me=
_ﬂ--“' E I iy v,
-

Supercomu ers
for Linux
SysAdmins

Managing Modern HPC Clusters
and Supercomputers from Software

to Hardware

Sergey Zhumatiy

Apresse

Supercomputers
for Linux SysAdmins

Sergey Zhumatiy

Apress-

Supercomputers for Linux SysAdmins: Managing Modern HPC Clusters and
Supercomputers from Software to Hardware

Sergey Zhumatiy
Santa Clara, CA, USA

ISBN-13 (pbk): 979-8-8688-1599-7 ISBN-13 (electronic): 979-8-8688-1600-0
https://doi.org/10.1007/979-8-8688-1600-0

Copyright © 2025 by Sergey Zhumatiy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Coordinating Editor: Gryffin Winkler

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit www.apress.com/gp/services/source-code.

The initial version of this book was originally written in the Russian language and was translated in English
with the help of deepl.com. The initial version was updated and edited later.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1600-0

Table of Contents

About the AULNOF ... nnnn s XV
About the Technical REVIEWETucuiseemsrmssssnnnssssssnnsssssssnssssssssnsssssssssssssssssnnsssssnnns Xvii
AcKkNOWIEdgmMENTScuuuiiissmmmmmmssssnnmmsssssnnnmsssssnnsessssnnnsssssssnnssssssnnnssssssnnnnsssssnnnnssssnnns Xix
GIOSSArY Of TErMS .ovvcviissnnnnssnnnmssssssssnnsnssssssssssssssnnnsssssessss s nnnnnnnsssnssssssnnnnnnnnnnnsssssnnn XXi
Chapter 1: Introduction........cccvviiimnmssssssnmnmmmmmmssssss s —————————————— 1
Conventions and Notations Adopted in the BOOK...........ccccvverrerevnsnieniensssensesevessessesessesessessessees 3
Chapter 2: What IS “SUPer”’?ccccuussesmmmssssssnmmsssssnnsssssssnssesssssnssssssssssssssssssnssssssnnnnsssss 5
General Concepts of Parallel Processing and Parallel Programs............ccocveeeneenninenncnessessinnnns 5
TYPES OF CIUSTEIS......eceeeeerecr e e e re e nr s 9
Clusters and Supercomputers — Common and Different..........cccccvvvvirvrrnneneenvensesneesersennes 10
What “Super” Means to a Supercomputer Administrator ..o 11
Centralized Management of the Computer COMPIEXccovverrerernsnnesenesersse e 13
5T 011 - U 14
SEACN KBYWOITSveveereereeriesersereraessssessessesaesssessesseses e nsesaesassassessessesassessessessessssensesaessensnsensenes 14
Chapter 3: How to Build and Start It?........ccccuvvemmmmnnsmmnmnnssssnmmmsssssmmssssssssssssns 15
Anatomy 0f @ SUPEICOMPULETceericir e nne s 15

o0 2T T 1 o S 17
DOCUMENTALION.cceiieiie i e e p e e an 21
OK, We GOt It, What's NEXL?.......ccevierreeieriiries e sesesssessessesssessessesssssssssessesssssssssessessssssesnesnnnnnes 22
What Should 1 DO LAEr? ...t 24
SO NOLES ...t 25
Brief SUMMANYcoccoeecircrs e e s s p e e nnn 26
SEANCH KEYWOIUS ... e 26

iii

https://doi.org/10.1007/979-8-8688-1600-0_1
https://doi.org/10.1007/979-8-8688-1600-0_1
https://doi.org/10.1007/979-8-8688-1600-0_1#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_2
https://doi.org/10.1007/979-8-8688-1600-0_2
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec201
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_2#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_3
https://doi.org/10.1007/979-8-8688-1600-0_3
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_3#Sec8

TABLE OF CONTENTS

Chapter 4: Supercomputer HardwWareccceussseessmssnssss 27
CONEFOI NOUE ... a s se s ne e ne e nns 28
COMPULE NOTE ... e e e s b e e b e e e e b e e e e e ne s 28
LOGIN NOUE ... p e e nr s 29
SEIVICE NOUBS ...c.veeeereeirrese st e e a e er e e re e b e e e e nnre e 29
NetWOrk EQUIPMENT ...ttt se s s s st s st s ae e 31
D L T (0] 1o [O 36
Hardware ArchiteCture FEALUIEScco v 39
2T 1= I 1T 111 T R 43
SEANCH KEYWOIUScceeereeerrsesinese e e r s nr s 43

Chapter 5: InfiniBand........ccccourirmmmnsssssssnmmmmmmmssssssssnssesmmsssssssssssssessssssssssssssesssnnns 45
Component Identification and Addressing in InfiniBand Networks..........cccccvivvnrnieniennsensenens 47
InfiniBand Subnet ManagemeNnt............ccccvvererernirieniesernersere s s s s ssesessessesresessessesaes 49
IP Over InfiniBand (IP OVEr IB, IPOIB)........ccccverrreriereresessessessessssesessesasssssessessesssssssessessessssensenas 50
Utilities for InfiniBand Network Viewing and Managing..........c.ccccvvrrernnnnnnesiesnssnsesessesessessenns 51
AREINALIVES ... e e e e e e e e e Re e e e ne e e e s ae e nrnns 59
2T 1= RS 1T 111 1T S 59
SEANCH KEYWOIUSceveececerisesinesis st p e 59

Chapter 6: How a Supercomputer Does the Job..........cccunsmmemmmmnnnnnmmmsssssssnnmmmm. 61
How a Typical USEr SESSION DCCUISccecerverrerrererserersesessesessessesessessesssssssessessesssssssessessessssensesses 62
0 I 0 TS 62
What IS Hidden from the USEN ..o 63
2T 1= IS 1T 111 T 64
SEANCH KEYWOIUS ... s ne s 64

Chapter 7: UNIX and Linux — the BaSiCSccuussesmmmssssnanmmssssnssmssssssnnsssssssnnssssssnnnsnsss 65
PrOCESSES.....cveeeererresie s s s s e e e e s e e e e s Re e e e e Re R e e e e R R e e e nnnennas 67
ACCESS RIGNTS ... e s e e s a e e e nae 71
Concept 0f SErVICE, KBY SEIVICES.....uuuiirrrernrerrereressssersessessessssessessessssessessesssssssessessesssssssessees 75
12T T 77

iv

https://doi.org/10.1007/979-8-8688-1600-0_4
https://doi.org/10.1007/979-8-8688-1600-0_4
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_4#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_5
https://doi.org/10.1007/979-8-8688-1600-0_5
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_5#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_6
https://doi.org/10.1007/979-8-8688-1600-0_6
https://doi.org/10.1007/979-8-8688-1600-0_6#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_6#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_6#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_6#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_6#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_7
https://doi.org/10.1007/979-8-8688-1600-0_7
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec4

TABLE OF CONTENTS

File Naming CONVENTIONScoivvtrvererersrsensersessessssessessessssessessesssssssessesssssssessessesssssssessessessssensesaes 78
EXEENSion AQrEBMENTSccceieiiicirenerr e 79
TEMPIALES.....c.eiccecee e e R e p e nne s 80
Commands for Working with the DireCtory Treec.ccccrrerrssrnsennssers s 81
Commands for Working with Catalogscueueererernsenesnnnessse s s ssssesessesenns 82
Commands for Working With FileSccouerninnnnnnesnesessse s sssse s ssssessssenens 83
o T 16 10T SR 90
NEtWOrk COMMANGSccocevrerriiisisrrrirsssse s s e 93
“Cluster” COMMANGSccoererererrnreeseseressssssssesesessssssesesesessssssssssesessssssssssesessssasssssssssssensasssens 104
BHEf SUMMANY ... 105
SEAICH KEYWOIUSccveereeeerecsersse s s ne s 106
Chapter 8: UNIX and Linux — Working TeChniqUES........ucurmmssssssmssnssssssssssssssssnnssnnas 107
The MaGiC OF SYSCLL......cecerrierriesine e sr e srnne e 107
UAEY SUDSYSIEIML.....civiiecirererr e sr e e ae e s s aesae e e e naenne e 108
PAM MOQUIEScovveeseeceesssssssssssssssssssssssssssss s s e e e s s ss s s s s s sssssssssssssssssssssssssssssssnsssnsnenes 11
B3] 1] L+ TP 114
Tips for Some Often Used COMMANGSccovvreriinninine e 117
BrEf SUMMANYcoceereerec e s e 118
SEAICH KEYWOIUSccveeieeircsere e 118
Chapter 9: Network File SyStemsccucemmmnnsssnmmmmmssssnnmmssssssnmmssssssssssssssessssssnns 119
L OSSR 119
NFS ot E e E R R R R e e e 122
[T 1 126
L0 11 (1 TSR 126
Creation of Lustre File SYSIEM ... e 129
Fault TOIEranCe iN LUSTIEccocveoerecrecrerese e 132
SEHPING ANU PEL ...t e st e s e sa e 133
0100 PSPPI 134

L 10 o 135

https://doi.org/10.1007/979-8-8688-1600-0_7#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec14
https://doi.org/10.1007/979-8-8688-1600-0_7#Sec15
https://doi.org/10.1007/979-8-8688-1600-0_8
https://doi.org/10.1007/979-8-8688-1600-0_8
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_8#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_9
https://doi.org/10.1007/979-8-8688-1600-0_9
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec9

TABLE OF CONTENTS

GPFS/IBM SE0rage SCalB........cccvvererrererrerserersrsersessessessssessessesssssssessesssssssessessesssssssessessessssessesses 136
Other File SYSIEMS ...t e 137
BHEf SUMMANY ... s 138
SEAICH KEYWOIUSccveeeeeerecsere e s n e 138
Chapter 10: Remote Management...........cccoinnnmmmmmmssssnnnmmssssssnmssssssnessssssssesssssnnnns 139
SSH aNd Parallel SSN........ccoieeee e e s 139
Forwarding Environment Variables..........ccouerrinernnennesnnessss s sessesessssessnses 142
POrt FOrWarding........coeoeerenerinesrninesesesrs s se s s sr s s s sn s sna e nenns 142

