

Ubuntu System
Administration Guide
Ubuntu Desktop, Server, security, and

DevOps automation

Mattias Hemmingsson

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025

Copyright © BPB Publications, India

eISBN: 978-93-65897-883

All Rights Reserved. No part of this publication may be reproduced,
distributed or transmitted in any form or by any means or stored in a
database or retrieval system, without the prior written permission of the
publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced
by the means of publication, photocopy, recording, or by any electronic and
mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of
author’s and publisher’s knowledge. The author has made every effort to
ensure the accuracy of these publications, but publisher cannot be held
responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of
their respective owners but BPB Publications cannot guarantee the accuracy
of this information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to
This book is dedicated to you, the reader who has

opened it and is taking the first steps on your Linux
journey. I am honored to be a part of that adventure

with you.

My family and friends, thank you for your unwavering
support and encouragement throughout this incredible

challenge.

About the Author

Mattias Hemmingsson is a seasoned IT professional with over two
decades of experience in designing, building, and securing modern IT
infrastructure. With deep roots in cloud computing, DevOps, and system
architecture, he has successfully led the development and operations of
high-availability systems for mission-critical environments, especially
within the financial sector, where stability and performance are non-
negotiable.

Mattias specializes in a wide range of technologies, including Kubernetes,
Docker, Jenkins, GitLab CI, and cloud platforms such as AWS and Google
Cloud. His skill set spans server orchestration, infrastructure as code, and
containerized application delivery. A true advocate for developer
productivity, he has implemented CI/CD pipelines, automated monitoring
systems, and scalable platform services that have helped teams deploy
faster with greater reliability.

Security is a cornerstone of Mattias’s expertise. He has worked extensively
in IT security and compliance, securing high-performance payment
gateways and writing security policies to meet industry and regulatory
standards. He actively manages vulnerability assessments, runs enterprise-
grade security scanners, and participates in incident response operations.
His security knowledge bridges the technical and procedural, ranging from
configuring firewall rules to training development teams in secure coding
practices.

As a full-stack developer, Mattias works with both Python and JavaScript,
building frontend and backend systems using popular frameworks like
Next.js and Vue. He brings a unique blend of hands-on coding ability and

infrastructure mastery, making him equally at home writing applications or
deploying them in scalable, production-ready environments.

Mattias also plays an active role in the tech community. He co-hosts the
DevSecOps Talks podcast and YouTube channel, where he shares insights
on the intersection of development, operations, and security. He teaches
classes on DevSecOps practices and serves as the local organizer for one of
Stockholm’s tech meetups, helping others stay informed and connected in
the ever-evolving world of IT.

Through his blog, Life and Shell, Mattias documents his professional
journey, sharing practical tips and deep dives into real-world solutions for
fellow developers, sysadmins, and security professionals. His work reflects
a passion not just for running services, but for securing them, ensuring they
are both compliant and resilient.

Whether building infrastructure, writing code, or leading training sessions,
Mattias brings a comprehensive understanding of modern systems from
their initial setup to their long-term security and scalability.

❖

About the Reviewers

Nathan Molete is a skilled Linux DevOps engineer with a strong
background in cloud computing, automation, and infrastructure
management. With extensive experience in Linux systems
administration, networking, and application deployment, he
specializes in ensuring the reliability, scalability, and security of
enterprise IT environments.

Nathan is proficient in automation tools like Ansible and
Terraform, enabling efficient configuration management and
infrastructure as code (IaC) practices. He has expertise in
containerization technologies, including Docker and Podman, as
well as orchestration platforms like Kubernetes and Minikube. His
hands-on experience with CI/CD pipelines, using Jenkins and Git,
allows him to streamline software delivery and improve
operational efficiency.

Working in both production and test environments, he is
responsible for maintaining optimal system performance,
troubleshooting complex issues, and implementing best practices
for high availability and security. His knowledge spans across web
servers such as Apache and NGINX, database management with
MySQL and PostgreSQL, and cloud platforms like Azure.

Passionate about open-source technologies, Nathan continuously
seeks to enhance systems and workflows through automation and
innovation. With a detail-oriented and problem-solving mindset, he
plays a crucial role in optimizing IT infrastructure, ensuring

❖

seamless operations, and driving digital transformation within
organizations.

Cyrus is a software developer, educator, and content creator with
expertise in React, Next.js, and modern web technologies. He has
developed educational platforms, built scalable web applications,
and created a LinkedIn Learning course, Testing in React with
Vitest, completed by over 1,000 learners. Passionate about
empowering others, Cyrus shares insights on testing performance
optimization and cutting-edge tools, helping developers build
smarter, more efficient applications.

Acknowledgement

I want to express my sincere gratitude to all those who contributed to the
completion of this book.

First and foremost, I extend my heartfelt appreciation to my family and
friends for their unwavering support, patience, and encouragement
throughout this journey. Your belief in me has been a constant source of
strength.

I am especially thankful to my colleagues and friends from Fareoffice,
Enterprise Car Rental, and Booli. Your valuable input, insights, and
constructive feedback have been instrumental in shaping the direction and
content of this book.

A special note of thanks goes to my close friends and neighbors for your
patience in listening, your thoughtful feedback, and your enduring support.
Your honest perspectives helped refine and elevate the quality of the work.

I am also deeply grateful to BPB Publications for their expert guidance and
dedication in bringing this book to life. Your professionalism and support
made the publishing process a smooth and rewarding experience.

I would like to sincerely appreciate the reviewers, technical experts, and
editors who contributed their time and expertise to reviewing this
manuscript. Your insightful comments and suggestions have significantly
enhanced its clarity, depth, and accuracy.

Lastly, to the readers, thank you for your interest and support. Knowing that
this book may inform, inspire, or assist you is the most rewarding outcome
of all.

To everyone who played a part in making this book a reality, thank you.

Preface

Linux is swiftly establishing itself as the foundation of today’s digital
infrastructure, playing a central role in everything from personal desktops
and enterprise-grade web servers to cutting-edge cloud platforms, smart
home devices, and embedded IoT systems. Its presence extends into nearly
every corner of computing. Whether you are browsing a website, deploying
an app in the cloud, or working on a development project, chances are that
Linux is working behind the scenes.

For aspiring developers, IT professionals, and system administrators,
learning Linux is not just an option, it is a strategic advantage. Seasoned
professionals often recommend starting with Linux before venturing into
other tools such as Docker, Kubernetes, or even advanced cloud-native
frameworks. Why is that? Because Linux provides deep insight into how
operating systems function. It teaches you how processes run and interact,
how file systems are organized, how networks are structured and secured,
and how permissions and users are managed. These are the core concepts
that underpin all modern computing tools.

By mastering Linux, you develop a strong mental model of how systems
operate—one that allows you to troubleshoot more effectively, script more
efficiently, and deploy with greater precision. It builds the kind of
confidence that lets you approach complex technologies like container
orchestration, virtualization, and continuous integration pipelines with a
solid understanding of what is really happening behind the scenes.

This book is centered on Ubuntu, one of the most accessible and widely
adopted Linux distributionsributions in the world. Ubuntu is known for its
balance of power, simplicity, and versatility. It delivers the full capabilities

of Linux in a package that is approachable for newcomers yet robust
enough for professionals managing enterprise environments. With its
regular updates, strong community support, and broad compatibility with
both open-source and commercial software, Ubuntu serves as an ideal entry
point into the Linux ecosystem.

Whether you are looking to replace your current operating system and use
Ubuntu as your daily desktop driver, or you are interested in deploying
servers, managing virtual machines, hosting applications, or building your
own cloud infrastructure, this book will walk you through everything you
need to get started. Ubuntu provides a secure, stable, and customizable
platform that can grow with your needs, supporting everything from basic
productivity tasks to advanced server-side operations, software
development, and DevOps workflows.

In short, learning Ubuntu and Linux opens doors. It gives you the freedom
to explore, experiment, and take control of your computing environment. It
lays the groundwork for further exploration into the vast world of open-
source technologies.

This book is your roadmap to getting there, with practical guides, hands-on
exercises, and real-world use cases that will help you build both confidence
and capability as a Linux user.

Chapter 1: Getting Familiar with Ubuntu Ecosystem - This chapter
introduces the Linux and Ubuntu ecosystem, starting with the history of
Linux and its evolution into one of the most widely used operating systems.
It explores the Linux stack, popular distributions, and Ubuntu’s
development, release cycle, and various editions. The chapter highlights the
growing importance of Linux in servers, IoT, and cloud computing. Readers
are also introduced to key Ubuntu-based systems like Mint and Pop!_OS,
and other Linux distributionsros like Red Hat and Alpine. To prepare for
upcoming hands-on exercises, the chapter concludes by guiding readers to
create GitHub and Blogger accounts for saving code and documenting
progress.

Chapter 2: Install, Upgrade, and Configure Ubuntu Desktop - This
chapter guides readers through installing and configuring Ubuntu Desktop.
It begins with downloading the Ubuntu ISO, creating a bootable USB using
tools like Etcher, and performing installation via USB or dual-boot with
Windows. It covers pre-installed Linux options, basic troubleshooting, and
verifying hardware compatibility. The chapter also introduces software
installation using the Ubuntu Software Center, Snap Store, and terminal
commands. Readers learn how to update and upgrade Ubuntu, manage
apps, and back up configurations using the .config folder and Git. By the
end, users will have a fully functional Ubuntu system ready for further
customization.

Chapter 3: Environments and Window Managers - This chapter
explores customizing Ubuntu with the i3 tiling window manager, offering
efficient window navigation through keyboard shortcuts. It covers installing
and configuring i3, setting screen resolutions, adding custom startup scripts,
and improving usability with tools like sound controllers, screenshot
utilities, and lock screens. The chapter also introduces essential productivity
tools, including email clients, password managers, file encryption with PGP,
and communication apps like Slack and Teams. For developers, it explains
setting up Git, creating SSH keys, and using code editors like VS Code and
PyCharm. By the end, readers have a fully personalized and productive
Ubuntu environment.

Chapter 4: Setting up Firewall, VPN, and Wi-Fi Networks - This chapter
covers essential networking tools in Ubuntu, focusing on connectivity and
security. It explains how to configure DHCP and static IP addresses,
connect to VLANs and wireless networks, and mask your device's MAC
address for privacy. It introduces VPN setup using OpenVPN and
WireGuard, and demonstrates encrypting DNS traffic with DNSS for added
protection. Readers also learn to configure custom firewall rules using
iptables and safeguard their systems with ClamAV antivirus. By the end,
users can confidently connect to, secure, and manage networks on Ubuntu
Desktop in both personal and professional environments.

Chapter 5: Preparing Virtualization Environment - This chapter
introduces virtualization in Ubuntu using KVM, enabling users to run
multiple isolated operating systems on a single host. It covers installing
KVM, setting up network bridges, and creating virtual machines (VMs).
Readers learn to manage VM settings, take snapshots, and enable device
passthrough like GPUs. The chapter also explores alternative tools such as
VirtualBox, VMware, and Vagrant for VM creation and sharing. Guidance
is provided on converting VM image formats for compatibility across
platforms. By the end, users can effectively create, configure, and manage
VMs and virtual environments for both testing and development purposes.

Chapter 6: Up and Running with Kubernetes and Docker - This chapter
introduces Docker and Kubernetes as essential tools for containerized
development. It covers Docker installation, running a Minecraft server
container, and managing multi-service applications like WordPress and
Metabase using Docker Compose. Readers learn to connect multiple
containers, persist data, and streamline development with local volumes.
The chapter then transitions to Kubernetes using Minikube, demonstrating
how to deploy WordPress and MySQL with Kubernetes manifests. Key
concepts include namespaces, services, deployments, and load balancers.
By the end, readers can run, scale, and manage containers locally using
Docker and Kubernetes for efficient, isolated application development and
testing.

Chapter 7: Install Ubuntu Server on Metal, Cloud, and Network - This
chapter explores various methods to install and manage Ubuntu Server
across physical machines, virtual environments, and cloud platforms. It
covers using SSH keys for secure access, installing via USB or VM, and
deploying on cloud providers like Google Cloud and Hetzner. Readers also
learn about scalable server provisioning using machine as a service
(MAAS), including PXE booting and automated installations. Concepts like
cattle vs. pets emphasize treating servers as disposable for easier
management. By chapter’s end, users can confidently set up single or
multiple Ubuntu Servers suited to local or enterprise-grade infrastructure..

Chapter 8: Keeping Check on Your Ubuntu Server - This chapter
explores tools and techniques for monitoring and securing Ubuntu Servers.
It begins with basic Linux commands like top, netstat, and du for local
performance insights. For GUI monitoring, Cockpit is introduced, while
Grafana, Prometheus, and Node Exporter enable the visualization of
scalable server metrics. Filebeat, Elasticsearch, and Kibana are used for
centralized log collection and analysis. Security tools such as Fail2Ban and
OSSEC help detect intrusion attempts and automate responses. Readers
learn to create dashboards, configure alerts, and integrate logs and metrics
into unified views—building a robust foundation for proactive server
management and security.

Chapter 9: Setup Advanced Network, Firewall and VPN Servers - This
chapter guides configuring Ubuntu Server as a network firewall and router.
It covers setting up network interfaces, VLANs, and routing using Netplan,
and securing traffic with iptables. You learn to install and configure
dnsmasq as both a DHCP and DNS server, enabling client IP management
and domain resolution. The chapter also details creating secure VPN
tunnels using OpenVPN and WireGuard, including certificate generation
and client-server configurations. By the end, you'll have a fully functional
Ubuntu-based router capable of secure communication and traffic control
for both local and remote networks.

Chapter 10: Running Virtualization Server Environment - This chapter
explores setting up an Ubuntu Server as a virtualization host using KVM. It
guides installing and managing VMs via CLI, desktop GUI (Virtual
Machine Manager), and a web interface (Cockpit). The chapter also
introduces containerization using Podman, a Docker alternative, to deploy a
monitoring stack with Grafana, Prometheus, Loki, and Promtail. Detailed
setup for container-based metrics and log collection from multiple servers is
provided, using podman-compose. The chapter concludes by contrasting
virtualization and containers, emphasizing containers for lightweight,
scalable service deployment and preparing readers for Kubernetes in the
next chapter.

Chapter 11: Setup Webserver, Deploy and Run Webapps - This chapter
explores setting up web servers and deploying web applications on Ubuntu.
It begins with installing Apache and NGINX, configuring domains, and
serving web content. Two databases are introduced: MariaDB (SQL) and
MongoDB (NoSQL), including setup, usage, and backup processes.
Practical deployments include WordPress and Observium, demonstrating
PHP app hosting and virtual host configurations. Rocket.Chat is deployed
via Docker, connected to MongoDB. The chapter also covers performance
tuning for web servers and emphasizes using proper database users for
security. By the end, readers can host, optimize, and manage web apps and
databases on Ubuntu Servers.

Chapter 12: Kubernetes Run and Setup - This chapter guides readers
through setting up a Kubernetes cluster on Ubuntu Servers using kubeadm.
It covers preparing master and worker nodes, disabling swap, and installing
core components. The chapter introduces Helm for managing Kubernetes
packages and demonstrates deploying essential services like OpenEBS for
storage, Prometheus and Grafana for monitoring, and Traefik with MetalLB
for ingress and load balancing. A full WordPress deployment, including
MySQL, is configured and accessed using both NodePort and ingress
routes. The chapter concludes with basic kubectl commands for
troubleshooting and managing the cluster, forming a strong foundation for
further automation.

Chapter 13: Task Automations, CI/CD Pipeline, and Service
Deployment - This chapter focuses on automating infrastructure tasks using
Bash, Ansible, and Terraform to ensure repeatable, reliable server and
service setups. It starts with creating reusable Bash scripts, then advances to
Ansible for managing tasks across multiple servers via Docker containers.
The chapter introduces building and pushing Docker images, running host-
level tasks from containers, and deploying applications to Kubernetes using
Terraform. These automation techniques form a complete CI/CD pipeline
foundation. By the end, readers gain the tools to configure, deploy, and

manage services efficiently, marking a transition to professional DevOps
practices within Linux and Ubuntu environments.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/ou09t8w

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Ubuntu-System-
Administration-Guide.
In case there’s an update to the code, it will be updated on the
existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and
follow best practices to ensure the accuracy of our content to
provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect and
improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality
and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by
the BPB Publications’ Family.

https://rebrand.ly/ou09t8w
https://github.com/bpbpublications/Ubuntu-System-Administration-Guide
https://github.com/bpbpublications/Ubuntu-System-Administration-Guide
https://github.com/bpbpublications
mailto:errata@bpbonline.com

Did you know that BPB offers eBook versions of every
book published, with PDF and ePub files available? You
can upgrade to the eBook version at www.bpbonline.com
and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of
free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on
BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form
on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are
interested in either writing or contributing to a book, please
visit www.bpbonline.com. We have worked with thousands
of developers and tech professionals, just like you, to help
them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/

Reviews

Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion
to make purchase decisions. We at BPB can understand what
you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit
www.bpbonline.com.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Getting Getting Familiar with Ubuntu Ecosystem
Introduction
Structure
Objectives
Linux history
Linux stack
Usage and stats of Linux
Ubuntu history
Ubuntu releases
Ubuntu version

Mint
Pop
LXLE

Other Linux distributions
Create GitHub and blogger account

Git
Blog

Book Git Repo
Conclusion
References

2. Install, Upgrade, and Configure Ubuntu Desktop
Introduction

Structure
Objectives
Installing Ubuntu
Pre-installing Ubuntu
Dual-boot Windows or Ubuntu
Boot Ubuntu and install

Making boot USB with Etcher
Boot Ubuntu for the first time
Pre-checks before installations
Verify computer device
Commands

Installing Ubuntu
Update and other software

Installation type
Ubuntu running
Installing software
Software store

Snap Store
Updating Ubuntu
Upgrading Ubuntu LTS
.config folder
Conclusion

3. Environments and Window Managers
Introduction
Structure
Objectives
Install i3 window manager

Tiling
Extra commands
Troubleshooting commands

Commands in i3
Custom shortcuts
Background image
Lock screen
Extra configs
Extra Trix with i3

Work on Ubuntu
Email
Password manager
PGP encryption
Communication tools
Watching video on Ubuntu
Stream your desktop live
Sound and video
Webcam
Syncing files

Developing with Ubuntu
Git
Code
PyCharm
About code editors

Conclusion

4. Setting up Firewall, VPN, and Wi-Fi Networks
Introduction

Structure
Objectives
Network DHCP or static

Network static
Connect to segment VLAN networks
Connect to wireless network
Hide your computer by changing MAC address
Secure your connections with VPN service

OpenVPN
WireGuard

Protect your traffic by using DNSS
Protect your computer by applying a firewall
Detect and stop computer virus

Update virus database
ClamAV GUI

Conclusion

5. Preparing Virtualization Environment
Introduction
Structure
Objectives
Overview of virtualization in Ubuntu

KVM virtualization in Ubuntu
Create bridge

Installing our first VM
Settings for your VM
Snapshots

Custom snapshot

Access to VM
Using hardware devices directly in your VM
Other virtualizations
Build and run a Vagrant box inside KVM

Run VirtualBox inside KVM
Converting images back and forth
Conclusion

6. Up and Running with Kubernetes and
Introduction
Structure
Objectives
Docker and container
Installing Docker

Setting up Docker repos for Ubuntu
Docker Hub

Official images
Start your first Docker

Expanding our Docker Compose to run services
Adding Docker Compose
Connecting service with Docker Compose
Expanding Docker Compose
Connecting two stacks
Local development with Docker
About Kubernetes

Deploy app on Kubernetes
MySQL
WordPress

Access your service
Conclusion

7. Install Ubuntu Server on Metal, Cloud, and Network
Introduction
Structure
Objectives
Cattle vs. pets
Using SSH to connect to your server
Install Ubuntu Server with USB

Connect to your Ubuntu Server
Using Ubuntu in VM
Ubuntu Server in Google Cloud and Hetzner

Hetzner cloud and metal provider
Creating an Ubuntu Server in Google cloud

Large Ubuntu installations made easy
PXE booting
Provision VM with MAAS
Setting up our network

PXE installation on our server
Time to boot
More control

Conclusion

8. Keeping
Introduction
Structure
Objectives
Commands for monitoring a Linux server

Top
Netstat
lsof
du

Monitoring Ubuntu Server using Cockpit
Monitoring Ubuntu Server data at scale

Installing Grafana on Ubuntu
Visualizing your metrics with Grafana
Pushing data vs. pulling data
Installing Node Exporter to export server data
Combining tools to visualize the data
Grafana dashboards

Logs command
Collecting and storing logs together
Detecting hacking on your server

Fail2Ban
Setting up a HIDS

Sending OSSEC logs with Filebeat to Elasticsearch
Conclusion

9. Setup Advanced Network, Firewall, and VPN Servers
Introduction
Structure
Objectives
Using Ubuntu as the main firewall

Ubuntu virtual NIC and VLAN
VLAN
Setup network for routing

Controlling traffic with iptables
Keeping you safe

Network clients with DHCP and DNS
DNS settings

Securing communications
OpenVPN

To connect our client
On the Client

WireGuard VPN
VPN troubleshooting
Conclusion

10. Running Virtualization Server Environment
Introduction
Structure
Objectives
Installing KVM on your Ubuntu Server
Connecting from the desktop using KVM GUI
Installing the KVM web interface
Creating a VM server
Control your VM using the virsh command

Shared storage
Dedicated VM Linux version
Containers
Podman´s features

Installing Podman
Setting up Podman Repo
Podman error with CNI plugin

Setup and monitoring with Grafana and Prometheus
Reading logs with Loki

Journal logs
Container based monitoring clients
Conclusion

11. Setup Webserver, Deploy and Run Webapps
Introduction
Structure
Objectives
Web servers

Apache
Webb content
First config
NGINX

Databases
MariaDB SQL

MongoDB
Database tools

phpmyadmin
Deploying web apps

WordPress
Observium
Rocket.Chat
Webb performance
Backup
Database user

Conclusions

12. Kubernetes Run and Setup
Introduction
Structure
Objectives
Installing Kubernetes on Ubuntu
Installing Kubernetes requirements
Setting up our Kubernetes cluster
Deploy Kubernetes base service

Installing Helm
Storage
Monitoring
Ingress
Load balancer
Logs

Install WordPress in Kubernets
MySQL

WordPress
Access our WordPress
Setup MetalLB
Monitoring Kubernetes cluster with Grafana

Kubectl command to remember
Pods

Conclusions

13. Task Automations, CI/CD Pipeline, and Service Deployment
Introduction
Structure
Objectives

Basic Bash
Automate tasks with Ansible
Run host command from Docker
Build and push Docker images
Docker hub

Build local
Build and push

Deploy with terraform against Kubernetes
Init Terraform
Terraform commands
Terraform plan

Terraform apply
CI/CD

Conclusion

Index

•

•

•

CHAPTER 1
Getting Familiar with Ubuntu

Ecosystem

Introduction
In this chapter, we will be introduced to Linux and Ubuntu. We will start by
discussing the creation of Linux. Then, we will go into Ubuntu and look at
how it began, understand Ubuntu releases, and cover some of the different
versions of Ubuntu. Finally, we will cover other Linux distributions and
how they are different from Ubuntu. Additionally, we will discuss what
parts make up the Linux stack.

We encourage you to create a blog page and an account by the end of the
chapter so that you are ready for the subsequent chapters in the book.

Structure
In this chapter, we will cover the following topics:

Linux history

Linux stack

Usage and stats of Linux

•

•

•

•

•

Ubuntu history

Ubuntu releases

Ubuntu versions

Other Linux distributions

Create GitHub and blogger account

Objectives
By the end of the chapter, we will understand how Linux started and how
the different parts of the Linux stack are put together. We will also
understand the difference between different Linux versions and how
Ubuntu is versioned and released.

Linux history
Linux was created by Linus Torvalds, a computer science student at the
University of Helsinki, in 1991 at the age of 21. What started as a small
hobby is today one of the most used operating systems.

At first, Linus named the invention Freax, but one of the administrators at
FUNET, where the project was uploaded, did not like that name and
renamed it to Linux.

Tux, the penguin mascot as depicted in Figure 1.1, was chosen by Linus
after a small penguin bit him during a visit to the National Zoo and
Aquarium in Canberra.

Figure 1.1: Tux

•

•

•

Today, you can find the Linux kernel development on GitHub.
https://github.com/torvalds/linux and follow the development there, and
today, there are over 13k contributors to the Linux kernel. Refer to the
following link: https://en.wikipedia.org/wiki/Ubuntu

Linux stack
The Linux kernel is the base of all Linux operations systems. It is the one
that boots and adds all the drivers. If the car brand is named Ubuntu, the
engine is the Linux kernel. On top of the Linux kernel, we can choose/build
different operating systems, such as Ubuntu and Red Hat.

Now, to use your Linux system as a desktop computer, you would also need
some type of windows manager. In this book, we will look more at the
windows manager i3 and the default windows manager in Ubuntu GNOME.

Usage and stats of Linux
The usage of Linux and Ubuntu is growing fast. Today, Linux is the
primary OS used by our supercomputers. It powers NASA servers and is the
most used OS for IoT devices.

In the cloud, it is the dominant OS, with 90% of all OS running Linux.
Linux is also the OS powering the Kubernetes cluster, which is becoming
the default platform for hosting applications. Some other stats from Linux
are as follows:

Web servers also completely rely on Linux. According to Linux
server statistics, of the top 1 million web servers, 96.3% employ
Linux environments.

The Linux kernel development report reveals that 90% of the
workload deployed on the cloud is based on the Linux system.

65 SpaceX missions were completed using Linux-powered
technology, according to the latest Linux statistics.

• According to the latest Linux distributions statistics, Ubuntu is the
most popular Linux distributions (32.8%), followed by Debian
(14.4%) and CentOS (10.8%).

Ubuntu history
One of the most used Linux operating systems is Debian, and Ubuntu is
based on Debian. Ubuntu was built by the British company Canonical and
is set to be a friendly and easy-to-use Linux system. The first release was
Ubuntu 4.10, which was released in October 2004. Today, a lot has
happened, and Ubuntu has now released version 22.04.

There is a base version of Ubuntu. Ubuntu Desktop are the desktop for
laptops, office, and home computers with a GUI. Ubuntu Server runs on
servers on both cloud and metal, and Ubuntu Core is used to run on IoT
devices.

https://en.wikipedia.org/wiki/Ubuntu

Ubuntu releases
Ubuntu is released twice yearly, one version on 04 April and one on 10
October. The release makes up the name with the year. Ubuntu 22.10 will
be released in October 2022. So, how long is then a release supported?
Well, that depends. Ubuntu makes long-term support (LTS) releases, and
the LTS releases are supported for ten years. If you plan to set up a server
that will run longer or a desktop to work on, consider using the LTS
releases. However, if you want the latest kernels and tools, you can look at
the newest release. In this book, we will recommend installing the LTS
releases. Ubuntu also provides tools to upgrade from the LTS release to the
next one.

More on the Ubuntu releases is found here,
https://ubuntu.com/about/release-cycle.

Ubuntu version

Ubuntu and the Linux kernel are open-source, which has led many
developers to make their own version of Ubuntu. People who wanted to use
another graphical desktop environment on a particular version of Ubuntu
for schools or music studios.

Some of the different versions of Ubuntu are as follows:

Mint
Linux Mint is based on Ubuntu and the XFC Windows desktop. Mint Linux
is pre-filled with many of the standard tools to get you started and working
quickly after installation.

Linux Mint is an operating system for desktop and laptop computers. It is
designed to work out of the box and comes fully equipped with the apps
most people need.

You can find more information on Mint Linux and download links at
https://linuxmint.com/.

Pop
System76 is a company building Linux computers, and its operating system
is based on Ubuntu.

Pop!_OS is designed for fast navigation, easy workspace organization, and
fluid, convenient workflow. Your operating system should encourage
discovery, not obstruct it.

You can find more info on Pop Linux and download links at
https://pop.system76.com/.

LXLE
Lxle is a light version of Ubuntu. We used computers that were low in
resources but still needed to be able to be used in a secure and updated way.

The developers of LXE describe it as light on resources and heavy on
functions. LXLE is based on Ubuntu, and it is super-fast to boot up.

You can find more info on LXLE and download links at https://lxle.net/.

Other Linux distributions
Ubuntu is based on the Linux distributionsro called Debian, but there are
more Linux OSs than Ubuntu. Raspberry Pi OS is another famous OS based
on Debian. However, there are many more. Kali Linux is a Linux OS
specially built for hackers. It includes all the tools you would need as a
hacker and runs easily from a USB stick.

But our Linux distributions does not stop with the Debian family. There are
more families of Linux.

Red Hat has Red Hat Enterprise Linux, a stable Linux distributionsro that
many companies use. It includes open-source software and Red Hat's own
software. Fedora Linux will be the next Red Hat Linux. In Fedora, we see
the latest software and kernel versions. If you start using Docker, you will
get to know Alpine Linux. Alpine is a minimal Linux perfect for building
small Docker images, https://www.alpinelinux.org/.

Regarding Kubernetes, new Linux distributionsributions release unique
builds for running containers. The most famous are Flatcar and CoreOS,
where Flatcar is a fork of CoreOS. AWS has also released its own Linux
build for containers called Bottlerocket.

One new project is Talos Linux, a special Linux distributionsro only made
to run Kubernetes. One special part of Talos Linux is that it does not have
any external access, and all configs are used using API calls.

To read more and get installation instructions on the special Linux
distributionsro, visit the following links in the chapter's reference section.

Let us look at the difference between Linux versions:

It is all about how you use your computer and server. On your laptop, run
Ubuntu LTS, and run Ubuntu LTS on my home server. Then, you can reuse
the tools and script, for example, to set up backup and access.

1.

1.

1.

However, flatcar Linux is run in the Kubernetes cluster, which is good for
running containers and Kubernetes.

We may have some servers that run Red Hat, and the difference is, for
example, the package manager. In Ubuntu, as you will learn in this book,
the package tool is called apt.

The command installs apache on a Ubuntu/Debian Linux:
apt-get install apache

However, on a Red Hat server, your package manager is named yum. So, to
install the Apache web server, you would run.

yum install httpd

They both will install the Apache web server, but the way you type the
command for installing Apache is different. The same command in Alphine
Linux would be as follows:

apk add apache

There are some differences in this way, but as you will learn to use apt in
this book, it is simple to move to a Red Hat-based Linux, and the base of
how you install the package is the same. You only need to find the right
command.

Create GitHub and blogger account
In this book, we will use code and configuration files when we set up our
desktop and install services like a web service on our Ubuntu Server. We
will build Docker apps to run WordPress and other apps and save all our
work, both the code and what we have done, by setting up a GitHub
account and a Blogger account.

Git
During this book, you will be working with code and configurations, and
keeping your code and settings is good practice to save them in a Git Repo.

You will, for example, save all your .config files in a Git Repo so that all
your Ubuntu settings will be saved.

One of the most used platforms for storing code using git is
https://github.com. Before we start writing code, we will set this up.

Blog
We hope that this book will teach us new things. To remember everything
and have it as a reference, it is a good idea to set up a small blog to write
down the different tasks. One example of a free blog hosting is
https://www.blogger.com.

•

•

•

•

Book Git Repo
This book also has a GitHub repo. All code and examples are stored in that
repo. Feel free to clone or fork the repo to your GitHub repos so that you
can test and run the example code.

https://github.com/bpbpublications/Ubuntu-Linux-in-30-days

Conclusion
A student at the University of Helsinki started using Linux as a free OS. It is
free to use, and the kernel is available at GitHub.com. From the Linux
kernel, a new and different Linux OS has arrived. Ubuntu is the famous one
we will use in this book. However, there are also unique Linux OS for
running clusters ore security audits. So, depending on your task, you can
find a Linux OS best suited for your needs.

In the next chapter, we will install Ubuntu by learning how to install it and
getting started using it on our desktops.

References
https://getfedora.org/en/coreos?stream=stable

https://flatcar-linux.org/

https://www.talos.dev/

https://aws.amazon.com/bottlerocket/

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

•

•

•

•

•

CHAPTER 2
Install, Upgrade, and Configure

Ubuntu Desktop

Introduction
In this chapter, we will follow the steps to install Ubuntu. We will start by
downloading the Ubuntu image, burning or copying the image to a USB
flash drive, booting a computer from the USB drive, and following the steps
to install Ubuntu. When a computer is running Ubuntu, we will look at the
Ubuntu package manager and install our first Ubuntu packages.

Structure
In this chapter, we will discuss the following topics:

Installing Ubuntu

Pre-installing Ubuntu

Dual-boot Windows/Ubuntu

Boot Ubuntu and install

Ubuntu running

Install software

•

•

•

•

Software store

Updating Ubuntu

Upgrading Ubuntu LTS

.config folder

Objectives
By the end of this chapter, we will be able to download iso Linux files from
the internet and create bootable USB. Boot up live Linux
distributionsributions and run basic commands to find issues before
installing Ubuntu.

We will also be able to install Ubuntu Linux and install packages from the
Ubuntu Software Center.

Installing Ubuntu
Today, you can install Ubuntu on almost all laptops, computers, and servers.
You can even install Ubuntu on Apple laptops.

When installing Ubuntu today, we used a USB drive on which we installed
Ubuntu. You can use this USB drive to boot up your computer first to test
out Ubuntu and verify that the network drivers are working.

We always keep a USB drive with Ubuntu to help us boot up and
troubleshoot issues with our servers and computers. Once booted from the
USB drive, Ubuntu also provides the option to install the operating system
onto the hard drive, allowing it to boot without the USB drive.

If you are using an older computer, the same approach can also be done
with CD discs.

Later in this book, you will also understand how to install servers over the
network to install servers automatically.

Pre-installing Ubuntu

1.

2.

3.

Today, there are several companies that provide computer pre-installation
with Ubuntu. Dell has a full line of computers already preinstalled:

https://www.dell.com/en-us/lp/linux-systems

Another brand is Lenovo, which also has its own line of Linux computers:

https://www.lenovo.com/us/en/d/linux-laptops-desktops/?
orgRef=https%253A%252F%252Fsearch.brave.com%252F

Starlab has also create there Starbook preinstalled Ubuntu laptop. It is a
fully open-source computer from BIOS, Firmware, and Ubuntu running as
OS.

https://se.starlabs.systems/

There are also many new, smaller companies that provide Linux computers,
like Framework, which is a modular laptop where you can replace parts
yourself. It comes preinstalled with Windows, but the community around
Linux is large. https://community.frame.work/t/ubuntu-21-04-on-the-
framework-laptop/2722

When we talk about preinstalled Linux computers, we also need to add
system76 https://system76.com/. They have been building powerful Linux
computers for a long time.

Dual-boot Windows or Ubuntu
It is possible to dual-boot Ubuntu and Windows from the hard drive. To do
that, we need to follow the given steps:

First, we need to install Windows on the computer.

Then, install Ubuntu beside Windows.

Now, in grub, the boot tools for Ubuntu detect the Windows
options, and when you boot your computer, there is an option to
boot into Windows.

4.

•

•

1.

2.

3.

If you added Windows after Ubuntu, you could simply update
grub, and it will detect and set up the Windows boot options.

Boot Ubuntu and install
To get started, we will need the following:

We need a computer to download and set up our Ubuntu USB
drive.

A USB drive with more than 4GB of storage.

First, we need to download the Ubuntu version we will be using. You can
follow the given steps:

Go over to the Ubuntu download page and download the Ubuntu
Desktop,

https://ubuntu.com/download/desktop

Download the ISO file to your computer.

When we have the ISO file on our computer, we must write it to
the USB drive. There are many different tools that we can use. If
you already have a Ubuntu Desktop, then Ubuntu has a program
called Create Startup Disk.

Making boot USB with Etcher
To make a bootable USB drive, we need to flash the Ubuntu iso to a USB
key. To do that, we use a tool called Etcher.

https://www.balena.io/etcher/

Etcher works on Linux, Windows, and MAC. It is a great tool for writing
Linux images for Ubuntu, Raspberry, and any other Linux distributions.
Figure 2.1 illustrates the startup screen on Etcher as follows:

Figure 2.1: Etcher tool for making USB drives

Start by selecting the Ubuntu image we have downloaded and the
destination USB drive, as shown in Figure 2.2:

Figure 2.2: Etcher with selected ISO and USB drive

After we have selected the iso, we need to choose the drive where we want
the iso to be flashed. Etcher is brilliant and should only show the USB
drives here.

Now press Flash, and the image will flash to the USB drive as shown in
Figure 2.3 and Figure 2.4:

Figure 2.3: Etcher flashing the image to the USB drive

When Etcher is Flashing the image to the USB drive, it needs admin access
to write the boot data into the USB drive; if it fails, ensure you are running
as the admin.

Once Etcher has completed flashing the USB, it will show a ready message,
as shown in Figure 2.4:

Figure 2.4: Etcher has flashed a USB drive complete

Let Etcher complete the flashing of the USB Drive. Then, remove the drive
and attach it to the computer on which you want to install Ubuntu.

Boot Ubuntu for the first time
It is time to boot Ubuntu. Insert the USB drive into the computer and boot it
up. Now, you may need to choose what device you want to boot from in the
BIOS.

Figure 2.5 shows the Ubuntu boot menu:

Figure 2.5: Ubuntu USB drive start menu as default will start Ubuntu

When the computer boots up for the first time, you get the option Start or
install Ubuntu Press Enter to boot Ubuntu. Now Ubuntu is booting from
USB drive, so keep in mind the performance will be slow as shown in
Figure 2.6:

Figure 2.6: Ubuntu is starting up

The preceding figure is the Ubuntu load screen when Ubuntu is starting up.
When Ubuntu has loaded, you are presented with the choice to try or install
Ubuntu as shown in Figure 2.7:

Figure 2.7: Choose an action after Ubuntu has started

Here, you can choose to install and proceed with the installation, or press
Try and perform some pre-checks. Feel free to press Install and skip the
pre-checks.

Pre-checks before installations
Now that we have a running Ubuntu booted from a USB drive, let's do
some pre-checks to ensure that things are working.

Figure 2.8 shows the settings menu to use to connect to a network:

Figure 2.8: Ubuntu Desktop with the menu to the left and
to the top right, the settings panel has dropped down

When we connect Ubuntu to a network, we can open Firefox to test our
internet connection; Figure 2.9 shows Ubuntu where we have opened the
Firefox Web Browser:

Figure 2.9: Firefox started on Ubuntu

The first check is to verify we have a working network connection. Connect
to your ethernet or Wi-Fi access point and start Firefox to test the network.

Verify computer device
When Ubuntu is installed, it loads all the drivers for the different devices on
the computer, from network cards to video cameras. However, sometimes
Ubuntu can have problems setting up a device, and the following command
can help you troubleshoot and find a resolution.

After the command's output is obtained and the device ID is searched on the
Internet, Ubuntu guides users through using the device in Ubuntu.

Commands
You can run the following command to list all USB devices connected to
your Ubuntu:

lsusb –vvv

Figure 2.10 shows how the command looks when its run on the installed
Ubuntu:

Figure 2.10: The output of lsusb -vvv

Figure 2.10 shows the output of the command lsusb -vvv. The command
will print all the detected USB devices connected to the computer.

The following command will list all PCI devices connected to your Ubuntu:

lspci –vvv

As shown in Figure 2.11:

Figure 2.11: The output of lspci -vv

Figure 2.11 shows the output of the command lspci -vvv, which shows all
the internal devices like network cards and more. If there are errors with the
soundcard or network card, then this command will show what is detected.
Verify that your devices are showing up, for example, a soundcard,
microphone, and camera.

Installing Ubuntu
Now we are good to go and let us install Ubuntu on our computer. Start the
guide on the desktop and follow the guide all the way. Ultimately, your
computer will be rebooted, and you will disconnect the USB drive. The first
option when installing Ubuntu is to select your language, as shown in
Figure 2.12:

Figure 2.12: Selecting language for Ubuntu

First, choose the language for Ubuntu. All the menus and text that Ubuntu
will communicate with you will use this language.

We recommend using English as a language, and if you can, use English. If
you have issues, then search for them using the English names to make it
easier to find the correct answers.

When your language is selected, it is time to choose your keyboard layout,
as shown in Figure 2.13:

Figure 2.13: Selecting keyboard layout

Next, you set the keyboard you are using. Here, English is used as the
language for Ubuntu, but with a Swedish keyboard layout. Choose your
preferred keyboard layout.

Now we have set up the basics for the installation, and it is time to choose
what kind of installation we want. Figure 2.13 shows our installation
options as follows:

Figure 2.14: Update configuration and software installation

Update and other software
Now, we choose how we want to install Ubuntu. The default option,
Normal, will install the base apps, including LibreOffice packages and
other utility software. If you choose Minimal, Ubuntu only installs with
base utils. It is easy to upgrade and install all apps. However, it is harder to
downgrade to a minimal installation after using the normal installation.

If you have any GPU installed, choose the installed third-party software.

If you are unsure, we suggest enabling it.

After you install it, you can also enable third-party software from the
desktop.

Installation type
This action is the one that will make changes that cannot be undone. Select
the drive on which you want to install Ubuntu.

Later in this book, we will look more into how you can set up different disk
partitions.

Figure 2.14 shows where we can add our changes to the hard drive. For the
first time, we recommend using the first option to erase the hard drive and
install Ubuntu as follows:

Figure 2.15: Installation type

Before Ubuntu makes the changes, a list box appears to verify the changes
to the disk. As shown in Figure 2.15. To continue and make the changes to
the disk, press Continue, and the installation will proceed. After this, your
computer will be modified as follows:

Figure 2.16: Confirmation to make changes to the disk before installation begins

The installation has begun in the background, and we are to set up our user
info first. We are asked to set the correct time zone, shown in Figure 2.17:

Figure 2.17: Select the time zone

The last information to add to the installation is your details, including your
username and password. Please remember your username and password, as
you will need them later to log in to Ubuntu.

Figure 2.18 shows the last page of the installation where you add your
details:

Figure 2.18: Setup your account and password, and name your computer

Now it is time to relax and let Ubuntu install. The installation time will be
different depending on your computer's hardware. Figure 2.19 shows
Ubuntu installing:

Figure 2.19: Installation is running

When Ubuntu has installed all the packages, it needs to be restarted, as
shown in Figure 2.20. By pressing Restart Now, your computer will
reboot, and the next time your computer boots, Ubuntu will be running.

1.

2.

3.

4.

Figure 2.20: Ubuntu installation complete

Ubuntu running
Now you will have a running Ubuntu. The first task is to verify that
everything is working. If your Ubuntu is working as it should, then jump
into how to install apps.

Let us start with your first commands in Ubuntu.

Installing software
Installing software on Ubuntu is simple. You need the following steps for
installing:

Install software from any of the two software stores.

Download the package from the web page and install it.

Connect your Ubuntu to the software’s own repo and get direct
access to updates.

Download an app image that runs without installation.

