script editor pane
works identically to the R script editor pane. From left to right, the four icons in the upper-right

corner of the Python script editor pane perform the following functions:
e The chevron icon expands or collapses the Python script editor pane
e The arrow icon opens the Python script in the configured IDE

e Thegearicon opens the Power Bl Desktop Options (File | Options and settings | Options)

e Therunicon renders the Python visual

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.microsoft.com/en-us/p/python-39/9p7qfqmjrfp7
https://www.microsoft.com/en-us/p/python-39/9p7qfqmjrfp7

348 Applying Advanced Analytics

The full code listed in the Python script editor from Figure 8.11 is provided here:

import matplotlib.pyplot as plt

dataset.plot(kind="'barh', fontsize=6, x='CountryRegionName', y='Internet
Sales Customer Count')

plt.show()

As with R visuals, Python visuals remove duplicate rows within the data, creating a dataframe

within the dataset variable.

We now turn our attention to the most powerful standard map visual for Power BI, the ArcGIS

Maps for Power BI visual.

ArcGIS Maps for Power Bl

The ArcGIS Map visual for Power BI enables report authors to develop map visualizations far
beyond the capabilities of the bubble and filled map visuals described in Chapter 7, Creating and
Formatting Visualizations. Created by Esri, a market leader in Geographic Information Systems
(GIS), the ArcGIS Map supports all standard map types (for example, bubble and heatmap), but
also provides many additional features including a clustering map theme for grouping individual
geographic points and the ability to filter a map by the points within a geographical area.

The ArcGIS Map also enables deep control over the logic of the size and color formatting, such as
the number of distinct sizes (classes) to display and the algorithm used to associate locations to
these classes. Additionally, reference layers and cards of demographic and economic information

are available to provide greater context and advanced analytical insights.

The ArcGIS Map visual is included in the standard visualizations pane and enabled by default
in Power BI Desktop. However, the ArcGIS Map visual is not currently supported for the Power
BI Report Server and thus is not available in the Power Desktop application optimized for it.
Additionally, an option is available on the Tenant settings page of the Power BI admin portal
to enable or disable the use of the ArcGIS Maps visual. Details on utilizing the Power BI admin
portal to configure tenant settings and other options are included in Chapter 14, Administering

Power BI for an Organization.

Chapter 8 349

In Figure 8.13, customer addresses in the state of Washington have been plotted with different
sizes and colors based on the Internet Net Sales measure and the Customer History Segment

column, respectively:

dowsm b

Figure 8.13: The ArcGIS Map visual for Power Bl

For the most visually engaging ArcGIS Map, use the Dark Gray Canvas base map and bright,
saturated colors for the data points plotted. The Streets and OpenStreetMap base map types
are practical choices whenever transportation between the data points or pinned locations is
expected. In Figure 8.13, the Streets base map supports the sales team that may drive from the

pinned office location on 11th street in Bremerton, Washington to the plotted customer addresses.

The visual has been zoomed into the Bremerton, Washington area near several large customers
and a fictional sales office location on 11th street near downtown Bremerton. Pin locations are
often used in conjunction with the Drive Time feature to plot an area relative to specificlocations

such as a group of customers who are within a 20-minute drive of an office.

350 Applying Advanced Analytics

To configure these options and all other layout and formatting settings, a set of icons are present
in the upper left of the visual as shown in Figure 8.13. For this visual, the Streets base map type
has been selected and the Map theme is set to Size & Color. The reference layer USA Median Age
is used to distinguish areas based on age (via color intensity). A column named Full Address is
used for the Location input field. This column includes the street address, city, state, and postal
code such as the following example: 1097 Kulani Lane, Kirkland, WA, 98033.

The Data category for this column has been set to Address in Power BI Desktop to further improve
the accuracy of the geocoding process in which the location input value (the address) is converted
to a latitude and longitude. Latitude and longitude fields are available as well, and these inputs

are recommended over street addresses for greater performance and scale.

A maximum of 3,500 street addresses can be geocoded without a Creator license. To avoid the
limit of addresses geocoded and to focus the visual on more meaningful data points, a visual level
filter can be applied to a measure. In this example, a visual level filter was applied to the Internet
Net Sales measure to only include data points (customer addresses) with over $100. By removing
the small customers, this filter reduced the count of addresses by half and still retained over 97%
of the Internet Net Sales.

The Use ArcGIS Maps for Power BI option should be checked in the Global Security options of
Power BI Desktop. An equivalent option is exposed in the Power Bl service via the Settings menu
(Gear icon | Settings | ArcGIS Maps for Power BI), and this should be checked as well to render

ArcGIS Maps in the Power BI service.

In addition, a Use ArcGIS Maps for Power BI setting is available in the Tenant settings page of
the Power Bl admin portal. Power BI service administrators can optionally disable this feature to
prevent all users from using ArcGIS Maps for Power BI. The configuration of Tenant settings in

the Power BI admin portal is described in Chapter 14, Administering Power BI for an Organization.

It should be noted that the ArcGIS Maps for Power BI visual requires additional licensing from
Esri and a Pro Power BI license. The Azure map visual, which is currently in preview, may serve
as an alternative to the ArcGIS Map for Power Bl visual in some scenarios. The Azure map visual
supports 30,000 data points, has many of the primary geospatial visualization and interactive
features as the ArcGIS visual, and does not require additional licensing. More information about

the Azure map visual can be found here:

https://docs.microsoft.com/en-us/azure/azure-maps/power-bi-visual-get-started

https://docs.microsoft.com/en-us/azure/azure-maps/power-bi-visual-get-started

Chapter 8 351

The Al visuals, R and Python visuals, and ArcGIS Maps for Power BI visual are just the tip of the
iceberg when it comes to adding advanced analytical insights to Power BI. Hundreds of additional,

advanced visuals developed by Microsoft and third parties are available as custom visuals.

Custom visuals

In addition to the standard visuals included in the Visualizations pane of Power BI Desktop, a vast
array of custom visuals can be added to reports to deliver extended functionality or to address
specific use cases such as applying ‘smooth lines’ formatting to aline chart or displaying multiple

KPIs in the same visual via the Power KPI visual by Microsoft.

These visuals, many of which have been created by Microsoft, are developed with the common
framework used by the standard visuals and are approved by Microsoft prior to inclusion in
Microsoft AppSource. Given the common framework, custom visuals can be integrated into
Power Bl reports with standard visuals and exhibit the same standard behaviors such as filtering

via slicers and report and page filters.

Power Bl report authors and Bl teams are well-served to remain conscious of both the advantages
and limitations of custom visuals. For example, when several measures or dimension columns
need to be displayed within the same visual, custom visuals such as the Impact Bubble Chart
and the Dot Plot by Maq Software may exclusively address this need. In other scenarios, a trade-
off or compromise must be made between the incremental features provided by a custom visual

and the rich controls built into a standard Power BI visual.

Additionally, performance and maintenance can be an issue with custom visuals. For example, a
custom visual may generate many more queries than a similar standard visual and thus render
more slowly and consume more system resources. Moreover, a Power Bl environment that utilizes
many custom visuals is more difficult to support as report authors are less familiar with the

features and behaviors of these visuals.

Custom visuals available in AppSource are all approved for running in browsers and on mobile
devices via the Power BI mobile apps. A subset of these visuals are certified by Microsoft and
support additional Power BI features such as email subscriptions and export to PowerPoint.
Additionally, certified custom visuals have met a set of code requirements and have passed strict
security tests. Additional details on the certification process are available at the following link:
http://bit.1ly/2AFACOW.

Let’s now take a look at how to find and add custom visuals to a Power Bl report.

http://bit.ly/2AFAC9W

352 Applying Advanced Analytics

Adding a custom visual

Custom visuals can be added to Power Bl reports by either downloading and importing . pbiviz

files from Microsoft AppSource or directly using them within Power BI Desktop. Figure 8.14 shows
Microsoft AppSource filtered to Power BI visuals:

Apps results
Thowineg results in apps
X Firvewr Bl vipuals Prosur Platfarsn
Fiktors Clearm
Edarch fiker Al fesiilts

Preghusti (1) Q . EE

Text Fitter Chiclet Slicer

Dynamacy 65
Micresalt AR5

Porweer Plakform (1) | - I

u Poser Apps r . W] 3 I :

1 i
| | Mereser Autcmwie

|| Povwecd BR app W ALZ (150 rasing W A0 310 e
H Poeer B wrmsds
Fraw Fros
| | Pervsi Wirtual Aciils
Lt 1 nige Gt 1k rorw
WiEa Apas

Figure 8.14: Power Bl custom visuals in AppSource

The following link filters AppSource to the Power BI custom visuals per the preceding screenshot:
http://bit.ly/2BIZZbz.

The search bar at the top of the page and the vertical scrollbar on the right can be used to browse
and identify custom visuals to download. Each custom visual tile in AppSource includes a Get it
now link that, if clicked, presents the option to download the custom visual itself (the .pbiviz
file). Clicking anywhere else in the tile other than Get it now displays a window with a detailed

overview of the visual, ratings, support details, and the ability to download a demo . pbix file.

http://bit.ly/2BIZZbZ

Chapter 8 353

To add custom visuals directly to Power BI reports, click the Get more visuals option via the

ellipsis of the Visualizations pane, as per Figure 8.15:

Visualizations # Fields

Build wisual ey

— [}' | A Search

bssasd =

L_--._‘ P ﬁ Adveriture Warks

E |E_|-'|_ E i]_d] E ﬂﬁ A E] Date Intelligence

A E E-rlr]g{rﬁ.adg::tl:idln

%
;]
[
&

& TE BridgeDate

» ':r'_.-.:r.Tr:,'F ags

‘:-:I "L R ;I » B Currency
@ E—% E m R » B Current Date
Py " =8 (1) © > 8 Customer

ﬁ E {E’ E © Get more visuals

L i .
LN Import a visual from a file

Al datas fields e
Remowve a wisual

Drill through _
Restone default visuals

Figure 8.15: Importing custom visuals from the store

If a custom visual (. pbiviz file) has been downloaded from AppSource, the Import a visual from

a file option can be used to import this custom visual into the report.

Selecting Get more visuals launches a slightly different AppSource experience than the website.
Unlike the AppSource website, the visuals are assigned to categories such as KPI, Maps, and
Advanced Analytics, making it easy to browse and compare related visuals. More importantly,
utilizing the integrated Get more visuals avoids the need to manage .pbiviz files and allows

report authors to remain focused on report development.

354 Applying Advanced Analytics

In Figure 8.16, the KPI category of Power BI visuals is selected from within AppSource:

Power Bl visuals

Al vl Cwmparicstional yreass A rTE yveale

Expdore all availakle visuale 1o magnify your Bussness inshghis

Filtar by KPR

ower Kr
Matrix
— y
— -
Fhrazos Advarce Card & Powpmr KPP atris
i i L i L

Figure 8.16: Custom visuals via the Office Store in Power Bl Desktop

Selecting a custom visual’s card displays the same detailed information as AppSource and an
Add button directly adds the custom visual as a new icon in the Visualizations pane. The visual
categories, customer reviews, supporting documentation, and sample reports all assist report

authors in choosing the appropriate visual and using it correctly.

Organizations can also upload custom visuals to the Power Bl service via the organization visuals
page of the Power BI Admin portal. Once uploaded, these visuals are exposed to report authors

in the Organizational visuals tab as shown in Figure 8.16.

This feature can help both organizations and report authors simplify their use of custom visuals
by defining and exposing a particular set of approved custom visuals. For example, a policy could
define that new Power BI reports must only utilize standard and organizational custom visuals.
The list of organizational custom visuals could potentially only include a subset of the visuals

that have been certified by Microsoft.

Chapter 8 355

Alternatively, an approval process could be implemented so that the use case for a custom visual
would have to be proven or validated prior to adding this visual to the list of organizational custom
visuals. Additional details on managing organizational custom visuals are included in Chapter 14,

Administering Power BI for an Organization.

In the next section on animation and data storytelling, we will include the use of a custom visual,

the Pulse chart.

Animation and data storytelling

A top responsibility for many data professionals is the ability to convey their findings to others
in a clear and compelling fashion. Common scenarios for data storytelling include recurring
performance review meetings (for example, the close of a fiscal period) and special project or ad
hoc meetings with senior managers and executives. For these meetings, the data professional
or team has already identified the analytical insights to highlight but must plan to properly

communicate this message to the specific stakeholders or audience.

Power BI animation features, including bookmarks as described in Chapter 6, Planning Power
BI Reports, provide powerful support for data storytelling. In addition, the play axis available in
the standard Scatter chart visual and the animation features available in many custom visuals,
such as the Line Dot chart and the Pulse chart, can also be used to deliver advanced analytical

insights and data storytelling.

Let’s first look at the animation features of standard scatter charts.

Play axis for Scatter charts

The Scatter chart is the only standard visual in Power BI Desktop that supports animation. By
applying a date/time series column to the Scatter chart’s Play axis field well, animated playback

and trace features are enabled.

For example, a visual can be paused at a specific point along the time series, allowing the user to
provide additional context. The user can also select one or multiple items (for example, product

categories) to display data points representing the previous time periods.

356 Applying Advanced Analytics

In Figure 8.17, the user has paused the animation on the month of June via the Play axis and

selected the icon associated with the Touring Bikes product subcategory:

Bike Subcategeries by Internet and Reseller Sales

v, i e June 2013

Receller Mei Sales

t A % . AT i g TsTa N | 0L TF

Internet Mat Sales

Lyreany 3113 femrh 2313 Pz 2013 Mily 2013 el mbee J00% Kowembear 2013

Figure 8.17: Scatter chart with Play axis

With the Touring Bikes subcategory selected, a trace line appears connecting the latest data point
for this subcategory to its preceding data points. Additionally, the user can hover the cursor over

the preceding data points to provide the details for these months via a tooltip.

Date, number, and text columns can be used in the Play axis for the Scatter chart. As per Chapter 4,
Designing Import and DirectQuery Data Models, the Sort by column property can be used to define a

logical sort order for text columns such as sorting aMonth name column by aMonth number column.

Next, we will explore similar animation capabilities of the Pulse chart custom visual.

Pulse chart

The Pulse chart custom visual, developed by Microsoft, provides both animation and annotation
features to support data storytelling. The Pulse chart animates the value of a single measure over
time and pauses (pulses) at dates associated with events to display pop-up boxes of annotations

describing these events.

Chapter 8 357

During each pause, which can also be applied manually via playback buttons, other Power BI
visuals on the same report page are filtered by the event date. Additionally, a second measure can

be visualized as a counter at the top of the chart via the Runner Counter field.