X Connection FOrWArdingc.cccvvesenenennsesnsesssesssese s s sssssessssessssesssssssssssesssssssssenens 143
File TrANSTREvceiicccterese s e p e re e 143
SSH AQENL......cecicceiree e nr s 143
Configuring the SSN SEIVETcccvicriererese e 144
Configuring the SSh ClENTccovviienrcs s 146
Host-Based AuthentiCation.............cuevninneninnse s 150
010 SO S SRS 151
CIUSTEE SREIL......veeeri s 153
SCIEEN ANM TMUX....ecueecceererreesese e se e e e n e e e s an e as 155
IPIVIL.... ettt bR R AR R R A e e 159
{0 1 - T SR 164
TKVIVL. ..t bbb AR R b e e 164
BET SUMMAIYceerictcsirere st a e e s ae b e e e s aeeae e e e e e nne e 165
SEACN KBYWOITSveveeruerrerersessersersesessessessesassassessesaessssessessesssssssesaesasssssessessessssessesasssssessessesaes 165
Chapter 11: Users — Accounting Managementcccinnsmmmnmnssssnnnsssssssssssssssnnns 167
Account SYNCArONIZALION ... e 167
ClAaSSIC APPIOACKH.......ce e e e s b e e b e e nnn 167
NIS/NIS+ ...ooveeerirereresesesese e e bbb b b e e e e 169
LDAP.....eeteteteerere et e AR R b bR e e e 17
BET SUMMAIYcieriirirsirere et s s s ae s a e se e s s ae e s saeene e e e naenne e 172
SEArCN KBYWOITSveveereerrerersersessessesessessessesassessessesaesssessessesssssssessesasssssessesaessssessesasssssassensesaes 173

https://doi.org/10.1007/979-8-8688-1600-0_9#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_9#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_10
https://doi.org/10.1007/979-8-8688-1600-0_10
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec14
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec15
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec16
https://doi.org/10.1007/979-8-8688-1600-0_10#Sec17
https://doi.org/10.1007/979-8-8688-1600-0_11
https://doi.org/10.1007/979-8-8688-1600-0_11
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_11#Sec6

TABLE OF CONTENTS

Chapter 12: Users — Quotas and Access Rights..........cccinnnmmmmmnssssnnnmsssssnsssssssnnns 175
File SyStem QUOLAScccouecerircriiesir et 175
1] 1T 1 T 179
UNIX GFOUPS, ACLSveeiircrierississese s se st se s s sas e s s sae st st s st e s s sns st sesnesnestssnsennens 182
RESIIICE USEBI ACCESS ..eveuerveuerrrsesrssesessesessssessssesessesesrssessssesessesesss e ssssessssssessasessssessssensssanessnssnsnns 182
BET SUMMAIYcveeiiiesircire e s sa e s s s a e e s ae s ae e e s aeeae e e e naenne e 184
SEACN KBYWOITSveveereerrereesersersessessssessessesassessessesaess s e ssessesasssssesaesassssnessesaessesensesasssssessensesaes 184
Chapter 13: Job Management Systems..........ccusmmssemmssnnssansssansssnssssnsssassssnsssansssans 185
Principles of Operation and Capabilitiesccccourrrvrrrerrenrnrc e 185
T 0TS T () (o 187
LT oL ES Tl o 0] 0] T PSS 187
Bref SUMMANYccoceiicerces st 188
LT L LT A0 0 OO 188
Chapter 14: OpenPBS and TOr(JUEcccsmsessrrrssssssssssnssssssssssssssssssssssssssssssssnnnnnnsnssnss 189
INSTAIlING TOIQUE ... eieeeecer e s e e s a e s s e e a e s ae e e 189
T w410 L o (0] (o T O 191
Configuring the MOM Server on Compute NOUESccccvvrerinnininn e 196
Customizing the SCREAUIET ..o s 198
(UL T (0] (o 1 TSSOSO 200
Job Control COMMANGS........covuiieriririrre s 203
5T 01 - OO 204
SEAICH KEYWOIUScveeieeeirc ettt e sttt et e e e 204
Chapter 15: SIUMM......ccccmimmmnnmmenmsnmmssmssanmsnmsanmsasmssnanssasssassassssassssnsssansssas 205
SIUrM INSTAALION ... e 206
i o101 T S 207
ACCOUNTING SELUDcivierircircce e e r e e e ra e nr s 209
BasiC SEUP @NA USAQEccoevrrierierererersere st se s s e s s s se s e s s ss s e s e ssessesessesaesaesassesnesnees 210
ParTItIONS......cciccirci s 212
T T 214

vii

https://doi.org/10.1007/979-8-8688-1600-0_12
https://doi.org/10.1007/979-8-8688-1600-0_12
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_12#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_13
https://doi.org/10.1007/979-8-8688-1600-0_13
https://doi.org/10.1007/979-8-8688-1600-0_13#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_13#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_13#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_13#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_13#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_14
https://doi.org/10.1007/979-8-8688-1600-0_14
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_14#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_15
https://doi.org/10.1007/979-8-8688-1600-0_15
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec6

TABLE OF CONTENTS

Generic and Trackable RESOUICES.........ccvruminismseresssssssse s sesssssnsas 215
Backfill and Pre@mplion........c.cccvciiiinnincniern e nnens 216
QOS AN LIMITS...viviviuecrerrresrseseseseressssssesesesessssesssssesessssssssssssessssssssssssesssssssssssssssssssssssssssensasensans 217
Priorities and FAIrSNArec.ccoverrenrnsesrsers s 219
USEBI LBVEIS......ceeerecriesiesese e sense s s s se s s e e s p e s naenne s e e nnnnnnns 222
L] 010 00) S SP 223
RESEIVALIONS ..o e 224
USEI EXPEIIBNCE ...cucveieircc ettt s e p e e s b e nne 225
00 I 03 SRR 230
110 1) 231
Accounting and StAtiISICSccvvrerrreserenrrnse s 233
L0100 L= 1100 (o OO 235
Advanced Parameters for SIUMM.CONT ... 236
BHEf SUMMAIY ...ttt st et e se e 239
SEANCH KEYWOIUS ...t 239
Chapter 16: CONtaiNers........cccuvsmmmssnnmsssnnsmsssnsmsssnsmsssnsssssnsssssnsssssnsssssnsssssnnsnssnnsnnsns 241
BT 11010 S 242
L8] 0] 2T T OSSPSR 243
T2 T 1= 8 0 243
T LT = 1] (T) SR 243
07 T 11 o OO 244
BHEf SUMMANY ... s 244
SEAICH KEYWOIUSccveeeeeerecsere e s n e 244
Chapter 17: Cloudsccuusmsmsmsmsmssmsmsmsmsmsmsssssssssssssssssssssssssssssss s ssssssssasasasases 245
BrEf SUMMANYcccieieeerce st 246
SEArCH KBYWOITSveveereerrertesersese st e s s e s e e sae e s s se e e s s s sae e e s sae st e e e e saeeae e s e naenaes 246

viii

https://doi.org/10.1007/979-8-8688-1600-0_15#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec14
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec15
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec16
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec17
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec18
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec19
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec20
https://doi.org/10.1007/979-8-8688-1600-0_15#Sec21
https://doi.org/10.1007/979-8-8688-1600-0_16
https://doi.org/10.1007/979-8-8688-1600-0_16
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_16#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_17
https://doi.org/10.1007/979-8-8688-1600-0_17
https://doi.org/10.1007/979-8-8688-1600-0_17#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_17#Sec2

TABLE OF CONTENTS

Chapter 18: Remote USEr ACCESSceurrrssssnssrsssssnnsssssssnsssssssssnsssssssnnsssssssnnnsssssnnnnss 247
SSH ..t R R e e e e 247
FTP @Nd WWW ... ssss s se e sssss s nsnsnenene s 248
XoWINAOW....ecerieerisesessese e s s s s se s e e e nne e nsa e nennennnsnnnns 249
ARErNALIVES TOr XTT .o sr e r s 254
BET SUMMAIYcveeiiiesircire e s sa e s s s a e e s ae s ae e e s aeeae e e e naenne e 255
SEACN KBYWOITSveveereerrereesersersessessssessessesassessessesaess s e ssessesasssssesaesassssnessesaessesensesasssssessensesaes 255

Chapter 19: Cluster Status Monitoring Systemscccccnnemnmnsssnnnnmssssssesssssnnn 257
SINIVIP ..ottt e d e e R R R R E e 257
(€ 40T OSSPSR 264
1 T 0L 266
ZADDIX .. ——————————————— 267
MOdern APPrOACH.........c.eiiiir et 268
XDIVIOD ...coveeeeesessesssss s s s se e e R E bbb b e e e 270
LM _SENSOIS/HWITIONcviiiiiicccir et s b e sa e s bbb e s b b n b s b e benanans 271
IPIVIL..c.. ettt e AR R R R A e e 275
APCUPS ...ttt bbb e e 275
L O SO S O STPR S 279
HEAINCNECKS ...t s 282
Lo U T R 283
BHEf SUMMAIY ...ttt e st et e e se e s 283
SEANCH KBYWOIUS ...t e 284

Chapter 20: BaCKUPcvcsrvsssssssssssssssmssssmsssssssssssssmsssssssssssssssssssssssssssnssssnsnsnsnnsnsnss 285
L OSSPSR 285
BACUIceeeeeeeerc e nnn 289
RSYNC QN0 OTNEIS....cviieicerererirser e se s s s s s se e s s ae e s saesne e e e s e nne e 297
BIIET SUMMAIY ...cucveriesecierere s s s s e s s sa e se s sae e sa s e s s s ae s s e e s e saesae e e e saesaesasnenansanns 299
SEAICH KEYWOIUScveeieciricccre ettt ettt e e ne e e 300

ix

https://doi.org/10.1007/979-8-8688-1600-0_18
https://doi.org/10.1007/979-8-8688-1600-0_18
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_18#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_19
https://doi.org/10.1007/979-8-8688-1600-0_19
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_19#Sec14
https://doi.org/10.1007/979-8-8688-1600-0_20
https://doi.org/10.1007/979-8-8688-1600-0_20
https://doi.org/10.1007/979-8-8688-1600-0_20#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_20#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_20#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_20#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_20#Sec5