In this chapter, we will examine installing software from the store. Later in
the book, we will discuss installing software using other methods.

Software store
The first store is the default Ubuntu Software Center, which is similar to an
app store on a smartphone. It gives you access to all the standard tools and
apps in Ubuntu and will also update apps for you.

You can access the store by starting the Ubuntu Software program. Search
for the video player VLC and install it. You can also install software using
the terminal.

sudo apt-get install vlc

The aforementioned command will install VLC media player.

Snap Store
The Snap Store is now built into Ubuntu software, and you can find all the
apps from one interface: https://snapcraft.io/store.

Let us start by installing the Brave browser from the Snap Store,
https://snapcraft.io/brave

You can also install Snap software from the Ubuntu Software Center ore by
running Snap install commands in the terminal.

The following will install brave using the Snap Store in the terminal:

sudo snap install brave

Updating Ubuntu
It is recommended that you install most of your apps from the Ubuntu
software store. This will install the correct packages, and all the surrounding
packages needed for the app to run. Most importantly, it will keep track of
and update your app for you.

1.

1.

1.

In Ubuntu, open the Software and Updates program. The program will
show you from which sources you are installing software. You can also
install and enable software properties here.

Open the program called Software Updater. The program will update all the
packages for you and keep your Ubuntu system up to date. If the tool finds
a new update, it will send you a notification so that you can update your
Ubuntu system.

You can also run the following command in the terminal:
sudo apt-get update

This will update the repos and find new packages that need to be installed:
sudo apt-get upgrade

This will upgrade all packages that have new versions.

Upgrading Ubuntu LTS
Ubuntu comes with its own update tool, which allows you to upgrade from
the LTS version to the next version. This will allow you to keep your
Ubuntu Server or desktop running for a long time while still updating it
with the latest software.

In the terminal, run the command:
#Here we have the –h flag to show the help section to the release u
pgrade command.
sudo do-release-upgrade –h

It will find any new version and upgrade your Ubuntu LTS for you. You can
also upgrade to a minor version by updating the configuration. The tool
cannot upgrade the LTS before the first minor is released. So, if the LTS is
released on 22.04, you can run the tool to upgrade when 22.04.01 is
released.

.config folder

When we install apps onto our Ubuntu Desktop, all the application
configuration is stored in the folder .config. Initially, it makes it a hidden
folder, and it will not show up when you browse the folder. We will use this
folder to save the script we use and the settings for different apps in the
book. To keep this all, we will hold it all if anything happens to our Ubuntu
installation. We will save it regularly to a Git Repo.

Conclusion
By the end of this chapter, we will have a running Ubuntu Desktop and
have installed your first apps in Ubuntu, both from the powerful terminal
and using the software store. We are now ready to go deeper into Ubuntu
and Linux.

In the next chapter, we will make our desktop ready to work from. This
includes adding tools for chat, email, and writing code.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

•

•

•

•

CHAPTER 3
Environments and Window

Managers

Introduction
Ubuntu has all the comprehensive tools and software essential for our work.
The widely used office tools now have packages compatible with Windows
or operate in web browsers. This means that Ubuntu is a great operating
system choice for professional work. You can also choose different types of
windows managers with Linux.

In this chapter, we will look at a particular window manager called i3.

Structure
In this chapter, we will discuss the following topics:

Install i3 window manager

Commands to use in i3

Working on Ubuntu

Developing with Ubuntu

1.

Objectives
In this chapter, we will discuss how to install the most popular tools in
Ubuntu. You will also understand how to set up and use password manager
to protect your passwords and encrypt files. We also understand how to
connect your Ubuntu to a network using a VPN and personalize your
system configuration. Additionally, we will also understand how to install
and configure i3 windows manager and use a tilled windows manager.

Install i3 window manager
In Ubuntu, you can change the windows manager. We are using the window
manager i3; now, you will learn to install and use it. You can always go
back to the default windows manager by logging out and choosing the
default windows manager. The i3 window manager is a tile manager, so
everything you open will tile up. You can use short commands to control
your desktop. It is also easy to command and control where apps will start.

Installing i3 windows manager is optional, showing different windows
managers that can be used in Ubuntu. Open the terminal in your Ubuntu
and type in the following command:

sudo apt install i3

This command will install the i3 windows manager and the essential tools
to run and display the windows manager. When the installation is done, it is
time to log in to your manager. To log in to the i3 windows manager, we
must first log out from the current session. Then, choose the i3 windows
manager and log in.

Refer to the following figure:

Figure 3.1: Ubuntu select desktop

If you want to log back into the default Windows GNOME, follow the same
steps but choose the Ubuntu option. Do not worry when you log into the
new i3 window. We may need to set up the screen before everything looks
good.

Tiling
To open a web browser like Firefox or Brave, type Win + D (Windows key
+ D), look at your screen, top left, type Firefox, and then press Enter. Now,
Firefox will open beside the terminal, as shown in the following figure:

1.

2.

1.

3.

1.

4.

1.
2.
3.

5.

Figure 3.2: i3 tiling apps

As you see in the image, the windows are open beside each other, and there
are no floating windows that you can drag around. i3 is a tiling windows
manager; every app is open in full screen, or tiles to the program are already
open.

Let us start by opening a terminal and see if we can set up the
screen. Enter the combination Win + Enter (Windows key + Enter)
at the same time. This command opens a new terminal instance.

If you need to set up your screen, follow the steps to configure it
properly. This step is needed if you have multiple screens. In your
terminal, now go to the folder .config:

cd .config

Create the file .XResources notice the “.” in the beginning:

nano .XResources

Now, add the following:

Xft.dpi: 220
Xcursor*size: 30
Xcursor.size: 30

Now, let us apply the values by typing the following command:

1.

6.

1.

2.

7.

1.

8.

9.

1.

10.

xrdb .XResources

Then, reload the Windows manager with the Win + Shift + R
(Windows key + Shift + R) combination.

The new settings will be applied, and the screen will change. The
changes can be different. The setting above works for a Dell XPS
with a 4k screen, and the values must be altered to fit other screen
resolutions. Different screens will have different settings, and you
can change the settings to your liking. Programs like Firefox need
to be restarted to have the new settings applied.

Change your screen resolution or connect more screens to your
computer. Then you need to tell xrandr in i3 to display the video
on the new screen. Start with finding your screens:

#This command is used to set the size, orientation and/or reflec
tion of the output of the screen
xrandr

This will print a long text of the connected screens and the
different resolutions the screen can use:

xrandr --output <enter_screen_name> --auto

Set the output of the screen eDP-1 to auto:

xrandr --output <enter_screen_name> --mode 3840x2160 --right-
of <enter_screen_name>

This will add a second screen named from the xrand command
DP-1 and set the resolution to 3840x2160. Place the screen right of
the laptop screen eDP-1.

xrandr --output eDP-1 --auto --output DP-1 --off

Set the output to auto for the laptop screen eDP-1 and then turn the
image on the external DP-1 off. They set the different settings and
change between one and external screens. To change between
different screens, a small bash script can be handy:

a.

1.

2.

3.

b.

1.

2.

3.

11.

1.

1.

1.

2.

Only laptop script:

mahe@comp:~/.config$ cat schreen_one.sh

#!/bin/bash

xrandr --output eDP-1 --auto --output DP-1 --off

Office script:

mahe@comp:~/.config$ cat schreen_office.sh

#!/bin/bash

xrandr --output DP-2 --mode 3840x2160 --right-of eDP-1

As you can see, the script is saved in me .config folder:

exec --no-startup-id xrdb ~/.config/.XResources

Add the above line to load your -config/i3 config file to save and start your
settings when you boot.

Extra commands
We also have the following command in the i3 configuration to take
screenshots and open the sound controller:

bindsym $mod+XF86AudioMute exec pavucontrol # open sound
control

We use this command to open the pavucontrol soundbar program:

bindsym Print exec gnome-screenshot

bindsym Control+Print exec gnome-screenshot -i

This is the command for taking screenshots.

1.

2.

3.

•

Troubleshooting commands
If you add some commands and notice the short command is not working,
always start with reloading the i3 config so the latest config is loaded. Then,
test the command in a new terminal and use your account.

Commands in i3
i3 default comes with some basic commands for you. You have already
used some but let us start on some basic ones. We are to open some
programs in different windows and switch between them:

First, press Win + D (Windows key + D) and then type Firefox to
launch the Firefox browser.

Now we are to change the windows:

Win + 2 (Windows key + 2)

This will open Windows 2. Looking at your bottom left, you see a
two that is highlighted.

Start a new terminal here by pressing:

Win + Enter (Windows key + Enter)

Now, you can toggle between the windows by pressing Windows key + 1 or
Windows key + 2.

i3 has many prebuild commands, as shown in the following tables:

The basics are as follows:

Key combination Purpose

Win+ Enter (Windowskey +
Enter)

Open new terminal

Win + j (Windowskey + j) Focus left

Win + k (Windowskey + k) Focus down

•

•

Win + l (Windowskey + l) Focus up

Win+ ; (Windowskey + ;) Focus right

Win+ a (Windowskey + a) Focus parent

Win + Space Bar (Windowskey +
Space Bar)

Toggle focus mode

Table 3.1: Basics

For moving windows:

Key combination Purpose

Win + Shift –j (Windowskey +
Shift + j)

Move window left

Win + Shift + k (Windowskey +
Shift + k)

Move window down

Win + Shift + l (Windowskey +
Shift + l)

Move window up

Win + Shift + : (Windowskey +
Shift + ;)

Move window right

Table 3.2: Moving windows

For modifying windows:

Key combination Purpose

Win + f (Windowskey + f) Toggle fullscreen

Win + v (Windowskey + v) Split a window vertically

Win +h (Windowskey + h) Split a window horizontally

Win + r(Windowskey + r) Resize mode

Table 3.3: Modify windows

•

•

•

•

Look at the Resizing containers/windows section of the user guide.

For changing the container layout:

Key combination Purpose

Win + e (Windowskey + e) Default

Win + s (Windowskey + s) Stacking

Win + w (Windowskey + w) Tabbed

Table 3.4: Changing the container layout

Floating:

Key combination Purpose

Win + ⇧ Shift + Space bar
(Windowskey + Shift + Space

Bar)

Toggle floating

Win + Left Click (Windowskey +
Left click)

Drag floating

Table 3.5: Floating

Using workspaces:

Key combination Purpose

Win + 0-9 (Windowskey + 0-9) Switch to another workspace

Win + ⇧ Shift + 0-9 (Windowskey
+ Shift + 0-9)

Move a window to another
workspace

Table 3.6: Using workspaces

Opening applications or closing windows:

Key combination Purpose

•

1.

Win + d (Windowskey + d) Open application launcher
(dmenu)

Win + ⇧ Shift + q (Windowskey +
Shift + q)

Kill a window

Table 3.7: Opening applications/closing windows

Restart or exit:

Key combination Purpose

Win + ⇧ Shift + c (Windowskey +
Shift + c)

Reload the configuration file

Win + ⇧ Shift + r (Windowskey +
Shift + r)

Restart i3 in place

Win + ⇧ Shift + e (Windowskey +
Shift + e)

Exit i3

Table 3.8: Restart/Exit

This is from the i3 website, and you can find it here:

https://i3wm.org/docs/refcard.html

Custom shortcuts
One advantage of i3 is that you can easily add your shortcuts. Then, you can
run the command to open an application or script. We will now add some
shortcuts to lock your screen and take screenshots. It is easy to add your
command, open a terminal, and open the file .config/i3/config.

Open the file up with the text editor:

gedit .config/i3/config

The Windows key is set as the Mod key by default. But you can change this
to any key you like. Some want to run this using the ctr key.

1.

1.

2.

1.

1.

1.

To change the mod key, modify the line:

set $mod Mod4

Change Mod4 to the key you want to trigger commands with:

set $mod Control

Background image
Download an image to use as a background and place it in your
.config/background folder. Install the package that sets the background for
us:

sudo apt-get install feh

Let us add a background image in i3. Add the following line at the bottom
of the file:

exec --no-startup-id feh --bg-fill ~/.config/background/image.jpg

Now, restart i3 with the reload command.

Lock screen
We will add a lock screen and a lock screen timer. So that your computer
locks after 15 minutes. First, download an image you want to show when
your screen is locked. Save the image in the folder
.config/i3/config/background.

Install the package that we need:

sudo apt-get install xautolock i3lock.

Then add the following lines to your .config/i3/config file:

exec xautolock -time 15 -locker 'i3lock -i ~/.config/background/loc
k.png' &

2.

1.

2.

1.

1.

bindsym $mod+l exec i3lock -i ~/.config/background/lock.png

The first command starts with exec and tells i3 to run that command, and
then it starts. So, xautolock runs in the background and will lock the screen
after 15 minutes. It will then show the image lock.png. The second line that
starts with bindsym sets when you press the mod button (Windows key as
default) and l. It will run the command i3lock and lock the screen. Save the
file and reload i3. Then press mod+l to test your screen lock.

Extra configs
Add the following to your config file:

exec --no-startup-id nm-applet

exec --no-startup-id blueman-applet.

This will start the applet in the bottom bar of i3 and show the network
widget. So, you can right-click it and configure your network settings. It
also adds the Bluetooth applet to connect to Bluetooth and configure any
Bluetooth devices. If your computer lacks Bluetooth, you can remove that
line.

To use the Bluetooth applet, install the packages:

sudo apt-get install blueman

Extra Trix with i3
One of the excellent features of i3 is that you can auto-start the app when
your computer starts up. So, the Brave browser always ends up on screen 1.
Slack and Discord always start on screen 2. This way, you can easily set up
your perfect working setup and save time. To do this, we need to edit our
config file for i3:

#Namming your screens

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

set $ws1 "1:com"

set $ws2 "2:term"

set $ws3 "3:web"

set $ws4 "4:code"

set $ws5 "5:media"

set $ws6 "6:vm"

set $ws7 "7:misc"

Then, adding the following to your configuration will name the screens.
You can alter the name to suit your screens:

#My programs to start

#w2

#

exec --no-startup-id i3-msg 'workspace 2:term; exec i3-sensible-ter
minal'

exec --no-startup-id i3-msg 'workspace 2:term; exec i3-sensible-ter
minal '

#w3

exec i3-msg 'workspace 3:web; exec /snap/bin/brave'

#w1

exec i3-msg 'workspace 1:com; exec /snap/bin/Slack'

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

exec i3-msg 'workspace 1:com; exec /snap/bin/discord'

#w3

exec i3-msg 'workspace 4:code; exec /snap/bin/code'

#w4

#exec --no-startup-id i3-msg 'workspace 4:Wec; exec /usr/bin/code'

#assign [class="code"] 2:code

for_window [class="Slack"] move to workspace 1:com

for_window [class="discord"] move to workspace 1:com

for_window [class="Brave-browser"] move to workspace 3:web

These commands start the different apps on the different screens
(workspaces). In the end, assign them to the screen (workspace).

Then i3 starts up, and Slack also starts up. However, before Slack had fully
started. The i3 startup has already moved to the next screen. Then, Slack is
lunch in the wrong workspace. The for_windows command resolves this by
moving Slack to the correct screen (workspace).

Work on Ubuntu
Today, Ubuntu has lots of features, you can access chat, email, and video
tools from your Ubuntu with native apps.

Email
Thunderbird is an email client that can connect to most email providers. We
will connect with a Gmail account and then sync email, contacts, and
calendar events. Start by installing thunderbird. This only needs to be

1.

done if you choose the minimal installation during the installation of
Ubuntu:

sudo apt-get install thunderbird

When Thunderbird is installed, we can launch the app. The first time
Thunderbird runs, a startup guide is launched. The guide asks for your name
and email. When you use Gmail or any of the big email providers,
Thunderbird will autodetect the servers needed. It will also connect and
sync all your contacts and calendar events.

Password manager
A password manager allows you to have one password you need to
remember. Other functions will be saved in the password manager, and
when you want to log into a site, you will ask your password manager for
the credentials. This makes creating new best-practice passwords for every
site and tool you use easy. Here, we will use the Bitwarden password
manager. You will install it both as a plugin in your browser on your
smartphone and as an app inside Ubuntu. Start by going to the site
https://bitwarden.com/ and registering an account. Now, start your
browser and download and install the Bitwarden extension for your
browser.

For Chrome and Brave, go to:

https://chrome.google.com/webstore/search/bitwarden

For Firefox:

https://addons.mozilla.org/en-US/firefox/addon/bitwarden-password-
manager/

When the extension is installed, log in to your Bitwarden account. Pin the
extension to your bar. Refer to the following figure:

Figure 3.3: Firefox with Birtwarden plugin

Here is the Bitwarden plugin listing all my accounts with username and
password for GitHub. Easy to use and use to login. When Bitwarden is
installed, you can easily create new credentials for new sites and update the
password for your current logins.

PGP encryption
PGP is a tool that encrypts and decrypts files. Using a public and private
essential structure, you can encrypt using the public key and decrypt using
the private key. When you are to receive an encrypted file, you send your
public key to the sender. The sender then encrypts the files with your public
key. Only you can decrypt and read the file with your private key. This is
the best practice when sending information over the Internet in email or
sensitive chat messages. You can also easily integrate PGP into Thunderbird
and encrypt emails. Start the tool called Seahorse. It should be installed by
default by Ubuntu. Create a new GnuPG key and type in your email and
password.

Encrypt a file:

1.

1.

•

•

•

gpg --output file.txt.gpg --encrypt --recipient matte.hemmingsson
@gmail.com file.txt

Here, the file is encrypted with the public key that belongs to the email:

matte.hemmingsson@gmail.com

To decrypt:

gpg --output file.txt --decrypt file.txt.gpg

Now, the files are in clear text again. To encrypt a file and send it. Import
the public key of the person receiving the file using the Seahorse tool. Then,
run the encrypt command and use the recipient's email and the file you
want to encrypt.

Communication tools
Working today means we have more tools than email and docs. Today, we
use chat tools to communicate with colleagues or friends. The most used are
Teams from Windows, Slack, and Discord.

All of them are available in the Snap Store:

https://snapcraft.io/Slack

https://snapcraft.io/teams

https://snapcraft.io/discord

Download them and start up the clients. You can go to the Slack.com
homepage and create your channel. Both Slack and Teams are messaging
applications, where you can send and chat between teams. They both can
start voice and video calls and share the screen. Discord comes from pure
voice-to-voice and is built for in-game talk between players. Today, it also
supports text, video, and screen sharing. Both Slack and Discord are great
tools for communication with colleagues and friends.

Watching video on Ubuntu

1.

1.

There are several tools to play videos. One of the best tools is the VLC
media player. With VLC, you can play almost any media format and stream
video directly from a source, such as an IP camera.

We have already installed VLC, but here are the commands again:

sudo apt-get install vlc

We will use VLC to stream a video from a camera. The command will start
VLC and connect it to the stream. It then opens a window and shows the
video with the image. The stream from the IP camera is here:

vlc rtsp://10.100.0.90:554/s2

The following figure shows the stream from an IP camera displayed with
VLC:

Figure 3.4: Showing VLC stream

Stream your desktop live

1.

2.

3.

OBS Studio is a tool to stream live video from your desktop to the largest
streaming platforms.

OBS Studio connects multiple inputs, like your screen and webcam, into
one stream. Then, you can send that stream to any streaming service or save
it as a video file.

You can download and read more about OBS from the following link:

https://obsproject.com/

To install OBS, run the following commands:

sudo add-apt-repository ppa:obsproject/obs-studio

sudo apt update

sudo apt install ffmpeg obs-studio

After installing and starting OBS, you are greeted with the start screen
shown in the following figure:

Figure 3.5: OBS Studio start window

Figure 3.7 shows the window at the start of OBS Studio. Here, you can
select your scenes and sources.

Sources are, for example, your desktop or your webcam.

OBS Studio then combined the different sources into one scene and
streamed that scene.

In Figure 3.6, we can see the stream from my desktop:

Figure 3.6: OBS Studio with screen capture source

You can move more sources to your desired layout when you add them.
After adding your sources and arranging them, it is time to stream your
video to a streaming service. OBS Studio has integrated support for several
video streaming platforms. Select a video platform or a custom one in the
settings menu and start streaming. The example shown in the following
figure shows how to set a stream:

Figure 3.7: OBS Studio stream settings

Sound and video
Ubuntu can mix and control the sound in many different ways. Most of the
time, it is easy and only plays the sound out on the default speaker.
However, you may sometimes want better control over the sound, and for
that, different tools can be used.

Pavucontrol is one of the tools that allows you to easily set your default
speaker. It is also set so that music is played on your headphones and
system sounds are on your main speaker.

The following figure shows how you can select auditor setting in
pavucontroll:

1.

•

•

Figure 3.8: Pavucontrol sound config

Webcam
Video devices such as a webcam will be detached automatically. The
default video cam player in Ubuntu is Cheese. If you use the minimal
installation options, then you need to install cheese to use it:

sudo apt-get install cheese

Then you can start Cheese; it autodetects webcams and connects to them.
Cheese also has some video effects that you can add to your stream.

Syncing files
Syncing files from your local computer to a cloud provider is harder than on
other OS. Many large cloud providers with cloud storage do not have native
sync clients for Ubuntu. However, there are other clients you can use, as
follows:

Google Drive: For syncing files between Google Drive and
Ubuntu, the app OpenDrive can be a good option:

https://flathub.org/apps/details/io.github.liberodark.OpenDriv
e

Dropbox: It is a storage provider that provides a native app for
syncing files. You can easily download and install the app from the
following URL:

•

•

1.

https://www.dropbox.com/install-linux

Mega: It is cloud storage with a native Linux app that you can use
to sync files:

https://mega.io/desktop

Resillio: If you are syncing files with friends or to your server,
then Resillio is a great tool. You can choose two folders on
different computers and then sync them. You can also add more
folders in different locations and nodes where you want the data
synced:

https://www.resilio.com/

Developing with Ubuntu
Ubuntu is a great platform to work from as a developer, DevOps, or Linux
admin. All the tools you need work in Ubuntu, and some only work in
Linux today.

Git
Git is a version control system that tracks files. Today, it is the standard tool
for developers to write code and then push it to a repo. This allows many
developers to work together on the same code base. It is also widely used
by sysadmins and DevOps to store configuration files, scripts, or other
documents.

Install git by running:

sudo apt-get install git

It is considered the best practice to use an SSH key when pushing and
pulling code from your local computer to or from a Git Repo. For this to
work, we need to create an SSH key that we can use. On your local Ubuntu,
type the following command:

1.

2.

1.

1.

1.

ssh-keygen

Accept the default values and set a password for your key.

No, we need to add the newly created ssh key to GitHub so that we can use
it. Log in to your GitHub account and go to settings/SSH and GPG Keys.
Now, create a new SSH key and add the public key we created before as
follows:

cat .ssh/id_rsa.pub

Save your new key. By adding your SSH key to GitHub, we can run the
command and use our GitHub user from the command line without logging
in. This is the default way of using git and working with code. Read more
about it from the following link,
https://docs.github.com/en/authentication/connecting-to-github-with-
ssh.

Check out the Git Repo for this book:

git clone https://github.com/bpbpublications/Ubuntu-Linux-in-30-d
ays.git

To create a private Git Repo to store files and config. Navigate to
github.com and create a new account. Under settings, add your newly
created SSH key. You will get the key with the following command:

cat ~/.ssh/id_rsa.pub

Now, you can create a new repository in your GitHub account and clone it
to your local Ubuntu. When ready, clone the empty repo to your local
computer:

git clone REPO

In the folder, create a new file called README.md and add the following
to the file:

1.

2.

3.

4.

5.

6.

7.

8.

9.

1.

1.

1.