In Figure 8.18, a year-to-date (YTD) internet sales measure and four events with annotations

are plotted on a Pulse chart:

Internet Sales IYTON

T P N e N T o T T e an i 43900
| [EL] o | | = k sl LA -1 Ak L LT I |
(») 00 () () (=) ()
10/1272013
Fres shipping on omers oyer 51K
1% 000
__,—'—"'_'__ CLODA
—'—''_'_-
—''_'_'_'_
i o DR
—I—''_'_'_
I
—
lan 2013 Flarr 2013 Jum 2003 Aug U3 et 3013 Dec 2003

Figure 8.18: Pulse chart

In Figure 8.18, the Internet Sales (YTD) measure isvisualized via the animated line (and dots)
in relation to the Y axis. For this example, a YTD customer count measure has also been applied

to the Runner Counter field input.

With the visual paused on the shipping promotion event of October 12,2013, the Y axis indicates
a sales value of approximately $12.00 M, and the Runner Counter displays a count of 13,258

customers.

Alternatively, the same measure can be applied to both the Values and Runner Counter fields,
thus providing the precise value at each pause in addition to the trend via the line. Examples of
defining YTD and customer count measures are included in Chapter 5, Developing DAX Measures

and Security Roles.

If event annotations are not needed, only the Timestamp and Values input fields are required
to render the Pulse chart. The Event Title, Event Description, and Event Size input fields are

available to display events and annotations as pop-up boxes.

358 Applying Advanced Analytics

Additionally, the formatting pane provides several cards for defining the look and behavior of the
Pulse chart, including the size and color of the pop-up text boxes and the speed of the animation.
For example, white text at size 10 can be formatted against a black fill background and the pause

at each event can be set to 4 seconds.

To support the Pulse chartin the preceding example, a separate table of events was added to the

dataset as per Figure 8.19:

Event Date |~ Event Title v Event Description v
2/15/2013 New Sales Territory Opened Southeast sales office in Atlanta, GA.

6/3/2013 Volume Discounts Launched volume discount pricing promotion.

8/7/2013 Accessory Products Accessories product category available online.

10/12/2013 Shipping Promotion Free shipping on orders over $1K.

Figure 8.19: Events table

The Event Date column is used to define a one-to-one relationship from the Events table to the
Date dimension table. The Date column from the Date dimension table is applied to the Pulse
chart’s Timestamp input field, and the Event Title and Event Description columns from the

events table are applied to their respective input fields.

The formatting options for the X and Y axes of the Pulse chart are much less robust than the
standard line chart. As one example, the Y axis gridlines cannot be disabled. However, gridlines
can be hidden by setting the axis color to match the background color. Additionally, the second
and later lines of event descriptions in pop-up boxes are displayed without spaces. Report authors

can adjust the width of popups or reduce the length of event descriptions to account for this.

This completes our exploration of using more complex visuals to add advanced analytics and
insights to reports. We will next explore another method of adding such analytics and insights

via the Analytics pane.

Analytics pane

In addition to the Visualization pane’s Build visual and Format visual sub-panes used to create
and format report visuals discussed in the previous chapter, an Analytics pane is also available

for certain Cartesian standard visuals such as Line charts and Clustered column charts.

Chapter 8 359

The Analytics pane allows report authors to add constant and dynamic reference lines such as
average, max, and min to visuals to provide greater context and analytical value. Additionally,
trend and forecast lines can be added to display the results of advanced analytical techniques

such as exponential smoothing to support predictive analytics.

A simple but important use case of the Analytics pane, exemplified in the Trend line section
below, is to add a constant line that represents a goal or threshold to compare a measure against.
Dynamic reference lines representing an aggregation (for example, a median) behave just like
DAX measures and thus, in some scenarios, avoid the need to create new DAX measures in the

source dataset or within the report.

The reference lines available in the Analytics pane depend on the type of visual. For example,
reference lines are currently not supported for any custom visuals and only constant lines can be
applied to the stacked column chart and stacked bar chart visuals. Additionally, the Trend line
is exclusive to the line and clustered column chart; the forecast line is exclusive to the line chart.
Moreover, a date or a numeric column is required on the X axis and the X axis Type must be set

to Continuous in order to utilize the trend and forecast lines.

New features and capabilities are planned for the Analytics pane, including an expanded list
of visuals supported and error bars to visualize uncertainty of the data. Similar to the Tooltips
feature described in the previous chapter, Chapter 7, Creating and Formatting Visualizations, Power
BI report authors should be conscious of the Analytics pane and its ability to enhance report

visuals with additional context and insights such as the use of a Trend line.

Trend line

ATrend line is available via the Analytics pane if there’s time-series data for five standard visuals
including the line chart, area chart, clustered column chart, scatter chart, and the combination
line and clustered column chart. Trend lines display the general direction and slope of data

points over time.

The Trend line is particularly valuable when a chart contains many data points and significant

variation exists among the points, making it difficult to observe the trend of the metric visually.

360 Applying Advanced Analytics

In Figure 8.20, a trend line and two additional reference lines (average and constant) have been

added to a clustered column chart to provide greater insight and context:

Intermel Sabes Linigue Costomers by Maonth and Year

Merapa: LTI

1,719 B8
lan 2013 Mar 2013 Mlay 2013 Jul 20113 Sep 2013 Mov 2013

Figure 8.20: Trend, constant, and average reference lines

In Figure 8.20, the Label density property of the Data labels formatting card has been set to
100% in order to ensure that all columns have a data label displayed. Additionally, the Position
property of the data labels has been set to Inside end with a white color. Clear visibility of the
data labels for each column, in addition to the two reference lines (Average and Goal), avoids the

need to display the Y axis and gridlines.

Excluding the three reference lines from the Analytics pane, the clustered column chart simply
plots the Internet Sales Customer Count measure against a Month Beginning Date column.
The Month Beginning Date column (for example, 11/1/2013) is required for the axis inputin this
scenario as both the trend line and the forecast line require either a date or a number data type
for the X axis and Type of Continuous. For example, if the Year Month column was used for the
axis (for example, 2013-Nov), both the trend line and the forecast line cards would not appear

in the Analytics pane as the X axis type would be Categorical.

The DAX expression used for the Internet Sales Customer Count measure is included in the
Dimension metrics section of Chapter 5, Developing DAX Measures and Security Roles. The Month

Beginning Date column’s formula is given below:

Month Beginning Date = DATE(YEAR([Date]),MONTH([Date]),1)

Chapter 8 361

The Month Beginning Date column is used instead of a Month Ending Date column because if
that was used, the X axis labels would be shifted to the wrong months. In other words, the Nov

2013 label would appear under the October data. The Month Ending Date column formula is:

Month Ending Date = EOMONTH([Date],®)

With the essential column chart built, the three reference lines can be added from the Analytics

pane as per Figure 8.21:

** Trend bre cD

Color
B -

Irarsparency

HTERS 1

r.lu ||:|'|| -
i ivdorres SoE m
Lise Highlshd Walues m

A Kk Constaind Line

& Constant line |1]
& km line

& Mo ez

» Bverage e (1)

Figure 8.21: Analytics pane

As per Figure 8.21, the Line style of the Trend line is set to Dashed with a transparency of 0%.
This formatting ensures that the trend reference line can be easily distinguished from other data

on the chart such as the other two reference lines.

362 Applying Advanced Analytics

The Combine Series property is not relevant to this visual as there is only one series and Use
Highlight Values is the default setting for calculating the Trend line. The Combine Series property

can be useful for plotting the trend of multiple, related column series.

The numeric symbols (1) next to the Constant line and Average line cards denote that a reference
line of each type has also been applied to the visual. For these reference lines, a Dotted line
style has been used, and custom names have been configured (for example, Goal, Average) to
be displayed via Data labels. These two additional lines make it easy for users to identify the
columns that are above or below the average value for the columns in the visual (1,719) and the

constant goal value of 2,000.

We will next look at a more advanced feature of the Analytics pane, Forecasting .

Forecasting

The Forecasting feature of the Analytics pane is exclusive to standard line charts and utilizes

predictive algorithms to generate forecasted data points as well as upper and lower boundaries.

The report author has control over the number of data points to forecast, the confidence interval
(range of estimate) of the forecast (for example, 80%, 95%), and can apply formatting to distinguish
the forecast from the actual data points. Additionally, the Forecasting feature allows authors to
optionally exclude a number from the last data points. This Ignore the last property is useful
for excluding incomplete periods as well as evaluating the accuracy of the forecast relative to

recently completed periods.

In Figure 8.22, the clustered column chart from the Trend lines section has been switched to a

line chart and a Forecast for the next two months has been added:

Chapter 8 363

Internet Sales Unigue Customers by Month and Year ¢ Wismlications »
Arobrice

= & @

~ borec -]

LR

ie b

knls
Frann =
g leagh

TR Ea
Mt Fooa iy
Lm vl e ias orli e

1

& Tarecad lre

g7
Color
Tan 20, Mar 2013 May 2013 1 2013 5ep 2013 Mow 2013 Jan 2044]

Siple
Noted -

Figure 8.22: Forecast line

By hovering over the first forecast point, January 2014, the forecasted Internet Sales Customer
Count value of 2,123 is displayed along with the upper (2,428) and lower (1,818) boundaries.
The user can easily distinguish the last actual data point, 2,133 for December of 2013, from the
forecast via the Dotted style of the forecast line and the dark fill of the Confidence band style.
The Trend line, Average, and Goal reference lines applied in the previous section provide further

context to the Forecast.

364 Applying Advanced Analytics

As per Figure 8.22, a custom Forecast length and Confidence interval have been applied to the
Forecast. The Seasonality property is optional and is used to help detect seasonal variances in

data. Think retail sales being seasonally impacted by holiday sales in November and December.

The Confidence interval property defines the distance between the upper and lower boundaries
from the forecasted data points. For example, the minimum confidence interval of 75% produces

anarrower range, and the maximum confidence interval of 99% produces a much wider range.

The Ignore the last property can be used to evaluate how accurately the forecast would’ve predicted
recent data points. In this example, an Ignore last value of 2 would result in forecast values for
November and December of 2013—the last two completed months. The forecast algorithm would
use all available data points through October of 2013 to generate the two forecast points. If the
actual data points for these two months fall outside the confidence interval (upper and lower
bounds) of the forecast, the forecast may not be valid for the given data, or the Confidence interval

may be too narrow. This testing technique is referred to as hindcasting.

Let’s now look at one of the most advanced options for adding analytical insights to reports, the

Quick insights or Analyze feature.

Quick insights/Analyze

Quick insights, also known as the Analyze feature, is one of the most analytically advanced
features in Power Bl asit enables sophisticated machine learning algorithms to be executed against
datasets or specific subsets of those datasets. The results of these computations automatically
generate highly formatted Power BI visuals that can be integrated into reports as though they

were created from scratch.

The full Quick insights capabilities are only generally available in the Power Bl service for import
mode datasets without RLS applied and with dashboard tiles reflecting those datasets. However,
the essential capabilities of Quick insights are also available in Power BI Desktop as the Analyze

feature.

Chapter 8 365

In Figure 8.23, Quick insights has been executed against the ChapterO6_Import dataset in the

Power BI service:

Cuick Insghis Tar Chaplendd_mpon

& e o e e e ey T e B e ey e, b
Moyl Lgien Funight Cont peal Sy Tesion ey Famsar dslss Dok snd &g of Undifoics
Wi EERAT Ay Pl
Thrass (n m cormirsca sy Belrs Doroomrs
bacavwar. Mo e Salan rd Linyon frors
- Fraight Comt et 5 chrsiars whea proveed

% sy Ty Wy i [T T

Figure 8.23: Quick insights for a dataset in the Power Bl service

To execute Quick insights against an entire dataset, see the Get quick insights option under the
Actions ellipsis menu for a dataset in the Power Bl service. Once the insights have been generated,

a View Insights menu option replaces the Get quick insights option.

The visuals generated from the insights, such as the line chart on the left, advise of the algorithm
used (for example, outlier, cluster, and correlation). Most importantly, the visuals can be pinned
to dashboards and are displayed without the supporting text like normal dashboard tiles. In

Power BI Desktop, Quick insights are limited to specific data points represented by report visuals.

Asmentioned, Quick insights cannot be executed against datasets that contain row-level security
roles as described in Chapter 5, Designing DAX Measures and Security Roles. Additionally, Quick
insights cannot be executed against DirectQuery datasets, live connection datasets, or real-time

streaming datasets.

In addition to the use of Quick insights in the Power BI service, similar capabilities are available

within Power BI Desktop via the Analyze feature, which we will explore next.

366 Applying Advanced Analytics

Explain the increase/decrease

Quick insight features are enabled in Power BI Desktop by default, allowing users to right-click
data points in visuals and execute the relevant analysis. In Figure 8.24 right-clicking on the data

point for 2014-Feb presents an Explain the increase option in the Analyze menu:

AnalyIe k Expilain the increass

Surmmarize

lan 2013
lan 2013 Copy

Figure 8.24: Explaining the decrease in Power Bl Desktop

Clicking Explain the increase executes machine learning algorithms against the dataset and
populates a window with visuals representing the insights retrieved. The user can scroll vertically
to view the different insights obtained such as Non-Bikes accounting for all of the increase in

customers, as shown in Figure 8.25:

Chapter 8 367

Here's the analysis of the 118.98% increase in Internet
Sales Customer Count between 1/1/2013 and 2/1/2013

Internet Sales Customer Count for 1/1/2013 and Internet Sales Cus... T
BY PRODULCT CATEGDRY GROUFP i B

Mon-Bikes' had the most significant increase among Product Category Group .

@ Internet Sales Customer Count for 1712013 @ Internet Sales Customer Count for 271,

[=

[=)

=

3 i
a LA
2

=

L4

E

=]

s

Ut

G
w500
=

n

L

a—

a

{

=

o

k

C

E

Bikes Mon-Bikes
Product Category Group

MRE:

Figure 8.25: Explain the increase in Power Bl Desktop

368 Applying Advanced Analytics

Clicking the plus sign at the top right corner of the text box explaining the insight adds the visual
to the report page. Adding the visual to the report page automatically populates the associated
field wells and visual level filters as though the visual was created manually. If necessary, the report

author can apply further formatting to align the visual with the design and layout of the page.

The default for Quick insight charts is a clustered column chart but other available chart options
are displayed at the bottom center of each insight card. In Figure 8.25 aribbon chart s also available

as opposed to the clustered column chart.

Currently, Quick insights in Power BI Desktop is limited to the local dataset and is exclusive
to import mode datasets. For example, the Explain the decrease option does not appear when
connecting to a published Power BI dataset or an SSAS database via live connection. Given the
importance of isolating reports from a central dataset as described in the previous chapter, Chapter
6, Planning Power BI Reports, this limitation represents a significant obstacle to utilizing this feature

in corporate deployments.