TABLE OF CONTENTS

Chapter 21: Compilers and Environments, for Parallel Technologies........ccussueeees 301
(0107 o7) (0] 1 - O 304
Intel and NVIDIA HPC COMPIIEIS.......coiviirieririnirsere s st sss s s st sessesnens 306
PIVIIX oottt e bR R b E R e e e 307
1110 OO RS 308
L0 0 T=T 1 L OO 308
MVAPICh/MVAPICRZ........c o s s s s a s se e s e e e e e saesae e e e naennens 311
Proprietary MPI: Spectrum MPI and INteIMPL.............ccoreirrrrrc e 311
SHMEM Library, OpenSHMEM Standard..........c..cccorerrenrnscnereneseseresesesese s sessesenns 311
CUDA ...ttt bR R A e e 313
UCX @NA NCCLceeereerceeessss s sssss st se ettt es 315
[0 0 T=T O OO 316
(0] 0 T=T 72 0 R 317
Environment Modules and LMOD...........cccourrinenenenenenssssssesesesssssesesessssssssssesessssssssssesesssssnsaes 317
BUIIA SYSTEBMS ... e 322
BrEf SUMMANY ..o s 324
SEAICH KEYWOIUSccveeieeeirrcseree e e 324

Chapter 22: Parallel Computing Support Librariesccccuseemmmnsssssnnmssssssssssssssnnnss 325
SCALAPACK.......coceeveirireririre st e e e 325
PETSC .vvititeteeseresesesesessssses s s s s s e e e R RnE R E e e e 331
FET/FFTW .ttt bttt 333
5] PRSPPI 334
Debuggers and Profilers ..o s ssssssessssessssssenns 334
BrEf SUMMANYc.ooecicceccc s e nr s 338
LT L LT A0 0 OO 338

Chapter 23: Booting and Init...........ccccinnnnemmmmnnnsnnnmmmssssmmmmssssmmssssssssssasan—m 339
Booting from Hard DiSK.........ccciiriinnnniriininne s s s s ss s s sses s ssaesaensenns 339
INIT in SYSIEMV STYIE ...t 341
£33 =11 T 346

https://doi.org/10.1007/979-8-8688-1600-0_21
https://doi.org/10.1007/979-8-8688-1600-0_21
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec13
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec14
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec15
https://doi.org/10.1007/979-8-8688-1600-0_21#Sec16
https://doi.org/10.1007/979-8-8688-1600-0_22
https://doi.org/10.1007/979-8-8688-1600-0_22
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_22#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_23
https://doi.org/10.1007/979-8-8688-1600-0_23
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec3

TABLE OF CONTENTS

N L= 40T g =TT 1o SRS 351
0] (14 OSSPSR 353
TFTP, PXE, @nd NFS-ROOL.........cccuouirirninininrnineresesesesesesessss s ssssssssssssesssesesssssssssasasas 357
(2T 1= ST 1T 1T T S 359
SEAICH KEYWOIUSccveeiceiricsere e 359
Chapter 24: Node Setup and Software Installation..........ccusreemmmnnnnnnnnnnnssssnnnnn. 361
Network and Hardware DIIVErS..........ccourrnmnisssissssssssse s s sesssssssas 361
Configuring the Control and COmMPUte NOUES.......cccevererreriererenserserersesessesesessssesessessessssessesses 362
Installation and Configuration of the Login NOdE........c.ccccevevrrccrnicnnie s 363
NFS Server Configuration...........coocoeeernsnrnenresers s 364
Configuring the Communication SOftWArEccovrererenrnsesnese s 364
Installing Compilers and LIDFariesc.cucvverrinernsesnessnese s ssssssssssssssssesenns 366
Customizing the Job Management SYStem.........cccvvvrvririnnnnire e enes 366
Installation and Configuration of the Cluster Compute NOdEccoevvvrveriernnensensenenessensenaens 367
BHEf SUMMAIY ...ttt et se e e 371
SEANCH KBYWOIUS ...t e 371
Chapter 25: Qut-of-the-Box Stacks and Deployment Systems.........ccuuceemnrisssnnnnns 373
ROCKS ...t bbb e bbb bbb e e e 373
Parallel Knoppix/PeliCanHPC............c.cccvivenneninierssessese e sesseseans 375
BEf SUMMAIYccerieicsirere s s s s ae e se e s s ae e e e s aesae e e e naenne e 377
SEACN KBYWOITSveveeruerierersersersessessssessessesassessessesaesssessessesssssssesaesasssssessesaessesessesasssssessensesses 377
Chapter 26: Cluster Management Systems — XCAT and Othersccuveenrrssssnnnnns 379
Installation and INitial SELUPcceeeerrccrrc e 380
Architecture and COMMANGS........ccoveererererere e sr s e nre e 380
NOde MANAgEMENL........ccceeerrre s e s 384
Loading and CONrOlliNGcueeerenerenersnsesssesessese s s ss e s ss s s e ssssesessssens 388
CanoNICal MAAScocruririiiriri s 390
FOTBMAN ... e 392
NVIDIA Base Command Man@QErcccoveerrererrenerensesenenesesessssesessesessssessssessssesssssssssensssssesenns 393

https://doi.org/10.1007/979-8-8688-1600-0_23#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_23#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_24
https://doi.org/10.1007/979-8-8688-1600-0_24
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_24#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_25
https://doi.org/10.1007/979-8-8688-1600-0_25
https://doi.org/10.1007/979-8-8688-1600-0_25#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_25#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_25#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_25#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_26
https://doi.org/10.1007/979-8-8688-1600-0_26
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec7

TABLE OF CONTENTS

BIIET SUMMAIY ...cueveriesicierere e serse s s s s se s s sa e se s saesaese s e s s s ae s e e e s e s aesae e e e saesae e e e naenaees 394
SEAICH KEYWOIUScveeieeirec ettt ettt e e e s 394
Chapter 27: Communicating with USErs.......cccussummmsssnnnmssssssssssssssssssssssssssssssssnnnss 395
COITESPONUENCE........eteercrier e rir et b e e s e s b e b e e e e R e b e e e e Re b e e e e e R nnn 395
Accounting for ReqUESLS frOm USEIScveerrsererenmsssesssesssesessse s sessssessesesessesesssssssssessnnes 397
ACTUANIZALION ...t e e p e e R r s 398
oL 172 (o] 399
BIIET SUMMAIY ...cucverieririerere s s s s e s s s s e s saesaese s e s s s ae s s e e s e saesae e e e saesae e e e nsnsaens 400
SEAICH KEYWOIUScveieeirec ettt s e st e e e e 400
Chapter 28: One-Two-Three INStructions.........ccccrrnsssnnnmnsssssnnmsssssnssssssssssesssssnnns 401
L ST 401
Configuring the NFS SEIVEN ..o s 402
Configuring the NFS ClIent..........cccvvcinisnsrnesne s sr s sesse s 402
INStAlliNG LUSIIE (NO HA) ..ottt st s s se s ss e s s sae e s e saesnesa e e saennens 402
NIS+ Server INStallation...........ccccirrnnr s 403
Installing the NIS+ CHENtcooeeercrrcerer e e 404
Installing OpenLDAP (Using RH As an EXamPple).........ccoveermrenerencrnncnerener s 405
CUSTOMIZING XOTQ 1.urrrreerrnerensesessesessssesessesessssesessesssss e s e sessesessssssssssssssssssssnssssssssnssnsssessssnsssnns 409
APCUPSD........cuitititniitsisiss i e se s bbb bbb 412
(7Y OSSPSR 422
BIIET SUMMAIY ...cueveriesicierere e serse s s s s se s s sa e se s saesaese s e s s s ae s e e e s e s aesae e e e saesae e e e naenaees 425
SEAICH KEYWOIUScveeieeeiric ettt s e e e 425
Chapter 29: Shell Scripts — Basics and Common Mistakes.........cccerrmssssnnssssssnnnns 427
NOE-2-MiSTAKE ... e 437
2T 1= ST 1T 1T T S 437
SEAICH KEYWOIUSccveeeceircstre et np e 437

xii

https://doi.org/10.1007/979-8-8688-1600-0_26#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_26#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_27
https://doi.org/10.1007/979-8-8688-1600-0_27
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_27#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_28
https://doi.org/10.1007/979-8-8688-1600-0_28
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec7
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec8
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec9
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec10
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec11
https://doi.org/10.1007/979-8-8688-1600-0_28#Sec12
https://doi.org/10.1007/979-8-8688-1600-0_29
https://doi.org/10.1007/979-8-8688-1600-0_29
https://doi.org/10.1007/979-8-8688-1600-0_29#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_29#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_29#Sec3

TABLE OF CONTENTS

Chapter 30: Systemd — A Short COUrSeccuummmmmmmssnnnnmmssssnsnmssssssnsessssssssessssnnnns 439
1 T 439
SYSEEMCH COMMANUS........coeeeeeeer e 448
011 = o OSSR 449
Network Config, Time Sync, and Hostname ReSoIVINg.........c.ccovvvnennenennsenssesssesesssesesenens 451
Y421)74 o OO 452
ST 011 - /OO 453
SEAICH KEYWOIUScveieeirec ettt et e e 453

1T LT 455

1T = 457

xiii

https://doi.org/10.1007/979-8-8688-1600-0_30
https://doi.org/10.1007/979-8-8688-1600-0_30
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec1
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec2
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec3
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec4
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec5
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec6
https://doi.org/10.1007/979-8-8688-1600-0_30#Sec7

About the Author

Sergey Zhumatiy has been managing supercomputers since
1999, starting out with building and managing HPC clusters
at Moscow State University, and holds a PhD in Computer
Science. Several supercomputers under his supervision, like
Chebyshev, Lomonosov, and Lomonosov-2, achieved top
rankings in the top 500 supercomputers list and dominated
the Russian top 50 supercomputers list. Now he works as an
HPC architect and SysAdmin at NVIDIA.

About the Technical Reviewer

John Roberts spent over a decade as an HPC systems
administrator, supporting large-scale scientific computing
and advanced research initiatives. He recently transitioned
to a new role where he continues to focus on supporting

and optimizing HPC environments. John holds a bachelor's
degree in computer science and brings a passion for scalable
systems, innovation, and advancing scientific discovery.

xvii

Acknowledgments

I would like to express my sincere gratitude to the following people:

Vladimir Voevodin for the ideas and criticism

Konstantin Stefanov, Alexander Naumov, Anton Korzh, Ilya Fateev, Ben Evans, and
Caio Davi for the provided material and consultations

Hui Li, Paniz Karbasi, Oksana Korzh, and Mark Moe for their patience and valuable
advice and ideas

Viktor Datsyuk, Pavel Kostenetsky, Alexei Latsis, and Yuri Khrebtov for important
comments

John Roberts, the technical reviewer of this book, for the great work and tons of
thoughtful corrections and suggestions

Xix

Glossary of Terms

Backup: A copy of data (files, databases) stored on a separate media or a group of media.
Data can be restored from the backup copy to the original files, databases, or to other
directories, databases.