#My test config

This is regular text

This is a smaller heading


```

#!/bin/bash

echo “Script”

 

Let us add this file to our Git Repo:

git add README.md

When the files are added to our Git Repo, we can commit the changes:

git commit -a -m “Our Readme File”

Files have been added and committed to our repo. Let us push the files back
to the GitHub servers:

git push -u origin main

When you go to your repository page in GitHub, you will see our
README.md files in the repo. You can do much more with Git, and if you
are to work with Git, this book will help you master it:

https://github.com/bpbpublications/Ubuntu-Linux-in-30-days

Code



1.

When working with code, scripts, or files, you need a good code editor. One
of the best today for code is VS Code. It runs perfectly on Ubuntu and
supports many different code languages. Later in this book, we will use VS
Code to connect to the remote server, write scripts, and run them.

More info about VS Code can be found here:

https://code.visualstudio.com/

To install VS Code on Ubuntu, use the Snap Store or download the deb
package from the website. Once you have downloaded the deb package,
you can install it using the following command:

This command will also work from other apps that provide .deb files:

sudo dpkg -i <name of the file you downloaded>

PyCharm
PyCharm is another code editor to use, especially for Python programs.
JetBrains, the company behind PyCharm, also has other IDEs for languages
like Java and Rust. To install PyCharm, use their snap package and
download the community version.

You can start it and select your first project when it is downloaded from:

https://www.jetbrains.com/pycharm/

About code editors
There are many different tools for writing code, and we must find the best
one. An IDE that allows you to switch between different code languages
and access server code will be a good choice. If you only use Python
programming, PyCharm may be the tool for you.

If you want to install your first IDE code editor, start with VS Code.

Conclusion



By the end of this chapter, we learned to install and set up the i3 windows
manager and change the windows manager. We have also installed and set
up the tools to work with Ubuntu, including email chat tools, password
manager, and encryption. You can also install and set up tools to stream
video from sources to your computer and to make and stream video
showing your desktop to streaming providers. We have also installed and
set up tools to work as a developer using Ubuntu by installing IDE code
editors like VS Code and version control systems like Git. You have also
learned how to create your own Git repository, set up SSH, add files, and
push back to GitHub.

In the next chapter, we will discuss and work on setting up multiple
network devices.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


•

•

•

•

CHAPTER 4
Setting up Firewall, VPN, and

Wi-Fi Networks

Introduction
Ubuntu has many powerful tools when it comes to network tools. Your
regular Ubuntu Desktop has access to all the tools used in the Ubuntu
Server that powers the network around the world. The Ubuntu Desktop also
has default tools for setting up a virtual private network (VPN) and
locking down Firewalls. In this chapter, we will look at some basic network
tools. We will learn to connect to different types of networks and set up
secure VPN connections.

Structure
In this chapter, we will cover the following topics:

Network DHCP or static

Connect to segment VLAN networks

Connect to wireless networks

Hide your computer by changing MAC address



•

•

•

•

Secure your connections with VPN service

Protect your traffic by using DNSS

Protect your computer by applying a Firewall

Detect and stop computer virus

Objectives
In this chapter, we will discuss network setup on your Ubuntu Desktop. We
will look at connecting to networks over cable and wireless. We will then
look at securing our connections using a VPN server and secure DNS. We
will also look at locking down network traffic into and out of our Ubuntu
Desktop.

By the end of this chapter, you will learn to set up different types of
network connectivity with your Ubuntu Desktop, protect your Ubuntu using
the Firewall, and connect securely using different VPN solutions.

Network DHCP or static
When connecting to a network, your computer needs an address. A router is
where it can find other addresses and connect to the Internet. There are two
ways to get an address. Your computer can ask the network for an address.
This is called Dynamic Host Configuration Protocol (DHCP), and all
routers and Wi-Fi access points have a DHCP server that provides addresses
to the computers in the network.

This is also the default setting for network and Wi-Fi network cards in
Ubuntu. However, you can also manually set your address to a network
address. To do that, you need to have the range and router that are needed.

If you are connecting your computer to a new Internet Protocol (IP)
camera and do not have a router or Wi-Fi point that hands out the address,
you can set the network address on your network card to match the network
on the camera.



1.

2.

3.

4.

5.

6.

7.

8.

Network static
In Ubuntu, setting your network to a static or manual IP address is easy. The
mentioned steps can be followed to connect to a network using manual IP:

Open the network settings in Ubuntu by searching for Advanced
Network Settings. It will list all your network cards and bridges. It
also lists all the WIFI access points.

When setting a network device to static, you only need to set the
address for the selected wireless settings. So, if you have two
wireless networks, v2 and v2-dmz, you can set the v2 wireless as
manual. It will not affect the v2-dmz Wi-Fi.

If you select the network card and change the settings from DHCP
to static (manual), it will affect every time you connect it with a
cable.

Before you can set your network card to static (manual), there are
some settings you need.

The address to use is usually in the range of 192.168.0-255.1-255.
It is important that you use an address that is not already in use. So,
if you set up an IP camera and in that IP camera manual, it is
mentioned that the camera will default to the IP of 192.168.1.50,
then you need to set your IP to 192.168.1.49.

The next setting is the netmask and that tells the network card the
number of IPs that can be used. The default for home is
255.255.255.0 or 24.

The last setting is the router. The router will send all traffic to our
computer that we cannot find in the local range. This will be the IP
of your router or network device connected to the internet.

If you are only setting up two devices, like an IP camera, you can
skip adding a router.



1.

You will still be able to connect to devices that have an IP. So, without a
router, if your camera is at 192.168.1.50 and you have set your computer to
use 192.168.1.49, then you do not need to set a router to connect to the
camera.

Connect to segment VLAN networks
Virtual Local Area Network (VLAN) is a way in the network cable to
divide it into several layers. So, when you connect your computer with a
network cable, you will get a default network.

However, if your switch has VLAN support, you can add multiple layers of
network inside. VLAN is only supported by some switchers, and you need
to have a management interface to configure the switch to set up a VLAN.
You can look in your switch/router manual to learn if you device can handle
VLANs.

This is handy if you have a server which you only want one other computer
to access. Then, you can segment it into its own network segment and only
add that segment to your computer.

In Ubuntu, we can create a new virtual network card connected to that
segment.

Every VLAN has a number, which is the segment. So, before you can
connect your Ubuntu to a VLAN, you first need to know the Local Area
Network (LAN) ID. This is set up in the switch you are connecting to.
Here, we are creating a new virtual interface for interface enp1s0. We give
it the name enp1s0.10 and set it to use VLAN id 10.

We set the base network card that it will be connected to. When the virtual
device is added, you can configure it using DHCP or a static IP as a regular
network card. As shown in the following command:

ip link add link enp1s0 name enp1s0.10 type vlan id 10

Connect to wireless network



1.

2.

Setting up a wireless network card is as easy as using a regular card. We
first need to find the wireless network to connect to and then the correct
authentication for the network.

There are two different wireless networks today, the old 2.4 G and the new
5 G. Today, most of the network Wi-Fi devices can use both, but if you are
using older hardware, you need to verify that your wireless access point is
using the same frequency as your computer. Otherwise, they will not be
able to see the network.

Connecting to a wireless network is easy.

Select the network you want to connect to.

Then you will be asked for a password and asked to fill in the
password for the wireless.

In Ubuntu network settings, you now have the wireless network. Under Wi-
Fi, you can configure it as any other network card. The Wi-Fi network also
has a security tab when connecting to the network.

Today, most wireless networks use one shared password when connecting,
but you can also get access using other methods.

If you are required to use, for example, Wi-Fi Protected Access (WPA)
Enterprise, it is on the security tab. You just need to configure it.

Hide your computer by changing MAC address
Every network device has a hardware address, and it is bound to an IP
address. So, when packages are traveling in the network, in the end, they
end up at the hardware address. Now in Ubuntu and most operating system
(OS), you can change your MAC address to anything, even random. Now
the network traffic will be connected to a MAC, but when you reconnect
and change your MAC address. The network traffic will be connected to the
new MAC address.



1.

1.

2.

3.

1.

Let us install and set up a MAC change that will randomize your MAC
addresses every time your network comes up:

apt-get install macchanger

In the folder /etc/network/if-pre-up.d/, create a file called macchanger
and add the following content:

#!/bin/sh

# Radomize the mac address for the given interface

/usr/bin/macchanger -e “$IFACE”

To make it executable, run the following command:

chmod +x /etc/network/if-pre-up.d/macchanger

Change the $IFACE to match the network card you want to change the
MAC address on. It can be on your Wi-Fi or a cable network card.

Note: This change can also cause problems in the network, so be
ready to disable it at any time.

Secure your connections with VPN service
VPN is a way to connect our local computer to a network securely. If a
company has a server on a local network and the server is not accessible
from the internet, we can use a VPN to create a secure tunnel from your
computer at home into the company network. Then, you will be able to
connect to the servers in the local network.

It is used for developers to connect to databases that you do not want
accessed from the internet.

The two most used VPN tools in Linux are OpenVPN and WireGuard. In
Ubuntu, to set up a VPN client to a server we require the following steps:



1.

2.

3.

1.

1.

2.

Go to the network settings and add a new connection.

Select the VPN you want to add.

To install the package needed for openvpn and wireguard run the
following command:

sudo apt-get install openvpn wireguard

OpenVPN
The given steps can be followed to secure your connection with OpenVPN:

Start by visiting NordVPN and setting up a trial account, or if you
have another OpenVPN service, you can use that.

https://nordvpn.com/risk-free-vpn/

Now, in your Ubuntu, to set up an OpenVPN connection, you need
to open the network settings tab. Then click on the + sign, and then
add a new virtual OpenVPN config as shown in the following
figure:

Figure 4.1: Network settings and create an OpenVpn



3.

4.

5.

1.

Add the settings from NordVPN and test your connection.

Add the settings you have received from NordVPN as shown in the
following figure:

Figure 4.2: Adding a new OpenVPN connection

To verify that the VPN connections are working, browse with a
web browser to the following site:

https://www.whatsmyip.org/

The IP should change when you turn the OpenVPN connection on
and off.

WireGuard
WireGuard is a newer and much faster VPN than OpenVPN. To add a new
WireGuard VPN, we use the same approach as we did with OpenVPN, as
mentioned in the following steps:

Open the network settings for Ubuntu and click the + sign. Then,
add a new Virtual WireGuard configuration.



2.

1.

There are many providers that offer a WireGuard VPN server to
test your VPN. One example is https://sshstores.net/wireguard.

In Chapter 9, Setup Advanced Network, Firewall, and VPN Servers you will
learn how to create both OpenVPN server and WireGuard Server.

Protect your traffic by using DNSS
When you are connected to the internet and visit a page like google.com,
your computer needs to find the IP address of the domain google.com. This
is done using a Domain Name System (DNS) request.

The problem that arises is that DNS requests are done in clear text traffic.
The internet provider or other network devices that are between you and the
DNS will be able to see the traffic.

You can set up your Ubuntu computer to start sending your DNS request to
a DNS server over an encrypted channel.

There are different ways to set up DNS over HTTPS. The first and maybe
the best way is setting up a DNS server in your network. The DNS server
then receives request from the client in the network, then forwards the
request to the public DNS server over HTTPS.

This will protect all the devices in your network.

The other way is to set up your Ubuntu to go directly to the public DNS
server over HTTPS.

This is done by setting up a DNS demon on your Ubuntu computer. Then
your local DNS request will be sent to the local DNS daemon on your
computer, which will send the request. This will protect all DNS requests
from your computer and outgoing as well. Still, access to the external DNS
providers needs to be open. So, if you are at a public Wi-Fi point, this could
stop working.

To install DNSS, run the following command:

sudo apt-get install dnss



1.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

To start DNSS, run the following command:

sudo dnss   --enable_dns_to_https --dns_listen_addr=:5553

Here, we are binding to port 5553 on your local computer. Now, let us test
if it works by running dig and setting the DNS server to our DNS server.

mattias@hrb:~$ dig google.se @127.0.0.1 -p5553

 

; <<>> DiG 9.18.1-1ubuntu1.2-Ubuntu <<>> google.se @127.0.0.
1 -p5553

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4395
3

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDI
TIONAL: 1

 

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;google.se.   IN A

 

;; ANSWER SECTION:

google.se.  300 IN A 142.250.147.94



16.

17.

18.

19.

20.

1.

1.

1.

2.

1.

 

;; Query time: 36 msec

;; SERVER: 127.0.0.1#5553(127.0.0.1) (UDP)

;; WHEN: Wed Jan 18 09:06:04 CET 2023

;; MSG SIZE  rcvd: 63

Now that our DNSS server is working, we can update our network settings
to use it.

Ubuntu starts its own resolver that listens on port 53, and we need to disable
it before we can run our DNSS.

To open the file, run the following command:

sudo vi /etc/systemd/resolved.conf

To uncomment and change the settings:

DNSStubListener=no

Now, we need to reboot your Ubuntu computer.

Once rebooted, we can start our DNSS with the command:

sudo dnss   --enable_dns_to_https

When the dnss server is running, we can tell our system to resolve dns
using it by updating the file /etc/resolve.conf:

nameserver 127.0.0.1

Let us add some configurations so that dnss gets auto-started:

systemctl start dnss



2.

•

•

1.

2.

systemctl enable dnss

Protect your computer by applying a firewall
A firewall on a computer is like a door on a house. It allows traffic to be
accepted only on the ports we configure. This will protect our computer, if
we like, before installing a DNS server. We only want our computer to use
the DNS server, not everyone on the network.

To protect ourselves, we can think of ports as doors. We want to keep the
ports(doors) open for our friends and closed for everybody else.

A good setup could be having two different firewall settings:

One default is when you lock everything out.

And one for when you are more active on the network.

When you connect to a new network, your laptop's default profile should
lock everything so nobody on the network can connect to your computer.
The other profiles are more open and will allow outgoing traffic so that
your computer can connect to network services like file shares and printers.

Let us start with the default to lock your laptop down. To use the firewall
called iptables, we create a file with the iptables command. We then load
the commands and can change the settings when we want.

This configuration will describe some open ports, but you may have other
services. Then, you need to configure the Iptables file to match your
settings.

Run this script to lock down your firewall for your computer. You can save
this script in example .config/fw folder.

The following is the content of the bash file lock-down.sh:

#!/bin/bash

#



3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

#

# This script will lock down the computer

 

echo "Locking down fiewall"

#

#

#Lets flush the rules set so nothing is there

iptables -F

iptables -X

 

# We are settings the defualt rule to deny all request !

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -P FORWARD DROP

 

# Allow local traffick to 127.0.0.1 use

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

 

 



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

#Ping drop

iptables -A INPUT -p icmp -j DROP

 

 

#Allow DNS out

iptables -A OUTPUT -p udp -m udp --dport 53 -j ACCEPT

#Allow http

iptables -A OUTPUT -p tcp -m tcp --dport 80 -j ACCEPT

#Allow https

iptables -A OUTPUT -p tcp -m tcp --dport 443 -j ACCEPT

 

 

#allow related

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j
ACCEPT

 

 

#

# Some server we run on our computer add iptbales rules like
Docker and need to be restarted when script is run

systemctl restart docker



1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

The preceding script will not allow any traffic, except web and DNS traffic,
to go out. If you want to connect to any other service, the script needs to be
updated with more outgoing open ports. For example, if you want to
connect to an SSH server, the following is the content of the bash file lock-
trusted.sh:

#!/bin/bash

#

#

# This script will lock down the computer

 

echo "Locking down fiewall"

#

#

#Lets flush the rules set so nothing is there

iptables -F

iptables -X

 

# We are settings the defualt rule to deny all request !

iptables -P INPUT DROP

iptables -P OUTPUT ACCEPT

iptables -P FORWARD ACCEPT

 



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

# Allow local traffick to 127.0.0.1 use

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

 

 

#Ping drop

iptables -A INPUT -p icmp -j DROP

 

 

#allow related

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j
ACCEPT

 

 

#

# Some server we run on our computer add iptbales rules like
Docker and need to be restarted when script is run

systemctl restart docker

The previously mentioned firewall script will lock down all incoming
traffic. However, it will allow any outgoing traffic. This allows you to find
and connect to services on your local network, like network file shares and
printers.



1.

2.

3.

4.

1.

1.

2.

3.

4.

To activate the firewall, run the command with sudo:

mattias@laptop:~/.config/fw$ sudo ./lock-down.sh

[sudo] password for mattias:

Locking down fiewall

mattias@laptop:~/.config/fw$

Detect and stop computer virus
There are viruses today on all platforms. Additionally, we are integrating
more with different people and OS. This means that Ubuntu can download a
Windows virus, and if we send it along, we can infect others in the chain as
well. To avoid this, using an antivirus is a good practice.

Start by installing ClamAV, the open-source antivirus tool:

https://www.clamav.net/

sudo apt-get install clamav clamtk

With ClamAV, the tool clamscan also comes installed. Clamscan can scan
your folder for any virus. clamscan can be used to quickly scan any folder
or file.

To scan files in your downloaded folder, run clamscan in the Downloads
folder:

mattias@laptop:~$ clamscan Downloads/

/home/mattias/Downloads/818_1_Re-reviewed-1_MH.docx: OK

/home/mattias/Downloads/balenaEtcher-1.13.3-x64.AppImage: O
K

/home/mattias/Downloads/NVIDIA-Linux-x86_64-525.85.05.run:
OK



5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

/home/mattias/Downloads/818_2_Reviewed_mh_1.docx: OK

/home/mattias/Downloads/Invoice.pdf: OK

/home/mattias/Downloads/818_1_Re-reviewed_AS.docx: OK

/home/mattias/Downloads/818_2_Reviewed_AS.docx: OK

/home/mattias/Downloads/818_2_Reviewed_mh.docx: OK

/home/mattias/Downloads/4040_07 (1).pdf: OK

/home/mattias/Downloads/Book Outline_Ubuntu Linux in 30 days.
pdf: OK

/home/mattias/Downloads/The Phoenix Project.epub: OK

/home/mattias/Downloads/rockpi-4b-ubuntu-focal-server-arm64-2
0220401-0346-gpt.img.xz: OK

/home/mattias/Downloads/The Wise Mans Fear.epub: OK

/home/mattias/Downloads/818_1_Re-reviewed (1)_AS.docx: OK

/home/mattias/Downloads/818_1_Re-reviewed_MH.docx: OK

/home/mattias/Downloads/4040_07.pdf: OK

/home/mattias/Downloads/Untitled Diagram.drawio.png: OK

/home/mattias/Downloads/fr24-raspberry-pi-latest.img.zip: OK

/home/mattias/Downloads/818_2_Reviewed_AS_1.docx: OK

/home/mattias/Downloads/.~lock.CGO3control_en.odt#: OK

/home/mattias/Downloads/Untitled Diagram.drawio: OK

/home/mattias/Downloads/The Name of the Wind.epub: OK



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1.

/home/mattias/Downloads/818_1_Reviewed_mh.docx: OK

/home/mattias/Downloads/CGO3control_en.odt: OK

 

----------- SCAN SUMMARY -----------

Known viruses: 8650933

Engine version: 0.103.6

Scanned directories: 1

Scanned files: 24

Infected files: 0

Data scanned: 61.22 MB

Data read: 1454.60 MB (ratio 0.04:1)

Time: 31.187 sec (0 m 31 s)

Start Date: 2023:02:02 16:02:44

End Date:   2023:02:02 16:03:15

Update virus database
For ClamAV to find a new virus, it needs to update the database with all the
different new signatures if it is not updated. Then, if there is a new virus,
ClamAV will not recognize the signature and will not be able to find it.

To update the ClamAV database, run freshclam:

sudo freshclam

ClamAV GUI



When we install ClamAV, we also install a small graphical user interface
(GUI) so that we can easily use and set up ClamAV. Here, you can set up a
scheduler for ClamAV to scan your home folder, regulate, and update the
signature database.

The following figure showcases ClamAV interface to set up and schedule
scans:

Figure 4.3: ClamAV Gui to set up scheduled scans

Conclusion
Through this chapter, you now have a basic knowledge of how the network
in Ubuntu works, and you can connect your Ubuntu Desktop to different
types of networks. We have also learned how to use VLAN and connect



securely to the server using a VPN server. To protect our Ubuntu on the
network, we also looked at generating a random MAC, using DNSS to hide
our DNS traffic, setting up an iptables firewall to protect our own service on
our Ubuntu computer, and installing and setting up Antivirus software.

Now, we are ready to use our Ubuntu computer connected to a network, and
in the next chapter, we will connect our Ubuntu Desktop to the network and
start using VPN.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


•

CHAPTER 5
Preparing Virtualization

Environment

Introduction
Virtualization has changed the way we use computers, both desktop and
server, by making it possible to run many OS on the same host. This helps
in better using the resources on the host computer and distinguishing
between the different OSs that are running. Virtualization is how cloud
providers can use one physical server, and then you can add many virtual
machines on top of that. There are also special OSs only built for
virtualization that are used widely.

In this chapter, we will install KVM and set up and run virtual machines in
KVM. We will then look at connecting our VM to the network and running
common tasks. There are also other virtualization engines, and we will look
at Vagrant, a virtual tool from HashiCorp.

Structure
In this chapter, we will cover the following topics:

Overview of virtualization in Ubuntu



•

•

•

•

•

•

•

•

•

•

KVM virtualization in Ubuntu

Create bridge

Installing our first VM

Settings for your VM

Snapshots

Access to VM

Using hardware devices directly in your VM

Other virtualizations

Build and run a Vagrant box inside KVM

Converting images back and forth

Objectives
By the end of this chapter, we will understand how to set up a basic network
to be used by our VM running on the host. We will also look at KVM, the
default virtualization engine on Linux.

We will also look at some of the other virtualization engines, the use of
Vagrant to share and use VM more flexibly, to move VM between different
virtualization engines, how to migrate images, and how to test different
virtualization engines.

Overview of virtualization in Ubuntu
When running a server or desktop, sometimes you want to run multiple
versions of the same OS. If you work with many clients, you can have one
Ubuntu Desktop for every client or many servers, and can reinstall one
server many times. However, one is more stable. You can also share
computer resources more effectively.

To achieve any of this, virtualization comes in. Virtualization allows you to
install an OS and then install a different OS inside. The OSs share the same



1.

1.

CPU and memory but are isolated and behave as stand-alone servers or
desktops.

This is mostly used when you want to test a server, easily take a snapshot,
and restore a state to test a command. Security is also a big concern when
you want to isolate the different systems from each other. For example, you
have many clients, and you want to have the clients' data separated from
each other. If one virtual desktop gets infected with a virus, you can easily
destroy that virtual machine desktop and create a new virtual machine to
use.

All cloud providers use virtualization as a base for their servers. So, when
you start a server in the AWS cloud server. The server you spin up is a
virtual server.

There are many different vitalizing engines, and we will look at some of
them. They all work the same way.

Your CPU needs to support full virtualization. You can run the following
command to verify and boot your computer into BIOS mode and enable
virtualization there. If your computer does not support virtualization, we
can still run it. However, the performance will be slower.

Command to test if the computer supports virtualization:

mattias@laptop:~$ sudo kvm-ok

KVM virtualization in Ubuntu
KVM is the name of the standard virtualization engine in Ubuntu.

Let us install KVM as follows:

sudo apt install qemu-kvm libvirt-daemon-system libvirt-clients bri
dge-utils virt-manager

Add your username to the group libvirt. This will give you the correct
permission to create and control VMs, as follows:



1.

1.

2.

3.

4.

5.

•

•

sudo adduser ‘username’ libvirt

Before we create our first VM, let us verify if we have hardware support on
our host machine. Run the following command to test what kind of virtual
system your computer supports:

mattias@laptop:~$ sudo apt install cpu-checker

mattias@laptop:~$ sudo kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used

mattias@laptop:~

If the kvm-ok command returns, KVM acceleration can be used, and then
we have support. If the command output says acceleration cannot be used,
we can still install VM, but the performance will be slower.

Now, we have all the tools and programs to start vitalizing, but first, let us
create a bridge network. This makes it easy for us to connect from our host
computer to our VM.

In virtualization, there are different types of networks we can use, as
follows:

NAT network: Here, the host computer acts as a router, and then
your virtual server is located behind a separate subnet. This works
if you want to isolate yourself from the big network, but you want
your host computer to have access.

Bridge mode: Here, we create a bridge on your host computer, and
we then share the bridge with the VM. Then VM will have access
to another computer on your network and will get an IP from your
router as the host machine.



•

1.

1.

MAC Tap: Here, the VM will add a top on your network card and
get an IP from your network, which is the same network as the host
machine. However, you will not be able to communicate with your
host or your VM.

We only need to configure some settings when using bridge mode, and only
if you plan to connect to your VM from both your host computer and other
clients from the local IP.

You can also use a MAC Tap to get an IP from the local network and let
other network clients connect to the VM using the MAC Tap interface.
Then, you can also add a NAT network to your VM and connect to the VM
from your host computer with the NAT IP.

Create bridge
When using a virtual server, you will need some sort of network connection
to the server. There are several ways you can connect your virtual server to
the network. We will set up bridge network access here. You can add using
both the GUI for the network manager and the CLI. Here are the
commands, but you can also open the GUI and see when the settings are
applied.

Bridges can be hard to get to work and may need some more settings to get
started.

Note: Having a bridge is not necessary to get started with VM on
Ubuntu; feel free to skip this step and come back later if needed.

Let us see what network settings we have before we start. Run the
following command to show the current network stats:

nmcli con show

Create a bridge and add our interface to the bridge, as follows:

sudo nmcli con add ifname br0 type bridge con-name br0



2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

sudo nmcli con add type bridge-slave ifname ens3 master br0

sudo nmcli con mod br0 bridge.stp no

sudo nmcli con down ens3

sudo nmcli con up br0

Here, we are attaching the interface ens3, but that may not be the name of
your interface. From the following command, we can see that the interface
enp45s0 is used. Then, replace ens3 with enp45s0.

Run the command ip a as follows:

root@hrb:/# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: enp39s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mt
u 1500 qdisc mq state DOWN group default qlen 1000

link/ether d8:bb:c1:3b:92:3b brd ff:ff:ff:ff:ff:ff

3: enp45s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
1500 qdisc mq state UP group default qlen 1000

link/ether 00:1b:21:ed:02:f4 brd ff:ff:ff:ff:ff:ff



12.

1.

2.

3.

4.

5.

inet 192.168.1.115/24 brd 192.168.1.255 scope global dynamic
noprefixroute enp45s0

Installing our first VM
The following steps can be used to install your first Ubuntu VM:

Go to the download page of Ubuntu, download the Ubuntu
Desktop iso, and store it in your downloads folder.

https://ubuntu.com/download/desktop

Start the KVM tool virtual manager and click the add virtual
machine button. You will then be guided through setting up your
first VM. Fill in your values or leave them as the default until you
see the network settings.

In the network settings, select bridge and add the name of the
bridge we created before as a network device. You can also add the
new network nic and the NAT as a secondary network interface.

Start the VM and follow the guide to install Ubuntu. (We have
walked through the installation of Ubuntu in Chapter 2, Install,
Upgrade, and Configure Ubuntu Desktop)

When the installation is done, boot your VM and log in to it. The
following figure shows the login screen running inside the virtual
machine:



Figure 5.1: Login screen inside KVM virtual machine

Here, we have an Ubuntu VM desktop running inside my Ubuntu Desktop.
With this, we can use the virtual server as a regular app and open and close
it as a regular.

Settings for your VM
When you open the VM in the KVM manager, you can see in the top menu
a blue circle with a small I in it. Clicking this will open the VM's settings
page. Here, you can add new network cards, disks, and more. Some settings
require you to stop and then start your VM, but some can be changed while
the VM is running.



Figure 5.2 shows the settings page with the settings that can be altered.
Here, you can add a disk or more network devices:

Figure 5.2: Shows the settings page of the virtual machine

Snapshots
A snapshot is a point in time in your VM. You can go back to this point if
you need to check something, and can make a new VM from a snapshot.
Now, when we have a clean installation of Ubuntu, this snapshot is a clean
installation of Ubuntu and a great starting point if you would like to start a
new Ubuntu Desktop.



Create a snapshot and call it Stabil.

The following figure shows the snapshot page of the VM with the snapshot
Stabil:

Figure 5.3: Snapshot manager page of the VM

Custom snapshot
With snapshots, we can also create our own custom Ubuntu and then start
up a clean Ubuntu Desktop from there. Let us install some of the tools we
are using for our daily work with Ubuntu. Then, we will create a new
snapshot. We can now clone our new Ubuntu Desktop that already have



some basic tools. This is an easy way to have a pre-ready desktop that you
can use if you want a new, clean Ubuntu or if you are testing new tools and
want to go back if something breaks.

Access to VM
There are several ways to access the VM. Use regular SSH access to have
CLI access to the box. Use the desktop provided by KVM as you see it
booting up, and you can also add desktop sharing tools to share the desktop
using tools like VNC.

The following figure shows an Ubuntu VM that has openssh-server
installed and then ssh access from the host computer into the VM:

Figure 5.4: Access from the host computer to the VM

Using hardware devices directly in your VM
With KVM, we can pass devices directly into our VM. This is used, for
example, when you have a GPU and want access to the GPU inside your
VM. Many of us have Ubuntu as a daily OS; however, we may want to play
video games. Then, you can easily pass your GPU inside your Windows
installation and use it there. You may also have USB devices or another
hardware device that you need access to inside your VM. To set up pass-
throw devices, look in the settings page for the VM.



Other virtualizations
KVM is the default VM engine for Linux, but there are many more. When
you work in an environment with more OS, using a virtualization engine
that works on more OS is a good idea.

Oracle’s virtual box is a good tool and can be used on many different OS. It
works and runs the same as KVM. To download VirtualBox, visit the link as
follows:

https://www.virtualbox.org/

Another VM tool is Vmware Player, which can be found on the link as
follows:

https://www.vmware.com/se/products/workstation-player.html

This is also a good tool and works similarly to VirtualBox.

If you have worked with one of the virtual tools, you will have the basic
knowledge to work with all of them.

Note: If you have KVM running, it already has access to the kernel. If
you try to run any other virtualization engine, you might see errors.

On VirtualBox, we will get the error, VirtualBox can't enable the AMD-V
extension.

Build and run a Vagrant box inside KVM
Vagrant from HashiCorp is a way to make VMs and then upload them to
their cloud storage. Then, others can download and run the VM. This makes
it easy to build and share images with other examples. If you are a
developer and want to share a VM with your colleagues, or you have a test
server. There are also pre-made images for different services like WordPress
and more.

A different VM is called a box in vagrant. So, in this guide, a box and a
VM are the same thing.



1.

Start by visiting the Vagrant homepage and downloading and setting up
Vagrant.

https://www.vagrantup.com/

Run VirtualBox inside KVM
To be able to run tests with Vagrant and VirtualBox, we can install them
inside a KVM host.

Here, we access the VM from the host computer with SSH and desktop;
then, we run cli commands directly into the terminal and look at the
VirtualBox GUI, as shown:

Figure 5.5: KVM running VirtualBox and Vagrant

Follow the guide on the given webpage to install Vagrant on your Ubuntu
Desktop.

https://developer.hashicorp.com/vagrant

Make a folder, and in it, start up a Vagrant box:

mkdir vagrant



2.

3.

4.

5.

1.

2.

3.

cd vagrant

vagrant box add hashicorp/bionic64

vagrant init hashicorp/bionic64

vagrant up

To find different boxes to run, visit:

https://app.vagrantup.com/boxes/search

Converting images back and forth
As discussed in the previous section, there are different tools for running
VM. Each has its own image format. Luckily, we can convert our VM
images between the other tools.

When running a VM, the image is like a hard drive and has all the
information that you have installed. You can easily move the image to a
new computer or virtualization engine. Add the image, give it resources like
CPU and memory, and then boot.

There is an open format for VM images, but not all providers follow the
format.

https://en.wikipedia.org/wiki/Open_Virtualization_Format

Here, files are located on the host computer. By default, KVM images are
located in path /var/liv/libvirt/images.

root@hrb:/var/lib/libvirt/images# ls

ubuntu22.04-2.qcow2  ubuntu22.04.qcow2

root@hrb:/var/lib/libvirt/images#

Let us convert one image to vmdk format:



1.

2.

3.

1.

root@hrb:/var/lib/libvirt/images# qemu-img convert -p -f qcow2 -O
vmdk ubuntu22.04-2.qcow2 ubuntu22.04.vmdk

(100.00/100%)

root@hrb:/var/lib/libvirt/images#

Now, move the images to the qcow format use:

root@hrb:/var/lib/libvirt/images# qemu-img convert -f vmdk -O qc
ow2 image.vmdk image.qcow2

Conclusion
By the end of this chapter, we will have discussed how virtualization can
help you use a computer. In the next chapter, resources are defined more
effectively, both for running servers and desktops. We have also used
virtualization to test other virtualization tools and to migrate images
between them. To connect our VM to the network, we have learned the
difference between MAC Tap, NAT, and bridging network devices.
Additionally, we understood how to install and set up an Ubuntu Desktop
running inside the KVM virtualizing engine, take snapshots, and use them
to create a new VM. We also discussed how to use Vagrant to create and
share VM images with team members and migrate VMs between different
engines.

In the next chapter, we will explore how to run Kubernetes and Docker.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:



https://discord.bpbonline.com

https://discord.bpbonline.com/


CHAPTER 6
Up and Running with

Kubernetes and Docker

Introduction
When you are a developer or work with IT-related tools, you want to have
the tools to help you run your product or other products locally so you can
test them. You may not want to have to install extensive databases or BI
tools locally to use them. This is where containers come in. It is based on
the idea of shipping containers with many small similar containers on a
ship. But the content inside the container can be anything.

This is the same when we talk about containers for computers. Your
computer is the ship, and you can run many containers on it. So, the big
difference between VMs and containers is size and speed. In the VM, we
install the whole OS, and you virtualize the whole computer. So, the VM
shares the CPU and sits beside your computer. Instead, the container shares
some of your computer resources and sits inside your OS; this makes it
smaller.

Although the concept of containers, or lightweight virtualization, has been
around for a long time, it did not start to gain traction in the Linux world
until the early 2000s.



•

•

•

•

•

•

•

•

•

•

Around the same time, a new container technology called Docker was being
developed by Solomon Hykes and his team at dotCloud (now known as
Docker Inc.). Docker was based on Linux container (LXC), but it
introduced a new way of packaging and distributing container images, as
well as a new set of tools and APIs for managing containers. Docker
quickly gained popularity among developers and became the de facto
standard for containerization in the Linux world.

Structure
In this chapter, we will cover the following topics:

Docker and container

Installing Docker

Docker Hub

Start your first Docker

Adding Docker Compose

Connecting service with Docker Compose

Expanding Docker Compose

Connecting two stacks

Local development with Docker

About Kubernetes

Objectives
In this chapter, we will understand how to install Docker on our Ubuntu
Desktop. Start your first Docker image and run a Minecraft server.

We will then put more containers together and set up a WordPress blog and
Metabase BI tool. When we have a working WordPress running, it is time to
move over to Kubernetes. You will learn how to install Kubernetes on your



•

•

•

Ubuntu. Deploy a MySQL server and a WordPress blog and do some basic
commands using kubectl to communicate with your cluster.

We will also understand how to run containers as Docker images and in a
Kubernetes cluster.

Docker and container
Docker is a software platform that allows developers to create, deploy, and
run applications in containers. Container is a reference to container ships,
where you pack your items in a standard format, and that format is
supported by trucks, ships, and planes. The same idea is for software. You
build your software and pack it into containers. Now your software can run
on any platform that supports docker. So, if a Docker runs and works on
one laptop, it should run on Google Cloud or on a regular server if it
supports the Docker format.

Docker and containers consist of several components today, including:

The engine are tools like CRI-O or Docker and the engine will take
the container image and make it to a container running process.

The image from the container start was only called Docker Image,
but now we use Open Container Image (OCI), which aims to
make all the images in a standard way.

Kubernetes uses CRI-O as the default way of running containers.

For example, replace docker with Podman and simply run the same
command in docker but instead use the open-source tool Podman:
https://docs.podman.io/en/latest/

Installing Docker
Installing Docker can be done from the regular source repo of Ubuntu.
However, here we will look at installing it from the guide from the Docker
webpage. We will add a Docker repo to our computer. Then, install the



1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Docker engine and add our user to the Docker groups to have access to run
Docker. Now, we can start our first Docker image.

Setting up Docker repos for Ubuntu
Let us start with installing the dependencies needed for Docker, as shown in
the following code:

sudo apt-get update

sudo apt-get install \

ca-certificates \

curl \

gnupg

We can add the Docker registry public key and repo by running the
following code:

sudo mkdir -m 0755 -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gp
g --dearmor -o /etc/apt/keyrings/docker.gpg

echo \

"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyri
ngs/docker.gpg] https://download.docker.com/linux/ubuntu \

"$(. /etc/os-release && echo "$VERSION_CODENAME")" stabl
e" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

When the repos and key are added, we can update the package cache and
install the Docker engine, as shown in the following command:



1.

2.

1.

1.

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-b
uildx-plugin docker-compose-plugin

Let us add our user to the Docker group so we can run Docker containers
from our own user, as shown in the following command:

sudo usermod -aG docker $USER

You may have to close the terminal or log out and log in so that new group
permission is added.

To verify everything is working, run the following command:

docker run hello-world

Docker Hub
To find Docker images and store them, Docker has a place called Docker
Hub. In the hub, users and companies can upload their Docker images. All
big companies upload their apps as images to the Docker Hub. You can find
core Linux distributions like Ubuntu or open-source apps such as
WordPress or Metabase.

By allowing a user to upload Docker images to the hub, Docker Hub is one
of the default places for companies and opensource companies to share their
apps and services.

There are also more places you, a developer or a software builder, can store
your Docker images. For example, AWS, Google Cloud, and more.

Official images
In the Docker Hub, there are images called official. This means that it is the
same as downloading software directly from the maker. For example,
WordPress is the official Docker repository of WordPress
(mattiashem/WordPress is the author’s version of WordPress).



1.

2.

3.

4.

5.

6.

7.

8.

It is important to know the risk when downloading and running Docker
images.

Start your first Docker
Let us start our first Docker container, and we will be using a Minecraft
server as a test here. When we start our Docker, we need to pass some
settings to it. Passing settings to the container is done using environment
variables. We also need to tell Docker to open a port so that we can connect
to the server.

This command will start our Minecraft server:

docker run -it -e EULA=true   -p --name mc itzg/minecraft-server

 

[13:50:12] [Server thread/INFO]: Done (11.178s)! For help, type
"help"

[13:50:12] [Server thread/INFO]: Starting remote control listener

[13:50:12] [Server thread/INFO]: Thread RCON Listener started

[13:50:12] [Server thread/INFO]: RCON running on 0.0.0.0:25575

 

This shows the server is up and running

To stop the server, press ctr+c.

Expanding our Docker Compose to run services
When we start, the Minecraft server Docker gives us a generated port to use
every time we start. However, we want our Minecraft server to bind to the
ports used by Minecraft and always use the port. When we log in to the



1.

2.

3.

4.

5.

6.

7.

8.

Minecraft server and play, all our world will be saved inside the Docker
container. If we then stop the container, all the world will be lost.

To resolve this issue, let us add some more arguments to our Docker run
command. Now, we are telling Docker to bind to port 25566 to be used for
Minecraft. We will mount the folder minecraft_data into our container at
/data.

You can add and configure the Docker to know all the different values. Go
to the maker of the images page:

https://github.com/itzg/docker-minecraft-
server/blob/master/README.md

Now, let us start Minecraft again with the following settings:

docker run -it -e EULA=true   -v minecraft_data:/data -p 25565:25
565 --name mc itzg/minecraft-server

 

[13:50:12] [Server thread/INFO]: Done (11.178s)! For help, type
"help"

[13:50:12] [Server thread/INFO]: Starting remote control listener

[13:50:12] [Server thread/INFO]: Thread RCON Listener started

[13:50:12] [Server thread/INFO]: RCON running on 0.0.0.0:25575

 

This shows the server is up and running

Adding Docker Compose
The Docker command we use to start our Minecraft server will work if you
have one server and you can remember the settings. We can also add our



1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

settings to a file called docker-compose.yaml and then the tool Docker
Composes to start our Docker.

Create a file called docker-compose.yaml and add the following content to
it:

version: “3”

services:

mc:

   image: itzg/minecraft-server

   ports:

- 25565:25565

   environment:

EULA: "TRUE"

   tty: true

   stdin_open: true

   restart: unless-stopped

   volumes:

# attach a directory relative to the directory containing this
compose file

- ./minecraft-data:/data

 

Now, let us start our Minecraft server with Docker Compose by running the
following command:



1.

2.

3.

1.

2.

3.

docker compose up
Note: Docker Compose was added as a separate project, and then the
command docker-compose  was used to start it. Now, Docker Compose
is added with Docker and used with Docker Compose without the dash.
However, it works the same.

If you want the Minecraft server to run in the background, we can use the
command:

docker compose run

To verify the server is running, run the following command:

docker compose ps

To stop the server, run the following command:

docker compose stop

Connecting service with Docker Compose
Docker Compose is an easy way not only to start one container but also to
put more containers together into a stack. Now, we will start a stack for a
WordPress blog and the Metabase BI tool.

Let us begin by making a WordPress stack start-up.

Create a new folder called WordPress, and in the folder, create the file
docker-compose.yaml.

Add the following content to the file, as shown:

services:

  db:

# We use a mariadb image which supports both amd64 &
arm64 architecture



4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

image: mariadb:10.6.4-focal

# If you really want to use MySQL, uncomment the following
line

#image: mysql:8.0.27

command: '--default-authentication-plugin=mysql_native_pass
word'

volumes:

- db_data:/var/lib/mysql

environment:

- MYSQL_ROOT_PASSWORD=somewordpress