Additionally, there are several limitations on the kinds of measures and filters supported. For
example, measures that use the DISTINCTCOUNT () and SUMX() functions are not supported, and

measures containing conditional logic (for example, IF()) are also not supported.

Just as important as delivering advanced analytics and insights to business users is the ability
to deliver those such insights anytime, anywhere. Luckily, Power BI provides such capabilities

through mobile-optimized report pages.

Mobile-optimized report pages

A critical use case for many reports is access from smaller form factor devices such as phones and
tablets running the i0S and Android mobile operating systems. A report thatis perfectly designed
for a laptop or PC monitor may be difficult to use on a tablet or mobile device, thus depriving

business users of advanced analytical insights while they are traveling or otherwise on the go.

To account for multiple form factors, including both small- and large-screen phones, report

authors can create mobile-optimized reports via the Phone Layout view in Power BI Desktop.

In Figure 8.26, the Mobile layout of a report page in Power BI Desktop is accessed via the View tab:

Chapter 8

Fila Hairs

Ingeft

Mcdaling
ha | (A
Inknalal] Bafaslod

e Hadg

bxteeral Toods

369

fa "i.]
fninali!) Rakintal
Aeseller Met Sales vs. Plan

& = | L

lbmial|- ot

inlernetl Met Sale= w=. Plan
$2.74M

Geak 1,200 [-14.5%)

| Eradlngs
Wickils
prin

Sl 1o g

| Lasck oyt
Dleige ywourr rapor] 1nr modd b gevices ;
Gaal 0.80M {= 75.55%]

-4.4%

Regalar Mar kangin ©

38.9%
Infernet Med Sales (YTO by Fear Monih

s e Margin

Figure 8.26: Mobile layout in the View tab

From the Mobile layout view, the visuals created and formatted for the report page can be arranged
and sized on a mobile layout grid. In Figure 8.27, the two KPI and card visuals included in the

Hrralle bt Dalnn re.Man

preceding image from the Report view, as well as a line chart, are arranged on the mobile canvas:

878N 3 8
-4.4% 38.9%

Infmrninl Mal Sales [YTOI
1]

Aot Pl Nilwigei

L108

Figure 8.27: The phone layout

370 Applying Advanced Analytics

Single-number visuals, such as cards and KPlIs, are natural candidates for mobile-optimized
layouts. More complex and data-intensive visuals, such as scatter charts and combination charts,
are generally less effective choices for mobile layouts given the smaller form factor and screen

resolution of mobile devices versus desktop and laptop monitors.

Given the one-to-one relationship between report pages and the phone layout, one design option
is to create a dedicated report page with the visuals needed for the phone layout. This can be
especially important because the font sizes and other format options for the visuals cannot be
individualized for the Mobile layout but rather inherit the formatting of the report in the Report

view.

The size and position of visuals can be adjusted by dragging visual icons along the Mobile layout
grid. A mobile-optimized layout can be defined for each report page, or any number of the pages

contained in a report.

The formatting and filter context of report visuals is always aligned between the Mobile layout
and the default Report view. For example, to change the format or filter for a visual accessed via

the Mobile layout, the visual can be modified from the standard Report view desktop layout.

When areport page is accessed from the Power Bl mobile application, the Mobile layout created
in Power BI Desktop is rendered by defaultin the phone report mode. If a phone-optimized layout

doesn’t exist, the report opens in landscape view.

Power Bl dashboards can also be optimized for mobile devices. The Mobile layout for dashboards

is implemented in the Power BI service and is reviewed in Chapter 9, Designing Dashboards.

This completes our exploration of applying advanced analytics to Power BI reports.

Summary

This chapter reviewed many advanced analytical and visualization features that are available to
deliver powerful and compelling report content. This included the use of more complex visuals
such as the Al visuals, R and Python visuals, the ArcGIS Maps for Power BI visual, and custom
visuals. Additionally, the analytical potential of animation via the standard scatter chart visual
and custom Pulse chart visual was explored. Finally, the advanced analytical capabilities of the

Analytics pane and the Quick insights/Analyze feature were presented.

The next chapter utilizes the report visualizations and design patterns described in this chapter

as well as the previous two chapters to create Power BI dashboards.

Chapter 8 371

This includes simple single dashboard projects and more elaborate multi-dashboard architectures,
representing different levels of detail. Although some users may only view or interact with Power
BI via dashboards, the quality and sustainability of this content, and particularly the ability to
analyze the supporting details, is largely driven by the report design concepts and features from

Chapter 6, Planning Power BI Reports.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

Designing Dashboards

This chapter leverages the dataset and report development features and concepts from prior
chapters to plan and develop Power Bl dashboards and apps. Alternative dashboard architectures
are described, including an organizational architecture that aligns business teams at different

levels of an organization to a common set of corporate KPIs.

The design and implementation of these dashboards and apps, including layout, custom links,
and mobile-optimized dashboards, are described in this chapter. Additionally, other top features
and capabilities of dashboards are reviewed, including live report pages and the integration of

content from other report types, including paginated reports and Microsoft Excel workbooks.
In this chapter, we will review the following topics:

e Dashboards versus reports
e Dashboard design

e Dashboard architectures

e Dashboard tiles

e Livereport pages

e Mobile-optimized dashboards

Dashboards versus reports

Executives and senior-level stakeholders require a holistic view of the top metrics or Key
Performance Indicators (KPIs) established by their organization. While Power Bl reports deliver
a visually rich data analysis experience, optionally at a very detailed level, Power BI dashboards

provide a simplified “single pane of glass” for viewing top metrics.

374 Designing Dashboards

Additionally, since the tiles of dashboards can be linked to their source report visuals or other
dashboards, a dashboard can serve as the starting point to optionally navigate to other dashboards

and underlying reports.

From a technical standpoint, Power BI dashboards are exclusive to the Power BI online service
and are primarily composed of tiles representing visuals from one or many reports. While Power
Bl reports are often limited to a single source dataset, a dashboard’s tiles can represent multiple

datasets from highly disparate sources to help provide a 360-degree view on a single canvas.

To less experienced users and BI team members, the terms and capabilities associated with
dashboards and reports can be misunderstood. Much of this confusion stems from the fact that,
in common parlance, the word dashboard is used to refer to any type of summary-level report
containing multiple visualizations. However, in Power BI, dashboards and reports are two distinct

types of content with their own unique capabilities and use cases.

For example, data-driven alerts are exclusive to Power BI dashboards, while embedding in
SharePoint Online is only supported for Power Bl reports. More fundamentally, Power Bl reports
deliver an interactive data exploration experience by providing many methods of filtering, cross-
filtering, and drilling to different levels of detail. Power BI dashboards, with the exception of pinned
live report pages, are not intended for significant user interaction but rather as a summary-level

single pane of glass for displaying key performance indicators.

Although several capabilities, such as email subscriptions and printing, are common to reports and
dashboards, BI teams are well served to design dashboards and reports according to their distinct
roles in Power BI. For example, a dashboard should not contain granular details or complex visuals,

but rather the essential metrics describing the stakeholder’s area of responsibility or influence.

The following table compares dashboards to reports across 19 capabilities:

Capability Dashboard Report
Visualization pages | One page One or multiple pages
Authoring Power Bl service Power BI Desktop and service
environment
Viewing Power BI service and mobile | Power Desktop, service, and mobile apps
environment apps
Pinning Can pin existing dashboard | Can pin report visualizations and pages as
tiles to other dashboards in tiles to dashboards
the current workspace

Chapter 9

375

Email subscriptions

Supported

Supported

Filtering

Can only filter or interact

with live report page tiles

Can filter, cross-highlight, and slice

Data alerts

Supported

Not supported

Customization

Can alter layout, tile size,

names, and links

Fully customizable in Edit mode of the

Power BI service and Power BI Desktop

Natural language
queries (Q&A)

Available for all dataset
types (import, Live, and

Q&A report visual

DirectQuery)
Visibility to data Can export data for a tile Can export summarized and underlying
detail data, and also the Show Data option to
view tabular data of a visual
Printing Can print current dashboard | Can print current report page

Featured and

A dashboard can be set as

Can only be set as favorites

favorites featured and as a favorite

Publish to web Not supported Supported

Embed in Not supported Supported in SharePoint Online via the
SharePoint Power BI web part

Mobile optimized Supported Supported

Create visuals

Can add tiles containing text,
image, video, web content,

and streaming data

Can create visuals using both standard

and custom visuals

Dataset sources

Tiles pinned from Excel
workbooks, PBRS, and Power

BI visuals

Hundreds of supported sources

Datasets

Tiles can reflect one or

multiple datasets

Usually a single dataset with potentially
multiple data sources. Can be multiple
datasets using DirectQuery for Power BI

datasets and Analysis Services

Data caching

Tiles reflect cached query
results, and the cacheis

updated on a schedule

Visuals generate queries against the
source dataset when opened and based on

user interactions

Table 9.1: Dashboard and report capabilities

376 Designing Dashboards

As per the preceding table, data-driven alerts are exclusive to Power BI dashboards in the Power
Bl service. Data alerts and their corresponding notifications are not available to Power Bl reports,

including reports published to Power BI Report Server (PBRS).

The ability to embed custom alert rules and the deep integration of data alerts with the Power
BI mobile apps is a top reason to leverage dashboards in the Power BI service. Data alerts and
email subscriptions to reports and dashboards in the Power BI service are reviewed in Chapter 13,

Creating Power BI Apps and Content Distribution.

Dashboard(s) may not be necessary or appropriate for every Power Bl app. If the primary use case
is for users to explore and analyze data or if the desired visualizations can be developed within
a report, then a dashboard may only add unnecessary time and complexity. However, if there’s
a need to integrate visuals from separate reports on a single canvas, or if a feature exclusive to
dashboards such as data alert notifications is required, then dashboards can be an indispensable

component of a solution.

The subsequent sections of this chapter describe many core dashboard features and capabilities,
including dashboard tiles, mobile optimizations, and alternative sources, including Excel and

paginated reports.

Dashboard design

The design of dashboards and their relationship to both reports and other dashboards is critical
to provide a consistent and robust package of information assets for an organization. Report
authors and Bl teams can use visual selection, layout, and supporting tiles to maximize the value

and usability of dashboards.

Report authors are best positioned to produce initial drafts of dashboards based on their knowledge
of the most utilized or valued report visuals. Ultimately, a well-designed dashboard delivers both
at-a-glance visibility to the most important metrics for the consumer as well as accessibility to

supporting and related details.

Chapter 9 377

Particularly for executives and senior management, the dashboard should support all essential

business questions and metrics, without requiring any user clicks.

If an executive or senior manager regularly has to access underlying reports, make filter selections
on live pages, or utilize several dashboards to answer core questions, the architecture and scope
of the Power BI dashboard should be reconsidered.

Figure 9.1 shows an example dashboard organized by Sales Territory Group:

Glcllna- '.'.':i P SO L 'l: e . '"\-. T F] S 4 RO r\."'il:-] AL LR EEH
T i - LA
AW Sew 3 11-2- A3 L
Mt Margin % YT vt Fla Wit Saeg §T0 e Pl Rales CRacred Bs Tralkng She Moo
9 10%: ¢526M HIEENEER
Coak % 180=0 335 Crak: S0 M o 28 B0 <f = -
NOI"L‘"‘l s ! Pt Sabe v Plan '~:-. '!:h:-l-:.']d. v Plan r‘:d:r'r'.i-E'J o v Plar
America AT NA i
i [FRTEN 1 -
] R = - £ e
ITU B BOTE D
e akary at Pt by v P Hevplinr Pist Salen
Europe
X
JRT=Fre Im M EITE w
R Lk HTH 2 AL o ~ ¥ maal
T FLTE =R
F'Etl:lﬁ{ T ::c..'.- b v Pl bmrral Mad Zakn v Man :'..-H. o Ml Sabn va Phn

(T T

i
ety i
- ~ SiFtim ;
(PR
T

Figure 9.1: Global sales dashboard

In this example, three Power KPI custom visuals are displayed at a global level and also for each
of the three sales territory groups. The Power KPI custom visual is chosen for these metrics as it
presents greater detail and context than other related visuals, such as the standard KPI visual. For
example, the Total Net Sales vs. Plan tile at the global level provides the actual value for the latest
month, $5.29M for 2013-Dec, as well as the YOY growth for this month, 102.52%, in addition to

the ability to hover over points on the line to see individual values for particular months.

378 Designing Dashboards

Each of the 12 Power KPI visualizations was created in the underlying report with the same basic

configuration shown in Figure 9.2:
AXIE
Year Month
Sarias
Add data fields here
“alues

AoiWorks Met Sales
Total Met sales Goal

AdiVorks Met Saies [FY)

E-Eﬂﬂlﬁﬂ:'ll'!,' Values
Ao data fields hene
EPl Indicatar Index

AutWarks Mel Sales v Plan lndex

KPI Indicator Value

AdWorks Sales Var to Plan %

Sacond KPI Indicatar Value

Aciiorks Mel Sales [YOY)
Figure 9.2: Power KPI configuration

The AdWorks Net Sales vs Plan Index measure was created using the following formula:

AdWorks Net Sales vs Plan Index = IF([AdWorks Sales Var to Plan %] >
0,1,2)

In this measure, the value 1indicates that sales are greater than the plan, meaning that the goal

has been met, while 2 indicates the opposite.

Distinct line styles are applied to each of the three lines displayed by the Power KPI visuals.

Chapter 9 379

Solid, dotted, and dashed line styles are associated with the net sales, net sales plan, and net
sales (PY) lines, respectively. The solid style of the net sales line and the actual KPI value helps
to highlight this line relative to the two other less important lines. The distinct line styles are
particularly helpful when the tile is being viewed in focus mode or the visual is being viewed

with greater space in a report.

The user, such as the vice president of global sales, can quickly monitor overall performance
relative to the plan via the KPI symbol icons in the top-left corner of the tiles (green caret up, red
caretdown). Additionally, two standard KPI visuals and a 100% stacked column chart were added
specifically to the global level to deliver YTD sales and margin performance information as well

as the recent mix of reseller and internet sales channels.

To view the details of a dashboard tile, such as the individual monthly values of one of the smaller
tiles, a user can open the tile in focus mode. Focus mode fills the entire screen with a single visual
and thus makes it easy to perceive differences in the length and shape of columns and lines,
respectively. Focus mode can be accessed by hovering over the top-right corner of a dashboard
tile and then clicking the more options ellipsis (three dots) menu. Figure 9.3 shows the options

available for the Total Net Sales vs. Plan dashboard tile:

GlDbal lotal Bzt Salzs s 2 an

Thernes Het haes@s Flar

L=l i o emmmint
R B Chut i Trarie
H L .
Ty _opw vzl 22 image
R AT OMs Do tege SRR AR Y g G2oRSm AN
Flal Bdaneginn 3 57 e Mo Tralal Bl Talee ¥ ey Pl
Lr_| Lapawl ey s
9.1% $52.6M |
et p kL
ol 80 E =02 L2201+ 24,8950

i Pnlile

Tl ncir tie

Figure 9.3: Dashboard tile options

The 12 Power KPI dashboard tiles, combined with focus mode, provide the user with a simple
interface for a robust suite of information. For a user at the global level of the sales organization,
this level of detail may be more than sufficient for most scenarios, precluding the need to access

other dashboards or reports.