Cable organizer: A design that allows cables to be stacked within a dedicated space.
Communication network: Used to exchange data by computing tasks.

Compute field: A set of all compute nodes of the complex that are available for
user tasks.

DAPL: Direct Access Programming Library, a library for using direct access to remote
computer memory without having to explicitly describe a particular type of hardware.

D-BUS: System Message Bus, a server and protocol that allows any programs to
communicate within the same server. A program can register as a service and publish

messages (events) and as a client and subscribe to certain events.

DHCP: Dynamic Host Configuration Protocol, a protocol that allows a computer to
obtain information such as its IP address, network name, etc., from a server at the OS
boot stage or later.

File server: A computer that makes part of its file system available to other computers

over a network.

File storage: Equipment that provides disk space over a network or locally, such as for a
file server.

Form factor: Standard dimensions for computer cases, like mini-tower, 1U, 2U, etc.

FPGA: Field Programmable Gate Array, a device, which can be programmatically
reconfigured into various combinations of "gates" - logical units - and form specialized
compute devices.

FTP: File Transfer Protocol, a protocol for transferring files over a network.

GPGPU: General-Purpose GPU, a GPU, which is used for computations.

xxi

GLOSSARY OF TERMS

GPU: Graphics Processing Unit, device for generating and displaying (via separate
display) graphics. Today, any video card.

Host: A node on a network - a server, a computer.
HPC: High-Performance Computing, the supercomputing industry.

Interconnect: A jargonism, usually referring to a communications network or just a fast
network.

Journaling: Writing messages to a log. Many programs support logging to a file. In UNIX-
like systems, there is a standard syslog service, which is used by many programs and

services.

KVM: Keyboard and Video Monitor, a device that allows you to connect multiple
computers to a single monitor and keyboard.

Latency: The time spent when a packet is transmitted through a network regardless of
its length.

Linpack: A test for some estimation of real performance of parallel computing
complexes. Most often, the High Performance Linpack (HPL) version is used.

Logging: See journaling.

LVM: Logical Volume Manager, a technology for building logical disks using multiple
physical disks and/or RAIDs.

MAC address: The unique address of a network card in the Ethernet standard.

MPI: Message Passing Interface, an open library standard intended for message passing
inside a parallel application. There are many implementations of this standard (mpich,
lam, openmpi, etc.).

NIS: Network Information System, a technology that allows user accounts, computer
names, and other system information to be stored on a server and retrieved from any
computer on the network.

Node (of a cluster): a computer designed for certain tasks in the cluster (computing,
controlling, I/0, etc.).

NTP: Network Time Protocol, a protocol for synchronizing time over a network.

Rack: See telecommunication cabinet.

xxii

GLOSSARY OF TERMS

RAID: Redundant Array of Independent/Inexpensive Disks, an array of multiple hard
disks logically combined for greater fault tolerance, speed, and/or capacity.

RAID-0 (stripe): RAID, which disks are combined in such a way that logical blocks of
disks alternate: blockl of the first disk, blockl of the second, ... block?2 of the first disk,
block2 of the second disk, etc.

RAID-1 (mirror): RAID, the disks of which are combined into a "mirror" to increase
reliability. Information is written simultaneously to all disks in blocks with the same
numbers.

RAID-5: A RAID whose disks are combined into parity groups. When writing to a logical
block, the written data is added by XOR method with other blocks in the group and the
resulting information is written to a separate block. When reading, the correctness of the
data is checked, and if one of the blocks is corrupted, the information is automatically
restored.

RAID controller: A device that combines multiple hard disks into a RAID.

RDMA: Remote Direct Memory Access, a protocol for direct memory access to a remote

computer.

Register: Internal memory of the processor, works very fast, all arithmetic and logical
operations are typically performed with registers only.

Samba: A software package that implements the SMB and CIFS protocols used in MS
Windows for network disks. It allows accessing Windows network disks from Linux, as
well as creating network disks under Linux so that they can be used by Windows clients.

SCI: Scalable Coherence Interface, an old standard for high-speed data transmission
equipment. It means connecting network cards directly to each other in a ring or torus
(two- or three-dimensional).

Service network: Used to monitor and manage the state of compute nodes.

SNMP: Simple Network Management Protocol, a protocol designed to monitor and
manage equipment on a network.

Software: In addition to the actual set of programs, this includes configuration and other
files necessary for its operation.

SSH: Secure Shell, a protocol for remote access to computers on a network, involving the
use of an encrypted connection.

xxiii

GLOSSARY OF TERMS

Superuser (a.k.a. administrator): A user of the system, with rights that allow
performing any regular actions. In UNIX-like operating systems, it is typically a user with
UID = 0. Historically, it is named root, although the name itself can be changed.

Switch: A device that allows multiple network adapters to join together to form a
network.

System console: A virtual screen and a keyboard connected to it. The system console
receives messages from the OS kernel. From the system console, you can control the OS
boot process.

Telnet: A protocol for remote access to computers on a network. It uses an unencrypted
data channel.

TFTP: Trivial File Transfer Protocol, protocol that allows you to retrieve files from a
server, such as a boot image.

Telecommunication cabinet: A rack, designed for mounting computers and other
equipment that meets certain standards (equipment width, mounting method, etc.). The
most common racks are 19 inches wide.

Transport network: Used for network file systems, run commands on nodes, etc.

Tunneling: The forwarding of a network connection through another connection
(tunnel). The tunnel itself looks like a local connection or a direct connection to
another host.

U: Unit, a unit of measurement for the height of rack equipment, equal to 5/4 inches or
approximately 4.5 cm. The unit is sometimes referred to as RU - rack unit.

UPS: Uninterruptible Power Supply.

Glossary of Jargon

Backslash: “\” symbol.

Cooler: A fan, cooling the system.
Chiller: A refrigerating machine.

Fiber: Fiber optics.

Folder: The directory of the file system.

XXiv

GLOSSARY OF TERMS

Gateway: A device or computer, receiving all network packages if they should go out of
the local network (and send them forward).

Interconnect: A communication network.

Log: File, containing a journal of some program(s) actions.

Rack: Telecommunication cabinet.

Sharp: “#” symbol.

Slash: “/” symbol.

Trap: Exception or a code to catch the exception.

CHAPTER 1

Introduction

Hello, dear reader! Allow me to introduce this book and share with you what it offers.
What it is about:

e Whatis a supercomputer and how it works
e Basics of software you need to know to build and/or manage it

o Which technologies can be useful and when (what you need
to learn!)

e Random useful (I hope) stuff
What it is not about:
¢ Detailed info about specific HPC software
e Guides “you have to do it that way”
e Deep info about hardware, protocols, etc.

This book can help you to become a supercomputer administrator, if you already have
experience as a Linux one. If you do not have such experience - no problem, you can find
some basic info and general principles here. The first chapter is mostly for novice admins;
mature guys can just take a quick look. A good approach would be to read books on Linux
administration and practice, e.g., on a virtual machine, and review this book again.

Note, “can help,” because

e Supercomputing technologies develop so fast, that books become
outdated in two to three years.

e There are so many different software and technologies that it is simply
not possible to cover everything (but you will read where to look).

e Only real experience can make you a supercomputer admin, sorry
(but I hope this book will make this way shorter and easier).

© Sergey Zhumatiy 2025
S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_1

https://doi.org/10.1007/979-8-8688-1600-0_1#DOI

CHAPTER 1 INTRODUCTION

We will consider only supercomputers based on Linux, which is the de facto
standard at present. By “supercomputer,” I mean a computing cluster, and some
information in this book can be applied not only to clusters.

In order to have at least a small practical basis, I will give the most important
examples directly in the text, and the last three chapters summarize the instructions,
techniques, and reference data for the technologies discussed.

A supercomputer is not just a set of servers, switches, disks.... It is a single complex -
not only ideologically, but also in essence. All its components are closely connected,
and the most significant task of an administrator is to understand and realize these
connections, the importance of each component, and its impact on the complex as
awhole.

Of course, this cannot be done without knowing how to control all parts of the
complex, so one should study the peculiarities (at least the basic ones) of configuring
and monitoring all components of a particular cluster. However, don’t think that
by memorizing the values of all the “ticks” in the administrative interfaces of all the
“hardware,” you can get full control over the supercomputer.

Since the scale of even a small compute cluster differs significantly from a dozen
servers, it is strongly (very strongly) recommended to take the time to learn the
capabilities of the command line. If you work with a dozen servers in a graphical mode, it
is still possible, although very tedious. But with a hundred - it is simply unrealistic.

How do I find out which servers didn’t have the full amount of RAM detected the last
time they were powered on? Run “system monitor” on each? Go to the “system” tab and
see the amount of RAM? This will take all day. But if you run on each node, e.g., using
pdsh or clush, a command such as

grep MemTotal /proc/meminfo | awk '{print $2}"

it is possible to get the same amount of RAM in seconds. By adding a couple more
shell commands, you can compare the obtained value with the benchmark (even taking
into account tolerances) and output the names of nodes that failed the check. Spell-
induced magic? In a way - yes, magic, but with clear laws and quite masterable.

It is not uncommon for very complicated actions to be accomplished with a
combination of standard commands. Fortunately, this is almost always possible without
a lot of work. Labor is required for the initial mastering of these commands, and then -
all the Linux magic will be in your hands!

CHAPTER 1 INTRODUCTION

It is highly recommended to study the “Advanced Bash Scripting Guide.” This guide
allows you to use the huge power of a tool that is always at your fingertips - the bash
shell (almost everything works for zsh as well). By adding a few simple sed and awk
tricks to your arsenal (and if you want absolute magic, then perl, and maybe python or
ruby), learning the capabilities of find, ps, and similar commands, you will increase the
efficiency of your work many times over.

This book also provides a basic knowledge of the command line and the basic
concepts of Linux to give a good start to those who are not familiar with them at all or
have a superficial knowledge of them. Without this knowledge and skills, it is impossible
to understand the system as a whole. Experienced Linux administrators can browse
through these chapters at a glance: there are not many new things to learn for them. And
they are a must for the newbie: you can’t be a supercomputer administrator without
being a good Linux administrator.