- MYSQL_DATABASE=wordpress

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=wordpress

expose:

- 3306

- 33060

networks:

- local

  wordpress:

image: wordpress:latest

ports:



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

- 80:80

environment:

- WORDPRESS_DB_HOST=db

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=wordpress

- WORDPRESS_DB_NAME=wordpress

networks:

- local

volumes:

  db_data:

networks:

  local:

external: true

In the docker-compose file, you can see that we are setting some values.
When it starts, we set the user and password for our MySQL server. We also
added the same user and password to our WordPress docker. This will first
start the SQL server and create a user for WordPress to use.

Start the stack with docker-compose up to verify that all services start.

Then, verify your installation using your browser and go to the page to
complete it.
Note: You will not need to enter any SQL user or password. If you have
another service running on port 80, you will need to modify the
docker-compose.yaml  file.



1.

2.

3.

4.

Open the following link, it will open and point to your local computer, and
when not setting a port, it will use the following port:
80.http://localhost

Figure 6.1 shows the WordPress installation page when the MySQL setting
is already set:

Figure 6.1: WordPress installation

Expanding Docker Compose
If you already have a WordPress blog and want to move your current one to
it. You want to add a tool to access the MySQL server.

Let us create phpmyadmin and give it access to the MySQL used for
WordPress.

Modify your docker-compose, as shown:

services:

  db:

# We use a mariadb image which supports both amd64 & arm6
4 architecture

image: mariadb:10.6.4-focal



5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

# If you really want to use MySQL, uncomment the following l
ine

#image: mysql:8.0.27

command: '--default-authentication-plugin=mysql_native_pass
word'

volumes:

- db_data:/var/lib/mysql

environment:

- MYSQL_ROOT_PASSWORD=somewordpress

- MYSQL_DATABASE=wordpress

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=wordpress

expose:

- 3306

- 33060

networks:

- local

  wordpress:

image: wordpress:latest

ports:

- 80:80



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

environment:

- WORDPRESS_DB_HOST=db

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=wordpress

- WORDPRESS_DB_NAME=wordpress

networks:

- local

  phpmyadmin:

image: phpmyadmin

ports:

- 8080:80

environment:

- PMA_ARBITRARY=1

- PMA_HOST=db

- PMA_USER=wordpress

- PMA_PASSWORD=wordpress

networks:

- local

volumes:

  db_data:



44.

45.

46.

1.

networks:

  local:

external: true

Start the stack by using, as follows:

docker compose up

You can log in to phpMyAdmin by visiting the page. Figure 6.1 shows
phpmyadmin with access to the MySQL server for WordPress.

The following link will open a web browser on your local computer and use
port :8080:
http://localhost:8080

In the following figure, we see that phpMyAdmin has started and logged in
to the MySQL server:

Figure 6.2: PhpMyAdmin

Connecting two stacks
When you start a docker-compose, Docker creates a separate network for it
so that the container is isolated, with only the service listed in the docker-



1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

compose file. However, sometimes, you want to connect two stacks.

If you develop and have multiple services, they need to talk to each other.

Sometimes, when a developer uses a stack with a core service like a
database, they can have a smaller Docker Compose of only the app they are
working on.

In the following WordPress example, you can see that we use the network
values:

   networks:
- local

 
 
networks:
  local:

external: true

This tells us that we want our stack to run in a shared network setup.

Now, create a new folder called Metabase, and in that folder, create a
docker-compose.yaml file with the following content:

version: '3'
services:
  metabase:

image: metabase/metabase
ports:

- 3000:3000
environment:

MB_DB_TYPE: postgres
MB_DB_DBNAME: metabase
MB_DB_PORT: 5432
MB_DB_USER: metabase
MB_DB_PASS: metabase
MB_DB_HOST: postgres



14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

networks:
- local

  postgres:
image: postgres:latest
environment:

POSTGRES_USER: metabase
POSTGRES_DB: metabase
POSTGRES_PASSWORD: metabase

#command: tail -f /etc/fstab
volumes:

- ./pg:/var/lib/postgresql/data
networks:

- local
networks:
  local:

external: true

We need to keep track of the names of containers in docker-compose that
will be added to the Domain Name Server (DNS) of Docker. So that when
we have more files, we cannot use the same name. For example, we cannot
use DB as the name for the db in both the WordPress and Metabase docker-
compose files.

We also need to keep track of ports. We can only open a port to one service.
In the example, we have used WordPress for port 8080. Then, we cannot
use port 8080 in any of the other services using the same docker network.

Now, let us start Metabase and our WordPress by starting both stacks using
two terminals and docker compose up.

When Metabase is up, you can start the installation guide on Metabase by
visiting http://localhost:3000.

During the Metabase installation, you are asked to add a DB. Choose
MySQL and add the values from our WordPress installation.



1.
2.
3.
4.
5.
6.
7.

1.

Figure 6.3 shows how to add MySQL data to Metabase:

Figure 6.3: Metabase adding data

Local development with Docker
Docker is a tool for developing applications, and there are many different
ways to get started. Here, we will make a new docker-compose with our
code, and then add some simple HTML pages,

Create a new folder, and in that folder, make a docker-compose.yaml
file.Add the following content to that file:

services:  
dev:

image: nginx
volumes:

- ./code:/usr/share/nginx/html
ports:

- 80:80

Now, besides the docker-compose.yaml file creates a folder called code.

In that folder, create a file called index.html. Then, add the following to
that file, as shown:

<html>



2.
3.
4.

1.

<head>docker test</head>
<body><h2>Docker test</h2></body>
</html>

Start the Docker stack with the following docker-compose up:
docker compose up

Visit the page http://localhost to see the content of our index.html file

In our docker-compose file, start an NGINX container and then use a
volume to mount the index.html file into the web folder of the NGINX
server. The NGINX server will then read our index.html file and show the
content. You can now edit the content in index.html and refresh your
browser to see the new content. There is no need to stop and start the docker
container to see the new content. We can develop locally using a docker
container by mounting your code.

About Kubernetes
Kubernetes is a popular open-source container orchestration platform that
automates the deployment, scaling, and management of containerized
applications. It was originally developed by Google and is now maintained
by the Cloud Native Computing Foundation (CNCF).

Today, Kubernetes is becoming the standard way of running applications in
containers. You can get a Kubernetes cluster on almost all cloud providers
today. With Kubernetes, you can easily deploy your applications and then
let Kubernetes take care of scaling and deploying your applications.

Kubernetes also has a power API that can be expanded. So, different
services can add their own endpoint and, in so, add new functions to the
cluster. It can be from adding functions to creating Transport Layer
Security (TLS) certificates to handling incoming and outgoing traffic.

In the Server section, we will go over how you can set up your own
Kubernetes cluster. First, we will start up a small local cluster and test some



1.

2.

1.
2.

1.

2.

3.

1.
2.
3.
4.

applications on it. There are several tools that can help you spin up a local
Kubernetes cluster. We will focus on using a tool called Minkube.

https://minikube.sigs.k8s.io/docs/

Now, follow the guide and start our local minikube cluster as shown:
curl -LO https://storage.googleapis.com/minikube/releases/latest/m
inikube-linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube

This will get the minikube binary and install it into your Ubuntu. When
you start your minikube, choose how you want to run minikube as a
virtual machine or as a docker. Start Minikube as follows:

minikube start <--- default will bring up minikube with docker
minikube start --driver=kvm2  <-- Will start minikube as Virtual
Server

To connect to our Kubernetes cluster, we use a tool called kubectl. Install
kubectl using the following command from the install page
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/, as follows:

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/relea
se/stable.txt)/bin/linux/amd64/kubectl"
curl -LO "https://dl.k8s.io/$(curl -L -s https://dl.k8s.io/release/stabl
e.txt)/bin/linux/amd64/kubectl.sha256"
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

Now, we can run a kubectl command to connect to our minikube cluster
and get all our nodes as shown:

mattias@hrb:~$ kubectl get nodes
NAME       STATUS   ROLES                  AGE    VERSION
minikube   Ready    control-plane,master   3m6s   v1.22.3
mattias@hrb:~$

Deploy app on Kubernetes
Let us deploy the WordPress app that we used in docker-compose into our
Kubernetes cluster. We will create two namespaces and deploy MySQL into



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

one and WordPress into the other. Then, we will open a local port so that we
can access our WordPress.

MySQL
Start by creating a file called mysql.yaml and pass the following content:

mattias@hrb:~/kubernetes$ cat mysql.yaml
apiVersion: v1
kind: Service
metadata:

name: mysql
namespace: mysql
labels:
app: wordpress

spec:
ports:
- port: 3306
selector:
app: mysql

---
apiVersion: apps/v1
kind: Deployment
metadata:

name: mysql
namespace: mysql
labels:
app: mysql

spec:
selector:
matchLabels:

app: mysql
strategy:
type: Recreate



28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

1.
2.

1.
2.

template:
metadata:

labels:
app: mysql

spec:
containers:
- image: mysql:5.7

args: ["--default-authentication-plugin=mysql_native_p
assword"]

name: mysql
env:
- name: MYSQL_ROOT_PASSWORD

value: "myrootpassword"
- name: MYSQL_DATABASE

value: wordpress
- name: MYSQL_USER

value: wordpress
- name: MYSQL_PASSWORD

value: password
ports:
- containerPort: 3306

name: mysql

You can think of the namespace as a separate folder that separates what we
run in Kubernetes. Now, we will create a namespace to hold our
deployments as follows:

mattias@hrb:~/kubernetes$ kubectl create namespace mysql
namespace/mysql created

The namespace is created. Now, we can apply our YAML to Kubernetes, as
shown:

mattias@hrb:~/kubernetes$ kubectl apply -f mysql.yaml
service/mysql created



3.

1.
2.
3.
4.
5.

6.

7.
8.
9.
10.
11.
12.

1.

2.
3.
4.
5.
6.

deployment.apps/mysql created

Let us verify if everything is running by running the following code:
mattias@hrb:~/kubernetes$ kubectl get all -n mysql
NAME     READY   STATUS    RESTARTS   AGE
pod/mysql-5b74979c5d-4b575   1/1     Running   0          4m57s
 
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   POR
T(S)    AGE
service/mysql   ClusterIP   10.105.243.103   <none>        3306/TC
P   4m57s
 
NAME                    READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/mysql   1/1     1            1           4m57s
 
NAME           DESIRED   CURRENT   READY   AGE
replicaset.apps/mysql-5b74979c5d   1         1         1       4m57s

We tell Kubernetes to create a deployment. Then, Kubernetes creates a new
replicaset that holds data on the current deployment. If you update the
deployment, a new replica set will be created, which will create a Pod. The
Pod is for the container that is running. The service is essentially a port that
provides access to the MySQL server.

For more information, we can describe our pod, or any of the other, like
deployment and service.

The following is the description of the MySQL Pod:
mattias@hrb:~/projects/hrb/book/818/6/kubernetes$ kubectl descri
be pod -n mysql
Name:             mysql-5b74979c5d-4b575
Namespace:        mysql
Priority:         0
Service Account:  default
Node:             minikube/192.168.49.2



7.
8.
9.

10.

11.
12.
13.
14.

15.

16.

17.

18.

1.
2.
3.
4.
5.
6.
7.
8.
9.

Start Time:       Mon, 08 May 2023 22:03:13 +0200
Labels:           app=mysql

        pod-template-hash=5b74979c5d
{DATA REMOVED FOR VISIBILITY}

                   node.kubernetes.io/unreachable:NoExecute
op=Exists for 300s
Events:

Type    Reason     Age    From               Message
----    ------     ----   ----               -------
Normal  Scheduled  8m34s  default-scheduler  Successfully ass

igned mysql/mysql-5b74979c5d-4b575 to minikube
Normal  Pulling    8m33s  kubelet            Pulling image "mysql:

5.6"
Normal  Pulled     8m29s  kubelet            Successfully pulled i

mage "mysql:5.6" in 4.49632388s
Normal  Created    8m28s  kubelet            Created container my

sql
Normal  Started    8m28s  kubelet            Started container mys

ql

WordPress
Setting up WordPress is very similar to how we set up MySQL. We create
the namespace and apply the YAML. Provided is the YAML for WordPress
and the commands to apply it, as follows:

mattias@hrb:~/kubernetes$ cat wordpress.yaml
apiVersion: v1
kind: Service
metadata:

name: wordpress
namespace: wordpress
labels:

app: wordpress
spec:



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

ports:
- port: 80

selector:
app: wordpress
tier: frontend

type: LoadBalancer
---
apiVersion: apps/v1
kind: Deployment
metadata:

name: wordpress
namespace: wordpress
labels:

app: wordpress
spec:

selector:
matchLabels:

app: wordpress
tier: frontend

strategy:
type: Recreate

template:
metadata:

labels:
app: wordpress
tier: frontend

spec:
containers:
- image: wordpress:6.2.0-apache

name: wordpress
env:
- name: WORDPRESS_DB_HOST



42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

1.

2.
3.
4.

5.

6.
7.
8.
9.
10.

value: mysql.mysql.svc
- name: WORDPRESS_DB_USER

value: wordpress
- name: WORDPRESS_DB_NAME

value: wordpress
- name: WORDPRESS_DB_PASSWORD

value: password
ports:
- containerPort: 80

name: wordpress
 
mattias@hrb:~/kubernetes$ kubectl create namespace wordpress
namespace/wordpress created
mattias@hrb:~/kubernetes$ kubectl apply -f wordpress.yaml
service/wordpress created
deployment.apps/wordpress created

Let us verify if our WordPress has been deployed and is running, as
follows:

mattias@hrb:~/projects/hrb/book/818/6/kubernetes$ kubectl get all
-n wordpress
NAME        READY   STATUS    RESTARTS   AGE
pod/wordpress-769b78779-lmwrx   1/1     Running   0          4m21s
 
NAME                TYPE           CLUSTER-IP       EXTERNAL-I
P   PORT(S)        AGE
service/wordpress   LoadBalancer   10.104.110.191   <pending
>     80:31352/TCP   4m46s
 
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/wordpress   1/1     1            1           4m21s
 
NAME              DESIRED   CURRENT   READY   AGE



11.

1.

replicaset.apps/wordpress-769b78779   1         1         1       4m21s

Access your service
When we deployed MySQL and WordPress, we deployed two different
services. If you examine the YAML, you should notice the various types of
services we use. In MySQL, we use the type ClusterIP. This will make the
service accessible in the Kubernetes cluster.

For WordPress, we use the type LoadBalancer. This type accepts traffic
from outside the cluster into the cluster, as follows:

minikube service wordpress -n wordpress

The preceding command opens your browser and displays the port for you.
This is a minikube command and will not work on other Kubernetes
clusters.

Figure 6.4 shows the WordPress installation page that opens after running
the minikube command:

Figure 6.4: WordPress installation

Conclusion
In this chapter, we understood how to work with containers and a docker
container and then add more to build a full stack of containers together into



a working application. Then, we covered working on Kubernetes using
minikube, installing Kubernetes on our Ubuntu Desktop, and deploying our
first app, a WordPress blog with MySQL, into our Kubernetes cluster.

Now, we have basic knowledge of how to start and run containers in docker
and into a Kubernetes cluster.

In the next chapter, we will use an Ubuntu Server with no GIU. We will
start by understanding how to install and configure Ubuntu Servers. From
one server to a fleet of servers with standard tools.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


•

•

•

•

•

•

CHAPTER 7
Install Ubuntu Server on Metal,

Cloud, and Network

Introduction
Ubuntu can be installed and run from cloud providers, regular computers,
servers, and small microcomputers like the Raspberry Pi. The installation
approach is different from where you install one server to many, and several
hundreds.

Structure
This chapter will cover the following topics:

Cattle vs. pets

Using SSH to connect to your server

Install Ubuntu Server with USB

Using Ubuntu in VM

Ubuntu Server in Google Cloud and Hetzner

Large Ubuntu installation made easy



Objectives
In this chapter, we will learn how to install an Ubuntu Server, from setting
up a single server, such as a virtual machine or a physical computer.

We will also examine the installation and setup of an Ubuntu Server, both
on Google Cloud and Hetzner, to understand how easily you can set up and
utilize your Ubuntu Server within a cloud provider. We will then move over
to large Ubuntu installations and provision your Ubuntu Server from one to
many using the Ubuntu tool, machine as a service (MAAS).

The new Ubuntu Server provides SSH access, allowing you to start
administering your server. To use SSH safely, we will create secure SSH
keys for use when accessing your Ubuntu Server.

Cattle vs. pets
When we talk about servers, we use the terms cattle and pets and treat them
differently. When you have a server, and you treat it as a pet, you are taking
care of the server for a long time. We log in to the server and upgrade it,
install our software, and perform other tasks. When we use our servers as
cattle, it takes some more time to set the tools up. Then, instead of keeping
our server for a long time, we delete and reinstall the server. We have the
same software running, but instead of logging into our pet server and
upgrading, we destroy our cattle server and reinstall it with the updated
service.

This approach to treating servers is good practice. To ensure servers are
running smoothly in a company for any production purpose, it is
recommended to handle them as cattle. If you have your home server with
your media on it, then you should be treating it with care

In this chapter, we will understand how to treat our servers more like cattle.

Using SSH to connect to your server



•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

When connecting to your server as an administrator, we use SSH. SSH is a
client on your computer that connects to an SSH server on the server. It then
creates a secure tunnel between the client and server and lets you run CLI
commands on the server. This is the default way of administering your
Ubuntu Server. To secure this communication, the default is to use a
username and password to log in.

However, a more secure way is to create an SSH key on the computer
where you work.

This key is made of two parts:

The private part that you do not want to share.

The public part you can share with others.

When we use SSH keys, we install our public key on the server, and then
we connect to the SSH server. You can only let people in if they have the
matching private key.

This has now become the default way of accessing your server in the cloud.

You should always aim to use SSH keys when you can. To generate the
keys and run the following command:

mahe@hrb-demo:~$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/mahe/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/mahe/.ssh/id_rsa
Your public key has been saved in /home/mahe/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:J/cau5OkIIcYMOIYnyYW/5bl3m5S37aFezCIJk5jRik m
ahe@hrb-demo
The key's randomart image is:
+---[RSA 3072]----+
|                 |



13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

1.
2.

|=.               |
|+=o.    .        |
|oo=. E +         |
|.o o..* S + .    |
|  . o+oB B.o o.  |
|    .o*.*oo.o.o. |
|       +.oo= oo. |
|        +.+o.oo  |
+----[SHA256]-----+
mahe@hrb-demo:~$

The command generates both keys for you and to retrieves the public key
for you to run the following command:

mahe@hrb-demo:~$ cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDISm
/S/ztzr2tmNHYjZcmYpCy9jSQyEGuGP7VwQ2f/PAJZxcKRRUhj
DoXt/XqE4gYpgd
PAz7PaaV+zQzTobySit3aaGeAhLa54jhk8D7BevlSNbWwXXlmk
eV5X7UdffoNB0vr
XKriNw1Pcz6P1kUcOXhJkYuztM3IJ4d5WgsvD2JcrdtKUX6ckF
Zp9uR1FR8Jvx3rz
POZznC8lAef0z1c35MdjEN4mMJIXs7LCL1tY9MjDB1lsanirVa
KzvxTAdYqTi4Gn8S
IyAit5QWQjepd7zJcww6dUFqvW+a3++UbKDEDtnBgK9aUgjic
nopjYnyYaWn6hUg
/+ACC/brl6l8pF181TfOn71M68344Wnj7ZNziZ6mHFmBTPoNs3
lkoCzUUAHVpSgx+z
GlqMuneMhvzvL5mhvXJHBjPIs/GWD3jaf6hySHJrRbGshQhM3
0fInpFtxZUEsq1eROQn
AU0Gw9DhaFjIqYuTGsNEmrDT/e+THpRLwJRXQOzMio67+N
K3DhM= mahe@hrb-demo

mahe@hrb-demo:~$

The output is what you want to add to your cloud provider. For example,
GitHub when they ask for an SSH key.



1.
2.

3.

4.

5.
6.

7.

8.

9.
10.
11.

12.

13.

To copy your key to a server and start using the key instead of the
password, run the following command:

mahe@hrb-demo:~$ ssh-copy-id mahe@192.168.122.27
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: “/hom
e/mahe/.ssh/id_rsa.pub”
The authenticity of host ‘192.168.122.27 (192.168.122.27)’ can’t b
e established.
ED25519 key fingerprint is SHA256:xSOoPXxVNmiVS1FHWn0
nWj5kg5VGVUOc/RSLrd5Fw7Q.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprin
t])? Yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key
(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed – if you
are prompted now it is to install the new keys
mahe@192.168.122.27’s password:
Number of key(s) added: 1
Now try logging into the machine, with:   “ssh ‘mahe@192.168.12
2.27’”
and check to make sure that only the key(s) you wanted were adde
d.
mahe@hrb-demo:~$

Now, you can ssh into the server without using your password.

Install Ubuntu Server with USB
We will install our Ubuntu Server in the same way we install our Ubuntu
Desktop. First, download the Ubuntu Server image, and then, by using
balenaEtcher, burn the image to a USB device. You can then start your
computer and choose boot on USB. You will receive a guide similar to the
Ubuntu Desktop and follow the guide until the end.



During the installations, you can choose two different versions of the
Ubuntu Server.

The regular installation is best if you log in and use the server regularly.
The minimal installation is smaller and does not include many programs,
such as office tools. This installation will be apt if you only plan to run an
example Docker on your server. The default is the regular Ubuntu, as shown
in Figure 7.1:

Figure 7.1: Show the different Ubuntu Server versions

During the installation, you also need to set up the disk used for Ubuntu.
When using a server, you may want to set up extra disks and partitions
based on what you will run on the server. However, for us here, we will use
the default disk configurations as shown in Figure 7.2:

Figure 7.2: Ubuntu Server disk setup



During the installation, you want to connect your new server to a network.
The Ubuntu Server now features a graphical user interface (GUI), and we
will manage it using a command line interface (CLI) over SSH. You can
use a regular Ubuntu Desktop as your server, as there are no differences in
core between the Ubuntu Server and the Ubuntu Desktop. So, all packages
can be installed in both.

So, if you only have one computer and want that on all the time, all the
server commands we will run will also work for the Ubuntu Desktop.

During the installation, you are asked to install the OpenSSH server. Select
this option to connect to our new server when installation is completed.
Figure 7.3 shows the screen where OpenSSH is requested to be installed:

Figure 7.3: Select to install the OpenSSH server

Ubuntu Server can also install some pre-installed packages for you, and the
last installation steps show some of the packages you can install.

If you know what you want, you can choose it here. Figure 7.4 shows
which package you can select from:



1.

1.

Figure 7.4: Ubuntu Server package to install

Connect to your Ubuntu Server
Now, it is time to connect from your Ubuntu Desktop or other computer to
your Ubuntu Server. To do that, we are using a tool called SSH and making
a secure connection between your computer and your server. This is also the
standard way to get access to any Ubuntu Server in the cloud.

First, get the IP of your Ubuntu Server. If you have a screen and keyboard
connected to it, you can log in and then type:

ip a

This will show the IP of the Ubuntu Server. Now, from your desktop, run
the following command:

ssh USERNAME@IP

Replace the USERNAME with your username and the IP with the IP of
your server. The first thing that comes back is that you need to approve the
host key. Every SSH server generates a hostkey; before you can connect,
you need to approve it. This will also protect you and will not let you SSH
into a server with the same IP as your home server. The hostkey will differ,
and your SSH client will show an error message.

After entering your password, you should have a CLI connection to your
Ubuntu Server.



Using Ubuntu in VM
Let us install the Ubuntu Server into a VM using the libvirt we used before.
When we have our Ubuntu Server up and running, we can use the tools in
the VM tool. To clone our Ubuntu Server, make more Ubuntu Servers. This
is a great way of setting up new servers easily, and it is the same way many
cloud providers use today. You have one base installation that you keep
updated, and then create a new version from that base image.

Install an Ubuntu Server like we install a Ubuntu Desktop into your VM. In
the following figure, we use KVM, as done before. When we have our
Ubuntu Server running, we can make a clone of the server, as shown:

Figure 7.5: Clone Ubuntu Server

Now, from our newly created clone, we can make a new Ubuntu Server, as
shown in the following figure:



Figure 7.6: Cloned Ubuntu Server

Ubuntu Server in Google Cloud and Hetzner
All cloud providers today offer to run an Ubuntu Server. If you are looking
for a small server, there are producers like Digital Ocean or Linode. There
are enormous cloud providers such as AWS, Google Cloud, and Azure as
well.

A provider also gives you a physical server, but it runs in their datacenter
like Hetzner. They all work the same way. In this chapter, we will explore
setting up an Ubuntu Server in Google Cloud and at Hetzner. You can then
connect to that server over ssh and control your server. This setup we are
doing now is more for simple usage, and if you plan to run some production
load on that server, you need to learn more about the provider and set up the
server in best practice using their guides.

Hetzner cloud and metal provider
In the following figure, we logged in to the Hetzner cloud control and
ordered an Ubuntu Server. As you can see in the figure, there are many
configuration options:



Figure 7.7: Select Linux server Hetzner

You need to add your SSH key to the server to connect to it later. In the
following figure, you can see that we have added my SSH key:



Figure 7.8: Hetzner Linux with SSH key added

When your server has been deployed and is ready, you can see some details
in the web console as graphs and settings, as shown in the following figure:



1.
2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

14.

Figure 7.9: Server settings in Hetzner cloud

In the preceding figure, you can see the external IP of the server and to
login with SSH. You can run the following command from your computer
that has the SSH key we installed:

mattias@hrb:~$ ssh root@37.27.8.127
Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-73-generic x
86_64)
 
 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/advantage
 
  System information as of Wed Jun 14 03:46:18 PM UTC 2023
 
  System load:  0.0                Processes:             92
  Usage of /:   10.0% of 18.45GB   Users logged in:       0
  Memory usage: 7%                 Ipv4 address for eth0: 37.27.8.127
  Swap usage:   0%                 Ipv6 address for eth0: 2a01:4f9:c012:
8b69::1
 



15.
16.
17.
18.
19.
20.
21.
22.
23.

Expanded Security Maintenance for Applications is not enabled.
 
0 updates can be applied immediately.
 
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status
 
 
root@ubuntu-2gb-hel1-1:~#

Creating an Ubuntu Server in Google cloud
In Google Cloud, the setup is similar, but Google Cloud has so many
different services. So, before we can start our Ubuntu Server, we need to go
to Compute Engine then, we can create a new server. We select Ubuntu by
changing the boot disk and then choose the desired Ubuntu version. The
following figure shows a setup of an Ubuntu Server ready to be created:

Figure 7.10: Google Cloud create Ubuntu Server

When our server is created, we can open the settings for the server, and on
the top, there are settings to connect to your server, as shown in the



following figure:

Figure 7.11: Connect to Google Cloud server

When the server has been deployed, you can open an SSH screen in your
browser.
From there, we can add our SSH key to the server, as shown in Figure 7.12:

Figure 7.12: Adding SSH pub key to Google Cloud server

Then, log in from our computer, as shown in Figure 7.13. Notice the
username that we use and then you will find the external IP in the server



list.

Figure 7.13: SSH into the Google Cloud server from a local computer

As you can see, deploying an Ubuntu Server in a cloud provider is easy and
fast. You can, when your Ubuntu Server is running, use SSH to log into the
server and control it in the same way as you would SSH and control your
local server or even your Ubuntu Desktop.

Large Ubuntu installations made easy
To install a larger number of Ubuntu or other Linux servers, you can use
many different tools. One of the tools is called MAAS, and it is from
Ubuntu: (https://maas.io/). MAAS is made so that you can easily install
and set up a large number of servers, such as a data center. However, they
also work well for smaller installations and for keeping good practice in
reinstalling and updating the server regularly.

PXE booting
The installation is done by using the options that the server and regular
computer can boot from the network. When the computer boots, instead of
booting from a local drive, USB, or CD, it asks the network for a boot
image. In your DHCP server, which gives out the DHCP address to the



1.

2.

3.

4.

1.

computer, you can specify which server the clients can get boot images
from. Now, when a server boots, it gets a boot image and starts that image.
It is similar to when we installed Ubuntu Desktop and started the Ubuntu
live image from a USB drive. You had your Ubuntu running, but you had
not installed anything.

Now, when the PXE Ubuntu is started on your server over the network. We
can send it some commands.

Typically, when installing, Ubuntu adds the user's key and sets some
network settings. When the installation is complete, the computer is
restarted. This time, when it tries to pxe boot, our provision tools do not
give the computer any image to boot from. Then, it falls back to boot from
the hard drive we installed Ubuntu on before, and your freshly installed
Ubuntu is started.

Provision VM with MAAS
Let us try installing some VMs using MAAS, as shown in the following
steps:

We will set up an Ubuntu Server and then install MAAS on that
server

When MAAS is installed, we can boot up a new VM and install
Ubuntu on the new server using MAAS

Start by creating a Ubuntu Server in a VM. You can also use this
on a regular computer at home, but it will not work in a cloud
provider.

Log in to your Ubuntu Server using SSH to begin the installation
of MAAS. Use the following command:

sudo snap install –channel=3.3 maas

This command will start installing MAAS into your Ubuntu Server. When
the installation is complete, we can init the MAAS by running the maas init



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.

1.
2.

command with –help and then run the command listed from the help
section, as shown:

root@hrb-demo:/home/mahe# maas init --help
usage: maas init [-h] {region+rack,region,rack} ...
 
Initialise MAAS in the specified run mode.
 
options:
  -h, --help            show this help message and exit
 
run modes:
  {region+rack,region,rack}

region+rack         Both region and rack controllers
region              Region controller only
rack                Rack controller only

 
When installing region or rack+region modes, MAAS needs a
PostgreSQL database to connect to.
 
If you want to set up PostgreSQL for a non-production deployment
on
this machine, and configure it for use with MAAS, you can install
the maas-test-db snap before running 'maas init':
 

sudo snap install maas-test-db
sudo maas init region+rack --database-uri maas-test-db:///

Install the demo database for MAAS by running the following command:
root@hrb-demo:/home/mahe# sudo snap install maas-test-db
maas-test-db (3.3/stable) 14.2-29-g.ed8d7f2 from CanonicalP insta
lled



1.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

1.
2.
3.
4.
5.
6.
7.

8.

Now, init the MAAS against the demo database with the following
command:

root@hrb-demo:/home/mahe# sudo maas init region+rack --
database-uri maas-test-db:///
MAAS URL [default=http://192.168.122.27:5240/MAAS]:
MAAS has been set up.            
 
If you want to configure external authentication or use
MAAS with Canonical RBAC, please run
 
  sudo maas configauth
 
To create admins when not using external authentication, run
 
  sudo maas createadmin
 
To enable TLS for secured communication, please run
 
  sudo maas config-tls enable
 
root@hrb-demo:/home/mahe#

Create our first admin user by running the following command:
root@hrb-demo:/home/mahe# sudo maas createadmin
Username: matte
Password:
Again:
Email: xxxx.xxxxxxx@gmail.com
Import SSH keys [] (lp:user-id or gh:user-id): n
SSH import protocol was not entered.  Using Launchpad protocol
(default).
Unable to import SSH keys. There are no SSH keys for launchpad
user n.



9. root@hrb-demo:/home/mahe#

Now, we can log into our MAAS deployment by browsing to
http://${SERVER_IP}:5240/MAAS.

The first screen is to set up some basic settings for MAAS. You can go
ahead and add your SSH key.

When the setup is complete, you are shown the MAAS home screen. Now it
is time to set up our network for MAAS.

Setting up our network
When running MASS in Kernel-based Virtual Machine (KVM), we want
to set up a network. By default, KVM will have a DHCP server in the range
of 192.168.122.0-255, which we are currently using. However, we want to
create a new network for our new server and make our MAAS server the
default DHCP server here. If you run your MAAS in your own network,
you can disable your current DHCP server and activate the MAAS DHCP
server, or you can configure your current DHCP server to point to your
MAAS.

In your virtual manager, go to the network and create a new network called
provision.

The following figure shows a network with an IP range of 10.33.33.0, and it
has the DHCP server off:



Figure 7.14: KVM new network without provision

Now, we can add this network to our VM host, as shown in the following
figure. First, add a new device, and then save. For the change to take effect,
turn your VM off and then on again.



1.
2.

3.
4.
5.
6.
7.
8.

Figure 7.15: New network device for virtual host

When our server has rebooted, let us give our new network device an IP.
First, get the name of the new IP by listing all the network devices, then,
run the following command.

mahe@hrb-demo:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000



9.
10.

11.
12.
13.
14.

15.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

1.

1.
2.

link/ether 52:54:00:65:75:89 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.27/24 metric 100 brd 192.168.122.255 scope

global dynamic enp1s0
valid_lft 3589sec preferred_lft 3589sec

inet6 fe80::5054:ff:fe65:7589/64 scope link
valid_lft forever preferred_lft forever

3: enp7s0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop s
tate DOWN group default qlen 1000

link/ether 52:54:00:40:b1:16 brd ff:ff:ff:ff:ff:ff

The preceding command shows the name of the new network device is
enp7s0.

We can now open our network config and set the IP off our NIC by running
the following command:

mahe@hrb-demo:~$ cat /etc/netplan/00-installer-config.yaml
# This is the network config written by ‘subiquity’
network:
  ethernets:

enp1s0:
dhcp4: true

enp7s0:
dhcp4: no
addresses: [10.33.33.2/24]

  version: 2
mahe@hrb-demo:~$

This is the netplan config, where the settings for the network card are
added. Now, activate your config with the following command:

mahe@hrb-demo:~$ sudo netplan apply

You can verify it works with the following command:
mahe@hrb-demo:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN group default qlen 1000



3.
4.
5.
6.
7.
8.

9.
10.

11.
12.
13.
14.

15.
16.
17.
18.
19.

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000

link/ether 52:54:00:65:75:89 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.27/24 metric 100 brd 192.168.122.255 scope

global dynamic enp1s0
valid_lft 3599sec preferred_lft 3599sec

inet6 fe80::5054:ff:fe65:7589/64 scope link
valid_lft forever preferred_lft forever

3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000

link/ether 52:54:00:40:b1:16 brd ff:ff:ff:ff:ff:ff
    inet 10.33.33.2/24 brd 10.33.33.255 scope global enp7s0

valid_lft forever preferred_lft forever
inet6 fe80::5054:ff:fe40:b116/64 scope link

valid_lft forever preferred_lft forever

We have created a new virtual network and connected our MAAS server to
the new network. Now, it is time to set up MAAS to start using our
network, so that we can install a server from the network.

Let us start by setting up the network range we want to use in our MAAS.
Go to subnets and select the new subnet for 10.33.33.0 and create a new
dynamic range. The dynamic part is essential, so MAAS can use the IP
address for its DHCP server.

The following figure shows the settings for the range:



Figure 7.16: MAAS Setup IP range in subnets

Now, when we have the range, we can enable the internal MAAS DHCP
server by going to the VLAN untagged and enabling the DHCP server. The
following figure shows the enabled DHCPD server:



Figure 7.17: MAAS VLAN default DHCP settings

PXE installation on our server
To install our server, we first need to create our VM in KVM and set it to
use our newly created KVM network. Then, we need to update the boot
settings so that it will boot from the network. When we have our VM ready,
we can log in to MAAS and register our VM by using the network, MAC.

The following figure shows our VM settings using KVM:



Figure 7.18: KVM network and MAC address marked

With the MAC address from our VM server, we create a new machine and
add our MAC address to our server. Also, notice the power settings. Here,
we set it to manual when we are controlling the power, as shown in the
following figure:

Figure 7.19: MAAS create new machine

Time to boot



Now you can boot your VM and follow the console log. When the
installations are done, the VM will power off, and you will see the status for
the machine changed to Ready. Take a look at the IP, and login into your
new server. The default user can be different, but a good guess to start is
Ubuntu. For more info, visit the MAAS webpage https://maas.io/.

More control
To control the power state, you can connect your MAAS to your KVM host.
Then, MAAS can boot and prevent the server from the MAAS interface.

Conclusion
By the end of this chapter, we will understand how to install Ubuntu Server
from a single server, using a USB drive or in a VM. You have also learned
how to set up an Ubuntu Server in a cloud provider and large deployments
of Ubuntu using the tool MAAS. With this, you now have the knowledge to
plan and act on how and where you want to run your Ubuntu Server.

With this knowledge of how to install your server optimally, we can now
proceed to setting up the server to maximize the benefits of our Ubuntu
Server.

In the next chapter, we will understand how to monitor our Ubuntu Servers
and collect and store logs.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/




•

•

CHAPTER 8
Keeping Check on Your Ubuntu

Server

Introduction
When running your Ubuntu Server, it is essential to keep an eye on what is
going on inside the server. We want to know if we have some issues with
performance, so our memory or CPU goes up way high, monitor network
performance to understand how much traffic our Ubuntu Server uses.

We also want to monitor our logs from our server to know everything is
working as it should. Lastly, we want to look for any security issues. Any
bad logins or processes that run on our server?

In this chapter, we will install different monitoring tools so that you can
take control over a single Ubuntu Server or a farm of Ubuntu Servers.
Monitor them to verify they all work as they should.

Structure
In the following chapter, we will cover the following topics:

Commands for monitoring a Linux server

Monitoring Ubuntu Server using Cockpit



•

•

•

•

Monitoring Ubuntu Server data at scale

Logs command

Collecting and storing logs together

Detecting hacking on your server

Objectives
By the end of this chapter, we will understand how to set up tools to
monitor our server both as a single server and as a cluster. When we
monitor our server, we will learn how to deploy tools that will read and
send server metrics that we can then analyze and look at to verify our server
status.

We will start by monitoring a single server but then move to a larger scale
of deployments to understand how you can monitor many servers.
Additionally, we will also look at collecting the logs from our server and
storing them in a better way to be able to read logs from multiple servers at
one location.

We will also understand how to deploy security tools and monitor server
behavior so that we can detect and act on different security concerns that
will happen.

Lastly, when our tools collect our data, we will set up alarms and notify us
if our tools find any problems in our system.

Commands for monitoring a Linux server
Let us start with the most used command. You can type in your SSH shell
on your server. It will be a good starting point when troubleshooting or
monitoring.

However, we will not discuss the commands in detail.

Top



1.

1.

1.

1.

Top will print out the current state, and you can see the load and what
process is eating the resources. The following is how the command is
written:

top

Netstat
Netstat shows what connections are being used by the bean. There are many
different arguments you can pass to Netstat; the following can be used first:

Netstat -anp

lsof
It shows you what files are used in the system at the moment.

Isof

du
There are times the server runs out of disk. The command to get the size of
the folder and resolve the issue is as follows:

Du-h –max-depth=1

Monitoring Ubuntu Server using Cockpit
Cockpit is a web-based tool that can help you monitor and administrate
your Ubuntu Server from a web page. You can install Cockpit on the server,
and then we can log in and control it from our browser.

Install the cockpit using our CLI, with the following command:

. /etc/os-release
sudo apt install -t ${VERSION_CODENAME}-backports cockpit

Let the installation go, and then you will find the Cockpit WebGUI at the
following website, https://IP:9090.

You can log in with the username on the server. From here, you can now see
metrics and data on how your server will behave. You can also see logs.



1.

Cockpit can also connect to more servers, and you can add them so it can
configure the vm and container instances for you.

For all the settings, visit the Cockpit home page to find out more:

https://cockpit-project.org/

Monitoring Ubuntu Server data at scale
When we have more servers or want more visibility, we can install other
tools that can combine metrics and logs. Now, we will have one or several
Ubuntu Servers and then will all send the metrics and logs into one central
place.

This gives us one single pane where we can monitor our server pool.
Several tools can do this, but we will specifically work on the Grafana
stack.

We will set up a Grafana instance on one of our servers. Then, we will
deploy collector nodes on the server we want to monitor. The collector
nodes will get metrics and logs and send them to our Grafana instance.

From there, we can see all our data, and we can also trigger alarms if
something goes wrong.

Installing Grafana on Ubuntu
Grafana is our tool to search and visualize data. It has a small database for
users and Graf, but the big thing with Grafana is that it can connect to
several different backends and databases, and we can then use Grafana to
visualize our data.

We will start by installing Grafana on our server, and we will move back
out to our other server and install the tools we need to send data to be
shown in Grafana.

The following command is used to install Grafana into our Ubuntu Server:
#Adding grafana key



2.

3.
4.

5.
6.
7.
8.
9.

1.

sudo wget -q -O /usr/share/keyrings/grafana.key http
s://apt.grafana.com/gpg.key
#Adding grafana repos
echo "deb [signed-by=/usr/share/keyrings/grafana.key] https://apt.g
rafana.com stable main" | sudo tee -a /etc/apt/sources.list.d/grafana.
list
#Update our repo to get the grafana packeges
apt update
#Install grafana
apt install grafana
 

When Grafana is installed, we may need to restart it by using the following
command:

systemctl restart grafana-server

Now you can login into Grafana by visiting http://IP:3000 and use the
username admin and password admin.

The first thing you need to do is change your password.

Visualizing your metrics with Grafana
Grafana is a tool to show data from several databases, and for us to display
our metrics from our Ubuntu Server. We need a database to store the
server's data in.

There are several to pick from, and it can be good to look around and find
the database for your needs.

For us now, we will use Prometheus for storing our metrics.

Prometheus has no Ubuntu package, so we need to take some steps before
we can start it.

Note: Remember the scripts are located in this book's Git Repo.



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.

1.
2.
3.
4.

Another good idea is to install Prometheus with Docker, which is covered
in Docker on the server section in this book.

Let us get started installing Prometheus by running the following code:
#Adding user and group
sudo groupadd --system prometheus
sudo useradd -s /sbin/nologin --system -g prometheus prometheus
#Making folders
sudo mkdir /var/lib/prometheus
sudo mkdir /etc/prometheus/
sudo mkdir /etc/prometheus/rules
sudo mkdir /etc/prometheus/rules.d
sudo mkdir /etc/prometheus/files_sd
#Now lets download and install prometheus
cd /tmp
curl -s https://api.github.com/repos/prometheus/prometheus/release
s/latest | grep browser_download_url | grep linux-amd64 | cut -d '"'
-f 4 | wget -qi -
tar xvf prometheus*.tar.gz
cd prometheus*/
sudo mv prometheus promtool /usr/local/bin/
sudo mv prometheus.yml /etc/prometheus/prometheus.yml
sudo mv consoles/ console_libraries/ /etc/prometheus/

We now installed the default config and moved the correct binaries to the
right location. Now, we want to make a start file so that when Ubuntu starts,
Prometheus also starts. We also need to control it using our systemd tool.

For that, we create a Prometheus file and add it to the systemd folder,
shown as follows:

sudo tee /etc/systemd/system/prometheus.service<<EOF
[Unit]
Description=Prometheus
Documentation=https://prometheus.io/docs/introduction/overview/



5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

1.
2.

3.

4.
5.
6.

Wants=network-online.target
After=network-online.target
 
[Service]
Type=simple
User=prometheus
Group=prometheus
ExecReload=/bin/kill -HUP \$MAINPID
ExecStart=/usr/local/bin/prometheus \
  --config.file=/etc/prometheus/prometheus.yml \
  --storage.tsdb.path=/var/lib/prometheus \
  --web.console.templates=/etc/prometheus/consoles \
  --web.console.libraries=/etc/prometheus/console_libraries \
  --web.listen-address=0.0.0.0:9090 \
  --web.external-url=
 
SyslogIdentifier=prometheus
Restart=always
 
[Install]
WantedBy=multi-user.target
EOF

Let us activate our startup file and set some permission, and then we are
ready to start Prometheus, shown as follows:

#Set some permissions
for i in rules rules.d files_sd; do sudo chown -R prometheus:prome
theus /etc/prometheus/${i}; done
for i in rules rules.d files_sd; do sudo chmod -R 775 /etc/promethe
us/${i}; done
sudo chown -R prometheus:prometheus /var/lib/prometheus/
#Enable prometeus
sudo systemctl daemon-reload



7.
8.

1.
2.

sudo systemctl start prometheus
sudo systemctl enable prometheus

Note: Prometheus Lissen on port 9090, that are the same port as the
Cockpit that we installed before, are listed. If you have them on
separate servers, then its ok else we need to turn Cockpit off.

You can disable cockpit with the following command:
systemctl stop cockpit.socket
systemctl disable cockpit.socket

Now, you can browse to Prometheus using your browser by visiting the
following:

http://IP:9090.