380 Designing Dashboards

The same three KPIs (Total Net Sales vs. Plan, Reseller Net Sales vs. Plan, Internet Net Sales vs.
Plan) are also featured in separate, dedicated dashboards for each sales territory group. Simply
clicking a tile on the Global Sales dashboard opens the North America dashboard, providing
several additional visuals specific to this Sales Territory Group. Additionally, the North America
sales dashboard follows the same structure as the Global Sales dashboard and thus contains sets

of tiles dedicated to the United States and Canada.

If necessary, a third layer of dashboards could be created for each country within each sales
territory group, thus enabling even greater dashboard navigation flexibility (for example, Global
| Europe | Germany), with the same Power BI dataset being used for all reports and dashboards
in the workspace. Row-level security roles described in Chapter 5, Developing DAX Measures and
Security Roles, can ensure users do not have access to KPIs outside the scope of their assigned
role. Additional details and considerations for planning multiple dashboards and creating links

between dashboards and reports are described later in this chapter.

Visual selection

Given that the primary purpose of dashboards is to provide an at-a-glance status of key business
metrics, it’s important to choose visuals that best fit this purpose. Too many dashboard tiles and

more detailed tiles can detract from the dashboard’s purpose.

Although any report visual can be pinned to a dashboard, only the visuals that either align with
a corporate standard or that represent a critical insight or starting point should be represented
on dashboards. Additionally, dense or relatively complex visuals, such as tables, matrices, and
scatter charts, should rarely be pinned to dashboards. As per the Global sales dashboard, KPI
visuals with built-in conditional formatting logic and supporting context are usually the best

choices for dashboards given their intuitive nature and clear, concise visual display.

For example, if a table or matrix is considered to be the most valuable visual within a report, a
KPI or card visual could be created targeting, but summarizing, the same business question. KPI
and card visuals are more intuitive on dashboards and can be configured to provide single-click
access to areport page with sufficient supporting details. Additionally, KPI or card visuals support

data-driven alerts while tables, matrices, and scatter charts do not.

The visual in the top-left corner of a report page, the user’s logical starting point for understanding
the report, is often a good candidate to be pinned to a dashboard. Every report should have at
least one summary-level visual (for example, card, KPI, or gauge) aligned to the primary business
question or purpose of the report as this provides immediate context and understanding for the

rest of the visuals on the report page.

Chapter 9 381

Additionally, given that dashboards are limited to a single page (one canvas), visuals that provide
supporting context, such as the standard KPI and the Power KPI custom visuals, should generally
be favored over simple cards and gauges. The additional details provided by these visuals may
not be visible in small dashboard tiles but are very valuable if additional space is allocated to the

tile and when accessed in focus mode.

In Figure 9.4, the Total Net Sales vs. Plan KPI dashboard tile at the Global level is accessed in

focus mode:
£ Back to report TOTAL NET SALES VS, PLAN
2013-Dec $5.29M +102.52 %

. £3,740
Aty - WY o SRS Wt
TR =% 1T - §2a . OGN
. VAT]
f2.35h° ~ oM N st Sz -
i 2! _ -

P
P
Wl

v

g e

FMlE-ln o SOl -Fen FUS-REe FVAGARe MUE-Rme SUTR-loe o FOE-0 0 PO Ae AUERen SUIRChT POTER-Moy ST -Des

Figure 9.4: Focus mode of dashboard tile - Power KPI custom visual

Given the full pane of additional space provided by focus mode, the supporting metriclines of the

Power KPI visual and the individual data points of those lines are exposed to the user.

Focus mode is also available in reports via the Focus mode icon in the corner of each report visual.
This can certainly be useful as well but remember, as per Table 1, opening reports always results
in new queries being generated. With the exception of streaming dataset tiles, dashboard tiles
store the cached results of prior queries. Therefore, leveraging focus mode in dashboards, and
dashboardsin general (rather than reports), to address a significant portion of user analysis needs
can reduce the query workload on the underlying dataset and resources (for example, the Power

BI Premium capacity) and help ensure a more optimal user experience.

The Power KPI visual in the preceding example automatically adjusts to the additional space
of focus mode to display data labels for all months. The distinct line styles (solid, dotted, and
dot-dashed) of the actual net sales, sales plan, and prior year’s sales measures are also more
transparent to the user. Additionally, the three measures (net sales, sales plan, and prior year
sales) and the two variances (actual versus plan and actual versus prior year) are displayed as

tooltips via hovering over the data points.

382 Designing Dashboards

These additional data details, formatting options, and other capabilities are not available in the
standard KPI visual and therefore, although the Power KPI visual requires additional configuration,
it ultimately delivers more analytical value and serves to reduce the need for users to search for

additional visuals and reports to resolve their questions.

However, only the standard KPI, card, and gauge visuals are supported for data alerts so this could
be a factor in favor of choosing the standard KPI visual. Thus, dashboard authors must carefully
consider the respective tradeoffs between using custom and standard visuals. Additional details
on configuring data alerts in the Power BI service are included in Chapter 13, Creating Power BI

Apps and Content Distribution.

Moving on from the topic of visual selection for dashboards, another important consideration

is dashboard layout.

Layout

The position and size of dashboard tiles should align with the primary purpose or priorities of

the dashboard and standard visual comprehension techniques.

For example, the Total Net Sales vs. Plan tile at the global level is the most important tile of the
Global Sales dashboard. Therefore, this tile is positioned at the top-left corner of the dashboard

and twice as much width is allocated to it relative to the Reseller Sales and Reseller Sales tiles.

Via this layout, the user can naturally start at the top left of the dashboard and navigate to the
right (Reseller and Internet Sales) and down (North America, Europe, and Pacific) to add greater

context to the Total Net Sales vs. Plan tile.

Another top consideration for layout is to maximize the available canvas space. Unlike reports,
which can contain multiple pages and bookmarks, a dashboard is always a single canvas of tiles.
Therefore, although a dashboard should not contain empty space, users should not have to scroll

vertically or horizontally to view dashboard tiles.

Given the limited space, typically, a compromise must be made between larger tile sizes for more
important visuals versus the inclusion or exclusion of tiles for less essential visuals. As one example,
the trailing six-month channel mix tile (stacked column chart) in the Global sales dashboard
could be removed, thereby allowing the Internet Net Sales and Reseller Net Sales tiles to be

enlarged to the same size as the total net sales tile.

Given that space considerations are paramount to dashboard layouts, there are two techniques

for adding additional space that we cover in the following two sections.

Chapter 9 383

Navigation pane

Additional space for dashboard tiles can be obtained by hiding the navigation pane. To toggle
between hiding or showing the navigation pane, click the three lines above the Home icon (house

symbol), as per Figure 9.5:

Figure 9.5: Hidden navigation pane

URL parameters can also be used to open dashboards with the navigation pane hidden by default.
URL parameters are simply information contained within the query string of a URL. The query

string is the portion of the URL that follows a question mark (?).

In the following example, a string of text from the question mark through to the true property
has been appended to the end of the URL for a dashboard:

https://app.powerbi.com/groups/abcl23/dashboards/d8465?collapseNavigation=true

This modified URL can be shared with users such that users of the dashboard aren’t required to
click on the navigation pane icon. The second technique for adding space is by using fullscreen

mode, which we explore next.

Fullscreen mode

Another technique for obtaining more space on dashboards is to utilize the fullscreen mode. The

fullscreen mode can be accessed via the diagonal arrow icon in the top menu bar on the far right

o «[/]

Figure 9.6: Fullscreen mode icon

as per Figure 9.6:

https://app.powerbi.com/groups/abc123/dashboards/d8465?collapseNavigation=true

384 Designing Dashboards

The fullscreen mode removes all of Chrome, including the navigation pane, Power Bl menus, and
the bars associated with the web browser (for example, tabs, address bar, and bookmarks bar).
This view alone substantially increases the available space for larger tiles or a higher volume of
dashboard tiles. If certain dashboard tiles are still not visible in the fullscreen mode, Fit to Screen
and Fit to width options are available in the lower-right corner via the diagonal, outward-pointing

arrows icon and the arrow and box icon respectively as shown in Figure 9.7:

Figure 9.7: Fit to Screen

The Fit to Screen option, exclusive to the fullscreen mode, is also referred to as TV mode and is
frequently used to display Power BI dashboards on large monitors in corporate hallways. URL
parameters can be used to access dashboards in fullscreen mode by default. In the following
example, a text string from the question mark through to the true property has been appended

to the URL of the dashboard such that the dashboard will be opened in fullscreen mode:
https://app.powerbi.com/groups/abcl23/dashboards/d8465?chromeless=true

Ultimately, BI teams must align the layout of tiles with the use cases for the dashboard and the
preferences of the stakeholders. For example, if a dashboard is almost exclusively going to be
used in fullscreen mode, a layout that requires some level of scrolling to view all tiles outside of

fullscreen mode may be acceptable.

Alternatively, if users regularly access the dashboard via the browser on their laptops or desktop
monitors, they may not want to have to collapse the navigation pane or view the dashboard in
fullscreen mode to see all the tiles. As the position and size of dashboard tiles can be easily adjusted
via drag-and-drop handles within the Power Bl service, multiple iterations of dashboard layouts

can be quickly evaluated.

In addition to a dashboard’s primary tiles, supporting tiles can be added to help organize and

structure the dashboard.

Supporting tiles
Supporting tiles refer to dashboard tiles used to help structure and organize the dashboard. For

example, custom images and text boxes can be pinned from reports to dashboards to help structure

and organize dashboards. However, shapes cannot be pinned from reports to dashboards.

https://app.powerbi.com/groups/abc123/dashboards/d8465?chromeless=true

Chapter 9 385

While most dashboard tiles are pinned visualizations from an underlying Power BI report,
additional tiles can be added via the Add a tile option in the Power BI service. These tiles, which
can include web content, images, video, streaming data, and simple text boxes, serve to give the

dashboard greater context and a more robust and finished design.

In the Global sales dashboard described earlier, four Text box tiles were used to distinguish the
Global tiles from those associated with each of the three sales territory groups (North America,
Europe, and Pacific). The position and size of the supporting tiles help to clarify the priority and
scope of the dashboard.

For example, without any knowledge of the dashboard’s title, the top position of the global tile
and the additional space allocated to the global section of the dashboard help to confirm that
the dashboard is primarily focused on the global level.

Figure 9.8 shows the creation of the Europe text box tile, created by using the Edit menu and
then choosing Add a tile.

Add textbox tile

P gequire

Ceztails
Driaphay ik and sblila

Irie

Subiibe

Contant

Fill m Hhe cslails

|
L]
E

Segos LI Lig g 24

Europe

Figure 9.8: Supporting text box tile

Once created, the diagonal arrow handles in the lower-right corner of each supporting tile can be
used to change the size of the tile. Additionally, a tile can be selected and dragged to a different

location on the canvas.

386 Designing Dashboards

Dashboard architectures

For small projects and the early iterations of an agile BI project, a single dashboard and a few
supporting reports may be sufficient. For many users, however, multiple dashboards with their
own distinct reports are required. Both of these approaches, a single dashboard and multiple
dashboards, are geared toward a specific stakeholder or group of consumers, such as the vice

president of sales.

Although these different methodologies may meet the needs of their intended users, a potential
risk is a lack of coordination across teams. For example, business units might reference distinct
metrics included in their dashboard and these metrics may not be included in the dashboards of

senior managers or other business units.

To promote greater consistency and coordination across groups of users, Bl teams can pursue an
integrated, organizational dashboard architecture. In this approach, the same metrics and KPIs
considered strategic for the organization are available in multiple dashboards specific to levels

in an organizational hierarchy or distinct business units.

The Global Sales dashboard, described earlier in this chapter, represents this methodology as
separate dashboards specific to individual sales territory groups including the same KPIs as the
global dashboard. This approach ensures that dashboard tiles are relevant to the specific users
and make it possible to analyze up and down a natural organizational hierarchy. Additionally, a
common dashboard layout with integrated KPIs makes Power BI solutions much easier to manage

with limited BI resources.
In this section, we explore the single-dashboard, multi-dashboard, and organizational

dashboard architectures.

Single-dashboard architecture

A single-dashboard architecture is just that, a single dashboard supporting one or more reports.

In Figure 9.9, a single dashboard focused on Reseller Sales contains tiles representing report

visuals from four separate Power BI reports:

Chapter 9 387

Dashboards

Reseller Sales

Reseller Reseller Reseller Reseller
Sales vs. Plan Promations Product Mix Margin Analysis

Datasets

AdWorks
Enterprise

Figure 9.9: Single-dashboard architecture

By default, a user selection on any of the dashboard tiles opens the report page of the underlying
report. For example, a dashboard tile reflecting the percentage of bike sales versus other product
categories would be linked to the Reseller Product Mix report and the specific page of this report

containing the source visual.

Each Power BI report is based on a Live connection to the AdWorks Enterprise dataset. As
described in the Live connections to Power Bl datasets section in Chapter 6, Planning Power BI Reports,
leveraging this feature avoids the duplication of datasets since each Power BI Desktop report file

(. pbix) only contains the visualization layer (for example, visuals and formatting).

Although relatively simple to build and support, the single Reseller Sales dashboard architecture
provides both a summary of a diverse set of essential metrics and visuals (represented as dashboard
tiles) as well as an entry point to reports containing the details supporting this dashboard. As
described in the previous three chapters, Power Bl reports could include multiple report pages of
visuals related to the dashboard and leverage interactive features, such as slicers and bookmarks,

to enable users to explore these reports more easily.

388 Designing Dashboards

All of the content in this architecture — the dashboard, reports, and dataset — would be hosted
in a single workspace in the Power BI service. Chapter 10, Managing Application Workspaces and

Content, explains the role and configuration of workspaces.

We’ll now explore a more complex dashboard architecture involving multiple dashboards.

Multiple-dashboard architecture

Power BI solutions will often need to summarize multiple related topics or business areas that
either require or benefit from having their own dashboard. As one example, Internet Sales and
Reseller Sales may have slightly different definitions for KPIs and also serve different stakeholders.
Separating out these KPIs and visuals to their own dashboards could resultin simplified and more

focused, relevant dashboards for their users.