The book touches upon another important topic that at first glance does not seem to
be related to system administration - the topic of user support. As you know, supporting
users of a supercomputer is very different from supporting users of computers that work
in neighboring rooms. I have tried to prepare a novice administrator for the difficulties
that await him on this path.

Each chapter provides basic knowledge and concepts on a particular topic. Some
of them cover different aspects of the same concept. Each chapter ends with a brief
summary of the material and keywords for Internet searches on the topic of the chapter.

Conventions and Notations Adopted in the Book

Script code and text of configuration files are highlighted like this:
This is the text of the script

Warnings and important points to keep in mind:

Attention! Do not step on the same rake twice!

Terms or important concepts are given in bold.
Short commands are highlighted in the text like this: 1s -1a.

CHAPTER 1 INTRODUCTION

Material for beginners that can be skipped by experienced professionals stands out
like this:

To get started, plug the computer into the network.

The book often uses abbreviations and common terms. For many people, they
are familiar, but for others, they are not yet. Therefore there is a small glossary at the
beginning of the book. Some materials from this book (and beyond) are collected in the
git repository https://github.com/zhum/hpc-book-matherials.

Please send your feedback and suggestions to supercomputerbook@gmail.com.

https://github.com/zhum/hpc-book-matherials

CHAPTER 2

What Is “Super”?

General Concepts of Parallel Processing
and Parallel Programs

All modern supercomputers use parallel data processing. Since the beginning of the
computer era, this has been and remains the most important way to achieve high
performance. So, let’s start from boring things and try to understand how parallelism
works! Yes, you can skip it if you're sure you know all that stuff.

Nowadays, even the simplest desktop computer, is almost certainly equipped with
simultaneous multithreading technology (e.g., Intel's HyperThreading or AMD SMT),
which allows two (sometimes more) program threads to run simultaneously. Even cell
phones and cameras are becoming parallel and multicore.

The principle of parallel data processing is simple: if two or more operations are
independent (i.e., the results of their execution do not affect each other’s input data),
these operations can be performed simultaneously, i.e., in parallel. In hardware,
there are traditionally two variants of embodiment of this principle - parallelism and
pipelining.

Parallelism - Parallel execution of machine instructions by different devices. For
example, the commands x=a+b and y=b*c, where a, b, and c are stored in internal
processor memory, can be executed independently if the processor has separate
addition and multiplication devices (see Figure 2-1). This principle is embodied in most
modern processors. GPUs also use this principle - many cores do the same code in
parallel.

© Sergey Zhumatiy 2025
S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_2

https://doi.org/10.1007/979-8-8688-1600-0_2#DOI

CHAPTER2 WHAT IS “SUPER™?

+

Figure 2-1. Parallel execution

Pipelining - Division of commands into stages, each of which is executed quickly by
a separate hardware element, and execution of these stages according to the conveyor
principle: one after another. Thus, several commands at different stages of the conveyor
can be executed simultaneously. This principle is most often used in vectorization, i.e.,
execution of a single-type operation on vectors, i.e., data arrays located in memory on a
regular basis (see Figure 2-2). This is used in “vector” processor operations, like AVX.

X[3] X[2] X[1] X[0]

All

B[l

Figure 2-2. Pipelining and vectorization

Most frequently, the elements of a vector are arranged one after another. A typical
example is the addition of vectors. Since the operation performed on vectors is the
same, it is divided into phases - pipeline stages, e.g., loading elements from memory,
normalization of mantissas, addition, correction, and writing to memory. After
performing the first stage on the first element of the vector, this stage can be immediately
performed on the second element without waiting for the completion of the whole
operation on the first element.

After each step is completed over one element, you can perform it over the next
element. Thus, if the slowest stage of the conveyor is executed in K cycles, and all stages
in S cycles, then the vector of N elements will be processed in K*(N-1)+S.

CHAPTER2 WHAT IS “SUPER™?

The first element will be processed in the required S clock cycles (this is called
“pipeline acceleration time”), and then the device will produce one result per K clock
cycle. In modern processors, most often K = 1. However, pipelining does not necessarily
imply vectorization and vice versa. For example, if the addition device is pipelined, and
there are several regular additions in a row performed, they can perfectly utilize the
pipeline.

A system administrator doesn’t always need a thorough understanding of
the processor, assembly language, and the ability to optimize user programs, but
understanding how parallel execution in a processor works is very important.

Many modern processors are multicore, i.e., they contain several full-fledged (or
almost full-fledged) processors on one crystal (in one chip). GPUs have hundreds or
thousands of cores - small processors, working in parallel. There is also parallelism at
the level of memory access, when different memory banks can work independently, and
it means that they can give or write data faster. For example, if your motherboard has
four memory banks (not slots!), then use of four slots with 8 GB (one for each bank) will
work better than one slot with 32 GB. While one data is being written into one bank, the
second one can be started to be written into the next.

There is also parallelism at the level of working with devices - you can form a block
in memory in advance to write it to a disk or to send it over the network and “command”
the controller to write/transmit it. Then the processor can perform other actions, while
data from memory will be written to disk or sent over the network.

This is parallelism embedded in “hardware.” In order to use it to the maximum, to
make calculators (cores, processors, compute nodes...) work in parallel, it is necessary to
compose a program in such a way that it uses all these resources. That is, write a parallel
program. We will not deal with this (at least within the framework of this book), but you
probably will deal with parallel programs. You have to deal with parallel programs all the
time, and you need to know how they work.

If a parallel program is written, does it mean that it will immediately work faster
than a regular (sequential) one? No. Moreover, it may work even slower. The parts of
code, that should be executed in parallel may actually conflict with each other. For
example, two threads access different memory sections and do not let the processor’s
cache work efficiently. Or parallel processes constantly have to wait for data from the
slowest one. Or...

CHAPTER2 WHAT IS “SUPER™?

There are many variants of inefficient parallel code, and if you cannot achieve a
good acceleration of a program on a supercomputer, it is possible that it uses parallelism
inefficiently. It is very difficult to find out the real cause. For this purpose, you should
use “debuggers of performance” - parallel profilers, tracers, or at least monitoring of
compute nodes by the data of which you can judge what happens while the program is
running.

You, as a system administrator, should know all the levels of the parallelism and be
able to check them all in case parallel programs work slow. Or advise your users to debug
efficiency of parallelism in their programs.

In addition to parallelism on one server hardware level, there is a parallelism of
several processes or threads running on one server, coprograms running on accelerators
like GPUs or FPGAs, and several servers running in parallel. To utilize these levels of
parallelism, special libraries or “parallel programming environments” are used. The
most popular are MPI (allows running many processes on one or many servers and pass
messages between them), OpenMP (allows run many threads in one process), CUDA
(allows run code on NVIDIA GPUs), and OpenACC (allows run code on a wide range of
accelerators).

In summary, there can be multiple levels of the parallelism in one cluster, the most
frequent are (HW = hardware level, SW = software level)

e [HW] multiple memory banks

e [HW] multiline CPU cache

e [HW] multiple CPUs

e [HW] multiple CPU cores

e [HW] multiple functional devices in one CPU core

o [HW] accelerators, like GPUs and FPGAs

e [HW] network devices, with features like DMA and offloading
e [SW] multiple UNIX processes and thread

e [SW] multiple servers, running one parallel program (maybe many
processes each)

System administrators should know all levels of parallelism of the cluster and be able
to guess (at least) the root cause of the program slowness. For example, a cluster uses
a high-speed communication network (InfiniBand or other) and regular Ethernet for

8

CHAPTER2 WHAT IS “SUPER™?

management. The installed MPI environment works, but program performance is poor.
Often, the cause is a misconfiguration that results in MPI using a slow control network
instead of a fast network.

Types of Clusters

When people say “cluster,” they mean a lot of computers combined into something.
But there can be several variants of this “something.” They differ in purpose and, as a
consequence, in implementation.

The first type of clusters is high availability clusters. Their task is to provide access
to some resource with maximum speed and minimum latency. The resource is usually
a website, database, or other service. Today, they typically are used as a part of a set of
technologies along with load balancing, A/B or canary testing, continuous deployment,
and others.

In such a cluster, if one node fails, the entire resource remains available - clients of
the failed node reconnect and access the resource from another node in the cluster. A
very similar principle is applied in cloud technologies: you do not know on which node
your application or operating system image will run, the cloud itself will select free
resources.

Another type of cluster is high productivity. This type is similar to the previous one,
but in this case, all nodes in the cluster are already working on a single task, broken into
parts. If a node fails, its part of the task is sent to another node; if new nodes are added to
the cluster, they are allocated parts that have not yet been counted, and the overall count
goes faster. Examples include GRID computing, programs like Seti@home and Folding@
Home. However, only a narrow class of tasks can be solved with the help of such clusters.
And the cluster itself is often unnecessary for such tasks; you can use home computers
or servers, connecting them through a local network or the Internet.

The third type is high performance (HPC - High-Performance Computing). It is the
one we are interested in. Unlike the others, failure of one of the cluster nodes usually
leads to emergency termination of a parallel program; only in rare cases, the program
execution automatically continues from the previously saved control point. That is why,
unlike previous types of HPC clusters, they are less stable in operation, and without
proper control and monitoring, they simply cannot be used.

CHAPTER2 WHAT IS “SUPER™?

An important difference between this type of cluster and others is the close
connectivity of all nodes. They have the fastest networks connecting nodes, high-
performance parallel file systems, sometimes additional ways for node synchronization,
and other things supporting parallel programs. Applications running on such clusters
typically work in the model of message passing between parallel running processes. If
you run them on many computers connected by a slow network, they will spend most of
their time waiting for information from each other.

The ideal that all cluster manufacturers strive for is to create a virtual computer
with a large memory and a huge number of computing cores. Unfortunately, the reality
is still far from ideal, and nowadays, any computing cluster is still a lot of separate
compute nodes connected by a fast network. The network in such a cluster requires
not only speed (throughput) but also low latency or overhead (latency). Most parallel
programs exchange messages frequently, which means that the time to initialize sending
and receiving a message starts to play a big role. On a network with high latency, some
programs may run many times slower than on a network where latency is low.

Clusters and Supercomputers — Common and Different

We just talked about clusters. But does the word “supercomputer” always mean cluster?
No, not always. An important feature of a cluster is that it can be built from commercially
available components. I mean, you can buy all cluster components in a store and, having
sufficient experience, assemble it yourself.