Pushing data vs. pulling data
When we have our time series database (Prometheus) running, we need to
add data to it. To add data, there are two different ways. One way is that the
client pushes data into the database. This is an example of the default way
when sending logs or metrics from one server to another. It is also easy if
the client's example is behind a gateway. Then, you only need to open
traffic out, and the client can send data.

The other way is that you have clients with an endpoint showing data. Your
database goes to the clients, scrapes that client data, and then adds them into
it. This is how Prometheus works.

You can setup Prometheus to collect and then send data also but that's
outside our setup.

Installing Node Exporter to export server data
Node Exporter is a tool from the same company as Prometheus, and the
installation is the same as with Prometheus. Node Exporter will then



1.
2.

3.
4.
5.
6.
7.
8.
9.
10.

1.

1.

2.

1.
2.
3.
4.
5.
6.

connect to the Linux system and export metrics on an endpoint. We will,
then, set up Prometheus to scrape the Node Exporter on a regular basis.

The installations are done in a similar way to Prometheus. During the
capture on containers, you will learn how to install node exporter with the
container. Now, let us install using this way

Go to your /tmp folder and download Node Exporter. We will then unpack
it and move it to the right places, shown as follows:

#Download and unpack nodeexporter
https://github.com/prometheus/node_exporter/releases/download/v
1.6.0/node_exporter-1.6.0.linux-amd64.tar.gz
tar zxvf node_exporter-1.6.0.linux-amd64.tar.gz
 
#Copy the nodeexporter to bin
cd node_exporter-1.6.0.linux-amd64
sudo cp node_exporter /usr/local/bin
#Create a user and set permissions
sudo useradd --no-create-home --shell /bin/false node_exporter
sudo chown node_exporter:node_exporter /usr/local/bin/node_exp
orter

When we have the bin in the right place and have set up the user, we can
make our startup script and enable it by following the given steps:

Create a systemd service file by running the following command:

sudo nano /etc/systemd/system/node_exporter.service

Now, add the following content to the file, shown as follows:

[Unit]
Description=Node Exporter
Wants=network-online.target
After=network-online.target
 
[Service]



7.
8.
9.
10.
11.
12.
13.

3.

1.
2.
3.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

User=node_exporter
Group=node_exporter
Type=simple
ExecStart=/usr/local/bin/node_exporter
 
[Install]
WantedBy=multi-user.target

Now, we can enable the service and start it by running the
following command:

systemctl daemon-reload
systemctl start node_exporter
systemctl enable node_exporter

Now, when we have it tested, we can verify that we have some
values. As we were using a pull service here, we can use curl to
fetch data from the Node Exporter, shown as follows:

root@g1:/# curl -v http://127.0.0.1:9100/metrics
*   Trying 127.0.0.1:9100...
* Connected to 127.0.0.1 (127.0.0.1) port 9100 (#0)
> GET /metrics HTTP/1.1
> Host: 127.0.0.1:9100
> User-Agent: curl/7.81.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Type: text/plain; version=0.0.4; charset=utf-8
< Date: Wed, 28 Jun 2023 20:16:15 GMT
< Transfer-Encoding: chunked
<
# HELP go_gc_duration_seconds A summary of the pause dura
tion of garbage collection cycles.



16.
17.
18.
19.
20.
21.
22.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
go_gc_duration_seconds_sum 0

It will print a lot more data from your server.

Combining tools to visualize the data
Now, we have the tools we need, and Grafana will show the graphs.
Prometheus will collect and store our metrics. We have Node Exporter that
will find and expose our metrics. Now, we need to connect them all. Let us
start getting Prometheus to get data from our Node Exporter.

Open the Prometheus config file and add a scraper for our new Node
Exporter, as shown in the following code:

root@g1:/# vi /etc/prometheus/prometheus.yml
 
  - job_name: "g1"

# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
  - targets: ["localhost:9100"]

 
root@g1:/# systemctl restart prometheus
 

Here, we tell Prometheus to add a new job getting data from a target. We set
the target to localhost:9100. Here, we will be running a known Node
Exporter on the same host as
Prometheus. If you have installed the Node Exporter on another host, then
update it to match the node.



When the installation is done, you can reload Prometheus, and go to the
Prometheus webpage to verify the targets are connected by going to the
following web page:

http://IP:9090/targets?search=

Now, we can connect our Grafana to our Prometheus and get the metrics.
Let us login into Grafana and add a new data source. Choose Prometheus as
kind and save as shown in following figure:

Figure 8.1: Grafana data source Prometheus

Grafana will test the connection and then save the data source. We have
now connected our tree components.

Grafana dashboards
Grafana has an online service where you can upload your own set of
dashboards and also download others.



For the most common tools, like the Node Exporter, there are premade
dashboards.

So, in our Grafana, we will now set up the premade dashboard for Node
Exporter and use the data source of Prometheus.

To do so, go to and import dashboards we can now past the id if 1860 found
from https://grafana.com/grafana/dashboards/.

Now, Grafana will download the dashboard and set all up for you.

When the dashboard is downloaded, you will see graphs showing up at
once, as shown in the following figure:

Figure 8.2: Grafana host metrics

Logs command
Logs are a critical part of finding errors on your server. You can find and
look at logs on your Ubuntu Server by looking and searching for errors in
log files on the journal.

Log files on Ubuntu are stored in /var/log folder. If you, for example, are
setting up a web server that will have a lot of traffic and you want to save
all the access logs.



1.
2.

3.

4.

During the installation giving the path /var/log its disk can be a good
choice.

You can run the following command to search in the log files:

tail -f /var/log/syslog

This will follow and file and print all the events from the file

If you combined the tail command with a grep you can also get all the
errors, as shown in the following command:

tail -f /var/log/syslog | grep “error”

Collecting and storing logs together
When you take a look at logs, you would want all logs in one place to easily
place them. There are many tools that can help you set up logs in this way.

Loki is one tool that can be used, together with Grafana, to see logs and
metrics on Grafana. The setup is similar but uses other components.
Elasticsearch and Kibana is another tool set that can be used.

For this, we will show how to set up Filebeat, Elasticsearch, and Kibana.

Let us add the repos from Elasticsearch and install the tools. Then, run the
following commands:

sudo apt-get install apt-transport-https
wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sud
o gpg --dearmor -o /usr/share/keyrings/elasticsearch-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/elasticsearch-keyring.gp
g] https://artifacts.elastic.co/packages/8.x/apt stable main" | sudo te
e /etc/apt/sources.list.d/elastic-8.x.list
sudo apt-get update && sudo apt-get install elasticsearch kibana fil
ebeat

This will install the tools we need. When the installation is done, we can
connect the tool as we did before. However, here we are using a push
service, and we will start by pushing logs and metrics to Elasticsearch from
Filebeat. Then, connect Kibana to visualize the data for us.



1.

1.

1.

2.

1.
2.

3.

1.

4.

1.

5.

Let us start setup Elasticsearch and Kibana before we start sending logs.

Now, let us update the elastic password using the following command:
/usr/share/elasticsearch/bin/elasticsearch-reset-password -u elastic

Then, we can visit the elasticsearch page at https://IP:9200.

You will only see a JSON output. Let us start Kibana, and to connect
Kibana with Elasticsearch, we need to make some changes. First, let us set
Kibana to listen on all interfaces so we can connect from our laptop to our
server by following the given steps:

Open the file by running the following command:

vi /etc/kibana/kibana.yml

Now, set server to the IP of your server and the path to
elasticsearch.
The server host is such that kibana starts to listen on all IP and not
only localhost. This is so that you can connect from any host to
your kibana by changing the following values in the config file:

server.host: 192.168.1.11
elasticsearch.hosts: ['https://10.0.0.3:9200']

Then, restart kibana. Get the token from elasticsearch and paste it
into kibana, shown as follows:

/usr/share/elasticsearch/bin/elasticsearch-create-enrollment-tok
en -s kibana

Now, kibana wants to add a auth number and you can add that into
your kibana to verify we have access to our kibana server, shown
as follows:

/usr/share/kibana/bin/kibana-verification-code

When Kibana gets the verification number, it will restart, and you
will get to a login page. Now, login with your elastic server we
reset the password for earlier.



1.
-
2.
3.
4.
-
5.
6.
7.
8.
9.
10.
-
11.
12.
-
13.

You should now have access and can look around in kibana when it is
connected to Elasticsearch. However, we do not have any data in there now,
so let us add our Filebeat to read the logs from our server and send them to
Elasticsearch.

When Filebeat sends logs to Elasticsearch, it sends the logs over TLS.
However, here we do not have a valid certificate. So, before we can start,
we need to setup Filebeat to use our Elasticsearch certificate.

We will set Filebeat to listen for syslog server on UDP and TCP port. We
will use this later to connect other appliances, like a firewall or switch to
sending logs into our Filebeat. Then, the logs will be transferred to
Elasticsearch.

We also set up filebeat to get all the logs from our journal in Ubuntu. This
will pick up any logs and send them on to Elasticsearch.

The following code snippet is how our filebeat input looks like:
filebeat.inputs:
type: syslog
format: rfc3164
protocol.udp:
host: "192.168.1.11:514"
type: syslog
format: rfc3164
protocol.tcp:
host: "192.168.1.11:514"
# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.
type: journald
id: journal
# filestream is an input for collecting log messages from files.
type: filestream
# Unique ID among all inputs, an ID is required.



14.
15.
16.
17.
18.
-
19.

1.
2.
3.
4.
5.
6.

7.
8.
9.
10.

1.

1.

1.

id: logfiles
# Change to true to enable this input configuration.
enabled: false
# Paths that should be crawled and fetched. Glob based paths.
paths:
/var/log/*.log
#- c:\programdata\elasticsearch\logs\*

Note: The https  and the ssl cert. As you see we are using the elastic
user, which is not the most secure.

We now need an output that sends data to our elasticsearch, shown as
follows:

output.elasticsearch:
# Array of hosts to connect to.
hosts: ["192.168.1.11:9200"]
# Protocol - either `http` (default) or `https`.
protocol: "https"
# Authentication credentials - either API key or username/passwor
d.
#api_key: "id:api_key"
username: "elastic"
password: "uJg_KlBcreLc_vP-"
ssl.certificate_authorities: ["/etc/elasticsearch/certs/http_ca.crt"]

Let us start our filebeat. The first step is to setup Elasticsearch by running
the following command:

filebeat setup -e

Then, we can verify our filebeat is working by running the following
command:

filebeat setup -e

When everything looks good, and filebeat does not crash we can start it
with the following command:

systemctl restart filebeat.



Now, filebeat is sending logs into our elasticsearch, before we can see the
logos, we need to set up a kibana view. In kibana, go to Stack
Management | Data View, and create a new view, as shown in the
following figure:

Figure 8.3: Kibana data view for filebeat index

Now, when we have an index, we can see and search in our logs in the
following figure. We have searched for error in my stack, as follows:



Figure 8.4: Show Kibana search for error

Detecting hacking on your server
Securing your Ubuntu Server is important. We want to detect if someone is
trying to ssh into our server or if some unexpected programs start to run. To
do this, we will use different tools. The first is the ssh brute tool (fail2ban).
It will detect if there are many fault logins on ssh and then take actions like
blocking the source IP of the attacker.

We will then move on to a more advanced tool called Host Intrusion
Detecting System (HIDS) called OSSEC. OSSEC is both a server and a
client. The clients report to the server, which can then take actions. You can
build custom responses to actions. We will also pass all the logs from our
OSSEC server to our Elasticsearch.

Fail2Ban
We can install fail2ban using our package manager, as shown in the
following command:



1.

1.
2.

3.
4.

5.

1.

1.

1.
2.
3.

4.

5.

6.

7.

8.

apt install fail2ban

Then, enable and start fail2ban by following the given code snippets:
root@g1:/etc/fail2ban# systemctl enable fail2ban
Synchronizing state of fail2ban.service with SysV service script wi
th /lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable fail2ban
Created symlink /etc/systemd/system/multi-user.target.wants/fail2b
an.service → /lib/systemd/system/fail2ban.service.
root@g1:/etc/fail2ban# systemctl start fail2ban

Let us now configure fail2ban. First, copy the fail jail.conf to jail.local,
shown as follows:

cp jail.conf jail.local

Now, we can set our fail2ban to use systemd to open the file jail.local and
edit the backend, shown as follows:

backend = system

Then, we can restart fail2ban and tail the logs, shown as follows:
root@g1:/etc/fail2ban# systemctl restart fail2ban
root@g1:/etc/fail2ban# tail -f /var/log/fail2ban.log
2023-08-14 13:19:49,374 fail2ban.jail [282357]: INF
O    Creating new jail 'sshd'
2023-08-14 13:19:49,393 fail2ban.jail [282357]: INF
O    Jail 'sshd' uses systemd {}
2023-08-14 13:19:49,394 fail2ban.jail [282357]: INF
O    Initiated 'systemd' backend
2023-08-14 13:19:49,396 fail2ban.filter [282357]: INF
O      maxLines: 1
2023-08-14 13:19:49,426 fail2ban.filtersystemd  [282357]: INFO   
[sshd] Added journal match for: '_SYSTEMD_UNIT=sshd.service
+ _COMM=sshd'
2023-08-14 13:19:49,426 fail2ban.filter [282357]: INF
O      maxRetry: 5



9.

10.

11.

12.

2023-08-14 13:19:49,426 fail2ban.filter [282357]: INF
O      findtime: 600
2023-08-14 13:19:49,426 fail2ban.actions [282357]: IN
FO      banTime: 600
2023-08-14 13:19:49,426 fail2ban.filter [282357]: INF
O      encoding: UTF-8
2023-08-14 13:19:49,430 fail2ban.jail [282357]: INF
O    Jail 'sshd' started

Now, from a client, do not use a computer that needs access to the server to
log in using the wrong password. When trying to log in after entering the
wrong password, your IP will be blocked for a time.

It is good practice to test fail2ban to verify its working as follows:

Figure 8.5: fail2ban detect fail to login and blocks ip

Setting up a HIDS
OSSEC is a HIDS that will keep your Ubuntu Server secure. It is based on a
server and clients. The client reports data to the server, which then can take
action. Here, we will install both the client and the server on the same
server. However, if you have more servers, you can install one server and
then add only the client part to your other server. We will then send the
OSSEC logs to our Elasticsearch using Filebeat to visualize them. If you are
running many servers, it also may be good to look at the tool Wazuh
(https://wazuh.com/).



1.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

When we install OSSEC using apt-get, we cannot have both the server and
the client running at the same time.

To resolve this and have both the client and server on the same, we will
download and set up an OSSEC manual, as shown in the following code
snippet:

Note: Observe how we select Local  as the installation type. This will
set up both the server and agent for me.

apt-get install build-essential make zlib1g-dev libpcre2-dev libeven
t-dev libssl-dev libsystemd-dev # we need some deps on our server
so we can build ossec
cd /opt
mkdir ossec
cd ossec
wget https://github.com/ossec/ossec-hids/archive/3.7.0.tar.gz
tar -zxvf 3.7.0.tar.gz
cd ossec-hids-3.7.0/
./install.sh
OSSEC HIDS v3.7.0 Installation Script - http://www.ossec.net
 
You are about to start the installation process of the OSSEC HIDS.
You must have a C compiler pre-installed in your system.
 
  - System: Linux g1 5.15.0-78-generic
  - User: root
  - Host: g1
 
 
  -- Press ENTER to continue or Ctrl-C to abort. --
 
 



22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

1- What kind of installation do you want (server, agent, local, hybri
d or help)? local
 
  - Local installation chosen.
 
2- Setting up the installation environment.
 
- Choose where to install the OSSEC HIDS [/var/ossec]:
 

- Installation will be made at  /var/ossec .
 
3- Configuring the OSSEC HIDS.
 
  3.1- Do you want e-mail notification? (y/n) [y]:

- What's your e-mail address? matte.hemmingsson@gmail.com
 

- We found your SMTP server as: alt1.gmail-smtp-in.l.google.c
om.

- Do you want to use it? (y/n) [y]:
 

--- Using SMTP server:  alt1.gmail-smtp-in.l.google.com.
 
  3.2- Do you want to run the integrity check daemon? (y/n) [y]:
 

- Running syscheck (integrity check daemon).
 
  3.3- Do you want to run the rootkit detection engine? (y/n) [y]:
 

- Running rootcheck (rootkit detection).
 
  3.4- Active response allows you to execute a specific

command based on the events received. For example,



52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

you can block an IP address or disable access for
a specific user.  
More information at:
http://www.ossec.net/docs/docs/manual/ar/index.html

- Do you want to enable active response? (y/n) [y]:
 

- Active response enabled.

- By default, we can enable the host-deny and the
firewall-drop responses. The first one will add
a host to the /etc/hosts.deny and the second one
will block the host on iptables (if linux) or on
ipfilter (if Solaris, FreeBSD or NetBSD).
- They can be used to stop SSHD brute force scans,
portscans and some other forms of attacks. You can
also add them to block on snort events, for example.

 
- Do you want to enable the firewall-drop response? (y/n) [y]:

 
- firewall-drop enabled (local) for levels >= 6

 
-
  - 127.0.0.53

 
- Do you want to add more IPs to the white list? (y/n)? [n]:

 
  3.6- Setting the configuration to analyze the following logs:

-- /var/log/dpkg.log
-- /var/log/nginx/access.log (apache log)
-- /var/log/nginx/error.log (apache log)

 



84.
85.
86.
87.
88.
89.
90.

1.

2.
3.
4.
5.
6.
7.

1.
2.

3.

4.
5.
6.
7.
8.

- If you want to monitor any other file, just change
the ossec.conf and add a new localfile entry.
Any questions about the configuration can be answered
by visiting us online at http://www.ossec.net .

--- Press ENTER to continue ---

If you only plan to run the agent or the server, you can install OSSEC using
apt, shown as follows:

wget -q -O - https://updates.atomicorp.com/installers/atomic | sudo
bash
# Update apt data
sudo apt-get update
# Server
sudo apt-get install ossec-hids-server
# Use this if you only want to have the agent Agent
#sudo apt-get install ossec-hids-agent

OSSEC comes with its own command that you can control OSSEC. In the
folder /var/ossec/bin you can find them.

Now, we restart our OSSEC server using the following command in the
OSSEC bin folder:

root@g1:/var/ossec/bin# ./ossec-control restart
Deleting PID file '/var/ossec/var/run/ossec-syscheckd-1504.pid' not
used...
Deleting PID file '/var/ossec/var/run/ossec-analysisd-1413.pid' not
used...
Killing ossec-monitord ..
Killing ossec-logcollector ..
ossec-remoted not running ..
ossec-syscheckd not running ..
ossec-analysisd not running ..



9.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

1.
2.
3.
4.
5.

ossec-maild not running ..
Killing ossec-execd ..
OSSEC HIDS v3.7.0 Stopped
Starting OSSEC HIDS v3.7.0...
2023/08/16 11:50:29 ossec-maild: INFO: E-Mail notification disab
led. Clean Exit.
Started ossec-maild...
Started ossec-execd...
Started ossec-analysisd...
Started ossec-logcollector...
Started ossec-remoted...
Started ossec-syscheckd...
Started ossec-monitord...
Completed.
root@g1:/var/ossec/bin#

To list all connected agents, run the following command:
root@g1:/var/ossec/bin# ./agent_control -l
OSSEC HIDS agent_control. List of available agents:

ID: 000, Name: g1 (server), IP: 127.0.0.1, Active/Local
List of agentless devices:
root@g1:/var/ossec/bin#

As shown in the preceding command, the local agents are connected.

OSSEC logs its action into two logs, the ossec.log, and then if it does an
active response in the active-response.log. Both these logs are located in the
/var/ossec/logs folder. All alerts are logged to the alerts.log file in
/var/ossec/logs/alerts.

Sending OSSEC logs with Filebeat to
Elasticsearch
To detect and monitor our OSSEC, we can set up a Filebeat to read logs
from our OSSEC server and send them to our Elasticsearch.



1.
2.
3.

1.
2.
3.
4.
5.

First, let us set our OSSEC server to log into JSON format by adding the
following in the command:

<global>
  <jsonout_output>yes</jsonout_output>
</global>

In our /var/ossec/etc/ossec.conf, restart the OSSEC server to activate.

Then, edit our Filebeat config file and add using the following command:
- input_type: log
  paths:

- /var/ossec/logs/alerts/alerts.json
  json.keys_under_root: true
  fields: {log_type: osseclogs}

Then, restart your Filebeat.

Now, we need to watch the file to see if any alerts will come up. Then, we
can find them in our Elasticsearch.

Search for ossec in your Kibana to find the logs.

Conclusion
In this chapter, we understood how to monitor and secure one or many
Ubuntu Servers.

We have set up tools to send metrics from our server to a central place
where we can visualize and add alerts. We have also set up to collect logs
from our server and store them in a time-series database so that we can see
logs from all our servers in a timely order.

When we monitor, we want to have all the data in one place to track and
monitor movements between servers or services. Monitoring for security is
also important, and we have, during this chapter, set up tools that not only
will alert us when it detects bad behavior but also fight back the attacker.



We now have a good base to stand on to monitor our Ubuntu Server going
forward.

In the next chapter, we will work with the Ubuntu firewall and network. We
will set up our Ubuntu Server as a router and use services like DHCP and
DNS. We will also look at setting up our own VPN servers so that we can
connect from our Ubuntu Desktop to our server and local network from the
Internet.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


•

•

•

CHAPTER 9
Setup Advanced Network,

Firewall, and VPN Servers

Introduction
Ubuntu Server can be used as a regular firewall. Additionally, in some
cases, it performs better than any shell firewall.

In this chapter, we will use Ubuntu as the primary firewall to control what
traffic can come in and out of the network. We will set up our own DHCP
server and control what IP addresses clients will get and where they will go
to get out on the internet. With a DNS server, we will set up and point
domain names to the IP we want. Ubuntu also has the tools to set up secure
tunnels between servers and clients to create a private network over the
internet.

Structure
In this chapter, we will cover the following topics:

Using Ubuntu as the main firewall

Network clients with DHCP and DNS

Securing communications



•

1.

2.
3.

4.
5.
6.

VPN troubleshooting

Objectives
In this chapter, we will learn how to configure our Ubuntu Server as a
firewall and control the traffic that can enter and exit our network. We will
set up basic network tools, such as DHCP and DNS, to create a complete
network that clients can use on both servers and desktops. We will also
learn how to set up secure tunnels between our server and clients, creating
our own private network.

Using Ubuntu as the main firewall
During the ten years of working at Fareoffice, we used a Linux firewall
with iptables as our primary firewall for all traffic to our high-load sites.
This would give us the ability to run a simple server with Linux to control
our network, and when we needed any more tools and services, we could
easily integrate them into our Linux server.

Now, let us set up our Ubuntu Server to have a public IP and then route
traffic to our private network.

For this, we need two network devices, one for our external traffic and one
for our private network.

On our server, we have one NIC connected using the IP 192.168.122.27, as
shown by running the command IP, as follows:

2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000

link/ether 52:54:00:65:75:89 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.27/24 metric 100 brd 192.168.122.255 scope

global dynamic enp1s0
valid_lft 3291sec preferred_lft 3291sec

inet6 fe80::5054:ff:fe65:7589/64 scope link
valid_lft forever preferred_lft forever



1.
2.
3.
4.

Here, we will make a new virtual NIC with a new IP range to use for our
network.

Ubuntu virtual NIC and VLAN
In Ubuntu, if we only have one network card on our server, we can add
virtual NICs on that network card and clone it to a new one.

When we do an alias network card, it is a raw clone of the network card.

VLAN
VLAN is a network protocol that many switches support. Here, we can
create new layers inside the network. Only the network card in the same
layer can talk. If you are using VLAN number 10, then only the network
card connected to the same VLAN number 10 can communicate.

Setup network for routing
On our server, we have two physical network cards. Let us create one more,
so we have three networks.

One is our public network, where we get an IP from, for example, our
internet provider. The other NIC is our private one. Let us create one with a
VLAN tag on that NIC.

Now, we have three networks that we can use on our setup. To set up the
network, we use the Netplan tool. Then, we edit the file, be aware that the
file can have different names on different installations, so look in the
netplan folder:

/etc/netplan/ generated the name of the network config file. The file will
have a different name depending on the Ubuntu and the network card (the
name was /etc/netplan/00-installer-config.yaml), as shown:

network:
  ethernets:

enp1s0:
dhcp4: true



5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

1.
2.
3.

4.
5.
6.
7.
8.
9.

10.
11.

12.
13.
14.

enp7s0:
dhcp4: no
addresses: [10.33.33.2/24]

  vlans:
vlan.10:

id: 10
link: enp7s0
addresses: [10.33.34.2/24]

  version: 2
~            

This is how the netplan config looks. We have a network card named
enp1s0 using DHCD so we get an IP from our internet provider. On the
network card enp7s0 we have set a network of 10.33.33.2, and on that same
network, we have set up a VLAN with tag 10 that has the IP of 10.33.34.2.

Let us apply our changes, as shown in the following code:
root@hrb-demo:/home/mahe# netplan apply
root@hrb-demo:/home/mahe# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000

link/ether 52:54:00:65:75:89 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.27/24 metric 100 brd 192.168.122.255 scope

global dynamic enp1s0
valid_lft 3596sec preferred_lft 3596sec

inet6 fe80::5054:ff:fe65:7589/64 scope link
valid_lft forever preferred_lft forever



15.

16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.

1.

3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1
500 qdisc fq_codel state UP group default qlen 1000

link/ether 52:54:00:40:b1:16 brd ff:ff:ff:ff:ff:ff
inet 10.33.33.2/24 brd 10.33.33.255 scope global enp7s0

valid_lft forever preferred_lft forever
inet6 fe80::5054:ff:fe40:b116/64 scope link

valid_lft forever preferred_lft forever
4: vlan.11@enp7s0: <BROADCAST,MULTICAST,UP,LOWER_
UP> mtu 1500 qdisc noqueue state UP group default qlen 1000

link/ether 52:54:00:40:b1:16 brd ff:ff:ff:ff:ff:ff
inet 10.33.34.2/24 brd 10.33.34.255 scope global vlan.11

valid_lft forever preferred_lft forever
inet6 fe80::5054:ff:fe40:b116/64 scope link

valid_lft forever preferred_lft forever
root@hrb-demo:/home/mahe#

Now that we have our base network set up, we can start adding services like
iptables, DHCPD, and DNS, which we will use later in this chapter.

Controlling traffic with iptables
Iptables is a tool we use to control traffic coming in and out of our server.
There are three basic chains, the input/forward and output chains.

Now, we need to add rules to them all for setting up our router.

To set up our Ubuntu Server as a basic router and route traffic from our
private network to our public, first, we need to set up our server to forward
packages between our network cards. This is done by running the following
code:

echo "1" > /proc/sys/net/ipv4/ip_forward

Now, we can make a simple script that sets up our router. If you search the
internet, you will find that many firewall scripts for Ubuntu set up the same
configuration. Here, we will give a simple example. If you plan to run this
in production, search for a good script as a base on the internet.



1.

1.

2.

3.

4.

5.
6.

Keeping you safe
Before you start editing firewall rules, set up a backup path to get access. It
can be as simple as a screen, keyboard, or virtual console.

If you cannot set up a screen, a crontab rule that clears the iptables rules can
be added.

The command, iptables -F, will clear all the rules, and adding that to a
crontab will save you if you lock yourself out.

Add the following to /etc/crontab, as shown:
00 1    * * *   root    iptables -F

Let us set up our firewall, create a new file called fw.sh, and add the
following commands to that script. Then, you can simply apply them.

First, we need to add rules to forward the traffic from our different network
cards.

iptables -t nat -A POSTROUTING -s 10.33.33.0/24 ! -d 10.33.33.
0/24 -j MASQUERADE
iptables -t nat -A POSTROUTING -s 10.330.34.0/24 ! -d 10.33.34.
0/24 -j MASQUERADE
iptables -A FORWARD -d 10.33.33.0/24 -o enp7s0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -d 10.33.34.0/24 -o vlan.11@enp7s0 -m st
ate --state RELATED,ESTABLISHED -j ACCEPT
iptables -A FORWARD -s 10.33.33.0/24 -i enp7s0 -j ACCEPT
iptables -A FORWARD -s 10.33.34.0/24 -i vlan.11@enp7s0 -j AC
CEPT

It is essential that the IP and interfaces are correct when running the scripts.

The small script aforementioned is all that is needed to set up so that traffic
can now go from your private network and out. However, now we also need
to lock down our server so we cannot access any ports, for example, SSH,
from the public network.



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

1.
2.

First, set the INPUT chain to block any traffic by default. Then, we can add
the rules to allow incoming. (If you plan to ssh into your server, add the
allow rules to allow ssh as the first row and then the following default block
command)

The following code shows the rules that will allow traffic to some example
ports:

#lo
iptables -A INPUT -i lo -j ACCEPT
#ssh
iptables -A INPUT -p tcp -m tcp --dport 22 -j ACCEPT
#http
iptables -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT
#https
iptables -A INPUT -p tcp -m tcp --dport 443 -j ACCEPT
# SSH from subnet
iptables -A INPUT -p tcp --dport 22 -s 192.168.0.0/16 -j ACCEPT

As you can see, you need to add the ports to be open. If you have any tools
running on a different port, you can update the command with the port you
need.

In the last line, you can also see a rule where we have added a subnet, so
only clients from that subnet can access the port.

To use ssh inside your server, you also need to add some ports for traffic
going out, as shown in the following code:

iptables -A OUTPUT -o lo -j ACCEPT
iptables -A OUTPUT -p tcp --sport 22 -m state --state ESTABLISH
ED -j ACCEPT

Some like to keep all output traffic open, and you can choose however you
would like to move forward.

Now that we have our rules, we can set the default rule for the chains, as
shown in the following code:



1.
2.

1.

iptables -P INPUT DROP
iptables -P OUTPUT DROP

Now you should be able to set your Ubuntu Server or Desktop as a router
and send traffic from a private network to a public network.

Network clients with DHCP and DNS
Now, when we have our router set up, it can transfer traffic from our private
network out to our public network and can set up clients that can use the
network. To set up the private network, we require two services. One is our
HCPD server, which will hand out DHCP (IP address) to clients and
connect them. The other service is a DNS server, allowing our clients in the
network to resolve DNS names (such as ubuntu.com) and access the
internet.

Many different tools perform this, however, here we use the tool dnsmasq.
It can work both as a DHCPD server and a DNS server. This is why it is
easy to use.

Let us start with installing dnsmasq on our Ubuntu Server by running the
following code:

apt install dnsmasq

To set up our DNS server, we need some data to use. First, we need to have
a network to which we will give our IP address. It needs to be a network we
have set up a network card for.

You cannot send out IP on a range that you have no network card connected
to.

When we configure our network card, we are using the range 10.33.33.0/24
and we sat our server that we will use as a router on the IP 10.33.33.2. We
also plan to run our DNS server on the same host, so the DNS server for the
network client will also be the same IP as the router 10.33.33.2.

When you set up your own network, you will need to update the address to
match your setup.



1.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

To set up our dnsmasq server, open the file and run the following code:
vi /etc/dnsmasq.conf

In the config file aforementioned, notice the following settings:
# Set the interface on which dnsmasq operates.
# If not set, all the interfaces is used.
#interface=vlan.11@eno1
 
# To disable dnsmasq's DNS server functionality.
#port=0
 
# To enable dnsmasq's DHCP server functionality.
dhcp-range=10.33.33.10,10.33.34.200,255.255.255.0,12h
 
# Set static IPs of other PCs and the Router.
dhcp-host=3C:98:72:F9:14:D8,server,10.33.33.12,infinite
 
# Set gateway as Router. Following two lines are identical.
dhcp-option=3,10.33.33.2
 
# Set DNS server as Router.
dhcp-option=6,10.33.33.2
 
#enable-tftp
#tftp-root=/var/lib/tftpboot
dhcp-match=set:bios,option:client-arch,0
dhcp-boot=tag:bios,undionly.kpxe
dhcp-match=set:efi32,option:client-arch,6
dhcp-boot=tag:efi32,ipxe.efi
dhcp-match=set:efibc,option:client-arch,7
dhcp-boot=tag:efibc,ipxe.efi
dhcp-match=set:efi64,option:client-arch,9



29.
30.
31.
32.
33.
34.
35.
36.
37.

1.

1.

1.
2.
3.
4.
5.

dhcp-boot=tag:efi64,ipxe.efi
dhcp-userclass=set:ipxe,iPXE
dhcp-boot=tag:ipxe,http://10.33.33.2:8081/boot.ipxe
 
# Logging.
log-facility=/var/log/dnsmasq.log   # logfile path.
log-async
log-queries # log queries.
log-dhcp    # log dhcp related messages.

In the config file aforementioned, notice the following settings:
dhcp-range=10.33.33.10,10.33.34.200,255.255.255.0,12h

This is the range that tells dnsmasq to send out an IP address between
10.33.33.20 and 10.22.22.200. We leave some IPs for the server and others
for my setup. However, it is up to you, as shown in the following command:

dhcp-host=3C:98:72:F9:14:D8,server,10.33.33.12,infinite

We have one server that uses DHCP. However, we want it to have the same
IP of 10.33.33.12 every time.

So, we can add this value and set a static host, as follows:
# Set gateway as Router. Following two lines are identical.
dhcp-option=3,10.33.33.2
 
# Set DNS server as Router.
dhcp-option=6,10.33.33.2

These two lines will set the router to the server we had before setting up the
router and to our DNS server. You do not need to add your own DNS
server; instead, you can use a third-party DNS server, such as a Google or
Cloudflare DNS server.

If we set up PXE to boot and install many servers, we need to set our the
PXE settings in our DHCP Server, as shown. If not, we can skip the lines as
follows:



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

dhcp-match=set:bios,option:client-arch,0
dhcp-boot=tag:bios,undionly.kpxe
dhcp-match=set:efi32,option:client-arch,6
dhcp-boot=tag:efi32,ipxe.efi
dhcp-match=set:efibc,option:client-arch,7
dhcp-boot=tag:efibc,ipxe.efi
dhcp-match=set:efi64,option:client-arch,9
dhcp-boot=tag:efi64,ipxe.efi
dhcp-userclass=set:ipxe,iPXE
dhcp-boot=tag:ipxe,http://10.33.33.2:8081/boot.ipxe

Before we can start our DNS server, we need to disable Ubuntu's own DNS
server and restart our own. The following are the commands to stop and
disable it:

# Disable ubuntu own dns server
systemctl stop systemd-resolved
systemctl disable systemd-resolved
systemctl mask systemd-resolved
 
# Restart dnsmasq
systemctl restart dnsmasq
 
# If error fix resolve.conf
rm /etc/resolv.cont
vi /etc/resolv.conf
cat /etc/resolv.con
#manual setup dns
namserver 1.1.1.1

DNS settings
Adding your own DNS record to your server is easy. Say that we want to
direct the DNS name of portal.com to our server and router, we need to run



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

1.
2.
3.

4.
5.
6.

7.

the following code:
root@g1:/home/mahe# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 g1
10.100.0.40 sidero-cp
# The following lines are desirable for IPv6 capable hosts
::1     ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
 
 
1.1.1.1 google.com
root@g1:/home/mahe#

In the file above, we can see that we have added our resolve file to point to
google.com to the IP of 1.1.1.1. However, this is wrong.

When the connection was tested, it asked for the google.com IP address,
and the reply indicated that google.com is located at IP 1.1.1.1, which is
wrong, and the answer was read from my local DNS server, as shown in the
following code:

root@g1:/home/mahe# dig google.com @127.0.0.1
 
; <<>> DiG 9.18.12-0ubuntu0.22.04.2-Ubuntu <<>> google.com
@127.0.0.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1353
0
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, AD
DITIONAL: 1



8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

1.

 
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;google.com.   IN A
 
;; ANSWER SECTION:
google.com.  0 IN A 1.1.1.1
 
;; Query time: 4 msec
;; SERVER: 127.0.0.1#53(127.0.0.1) (UDP)
;; WHEN: Mon Sep 11 12:13:18 UTC 2023
;; MSG SIZE  rcvd: 55

Our server replies that google.com is located at 1.1.1.1:
root@g1:/home/mahe# dig google.com @127.0.0.1

The preceding command is a good tool to test the DNS server at the @
point to your server, so you can update that to test the reply of your server
and example offers. We can use it when changing the DNS server to
validate that it gives the same responses.

This is the last bit for setting up a local network. We now have an Ubuntu
Server that routes traffic from a private network to a public (Internet). We
have set up a DHCPD server and DNS to help the clients in our private
network use our router and go only to the Internet.

Securing communications
This section will examine how we can utilize security communications
between two Ubuntu Linux systems. When we set up the VPN, we will
have one server and then one or more clients connecting to that server. The
communications are secure between the client and the server, and we can
set up so that all the client traffic goes through the server. You can also use a
VPN to connect to multiple locations over the public internet.



1.

1.
2.
3.
4.
5.
6.

We will explore two solutions. First, OpenVPN, and then WireGuard VPN.
They are both good VPNs. However, WireGuard is comparatively newer.
We will connect a server with one or many clients. Depending on what you
will use, pick the VPN that best suits your needs and has support for the
devices you use.

OpenVPN
OpenVPN is the oldest of the two and can be found as a standard tool in
many applications, both on servers and desktops. In Chapter 4, Setting Up
Firewall, VPN, and Wi-Fi Networks, we understood how to set up an
OpenVPN client to connect to a server.

Now, we will set up our OpenVPN server and then connect the client to that
server. The server needs to be accessed over the internet, but for testing, you
can run this in a local network as well.

OpenVPN is found in the standard Ubuntu repo and can be installed by
running the following command:

apt install openvpn easy-rsa

When we set up the OpenVPN server and client, we use TLS certs to verify
the client and the user. For that, we need to create certs that we can use. To
make it easier, we will use the tool easy-rsa to generate the certs.

Let us create a folder in /etc/pki for easy-rsa and link the files we need into
it by running the following code:

root@hrb-1 /etc/pki # mkdir easy-rsa
root@hrb-1 /etc/pki # cd easy-rsa/
root@hrb-1 /etc/pki/easy-rsa # ln -s /usr/share/easy-rsa/* .
root@hrb-1 /etc/pki/easy-rsa # ls
easyrsa  openssl-easyrsa.cnf  vars.example  x509-types
root@hrb-1 /etc/pki/easy-rsa #

Now, we have a folder where we can host our certs. Let us set up our first
cert for the server.



1.
2.
3.
4.
5.

1.
2.
3.
4.
5.
6.

1.
2.

3.
4.
5.
6.

7.
8.

9.
10.
11.

Create a file called vars and add the following to that file:
root@hrb-1 /etc/pki/easy-rsa # vi vars
root@hrb-1 /etc/pki/easy-rsa # cat vars
set_var EASYRSA_ALGO “ec”
set_var EASYRSA_DIGEST "sha512"
root@hrb-1 /etc/pki/easy-rsa #

Now, we can set up our PKI server. We will use this base of certs to
generate both server and client certs. Set up the pki with the command
./easyrsa init-pki and build the CA, as shown in the following code:

root@hrb-1 /etc/pki/easy-rsa # ./easyrsa init-pki
 
init-pki complete; you may now create a CA or requests.
Your newly created PKI dir is: /etc/pki/easy-rsa/pki
 
root@hrb-1 /etc/pki/easy-rsa #

After the init-pki we can create our CA and remember that password, as
shown in the following code:

root@hrb-1 /etc/pki/easy-rsa # ./easyrsa build-ca
Using SSL: openssl OpenSSL 3.0.2 15 Mar 2022 (Library: OpenS
SL 3.0.2 15 Mar 2022)
 
Enter New CA Key Passphrase:
Re-Enter New CA Key Passphrase:
You are about to be asked to enter information that will be incorpor
ated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.



12.
13.

14.
15.

16.
17.
18.
19.

1.
2.

3.

4.

-----
Common Name (eg: your user, host, or server name) [Easy-RSA C
A]:
 
CA creation complete and you may now import and sign cert reque
sts.
Your new CA certificate file for publishing is at:
/etc/pki/easy-rsa/pki/ca.crt
 
root@hrb-1 /etc/pki/easy-rsa #

Our PKI is now ready, and we can make our first cert for our OpenVPN
server, as shown in the following code:

root@hrb-1 /etc/pki/easy-rsa # ./easyrsa gen-req server nopass
Using SSL: openssl OpenSSL 3.0.2 15 Mar 2022 (Library: OpenS
SL 3.0.2 15 Mar 2022)
..+.....+...+...+.........+.+.....+.+...+..+...+++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++*..+.
+........+++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++*.+.+............+...+.................+....
+......+.....+.......+......+..+.........+......+....+......+........+.+.....+...+.......
+.....................+........+.......+...+..+...+......+...............+...+.............
+...+...........+.+.................+..........+..+...+.......+...+..+.+...+.....+......
+.+.....+............+.+.....+.+...+...+..+.......+......+...............+..+............
+...+......+....+..+.+.....+.............+...........+...+......+.+.........+..+....
+.....+...+......+.+...........+....+...................................+.............+..+...
+.............+...+.....+.......+...+.....+......+....+++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++
.....+...+....+...++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++*.....+++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++
+*.+........+...............+......+......+...................+......+............+..+....
+......+.....+.+..+.+.....+......+.+........+.+...+...........+....+..+...+.+..
+.............+............+.....+...+......+...+.+...............+......+..................
+......+..+...+....+.....+...............+...+...+.......+.....+..................+.+......



5.
6.

7.
8.

9.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

+.....+....+.....+.+............+...........+....+.....+..........+.....+.+.....+.........
+.+..+.......+...+..+..................+....+...+..+.............+...+.....+............+.
+..+....+.....+......+....+......+........+....+...+..+......+.......+........+....+.....
+...+......................+..+..................+.+.........+...........+....+..+.........
+.......+.....+...+....+...+.....+....+.....+....+..+.........+...+.+..+.......
+...........+....+......+..+....+.....+.+...+......+.....+...+.......+...........+...
+......+....+..+...+.......+..+................+.........+..................+.................
+.+............+.........+...+..+....+..+.............+..+.......+..+...+.+..+...
+...................+.....+......+......+.+.........+........+...+..................+....
+............+...+..+.............+...+..+.......+...............+......+...+......+...+..
+.+..+.......+...+...........+......+...+............+.............+.....+.............+...
+.....++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++
-----
You are about to be asked to enter information that will be incorpor
ated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Common Name (eg: your user, host, or server name) [server]:vpn.s
erver.robots.beer
 
Keypair and certificate request completed. Your files are:
req: /etc/pki/easy-rsa/pki/reqs/server.req
key: /etc/pki/easy-rsa/pki/private/server.key
 
root@hrb-1 /etc/pki/easy-rsa #

You will be asked for the name of the server. You can set the name of your
server or a common name.



1.
2.

3.
4.
5.

6.

7.

8.
9.
10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.

Now, when we have the cert, we need to sign that cert with the CA we
created before, as shown in the following code:

root@hrb-1 /etc/pki/easy-rsa # ./easyrsa sign-req server server
Using SSL: openssl OpenSSL 3.0.2 15 Mar 2022 (Library: OpenS
SL 3.0.2 15 Mar 2022)
 
You are about to sign the following certificate.
Please check over the details shown below for accuracy. Note that t
his request
has not been cryptographically verified. Please be sure it came fro
m a trusted
source or that you have verified the request checksum with the sen
der.
 
Request subject, to be signed as a server certificate for 825 days:
 
subject=

commonName                = vpn.server.robots.beer
 
Type the word 'yes' to continue, or any other input to abort.
  Confirm request details: yes
Using configuration from /etc/pki/easy-rsa/pki/easy-rsa-612995.Q
MFQrV/tmp.yn0kUD
Enter pass phrase for /etc/pki/easy-rsa/pki/private/ca.key:
40270CF7457F0000:error:0700006C:configuration file routines:N
CONF_get_string:no value:../crypto/conf/conf_lib.c:315:group=<
NULL> name=unique_subject
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName            :ASN.1 12:'vpn.server.robots.beer'
Certificate is to be certified until Dec 17 10:49:55 2025 GMT (825
days)



24.
25.
26.
27.
28.
29.
30.

1.
2.

3.
4.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

 
Write out database with 1 new entries
Data Base Updated
 
Certificate created at: /etc/pki/easy-rsa/pki/issued/server.crt
 
root@hrb-1 /etc/pki/easy-rsa #

Now, we have the servers' certs we need. However, we also need a cert for
our OpenVPN server as the secret. Let us create the secret as shown:

root@hrb-1 /etc/pki/easy-rsa # openvpn --genkey --secret ta.key
2023-09-14 10:51:04 WARNING: Using --genkey --secret filenam
e is DEPRECATED.  Use --genkey secret filename instead.
root@hrb-1 /etc/pki/easy-rsa # ls
easyrsa  index.txt  openssl-easyrsa.cnf  pki  ta.key  vars  vars.exam
ple  x509-types
root@hrb-1 /etc/pki/easy-rsa # cat ta.key
#
# 2048 bit OpenVPN static key
#
-----BEGIN OpenVPN Static key V1-----
d3bc43937f78508657346e57e366295b
9c6ce3aaf5c779dae5aab932a39362ef
2ca0db02cc7e08029be27a2e1396636c
695f3cb9088b314afbda22da9dd810e6
1ef434c32883684594630f2c7e0266e6
070cb6809e63bf1c27fcb4bd7c0c1de3
700631c84bce7b825c45535fe1a5ece8
b9416b1aeb934896844b5eb777e72b89
517a17bfd0a0060c661c6f6f4e44cbbd
a0af0404fed985da2e262109abaffdbb
2b1793851b611e5176d4df57edcb60dc
b70b1261317a2d5484f283e535bc8c76



22.
23.
24.
25.
26.
27.

1.

2.
3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.

1.
2.

fb8ce41ebf1d4fda87ce34694b06b027
3facbf6bbf14d60f53442122e3915e7e
ddf49092223ea8dd56743130c1d1a9d7
64fde38ce3e238a2caa7d6f8d4d9a71b
-----END OpenVPN Static key V1-----
root@hrb-1 /etc/pki/easy-rsa #

Now, we have our certs ready to start our OpenVPN server.

Let us copy the default config from openvpn and update the config to add
the path to our certs:

root@hrb-1 /etc/pki/easy-rsa # sudo cp
/usr/share/doc/openvpn/examples/sample-config-files/server.conf
/etc/openvpn/server/
root@hrb-1 /etc/openvpn/server # vi server.conf
### Truncate to only show the parts I changed !!!!
 
ca /etc/pki/easy-rsa/pki/ca.crt
cert /etc/pki/easy-rsa/pki/issued/server.crt
key /etc/pki/easy-rsa/pki/private/server.key  # This file should be
kept secret
 
# Diffie hellman parameters.
# Generate your own with:
#   openssl dhparam -out dh2048.pem 2048
dh /etc/pki/easy-rsa/dh2048.pem
 
# on the server and '1' on the clients.
tls-auth /etc/pki/easy-rsa/ta.key 0 # This file is secret

Start our OpenVPN server:
root@hrb-1 /etc/openvpn/server # openvpn --config server.conf
2023-09-14 11:01:48 WARNING: --topology net30 support for ser
ver configs with IPv4 pools will be removed in a future release. Ple



3.

4.

5.

6.
7.

8.
9.

10.

11.
12.

13.
14.
15.
16.
17.

18.

19.

ase migrate to --topology subnet as soon as possible.
2023-09-14 11:01:48 DEPRECATED OPTION: --cipher set to 'AE