In Figure 9.10, a Reseller Margin dashboard and a Reseller Margin Trends report have been added

to the solution described in the previous section:

Dashboards

Reseller Sales Reseller Margin

Reseller Reseller Reseller Reseller Reseller
Sales vs. Plan Promotions Product Mix Margin Analysis Margin Trends

Datasets

AdwWorks

Enterprise

Figure 9.10: Multiple-dashboard architecture

In this design, a visual from the Reseller Margin Analysis report has been pinned to both the
Reseller Sales and the Reseller Margin dashboards, as per the preceding diagram.

Chapter 9 389

This is not required but is recommended for usability such that users can maintain context as
they navigate between both dashboards. The new Reseller Margin Trends report, built via a
Live connection to the published AdWorks Enterprise dataset, exclusively supports the Reseller

Margin dashboard.

This architecture extends the scope of the solution to provide greater visibility to margin metrics
and trends not available via the single dashboard. For example, rather than navigating through the
multiple pages of the two reseller margin reports (Reseller Margin Analysis and Reseller Margin
Trends), users could access the Reseller Margin dashboard for a more simplified dashboard
experience. In addition to user convenience and the limited scope of a single dashboard, utilizing
dashboards and their cached data helps to reduce the workload on the underlying dataset and

resources.

Like the single dashboard architecture, all content (dashboards, reports, and datasets) from this
multi-dashboard architecture is included in the same workspace in the Power BI service. Given
this common workspace, each dashboard tile can be linked to a report or dashboard in the same
workspace. For example, a margin-related tile on the sales dashboard could be linked to the
margin dashboard rather than the default source report. The Dashboard tiles section later in this

chapter contains an example of configuring custom links.

The multiple dashboard architecture described in this section focused on a specific business process,
Reseller Sales. Even more complex dashboard architectures can be created when considering how

to architect dashboards to service an entire organization.

Organizational dashboard architecture
Organizational dashboard architectures are multiple-dashboard architectures designed by
considering the reporting needs of an entire organization. Organizational dashboards tend to

mirror the organizational hierarchy of a business in terms of its business units or departments.

390 Designing Dashboards

In Figure 9.11, four dashboards contain corporate KPIs at the global level and for the three sales
territory groups:

Dashboards

Global Sales

North America
Sales

Europe Sales Pacific Sales

Reports

Global Sales vs. North America Europe Sales Pacific Sales vs.
Plan Sales vs. Plan vs. Plan Plan

Global Internet North America Europe Pacific Internet
Sales Internet Sales Internet Sales Sales

Global Reseller North America Europe Reseller Pacific Reseller
Sales Reseller Sales Sales Sales

Datasets

Adworks

Enterprise

Figure 9.11: Organizational dashboard architecture

Since the same KPIs or metrics are included in each of the four dashboards, users of these
dashboards are able to remain aligned with the same goals and can more clearly share their
findings and results across teams and levels in the organization. From the perspective of an
executive at the global level, the Global Sales dashboard provides an intuitive entry point into

the individual sales territory groups and potentially further layers, if necessary.

For example, an executive could start out at the Global Sales dashboard and optionally click a
tile related to European sales in order to access the Europe Sales dashboard and obtain greater
detail such as the sales performance of Germany, France, and the United Kingdom. From there,
even greater levels of detail from the underlying Europe reports could be accessed by clicking on

tiles from the Europe Sales dashboard.

Chapter 9 391

In Figure 9.12, the Europe Sales dashboard follows the design (layout and visual selection) of the
Global Sales dashboard:

la b s el ki vasalla Fawd an e b
Eu n--'F"F BAme - hbdidad Ta kRS LA s [YETH ELEE Y
= L 2z ‘-’M aw
BT LIEY = e e
i Ve Saeme LUl s 7T tadd
SALEH . " e e e ERET S - M .
Torn ARk AT S0 Mokl e T P ok CEerred kb Tl i e B onche
Fioss acr Fiwrs
$13.5M° | 122% HEHHEBHEER
= - L | SiEvay T q S LN E L] Bl ey
asEl o w oA =T Y B L -
. o . FraTH i #HIEH L H Ao
= Tt zla Ml Luba e Han I lae=ul . 2w e Ll aind w0 Labo o a0
GE ﬂn}ll Tk KM LLL-10 1] E LUl
- ey e R . o o w
i L Klw L IR Y ’ B
1-au R b g . . &l . [T b
EHALE L e Tl 1 - EVEINT] - B
B T T TN Y T B T BT R T il *] ey TR
LA HES CEPe. FH LIREEN B KT T T Frmdun S b Pl
France P (e
- ann T T m
et it " n I_‘i'- s
i AL -
ORLE CIdL I L - - LB 1Y
anieew T’) ¥ - E Y R s II'-'-I- e] bt -".' L
U o ed K d i1 e take e Hn “trrl e S et an Fln Faeyl ar e bobe v H
(gl |r‘|g o L% =T ERPES ILFT FHT - T LEFR LU)
—amas s rra
-EH A
FaiksIE
EIEEa

Figure 9.12: Europe sales dashboard

The three tiles aligned at the top of the Europe Sales dashboard are exactly the same tiles as
presented on the Global Sales dashboard. The only difference is that the tiles are filtered for

Europe only.

The three tiles representing the second row of the Global and Europe Sales dashboard (Net Sales
YTD vs. Plan, Net Margin % YTD vs. Plan, and Sales Channel Mix) do not have to be the same
across the dashboards since these are not the approved KPIs for the organization. Maintaining a
I:1 match in terms of tiles across the dashboards can be beneficial as this allows users to navigate
between dashboards for further analysis of any given tile. However, in many scenarios, there are
metrics or visuals that are more pertinent to the given business unit and users may rarely need

to analyze non-KPIs across multiple dashboards.

392 Designing Dashboards

As per Figure 9.1, a set of three dedicated European sales reports support the Europe Sales
dashboard. The pages of these reports may provide sufficient detail or, depending on the
organizational structure and requirements, an additional layer of dashboards dedicated to each

sales territory country could be added.

Other forms of the organizational dashboard architecture include dedicated dashboards by
product group, such as bikes, clothing, and accessories in the case of Adventure Works. Ultimately,
these implementations serve to align the different business units on common corporate goals

while also providing a rich set of insights relevant to each business unit or organizational level.

All of the dashboard architectures we have shown thus far have involved a single dataset. We

next explore the case where multiple datasets underlie the reports and dashboards for a solution.

Multiple datasets

The reports and dashboards that comprise a solution may be based on a single dataset or multiple

datasets.

A single dataset, AdWorks Enterprise, was utilized to support all reports and dashboards in each
of the three dashboard architectures reviewed in the previous sections. This level of integration
is not technically necessary and there are valid scenarios where multiple datasets could be used

in the same Power BI solution and even by the same dashboard.

Multiple datasets can quickly create problems due to separate data refresh processes, separate data
source dependencies, and separate data security rules. Additionally, version control issues can
arise as each dataset may include differences in the structure and definitions of tables common to
both datasets. Moreover, the integration of visuals from separate datasets on a single dashboard

may be insufficient to support analytical requirements.

One use case for multiple datasets is that an organization may not have a particular data source,
such as an Oracle database, integrated into its data warehouse system (for example, Teradata)
but still wishes to provide essential visualizations of this data in Power Bl in order to supplement
other reports and dashboards. In this scenario, a Power BI dataset could be built against the
Oracle database, and reports utilizing this dedicated dataset could then support one or multiple
dashboards. Once the necessary data warehouse integration is completed, the dedicated dataset
could be retired and its reporting replaced with new reports based on an Analysis Services
model (which uses Teradata as its source) that supports other Power BI reporting content for

the organization.

Chapter 9 393

In other scenarios, a dataset is chosen (or was already implemented) for one or a few business
processes that aren’t closely related to other business processes. For example, one dataset was
built to include sales and marketing-related data, while a separate datasetincludes inventory and
shipment data. The reasoning for thisisolation may have been that the users of each dataset don’t
need access to the other dataset or that a large, integrated dataset would be complex to develop
and use. Alternatively, if Power BI Premium capacity is not available and Power Bl datasets are used,

the 1 GB file limit could force a team to utilize separate Power Bl files to store the required data.

In general, corporate BI projects should limit the use of multiple datasets for the reasons described
and the long-term value of a centralized data store. However, in environments lacking a data
warehouse and other scalable resources, such as an Analysis Services instance or Power BI Premium
capacity, multiple datasets can be considered an option and potentially the only option to support

one or multiple dashboards in the same Power BI solution.

We'll now move on from dashboard architectures to take a closer look at working with dashboard

tiles.

Dashboard tiles

Most dashboard tiles are created in the Power BI service by pinning a visual in a report to a new
or existing dashboard in the same workspace. However, dashboard tiles can also be created by
adding a tile directly from the dashboard itself and by pinning from an Excel workbook or Report

Server report.

With areport open in the Power Bl service, hovering over the top-right corner of a visual exposes

the Pin visual icon, as shown in Figure 9.13:

Reseller Net Sales vs. Plan D
Sarimncs 1o Fan

71.85%

Yo'k

9,428 32.04M N

fazallar ke Gales

2013-Deex

Year Momth
ERT R lankl 2013-Fch 2003-Apr 2013Jun 201348y 7013-Oct 20013-Dec

Figure 9.13: Pin visual icon for report visual

394 Designing Dashboards

Once pinned to the dashboard, several options are available for configuring tiles depending on
the type of tile and the content it contains. In the Global and Europe Sales dashboards described
previously, a subtitle was added to each tile (for example, France) and custom links were applied

to allow direct navigation from the Global dashboard to the Europe dashboard.

In addition, for the top, left-most visual, the Display last refresh time setting was enabled. This
setting displays the last time the dataset completed a successful refresh. Such information is often
critical to business users so that they understand how current the data is that they are viewing.
For example, if a nightly refresh failed and users are looking for data that includes yesterday’s

data, knowing the last refresh time helps the users understand that there was an issue.

Dashboard tiles can be thought of as snapshots of a specific visual and filter context. When a
visual is pinned from a report to a dashboard, the specific filter context (for example, slicers
or page-level filters), visualization, and formatting at that time are captured by the dashboard.
Subsequent changes to the report, such as a modified filter or a different visualization type, are
notreflected by the dashboard tile. The dashboard tile will, however, continue to reflect the latest
data refreshes of the underlying dataset. Additionally, by default, the dashboard tile will continue

to be linked to the report from which the visual was pinned.

To maintain the synchronization between report visuals and dashboard tiles, changes to reports
thatimpact the pinned visuals require the updated report visual to be pinned again. The existing

dashboard tile, reflecting the original filter context and visualization, can be deleted.

One exception to the snapshot behavior of dashboard tiles is live report pages. When an
entire report page is pinned as a single tile to a dashboard, any changes to the report page are
automatically reflected on the dashboard as well. The Live report pages section later in this chapter

includes additional details and an example.

Let’s now take a deeper look at some of the additional functionality of dashboard tiles.

Tile details and custom links
By default, pinned dashboard tiles link to the report page from which the tile was pinned. Custom

links allow this default behavior to be changed to allow linking dashboard tiles to any valid URL.

Custom links are an important component of multi-dashboard architectures, and particularly

the organizational dashboard architecture described previously.

Chapter 9 395

As mentioned, in the absence of custom links, clicking a dashboard tile opens the report page from
which the visual was pinned to the dashboard. Custom links allow BI teams to take control of the
navigation experience and enable users to navigate directly to another dashboard with related

information or even to an external site, such as a team site on SharePoint Online.

Tile details can be accessed by hovering over the top-right corner of a dashboard tile, clicking the
ellipsis, and then selecting Edit details. Figure 9.14 shows the Tile details pane where a Subtitle
(Europe) is added to one of the Total Net Sales vs. Plan KPI tiles:

Tile details

Details
| Display tithe and subtitle
Title

Total Net Sales vs. Plan

Subtitle

Eurape

Functionality
Display last refresh time
1 Sen custom link

Link typa
) External link

&) Link to a dashboard or report in the current workspace

Figure 9.14: Tile details

Additionally, as shown in Figure 9.14, the Set custom link property is enabled, and the Europe
Sales dashboard is selected for the target of the link. Clicking Apply at the bottom of the dialog (not
included in Figure 9.14) confirms the selection. Different options are available in the Tile Details

window for tiles added directly on the dashboard (not pinned), such as text boxes and images.

396 Designing Dashboards

We next take a look at a unique aspect of dashboards, the ability to support streaming data.

Real-time data tiles

Real-time data tiles allow streaming data from Internet of Things (I0T) devices and other real-
time sources to be included in a dashboard. IoT is a term that refers to physical objects with sensors
that connect and exchange data with other systems or devices. For example, a car battery that

reports charge levels every few seconds that can then be viewed on a phone via an app.

Real-time data tiles can be added to dashboards using the Edit and then Add a tile links. One of

the options when adding a tile is an option for Custom Streaming Data as shown in Figure 9.15:

REAL-TIME DATA

(o))

Custom Streaming
Data

Figure 9.15: Custom Streaming Data tile

Choosing this option provides the opportunity to use a current streaming dataset or add a

streaming dataset as shown in Figure 9.16:

Add a custom streaming data tile

Choose a streaming dataset

+ Add streaming dataset
YOUR DATASETS

Cool streaming data

Streaming Sensor Data

Figure 9.16: Add a custom streaming data tile

Chapter 9 397

New streaming datasets can come from three sources, API, Azure Stream, and PubNub as shown

in Figure 9.17:

New streaming dataset

Choose the source of your data

pN

API AZURE STREAM PUBNUB

Figure 9.17: Sources for new streaming datasets

The API option refers to the ability of the Power BI REST API to postreal-time data to a streaming
dataset, referred to as Push Datasets in the Power BIREST API documentation. This option allows

organizations to create their own applications that stream data to Power BI.

The Azure Stream option refers to the ability of Azure Stream Analytics to use Power BI as an
output. Azure Stream Analytics is an event processing and real-time analytics engine designed
to process and analyze streaming data. Integration with Azure Machine Learning allows patterns
and relationships to be identified and used to trigger actions, alerts, and workflows. Business use

cases for Azure Stream Analytics include:

e Analysis of real-time telemetry from IoT devices

e Geospatial analytics for fleet/vehicle management

e Analyzing web logs and clickstreams

e Inventory and anomaly detection for Point of Sale (PoS) systems
e Monitoring and predictive maintenance of remote systems

As Azure Stream Analytics finds patterns, these events or anomalies can be streamed in real time
to a Power Bl dashboard tile.

Finally, the PubNub option provides integration options with the third-party company PubNub.
PubNub is an API platform for developers building real-time applications such as live events,

online chat, remote IoT control, and geolocation.