A “supercomputer” in the historical perspective is a product made of unique
components produced by a single vendor. For example, let’s take IBM’s Blue Gene
series - the architecture of these machines is similar to a cluster. The same software tools
are available on them as on computing clusters, but Blue Gene can be purchased only
from IBM or their distributors. It is impossible to build a Blue Gene on your own: key
components are not sold separately. And it’s not about the brand, it’s about the unique
technologies. Today, such products are rare, but still exist, e.g., NEC Tsubasa.

The opposite example is “computing farms,” i.e., groups of computers working
on one task, but usually not even transmitting data to each other, or clusters of the
“BeoWulf”! class, i.e., assembled practically from improvised means.

! For more information, see Wikipedia or https://spinoff.nasa.gov/Spinoff2020/it 1.html.

10

https://spinoff.nasa.gov/Spinoff2020/it_1.html

CHAPTER2 WHAT IS “SUPER™?

As we can see, the line between the concepts of “cluster” and “noncluster” is
quite clear, but which cluster to consider a supercomputer and which not is a blurred
question. Often, instead of “cluster,” we say more tactfully: “having a cluster architecture.”

In this book, I will be looking at technologies that are available to all or most.
Therefore, most of them will be related to clusters. But this does not mean that these
technologies will not be found in computing systems that we do not formally refer to as
clusters.

Most modern supercomputers use the same developments as clusters; moreover,
almost all of them are built as clusters with the addition of particularly fast networks,
shared memory techniques, synchronization, or other technology, which means all the
knowledge about clusters will only help you.

What “Super” Means to a Supercomputer
Administrator

At first glance, a large cluster is no different from many office computers connected

by alocal area network and a few standard servers - disk storage, etc. In fact, there are
differences, and very important ones. Let’s start with the hardware - the requirements
for a cluster are much higher. If in a local network you can temporarily replace a

broken switch with a simpler one or even break the network connectivity for a few days
(well, you will have to print reports on the second floor, bear with me), in a cluster, it

is unacceptable. If we replace an InfiniBand switch (we’ll talk about them later) with
Gigabit Ethernet or a node with 8 GB of memory with a node with 4 GB of memory, we
can easily get a cluster that works really badly and all users will flood us with complaints.

It is strongly recommended that you have an emergency stock of all key equipment
components, unless they have a hardware redundancy, and a service agreement to
replace the equipment within clearly defined SLAs.

Let’s also remember that a cluster, unlike office computers, is packed on several
square meters (a large one - on several dozens, rarely - hundreds). Therefore, the
cooling requirements for it are much higher; you can’t do that with an open window or a
household air conditioner. Electricity for a supercomputer is much more than for many
office PCs, and household UPS will not be enough here either, and you can’t plugitinto a
household socket or even a dozen of them.

11

CHAPTER2 WHAT IS “SUPER™?

In modern clusters, the computing part can occupy less than a quarter of the total
installation area; all the rest is taken up by climate and energy equipment. And control
and management of this equipment (but not maintenance) also can be a part of the
administrator’s task. Moreover, unlike in the office, if a computer node, air conditioner,
or UPS has failed, you can’t find out about it from an employee who came running and
“the report is on fire, but nothing works.” Worst of all, if you have to learn about it from
users whose program stopped working properly or starts two times out of three.

This task is solved by monitoring everything and anything. It is very important to know
as much as possible about the state of the cluster. The differences do not end here. One of the
most significant is related to the mode of operation. In the office, the load on the computers
is not high: they need a few minutes a day to display a large document or play a video clip of
anew product advertisement. Ninety-nine percent of the time, these computers are waiting
for a mouse click or a keystroke. In a cluster, everything is fundamentally different; its normal
mode of operation is 80-100% utilization of each node at all times.

In the office, even the peak load of one or two computers will not be noticeable
against the general background. But every experienced administrator knows what it is:
“all computers have caught some virus” - the load on the network increases hundreds
of times, network storage cannot cope with the flow of requests, everything starts to
slow down.... And in a cluster, the situation when all the nodes occupied by one task
start exchanging data or writing intermediate data to the network disk is not a virus, but
a completely normal situation. A special type of peak load is power-on. In the office,
everything happens by itself: in the morning, everyone comes in, some early, some later,
turn on computers, connect laptops.... For a supercomputer, the power-on procedure
means a sharp increase in power consumption by dozens or even thousands of kilowatts,
then all your compute nodes start requesting your storage and service nodes almost at
the same time. If you turn on everything at once, the installation will probably just burn
down. And even “smooth” switching on of nodes one by one with an interval of a few
seconds can lead to network conflicts, overloading of some service with requests.

For example, in large disk arrays (from several racks), shelves and disks are started
in a certain sequence not only because of high starting currents, but also in order not
to sway the rack from spinning disks, and you have to turn on the array components
in a certain sequence; otherwise, array controllers can start thinking that the array is
broken and try to rebuild it (or even mark as dead). Another example is that the servers
are organized in a corridor - the racks are opposite each other and the servers blow hot
air inside the resulting corridor. Then they should be turned on at intervals to avoid
overheating the servers that are not yet turned on.

12

CHAPTER2 WHAT IS “SUPER™?

A lot depends on how a particular supercomputer is designed, so study its structure
and startup procedure well. Of course, these and other problems apply to large offices as
well, but they increase manifold in a cluster. All these issues can be solved with a certain
degree of efficiency, but often, the methods of solving them differ from the “office”
ones. In many respects, everything depends on the equipment - when planning a
supercomputer, it is very important to remember about peak loads. Here, they are a gray
everyday occurrence, so from the very beginning, it is necessary to provide solutions that
allow you to withstand them.

In addition to purely hardware solutions, software solutions are also significant: if
one key service is placed on a superpowerful server, it still may not be able to cope with
the load, and it may be necessary to think about duplication or load sharing. If, for some
reason, we failed to take everything into account during planning and a cluster with
a “bottleneck” ended up under our care, we should be able to find a way to expand or
completely eliminate this bottleneck, e.g., by replacing some hardware and/or software,
but this is usually not easy.

So, what makes this “super”? In my opinion, it is the overall synchronization -
supercomputer is not just a “huge bunch of expensive hardware,” it is one complex
construction, and all its components have to be aligned and tuned. As in many cases, it is
used to solve one huge task, even slight disbalance can significantly drop the performance.

Centralized Management of the Computer Complex

As we will see later, there are many aspects of managing a cluster-scale computing
system. These include system deployment, software upgrades, account control,
remote access, access and task management, monitoring, backup, and much more.
Each of these tasks can be accomplished individually, and this book will show you
how. However, the amount of work an administrator has to do when performing bulk
operations, such as setting up user groups with specific permissions and changing the
settings of network devices or nodes, becomes quite impressive.

This is where knowledge of scripting languages will come to your aid - most of these
actions are automated by scripts. But, unfortunately, not all actions can be performed by
a set of scripts. In hard everyday life, a system administrator of a large computer complex
more and more often thinks about a convenient “console” where you can do everything
you need without launching unnecessary programs and scripts and without copying
intermediate files and text from the terminal screen. Especially often, such thoughts

13

CHAPTER2 WHAT IS “SUPER™?

arise at the sight of products like HP OpenView or Zenoss. “Here it is - the panacea!” —
you want to exclaim. Indeed, such products are aimed at solving very similar problems.
They inventory equipment themselves, keep records of users and software, do a lot of
automated actions.... Moreover, they really can (and if you have the opportunity, you
should) adapt them to solve some of your tasks.

Alas, only parts of it. Such products, both commercial and free, are aimed at
similar, overlapping with ours, but still different tasks. Getting them to do things
which are required, but they don’t do, is usually possible, but it requires a huge
amount of effort - human, financial, time.... And as soon as the configuration of your
supercomputer changes, you will have to do it all over again. According to our personal
experience and the experience of many supercomputer administrators we have talked
to, there are no universal solutions. Unfortunately, creation of such tools is demanded
only by a narrow circle of administrators, and it is expensive in development and
support. That is why I want to draw your attention to the importance of a systematic
approach to all accounting and organizational actions with the computer complex.
However, this does not mean that you should choose as integrated solutions as
possible. It does mean that all activities should be well described - not in order not
to forget, but to see the big picture and to quickly adapt established processes under
changed conditions.

Try to use flexible and extensible tools. And don’t forget to learn new things and
apply adequate (not only the most fashionable) technologies to solve the whole range of
supercomputer administration tasks!

Brief Summary

A supercomputer is very similar to a “many-to-many ordinary server,” but at the
same time, there are many more peculiarities you should take care of. A lot of server
technologies are used here to solve standard tasks, but there are a lot of specific tasks
and technologies that are used only in the field of supercomputing.

Search Keywords

HPC, beowulf, supercomputer

14

CHAPTER 3

How to Build and Start It?

Imagine you need to build a supercomputer cluster. What should you buy? How to
connect? What to do first? Let’s sort it out.

Anatomy of a Supercomputer

There are four big parts you should think of: compute nodes, compute infrastructure,
hardware infrastructure, and software. Let’s start with hardware infrastructure - it
includes power supply, cooling and security systems. Usually, it is not your area, but you
should know what you can get for the new supercomputer. How much electricity power
is available? How can you connect to it (which types of UPS and PDU do you need)?
Include power for cooling and make sure you have 5-10% headroom.

Security systems - Cameras, doors control, etc.; they should be ready o, if not,
included into the budget. Think beforehand how your cluster will be connected to the
intranet or Internet; maybe you require hardware for this too. A standalone question -
where do you plan to install your supercomputer? Do you have enough space? Is it close
to the cooling systems and are there people who will connect those things together?

Yes, yes, you are not that person, who should plan and do all that stuff (I hope), but,
please, make sure that all of the above was told to that person, who will do that, and
taken into account (and budget).

Compute nodes - All your compute servers or, sometimes we say, compute fields
and compute networks. Before thinking about it, gather the information about the
tasks, which this supercomputer is being made for. Ask your potential users, read about
the computing packages, what is important for the best performance? Is a low latency
interconnect critical or not? Do you need GPUs? What is better - more memory or more
CPU/GPU cores? Is the vendor of CPU/GPU significant? How about the storage (we’ll
talk about it later, but gather info now) - speed, IOPS, latency or size, what matters
the most?

15
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_3

https://doi.org/10.1007/979-8-8688-1600-0_3#DOI

CHAPTER 3 HOW TO BUILD AND START IT?