S-256-CBC' but missing in --data-ciphers (AES-256-GCM:AES-1
28-GCM). Future OpenVPN version will ignore --cipher for cipher
negotiations. Add 'AES-256-CBC' to --data-ciphers or change --cip
her 'AES-256-CBC' to --data-ciphers-fallback 'AES-256-CBC' to si
lence this warning.
2023-09-14 11:01:48 OpenVPN 2.5.5 x86_64-pc-linux-gnu [SSL
(OpenSSL)] [LZO] [LZ4] [EPOLL] [PKCS11] [MH/PKTINFO]
[AEAD] built on Jul 14 2022
2023-09-14 11:01:48 library versions: OpenSSL 3.0.2 15 Mar 202
2, LZO 2.10
2023-09-14 11:01:48 net_route_v4_best_gw query: dst 0.0.0.0
2023-09-14 11:01:48 net_route_v4_best_gw result: via 88.99.68.65
dev enp0s31f6
2023-09-14 11:01:48 Diffie-Hellman initialized with 2048 bit key
2023-09-14 11:01:48 Outgoing Control Channel Authentication: U
sing 160 bit message hash 'SHA1' for HMAC authentication
2023-09-14 11:01:48 Incoming Control Channel Authentication: U
sing 160 bit message hash 'SHA1' for HMAC authentication
2023-09-14 11:01:48 net_route_v4_best_gw query: dst 0.0.0.0
2023-09-14 11:01:48 net_route_v4_best_gw result: via 88.99.68.65
dev enp0s31f6
2023-09-14 11:01:48 ROUTE_GATEWAY 88.99.68.65
2023-09-14 11:01:48 TUN/TAP device tun0 opened
2023-09-14 11:01:48 net_iface_mtu_set: mtu 1500 for tun0
2023-09-14 11:01:48 net_iface_up: set tun0 up
2023-09-14 11:01:48 net_addr_ptp_v4_add: 10.8.0.1 peer 10.8.0.2
dev tun0
2023-09-14 11:01:48 net_route_v4_add: 10.8.0.0/24 via 10.8.0.2 d
ev [NULL] table 0 metric -1
2023-09-14 11:01:48 Could not determine IPv4/IPv6 protocol. Usi
ng AF_INET



20.

21.

22.
23.
24.

25.
26.

1.

2.

3.

2023-09-14 11:01:48 Socket Buffers: R=[212992->212992] S=[21
2992->212992]
2023-09-14 11:01:48 UDPv4 link local (bound): [AF_INET][unde
f]:1194
2023-09-14 11:01:48 UDPv4 link remote: [AF_UNSPEC]
2023-09-14 11:01:48 MULTI: multi_init called, r=256 v=256
2023-09-14 11:01:48 IFCONFIG POOL IPv4: base=10.8.0.4 size=
62
2023-09-14 11:01:48 IFCONFIG POOL LIST
2023-09-14 11:01:48 Initialization Sequence Completed

As you see in the following line, our OpenVPN server is ready to accept
connections.

Note the line, 2023-09-14 11:01:48 net_addr_ptp_v4_add: 10.8.0.1 peer
10.8.0.2 dev tun0, here we can see the IP of our server. However, we
cannot have any other IP network in the same range.

To connect our client
Go into our easy-rsa folder and make certs for our client. The certs will be
signed by the CA on the server. The OpenVPN server will only accept
connections if you have a certificate that is signed by the cert we have
already created.

The following command shows how to create the client certificate:

root@hrb-1 /etc/pki/easy-rsa # ./easyrsa gen-req client1 nopass

Using SSL: openssl OpenSSL 3.0.2 15 Mar 2022 (Library: OpenS
SL 3.0.2 15 Mar 2022)
.....+...+.............+..++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++*...+....+..+...+......+.
+...........+....+...+...+.....+....+...+........+...+......+.............+++++++++
+++++++++++++++++++++++++++++++++++++++++++++++
+++++++++*....+.....+...+...+.+...+......+.........+...........+......+.+..+.
+.........+..+.+.........+......+.....+...+.......+..............+..........
+.......................+.+............+.....+.......+...+.........+...+..+....+..+...



4.

5.
6.

7.
8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

+.......+..............+...+..........+......+.........+..+.++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++
++
...+.+...........+...+......+.+..+...+...+...................+...+...+......+........+++
+++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++*.........+.........+....+......+...........+...+.+.....
+................+.....++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++*.........+...............+..
+.........+...+...+...+.+.....+.+...+..+.......+...............+.....+.+..+.............
+..+..........+.......................+.........+.......+......+...............+..+.+..
+.......+.....+...............+......+++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++
-----
You are about to be asked to enter information that will be incorpor
ated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Common Name (eg: your user, host, or server name) [client1]:
 
Keypair and certificate request completed. Your files are:
req: /etc/pki/easy-rsa/pki/reqs/client1.req
key: /etc/pki/easy-rsa/pki/private/client1.key
 
root@hrb-1 /etc/pki/easy-rsa # ./easyrsa sign-req client client1
Using SSL: openssl OpenSSL 3.0.2 15 Mar 2022 (Library: OpenS
SL 3.0.2 15 Mar 2022)
 
You are about to sign the following certificate.



23.

24.

25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.

41.
42.
43.
44.
45.
46.
47.

Please check over the details shown below for accuracy. Note that t
his request
has not been cryptographically verified. Please be sure it came fro
m a trusted
source or that you have verified the request checksum with the sen
der.
 
Request subject, to be signed as a client certificate for 825 days:
 
subject=

commonName                = client1
 
Type the word 'yes' to continue, or any other input to abort.
  Confirm request details: yes
Using configuration from /etc/pki/easy-rsa/pki/easy-rsa-785909.af
PK3a/tmp.ZwVWko
Enter pass phrase for /etc/pki/easy-rsa/pki/private/ca.key:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName            :ASN.1 12:'client1'
Certificate is to be certified until Dec 17 11:20:30 2025 GMT (825
days)
 
Write out database with 1 new entries
Data Base Updated
 
Certificate created at: /etc/pki/easy-rsa/pki/issued/client1.crt
 
root@hrb-1 /etc/pki/easy-rsa #

On the Client



1.

2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Now, you can log in to the client and install OpenVPN using apt-get. We
can then copy the example client.conf to the openvpn folder, etc.

We need to get the certs from our OpenVPN server to the client. This is
how our folder will look:

root@hrb:/etc/openvpn# cp
/usr/share/doc/openvpn/examples/sample-config-files/client.conf
/etc/openvpn/client/
root@hrb:/etc/openvpn/tls# pwd
/etc/openvpn/tls
root@hrb:/etc/openvpn/tls# ls
ca.crt  client1.crt  client1.key  ta.key
root@hrb:/etc/openvpn/tls#

You will find the certs with the same name in the easy-rsa/pki folder on
your server, where we created the certs.

Now, we can update the client config with our new settings. Our client.conf
will appear as follows: (left some lines out that were not changed from the
default config)

# The hostname/IP and port of the server.
# You can have multiple remote entries
# to load balance between the servers.
remote vpn.server.robots.beer 1194
;remote my-server-2 1194
 
ca /etc/openvpn/tls/ca.crt
cert /etc/openvpn/tls/client1.crt
key /etc/openvpn/tls/client1.key
 
# Verify server certificate by checking that the
# certificate has the correct key usage set.
# This is an important precaution to protect against
# a potential attack discussed here:



15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

1.
2.
3.
4.
5.
6.

7.

8.
9.
10.
11.

12.

#  http://openvpn.net/howto.html#mitm
#
# To use this feature, you will need to generate
# your server certificates with the keyUsage set to
#   digitalSignature, keyEncipherment
# and the extendedKeyUsage to
#   serverAuth
# EasyRSA can do this for you.
remote-cert-tls server
 
# If a tls-auth key is used on the server
# then every client must also have the key.
tls-auth /etc/openvpn/tls/ta.key 1

You will set the remote to the address or IP of your server.

Let us start the client to verify if they are connected, as shown in the
following code:

root@hrb:/etc/openvpn/client# openvpn --config client.conf
 
{Truncated}
 
2023-09-14 13:36:58 net_route_v4_best_gw query: dst 0.0.0.0
2023-09-14 13:36:58 net_route_v4_best_gw result: via 192.168.1.
1 dev enp45s0f0np0
2023-09-14 13:36:58 ROUTE_GATEWAY 192.168.1.1/255.255.2
55.0 IFACE=enp45s0f0np0 HWADDR=00:0f:53:2c:ff:90
2023-09-14 13:36:58 TUN/TAP device tun0 opened
2023-09-14 13:36:58 net_iface_mtu_set: mtu 1500 for tun0
2023-09-14 13:36:58 net_iface_up: set tun0 up
2023-09-14 13:36:58 net_addr_ptp_v4_add: 10.8.0.6 peer 10.8.0.5
dev tun0
2023-09-14 13:36:58 net_route_v4_add: 10.8.0.1/32 via 10.8.0.5 d
ev [NULL] table 0 metric -1



13.

14.

1.
2.
3.
4.
5.

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

2023-09-14 13:36:58 WARNING: this configuration may cache pa
sswords in memory -- use the auth-nocache option to prevent this
2023-09-14 13:36:58 Initialization Sequence Completed

If we run ip a, we can verify the new network device, as shown in the
following code:

root@hrb:/etc/openvpn/client#  ip a
 
{Truncated}
 
1166: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_
UP> mtu 1500 qdisc fq_codel state UNKNOWN group default qle
n 500

link/none
inet 10.8.0.6 peer 10.8.0.5/32 scope global tun0

valid_lft forever preferred_lft forever
inet6 fe80::f706:f62d:33bf:e66f/64 scope link stable-privacy

valid_lft forever preferred_lft forever
 
mattias@hrb:~$ ping 10.8.0.1
PING 10.8.0.1 (10.8.0.1) 56(84) bytes of data.
64 bytes from 10.8.0.1: icmp_seq=1 ttl=64 time=26.4 ms
64 bytes from 10.8.0.1: icmp_seq=2 ttl=64 time=26.6 ms

Now, we have a secure connection between our client and server. In this
setup, only the traffic for 10.8.0.0/24 will go to the VPN server. So, all other
traffic will use your regular network. However, you can easily change the
settings for the server to force all traffic over the server. This setup is for
only client-to-server setup.

WireGuard VPN
WireGuard is a more modern VPN and somewhat easier to understand,
which you will grasp better in this section.



1.

1.
2.
3.

4.
5.
6.
7.
8.

1.
2.
3.
4.
5.

6.

Let us start with installing WireGuard on our server, as shown in the
following command:

root@hrb-1 /etc # sudo apt install wireguard

Now, when we have WireGuard installed, we need to create a private and a
public key. To do that, WireGuard already provides some tools for us. We
will first create the private key. Then, from that private key, we will
generate a public key to use. This is shown in the following code:

root@hrb-1 /etc/wireguard/tls # wg genkey >> private.key
root@hrb-1 /etc/wireguard/tls # chmod go= private.key
root@hrb-1 /etc/wireguard/tls # cat private.key | wg pubkey | tee
public.key
root@hrb-1 /etc/wireguard/tls # ls -l
total 8
-rw------- 1 root root 45 Sep 14 13:52 private.key
-rw-r--r-- 1 root root 45 Sep 14 13:53 public.key
root@hrb-1 /etc/wireguard/tls #

Now that we have our server keys, we can set our server here as shown in
the following config for a server using the range 10.13.13.0:

[Interface]
Address = 10.13.13.1
ListenPort = 51820
PrivateKey = sMeT7YVzcjA
PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -A
FORWARD -o %i -j ACCEPT; iptables -t nat -A POSTROUTING -
o eth+ -j MASQUERADE
PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -D
FORWARD -o %i -j ACCEPT; iptables -t nat -D POSTROUTING -
o eth+ -j MASQUERADE

Now, add the PrivateKey from the files we created before. You cannot
already have a network with the same range as the WireGuard here,
10.13.13.0.



1.

2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Then, it is time to create clients' peers, as they are called in WireGuard. You
can see the commands as follows. We will first create the private key and
then the public key, just as we did on the WireGuard server.

root@hrb:/etc/wireguard# wg genkey | tee
/etc/wireguard/private.key
CKgylwDb485dd21gi3PsDVy3lm+8nzF8I9eAo3b3YmM=
root@hrb:/etc/wireguard# ls
private.key
root@hrb:/etc/wireguard# cat private.key
CKgylwDb485dd21gi3PsDVy3lm+8nzF8I9eAo3b3YmM=
root@hrb:/etc/wireguard# chmod go= /etc/wireguard/private.key
root@hrb:/etc/wireguard# cat /etc/wireguard/private.key | wg
pubkey | tee /etc/wireguard/public.key
XEA2rYM6x4JKGFLVLWJkM2Pj4/p8ASo5ekREUV2e11M=
root@hrb:/etc/wireguard# ls
private.key  public.key
root@hrb:/etc/wireguard#

We now have a private and a public key. Now, we need to attach them to
our WireGuard server config and our client. Let us start by creating a config
file for our client add the following in the file wg0.conf in /etc/wireguard:

[Interface]
Address = 10.13.13.11
PrivateKey =
ListenPort = 51820
DNS = 10.13.13.1
 
[Peer]
PublicKey =
PresharedKey =
Endpoint = IP ORE ADDRESS TO YOUR SERVER:51820
AllowedIPs = 10.13.13.0/24



1.

1.
2.
3.

4.

5.

•

•

•

1.
2.
3.

4.

PrivateKey and PublicKey you will get from running cat private.key and
cat public.key

We also need a preshared key for our client. This can be done by running
the following command:

wg genpsk > prehared.key.

With this, we have our clint config complete. Now, let us add the peer
config to our server.

Now, we can move to our WireGuard server and add our peer config. In the
wg0.conf file, where we added the server settings, add the following as
well:

[Peer]
# hrb
PublicKey = XEA2rYM6x4JKGFLVLWJkM2Pj4/p8ASo5ekREU
V2e11M=
PresharedKey = fM7XOI0imNNEIUE6N/FpJN4Hb+tGlfw7a25tW
IkxELw=
AllowedIPs = 10.13.13.11/32

Now, verify if you have the same config for the following:

Ip address

PublicKey

PresharedKey

Then, we can restart our WireGuard server and client. When our config file
has the name in /etc/wiregurad, called wg0.conf, then we can run the
following command:

root@hrb-1 /etc/wireguard # wg-quick down  wg0
[#] ip link delete dev wg0
[#] iptables -D FORWARD -i wg0 -j ACCEPT; iptables -D FORW
ARD -o wg0 -j ACCEPT; iptables -t nat -D POSTROUTING -o eth
+ -j MASQUERADE
root@hrb-1 /etc/wireguard # wg-quick up  wg0



5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

16.

•

•

[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.13.13.1 dev wg0
[#] ip link set mtu 1420 up dev wg0
[#] ip -4 route add 10.13.13.6/32 dev wg0
[#] ip -4 route add 10.13.13.5/32 dev wg0
[#] ip -4 route add 10.13.13.4/32 dev wg0
[#] ip -4 route add 10.13.13.3/32 dev wg0
[#] ip -4 route add 10.13.13.2/32 dev wg0
[#] ip -4 route add 10.13.13.11/32 dev wg0
[#] iptables -A FORWARD -i wg0 -j ACCEPT; iptables -A FORW
ARD -o wg0 -j ACCEPT; iptables -t nat -A POSTROUTING -o eth
+ -j MASQUERADE
root@hrb-1 /etc/wireguard #

Let us shut down the server and then start the VPN server again. This will
add the routes for our new peer with IP 10.13.13.11. You can verify the
connections of the tunnels by running the command wg show, which will
print the status of the current connections.

VPN troubleshooting
When we set up a VPN, we connect the computer. To do that, we need to be
able to send packages between them. Many things on the internet and on the
local network can block our VPN. For example, the VPN can be blocked in
some parts of the world.

The following are some common things to try if your VPN cannot connect:

Local firewall: Verify that you do not have any firewall blocking
the connections between your servers. Use tools like Telnet to
verify that you can establish a connection between your server and
client.

Package forward: To use your VPN server and access other
servers from it. You need to enable package forwarding. We did



•

this when we used Ubuntu as a firewall.

Tricks: Sometimes, your locations have blocked the ports that our
VPN is using. Now, you can change the VPN port to standard ports
like 80, 443, or 53 and see if that works.

Conclusion
In this chapter, we understood how we can set up a simple router to route
traffic from our local network out to a public network with an Ubuntu
Server. We used Iptables to set up and control what traffic can go in and out
of our network.

To set up a basic IP network for desktop and server, we installed a DHCP
server that will send out IP addresses to our clients in the network. We have
also set up our own DNS server, allowing us to add and control DNS names
within our network.

Connect two locations or connect from a client back to a server. We have
looked at two different VPN solutions and how they can connect a server
and a client together.

With the knowledge from this chapter, we can set up an Ubuntu Server as
our primary network router and use it to control router traffic both in a
workplace and in a hosting setup.

In the next chapter, we will start using virtualization and run multiple
instances of Ubuntu on a single Ubuntu system.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:



https://discord.bpbonline.com

https://discord.bpbonline.com/


•

CHAPTER 10
Running Virtualization Server

Environment

Introduction
The ability to run multiple services, such as different web servers or
databases, or, for example, multiple databases for various purposes, is a
common use case when using Ubuntu Servers. To be able to do that and to
isolate every server, we come to Virtualization for help. With Virtualization,
we can take one Ubuntu metal server and turn it into several virtual servers.
Then, install them separately to support our use case.

In this chapter, we will look at how you can install several virtual
machines (VMs) into your Ubuntu Server. Moreover, we will also discuss
how you can manage them from your desktop or over a regular webpage.

We will then look at how you can use containers and how you can achieve
the same approach with containers on your Ubuntu Server.

Structure
In this chapter, we will cover the following topics:

Installing KVM on your Ubuntu Server



•

•

•

•

•

•

•

•

•

•

Connecting from the desktop using KVM GUI

Installing the KVM web interface

Creating a VM server

Control your VM using the virsh command

Dedicated VM Linux version

Containers

Podman’s features

Setup and monitoring with Grafana and Prometheus

Reading logs with Loki

Container-based monitoring clients

Objectives
By the end of this chapter, we will cover how to set up an Ubuntu Server as
a virtual host. On that server, you spin up a new Ubuntu Server that you can
install and set up services like web servers or databases.

We will understand how to manage the virtual server by cloning new
servers, making backups, and setting up a network.

Once we cover virtual servers, we will move on to set up tools on our server
using containers. We previously discussed Docker; here, we will use the
tool Podman, which is like Docker. It is used to set up the monitoring stack
we installed in a capture. We will set up everything using containers with
Podman.

Moreover, we will understand how to install Podman to start containers and
mount them to get access to resources from the Ubuntu Server.

Installing KVM on your Ubuntu Server
Let us install KVM, our virtualization tool, on our Ubuntu Server. For all
the steps, you need SSH access to your server. We will use SSH to set up



1.

2.
3.
4.
5.

and start our VM. We will also connect our GUI tools to control the servers
later.

When we run virtualization, we need support from the CPU on your server
or desktop. If support is not enabled, we can still run the VM. However, its
performance could be improved. In your BIOS, you can enable
virtualization if your CPU supports it

First, let us install KVM. The following is the command to install KVM and
to verify we can run virtualization:

root@g1:/home/mahe# sudo apt -y install bridge-utils cpu-checker
libvirt-clients libvirt-daemon qemu qemu-kvm
root@g1:/home/mahe# kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used
root@g1:/home/mahe#

Let us connect some tools now that we have the core installed. The tools
will run from your desktop or with a webpage to access the server and
manage our VM on the Ubuntu Server. We need the tools first so we can get
a screen from the server and use that to install our VM. We will also run and
install an Ubuntu Server using the terminal later in this chapter.

Connecting from the desktop using KVM GUI
We have had a KVM manager installed on our desktop since we started
using virtualization. Now, we can open the KVM manager to make a new
connection and use SSH access.

First, add your SSH key to your server so we can access it without a
password. Then, add the user you SSH into the server to the Libvirt group
so it can connect to Libvirtd.

Now, open Virtual Machine Manager on your desktop and add new
connections. Type in your username and host.

The following figure shows how you can set up access to a server:



Note: No password is required when running the copy SSH key
command.

Figure 10.1: Connection to remote KVM host

Now, you can see your virtual server as shown in the following figure:

Figure 10.2: Virtual machines running

Now, you can use the GUI from your desktop to create and control your
virtual server on the server in the same way as when we ran the virtual
server on our desktop.

Installing the KVM web interface
We have used the tool Cockpit to set up and control our server from a web
browser. The tool also has a plugin to monitor and control the KVM host.

It can be installed with the following command:

root@g1:/home/mahe# sudo apt install cockpit-machines

Now, log in to your Cockpit console, and we can see our VM running there
as well, as shown in the following figure:



1.

Figure 10.3: Virtual machines running are shown by Cockpit

If you are now changing any of the tools, it will also show in the other. You
can run both, and if you are on your local network, use the virtual manager
from your desktop. Moreover, access the virtual server from a webpage
remotely.

Creating a VM server
You can use any of the tools to create a server but here we will show how
you can create and connect to a server only using the terminal.

We will start the server and use our terminal to set things up. However,
during the installation, we can also look at both virt manager and Cockpit to
see the progress.

Create your server by running the following command:
$ sudo virt-install --name ubuntu-guest --os-variant ubuntu20.04 --
vcpus 2 --ram 2048 --location http://ftp.ubuntu.com/ubuntu/dists/fo
cal/main/installer-amd64/ --network bridge=virbr0,model=virtio --
graphics none --extra-args='console=ttyS0,115200n8 serial' --disk s
ize=5

Now, you can follow the installation of Ubuntu, and all config is done in the
terminal, as shown in the following figure:



Figure 10.4: Installation of Ubuntu inside a VM from the command line

Run the installation so that you have an installed Ubuntu Server. Then, you
can look at the new server from virtual manager and Cockpit and start and
access the server.

Control your VM using the virsh command
Using the virsh, we can now clone our VM into an image and create a new
one.

We can save it and send it to another server to start up there. Think of the
VM image as a hard drive that, if we move it and connect it to a new
computer, will boot up there as well. We can move it to a new server and
start there. We can save it, so we have a backup and delete it if we do not
need it anymore.

Shared storage
If you have several Ubuntu Servers, we can connect an NFS server on one
of these servers and share the disk over the network with the other hosts.



•

•

•

Now, we can save our disk image on that shared disk. Now, we can start the
server from any of the Ubuntu Servers that share that disk.

Dedicated VM Linux version
Suppose you plan to run several Ubuntu Servers and have a VM running on
them to create a large pool of servers. There are better tools than setting up
Ubuntu Servers. Proxmox is one of those tools that is a Linux version built
for running VMs. It supports multiple servers and shared storage.

With Proxmox, you can also run a pool of servers all together.

If you have even looked for a larger deployment of VMs, then OpenStack is
the largest open-source tool for running large VM deployments.

Containers
In this chapter, we utilized Docker as a containerization tool. However,
Docker is not the only one. Podman is a tool that is already in the Ubuntu
repo. It is a drop-in replacement for Docker, so you can replace the docker
with Podman, and your commands will still work. One example, you can
install Podman on a server but still run Docker on the local Ubuntu
Desktop.

You can choose to skip the installation part of Podman in this chapter and
replace the Docker command; the output will be the same.

Podman´s features
Podman has a long list of features, and the following are some of the top
ones:

Podman supports both OCI and Docker images.

Podman has full network integration with CNI network plugins.

With Podman, you can combine several containers into pods, as in
Kubernetes.



•

•

•

•

1.
2.

3.

4.

It has docker support and can run both local and remote
environments.

Podman does not use a daemon. For that, it has enhanced security
and will not use any resources when not running.

Podman has a REST API that works well and can be extended like
the Kubernetes API.

Podman can also run a Pod without having full access to the host
system

This also makes Podman a bit harder to run than Docker. If you plan to use
containers for local dev, stick to docker over Podman. However, if you are
building apps that will run in a Kubernetes cluster, it can be good to work
with Podman to test if your apps are working and generate a Kubernetes
manifest from your Podman setup.

Installing Podman
Installing Podman on Ubuntu is easy. It is by default in the repository and
can be installed by running the following command:

apt-get install podman

This will install Podman and the tools on your Ubuntu Server. Now, we can
verify if we have any containers running the following:

root@firgate:~# podman ps
CONTAINER ID  IMAGE       COMMAND  CREATED      STAT
US          PORTS   NAMES
c4fb47f9e646  docker.io/pihole/pihole:latest           3 weeks ago  U
p 3 weeks ago          pihole
root@firgate:~#

The command to run to get containers is podman ps; however, if you use
Docker, the command is docker ps.

Setting up Podman Repo



1.

2.
3.
4.

1.
2.

3.

4.

5.

Before you can pull down images, you need to enable the repos that
Podman can use. Docker can, as default pull from all repos, but Podman is
more restricted.

Open the file /etc/containers/registries.conf by running the following:
# # in order, and use the first one that exists.
[registries.search]
registries = ['docker.io']
 
root@firgate:~# cat /etc/containers/registries.conf

Now, you can pull images from docker.io. However, if you want to pull
from any other registry, you need to add those repos as well.

When we set up our tools, we make a docker-compose file. To use our
docker compose with Podman, we need to Python package Podman
compose by running the following:

root@firgate:/opt/monitoring# pip3 install podman-compose
Requirement already satisfied: podman-compose in /usr/local/lib/p
ython3.9/dist-packages (1.0.6)
Requirement already satisfied: pyyaml in /usr/lib/python3/dist-pac
kages (from podman-compose) (5.3.1)
Requirement already satisfied: python-dotenv in /usr/local/lib/pyth
on3.9/dist-packages (from podman-compose) (1.0.0)
root@firgate:/opt/monitoring#

Now we have a working setup for Podman, and we can start setting up our
monitoring stack using containers and Podman/Docker compose.

Podman error with CNI plugin
When we start the Podman, we will get an error with a conflict, and the
network will not start. If this happens, you must update the cni version in
the network file.

Open the cni file, as follows:



1.

2.
3.

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

root@pihole:/opt/monitoring# cat /etc/cni/net.d/87-podman-bridge.
conflist    cni.lock                     

monitoring_default.conflist  
root@pihole:/opt/monitoring# cat
/etc/cni/net.d/monitoring_default.conflist
Verify the version     "cniVersion": "0.4.0",

Setup and monitoring with Grafana and
Prometheus
Let us create a folder called /opt/monitoring on our server. In that folder, we
are to make a docker-compose.yaml file. We will use this file when we set
up our monitoring stack here.

During the chapter, we are to add more services to the folder and start more
and more services.

You are free to follow our step-by-step guide, or you can proceed to the end
to obtain the full Docker Compose file and start the full stack at once.

The following is the first version of our docker-compose.yaml with only
grafana:

version: "3"
services:
  grafana:

environment:
- GF_PATHS_PROVISIONING=/etc/grafana/provisioning
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

image: grafana/grafana:latest
volume:

- ./grafana: /var/lib/grafana
ports:

- "3000:3000"



1.
2.
3.
4.
5.
6.

7.
8.

9.

10.
11.
12.

13.

Now, we can start our stack by running the following command:
\root@pihole:/opt/monitoring# podman-compose up
podman-compose version: 1.0.6
['podman', '--version', '']
using podman version: 3.4.4
** excluding:  set()
['podman', 'ps', '--filter', 'label=io.podman.compose.project=monito
ring', '-a', '--format', '{{ index .Labels "io.podman.compose.config-
hash"}}']
['podman', 'network', 'exists', 'monitoring_default']
podman create --name=monitoring_grafana_1 --label io.podman.co
mpose.config-hash=68cb8b0bb2394d0c7250f76d5c4c6c9895f1c76
ad8e5415ba7069e9b104a03a4 --label io.podman.compose.project=
monitoring --label io.podman.compose.version=1.0.6 --label POD
MAN_SYSTEMD_UNIT=podman-compose@monitoring.service
--label com.docker.compose.project=monitoring --label com.docke
r.compose.project.working_dir=/opt/monitoring --label com.docke
r.compose.project.config_files=docker-compose.yaml --label com.
docker.compose.container-number=1 --label com.docker.compose.
service=grafana -e GF_PATHS_PROVISIONING=/etc/grafana/pro
visioning -e GF_AUTH_ANONYMOUS_ENABLED=true -e GF_
AUTH_ANONYMOUS_ORG_ROLE=Admin --net monitoring_d
efault --network-alias grafana -p 3000:3000 grafana/grafana:latest
Error: error creating container storage: the container name "monito
ring_grafana_1" is already in use by "a2fbe38e34f518491b749e7de
84dab5aeb4368260f781d425d764eb03291392b". You have to rem
ove that container to be able to reuse that name.: that name is alrea
dy in use
exit code: 125
podman start -a monitoring_grafana_1
[grafana] | logger=settings t=2023-10-06T17:41:50.537470323Z le
vel=info msg="Starting Grafana" version=10.1.4 commit=a676a96
d91 branch=HEAD compiled=2023-09-29T14:28:45Z
[grafana] | logger=settings t=2023-10-06T17:41:50.538484762Z le
vel=info msg="Config loaded from" file=/usr/share/grafana/conf/d



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

efaults.ini
[grafana] | logger=settings t=2023-10-06T17:41:50.538550972Z le
vel=info msg="Config loaded from" file=/etc/grafana/grafana.ini
[grafana] | logger=settings t=2023-10-06T17:41:50.538567889Z le
vel=info msg="Config overridden from command line" arg="defau
lt.paths.data=/var/lib/grafana"
[grafana] | logger=settings t=2023-10-06T17:41:50.538582764Z le
vel=info msg="Config overridden from command line" arg="defau
lt.paths.logs=/var/log/grafana"
[grafana] | logger=settings t=2023-10-06T17:41:50.538596473Z le
vel=info msg="Config overridden from command line" arg="defau
lt.paths.plugins=/var/lib/grafana/plugins"
[grafana] | logger=settings t=2023-10-06T17:41:50.538610181Z le
vel=info msg="Config overridden from command line" arg="defau
lt.paths.provisioning=/etc/grafana/provisioning"
[grafana] | logger=settings t=2023-10-06T17:41:50.538622431Z le
vel=info msg="Config overridden from command line" arg="defau
lt.log.mode=console"
[grafana] | logger=settings t=2023-10-06T17:41:50.538636723Z le
vel=info msg="Config overridden from Environment variable" var
="GF_PATHS_DATA=/var/lib/grafana"
[grafana] | logger=settings t=2023-10-06T17:41:50.538649849Z le
vel=info msg="Config overridden from Environment variable" var
="GF_PATHS_LOGS=/var/log/grafana"
[grafana] | logger=settings t=2023-10-06T17:41:50.538662974Z le
vel=info msg="Config overridden from Environment variable" var
="GF_PATHS_PLUGINS=/var/lib/grafana/plugins"
[grafana] | logger=settings t=2023-10-06T17:41:50.538676974Z le
vel=info msg="Config overridden from Environment variable" var
="GF_PATHS_PROVISIONING=/etc/grafana/provisioning"
[grafana] | logger=settings t=2023-10-06T17:41:50.538693891Z le
vel=info msg="Config overridden from Environment variable" var
="GF_AUTH_ANONYMOUS_ENABLED=true"
[grafana] | logger=settings t=2023-10-06T17:41:50.5387076Z level
=info msg="Config overridden from Environment variable" var



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

1.
2.
3.

="GF_AUTH_ANONYMOUS_ORG_ROLE=Admin"
[grafana] | logger=settings t=2023-10-06T17:41:50.538721892Z le
vel=info msg=Target target=[all]
[grafana] | logger=settings t=2023-10-06T17:41:50.538754559Z le
vel=info msg="Path Home" path=/usr/share/grafana
[grafana] | logger=settings t=2023-10-06T17:41:50.538767685Z le
vel=info msg="Path Data" path=/var/lib/grafana
[grafana] | logger=settings t=2023-10-06T17:41:50.538782852Z le
vel=info msg="Path Logs" path=/var/log/grafana
[grafana] | logger=settings t=2023-10-06T17:41:50.538795102Z le
vel=info msg="Path Plugins" path=/var/lib/grafana/plugins
[grafana] | logger=settings t=2023-10-06T17:41:50.538807061Z le
vel=info msg="Path Provisioning" path=/etc/grafana/provisioning
[grafana] | logger=settings t=2023-10-06T17:41:50.538820186Z le
vel=info msg="App mode production"
[grafana] | logger=sqlstore t=2023-10-06T17:41:50.539735164Z le
vel=info msg="Connecting to DB" dbtype=sqlite3
[grafana] | logger=migrator t=2023-10-06T17:41:50.708509328Z l
evel=info msg="Starting DB migrations"
[grafana] | logger=migrator t=2023-10-06T17:41:50.74556085Z le
vel=info msg="migrations completed" performed=0 skipped=493
duration=2.093629ms
[grafana] | logger=secrets t=2023-10-06T17:41:50.75014303

In our docker-compose file, we have some settings that are extra interesting.
One is the volume. This will make a local folder called grafana, and we
will save our config in that file. This is how we can mount local folders
from our host into our containers. The other part is the ports. This will tell
us that the external post 3000 is now open into our grafana on port 3000.
This is how we can connect from the outside to our service.

In the following file, we can see the port mapping:
volume:

- ./grafana: /var/lib/grafana
ports:



4.

1.
2.
3.
4.

5.

6.
7.
8.

9.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

- "3000:3000"

Now, when we have Grafana running, verify you can access the Grafana
GUI at http://IP OF SERVER:3000.

Now, we can add Prometheus to our stack. In our monitoring folder, create
a new folder called prom, and in that folder, create our prometheus.yaml
config file, shown as follows:

root@pihole:/opt/monitoring# cat prom/prometheus.yml
# my global config
global:
  scrape_interval:     15s # By default, scrape targets every 15
seconds.
  evaluation_interval: 15s # By default, scrape targets every 15
seconds.
  # scrape_timeout is set to the global default (10s).
 
  # Attach these labels to any time series or alerts when
communicating with
  # external systems (federation, remote storage, Alertmanager).
  external_labels:

monitor: 'my-project'
 
# Load and evaluate rules in this file every 'evaluation_interval'
seconds.
rule_files:
  - 'alert.rules'
  # - "first.rules"
  # - "second.rules"
 
# alert
alerting:
  alertmanagers:
  - scheme: http



23.
24.
25.
26.
27.

28.
29.
30.

31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.

43.
44.
45.
46.
47.
48.
49.

static_configs:
- targets:

- "alertmanager:9093"
 
# A scrape configuration containing exactly one endpoint to
scrape:
# Here it's Prometheus itself.
scrape_configs:
  # The job name is added as a label `job=<job_name>` to any
timeseries scraped from this config.
 
  - job_name: 'prometheus'
 

# Override the global default and scrape targets from this job
every 5 seconds.

scrape_interval: 15s
 

static_configs:
  - targets: ['localhost:9090']

 
  - job_name: 'cadvisor'
 

# Override the global default and scrape targets from this job
every 5 seconds.

scrape_interval: 15s
 

static_configs:
- targets: ['cadvisor:8080']

 
  - job_name: 'node-exporter'
 



50.

51.
52.
53.
54.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.

# Override the global default and scrape targets from this job
every 5 seconds.

scrape_interval: 15s
 

static_configs:
- targets: ['node-exporter:9100']

When the config file is in place, it is time to update our docker-compose file
by running the following:

root@pihole:/opt/monitoring# cat docker-compose.yaml
version: "3"
services:
  grafana:

environment:
- GF_PATHS_PROVISIONING=/etc/grafana/provisioning
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

image: grafana/grafana:latest
volumes:

- ./grafana: /var/lib/grafana
ports:

- "3000:3000"
  prometheus:

image: prom/prometheus:latest
volumes:

- ./prom/:/etc/prometheus/
command:

- ‘--config.file=/etc/prometheus/prometheus.yml’
      - '--web.console.libraries=/usr/share/prometheus/console_librar
ies'

- '--web.console.templates=/usr/share/prometheus/consoles'
ports:

- 9090:9090



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

As you can see, updating and adding new services go fast.

Now, start up your service using the podman-compose pre docker compose
up command. Suppose you want them to run and not look at the other
output. Replace the up for a start, and then when you want to stop, use
stop.

Let us add our last container to get metrics from our host. It is the Node
Exporter we used before, and now it is our docker-compose.yaml file
should look as follows:

root@pihole:/opt/monitoring# cat docker-compose.yaml
version: "3"
services:
  grafana:

environment:
- GF_PATHS_PROVISIONING=/etc/grafana/provisioning
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

image: grafana/grafana:latest
volumes:

- ./grafana: /var/lib/grafana
ports:

- "3000:3000"
  prometheus:

image: prom/prometheus:latest
volumes:

- ./prom/:/etc/prometheus/
command:

- ‘--config.file=/etc/prometheus/prometheus.yml’
      - '--web.console.libraries=/usr/share/prometheus/console_librar
ies'

- '--web.console.templates=/usr/share/prometheus/consoles'
ports:



23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

- 9090:9090
  node-exporter:

image: prom/node-exporter:v1.6.1
container_name: nodeexporter
volumes:

- /proc:/host/proc:ro
- /sys:/host/sys:ro
- /:/rootfs:ro

command:
- '--path.procfs=/host/proc'
- '--path.rootfs=/rootfs'
- '--path.sysfs=/host/sys'
- '--collector.filesystem.mount-points-exclude=^/(sys|proc|d

ev|host|etc)($$|/)'
expose:

- 9100

Start the stack up, and when it has started, you should be able to go to
grafana. Set up a new data source and add our prometheus. Then, go to
the dashboard, make a new one, and enter this number as the dashboard ID
to import 1860. Now, save and open the new dashboard, and we should
have some graphs in there.

We have now set up the first part of our monitoring in Podman, and we can
see some metrics from our host. However, we also want to see logs from
our server. Let us expand our docker-compose.yaml file by adding two
new services.

Reading logs with Loki
Loki is a data source for storing logs and is well-integrated with Grafana.
Promtail is a service that reads logfiles from your Ubuntu Server and sends
them to Loki.

We will add these to our docker-compose and add the full stack again.



1.
2.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.

Before we can start Loki, we need to create a folder for Loki and open its
permissions. Podman is enforcing hard rules on the folder inside our
Docker.

The following code shows the command to create and set the permission:
root@pihole:/opt/monitoring# mkdir loki
root@pihole:/opt/monitoring# chmod 777 loki

Now, update the docker-compose.yaml file to look like the following:
root@pihole:/opt/monitoring# cat docker-compose.yaml
version: "3"
services:
  grafana:

environment:
- GF_PATHS_PROVISIONING=/etc/grafana/provisioning
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin

image: grafana/grafana:latest
volumes:

- ./grafana:/var/lib/grafana
ports:

- "3000:3000"
  prometheus:

image: prom/prometheus:latest
volumes:

- ./prom/:/etc/prometheus/
command:

- ‘--config.file=/etc/prometheus/prometheus.yml’
      - '--web.console.libraries=/usr/share/prometheus/console_librar
ies'

- '--web.console.templates=/usr/share/prometheus/consoles'
ports:

- 9090:9090



24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

  node-exporter:
image: prom/node-exporter:v1.6.1
container_name: nodeexporter
volumes:

- /proc:/host/proc:ro
- /sys:/host/sys:ro
- /:/rootfs:ro

command:
- '--path.procfs=/host/proc'
- '--path.rootfs=/rootfs'
- '--path.sysfs=/host/sys'
- '--collector.filesystem.mount-points-exclude=^/(sys|proc|d

ev|host|etc)($$|/)'
expose:

- 9100
  loki:

image: grafana/loki:2.9.1
ports:

- "3100:3100"
command: -config.file=/etc/loki/local-config.yaml
volumes:

- ./loki:/loki:Z
  promtail:

image: grafana/promtail:2.9.1
volumes:

- /var/log:/var/log
command: -config.file=/etc/promtail/config.yml

Start up the stack by using the Podman command podman-compose
up|start or the Docker compose command docker compose up|start.
Navigate to data sources and add Loki as a source type at the address
http://loki:3100. Save and test the access. Then, go to Explorer view in



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Grafana, show Loki as a data source, and select job filters to view any logs
coming in.

This will end our base setup using Podman/Docker. We now have a
monitoring stack running all in containers. We are getting logs and metrics
from our host into Grafana, where we can view the Grafana and read our
logs.

We have one last bit of config before we are done. That involves retrieving
data from another server on our network and integrating it into our base
monitoring stack. To do that, we will use a docker-compose.yaml file that
we will start on all the servers we want to monitor, and they will start
sending data to our base monitoring stack.

Before we can start our client monitoring stack, you need to have Podman
or Docker running on the server we want to monitor.

Journal logs
Ubuntu uses a tool called journal to handle logs, and the default config in
Promtail is not set up to collect logs from the journal.

To retrieve all our logs, we need to create a Promtail config that will
collect all the logs. Then, make a new folder called prom, add a file called
config.yml, and add the content shown as follows:

root@pihole:/opt/monitoring# cat promtail/config.yml
server:
  http_listen_port: 9080
  grpc_listen_port: 0
 
positions:
  filename: /tmp/positions.yaml
 
clients:
  - url: http://loki:3100/loki/api/v1/push
 



12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

1.
2.
3.
4.
5.
6.

scrape_configs:
- job_name: system
  static_configs:
  - targets:

- localhost
labels:

job: varlogs
__path__: /var/log/*log

- job_name: journal
  journal:

json: false
max_age: 12h
path: /var/log/journal
matches: _TRANSPORT=kernel
labels:

job: systemd-journal
  relabel_configs:

- source_labels: ['__journal__systemd_unit']
target_label: 'unit'

Then, update our promtail config to use our config:
  promtail:

image: grafana/promtail:2.9.1
volumes:

- ./promtail/:/etc/promtail/
- /var/log:/var/log

command: -config.file=/etc/promtail/config.yml

Now, restart the basic monitoring stack and verify you are getting logs from
the journal.

Container based monitoring clients



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Let us set up a monitoring client to return logs and metrics to our base
monitoring stack. Here, we will make a docker-compose.yaml and save it
on our client. Then, we can start a Node Exporter to collect metrics and a
promtail to get logs. The logs are sent back to our Loki server. We will edit
our Prometheus to collect metrics from our clients.

First, create a file for the promtail so you cannot set the host of the loki
server.

The following code is what looks like from one of the nodes:
root@g1:/opt/monitoring# cat promtail/config.yml
server:
  http_listen_port: 9080
  grpc_listen_port: 0
 
positions:
  filename: /tmp/positions.yaml
 
clients:
  - url: http://192.168.1.4:3100/loki/api/v1/push
 
scrape_configs:
- job_name: system
  static_configs:
  - targets:

- localhost
labels:

job: varlogs
__path__: /var/log/*log

- job_name: journal
  journal:

json: false
max_age: 12h



24.
25.
26.
27.
28.
29.
30.
31.

1.
2.

1.
2.
3.

4.
5.
6.
7.

8.

path: /var/log/journal
matches: _TRANSPORT=kernel
labels:

job: systemd-journal
  relabel_configs:

- source_labels: ['__journal__systemd_unit']
target_label: 'unit'

root@g1:/opt/monitoring#

Please note the following line in the aforementioned file:
clients:
  - url: http://192.168.1.4:3100/loki/api/v1/push

This is the IP of our base monitoring server where Loki is running. We also
need to update our Prometheus config to pull data from the Node Exporter.

Open the config file on the base monitoring server and add the IP of the
clients you want to monitor, as follows (The code is a snippet; the full
config can be found in the GitHub repo):

root@pihole:/opt/monitoring# cat prom/prometheus.yml
  - job_name: 'node-exporter'

# Override the global default and scrape targets from this job e
very 5 seconds.

scrape_interval: 15s
 

static_configs:
- targets: ['node-exporter:9100','192.168.1.11:9100','10.0.0.

17:9100']
root@pihole:/opt/monitoring#

You can see the clients on the bottom line.

Now, use podman-compose or docker-compose to start your stack.

This ends our setup by getting metrics and logs using Podman and Docker.
You should now be able to see the following in your Grafana.



The following figure shows the data source to connect one to our
Prometheus and one to our Loki server:

Figure 10.5: Adding Loki as a data source

If you visit the explorer view, you can see the logs from Loki by filtering on
jobs as shown:



Figure 10.6: Loki logs number shown by the bars

We have the Node Exporter dashboard that you can use to view metrics
from your server, as shown in the following figure:

Figure 10.7: Shows the metrics from our server in Grafana

Conclusion
By the end of this chapter, we will have set up virtualization on an Ubuntu
Server and connected and managed our VM with a GUI from our desktop
and a web page. We also started and installed an Ubuntu Server VM using
only the cli on our server. With this, we now know how to install and set up
a VM on an Ubuntu Server in all ways possible.

We know that virtualization provides a stronger separation of services than
containers, but containers are an excellent tool for starting services when
they are not needed. We set up a comprehensive monitoring stack with
metrics and logs, utilizing containers to optimize their use effectively. This
was done using the container tools Podman and Docker.

With Podman, we slowly built up a base stack of monitoring tools until we
had a full Monitoring base running. To connect clients we wanted to



monitor, we set up new containers to collect and send data back to our
monitoring base. With this, you can now set up services in containers and
run them as a service, both as servers to collect and receive data and as
clients to send data.

In the next chapter, we will discuss how to set up a Kubernetes cluster.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


CHAPTER 11
Setup Webserver, Deploy and

Run Webapps

Introduction
Running web applications is the standard way of running most online
services today. Online applications can be from, for example, your own
blog that you host, online shops, or social media platforms. So being able to
host and run web applications is an important part when running and using
Ubuntu Servers. Most applications on the web today have a web server that
services the pages you see when you visit the page.

The database will store the data for the applications so that we can have
data for the visitors of the web applications. Here, several different types of
web servers display the web page to the user, and you can also use many
more databases. This chapter will give a basic level of minimal knowledge
of how to set up and run a simple web app using a web browser and a
database.

Structure
In this chapter, we will cover the following topics:



•

•

•

•

1.

Web servers

Databases

Deploying web apps

Webb Performance

Objectives
We will start by installing two types of web servers that are the most used
today: Apache and NGINX. With our web server, we will create two
domains and host simple web pages that do not require any database. We
will also look into setting up some basic performance values for our web
server. There are several databases for storing data for a web application,
and here, we will install and set up two different types of databases. One is
a document database called MongoDB, and the other is an SQL database
called MariaDB. When setting up the database, we will also learn to log
into our database and set some basic commands like looking at stats and
taking and restoring backups.

Web servers
We will understand how to install and set up two different web servers.
They both serve web pages to visitors, but they are different in some ways.
For the app we will be testing, it does not really matter which one you like.
But are you working with a high-performance service? Then you want to
add some more time to what webserver to choose.

Apache
Let us start by installing Apache 2 as follows:

root@g1:/home/mahe# apt install apache2

This command will install apache2 and create the folder where all the
config files are in /etc/apache2:

root@g1:/etc/apache2# ls -l



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

total 80
-rw-r--r-- 1 root root  7224 Oct 26 13:44 apache2.conf
drwxr-xr-x 2 root root  4096 Dec 20 15:25 conf-available
drwxr-xr-x 2 root root  4096 Dec 20 15:25 conf-enabled
-rw-r--r-- 1 root root  1782 May  3  2023 envvars
-rw-r--r-- 1 root root 31063 May  3  2023 magic
drwxr-xr-x 2 root root 12288 Dec 20 15:25 mods-available
drwxr-xr-x 2 root root  4096 Dec 20 15:25 mods-enabled
-rw-r--r-- 1 root root   320 May  3  2023 ports.conf
drwxr-xr-x 2 root root  4096 Dec 20 15:25 sites-available
drwxr-xr-x 2 root root  4096 Dec 20 15:25 sites-enabled
root@g1:/etc/apache2#

So, what does the folder structure work?

apache2.conf

This is the main config file that will be started when Apache starts. From
this file, all other folders are included.