398 Designing Dashboards

In Figure 9.18, the ambient temperature from a sample PubNub streaming data source is plotted

in real time:

ambient_temperature

=Y TIRESTAMP
! \
i
A | I\ .-
\ | 4 (| I‘ | [II'I |
|1 I Il a i MY |
% | I'i i I |
-\."‘l I | | |‘I| | I I'-I 1 I| |I { II I | = | |II | Il |I J I N |
1 ! | | A1 | i | nd
s v U A | VU ¥ .l L/
YELERY W | U
1y i
| 1\
| | V |]
L ||| |I|
a1 Ii
12:55 13 PR 12 30 FM 12545 P 12057 45 P8

Figure 9.18: Streaming data tile

Next, we take a look at standardizing the look and feel of dashboards using themes.

Dashboard themes

Similar to how Power BI Desktop supports themes for reports, as covered in the Visualizations

best practices section of Chapter 6, Planning Power BI Reports, dashboards also support themes.

In Figure 9.19, the Dashboard theme dialog has been accessed by choosing Edit and then
Dashboard theme from the dashboard ribbon:

LUiazhboard 1hems

e s lefasinasi

i 1% e Mvarinard 150N e
I
Brackgmaind ko -
Treasga IRL
Egimurd crdect
Tis hackgpram]
Tile fani coior |

THE DPaCTY I

Figure 9.19: Streaming data tile

Chapter 9 399

Three default themes, Light, Dark, and Color-blind friendly, are available as well as the Custom
option shown in Figure 9.19.

Themes can be downloaded as JSON files, modified and uploaded back to the Power BI service.
The following JSON code is an example of a Power BI dashboard theme file:

{
"name" :"b33fd847240881ee3107",
"foreground":"#FFFFFF",
"background": "#afb5b6",
"dataColors":[
"#01B8AA", "#374649", "#FD625E", "#F2C80F",
"#5F6B6D" , "#8ADAEB" , "#FE9666" , "#A66999"

1,
"tiles":{"background":"#808080","color" :"#FFFFFF", "opacity":1},
"visualStyles":
[LR]

{"color":{"solid":{"color":"#FFFFFF"}}},
{"labelColor":{"solid":{"color":"#FFFFFF"}}}

111},
"backgroundImage”:null

We now turn our attention to an additional source for dashboard tiles, paginated reports.

Paginated reports

SQL Server Reporting Services (SSRS) 2016, and later versions, as well as PBRS, supportintegration
with the Power Bl service. Once integration is configured between the on-premises report server
and the Power BI tenant, certain SSRS report items, such as charts and maps, can be pinned to
Power Bl dashboards.

Additionally, a reporting services subscription is automatically created for pinned report items,
allowing report server administrators to manage the data refresh schedule of the dashboard tile.
Since the source of the dashboard tile is a report published to a reporting services instance, the

reporting services instance must initiate updates to the tile.

400 Designing Dashboards

In Figure 9.20, showing an image of Report Server Configuration Manager, Power Bl Report

Server has been configured for Power BI Integration:

Report Server Configuration BManager

' m e
e e 3 I Aisa
7 ATl AASTRIRS
Segislir s R D esrsa sil e Sk Bl srrscar i900a Aol 0 anasin hyle s ™ Swalnies it
=1 o Ihl e lagid Walieen Fig i), edtwel 5 iadisener as U Poae L) servece. e cat 2nr e Wren -aer bl
A da Al accrnms and pin anciaaen nepad rers o bsr Scacr Bl dashosards, (Hedn SekiaRisa Foass s Blrooors
Bz I gl e ooen o By ek sdaewd Tealien el cepso el mecpos i sgielalioe 3
Wl Doy TS Foeen 31 Ryl
Tiegriatl vt e i rzislnresd s b Mores =
| Craszte
=Sower DIFzzisT o an wedisencd I ;l'l':: L e | it |

B Sl Tl 17

cd Pl Swlley TOUT eSS TS LE 13 d2e, I Jasdi Ragal alen
[MLszeman Azeaort

'C_.-' Foeapg n Mg
=rare bl s e ke | kegisier s Ll s
B B lind Bal 1 ge T=nark kamz (100 whlins Analdne,

£ “q:hlﬂ-l:.l "y dazman

Fra Livac L1 =]

WM 5 &A vomanl)

Figure 9.20: Power Bl integration with Power Bl Report Server

In Figure 9.20, the PBRS instance is configured for integration with the Power BI service. The
same Power BI integration is available for SSRS 2016 and later via the same interface in Report
Server Configuration Manager. The following documentation includes all the requirements for
integration with the Power BI service as well as technical details on the integration and pinning

process: http://bit.1ly/2CnCkoOU.

As described in Chapter 12, Deploying Paginated Reports, Power BI Report Server includes all the
functionality of SSRS, including paginated (RDL) reports, report subscriptions, folder security, and
the reporting services web portal. Power BI Report Server, however, provides several additional
features and benefits, with the ability to view and interact with Power BI reports (PBIX files)

topping this list.

http://bit.ly/2CnCkOU

Chapter 9 401

In Figure 9.21, a paginated (RDL) report containing a map is open:

Fowear Bl Report Sarvar

:' Browss

ACNarksiraoBegaring LISa CLatsimer Liskn =omon

i i of1 [{0 & 100% -, = E,L Fired | Mo

UdaA Online Cuslboamers by Stale

Figure 9.21: Pin to Power Bl icon in Power Bl Report Server

Selecting the Pin to Power BI Dashboard icon in the top-right window prompts the user to select
the specific report item to pin. In this report, the map is selected, and this launches the dialog
shown in Figure 9.22 for identifying the dashboard in the Power Bl service as well as defining the

refresh schedule of the tile:

Pin to Power Bl Dashboard

Salecl a dashboard 1o pin this eporl ilem a4 A lile.

Group

Corporace Sales *
Dashboard

Cuslomer Distributicn i

Frequency of updates
DCraily -

Figure 9.22: Pin paginated report visual to Power Bl dashboard

402 Designing Dashboards

In this example, the map is pinned to the Customer Distribution dashboard in the Corporate
Sales app workspace as shown in Figure 9.23. The Daily, Hourly, and Weekly tile refreshes can
be configured via the Frequency of updates drop-down menu and this setting defines the report
subscription supporting the tile. Report subscriptions can be managed via the My Subscriptions

(Settings | My Subscriptions) interface on the Reporting Services web portal.

Figure 9.23: Paginated report item as Power Bl dashboard tile

Unlike visuals from Power BI reports, which can only be pinned to dashboards in the workspace

of the given report, paginated report items can be pinned to any dashboard in any workspace.

By default, the paginated report dashboard tile is linked back to the on-premises report server
report. This link, as well as the title and subtitle for the tile, can be modified via the Tile details

window just like other dashboard tiles.

Additional information on Power BI Report Server, including the deployment and scheduled

refresh of Power Bl reports, is included in Chapter 12, Deploying Paginated Reports.

Chapter 9 403

Excel workbooks

Excel workbooks containing tables and/or data models can be connected to Power BI. Once
connected, users can pin Excel ranges and objects, such as pivot tables and charts. Scheduled data
refreshes can be configured in the Power BI service for Excel workbooks containing data models.
However, given the size limitations of Excel data models as well as the additional capabilities
of Power BI reports, such as custom visuals, role security, and advanced analytics, it’s generally

recommended to migrate Excel data models to Power Bl datasets (PBIX files).

As per Figure 9.24, the Power BI content contained in an Excel workbook can be imported to a

Power BI Desktop file:

Import
a Power Bl template
[~ Power Bl visual from file
ﬂ] Power Bl visual from AppSource

Power Query, Power Pivot, Power View

Import queries and models you created in Excel to Power BI.

Figure 9.24: Import Excel queries and models to Power Bl

The migration process includes the data retrieval M queries, data model tables and relationships,

DAX measures, and even any Power View report pages contained in the source workbook.

Only when Excel reports are deeply dependent on Excel-specific functionality, such as worksheet
formulas and customized conditional formatting rules, should the model not be migrated to Power
BI. Power BI Desktop’s enhanced table and matrix visuals and conditional formatting options
now support many of the most common Excel report use cases. Therefore, only limited effort is

required to develop an equivalent Power BI Desktop relative to Excel.

404 Designing Dashboards

In circumstances where it is not possible to migrate the Excel file to Power BI Desktop, the Excel file
can be connected to Power Bl using the Get data feature of the Power Bl service. Once connected,
Excel ranges, pivot tables, and charts can be pinned to Power BI dashboards. Figure 9.25 shows
a pivot table being pinned to the Customer Distribution dashboard in the Corporate Sales

workspace:

() Reload H Data v 52 Pin

Select a range on the sheet first, then click here to pin to a dashboard.

Figure 9.25: Pin Excel content to Power Bl dashboard
The pinning interface is the same as for Power BI report visuals, allowing the choice of pinning
to an existing dashboard or a new dashboard as shown in Figure 9.26:

X
Pin to dashboard

Select an existing dashboard or create a new one.

Where would you like to pin to?
@® Existing dashboard

O New dashboard

Select existing dashboard

‘ v

Pin Cancel

Figure 9.26: Pin to dashboard

Chapter 9 405

Just like reporting services (SSRS and PBRS) report items, Excel content can also be pinned to
any dashboard in any workspace in the Power BI service. Also, like reporting services dashboard
tiles, the details of dashboard tiles containing Excel content can be configured, including the
title, subtitle, and a custom link. Moreover, Excel and reporting services dashboard tiles can also
be included in mobile dashboard layouts. The Mobile-optimized dashboards section later in this

chapter describes this feature.

Although Excel and SSRS report content is not designed to be as visually engaging as Power BI
visuals, the ability to leverage these common reporting tools and consolidate their distinct content

on the same dashboard is a unique capability of Power BI.

The details of developing reporting services and Excel-based content as complements to a Power
Bl solution are beyond the scope of this chapter. However, several examples of these integrations,
as well as considerations in choosing among the three tools, are included in Microsoft Power BI
Cookbook Second Edition (https://www.packtpub.com/product/microsoft-power-bi-cookbook-
second-edition/9781801813044).

Live report pages
Live report pages allow entire report pages to be pinned to dashboards. This can be useful in certain

situations where the interactivity of reports is desired along with the consolidation benefits of
dashboards.

For some users, the self-service data exploration experience provided within Power BI report
pages is the most valuable use case of Power BI content. Although a dashboard of tiles may initiate
or contribute to an analysis, these users often have more complex and unpredictable analytical
needs such that greater flexibility is required. Additionally, these users are generally much more
comfortable and experienced in interacting with Power BI content, such as modifying slicer

selections and drilling up and down through hierarchies.

https://www.packtpub.com/product/microsoft-power-bi-cookbook-second-edition/9781801813044
https://www.packtpub.com/product/microsoft-power-bi-cookbook-second-edition/9781801813044

406 Designing Dashboards

To provide both the self-service experience of a report page as well as the consolidation benefits
of a dashboard, an entire report page can be pinned as a single tile to a dashboard. In Figure 9.27,
showing a dashboard for the United States, a live report page of eight visuals has been pinned to

supplement the corporate standard KP1I tiles:

b4l wal Halee e pl- - aep B HE Ak wnl Pan R Lo 2] [TERT RN P
LRl zab sl LED zazlsle T L])
T e aAd J. =% i R AT =l + =5 L HE) LTI A L]
a - . ; i - v . 2 °
SR e RN = S e SN R Sy -r'-'ﬂ S
i =11 o LA ."“'g i Eﬁ:‘ e
L TS A | ML T R el P T KR T I [LT T | FF aloz ke door L LN P]
Tekal Wb S5z1ez VT3 5 Fan Lak Wz kYD Pl tace Chranz Bl Ieclli=g & xBocnk-z
I TR STATTS I TR ATATTS VRIT=5 STATR
r b ! n “ “ “ “ n
21.5M- 2.4%
o o I b i] Ml T TR oM T e 01k
A=l 3T AWM= I Sod EBodE RS ERE e v s o Bregsd p He hl-u

§al== an:d MWiargin L e Pape: Unibad 5kates

LR RIDE A 1H Has e 0 @ i 4L o o rmakhal
L Z:Ir-1 TR
PR =/ l|.-|
T ERCL St Lot N B BT oy
Lk Prrlay Ly Fid bW Ep i
A
RS HITTH
Bw - D
LB |
L3RR IR ELRE T L I R A T T B Aadd ATeng
Sdv i Eedernan] by B
o - A
: [Lo ol 1 . =i
: & i
wr ~
b Wil Ep 8 rwmnanaigpe . - o .
Sapa Rz Y . -
Fuly o
it -
G L
(== . =
ﬁ [l .
L L s
".} T i]
A g FUeentp re e it d S0 g aMat bix e BT

Figure 9.27: Dashboard with live report page

In the dashboard shown in Figure 9.27, the user can leverage the robust filtering options on the
sales and margin live page to explore the dataset while maintaining visibility to standard metrics
via the top six tiles. In Figure 9.27, the user has filtered on the Southwest sales territory region
and also selected the Bikes product category via the bar chart. These selections impact the other
five visuals on the page via either highlighting, in the case of the Net Sales by Calendar Month
column chart, or filtering, in the case of the other four visuals. Filter selections on the live page

do not, however, impact the dashboard tiles outside of the live page.

Chapter 9 407

Like standard dashboard tiles, live page tiles are moveable on the canvas and configurable via
the Tile details window. However, custom links cannot be configured for live report pages. In the
United States dashboard example shown in Figure 9.27, the report page itself included a text box
with a title and thus the display title and subtitle property of the dashboard tile were disabled.

Unlike the snapshot behavior of normal dashboard tiles, any saved changes to the report containing
the live report page, such as a different filter condition, are automatically reflected by the live
page tile on the dashboard. This automatic synchronization avoids the need to delete dashboard
tiles reflecting the original state of the report and re-pinning visuals to reflect changes in the

source report.

To pin an entire report page to a dashboard, when viewing or editing a report in the Power
BI service, click the More options ellipses (...) menu in the report header and choose Pin to a

dashboard. Choosing the Pin to a dashboard option generates the dialog shown in Figure 9.28:

x
Pin to dashboard
Preview: Last saved state Select an existirg dashboard or create a new che.
R Where | like i ?
AdiWores Enterprise Global Sales . ere would you lile ta pin to
UMITES STATES DASHEDARD LIVE FAGE & Fxisting dashboard
y N i) New dashboard
=1 | [][]]
LInited States Dashhoard '

B - o :
AoRdel * -

P

T3 Fin live page enables changes to reports to appear
in the dashboar file when the page is refreshed,

Fir liye Cancel

Figure 9.28: Pin report page to a dashboard

Live report page tiles can also be included in mobile-optimized views of dashboards. However,
given their size, live pages are generally more valuable in larger form factors and with fullscreen

mode.