After you gather the information, try to write down the optimal configuration of the
one compute node and several trade-offs you think are acceptable (see Figure 3-1). Add
here compute network requirements and think about the topology (we’ll discuss it later).
If your topology can be divided into blocks, try to calculate some real configurations -
how many could cost one block. Then you can estimate the size and cost of the compute
field, depending on the cost of the rest.

Compute nodes

Hardware infrastructure

Compute infrastructure

“E e

Monitoring Infrastructure nodes

System Software Applied Software

Software

Figure 3-1. Supercomputer anatomy

Compute infrastructure - Your management network, storage, storage network,
and infrastructure nodes. We'll discuss infrastructure nodes later, but in short, they are
nodes like login server, monitoring server, scheduler server, etc. In the case of a small
cluster, all roles can be on a single physical server, or one server can run numerous
virtual machines. This also includes shared storage and backups, and you need to take
in account not only size, but the speed and scalability of this storage. If a hundred nodes
read or write at the same time (which is typical for parallel apps), your expensive shiny
server with one big expensive disk will be just swamped by the load, and your compute
task probably will fail, because some requests will time out.

16

CHAPTER 3 HOW TO BUILD AND START IT?

Software - You will need computational packages, specific to your users/customers,
as system software to control the cluster, tasks, observe the overall status and some other
stuff. Plan your software stack beforehand, because it is really painful to change it later,
especially system software. Special focus on the planned job run workflow. What job
management systems do you plan to use? Are your users ready for it? Is it supported well
by the computational stacks you plan to run? Please, do not choose thinking of “Oh, I
worked with that stuff, I hope I can apply it here” - it may be a big mistake. Use systems,
which are standard in this area.

Deploy and upgrade - How do you plan to make initial software deploy, and how do
you plan to manage updates/upgrades? There are many options (and we’ll check them
out later!); decide wisely and plan carefully.

Planning

Once you collect all requirements and possible implementation options along with your
budget, you can start to plan your cluster. Of course, you can ask for quotas of available
vendors and get some predefined options, but now you know what you want and which
parts and characteristics are more important and have more knowledge for possible
trade-offs.

Try to assess your minimum acceptable numbers on benchmarks and tests. This
is a performance baseline for your cluster. You need to do that at least for computing
performance and storage performance, so prepare reliable benchmarks and tests. Other
things you can assess - memory throughput and latency, GPU performance (if you have
it), network performance....

Take into account the possibility of upgrading, which is very likely. How can you
expand your compute field in the future? Storage? Do you have any options for space,
electricity, cooling capacity? Another critical aspect is integration of your cluster
with existing company services and resources. Do you want to have centralized
authentication, and how do you plan to implement it? How will your users or customers
copy data? How will they reach the cluster from the Internet (or they just won’t)? What
about users technical support - who will do this and how? Who will support the
hardware - even if you have a supporting contract, you will need to check, diagnose,
your hardware, do maintenance, etc.? Special point - support contracts; how your
management plans to support this really expensive complex after the contracts
expired? This is a big trap, and it requires wise and careful planning beforehand! (If

17

CHAPTER 3 HOW TO BUILD AND START IT?

your management says “we have 5 years support, don’t worry, and then we’ll see,” I
recommend writing a document and note there that even small break could stop the
service; you do not approve work without the service contract.)

Another important question is capacity planning - how will your users utilize the
cluster resources (CPU, GPU, memory, storage, ...)? How do you plan to divide resources
and cluster time between users? How do you plan to control resource usage?

Another significant thing you should mention in a contract and track later is the
consistency of all hardware. Memory modules should be the same make and model when
possible, especially in compute nodes. Motherboards, firmware, BIOS, network cards, etc.,
should be the same in similar servers, GPUs should have the same part number, VBIOS,
etc., and all that jazz. Don’t listen to sales persons, saying “this is the same model, just
a bit modern part number, it is even better!” - you probably will have different drivers/
applications behavior on different hardware and will waste a lot of your time, fixing that. If
itis newer and better - OK, make all that type of hardware have this model!

Here are some things you cannot manage directly, but you can talk to your
management beforehand and prevent huge problems. First of such things is power.
Summarize total servers’ power; add network hardware, storage, cooling systems (yes,
they consume a lot of power!), UPS, and power systems themselves. You can make
arough estimation, multiply by 1.5 or 2, and ask your manager to have a talk with
your power engineers and make a good professional estimation. Do not forget about
redundancy and UPS, and check if you need a power generator or not. If power outages
are not long, or you can safely stop your hardware and your users are able to restart work
later, the generator is probably not needed.

And as a logical continuation, we have questions about the cooling and place for the
hardware. Is it easy to unload and install the hardware? Is there enough space to perform
maintenance or upgrade? Do you have space for spare details? Do you consider using
water cooling now or in the future, and if yes, is this place ready for such modernization?
Is the power and cooling capacity enough, what is reserve? Don’t laugh, I have a great
example, when a real supercomputer could not be turned on more than 70% because of
electricity issues.

If you plan to use remote location, e.g., data center colocation, then how easy can
you get access there? How remote engineers can help you to perform tasks? Which tasks
can they do, which tasks should do you?

18

CHAPTER 3 HOW TO BUILD AND START IT?

Network aspects - How your users will reach the supercomputer? How about
loading data? If they need to upload and download huge amount of data, maybe you
require better network channel. Check internal requirements; possibly you need a
network switch of better class, than you thought initially to route the data from outside to
the data storage. Do not forget about firewall and may be other security features. Even if
your supercomputer is entirely in the corporate network, this doesn’t mean it should be
fully opened. If unsure, talk to network security specialists, maybe simply on special web
forums, but a real security consultation will be better. In addition, your external cluster
network connection should be capable to transfer user’s data in both directions, and if
you use NAT (which is typical solution), your switch should be powerful enough.

Special point - High-performance network planning, because the topology is
crucial here, you need to minimize the number of hops between nodes, remove
possible congestion points, and single points of failure. Again - I recommend having
a consultation with an expert and compare different topologies, their strong and weak
points in your case, cost (yes, it makes difference!), cabling complexity, and possibilities
for the future expansion (compute nodes, storage, ...).

We touched the data and storage; how do you plan to store the data? What about hot
and cold data? Backups? Possibly your users want pre- and postprocessing? How quick
will this data be available to compute nodes? Please, take a look to the chapter “Network
File Systems” before making the final decision.

Here is a short (please, review and extend it!) checklist - what has to be planned,
discussed, and documented:

e Compute hardware - Match to tasks, expected performance
o Infrastructure - Power, cooling, connectivity
« Remote access - Policies, special access, codes, etc.

o Physical security - Room access, servers access, cameras, cards
policies

o Services and service nodes (we'll talk about them later, but you
should have at least a login node and file system server(s))

o High availability and/or load balancing for service nodes and
services (Is it needed? How to implement it?)

19

CHAPTER 3

20

HOW TO BUILD AND START IT?

Network topology

Authentication, sync with existing systems if needed
Long-term storage, scratch storage, quotas, high availability
Access from internal/external networks

Security policies - Passwords, two-factor authentication (2FA),
ssh keys, local trust zones, regular files check, vulnerabilities scans,
security updates policies, firewalls, ...

Backups/restore policies and hardware

Cluster management software

Computing tasks management software

Jobs policies

Monitoring

Baseline benchmarking

Cluster resources for users - access, tracking, revoking

Capacity planning procedure

Imagine typical situations and think how to act in such cases:

If you suspect a bad node, what are your steps to prove it is bad and
replace it?

The same, if you suspect network problems?

If you found that your nodes have different firmware versions and it
can affect your application performance?

What if your management node, running job manager, fails?

How you will transfer data to the cluster and back, and how much
time does it take?

How to add a user to the cluster? Remove them from the cluster?

How you plan to do security checks and updates?

CHAPTER 3 HOW TO BUILD AND START IT?

Documentation

Yes, this is important. No, don’t put it off; you won’t be able to do that at the last minute,

I promise. And I'm talking not only about those tons of paper, which is going with
your hardware. Please, prepare a place and a system where and how to document
your supercomputer. There are two types of documentation, and you need both: for

SysAdmins and for users. Docs for SysAdmins should include

Hardware configurations of different types of nodes

Network topology and hardware

Software installed, licenses info, special configurations

System settings, limits, etc.

Admin and maintenance logins and how to get passwords
Policies to add accounts, software, etc.

Backups info (how to backup, restore, schedules, etc.)

How to add/delete accounts, do the maintenance, and other stuff

Important contacts (stakeholders, suppliers, engineers, tech support,
people, who controls power, cooling, physical access...)

A journal of incidents and maintenance with detailed info

Temporary changes (changed quotas for a month? Gave access to
external tech support? PLEASE, note it)

HOWTO

— Close/open cluster in emergence cases
— Change quotas

— Add/delete/update user accounts

— Quick actions in simple known cases (like how to reboot this
damn proprietary license server)

— Inform users about any problems
— Run basic tests, etc.

And many more, of course!

21

CHAPTER 3 HOW TO BUILD AND START IT?

Please, spend some time choosing the platform (bunch of files on network file
storage? Wiki? Corporate portal?...) and creating base documents structure. The next
type - user documentation, and it includes

o How to submit a request for access, what is the full process
and timing

o How to get password, generate ssh keys, login into the cluster for the
first time, first steps

e What is the cluster - hardware, software, file systems, links to
user docs

o How to copy data, prepare a task, run, check, cancel a job

e Policies and limits

How to... here come questions, you didn’t imagine, but they
were asked

The platform for user docs can differ from admin docs; the most important is
its availability and how simple it can be read. Select the platform, where users can
collaborate - edit documents, or at least ask questions or leave comments.

0K, We Got It, What’s Next?

You, as a SysAdmin, have a lot of things to do. Which skills should you have? Here is a
minimum, I recommend:

e Basic network knowledge

e Good/advanced bash scripting (basic awk is a good bonus)
» vim/nano/emacs editor on advanced level

e Screen/tmux basic knowledge

e Basic python and C++ (if you need to support users)

e Ansible, xCAT, or any other technologies you want to use to control
and configure your cluster

e Tools like Imod, environment modules, spack, etc.

22

CHAPTER 3 HOW TO BUILD AND START IT?