When running Apache, you can install the module. PHP is an example of
one module, but it can be many more. All modules are located in mods-
available. You may not need them all, so you can enable the modes you like
by creating a link from mods-available to mods-enabled. Then, when
Apache is started, Apache2.conf will include the folder mods-enabled and
load the module from that folder.

Site folders are the same. For example, a site is a domain,
mywapp.example.com, and you can have multiple sites in the same
WordPress. For example, a web hotel may have 100 or even more sites
enabled.

So, add your config (we will create the config soon) and add it to sites-
available. Then, we will activate it by linking it into sites-enabled.

Webb content



1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.
7.
8.

We also need to have some content to run. Apache has a folder where all the
files that make up the webpage are saved. The content is served from that
folder. Here is why you will add your own code if you build your own app
or download and copy a project.

/var/www/html is the default folder where we have our content.

First config
Let us create a folder in /var/www/html/myapp, and then we will create a
config to display the content from that folder.

Make the folder and create a file called index.html in that folder. The name
index.html is the name of the default webpage. If a web server goes to a
folder and does not have a file name, it will look and load the index.html
file.

root@g1:/var/www/html/myapp# cat index.html
<html>
 <title>test</title>
  <h2>Hello</h2>
</html>
root@g1:/var/www/html/myapp#

Now we have the content, and we need to tell our Apache server to get the
files from that folder.

Here, we are updating the default file called 000-default to add our folder:
root@g1:/etc/apache2/sites-enabled# cat 000-default.conf
<VirtualHost *:80>
#ServerName www.example.com
ServerAdmin webmaster@localhost
DocumentRoot /var/www/html/myapp
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>



9.
10.
11.

1.
2.

1.

2.

1.

1.

1.
2.

 
# vim: syntax=apache ts=4 sw=4 sts=4 sr noet
root@g1:/etc/apache2/sites-enabled#

Restart Apache to activate the changes, as follows:
root@g1:/etc/apache2/sites-enabled# systemctl restart apache2
root@g1:/etc/apache2/sites-enabled#

In the config file, we did add an access log file. Let us tail that file while we
visit the page. Now go to http:// THE IP OF YOUR SERVER.

Tail the log file to see the access. The access or error log will give you more
information if something is not working.

To read the logs, run the command as shown:
root@g1:/etc/apache2/sites-enabled# tail -f
/var/log/apache2/access.log
192.168.1.52 - - [20/Dec/2023:16:34:49 +0000] "GET /myapp/ HT
TP/1.1" 200 336 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWeb
Kit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.3
6"

NGINX
Let us now set up NGINX, another web server, and we will set up nginx to
also display our webpage. First, we must stop our Apache server; we cannot
have the web server running simultaneously and listening on the same port.
Run the following command to stop the Apache server:

systemctl stop apache2

Then we can install NGINX as follows:
root@g1:/etc/apache2/sites-enabled# apt install nginx

We will find the config files for NGINX in the /etc/nginx folder and then
recognize the folder structure as follows:

root@g1:/etc/nginx# ls -l
total 64



3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

1.
2.

1.
2.

drwxr-xr-x 2 root root 4096 Nov 10  2022 conf.d
-rw-r--r-- 1 root root 1125 Jul 27  2022 fastcgi.conf
-rw-r--r-- 1 root root 1055 Jul 27  2022 fastcgi_params
-rw-r--r-- 1 root root 2837 Jul 27  2022 koi-utf
-rw-r--r-- 1 root root 2223 Jul 27  2022 koi-win
-rw-r--r-- 1 root root 3957 Aug  2  2022 mime.types
drwxr-xr-x 2 root root 4096 Nov 10  2022 modules-available
drwxr-xr-x 2 root root 4096 Jun 14  2023 modules-enabled
-rw-r--r-- 1 root root 1447 Jul 27  2022 nginx.conf
-rw-r--r-- 1 root root  180 Jul 27  2022 proxy_params
-rw-r--r-- 1 root root  636 Jul 27  2022 scgi_params
drwxr-xr-x 2 root root 4096 Dec 20 16:56 sites-available
drwxr-xr-x 2 root root 4096 Jun 14  2023 sites-enabled
drwxr-xr-x 2 root root 4096 Dec 20 16:56 snippets
-rw-r--r-- 1 root root  664 Jul 27  2022 uwsgi_params
-rw-r--r-- 1 root root 3071 Jul 27  2022 win-utf

Let us go into the folder sited-enable and edit the files default in that folder.
We will update the root path to our own as follows:

# include snippets/snakeoil.conf;
root /var/www/html/myapp;

Now we can restart nginx and revisit our webpage over http:// IP TO
SERVER, as follows:

root@g1:/etc/nginx/sites-enabled# systemctl restart nginx
root@g1:/etc/nginx/sites-enabled#

We can now see the same hell but now served from NGINX and not
Apache.

Databases
There are many different types of databases, and they all behave differently.
Here, we will test two different types, one SQL Server and one document
database. They behave and work differently.



1.

2.

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

11.
12.
13.
14.
15.

Let us start with the SQL Server.

MariaDB SQL
Let us start by installing MariaDB and setting up the SQL. For that, we will
run the following command that will set up and lock down the SQL Server
for us:

root@g1:/etc/nginx/sites-enabled# sudo apt install mariadb-server
mariadb-client -y
root@g1:/etc/nginx/sites-enabled# mysql_secure_installation

During the mysql_secure_installation, answer all questions as questions as
y, except the question Switch to unix_socket authentication [Y/n] n

... skipping

Then, set the SQL root password to a password you know.

Now, let us restart the database and log in as follows:
root@g1:/etc/nginx/sites-enabled# systemctl restart mariadb
root@g1:/etc/nginx/sites-enabled# mysql -u root -p
Enter password:
Welcome to the MariaDB monitor.  Commands end with ; or \g.
Your MariaDB connection id is 31
Server version: 10.6.12-MariaDB-0ubuntu0.22.04.1 Ubuntu 22.04
 
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and ot
hers.
 
Type 'help;' or '\h' for help. Type '\c' to clear the current input state
ment.
 
MariaDB [(none)]> show databases;
+--------------------+
| Database           |
+--------------------+



16.
17.
18.
19.
20.
21.
22.
23.

1. MariaDB [(none)]> create database mattias;2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

| information_schema |
| mysql              |
| performance_schema |
| sys                |
+--------------------+
4 rows in set (0.001 sec)
 
MariaDB [(none)]>

As you aforementioned, we now also run the command show databases;.

This will display the databases we have in the database server. When we
install new apps, we will create databases in our database server.

Run the following commands to create/list and delete a database:

MariaDB [(none)]> create database mattias;

Query OK, 1 row affect
ed (0.001 sec)
 
MariaDB [(none)]> show databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mattias            |
| mysql              |
| performance_schema |
| sys                |
+--------------------+
5 rows in set (0.000 sec)
 
MariaDB [(none)]> drop database mattias;
Query OK, 0 rows affected (0.002 sec)



18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

1.

2.
3.
4.
5.
6.

 
MariaDB [(none)]> show databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| sys                |
+--------------------+
4 rows in set (0.001 sec)
 
MariaDB [(none)]>

MongoDB
Now, we will install our other database, MongoDB, that are a document
DB.
For that, we need to add their repo and key, and then we can install our
MongoDB database.

We are already familiar with the steps, so the following is a quick
installation guide:

root@g1:/etc/nginx/sites-enabled# curl -fsSL
https://pgp.mongodb.com/server-7.0.asc | \
   sudo gpg -o /usr/share/keyrings/mongodb-server-7.0.gpg \
   --dearmor
 
 
root@g1:/etc/nginx/sites-enabled# echo "deb [ arch=amd64,arm64
signed-by=/usr/share/keyrings/mongodb-server-7.0.gpg ]
https://repo.mongodb.org/apt/ubuntu jammy/mongodb-org/7.0
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-7.0.list



7.

8.
9.
10.
11.
12.
13.

14.

15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

deb [ arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb-
server-7.0.gpg ] https://repo.mongodb.org/apt/ubuntu jammy/mong
odb-org/7.0 multiverse
 
 
root@g1:/etc/nginx/sites-enabled# sudo apt-get update
 
Hit:1 http://archive.ubuntu.com/ubuntu jammy InRelease
Ign:2 https://repo.mongodb.org/apt/ubuntu jammy/mongodb-org/7.
0 InRelease
Get:3 http://archive.ubuntu.com/ubuntu jammy-updates InRelease
[119 kB]          
 
root@g1:/etc/nginx/sites-enabled# sudo apt-get install -y
mongodb-org
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Unpacking mongodb-org (7.0.4) ...
Setting up mongodb-mongosh (2.1.1) ...
Setting up mongodb-org-server (7.0.4) ...
Adding system user `mongodb' (UID 122) ...
Adding new user `mongodb' (UID 122) with group `nogroup' ...
Not creating home directory `/home/mongodb'.
Adding group `mongodb' (GID 126) ...
Done.
Adding user `mongodb' to group `mongodb' ...
Adding user mongodb to group mongodb
Done.
Setting up mongodb-org-shell (7.0.4) ...
Setting up mongodb-database-tools (100.9.4) ...
Setting up mongodb-org-mongos (7.0.4) ...



34.
35.
36.
37.

1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
11.

12.
13.
14.
15.
16.

17.

18.
19.

Setting up mongodb-org-database-tools-extra (7.0.4) ...
Setting up mongodb-org-database (7.0.4) ...
Setting up mongodb-org-tools (7.0.4) ...
Setting up mongodb-org (7.0.4) ...

When connecting to our MongoDB server we will use a command called
mongosh. Here, we restart our MongoDB server and connect, as follows:

root@g1:/etc/nginx/sites-enabled# systemctl restart mongod
root@g1:/etc/nginx/sites-enabled# mongosh
Current Mongosh Log ID: 65833509961a4f00be52bbc0
Connecting to:  mongodb://127.0.0.1:27017/?directConnection=
true&serverSelectionTimeoutMS=2000&appName=mongosh+2.1.
1
Using MongoDB:  7.0.4
Using Mongosh:  2.1.1
 
For mongosh info see: https://docs.mongodb.com/mongodb-shell/
 
 
To help improve our products, anonymous usage data is collected a
nd sent to MongoDB periodically (https://www.mongodb.com/lega
l/privacy-policy).
You can opt-out by running the disableTelemetry() command.
 
------
   The server generated these startup warnings when booting
   2023-12-20T18:40:05.463+00:00: Using the XFS filesystem is st
rongly recommended with the WiredTiger storage engine. See htt
p://dochub.mongodb.org/core/prodnotes-filesystem
   2023-12-20T18:40:06.769+00:00: Access control is not enabled f
or the database. Read and write access to data and configuration is
unrestricted
------
 



20.

1.
2.
3.
4.
5.
6.
7.

1.

test>

In MariaDB, we hade databases that we created, and we have similar here
in the script below we create a new database called mattias.

In the database, we create a collection called mattias-collections, as
follows:

test> use mattias
switched to db mattias
mattias> db.createCollection("mattias-collections")
{ ok: 1 }
mattias> show collections
mattias-collections
mattias>

Database tools
We have now installed our webserver and two different databases. But as
you can see from above, managing our database is done from the command
line. Let us install some tools to help us better manage our MariaDB server.

phpmyadmin
phpmyadmin is a web tool that manages MariaDB and another SQL-based
server. Here, we can install it on our web server. In Ubuntu, there is a
package that will install phpmyadmin and setup everything for us.

So we can run it as follows:

apt install phpmyadmin php libapache2-mod-php

Then follow the step and set up to update the Apache2 webserver. Then,
verify that our Apache2 server is running.

Go to http:// Your IP /phpMyAdmin, and you should see a webpage with
a login. Now log in with the root and the password you set to the MYSQL
SERVER.

From this webpage, you can now control your MariaDB server.



•

•

•

•

1.

2.
3.
4.

5.
6.
7.
8.

Deploying web apps
We are now ready to deploy any web app built with PHP and use a MySQL
/MariaDB database. There are many different web services you can find.
They all are installed in a similar setup as follows:

We download a package with the code.

We unpack the content to our webb folder in
/var/www/html/myapp.

We set the right permission for the files.

We visit an installation page and fill in the values. The values are,
for example, database name/user and password, and those we get
by creating them in PHPMyAdmin.

WordPress
Let us start with the popular blog WordPress. We will download the latest
WordPress and add it to our web folder. Here, we will download the
latest.zip from WordPress, then install unzip and unzip the WordPress
folder.

When we are done, we have a new folder named WordPress with the
content from the ZIP we downloaded as follows:

root@g1:/var/www/html/myapp# wget
https://wordpress.org/latest.zip
--2023-12-21 12:56:38--  https://wordpress.org/latest.zip
Resolving wordpress.org (wordpress.org)... 198.143.164.252
Connecting to wordpress.org (wordpress.org)|198.143.164.252|:44
3... connected.
HTTP request sent, awaiting response... 200 OK
Length: 25954973 (25M) [application/zip]
Saving to: ‘latest.zip’
 



9.

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

1.

2.

latest.zip      100%[==================================
===============================================
==============================================
>]  24.75M  12.6MB/s    in 2.0s   
 
2023-12-21 12:56:41 (12.6 MB/s) - ‘latest.zip’ saved [25954973/25
954973]
 
root@g1:/var/www/html/myapp# unzip latest.zip
bash: unzip: command not found
root@g1:/var/www/html/myapp# apt install unzip
 
root@g1:/var/www/html/myapp# unzip latest.zip
Archive:  latest.zip
 
 
root@g1:/var/www/html/myapp# ls -l
total 25360
-rwxrwxrwx 1 root root       53 Dec 20 16:34 index.html
-rw-r--r-- 1 root root 25954973 Dec  6 16:26 latest.zip
drwxr-xr-x 5 root root     4096 Dec  6 16:25 wordpress
root@g1:/var/www/html/myapp# rm latest.zip
root@g1:/var/www/html/myapp# ls -l
total 8
-rwxrwxrwx 1 root root   53 Dec 20 16:34 index.html
drwxr-xr-x 5 root root 4096 Dec  6 16:25 wordpress
root@g1:/var/www/html/myapp# https://wordpress.org/latest.zip

Before we can start Apache we need to set the right permission on the files.
Our web server runs under the user www-data and group www-data.

root@g1:/var/www/html/myapp# chown www-data:www-data -R
wordpress/
root@g1:/var/www/html/myapp#



We can now visit our webserver with Apache running on, and we are
loading the setup page for WordPress. Follow the guide and add the
following for the database. First, log in to our MariaDB from the terminal
or use the PhpMyAdmin that we installed before. Then, create a new
database called WordPress. Now, we can fill in our settings and add our
MySQL user and password.

Using the root account, you should not do it other than for testing, as
shown:

Figure 11.1: WordPress database setup

The best way is to create your account and set permissions for our
WordPress.

Observium
Observium is a platform for monitoring the state of servers and switches,
and it runs on PHP and MySQL. To get Observium working, we also need



1.

2.
3.

1.
2.
3.
4.
5.
6.

7.
8.

9.

10.
11.
12.
13.
14.
15.

to add a virtual host till Apache and set and run some config commands to
set our SQL and users.

Let us install it as well to test it out; notice we are now running this in the
opt folder:

root@g1:/opt# wget http://www.observium.org/observium-
community-latest.tar.gz
root@g1:/opt/#tar zxvf observium-community-latest.tar.gz
root@g1:/opt# chown www-data:www-data -R observium

Login into phpMyAdmin ore the SQL CLI and create a database for
Observium. Then, we can move on to installing it by running the following
commands. We copy the default config file and add our settings to our
database. Then, we set up the database by installing the tables needed for
Observium. After that, we create some folders and a user for us to use.

root@g1:/opt/observium# cp config.php.default config.php
root@g1:/opt/observium# vi config.php
root@g1:/opt/observium# cat config.php
<?php
 
## Check https://docs.observium.org/config_options/ for
documentation of possible settings
 
## It's recommended that settings are edited in the web interface at
/settings/ on your observium installation.
## Authentication and Database settings must be hardcoded here
because they need to work before you can reach the web-based
configuration interface
 
// Database config
// --- This MUST be configured
$config['db_host']      = 'localhost';
$config['db_name']      = 'observium';
$config['db_user']      = 'root';



16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44.
45.

$config['db_pass']      = 'password';
 
// Base directory
#$config['install_dir'] = "/opt/observium";
 
// Default snmp version
#$config['snmp']['version'] = "v2c";
// Snmp max repetition for faster requests
#$config['snmp']['max-rep'] = TRUE;
// Default snmp community list to use when adding/discovering
#$config['snmp']['community'] = [ "public" ];
 
// Authentication Model
#$config['auth_mechanism'] = "mysql";    // default, other options:
ldap, http-auth, please see documentation for config help
 
// Enable alerter
#$config['poller-wrapper']['alerter'] = TRUE;
 
// Show or not disabled devices on major pages
#$config['web_show_disabled'] = FALSE;
 
// Set up a default alerter (email to a single address)
#$config['email']['default']        = "user@your-domain";
#$config['email']['from']           = "Observium <observium@your-d
omain>";
 
// End config.php
root@g1:/opt/observium#
root@g1:/opt/observium#
root@g1:/opt/observium# ./discovery.php -u
 



46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

1.

  ___   _          _
 / _ \ | |__   ___   ___  _ __ __   __(_) _   _  _ __ ___
| | | || '_ \ / __| / _ \| '__|\ \ / /| || | | || '_ ` _ \
| |_| || |_) |\__ \|  __/| |    \ V / | || |_| || | | | | |
 \___/ |_.__/ |___/ \___||_|     \_/  |_| \__,_||_| |_| |_|

              Observium Community Edition 23.9.13005
       https://www.observium.org

 
Install initial database schema ... done.
-- Updating database/file schema
 
484 -> 485 # (db) . Done (0s).
-- Done.
-- Observium is up to date.
root@g1:/opt/observium# ./adduser.php matte password 1
Observium CE 23.9.13005
Add User
 
User matte added successfully.
root@g1:/opt/observium# mkdir logs
root@g1:/opt/observium# mkdir rrd
root@g1:/opt/observium#

Now we have the issue that we have our WordPress running in one folder,
and we have observium running in a different one. And we want to see
both from within our web server.

To make that work, we will create a Virtual host in Apache. The setup is
similar in NGINX; they both support many virtual hosts. In our Apache
folder, we create a new file called observium.conf, and in that file, we can
add the following content. Notice the ServerAlias value.

It tells if we go to http://observium.lan then this config will be activated.

root@g1:/etc/apache2/sites-available# cat observium.conf



2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

1.
2.
3.

<VirtualHost *:80>
ServerAlias observium.lan
ServerAdmin webmaster@localhost
DocumentRoot /opt/observium/html
<FilesMatch \.php$>

SetHandler application/x-httpd-php
</FilesMatch>
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /opt/observium/html/>

DirectoryIndex index.php
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Require all granted

</Directory>
ErrorLog  ${APACHE_LOG_DIR}/error.log
LogLevel warn
CustomLog  ${APACHE_LOG_DIR}/access.log combined
ServerSignature On

</VirtualHost>
root@g1:/etc/apache2/sites-available#

We also need to add on our default file a server name so Apache know what
config to use.

root@g1:/etc/apache2/sites-enabled# cat 000-default.conf
<VirtualHost *:80>
ServerName www.lan

And we need to activate our config by linking the file to our sites-enabled
folder:



1.

2.
3.
4.

1.
2.
3.

root@g1:/etc/apache2/sites-enabled# ln -s  ../sites-
available/observium.conf .
root@g1:/etc/apache2/sites-enabled# ls
000-default.conf  observium.conf
root@g1:/etc/apache2/sites-enabled#

Now restart Apache and set up the host file on your computer as well now
when we do not have any DNS in our local network. From my computer:

mattias@hrb:~$ cat /etc/hosts
127.0.0.1 localhost
192.168.1.11 observium.lan

You now have observium running and can visit by going to
http://observium.lan/ as shown:

Figure 11.2: Observium main page

Rocket.Chat
Rocket.Chat is a chat application running in node. We will start here to app
inside a Docker for us and then connect. Let us chat to our MongoDB
server.



1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

First, log in to our MongoDB and set up a user for our rocket-chat, as
follows:

root@g1:/opt/rocket-chat# mongosh
Current Mongosh Log ID: 6584ad621f350a738e3d8239
Connecting to:  mongodb://127.0.0.1:27017/?directConnection=
true&serverSelectionTimeoutMS=2000&appName=mongosh+2.1.
1
Using MongoDB:  7.0.4
Using Mongosh:  2.1.1
 
For mongosh info see: https://docs.mongodb.com/mongodb-shell/
 
------
   The server generated these startup warnings when booting
   2023-12-20T18:40:05.463+00:00: Using the XFS filesystem is
strongly recommended with the WiredTiger storage engine.
See http://dochub.mongodb.org/core/prodnotes-filesystem
   2023-12-20T18:40:06.769+00:00: Access control is not enabled
for the database. Read and write access to data and configuration is
unrestricted
------
test> use rocket
rocket> db.createUser(
...   {
...     user: "rocket",
...     pwd:  "rocketpass",   // or cleartext password
...     roles: [ { role: "readWrite", db: "rocket" },
...              { role: "read", db: "reporting" } ]
...   }
... )
{ ok: 1 }
rocket> exit



25.

26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.

37.

38.
39.
40.
41.
42.

1.

2.
3.

root@g1:/opt/rocket-chat# mongosh -u rocket -p --
authenticationDatabase  rocket
Enter password: **********
Current Mongosh Log ID: 6584ae48053eb4f94d7d58d6
Connecting to:  mongodb://<credentials>@127.0.0.1:27017/?direct
Connection=true&serverSelectionTimeoutMS=2000&authSource=
rocket&appName=mongosh+2.1.1
Using MongoDB:  7.0.4
Using Mongosh:  2.1.1
 
For mongosh info see: https://docs.mongodb.com/mongodb-shell/
 
------
   The server generated these startup warnings when booting
   2023-12-20T18:40:05.463+00:00: Using the XFS filesystem is
strongly recommended with the WiredTiger storage engine.
See http://dochub.mongodb.org/core/prodnotes-filesystem
   2023-12-20T18:40:06.769+00:00: Access control is not enabled
for the database. Read and write access to data and configuration
is unrestricted
------
 
test> use rocket
switched to db rocket
rocket>

Rocket.Chat comes with a pre-setup docker-compose that we can use. We
only need to update the MongoDB URL.

We also need to tell our MongoDB to listen to our network port. That is
done by altering the MongoDB config, as follows:

root@g1:/opt/rocket-chat# cat /etc/mongod.conf

# mongod.conf
# network interfaces



4.
5.
6.

1.
2.
3.

4.
5.
6.

7.

8.
9.
10.
11.
12.
13.
14.
15.
16.

net:
port: 27017
bindIp: 0.0.0.0

Update the bindIp from 127.0.0.1 to 0.0.0.0 and then restart the MongoDB
server.

Now we can create a Docker compose file compose.yml and add the
following content:

services:
rocketchat:
image: registry.rocket.chat/rocketchat/rocket.chat:${RELEAS

E:-latest}
restart: always
environment:

      MONGO_URL: “mongodb://rocket:rocketpass@192.168.1.11:
27017/rocket”
      MONGO_OPLOG_URL: "mongodb://rocket:rocketpass@192.
168.1.11:27017/rocket"

ROOT_URL: http://192.168.1.11:3000
PORT: 3000
DEPLOY_METHOD: docker
DEPLOY_PLATFORM: ${DEPLOY_PLATFORM:-}
REG_TOKEN: ${REG_TOKEN:-}

expose:
- 3000

ports:
- 3000:3000

Start-up our Rocket.Chat with our docker compose up command. Your
Rocket.Chat will be showing at http:// IP:3000.

Webb performance



1.
2.
3.

4.

5.
6.

7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.

When it comes to web performance, there are many different settings you
can add to make your web server perform faster. Some are added by default,
and some we need to add as well. Note that you need to test your page and
settings to optimize your web server.

Some of the settings we add to our Apache server are keepalive and
compress. They will keep connections open longer when you have many
clients and reusing the connections and not making new ones saves time.
Also, the compressed setting will compress the data when sent to the client,
making it smaller and arriving faster.

The following is our Apache virtual host with keepalive and compress
turned on:

LoadModule deflate_module modules/mod_deflate.so
KeepAlive On

    # MaxKeepAliveRequests: How many requests to allow during a
persistent connection.
    # You can set it 0 for unlimited requests, but it is not
recommended.

MaxKeepAliveRequests 100
    # KeepAliveTimeout: Number of seconds to wait for the next
request from the
    # same client on the same connection. Default is 5 seconds

KeepAliveTimeout 15
<VirtualHost *:80>

ServerAdmin webmaster@localhost
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combi

ned
Alias /server-status /tmp/server-stats
<Directory /tmp/server-status>

SetHandler server-status
Order allow,deny
Deny from env=go_away



18.
19.
20.
21.
22.

23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.

38.
39.

40.
41.
42.
43.
44.

Allow from all
</Directory>

    # Keep track of extended status information for each request
    #ExtendedStatus On
    # Determine if mod_status displays the first 63 characters of a
request or
    # the last 63, assuming the request itself is greater than 63
chars.
    # Default: Off
    #SeeRequestTail On

<IfModule mod_proxy.c>
      # Show Proxy LoadBalancer status in mod_status

ProxyStatus On
</IfModule>
<IfModule mod_deflate.c>

AddOutputFilterByType DEFLATE application/javascript
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/vnd.ms-fon

tobject
AddOutputFilterByType DEFLATE application/x-font
AddOutputFilterByType DEFLATE application/x-font-ope

ntype
AddOutputFilterByType DEFLATE application/x-font-otf
AddOutputFilterByType DEFLATE application/x-font-truet

ype
AddOutputFilterByType DEFLATE application/x-font-ttf
AddOutputFilterByType DEFLATE application/x-javascrip

t
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE font/opentype
AddOutputFilterByType DEFLATE font/otf
AddOutputFilterByType DEFLATE font/ttf



45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.

1.

AddOutputFilterByType DEFLATE image/svg+xml
AddOutputFilterByType DEFLATE image/x-icon
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE text/html
AddOutputFilterByType DEFLATE text/javascript
AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml

</IfModule>
DocumentRoot /var/www/html
</VirtualHost>

Here, the config for turning compress on with NGINX is as follows:
$ vim /etc/nginx/nginx.conf
 
# uncomment gzip module
gzip on;
gzip_disable msie6;
gzip_proxied no-cache no-store private expired auth;
gzip_types text/plain text/css application/x-javascript application/ja
vascript text/xml application/xml application/xml+rss text/javascri
pt image/x-icon image/bmp image/svg+xml;
gzip_min_length 1024;
gzip_vary on;
gunzip on;

Backup
When running a database, taking backup is an important task, and for that,
we have a command we can use. It is best to make a script and add it to the
server to be run regularly

Here, we are exporting the databases and saving them to disk as follows:
root@g1:/var/backups# mysqldump -u root -p wordpress >
wordpress_backup.sql



2.

3.

4.

5.
6.
7.

1.
2.
3.

root@g1:/var/backups# mongodump
mongodb://rocket:rocketpass@192.168.1.11:27017/rocket
2023-12-21T22:00:07.579+0000 writing rocket.rocketchat_oauth_r
efresh_tokens to dump/rocket/rocketchat_oauth_refresh_tokens.bs
on
2023-12-21T22:00:07.583+0000 done dumping rocket.rocketchat_
oauth_refresh_tokens (0 documents)
root@g1:/var/backups# ls
dump  wordpress_backup.sql
root@g1:/var/backups#

There are tools to read and restore the data back to both MariaDB and
MongoDB.

Database user
When running our test, we used the root user, and it was not recommended
at all. For every service you create, you want to create one user in a
database to keep them separated.

We already have created a user for MongoDB. For MariaDB, you can create
a user with the following command:

CREATE USER 'dbuser'@'&' IDENTIFIED BY 'password';
GRANT PRIVILEGE ON database.* TO 'dbuser'@'&';
FLUSH PRIVILEGES;

Notice that you will update the name of the database to the database name
you want to give the user access to.

Conclusions
By the end of this chapter, we looked at web servers and databases that are
the base of most web applications today. Every service we use today over
the internet is served by a web server and most likely has a database to store
data. Apache and NGINX are two of the most used web servers, that we
installed and set up in this chapter. When it comes to databases, there are
many different types, but two of the most used are SQL servers, and we



have installed and set up a MariaDB SQL server. The other type is a
documents database, and for the document database, we have installed and
set up MongoDB.

We have installed and set up two different web applications to use our
Webserver and database. One is using a webform so that you, from an
installation page, can set up your accounts and database settings. The other
page uses config files and scripts, and here, you run and install both apps.
To visit both pages on vi, configure Apache to service two virtual hosts.

Do use our MongoDB. We could install Rocket.Chat, and we could run in
Docker, but it connected back to our MongoDB to store all its data.

Running a web server and database is one step, however, we also need them
to be fast, and for that, we looked at simple ways of speeding up our web
server. We also need backup if something happens and learned how to take
a backup from both MariaDB and MongoDB. We need to make our data
secure, and the first part is to make users for every service we use.

We now understand how to set up and run a web server and database in an
Ubuntu Server.

In the next chapter, we will cover how to set up and run a Kubernetes
cluster.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/




•

•

•

CHAPTER 12
Kubernetes Run and Setup

Introduction
In this chapter, we will look at setting up a Kubernetes cluster on an on-
prem cluster of Ubuntu Servers. We will then set up some default services
to ensure your cluster is operational and ready for the workload.

During the setup of the cluster, we will install services to monitor metrics
and logs. Using disk and balancing traffic using ingress and load balancers.

By the end, we will deploy our WordPress deployment as a workload in the
cluster.

Kubernetes clusters are available on all cloud providers today, and the
content in the chapter will not just help you with Ubuntu but also help in
setting up Kubernetes clusters anywhere.

Structure
In this chapter, we will cover the following topics:

Installing Kubernetes on Ubuntu

Installing Kubernetes

Setting up our Kubernetes



•

•

•

Deploy Kubernetes base service

Install WordPress in Kubernetes

Kubectl command to remember

Objectives
By the end of this chapter, we will start with installing a clean Ubuntu
Server. We will then learn to set up a Kubernetes master. When the
Kubernetes master is running, we will add a new Ubuntu Server as a
Kubernetes worker node. And start adding workload to our Kubernetes
cluster.

By the end of this chapter, you will be able to set up your own Kubernetes
cluster and deploy services into the cluster. Once the cluster is set, we will
continue to add cluster services to use our cluster. We will add a Load
balancer to receive traffic to our cluster. We will also add tools to monitor
our cluster with logs and metrics. Storage system to enable our workloads
to utilize disk resources. When our core systems are installed, we can add
our workload into the cluster and, like WordPress, into our cluster.

Finally, once our workload is running, we will also look at some base
commands to troubleshoot our Kubernetes cluster.

Installing Kubernetes on Ubuntu
There are several tools to install Kubernetes on the Ubuntu Server. Ubuntu
also has its own tool. However, here, we will examine kubeadm, a tool from
Kubernetes for setting up a Kubernetes cluster.

We will start with a clean Ubuntu Server installation and install our
components. Then, we will begin with setting up our master node.

Once the master node is running, we will connect our worker node to the
master.

Installing Kubernetes requirements



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17.
18.

Run the following on both the master and the worker. It will install the
packages we need on our Ubuntu Server before we can start installing our
Kubernetes cluster. The small bash script is a simple way to make sure our
Ubuntu nodes are updated and have the correct packages and settings before
we can start. This provides a good foundation for us to build upon with the
Kubernetes cluster.

The following command is run on both the master and the workers:
echo "First lets update this box"
apt-get update
apt-get upgrade -y
echo "Lets get docker"
apt-get update
 
apt-get install \

apt-transport-https \
ca-certificates \
curl \
gnupg \
lsb-release -y

 
echo “Setup cri-o”
export OS=xUbuntu_22.04
export CRIO_VERSION=1.28
echo "deb https://download.opensuse.org/repositories/devel:/kubi
c:/libcontainers:/stable/$OS/ /"| sudo tee /etc/apt/sources.list.d/deve
l:kubic:libcontainers:stable.list
echo "deb http://download.opensuse.org/repositories/devel:/kubic:/
libcontainers:/stable:/cri-o:/$CRIO_VERSION/$OS/ /"|sudo tee /et
c/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-o:$CRIO_V
ERSION.list
 
curl -L https://download.opensuse.org/repositories/devel:kubic:libc
ontainers:stable:cri-o:$CRIO_VERSION/$OS/Release.key | sudo a



19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.

42.
43.
44.

pt-key add -
curl -L https://download.opensuse.org/repositories/devel:/kubic:/lib
containers:/stable/$OS/Release.key | sudo apt-key add -
apt update
sudo apt install cri-o cri-o-runc -y
 
echo "Setup kdeadm"
cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
br_netfilter
EOF
 
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sudo sysctl --system
 
apt-get update
apt-get install -y apt-transport-https ca-certificates curl
 
 
curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key |
sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gp
g
 
 
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gp
g] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /' | sudo tee /etc/apt/s
ources.list.d/kubernetes.list
 
 
apt-get update



45.
46.

1.

1.
2.
3.
4.
5.

6.
7.
8.

9.
10.

11.
12.

13.
14.

apt-get install -y kubelet kubeadm kubectl
apt-mark hold kubelet kubeadm kubectl

We also, on our master, install our kubectl cli. The kubectl will be the
command we use to control our cluster.

Install it on the master, and if you want to connect to the cluster from your
computer, run the following command:

apt-get install -y kubectl

Kubernetes cannot run with swap enabled, so we need to disable swap on
our disk. Run the following command:

swapoff -a

This will turn the swap off. To make it over reboot, open the file /etc/fstab
and comment out the swap line shown as follows:

root@k8sworker1:/etc# cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid' to print the universally unique identifier for a
# device; this may be used with UUID= as a more robust way to
name devices
# that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point>   <type>  <options>      
<dump>  <pass>
# / was on /dev/ubuntu-vg/ubuntu-lv during curtin installation
/dev/disk/by-id/dm-uuid-LVM-cfGHvajJTd3kAImwQnpYjlKIdlib
PnigLy3eug4tETdyLQoEMklbvgGFdKNKwsMx / ext4 defaults 0
1
# /boot was on /dev/vda2 during curtin installation
/dev/disk/by-uuid/a05358b5-b729-4962-ab39-53f6bcf016d9 /boot
ext4 defaults 0 1
/swap.img none swap sw 0 0
 



15.

1.
2.

1.

2.

3.

4.

5.
6.

#/swap.img none swap sw 0 0

Your file should have the line with swap commented out, as
aforementioned.

We also need to update/hack so that containerd starts running the following
command to verify our containerd:

rm /etc/containerd/config.toml
systemctl restart containerd

Setting up our Kubernetes cluster
We are now ready to install Kubernetes, and we will do that by running an
init command on the master node. We will also set an IP range for our pod
in the init command.

The init script will run and make all the config. When the init is done, we
will add our worker node. Then, we must add a network plugin that creates
the network for the pods in the cluster. There are several network plugins,
and they all give different values, shown as follows:

root@k8smaster:/etc# kubeadm init  --cri-socket
/var/run/crio/crio.sock --pod-network-cidr=10.244.0.0/16
W1106 21:05:51.319644   20918 initconfiguration.go:120] Usage
of CRI endpoints without URL scheme is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "uni
x" to the "criSocket" with value "/var/run/crio/crio.sock". Please up
date your configuration!
W1106 21:05:51.323164   20918 version.go:104] could not fetch a
Kubernetes version from the internet: unable to get URL "https://d
l.k8s.io/release/stable-1.txt": Get "https://dl.k8s.io/release/stable-1.t
xt": dial tcp: lookup dl.k8s.io on 127.0.0.53:53: server misbehavin
g
W1106 21:05:51.323178   20918 version.go:105] falling back to th
e local client version: v1.28.3
[init] Using Kubernetes version: v1.28.3
[preflight] Running pre-flight checks



7.

8.

9.

10.
11.
12.

13.

14.

15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

[preflight] Pulling images required for setting up a Kubernetes clus
ter
[preflight] This might take a minute or two, depending on the spee
d of your internet connection
[preflight] You can also perform this action in beforehand using 'ku
beadm config images pull'
[certs] Using certificateDir folder "/etc/kubernetes/pki"
Logs between has remove for visibilty
[[bootstrap-token] Configured RBAC rules to allow certificate rota
tion for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "ku
be-public" namespace
[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point
to a rotatable kubelet client certificate and key
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy
 
Your Kubernetes control-plane has initialized successfully!
 
To start using your cluster, you need to run the following as a regul
ar user:
 
  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config
 
Alternatively, if you are the root user, you can run:
 
  export KUBECONFIG=/etc/kubernetes/admin.conf
 
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options l
isted at:



32.
33.
34.

35.
36.

37.

38.

1.

2.

3.
4.
5.

6.

7.

8.

  https://kubernetes.io/docs/concepts/cluster-administration/addons/
 
Then you can join any number of worker nodes by running the foll
owing on each as root:
 
kubeadm join 192.168.122.162:6443 --token
s139j1.2zdnneea0v6d8e7u \
--discovery-token-ca-cert-hash sha256:
29d849da533a16d55ee4da7b02534135eee998d674e8f73a8bd989c
d82cdb2cf
 

Now, our Kubernetes master has been set up and ready. We can now run the
join command on our worker to add it to the cluster. This can be done by
running the following code:

root@k8sworker1:/etc# kubeadm join 192.168.122.162:6443  --tok
en
8ojxkg.nc73dumshya6616t --cri-socket /var/run/crio/crio.sock   
--discovery-token-ca-cert-hash sha256:
6a0866192f3c308cd78cf336ce22afeeb7e969262e09dbb06b1888d4
9e8ffeb2
W1106 20:52:36.423681    9268 initconfiguration.go:120] Usage o
f CRI endpoints without URL scheme is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "uni
x" to the "criSocket" with value "/var/run/crio/crio.sock". Please up
date your configuration!
[preflight] Running pre-flight checks
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with 'kubectl -n ku
be-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubele
t/config.yaml"
[kubelet-start] Writing kubelet environment file with flags to file "/
var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet



9.

10.
11.
12.

13.
14.
15.

16.

1.

1.

2.
3.
4.
5.
6.

[kubelet-start] Waiting for the kubelet to perform the TLS Bootstra
p...
 
This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response w
as received.
* The Kubelet was informed of the new secure connection details.
 
Run 'kubectl get nodes' on the control-plane to see this node join th
e cluster.
root@k8sworker1:/etc#

The join token is valid for a while, but you can easily create a new token
later if you want to add more nodes.

To access your cluster, we need a config with the URL and certs to grant
access. Kubeadmin has generated it for us, and we can use it with the
following command:

export KUBECONFIG=/etc/kubernetes/admin.conf

You can copy this to your computer and then run the kubectl command
from it. This token is the admin token that you should keep secure. There
are many ways you can make users and roles in Kubernetes, but we will
only use the admin token. As shown in the following code, we add our
config and request our Kubernetes API to determine what nodes are
connected. The following code shows how to set up the access to our
Kubernetes cluster:

root@k8smaster:/etc# export
KUBECONFIG=/etc/kubernetes/admin.conf
root@k8smaster:/etc# kubectl get nodes
NAME         STATUS   ROLES           AGE     VERSION
k8smaster    Ready    control-plane   3m41s   v1.28.3
k8sworker1   Ready    <none>          46s     v1.28.3
root@k8smaster:/etc#



1.

2.
3.
4.
5.
6.
7.
8.

1.
2.

3.

4.

5.

6.

7.
8.

9.

We have our cluster up and connected. Let us do our last step before we
start using our cluster, which is adding a network plugin. This can be done
by running the following:

root@k8smaster:/etc# kubectl apply -f https://github.com/flannel-
io/flannel/releases/latest/download/kube-flannel.yml
namespace/kube-flannel created
serviceaccount/flannel created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
configmap/kube-flannel-cfg created
daemonset.apps/kube-flannel-ds created
root@k8smaster:/etc#

Here, we use our kubectl command and apply the flannel network plugin to
our cluster. We have now added our first workload into the cluster and made
it ready for our next step.

Let us verify that all our pods are running as they should:
root@k8smaster:/opt/cni/bin# kubectl get pods -A
NAMESPACE      NAME            READY   STATUS    RESTART
S      AGE
kube-flannel   kube-flannel-ds-l6d9j               1/1     Runnin
g   0             18m
kube-flannel   kube-flannel-ds-tqlg5               1/1     Runnin
g   0             18m
kube-system    coredns-5dd5756b68-lmmfl            1/1     Runnin
g   0             13s
kube-system    coredns-5dd5756b68-zn5w4            1/1     Runnin
g   0             19m
kube-system    etcd-k8smaster  1/1     Running   8             20m
kube-system    kube-apiserver-k8smaster            1/1     Runnin
g   9 (21m ago)   20m
kube-system    kube-controller-manager-k8smaster   1/1     Runnin
g   0             20m



10.

11.

12.

1.

2.

3.
4.

5.
6.
7.

kube-system    kube-proxy-87szh                    1/1     Runnin
g   0             19m
kube-system    kube-proxy-fmn7q                    1/1     Runnin
g   0             18m
kube-system    kube-scheduler-k8smaster            1/1     Runnin
g   9             20m 

Deploy Kubernetes base service
We will now start adding workload to our cluster. To do that, we will use
kubectl as we did before and a tool called Helm. Helm is like a package
manager for Kubernetes, and with it, we can add workloads as packages.

You will learn to make your manifest and deploy it to the cluster later in this
chapter, but for now, we will be using already-built tools.

We will move fast now and install a lot of services into the cluster. Then,
when we are done with the core service, we will deploy our service.

So, for now, hold on, and it will be clear later what all the different services
will do.

Installing Helm
Helm, the package manager for Kubernetes, is installed by running the
following commands:

root@k8smaster:~# curl
https://raw.githubusercontent.com/helm/helm/main/scripts/get-
helm-3 | bash
  % Total    % Received % Xferd  Average Speed   Time    Tim
e     Time  Current

      Dload  Upload   Total   Spent    Left  Speed
100 11664  100 11664    0     0  76712      0 --:--:-- --:--:-- --:--:-- 76
736
Downloading https://get.helm.sh/helm-v3.13.1-linux-amd64.tar.gz
Verifying checksum... Done.
Preparing to install helm into /usr/local/bin



8.

1.

2.
3.
4.

5.

6.

7.

8.
9.
10.
11.
12.
13.
14.
15.
16.

helm installed int

Storage
Let us start by adding storage. There are many different storage solutions,
and we will use one called OpenEBS. OpenEBS can be used with lvm and
many different types of storage, but here, for simplicity, we will be using a
simple hostpath. This works well in base clusters, but another way of
storage is needed if you are to make larger clusters.

If you are a cloud provider, they already have storage ready for you. The
following code shows how to install openebs storage into our Kubernetes
cluster:

root@k8smaster:/opt/cni/bin# kubectl apply -f
https://openebs.github.io/charts/openebs-operator.yaml
namespace/openebs created
serviceaccount/openebs-maya-operator created
clusterrole.rbac.authorization.k8s.io/openebs-maya-operator create
d
clusterrolebinding.rbac.authorization.k8s.io/openebs-maya-operato
r created
customresourcedefinition.apiextensions.k8s.io/blockdevices.opene
bs.io created
customresourcedefinition.apiextensions.k8s.io/blockdeviceclaims.o
penebs.io created
configmap/openebs-ndm-config created
daemonset.apps/openebs-ndm created
deployment.apps/openebs-ndm-operator created
deployment.apps/openebs-ndm-cluster-exporter created
service/openebs-ndm-cluster-exporter-service created
daemonset.apps/openebs-ndm-node-exporter created
service/openebs-ndm-node-exporter-service created
deployment.apps/openebs-localpv-provisioner created
storageclass.storage.k8s.io/openebs-hostpath created



17.
18.

1.

1.

2.
3.
4.
5.

6.

7.

8.
9.
10.

storageclass.storage.k8s.io/openebs-device created
root@k8smaster:/opt/cni/bin#

We have added some base storage that will use the node files as a base. We
need to run one more command in Kubernetes to use this storage as default.

If we do not run this command, we will have some problems when we
deploy into our cluster:

kubectl patch storageclass openebs-hostpath -p '{"metadata": {"ann
otations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

Monitoring
Let us add monitoring to our stack to know what is going on with our pods.
To do that, we will be using helm.

We start by adding the repo and adding the Prometheus-community repo.
To load the repo, we run the command "helm repo update”. We now have
the repo and can install it.

It follows the same way as our Ubuntu package manager; we can install
Prometheus using helm into our cluster as follows:

root@k8smaster:~# helm repo add prometheus-community
https://prometheus-community.github.io/helm-charts
"prometheus-community" has been added to your repositories
root@k8smaster:~# helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "prometheus-community" ch
art repository

Update Complete. ⎈Happy Helming!⎈
root@k8smaster:~# helm install monitoring prometheus-
community/kube-prometheus-stack
NAME: monitoring
LAST DEPLOYED: Tue Nov  7 17:28:04 2023
NAMESPACE: default



11.
12.
13.
14.

15.
16.
17.

18.

1.
2.

3.

4.

5.

6.

7.

8.

9.

STATUS: deployed
REVISION: 1
NOTES:
kube-prometheus-stack has been installed. Check its status by runn
ing:
  kubectl --namespace default get pods -l "release=monitoring"
 
Visit https://github.com/prometheus-operator/kube-prometheus for
instructions on how to create & configure Alertmanager and Prome
theus instances using the Operator.
root@k8smaster:~#

We now will have some more Pods, and we can see what we have running
now:

root@k8smaster:~# kubectl get pods -A
NAMESPACE      NAME             READY   STATUS    RESTART
S      AGE
default        alertmanager-monitoring-kube-prometheus-alertmanag
er-0   2/2     Running   0             3m56s
default        monitoring-grafana-67656d977b-k5qdz  3/3     Runnin
g   0             4m7s
default        monitoring-kube-prometheus-operator-557564d7f4-v7
4t5     1/1     Running   0             4m7s
default        monitoring-kube-state-metrics-66f77d9d-sf2k
n             1/1     Running   0             4m7s
default        monitoring-prometheus-node-exporter-bw2f
d                1/1     Running   0             4m7s
default        monitoring-prometheus-node-exporter-pz6s
5                1/1     Running   0             4m7s
default        prometheus-monitoring-kube-prometheus-prometheus-
0       2/2     Running   0             3m56s

You should already be familiar with these Pods as we have used them
before. The Node Exporter will get all the metrics from our node and



1.

2.
3.
4.
5.
6.

7.

8.
9.
10.
11.
12.
13.
14.
15.
16.

17.

display them to Prometheus. Then, we have Grafana, which will display the
data for us.

Ingress
The ingress controller in Kubernetes is the one that will receive all traffic to
the cluster. It will then route the traffic to the exemplary service behind. We
need an ingress controller in the cluster to share the same entry service for
them. There are several different ingress controllers, and here we have
chosen to use one called traefik.

You will use the same approach as before with Helm, as follows:
root@k8smaster:~# helm repo add traefik
https://traefik.github.io/charts
"traefik" has been added to your repositories
root@k8smaster:~# helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "traefik" chart repository
...Successfully got an update from the "prometheus-community" ch
art repository

Update Complete. ⎈Happy Helming!⎈