408 Designing Dashboards

Mobile-optimized dashboards

Just like the mobile layout view in Power BI Desktop described in Chapter 8, Applying Advanced
Analytics, the Power Bl service provides a Mobile layout to customize a mobile-optimized layout
for dashboards. With a Mobile layout configured for a dashboard, the specific tiles, sizes, and
order of tiles defined for the Mobile layout are presented to a user when the dashboard is accessed

via the Power Bl mobile app.

The Mobile layout is accessed via the drop-down Edit menu in the dashboard header as shown

in Figure 9.29:

g Edit v
-+ Add atile
Dashboard theme

[] Mobile layout

Figure 9.29: Dashboard phone view

The same drag and resize options available in the mobile layout for Power BI Desktop are also
available for the dashboard. In Figure 9.30, the most important tiles from the Global Sales

dashboard are positioned at the top and less important tiles are unpinned:

Chapter 9

409

Ediit mobile |layoul T
Unpinnad bles

Maorth '
Bpstening Powsr S1 Doshboard 1 America

Global

Toal MeL Sakes v Flw
ilShhl. ¢+ HreFHebHEL THU Yhbds N

FE T

2aN0-Dwc
Ik 13-4

Tobnd Plaf Tl WTIT s

Mt Mamn & YT0 e

= Man
9.1% 52.6M
L L]
Goal: &% Goal: S42. 1M
[+023%) {+24 B9W)

rriarremi Bpt Tales on Plan

GLEDAL

& T T
*E081 s Filkwd

Figure 9.30: Phone view of dashboard in Power Bl service

410 Designing Dashboards

Power BI saves the mobile layout automatically and the defined mobile layout becomes the new
default view for phones accessing the dashboard. However, the user can still turn their phone

sideways to view the dashboard in the standard web view.

The subtitles applied to the dashboard tiles are particularly valuable in mobile layout. In the
standard web view, the four supporting tiles with text (Global, North America, Europe, and
Pacific) make it easy to determine the scope of each tile. These text box tiles are likely not, however,

desired in Mobile layout and thus the subtitles convey the scope of each tile.

Summary

This chapter demonstrated how dashboards are planned and developed as part of a large,
integrated corporate Bl solution. All essential features and processes of Power Bl dashboards were
highlighted, including the configuration of dashboard tiles, their links to other dashboards and
reports, and mobile-optimized dashboards. Additionally, the unique capability of dashboards to
integrate real-time data as well as their ability to include content from reporting services reports

and Excel workbooks were reviewed.

The next chapter transitions from the development of Power BI content to the management of
Power BI content. This includes the application of version control to Power BI Desktop files and

the migration of content across test and production environments using workspaces.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/q6BPbHEPXp

https://discord.gg/q6BPbHEPXp

10

Managing Workspaces and
Content

The preceding six chapters have focused on the design and development of Power BI datasets,
reports, and dashboards. While the creation of impactful and sustainable content s essential, this
chapter reviews the processes and features IT organizations can leverage to manage and govern

this content through project life cycles and ongoing operational support.

These features include the planning and use of workspaces in the Power Bl service, staged deploy-
ments between test and production environments, and maintaining version control of Power BI
Desktop files. Additional features and practices highlighted in this chapter include data classi-
fication for dashboards, documenting Power BI datasets, and utilizing the Power BI REST API to

automate and manage common processes.
In this chapter, we will review the following topics:

e Workspaces

e Staged deployments

e Dashboard data classifications
e Version control

e Metadata management

e Metadatareporting

we'll first take a look at one of the fundamental building blocks of Power BI content, workspaces.

412 Managing Workspaces and Content

Workspaces

Workspaces are containers in the Power BI service of related content (reports, dashboards, and
scorecards) as well as datasets. As discussed in the Power BI licenses section of Chapter 1, Planning
Power BI Projects, members of workspaces are able to create and test content, such as new dash-
boards and changes to reports, without impacting the content being accessed by users outside

of the workspace.

Once the new or revised content in the workspace is deemed ready for consumption, the work-
spaceis published or updated as a Power Bl app. Apps are collections of dashboards, reports, and

datasets and are described in detail in Chapter 13, Creating Power BI Apps and Content Distribution.

”We intend workspaces just for creation...it’s the place where content gets created

in Power BL.”

— Ajay Anandan, Senior Program Manager.

In addition to the defaultisolation or staging between content creation (workspaces) and content
consumption (apps), Bl teams can utilize multiple workspaces to stage their deployments as per
the Staged deployments section later in this chapter. For example, reports and dashboards can be
initially created in a development workspace, evaluated against requirements in a test workspace,

and finally deployed to a production workspace.

The production workspace supports the app. If large numbers of business users access the Power
BI content via the app, the production workspace could be assigned to Power BI Premium capacity
to provide dependable performance and the flexibility to scale resources according to the needs
of the workload.

Chapter 15, Building Enterprise BI with Power BI Premium, provides details on the features and
benefits of Power BI Premium. This includes the cost advantage of capacity-based pricing versus
per-user licensing for large-scale deployments, managing Premium capacities (hardware), such

as scaling up or out, and assigning workspaces to Premium capacities.

Additional capabilities exclusive to content stored in Premium capacity, such as larger Power BI
datasets, more frequent scheduled data refreshes (for example, every 30 minutes), deployment
pipelines, scorecards, and goals, are also described in Chapter 15, Building Enterprise Bl with Power

BI Premium.

Chapter 10

413

Figure 10.1 depicts the four-step process showing the essential role of workspaces in the life cycle

of Power BI content:

n a " Workspare ™ a

Create -L-i Publish
—

' App

—

[el

L

~,

Congame

—

Figure 10.1: Workspaces and apps

0

1. A Power BI Pro user creates a workspace and adds other Power BI Pro users as members

with edit rights. Workspaces are created in the Power Bl service by clicking the Workspaces

option in the left navigation menu and then clicking the Create a workspace button at

the bottom of the fly-out panel. Additional users can also be added as Admin users. Only

Admins can add members with edit rights to a workspace as explained in the Workspace

roles and rights section of this chapter.

2. The members of the workspace publish reports to the workspace and create dashboards

in the workspace.

3. All content or a subset of the content in the workspace is published as a Power BI app.

4. Users or groups of users access content in the published app from any device.

All users within the workspace need a Power BI Pro license. All users consuming the published

Power BI app also need a Power BI Pro license unless the workspace is assigned to Power BI

Premium capacity. If the workspace is assigned to Power BI Premium capacity, users with Power

BI (free) licenses and, optionally, external guest users from outside the organization with free

licenses can read or consume the Power BI app.

In small team scenarios (5-15 users) where maximum self-service flexibility is needed, all users can

be assigned Pro or PPU licenses and collaborate on content within the workspace. This approach

negates the isolation benefit of workspaces from apps but provides immediate visibility to the

latest versions of the content. Additionally, Power Bl users within the workspace can create their

own Power Bl and Excel reports based on connections to the published dataset in the workspace.

414 Managing Workspaces and Content

Opening a workspace within the Power BI service presents an interface similar to that shown in
Figure 10.2:

Mastanng Power B CoRa A
M & Crese 3 praine (T W Fillers Cathngs 0 Aosnin 0 Sesrch

B Caortenl Datasals + dalafoes

b e Tspe e Retrrehag MWest mfresh Endorzement
u ChapderlTl Rapnt Flacisrre Freaer Al AAT7 38341 PM
Bl reimm Daticaat Masiong Frwsr N1 UEE 38343 PW A,

Figure 10.2: Workspace

As shown in Figure 10.2, the workspace dialog presents a header for accessing the workspace’s
Settings and controlling Access, as well as the ability to create or update an associated app. Fur-

thermore, content within the workspace such as dashboards, reports, and datasets are shown.

It is highly recommended that the creation of workspaces be controlled by enterprise BI and IT
teams. Workspace creation can be restricted to specific users or groups of users via tenant settings
as discussed in Chapter 14, Administering Power BI for an Organization. A simple workflow process
can govern the workspace creation process as part of the overall Power BI project planning and

execution.

In addition to serving as containers of content, workspaces also provide a logical security context

where specific users and groups can be provided different roles and rights within the workspace.

Workspace roles and rights

Workspace roles are used to provide access to all content within a workspace. Both Azure Active

Directory (AAD) users and groups can be assigned to one of four roles:

1. Viewer

2. Contributor
3. Member

4. Admin

It’s strongly recommended to assign groups to workspace roles and thus manage workspace
permissions by adding or removing users to or from these groups. Azure Active Directory security

groups as well as Microsoft 365 groups and distribution lists are all supported for workspace roles.

Chapter 10 415

Manually mapping individual user accounts to various workspace roles is both difficult to main-
tain and could introduce a security risk with a user getting more access than required. Power BI
administrators should partner with both the business and IT to decide on an appropriate and

efficient process for approving membership and adding/removing users to/from groups.

It is important to understand that users or all users within a group added to a workspace role
gain access to all content within the workspace regardless of whether specific content is shared
with those users. In addition, the Admin, Member, and Contributor roles override row-level
security (RLS) for content in the workspace. Thus, workspace roles are fundamentally different

than individually sharing workspace content with specific users or via links.

To assign users to roles, use the Access option in the workspace header as shown in Figure 10.2.

Choosing the Access option opens the Access dialog shown in Figure 10.3:

KL Access

Mastering Power Bl

Add admins, members, or contributors. Learn more

Enter email ad

Member

Add
Search
NAME PERMISSION
Gregory Deckler (D) Admin

Figure 10.3: Workspace Access dialog

Depending on the specific role assigned, members can view content, edit content, create new
content, and publish content from the workspace to a Power Bl app. The specific capabilities and
features available for each role are explained in the following sections, starting with the least

privileged, the Viewer role.

416 Managing Workspaces and Content

Viewer role

The Viewer role provides read only access to workspaces. Users assigned to the Viewer role can
view and interact with all content within the workspace as well as read data stored in workspace
dataflows. Importantly, the Viewer role does not override RLS for content within the workspace.
Itis imperative to remember that every other role other than the Viewer role overrides RLS. Every
other workspace role is effectively an administrator of the Power BI datasets in a workspace and
thus this permission overrides RLS roles. Thus, users that should not see data restricted by RLS

should never be added to any role other than Viewer.

While limited to read access to workspace content, the Viewer role is well suited for certain QA/
Test or “early look” scenarios. For example, if a workspace is hosted on Premium capacity, a
team’s primary QA/Test user or a key stakeholder who only has a Power BI Free license could be
assigned the Viewer role in order to access new reports and dashboards that haven’t yet been

published to a Power BI app.

Because of the convenience of assigning the Viewer role a single time to a user or group within a
workspace, organizations may be tempted to utilize the Viewer role as a means of sharing content
with end users (report consumers). This is best avoided as the Viewer role is able to see all content
in the workspace including content that is a work in progress or not fully ready for production.
This can lead to confusion by end users or, worse, incorrect decisions being made by viewing a

report that has bugs and thus displays incorrect information.

Instead, apps should be used for sharing and distributing content to end users and offer the same
convenience. For enterprise Bl organizations, the Viewer role should be used sparingly and only
in specific circumstances where the end user requires access to view the underlying datasets and

other workspace content.

Viewers can also reshare content if the Add reshare option is selected for specific content. To
add resharing capabilities for users with the Viewer role, users in the Member or Admin role can
access the permissions for specific content. This is done by accessing the More options menu

(three vertical dots) for specific content in the workspace as shown in Figure 10.4:

Chapter 10 417

S&tinps

_“l Narmz Type
u Chapserd (L Report
"

Lelate
n -

{Cusck inzights
H USA SALES AND MARGIM SEVE & COgY

LISA SALES AMD MARGIN

Wiew usage medncs report
Widw ineage
Creale paginaled repon

Manane penmissions

Figure 10.4: More options menu for workspace content

Once within the Manage permissions dialog for the dashboard, report, or dataset, users assigned
to workspace roles are listed under the Direct access tab. Accessing the More options menu
(three horizontal dots) for a particular user assigned to the Viewer role provides the option to
Add reshare rights as shown in Figure 10.5:

Permissions

Admin (Owner)

Viewer

Add reshare

Figure 10.5: More options menu user with Viewer role

418 Managing Workspaces and Content

The same Add reshare option is also displayed for users assigned to the Contributor role, which

we detail in the next section.

Contributor role

The Contributor role has create and edit permissions to content in the Workspace but by default
lacks the sharing and publishing permissions of the Member and Admin roles. For example, a BI
developer could be granted the Contributor role to publish a new report to the workspace but
a user with higher privileges would be required to publish or update a Power BI app containing
this report to end users. In addition, the Contributor role provides the ability to schedule dataset

refreshes and modify data gateway connection settings.

The Contributor role is a natural fit for report authors and dataset developers within a corporate
Bl organization. These users can perform their work within Power BI Desktop and publish to the
workspace but are prevented from managing permissions for the workspace’s content or sharing

it unless specifically granted reshare rights.

Asmentioned, the Contributor role overrides RLS for content in the workspace. Thus, never assign
users to the Contributor role that should not see data protected by RLS. In addition, Contributors
can also be granted the ability to update the app for the workspace. This setting is accessed by
choosing the Settings option in the workspace header as shown in Figure 10.2. This opens the
Settings pane. Expanding the Advanced section, the option to Allow contributors to update
the app for this workspace setting is displayed at the bottom of the Settings pane as shown in
Figure 10.6:

Security settings

~ Allow contributors to update the app for this workspace

Delete workspace Save

Figure 10.6: More options menu user with Viewer role

The ability to set the Allow contributors to update the app for this workspace setting is exclu-
sive to the Admin role. Users in the Member role cannot configure this setting, as we detail in

the next section.

Chapter 10 419

Member role

The Member role provides full workspace functionality, features, and access, save for a few per-
missions exclusive to the Admin role, such as the ability to allow Contributors to update the app
for a workspace, mentioned previously. This role includes all of the permissions of the Contrib-
utor roles plus the ability to add members with lower permission roles, publish, unpublish, and

change permissions for apps and content, update apps, and share content.

The Member role is best suited to the business owner of the app or, in more restrictive environ-
ments, personnel specifically responsible for defining permissions and security. Less restrictive
environments are likely happy to offload the sharing and permission requirements from IT to
the business since the business is generally more in tune with the personnel that require access

to the workspace content.

We’ll now cover the final workspace role, the Admin role.

Admin role

Every workspace has one or multiple administrators who manage the access of other Power BI
users to the workspace. The user that initially creates the workspace is the workspace admin by

default.

The admin role is the highest security role for workspaces and includes all of the rights and per-
missions of the Member role. In addition, only workspace Admins can add other users as Admins
to the workspace. As already mentioned, only Admins can grant Contributors the right to update
the associated app. Finally, Admins also have the exclusive right to update a workspace’s settings
or delete a workspace, thus removing all of its content (dashboards, reports, and datasets) from

the Power BI service.

Prior to deleting a workspace, check to see if an app is published from the workspace. If an app is
published, unpublish the app via the ellipsis (three dots) next to the Access option in the header
of the workspace. If the workspace is deleted but the published app is not unpublished, users of

the published app will see errors when attempting to access or refresh its content.

If Power BI Premium capacity is provisioned for the organization and if the workspace Admin is
granted assignment permissions to Premium capacity, they can assign the workspace to a Premi-
um capacity. This action moves the content in the workspace to dedicated hardware (capacity)
exclusive to the organization and enables many additional features, such as the distribution of

apps to Power BI Free users.

420 Managing Workspaces and Content

Further information on the assignment of app workspaces to Power BI Premium capacity is
included in Chapter 15, Building Enterprise BI with Power BI Premium. The additional capabilities
provided by Power BI Premium and considerations in allocating Premium capacity are also in-

cluded in Chapter 15, Building Enterprise BI with Power BI Premium.

Now that workspace roles and rights are understood, we’ll next consider a common workspace

configuration in enterprise deployments, the use of datasets across workspaces.

Datasets across workspaces

A common deployment pattern for enterprise BI teams is to separate the dataset development
from the report development. In this pattern, data modelers focus on dataset development and
report authors connect live to this dataset when creating reports. This separates the duties of

data modelers and report authors and enables a single dataset to service multiple audiences.

Taking this a step further, datasets can be published to dedicated dataset-only workspaces that
only dataset authors and admins can access. Report authors and end users are granted read or
read and build permissions to these datasets thus ensuring that the datasets will only be modified
by dataset authors. Additional, content-only workspaces can then be created and used for con-
tent development such as reports, dashboards, and scorecards. With the proper tenant settings
configured as discussed in Chapter 14, Administering Power BI for an Organization, the datasets

in the separate workspace can be accessed by report authors and used when building content.

Separating the concerns of data modelers and report developers using workspaces provides a
least-privileges security model, meaning that only the least amount of permissions required to
perform a task are granted. As opposed to report authors being made Contributors or Members
of a workspace, which grants them the ability to modify existing datasets in that workspace, this

pattern secures the datasets such that only approved data models can modify published datasets.

Using datasets across workspaces requires that the datasets be shared with users and groups
that require access to build content using those datasets. Sharing content is discussed in the
Sharing content section of Chapter 13, Creating Power BI Apps and Content Distribution. However,
specifically for this scenario of using datasets across workspaces, the Allow recipients to build
content with the data associated with this dataset checkbox must be checked. This setting is

sometimes referred to as the Build permission.

We’ll now consider the default My workspace provisioned for every Power BI user.

Chapter 10 421

My workspace

All Power Bl users, including those with free licenses, are assigned a My workspace in the Power
BI service. This workspace should only be used and thought of as a private scratchpad for con-
tent specific to the individual user. For those familiar with SharePoint My Sites or OneDrive, the
conceptis similar. By default, only each individual user has permissions to see and access content

within their My workspace, including even Global administrators and Power Bl administrators.

My workspace is accessed via the same Workspaces menu as other workspaces, as shown in
Figure 10.7:

@ My workspace @

fit Heme
Q. search

¢ Favorites 2

Woarkspaces
(T o
(8 Recent > @ AdventureWarkspwzo1s @
+ Create) AdventureWorksDW2013 [Te. B
B Datasets @ CAMLPUG G
T Goals @ CAMLPUG [Development] @
B Apps € CAMLPUG [Test] ¢
A Shared with me @ CAMLPUGT o
_ﬁ; Deploymant pipelines @ CAMLPUG &
0 Learn a Cookbook @
G Workspaces < @ BRbkded] yut

Figure 10.7: My workspace

Any Power BI content that requires access by other users should be stored in a different work-
space and distributed as an app. Although My workspace can host the same content types as
other workspaces, with the exception of dataflows, any content shared and distributed from My

workspace is dependent on the individual user’s account.

422 Managing Workspaces and Content

Armed with a basic understanding of workspaces, we next turn our attention to how workspaces

can be used in staged deployments.

Staged deployments

Staged deployments are a familiar process to technical IT teams involved with application de-
velopment and the creation of data assets. Quite simply, staged deployments provide separate
environments for different life cycle stages such as development, test, and production. Each stage
of the life cycle is designed to accomplish specific tasks and ensure quality. Development stages
are for work-in-progress content and are solely used by report authors and other content devel-
opers. Test is for users to perform user acceptance testing (UAT) to verify that the reports and

other content function as desired. The production stage is only for content that has passed UAT.

Multiple workspaces and their corresponding apps are used to stage and manage the life cycle
of Power BI content. Similar to the development, test, and production release cycles familiar
to IT professionals, staged deployments in the Power BI service are used to isolate data, users,
and content appropriate to each stage of the process. Effectively implementing a staged Power
BI deployment serves to raise the quality of the content delivered as well as the productivity of

project team members.

The nine-step process depicted in Figure 10.8 shows the primary elements of a staged deploy-

ment life cycle:

" DEV Winrkspacs ™ " TEST Workspace ™ ¢ PROD Workspace)
| HEST AP REST APi |
ar Fipeline A s ar Pipeline
- e

0 O |

ﬂ Fubilish ﬂ Pubilish ﬂ Puldish

‘a ‘a @n

Figure 10.8: Staged deployment life cycle

Chapter 10 423

An explanation of the various numbered steps of the staged deployment life cycle process is

provided here:

1

A development workspace is created. A Power BI Desktop file containing the dataset is
published to the development workspace. Reports are developed in Power BI Desktop
based on live connections to the development workspace dataset and published to the
workspace. Dashboards are created within the development workspace in the Power BI

service.

An app is published or updated and made available to a small number of users for their

review.
The Bl manager or project lead reviews the status of content being developed and provides

feedback to the developers. As purely a preference, in some scenarios, certain business

stakeholders are allowed early access to content under development.

The Power BI REST API, Power BI PowerShell module, or a pipeline is used to migrate
completed content from the development workspace to the test workspace. The Power
BI REST API operations are called via PowerShell scripts. The Power BI REST API, Power
BI PowerShell module, and pipelines are explained in the following sections.

A TEST app is published or updated and made available to a small number of users for
their review.

A UAT user or team reviews the content relative to requirements and provides feedback.
If necessary, revisions are implemented in the TEST workspace and the TEST app is up-
dated for further review.

The Power BI REST API, Power BI PowerShell module, or pipeline is used to migrate ap-
proved content from the TEST workspace to the production workspace. Supported REST

API operations, such as a clone report and rebind report, are called via PowerShell scripts.

A production app is published or updated and made available to groups of users for their
consumption. Publishing and accessing apps is described in Chapter 13, Creating Power
BI Apps and Content Distribution.

Groups of business users access and consume the dashboards and reports via the produc-
tion app from any device. Measuring and monitoring the usage of the published app is

also described in Chapter 13, Creating Power BI Apps and Content Distribution.

Creating and managing workspaces as well as publishing apps for testing or consumption are all

simple processes handled via the user interface in the Power BI service.

424 Managing Workspaces and Content

Properly utilizing the Power BI REST API or Power BI PowerShell module to copy or migrate con-
tent across workspaces, however, requires some level of custom scripting, usually performed via
Windows PowerShell. Organizations using Power BI Premium can instead leverage deployment

pipelines instead of relying on the Power BI REST API and/or PowerShell scripts.

Before delving into either the Power BI REST API, PowerShell, or deployment pipelines, however,

we’ll consider the management of datasets during the staged deployment process.

Workspace datasets

As per Figure 10.8, this architecture requires distinct Power BI datasets per workspace. To min-
imize resource usage and for data security reasons, the development workspace dataset could
include the minimal amount of data necessary and exclude all sensitive data. This would allow
the organization to comfortably provide development access to teams of content developers,

potentially from outside of the organization.

Access to the test workspace could be limited to a small number of trusted or approved users
within the organization and thus could include sensitive data. Finally, the production workspace
dataset would have the same schema as the other datasets but include the full volume of data

as well as sensitive data.

If a common schema exists between the different datasets in each workspace, the source dataset
of a Power BI Desktop report file can be revised to a dataset in a separate workspace as per the

Switching source datasets section in Chapter 6, Planning Power BI Reports.

For example, the report file (which has an extension of . pbix) approved for migration from the
development workspace to the test workspace could be opened, modified to reference the test
workspace dataset, and then published to the test workspace. This approach represents a manual

alternative to the Power BI REST API described in the following section.

The ability to use datasets across workspaces can help eliminate the resource cost and manage-
ability issues of duplicated datasets across multiple app workspaces. This functionality can be
turned on within Tenant settings of the Admin portal in the Power BI service. This setting is

explained in more detail in Chapter 14, Administering Power BI for an Organization.

Chapter 10 425

For example, distinct Power Bl apps developed for the finance, sales, and marketing teams could
all leverage a single production dataset in a dedicated workspace rather than individual datasets
within each workspace. That said, the development of the dataset itself should also follow a staged

deployment life cycle similar to that shown in Figure 10.8.

Let’s now explore how the Power BI REST API and Power BI PowerShell module can be used to

implement a staged deployment.

Power Bl REST APl and PowerShell module

The Power BIREST API provides programmatic access to resources in the Power Bl service includ-
ing content (datasets, reports, and dashboards), workspaces, and the users of these resources.
This access enables organizations to automate common workflows, such as cloning a reportto a
different workspace or triggering a dataset refresh operation via familiar tools, such as Windows
PowerShell.

The goal of the REST API is to fully support all functionality available in the Power BI service,
including capabilities exclusive to the Power Bl Admin portal, thus providing complete admin-
istrative and automation capabilities. The following URL provides updated documentation on
the REST API including the request syntax and a sample result set for each operation: http://
bit.ly/2AIkJyF.

Windows PowerShell is a task-based command-line shell and scripting language. It’s primarily
used by system administrators to automate administrative tasks. For example, PowerShell script
files, having an extension of .ps1, are commonly used in scheduled data refresh processes for

Analysis Services models.

PowerShell can use the Power BI REST APIs directly or alternatively use the Power BI PowerShell
module. Both approaches are covered in the following sections and additional documentation
can be found here: https://bit.1ly/3vDI5qc. We'll first investigate the Power BI REST APIL.

Power Bl REST API

To use the Power BI REST API in a custom .NET program, the application must be registered
with Azure Active Directory. This registration is performed in the Azure portal application and
specifically here: https://bit.1ly/3C04EG2.

http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
https://bit.ly/3vDJ5qc
https://bit.ly/3C04EG2

426 Managing Workspaces and Content

1. Sign in with the Azure Active Directory account and provide a name for the application.
Sign in with the account used for logging into the Power BI service. Once complete, the

App registrations dialog is displayed as shown in Figure 10.9.

Home > App registrations

s Test Power Bl App #

Search (Ctrl+/] f [Celete & Endpoints EE Preview features
Chverview -
B J 'ﬂ Got a second? We would love your feedback on M
Es Quickstart
& Intagration assistant A Essentials
Manage Display name
lest Fower Bl App
E Branding & properties Application (client) |0
5 Authentication I |
Cibject 1D
Certificates & sacrets l]
Il Token configuration Diractory (tenant) |0

I |

Supparted account types

== AP| permissions

Figure 10.9: App registration in Azure Active Directory portal

2. Select API permissions under the Manage heading as shown in Figure 10.9. On the API
permission page, select Add a permission. Scroll down until you find Power BI Service

as shown in Figure 10.10 and select it.

Request APl permissions

|'] Dffice 365 Managemeant ARls u Onehote Fower Bl Service
Retriews information sboud weern admin, Create and manage nabas, |i5ts, Frogrammabe acoess
wysin, and pelicy actions and avanis piciures, fikes, and mare in OneMote #n Doeshboand resources such
Trcws Qfice 385 and Azure AD activicy nniehaaks as Dertasets, Tablkes, and Rowes in
ey Fower Bl

Figure 10.10: Request APl permissions

Chapter 10 427

3. In the Request API permissions dialog, choose Delegated permissions. Under Select

permissions, expand all sections and check all checkboxes as shown in Figure 10.11.

Request APl permissions

Power Bl Sarvice
::::l.l'. 8 L wned ol ety poea et - =

What type of permissions does wour appdicaton requene?

Julngatyd permimmers
Forer appl Eximr eeh o accem e AH o e s red- mouer

Eefat paimniaians

AT COENAT] Egued™ Dohesa wiws the el walie

g, i mprp Thin edumn ey rr rellack The sgie mon

Bermbepion

" agg 1)

= App Read AP

Wew sl Provesr B apgn
o Copmcity (2]

Capacis Ranrd 4l

WA S D0

Capacny RandWne Al

Figure 10.11: Adding Request APl permissions
4. When finished, click the Add permissions button shown in Figure 10.11.

Once an application is registered in Azure Active Directory with the correct permissions, the
client ID created for the application can be used within .NET applications to perform actions in

the Power Bl service. Next, we’ll look at the Power BI PowerShell module.

428 Managing Workspaces and Content

Power Bl PowerShell module

The Power BI PowerShell module was created to simplify the scripting of Power BI tasks from
within PowerShell. Scripting operations via the Power BI PowerShell module is significantly
easier than using the Power BIREST API directly and does not require application registration as
covered in the previous section. However, the Power Bl PowerShell module does not necessarily

include all of the operations available via the Power BI REST API.

To use the Power Bl PowerShell module, ensure that you are a Power Bl administrator or otherwise

have appropriate permissions to the Power BI service, and then follow these steps:

1. Open a Windows PowerShell session as administrator by right-clicking the Windows

PowerShell app and then choosing Run as administrator.

2. Set the execution policy to RemoteSigned by entering the following command:

Set-ExecutionPolicy RemoteSigned

3. Answer Y when prompted.

4. Run the following command to install the Power Bl PowerShell module:

Install-Module MicrosoftPowerBIMgmt -Force

5. Login to the Power BI service using the Connect-PowerBIServiceAccount command or

its alias Login-PowerBI.

The Windows PowerShell session is now ready to start interacting with the Power BI service
via function calls called Cmdlets. However, using either the Power BI REST API or the Power BI
PowerShell module often requires that the unique identifiers for content objects such as work-
spaces, dashboards, reports, and datasets are known. Thus, we’ll next cover how to identify these

unique identifiers.

Workspace and content identifiers

All workspaces and content within those workspaces are provided a globally unique identifier
(GUID). A GUID is simply a unique ID that a