root@k8smaster:~# helm install traefik traefik/traefik
NAME: traefik
LAST DEPLOYED: Tue Nov  7 17:36:49 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Traefik Proxy v2.10.5 has been deployed successfully on default n
amespace !
root@k8smaster:~#

Then, we can check what Pods are running:



1.

1.

2.
3.
4.

5.

6.

7.

8.

9.

10.

11.
12.
13.

default        traefik-784fbdd7dc-dlbbv             1/1     Runnin
g   0             87s

Load balancer
Traefik, which we installed before, will take care of routing the traffic right
inside our cluster. However, we also need traffic to hit our cluster. For that,
we need an external load balancer. In the cloud, you will get one from the
cloud providers, but here, we will use MetalLB. MetalLB will take IP from
our local network. Then, that IP will be used by our clusters and for you to
access.

We can install MetalLB with the following command:
root@k8smaster:~# kubectl apply -f https://raw.githubusercontent.
com/metallb/metallb/v0.13.12/config/manifests/metallb-native.yam
l
 
namespace/metallb-system created
customresourcedefinition.apiextensions.k8s.io/addresspools.metall
b.io created
customresourcedefinition.apiextensions.k8s.io/bfdprofiles.metallb.i
o created
customresourcedefinition.apiextensions.k8s.io/bgpadvertisements.
metallb.io created
customresourcedefinition.apiextensions.k8s.io/bgppeers.metallb.io
created
customresourcedefinition.apiextensions.k8s.io/communities.metall
b.io created
customresourcedefinition.apiextensions.k8s.io/ipaddresspools.meta
llb.io created
customresourcedefinition.apiextensions.k8s.io/l2advertisements.m
etallb.io created
serviceaccount/controller created
serviceaccount/speaker created
role.rbac.authorization.k8s.io/controller created



14.
15.

16.

17.
18.
19.

20.

21.
22.
23.
24.
25.
26.

27.

1.
2.

3.

4.
5.
6.

role.rbac.authorization.k8s.io/pod-lister created
clusterrole.rbac.authorization.k8s.io/metallb-system:controller crea
ted
clusterrole.rbac.authorization.k8s.io/metallb-system:speaker create
d
rolebinding.rbac.authorization.k8s.io/controller created
rolebinding.rbac.authorization.k8s.io/pod-lister created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:control
ler created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:speake
r created
configmap/metallb-excludel2 created
secret/webhook-server-cert created
service/webhook-service created
deployment.apps/controller created
daemonset.apps/speaker created
validatingwebhookconfiguration.admissionregistration.k8s.io/meta
llb-webhook-configuration created
root@k8smaster:~#

Let us take a look if we have some new Pods that have started
root@k8smaster:~# kubectl get pods -A
NAMESPACE        NAME             READY   STATUS    RESTAR
TS      AGE
metallb-system   controller-786f9df989-m8mgn          1/1     Runni
ng   0             59s
metallb-system   speaker-grqkl    1/1     Running   0             59s
metallb-system   speaker-whfcx    1/1     Running   0             59s
root@k8smaster:~# 

Logs
Now, it is time to set up our last tool. For that, we need to add more values
to our Helm chart. We will create a file with the extra values and then pass



1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

16.

the file into our helm command. This is standard practice when installing
Helm charts.

Create a new file on the master node named values.yaml and add the
following content:

loki:
  commonConfig:

replication_factor: 1
  storage:

type: 'filesystem'
singleBinary:
  replicas: 1

Now, we will add the grafana Helm repo and install loki:
root@k8smaster:~/loki# cat values.yaml
loki:
  commonConfig:

replication_factor: 1
  storage:

type: 'filesystem'
singleBinary:
  replicas: 1
root@k8smaster:~/loki# helm repo add grafana
https://grafana.github.io/helm-charts
"grafana" has been added to your repositories
root@k8smaster:~/loki# helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "traefik" chart repository
...Successfully got an update from the "grafana" chart repository
...Successfully got an update from the "prometheus-community" ch
art repository

Update Complete. ⎈Happy Helming!⎈



17.

18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.

29.
30.
31.
32.
33.

1.
2.

3.

4.
5.

6.

7.

root@k8smaster:~/loki# helm install --values values.yaml loki
grafana/loki-stack
NAME: loki
LAST DEPLOYED: Tue Nov  7 19:10:40 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
******************************************************
*****************
Welcome to Grafana Loki
Chart version: 5.36.3
Loki version: 2.9.2
******************************************************
*****************
 
Installed components:
* grafana-agent-operator
* loki
root@k8smaster:~/loki#

Let us see if our Pods are running:
root@k8smaster:~/loki# kubectl get pods -A
NAMESPACE        NAME             READY   STATUS    RESTAR
TS      AGE
default          alertmanager-monitoring-kube-prometheus-alertmana
ger-0   2/2     Running   0             143m
default          loki-0           1/1     Running   0             5m32s
default          loki-promtail-fjm47                  1/1     Runnin
g   0             5m32s
default          loki-promtail-vcbjf                  1/1     Runnin
g   0             5m32s
default          monitoring-grafana-67656d977b-k5qdz  3/3     Runni
ng   0             143m



8.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

 

We can see we now have some Loki Pods running.

Install WordPress in Kubernets
Now, we have added our core service, and we can start adding our service.

We will start by adding a WordPress installation. It will be a MySQL server
and a WordPress Pod. We will then set up and use the core service we
install to view and monitor our service.

When we deploy WordPress, we will be making manifest files. These files
are the config that we send to our Kubernetes cluster to make it start
running our service.

There are many values we are not covering here, and if you are to build a
deployment for a production server, you need to add more value to the
deployment.

MySQL
Let us start by adding our MySQL server. Create a file called mysql.yaml
on the k8s master or on a computer that has access to Kubernetes.

Then, add the following content:
apiVersion: apps/v1
kind: Deployment
metadata:
  name: mysql
spec:
  selector:

matchLabels:
app: mysql-pod

  replicas: 1
  template:

metadata:



12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

labels:
app: mysql-pod

spec:
containers:

- image: mysql:5.6
   imagePullPolicy: Always
   name: mysql-pod
   args: ["--default-authentication-plugin=mysql_native_pas

sword"]
   env:

- name: MYSQL_USER
value: mysql

- name: MYSQL_PASSWORD
value: 'password'

- name: MYSQL_ROOT_PASSWORD
value: rootpassword

- name: MYSQL_DATABASE
value: wordpress

   ports:
- containerPort: 3306

name: sql
   resources:

requests:
cpu: 100m

   volumeMounts:
- name: mysql-persistent-storage

mountPath: /var/lib/mysql
volumes:

- name: mysql-persistent-storage
   persistentVolumeClaim:

claimName: mysql-disk
---



43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

apiVersion: v1
kind: Service
metadata:
  name: mysql
  labels:

app: mysql-pod
spec:
  type: ClusterIP
  ports:

- port: 3306
targetPort: 3306
protocol: TCP

  selector:
app: mysql-pod

---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: mysql-disk
spec:
  accessModes:

- ReadWriteOnce
  resources:

requests:
storage: 1Gi

When we look at this file, we see three things. First is the deployment. This
is the manifest for starting a MySQL container inside Kubernetes. We have
the container name, and we set how much CPU it will use. And we set
where our disk for storage will go.

The env section is where we set our configs. We tell the container to create
a new database named mysql and a user named mysql, and we give the user



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

the passwords.

We will use this info later when we deploy our WordPress.

The second part in our file is the service. It will be like opening a port in the
firewall and setting port 3306 on and the name of the service mysql. This is
where you will find this MySQL server.

The last bit is us adding the disk we need for our MySQL server.

Let us apply our manifest with the command:

kubectl apply -f mysql.yaml

When you have deployed, verify that the Pods are running as before.

WordPress
Let us make a new YAML file called wordpress.yaml and add the
following content:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:

name: wordpress-storage
spec:

accessModes:
- ReadWriteOnce
resources:
requests:

storage: 2Gi
 
---
apiVersion: v1
kind: Service
metadata:

name: wordpress
labels:



18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

app: wordpress-pod
spec:

type: ClusterIP
ports:
- port: 80

targetPort: 80
protocol: TCP
name: http

selector:
app: wordpress-pod

---
apiVersion: apps/v1
kind: Deployment
metadata:

name: wordpress
spec:

replicas: 1
selector:
matchLabels:

app: wordpress-pod
template:
metadata:

labels:
app: wordpress-pod

spec:
containers:

- image: wordpress
   imagePullPolicy: Always
   name: wordpress-pod
   env:

- name: WORDPRESS_DB_HOST
value: mysql



50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

- name: WORDPRESS_DB_PASSWORD
value: password

- name: WORDPRESS_DB_USER
value: mysql

- name: WORDPRESS_DB_NAME
value: wordpress

   ports:
- containerPort: 80

name: www
   resources:

requests:
memory: "64Mi"
cpu: "250m"

limits:
memory: "256Mi"
cpu: "500m"

   volumeMounts:
- name: wordpress-storage

mountPath: /var/www/html
securityContext:

fsGroup: 200
volumes:

- name: wordpress-storage
   persistentVolumeClaim:

claimName: wordpress-storage

This file looks like our MySQL. You can see that in the env section, we are
setting the values for our MySQL. However, they do not look the same.

That is because every image has its own way of setting values, and MySQL
and WordPress do not use the same values.

Suppose you go to the docker hub and look at the image of, for example,
WordPress or MySQL. The readme for that image will tell you what values



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

you can use.

Let us apply WordPress to our cluster using kubectl and the apply
command.

Then, verify that the Pod is running.

Access our WordPress
Now, when our WordPress is running, we want to access it with a web
browser. To do that, we will be using two different methods. First, we will
open a port directly to the WordPress service we append.

The second uses an ingress controller and a local IP. We have already
installed the tools needed for this.

Let us start with the NodePort.

In the WordPress file, go to the service and alter the service so it looks like
the following:

apiVersion: v1
kind: Service
metadata:

name: wordpress
labels:

app: wordpress-pod
spec:

type: NodePort
ports:
- port: 80

targetPort: 80
protocol: TCP
name: http

selector:
app: wordpress-pod

 



1.
2.

3.

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Then, apply for your WordPress again. We have now changed the service to
open a port in our Kubernetes server and route that to our WordPress. Let us
find our port by typing the following command:

root@k8smaster:~/deploy# kubectl get service wordpress
NAME        TYPE       CLUSTER-IP     EXTERNAL-IP   PORT
(S)        AGE
wordpress   NodePort   10.96.52.119   <none>        80:31360/TC
P   5m18s
root@k8smaster:~/deploy#

Under port, we can see a port number 31360. Now, you can open a browser
and go to:

http:// IP OF ONE OF THE WORKERS : 31360

http://192.168.122.26:31360/

You should now see the WordPress install page there.

However, we want this to work with a DNS name so we can go to
wordpress.home.lan and see our WordPress.

For that, we need to add an ingress and an LB.

Setup MetalLB
Make a YAML file called metallb.yaml and add the following content:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:

name: pool
namespace: metallb-system

spec:
addresses:
- 192.168.122.133/32

---
apiVersion: metallb.io/v1beta1



11.
12.
13.
14.
15.
16.
17.
18.

1.

2.
3.
4.

5.

6.

1.
2.
3.

kind: L2Advertisement
metadata:

name: pool
namespace: metallb-system

spec:
ipAddressPools:
- pool

 

Look at the address 192.168.122.133, the IP we want to use in our network.
You need to update that IP to match your own network.

Apply the config using kubectl apply -f command. Now, for us to start
using the IP, we need to add it to our traefik (ingress) service:

root@k8smaster:~/deploy# kubectl annotate service
traefik  metallb.universe.tf/address-pool=pool
service/traefik annotated
root@k8smaster:~/deploy# kubectl get svc traefik
NAME      TYPE           CLUSTER-IP      EXTERNAL-IP       POR
T(S)      AGE
traefik   LoadBalancer   10.105.142.83   192.168.122.133   80:3173
1/TCP,443:32717/TCP   2d3h
root@k8smaster:~/deploy#

Here, we are now adding an annotation to our service and then checking our
service. As you can see, the IP is now set to our traefik service.

If you open a browser and go to that IP, you will see a 404 page as
expected.

Time to make an ingress. Now we can make ingress and point our
WordPress.home.local to our WordPress. For that, we need a new file, and
we will call it wordpress-ingress.yaml and add the following content:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:



4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

1.
2.
3.
4.
5.

annotations:
kubernetes.io/ingress.class: traefik
name: wordpress

spec:
rules:

  - host: "wordpress.home.lan"
http:

paths:
- backend:

service:
name: wordpress
port:

number: 80
path: /
pathType: Prefix

Then, we also need to tell our computer where to find WordPress. You can
set up the DNS record there if you have a DNS server installed or, you can
open your /etc/hosts and add the following:

192.168.122.133 wordpress.home.lan

You need to update the IP to the same IP you use in our metallb config.

Now open your browser, visit WordPress.home.lan, and install WordPress.

Monitoring Kubernetes cluster with Grafana
Let us make another ingress. Make a new file called grafan-ingress.yaml
and add the following content:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

annotations:
kubernetes.io/ingress.class: traefik



6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

name: grafana
spec:

rules:
  - host: "grafana.home.lan"

http:
paths:
- backend:

service:
name: monitoring-grafana
port:

number: 80
path: /
pathType: Prefix

 

Then, update your DNS server ore your local host file to point to the correct
IP of your cluster.

192.168.122.133 wordpress.home.lan
192.168.122.133 grafana.home.lan

Now you can visit Grafana on grafana.home.lan.

Now you can add more and more services and set them up, so they have
their own ingress.

During our cluster setup, we added metrics and logs, and with Grafana, you
can now look at the data. Log into your Grafana, and we can add the data
sources for you. We did this in the monitoring chapter.

To find the URLs to the sources, use the command:

kubectl get svc

It will give the name and the port as follows:

monitoring-kube-prometheus-prometheus     ClusterIP      10.111.200.8
9    <none> 9090/TCP,8080/TCP              2d14h



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

When connecting to Prometheus, use the URL http://monitoring-kube-
prometheus-prometheus:9090.

Kubernetes stores passwords in something called secrets. The secrets are
not encrypted but encoded in base64. To obtain the secret, we need to edit
the secret and then decode it from base64. This is a good practice to use.

First, open the secret with an edit, such as:

kubectl edit secret monitoring-grafana
apiVersion: v1
data:

admin-password: cHJvbS1vcGVyYXRvcg==
admin-user: YWRtaW4=
ldap-toml: ""

kind: Secret
metadata:

annotations:
meta.helm.sh/release-name: monitoring
meta.helm.sh/release-namespace: default

creationTimestamp: "2023-11-07T17:28:14Z"
labels:

app.kubernetes.io/instance: monitoring
app.kubernetes.io/managed-by: Helm
app.kubernetes.io/name: grafana
app.kubernetes.io/version: 10.1.5
helm.sh/chart: grafana-6.60.6

name: monitoring-grafana
namespace: default
resourceVersion: "139101"
uid: e739a7e6-0ca7-4bfc-9fb5-29966dfd5178

type: Opaque

Let us copy the base64 encoded string and decode it:



1.

2.
3.
4.

root@k8smaster:~/deploy# echo cHJvbS1vcGVyYXRvcg== |
base64 -d
prom-operator
 
root@k8smaster:~/deploy#

The password for the admin user in Grafana is prom-operator.

Kubectl command to remember
When working with the Kubernetes cluster, there are several commands that
are particularly useful.

There are many more, but this will work with the Kubernetes cluster we
have set up now and will give us some base knowledge on finding and
troubleshooting a Kubernetes cluster.

Pods
Pods are running in a different namespace. Run the following command to
find and locate Pods in your cluster. If we want to look more into our Pod,
use the get pods to find a Pod:

kubectl get pods -A
kubectl get pods
kubectl get ns
kubectl get pods -n openebs

Then, we can get more info from those Pods by running the following
command and adding the name of the pod as follows:

kubectl describe pod traefik-NAME_FROM_YOUR_CLUSTER
kubectl logs -f traefik-NAME_FROM_YOUR_CLUSTER
kubectl edit pod traefik-NAME_FROM_YOUR_CLUSTER

As you see, we are using the command get/describe/edit, and you can run
the same command on all resources in Kubernetes.



Now try to find and run the commands on the resources here, as follows:

kubectl get deployments -A
kubectl get service -A
kubectl get ingress -A

Conclusions
By the end of this chapter, we have completed the setup of a Kubernetes
cluster from the base and metal server using Ubuntu. We also installed the
tools needed to run Kubernetes and provisioned the Kubernetes cluster
based on one master and a worker node cluster. To use the ore cluster, we
installed tools to use storage so that our service in the cluster can store data.
Moreover, we set up a load balancer so we can access our service. Then, to
monitor our cluster, we added tools to view metrics and logs from our
cluster and services. When our base tool was ready, we made our own
deployments of a MySQL server and a WordPress and installed them into
our cluster. With this, we gained basic knowledge of how to set up the
Kubernetes cluster and install and add services to the cluster. We can also
make and deploy our own apps into a Kubernetes cluster.

In the next chapter, we will start automating our task, making bash scripts,
and using Ansible and Terraform.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/




CHAPTER 13
Task Automations, CI/CD

Pipeline, and Service
Deployment

Introduction
In this chapter, we will look at the automation of tasks we do by moving the
script and commands into code. Instead of running the commands one by
one, we execute the commands with a script or a tool like Terraform or
Ansible. We can see the state of the script. We will permanently control and
verify that we run the script the same way every time.

This way, we can move away from mistakes and misses in the process of
installing or setting up a server and service. It is the same approach we used
when we installed the server using MAAS. We know the outcome will
always be the same.

Moreover, we will examine some tools and scripts that can help automate
certain tasks covered in this book.

Structure



•

•

•

•

•

In this chapter, we will cover the following topics:

Basic Bash

Automate tasks with Ansible

Run host command from Docker

Build and push Docker images

Deploy with terraform against Kubernetes

Objectives
In this chapter, we will begin by setting up a simple Bash script that will
serve as our document when installing a service and run some basic
commands for us.

From the basic Bash script that we can run simply, we will move over to the
tool called Ansible. Ansible will help us run our commands in a more
controlled way and verify the output. We can now also run our commands
on multiple computers simultaneously.

From Ansible, we will use a docker to run tasks inside the Docker. This will
help us verify that we always have the same set of tools. We will start by
running Ansible inside Docker and then transition to using Ansible to
execute Docker commands on the host.

Basic Bash
Bash scripts are commands that you can run in order. You can do a lot more
in Bash, but for this section, we will use Bash to set up scripts and run them
in order. We have done some Bash scripting before, for example, when
installing docker.

We will now create a script to run for Docker installation. We can then save
this script in a folder. When we have a new server, we can copy over the
script and execute it to install Docker. Now, we can easily restore a server
to a point and have the Bash scripts as a document for us later.



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.

22.

23.
24.
25.
26.
27.

Let us create a simple Bash script to install Docker. Copy the following
code into a file and name the file install_docker.sh, as follows:

root@server:~# cat install_docker.sh
#!/bin/bash
 
 
echo "Lets get docker"
apt-get update
 
echo "Installing req packages"
apt-get install \

apt-transport-https \
ca-certificates \
curl \
gnupg \
lsb-release -y

 
echo "Getting repo keys"
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gp
g --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
 
echo "Settings up repo"
echo \
  "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-
keyring.gpg] https://download.docker.com/linux/ubuntu \
  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.li
st > /dev/null
 
echo "Install Docker"
apt-get update
apt-get install docker-ce docker-ce-cli containerd.io -y
 



1.
2.
3.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Before we can run the command, we need to make the file executable.
Then, we can run the script as follows:

root@server:~# chmod +x install_docker.sh
root@server:~# ./install_docker.sh
 

As you can see, it will run the command and install Docker. It is good
practice to add the commands you run in a file, so you have them saved.

You can also use Bash script to detect the state of your server. By running
some commands that will print output, we can quickly get the state of our
server. It would be great if there were some issues with the server, and
troubleshooting was needed. Jump in and run a script to get some basic data
on the problem. It will save you a lot of time if an incident happens. Here is
a script that prints data to help resolve Ubuntu issues. You can also add
more scripts to expand it.

The following example code is a good start:
#!/bin/bash
echo "Disk"
df -h
du -h --max-depth=0 /
du -h --max-depth=0 /var
echo "iniode"
for i in `find . -type d `; do echo `ls -a $i | wc -l` $i; done | sort -n
 
echo "Network"
ip a
ip r
cat /etc/resolv.conf
 
 
echo "Memory"
free



1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Automate tasks with Ansible
So, a Bash script is easy; however, if I have more servers and want to run a
command to install Docker on all of them. For that, there are several
commands that you can use. In this chapter, we will look at one of the tools
called Ansible.

With Ansible, you can run a script, and it will run the commands on the
selected server. You can also group them so that they only run a set of tools
on one type of server. For example, only install MySQL on your MySQL
server.

We will now install and set up Ansible to run on our server. We will run
Ansible in a Docker image. That way, we can always guarantee our ansible
will work and that the version of ansible will always be the same as the
docker image. Let us set up a docker-compose to run our ansible.

Create a docker-compose file and add the following content:
services:
  ansible:

build: .
volumes:
  - ./playbooks:/opt/playbooks
  - ./files:/opt/files
  - ./hosts:/etc/ansible/
  - ./ssh:/root/.ssh

 
command: tail -f /etc/fstab

Here, we are making an Ansible folder and mounting it in 4 folders.
Playbooks will be the command we run; hosts are the machines on which
we will run the command, and the files are the files we want to copy over to
our server. The last folder is to keep our hostkey over Docker restart.

We also need to build a Docker image to use and, for that, make a
Dockerfile with the following content:



1.
2.
3.
4.
5.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

1.
2.
3.
4.
5.

FROM ubuntu:latest
RUN apt update
RUN apt install software-properties-common -y
RUN add-apt-repository --yes --update ppa:ansible/ansible
RUN apt install ansible -y

Now that we have the base parts ready, we can add our host. In the host
folder, create files only named host and add the following:

root@72f9e0eecd79# cat hosts
all:
  vars:

ansible_connection: ssh
ansible_user: matte
#ansible_ssh_pass: vagrant

  hosts:
192.168.122.133:

docker:
  hosts:

192.168.122.133:
apache:
  hosts:

192.168.122.133:

Here, you will need to update so that the username and IP match what you
are using.

Now, we are ready to create our first playbook. For that, in the playbook
folder, create a file called install_docker.yaml and add the following
content:

root@72f9e0eecd79# cat install-docker.yaml
- name: Install Docker
  hosts: all
 
  tasks:



6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

1.
2.
3.

4.
5.
6.
7.

8.

9.

  - name: Creates directory
file:

path: /opt/files/
state: directory

become: yes
  - name: Copy file hosts with permissions

ansible.builtin.copy:
src: /opt/files/install_docker.sh
dest: /opt/files/install_docker.sh
mode: '0644'

become: yes
 
  - name: Upgrade all apt packages

apt:
force_apt_get: yes
upgrade: dist

become: yes

We are now ready to start Ansible and run the playbook against our host.
start by building the image and then start a shell inside our Docker as
follows:

mattias@hrb:~/projects/hrb/ansible$ docker compose build
[+] Building 0.0s (9/9) FINISHED                 docker:default
=> [ansible internal] load build definition from Dockerfil
e              0.0s
=> => transferring dockerfile: 265B                  0.0s
=> [ansible internal] load .dockerignore             0.0s
=> => transferring context: 2B   0.0s
=> [ansible internal] load metadata for docker.io/library/ubuntu:lat
est  0.0s
=> [ansible 1/5] FROM docker.io/library/ubuntu:lates
t                    0.0s
=> CACHED [ansible 2/5] RUN apt update               0.0s



10.

11.

12.
13.
14.
15.
16.
17.

18.

1.

2.
3.
4.
5.

6.
7.

8.
9.

=> CACHED [ansible 3/5] RUN apt install software-properties-co
mmon -y    0.0s
=> CACHED [ansible 4/5] RUN add-apt-repository --yes --update
ppa:ansible/ansible            0.0s
=> CACHED [ansible 5/5] RUN apt install ansible -y   0.0s
=> [ansible] exporting to image                      0.0s
=> => exporting layers           0.0s
=> => writing image                      0.0s
=> => naming to docker.io/hrb/api          0.0s
mattias@hrb:~/projects/hrb/ansible$ docker compose run ansibl
e /bin/bash
root@a0e829791762:/#

We are now in our docker, and we can run our command. Ansible has a
strict host check, so before we can SSH into a server, we need to add it to
our ssh host key. It is done by simply running the ssh IP of the server. This
is required only one time, the host keys are stored outside the docker.

When are we then ready to run our Ansible command as follows:
root@d848399327c7:/# ansible-playbook --ask-pass --ask-become-
pass /opt/playbooks/install-docker.yaml
SSH password:
BECOME password[defaults to SSH password]:
 
PLAY [Install Docker] ***********************************
******************************************************
******************************************************
**************
 
TASK [Gathering Facts] *********************************
******************************************************
******************************************************
***************
ok: [192.168.122.133]
 



10.

11.
12.
13.

14.
15.
16.

17.
18.
19.

20.

21.
22.

1.

TASK [Creates directory] ********************************
******************************************************
******************************************************
**************
ok: [192.168.122.133]
 
TASK [Copy file hosts with permissions] ********************
******************************************************
******************************************************
***********
ok: [192.168.122.133]
 
TASK [Upgrade all apt packages] **************************
******************************************************
******************************************************
*************
ok: [192.168.122.133]
 
PLAY RECAP *****************************************
******************************************************
******************************************************
*******************
192.168.122.133            : ok=4    changed=0    unreachable=0    fail
ed=0    skipped=0    rescued=0    ignored=0   
 
root@d848399327c7:/#

The command will ask you for the password and sudo password and then
what playbook to run. You can make more playbooks and do other tasks.

ansible-playbook --ask-pass --ask-become-pass /opt/playbooks/inst
all-docker.yaml

Go to the Ansible homepage and look at all the modules there. And you can
rewrite the tools. So, instead of copying over the file, it can run the task for
you.



1.

1.
2.
3.
4.
5.

1.

2.
3.

Run host command from Docker
When running our server, sometimes we may need to install a small
package that is only needed for one thing. Then, we want to remove it
directly after. Ore, we want to troubleshoot, and for that, we need some
tools. But we do not want to install them on the server before. Ore, we do
not want to have a tool installed on our server, but we want to update a file.
Then, we can start a Docker container, grant it access to the host file
system, and let it add and update the file on the host. This is a common way
to update server configurations when using a Kubernetes cluster. We can
create a pod and add it to Kubernetes to run on all hosts. The Pod will
update the host's settings.

Let us build a simple Pod that will update our DNS server on our server.
Here, we will use an Ubuntu Docker image and a docker-compose that
mounts the host folder /etc into the container as /mnt/etc. We do not want
to mount it as /etc, inside the container. It will be bad. Now, if we have the
tool installed in the container, we can run commands on the host files.

The following is our Docker file:

#Docker file
from ubuntu:latest

A simple docker-compose is as follows:
services:
  host-update:

build: .
volumes:
  - /etc:/mnt/etc

Now, we can run it as follows:
mattias@hrb:~/projects/hrb/book/docker/host-update$ docker com
pose run host-update cat /mnt/etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin



4.
5.

1.
2.
3.
4.
5.
6.
7.
8.

bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

You can now update and modify anything on a host system using container
images. By moving this into Kubernetes, you can scale your setup.

Build and push Docker images
One of the tasks we run on the Ubuntu Server is to run some servers. We
will now make a NGINX webserver and add a static HTML page into a
docker. We will then run an Ansible script to copy, download our Docker,
and run it on our server.

Docker hub
Before we begin, we need a docker registry. This is where we can upload
the Docker images that we build.

We will use the docker hub for our images in this example. But you need to
add your image to push images, too. In the Docker chapter, we looked at
setting up a Docker hub account.

Build local
Create a Docker compose project by making a docker-cmpose.yaml file
and add the following content. Now, make a folder called html and add a
file called index.html.

In that file index.html, add the following content:
<htm>

<head>
<title>Home</title>

</head>
<body>

<h1>Home</h1>
<p>Home page</p>

</body>



9.

1.
2.
3.
4.

1.

2.
3.
4.

</htm>

Here, we use a simple HTML page, but you can have anything inside the
Docker, such as a Java application ore some other code project. The process
of building and deploying is the same setup here. When you have the tools
to build and deploy, you can update to run anything here.

Build and push
Now, we can make a small Bash script to build our Docker and push it to
the Docker hub. We also pass on the argument for the version of the image.

Create a Bash file and add the following content:
#!/bin/bash
VERSION=$1
docker build -t mattiashem/ubuntu-static:$VERSION .
docker push mattiashem/ubuntu-static:$VERSION

You must replace the Docker image path to match your Docker hub
settings. Now, we can build and push our image by running the command.
Our next part is using Terraform and deploying our container. Terraform is
the most common tool when using IoC, and we will only use it against a
Kubernetes cluster here. But it is mainly used by agent cloud providers, and
you can change to deploy our app to anything.

Deploy with terraform against Kubernetes
To get started, we will need two files, one to init our terraform and one to
run the command. To make it easy, we installed Terraform in the same
Docker as Ansible, and our Dockerfile will look as follows:

FROM ubuntu
RUN apt update &&  apt install wget unzip software-properties-co
mmon gnupg  -y
RUN add-apt-repository --yes --update ppa:ansible/ansible
RUN apt update && apt install ansible -y
WORKDIR /opt



5.

6.
7.
8.
9.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

1.

1.
2.
3.
4.
5.

RUN wget https://releases.hashicorp.com/terraform/1.6.5/terraform
_1.6.5_linux_amd64.zip && \

unzip terraform_1.6.5_linux_amd64.zip && \
    mv terraform /usr/local/bin/terraform && \
    rm terraform_1.6.5_linux_amd64.zip
RUN terraform --version

We also updated our docker-compose.yaml file as follows:
services:
  terrableansible:

build: .
image: hrb/api
volumes:
  - ./playbooks:/opt/playbooks
  - ./files:/opt/files
  - ./hosts:/etc/ansible/
  - ./terraform:/opt/terraform
  - ./ssh:/root/.ssh
  - ./kube:/root/.kube
command: tail -f /etc/fstab

Init Terraform
Jumo into our Docker with all the tools by running the following command:

docker compose run terrableansible /bin/bash

To make this work, we need the kubeconfig file that grants us access to the
cluster and a config file with our app. In the folder Terraform, create the file
tarraform.ft and add the following content:

root@b2218a9105ac:/opt/terraform# cat terraform.tf
terraform {
  backend "local" {

workspace_dir = "/opt/terraform/state/terraform.tfstate.d"
  }



6.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

}root@b2218a9105ac:/opt/terraform#

Then we need a file to run the command deploy.tf with the following
content:

root@b2218a9105ac:/opt/terraform# cat deployments.tf
resource "kubernetes_deployment" "static" {
  metadata {

name = "static-data"
labels = {

test = "static"
}

  }
 
  spec {

replicas = 3
 

selector {
match_labels = {

app = "static"
}

}
 

template {
metadata {

labels = {
   app = "static"

}
}

 
spec {

container {
   image = "mattiashem/ubuntu-static:$VERSION"



29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

   name  = "static"
 

   resources {
limits = {

       cpu    = "0.5"
       memory = "512Mi"

}
requests = {

       cpu    = "250m"
       memory = "50Mi"

}
   }

 
   liveness_probe {

http_get {
       path = "/"
       port = 80

 
       http_header {
         name  = "X-Custom-Header"
         value = "Awesome"
       }

}
 

initial_delay_seconds = 3
period_seconds        = 3

   }
}

}
}

  }
}root@b2218a9105ac:/opt/terraform#



1.
2.
3.
4.

1.
2.
3.
4.
5.
6.
7.

To access the cluster, copy a kubeconfig file into the Kube folder named
config.

Here, we have the kubeconfig of one of my clusters in Hertzner. The
kubeconfig file should always be secure, and you need to update the scripts
when running against production workloads.

root@924332efbdd9:/opt/terraform# cat /root/.kube/config
apiVersion: v1
kind: Config
clusters:

Terraform commands
This is the first command you will run to init our terraform. It will set up
the state and download the modules you need.

terraform init

Terraform plan
The plan command will verify that we can connect and show what changes
Terraform would like to make. This is a good command, and if you run
Terraform against a cloud env, you would like to run a plan to verify that
your server is always in sync with the code.

Terraform apply
This is the command that will make the change.

Plan: 1 to add, 0 to change, 1 to destroy.
 
Do you want to perform these actions?
  Terraform will perform the actions described above.
  Only 'yes' will be accepted to approve.
 
  Enter a value: yes
 



8.

9.
10.
11.

12.
13.
14.

1.
2.
3.
4.
5.

kubernetes_deployment.static: Destroying... [id=default/static-dat
a]
kubernetes_deployment.static: Destruction complete after 0s
kubernetes_deployment.static: Creating...
kubernetes_deployment.static: Creation complete after 8s [id=defa
ult/static-data]
 
Apply complete! Resources: 1 added, 0 changed, 1 destroyed.
root@924332efbdd9:/opt/terraform#

Also, if we log in to the cluster, we can see the Pods running as follows:
[core@ubuntu]$ kubectl get pods
NAME                           READY   STATUS    RESTARTS   AGE
static-data-555757f6d4-4zpvr   1/1     Running   0          12s
static-data-555757f6d4-cw7kj   1/1     Running   0          12s
static-data-555757f6d4-gcz4z   1/1     Running   0          12s

CI/CD
We now have our building block for making CI/CD pipelines. Most
pipelines are a set of scripts put together to perform the actions you want.
Here, we can now run Ansible to install packages. We can run our batch
scripts that will build and push images, and we can, with our terraform,
deploy our image into a Kubernetes cluster. This block set up the base for
us to build CI/CD pipelines.

Conclusion
By the end of this chapter, we will have worked with tools to help us
document our work more effectively by incorporating commands into the
code. We also started to move from SSH into the server and running
commands to the more modern approach of having a script and using the
tool to set up our server. This will help us when we start working with
servers professionally. Additionally, we examined the Ansible tool, which
aligns well with Linux and Ubuntu Servers. We then moved to test and run



Terraform to deploy our docker image to a Kubernetes cluster. We now
have the tools to set up the server as we want it using Ansible. Build and
push docker images with Bash ore docker-compose, then deploy what we
have built into a cluster, bringing us to a full pipeline. Running all these
tools inside docker also makes them super easy to run in CI/CD tools like
GitLab or GitHub.

This is the last chapter; once you have gone through all the chapters, you
will know how to work with Ubuntu, from installing the desktop and server
to configuring, deploying the Kubernetes cluster, securing the network, and
deploying applications. With this, we are ready to start our journey in
Ubuntu and Linux.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/


Index

B
Based Monitoring 177
Bash Scripts 230
Bash Scripts, deploying 237
Bash Scripts,

preventing 230, 231
Bash Scripts With Ansible,

automating 232-235
Boot Ubuntu, command 15, 16
Boot Ubuntu,

configuring 12, 13
Boot Ubuntu,

installing 16-18
Boot Ubuntu,

preventing 13, 14
Boot Ubuntu, steps 9
Boot Ubuntu With Etcher,

optimizing 9-11

C



Cattle/Pets,
optimizing 94

ClamAV, preventing 58
ClamAV, utilizing 59
Cockpit 117
Container 74

D
Databases, types

MariaDB SQL 185

MongoDB 187, 188

DHCP 48
DHCP, preventing 142-144
DNS, configuring 53-55
DNS, setting up 145, 146
Docker 74
Docker Compose 77
Docker Compose,

configuring 77, 78
Docker Compose,

expanding 80-82
Docker Compose,

implementing 82-84
Docker Compose,

preventing 78-80
Docker, configuring 76
Docker/Container,

components 74, 75
Docker Hub 76
Docker Hub, architecture 76
Docker, setting up 75, 76



Domain Name System
(DNS) 53

Dual-Boot Windows/Ubuntu 9
Dual-Boot Windows/Ubuntu,

steps 9

E
Elasticsearch 125
Elasticsearch, configuring 125
Elasticsearch,

preventing 126-128
Elasticsearch, steps 125, 126

F
Fail2Ban 129
Firewall 55
Firewall, configuring 55-57
Firewall, preventing 141, 142

G
Git 43
Git, configuring 43, 44
Grafana 117
Grafana, configuring 118-120
Grafana Dashboards,

optimizing 124
Grafana Data, visualizing 122, 123
Grafana, installing 118

H
HashiCorp 69
HIDS, preventing 130-134



Host Intrusion Detecting
System (HIDS) 129

I
i3 28
i3, commands 32, 33
i3, terms

Background Image 34

Config File 35

Custom Shortcuts 34

Extra Trix 35, 36

Lock Screen 34

K
Kubernetes 85
Kubernetes Cluster,

setting up 207-210
Kubernetes, configuring 85, 86
Kubernetes, files

CI/CD 241

Init Terraform 238-240

Terraform 240

Terraform Plan 241

Kubernetes, namespace

MySQL 87

WordPress 89

Kubernetes,
preventing 204-206

Kubernetes, services



Helm 211

Ingress 213

Load Balancer 214, 215

Logs 216

Monitoring 212, 213

Storage 211, 212

Kubernetes With Ubuntu,
optimizing 204

KVM 68
KVM, analyzing 63
KVM, configuring 108-111
KVM, converting 70, 71
KVM GUI, configuring 163
KVM, terms

PXE Server, optimizing 112, 113

Time to Boot 114

KVM Web Interface 164

L
Linux Distributions 4
Linux Distributions, configuring 4, 5
Linux, history 2
Linux Kernel 2
Linux Kernel, versions

Lxle 4

Mint 4

Pop 4

Linux Server, commands



du 117

Isof 116

Netstat 116

Top 116

Linux, stats 3
Loki 174
Loki, preventing 174-176

M
MAAS, implementing 106, 107
MAAS, steps 106
MAC Address 50
MAC Address, optimizing 50, 51
MariaDB SQL,

optimizing 185, 186
MySQL, optimizing 87, 88
MySQL, preventing 218, 219
MySQL, services

Grafana, monitoring 225, 226

MetalLB 223, 224

WordPress 220

N
Network Static 48
Network Static, steps 48, 49
Node Exporter 121
Node Exporter,

preventing 121
Node Exporter, steps 121, 122



O
OBS Studio 39
OBS Studio, configuring 39-41
OpenVPN, steps 51-53
OSSEC, optimizing 134

P
phpmyadmin 189
Podman 166
Podman, features 166
Podman, installing 166
Podman, setting up 167
Podman With CNI Plugin,

optimizing 167
Pods 227
Prometheus 168
Prometheus, preventing 168-173
Pushing/Pulling Data,

comparing 120
PXE Booting 105, 106

R
Run Host, preventing 236

S
Snapshot 67
Snapshot, architecture 68
Snap Store 24
SSH 94
SSH, accessing 94-96
SSH, parts 94



SSH Server,
virtualizing 162

Syncing Files, clients

Dropbox 43

Google Drive 42

Mega 43

Resillio 43

T
Tiling 29
Tiling, analyzing 29, 30

U
Ubuntu 3
Ubuntu, firewall

Iptables 140

NIC 138

Public Network 139

VLAN 138

Ubuntu, history 3
Ubuntu, installing 8
Ubuntu LTS, optimizing 25
Ubuntu, platform

Code 44

Git 43

PyCharm 45

Ubuntu, pre-installing 8, 9
Ubuntu, running 23



Ubuntu Server,
connecting 98

Ubuntu Server, producers

Google Cloud 103-105

Hetzner 100-102

Ubuntu Server, term

Blog 6

Git 6

Ubuntu Server With USB,
utilizing 96, 97

Ubuntu, solutions

OpenVPN,
preventing 147-150

WireGuard VPN,
utilizing 157-159

Ubuntu, tools

Email 36

OBS Studio 39

Password Manager 37

PGP Encryption 38

Snap Store 38

Sound/Video 42

Syncing Files 42

VLC Media Player 39

Webcam 42

Ubuntu, updating 24

V



Virsh 165
Virtualization 62
Virtualization, types

Bridge Mode 63

MAC Tap 64

NAT Network 63

Virtual Local Area Network
(VLAN) 49

VM Linux Version 165
VM Server, configuring 164, 165
VM, setting up 66
VM, steps 65
VPN 51
VPN, elements

Local Firewall 160

Package Forward 160

Tricks 160

VPN, services

OpenVPN 51

WireGuard 53

VPN, steps 51

W
Web App 190
Web App, services

Backup 201

Database User 201

Observium 192-195



Rocket.Chat 196, 198

Webb Performance 198, 199

WordPress 190-192

Web Servers 182
Web Servers, terms

Apache 182, 183

First Config 183, 184

NGINX 184, 185

Webb Content 183

WireGuard 53
WireGuard, steps 53
Wireless Network 50
Wireless Network,

configuring 50
WordPress 222
WordPress, configuring 222, 223
WordPress, deploying 89-91


	Cover Page
	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Reviewers
	Acknowledgement
	Preface
	Table of Contents
	1. Getting Getting Familiar with Ubuntu Ecosystem
	Introduction
	Structure
	Objectives
	Linux history
	Linux stack
	Usage and stats of Linux
	Ubuntu history
	Ubuntu releases
	Ubuntu version
	Mint
	Pop
	LXLE

	Other Linux distributions
	Create GitHub and blogger account
	Git
	Blog

	Book Git Repo
	Conclusion
	References

	2. Install, Upgrade, and Configure Ubuntu Desktop
	Introduction
	Structure
	Objectives
	Installing Ubuntu
	Pre-installing Ubuntu
	Dual-boot Windows or Ubuntu
	Boot Ubuntu and install
	Making boot USB with Etcher
	Boot Ubuntu for the first time
	Pre-checks before installations
	Verify computer device
	Commands
	Installing Ubuntu


	Update and other software
	Installation type

	Ubuntu running
	Installing software
	Software store
	Snap Store

	Updating Ubuntu
	Upgrading Ubuntu LTS
	.config folder
	Conclusion

	3. Environments and Window Managers
	Introduction
	Structure
	Objectives
	Install i3 window manager
	Tiling
	Extra commands
	Troubleshooting commands


	Commands in i3
	Custom shortcuts
	Background image
	Lock screen
	Extra configs
	Extra Trix with i3

	Work on Ubuntu
	Email
	Password manager
	PGP encryption
	Communication tools
	Watching video on Ubuntu
	Stream your desktop live
	Sound and video
	Webcam
	Syncing files

	Developing with Ubuntu
	Git
	Code
	PyCharm
	About code editors

	Conclusion

	4. Setting up Firewall, VPN, and Wi-Fi Networks
	Introduction
	Structure
	Objectives
	Network DHCP or static
	Network static

	Connect to segment VLAN networks
	Connect to wireless network
	Hide your computer by changing MAC address
	Secure your connections with VPN service
	OpenVPN
	WireGuard

	Protect your traffic by using DNSS
	Protect your computer by applying a firewall
	Detect and stop computer virus
	Update virus database
	ClamAV GUI

	Conclusion

	5. Preparing Virtualization Environment
	Introduction
	Structure
	Objectives
	Overview of virtualization in Ubuntu
	KVM virtualization in Ubuntu
	Create bridge

	Installing our first VM
	Settings for your VM
	Snapshots
	Custom snapshot

	Access to VM
	Using hardware devices directly in your VM
	Other virtualizations
	Build and run a Vagrant box inside KVM
	Run VirtualBox inside KVM

	Converting images back and forth
	Conclusion

	6. Up and Running with Kubernetes and Docker
	Introduction
	Structure
	Objectives
	Docker and container
	Installing Docker
	Setting up Docker repos for Ubuntu

	Docker Hub
	Official images

	Start your first Docker
	Expanding our Docker Compose to run services

	Adding Docker Compose
	Connecting service with Docker Compose
	Expanding Docker Compose
	Connecting two stacks
	Local development with Docker
	About Kubernetes
	Deploy app on Kubernetes
	MySQL
	WordPress

	Access your service

	Conclusion

	7. Install Ubuntu Server on Metal, Cloud, and Network
	Introduction
	Structure
	Objectives
	Cattle vs. pets
	Using SSH to connect to your server
	Install Ubuntu Server with USB
	Connect to your Ubuntu Server

	Using Ubuntu in VM
	Ubuntu Server in Google Cloud and Hetzner
	Hetzner cloud and metal provider
	Creating an Ubuntu Server in Google cloud

	Large Ubuntu installations made easy
	PXE booting
	Provision VM with MAAS
	Setting up our network
	PXE installation on our server
	Time to boot
	More control


	Conclusion

	8. Keeping
	Introduction
	Structure
	Objectives
	Commands for monitoring a Linux server
	Top
	Netstat
	lsof
	du

	Monitoring Ubuntu Server using Cockpit
	Monitoring Ubuntu Server data at scale
	Installing Grafana on Ubuntu
	Visualizing your metrics with Grafana
	Pushing data vs. pulling data
	Installing Node Exporter to export server data
	Combining tools to visualize the data
	Grafana dashboards

	Logs command
	Collecting and storing logs together
	Detecting hacking on your server
	Fail2Ban
	Setting up a HIDS
	Sending OSSEC logs with Filebeat to Elasticsearch


	Conclusion

	9. Setup Advanced Network, Firewall, and VPN Servers
	Introduction
	Structure
	Objectives
	Using Ubuntu as the main firewall
	Ubuntu virtual NIC and VLAN
	VLAN
	Setup network for routing
	Controlling traffic with iptables
	Keeping you safe


	Network clients with DHCP and DNS
	DNS settings

	Securing communications
	OpenVPN
	To connect our client
	On the Client

	WireGuard VPN

	VPN troubleshooting
	Conclusion

	10. Running Virtualization Server Environment
	Introduction
	Structure
	Objectives
	Installing KVM on your Ubuntu Server
	Connecting from the desktop using KVM GUI
	Installing the KVM web interface
	Creating a VM server
	Control your VM using the virsh command
	Shared storage

	Dedicated VM Linux version
	Containers
	Podman´s features
	Installing Podman
	Setting up Podman Repo
	Podman error with CNI plugin

	Setup and monitoring with Grafana and Prometheus
	Reading logs with Loki
	Journal logs

	Container based monitoring clients
	Conclusion

	11. Setup Webserver, Deploy and Run Webapps
	Introduction
	Structure
	Objectives
	Web servers
	Apache
	Webb content
	First config
	NGINX

	Databases
	MariaDB SQL
	MongoDB

	Database tools
	phpmyadmin


	Deploying web apps
	WordPress
	Observium
	Rocket.Chat
	Webb performance
	Backup
	Database user

	Conclusions

	12. Kubernetes Run and Setup
	Introduction
	Structure
	Objectives
	Installing Kubernetes on Ubuntu
	Installing Kubernetes requirements
	Setting up our Kubernetes cluster
	Deploy Kubernetes base service
	Installing Helm
	Storage
	Monitoring
	Ingress
	Load balancer
	Logs

	Install WordPress in Kubernets
	MySQL
	WordPress
	Access our WordPress
	Setup MetalLB
	Monitoring Kubernetes cluster with Grafana


	Kubectl command to remember
	Pods

	Conclusions

	13. Task Automations, CI/CD Pipeline, and Service Deployment
	Introduction
	Structure
	Objectives
	Basic Bash
	Automate tasks with Ansible
	Run host command from Docker
	Build and push Docker images
	Docker hub
	Build local

	Build and push

	Deploy with terraform against Kubernetes
	Init Terraform
	Terraform commands
	Terraform plan
	Terraform apply

	CI/CD

	Conclusion

	Index