How containers work (not docker commands, no, host the
technology works)

All your hardware features, software features, and limitations

What do you need to set up and/or tune after the cluster is built? There are a lot of

options, but I recommend paying attention to at least the following:

DNS server
NTP sync (internal and external)
SSH to all nodes (including service)

Shared file system performance check (on login node, and on
compute node)

Network performance benchmark

Nodes performance benchmark (each node and all nodes)
User add/block/unblock/delete check (everything works fine?)
Partition add/modify/delete

Compute partition quotas and limits check

Monitoring check, alerts check

Test data backup and restore

Now, check your docs, and add all missing parts. Write down all your checks above

into runbooks/playbooks and document all numbers you got on the benchmarks. It

will really help you later on every maintenance and/or update/upgrade. Plan at least

one maintenance per year - firmware upgrade, parts replacements, software upgrade.

Plan the checks you want to use for different situations (maybe more often than I

recommend):

Full cluster check (after each maintenance)

Performance verification (after each maintenance)

Node performance check (after the node fix or replacement)
Node readiness check (before/after the job run)

Node health check (periodically on the nodes)

23

CHAPTER 3 HOW TO BUILD AND START IT?

Some useful benchmarks/tests you can use: HPL (High-Performance Linpack),
NCCL-test (GPUs, IB, NVLink), IOR (file system performance), STREAM (memory check
and performance), and FIO (file system performance).

What Should | Do Later?

It depends.... In most cases, you are responsible for
o Updating cluster parameters (limits, tunings, etc.)
o User access management
e Applied software installation

e Hardware monitoring, basic fixing, detailed problems reporting to
engineers

e Cluster usage monitoring (and usually reporting)
e Technical user support

The list can be longer, or in rare cases shorter. Plan the software and workflows for
each point beforehand; test if possible. Get as many people as you can to your team to
delegate mentioned responsibilities. No joking.

Some tips for you.

e Tryto use standard solutions if there are such; do not multiply
complex solutions. For example, if you need to add new software into
PATH variable, do not add it into a random bash profile file; think
about using modules (see chapter “Compilers and Environments,
for Parallel Technologies”). If you use one approach, document it
and use everywhere. In our example, you can use modules, global/
local bashrc and profile, pam_env module, and some other more
sophisticated methods, and in case of problems, it may be really hard
to find where PATH was changed.

o In case of issues, try to look to different levels, in one direction, e.g.,
from top to bottom, from the client to server, etc. For example, slurm
client command is not working (see chapter “Job Management
Systems”), then you can check if the server is working, if it is listening
the network socket (use netstat or ss), if it is available from the client

24

CHAPTER 3 HOW TO BUILD AND START IT?

machine (routing, firewall rules), if the client has correct server
address. Low-level checks may include running the command
under strace and check if DNS address is resolved correctly and the
connection is established, or looking into the network traffic using
tcpdump.

e Use runbooks for any serious activity like maintenance, software/
hardware installation or upgrade, moving data, etc. Runbooks
are usually just spreadsheets with columns: phase, action, start,
duration, dependency, owner, status, and info (commands to run,
links to the docs, etc.). You may add some if you wish, e.g., rollback
action description. Always ask someone to review your new runbook,
often you can miss something.

Short Notes

Let me give you some additional hints:

e On the compute nodes, try to minimize running services (e.g.,
ModemManager probably is not required, and postfix should be
replaced by simple package like ssmtp or nail, which allows sending

emails via smarthost).

o Try to optimize your kernel parameters - don’t load not needed
modules, disable security fixes (mitigations=off), if it is safe, ipv6 if
itis not needed, etc.

e Disable cron on the compute nodes; use systemd timers instead.

o Installmolly-guard (or similar) package to prevent accidental reboot
of service nodes; you'll thank you me later.

o Don’tuse cronjobs, which do ssh on all nodes and do checks/
etc.; instead, use local timers, save results to a network file
system, database, or message queue, and then process them on a
service node.

25

CHAPTER 3 HOW TO BUILD AND START IT?

o Take care of security, probably install and tune auditd to log critical
commands execution, do regular security checks, etc. A good start is
to read “High-Performance Computing Security”! paper by NIST.

Brief Summary

Know your hardware and software; go into details. Supercomputers have tons of details,
so make sure to double-check everything when you plan it. If possible, involve other
experts. Their help can be invaluable.

Search Keywords

Data center technologies, runbook/playbook examples, standard operating procedure

'https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-223.pdf

26

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-223.pdf

CHAPTER 4

Supercomputer Hardware

We shortly considered the “anatomy” of a computing cluster and know what
components it consists of. Depending on the size and architecture of a particular cluster,
some logical components may be combined into one physical. In the following, I will
often write “node” - it is a synonym for “server,” but in HPC, it is the custom.

So, a mandatory part of any cluster is compute nodes, or the so-called compute
field. These are the servers where tasks will be counted. In addition to compute nodes,
there should be at least one control node; in large systems, additional service nodes are
added to it; there can be several dozens of them.

Networks are necessary for effective cooperation of compute nodes:

e Communication network, through which the data of compute tasks
are exchanged

o Control network, which is used to remotely access nodes, run
tasks, etc.

e One or more service networks - for access to the network file system,
management via IPMI or iKVM protocols, monitoring, additional
synchronization (interruptions, clock frequency, barriers, etc.), and
possibly others

A mandatory component of a modern computing cluster is a network file system.
For the entire complex to work, it is mandatory to have infrastructure: power
supply systems and climate systems. For a large installation, they can take up many
times more space than compute nodes. As a rule, infrastructure maintenance is not the
responsibility of the administrator, but they should, if possible, monitor its condition. If
the infrastructure is on planning stage yet, make sure you have enough access to monitor
critical infrastructure information.

27
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_4

https://doi.org/10.1007/979-8-8688-1600-0_4#DOI

CHAPTER 4 SUPERCOMPUTER HARDWARE

Control Node

All nodes in any cluster are divided into compute nodes and service nodes. One service
node is always present - it is the management node. It is from it that all subsystems are
managed (or logged in to manage them), and sometimes it plays role of login node,
which users use to access cluster via ssh. In small clusters, it can combine the functions
of all service servers, but in general, I recommend having at least two control nodes and
one or more user-facing nodes.

Compute Node

The “workhorse” of the cluster is the counting field. As a rule, all nodes here are of
the same configuration, but sometimes the field can include nodes of two or more
configurations. The more homogeneous the composition of compute nodes, the
easier it is to manage them, and the easier to schedule tasks. You should create mixed
configurations only when you are sure that ALL of them will be actively used by tasks.

The hardware of the compute node is completely determined by the nature of
the tasks that will be solved on the cluster, but you should always try to balance the
composition of the “hardware” so that there are no bottlenecks, such as many cores
with a narrow channel to memory, insufficient width of the channel to the computer
network, etc.

Having a hard disk drive has both pros and cons. Minuses are additional space,
power consumption, and heat dissipation, as well as a high probability of failure. In
addition, they cost a lot of money, especially NVME, and you need to have some valuable
count in stock, to be able to replace failed ones, or have a good (priced) support contract.
If your nodes are “blade-servers” or use any other high-density architecture, all this is
especially relevant. Pros - The possibility to install a local copy of the OS, which greatly
simplifies the power-on procedure and speeds up the loading of system libraries (and
hence the start of programs), as well as the possibility to add swap space and the local /
tmp directory. This greatly improves memory efficiency.

When installing a local copy of the OS, be very careful with software updates and
local storage of credentials. To increase efficiency, the software configuration should be
kept as light as possible: the fewer unnecessary services, the better.

28

CHAPTER 4 SUPERCOMPUTER HARDWARE

On the compute node, it is quite possible to do away with such services as mail (you
can send messages through the head node), cron (the most important tasks can be
performed via ssh also from the head node), networkmanager, acpid, etc. Keep only the
essentials, and use precreated device files instead of udev if possible - they won’t change
over time anyway. The most essential services for the compute node are sshd and the
network file system client. It is very desirable to set up monitoring of the node.

As arule, all compute nodes are logically organized into partitions (or queues)
within the task management system. If there are nodes of different configurations in the
field, it is convenient to create partitions for each configuration separately. Sometimes
it is useful to unite several compute nodes into one partition to run small test backlogs
(test queue), and it is useful to limit the runtime of such test tasks (e.g., 15-20 minutes).

Login Node

Irecommend having dedicated user-facing nodes (login, data preprocessing,
visualization, data copying, etc.), and not share them with service nodes. Set strict
resource usage limits on those nodes, to prevent incorrect their usage. Simple example -
Today (in 2025), many users’ workflows are streamlined by IDE plug-ins, like VSCode
remote and others. They make remote work with cluster easier, at the first glance. But in
fact, many of those plug-ins (VSCode particularly) take a lot of system resources and may
paralyze login node.

Service Nodes

All nodes not included in the count field are service nodes. Combining the functions of
a compute node and a service node (e.g., an NFS server) is highly discouraged, as it will
certainly lead to unbalanced task operation and increased probability of service failure.
There are several roles that service nodes fulfill, but often a single server fulfills
several roles, if not all at once. Let’s consider typical roles. In large computing complexes,
itis not always convenient to load control nodes with user and service system processes.
For example, if compute nodes with different versions of operating systems are installed,
it is not reasonable to build user programs on the control node; it is more logical to
dedicate (or allocate) numerous nodes for compiling programs (compilation nodes). If
your users need to move a lot of data, it is useful to have dedicated data copying nodes.

29

CHAPTER 4 SUPERCOMPUTER HARDWARE

To protect against unauthorized access to system services and sensitive data (e.g., a
database of user passwords), the functions of control nodes are usually divided into two
groups: access nodes and control nodes. Access nodes are intended for user login and
further work in the system, and control nodes are intended for operation of the task
management system.

Almost any cluster has a network file system, which means a server for it, and often
a whole farm if the file system is distributed. A fairly common service node is a license
server, which hosts special services responsible for licensing commercial software
and utilities. For example, a FlexL.M license server can be used for several commercial
packages.

Locating license services on a separate machine is justified both from the point of
view of security (protection against theft of license files) and from the point of view of
increasing fault tolerance of the complex as a whole. Be sure to make a note of the MAC
address of this server; if it is suddenly replaced, it will be enough for most programs to
set the old MAC address on the new server. And don’t forget to request a license reissue
for the new server, of course with its real MAC address.

In modern computing complexes, input data preparation and output data
processing nodes (so-called pre- and postprocessing nodes) are quite common. Such
nodes are characterized by a larger amount of RAM than other nodes (256 GB or more),
which is extremely important for preparing large tasks and processing the results of
calculations.

So-called visualization nodes are often useful. Usually, these are dedicated servers
with special graphic cards for processing visual information and outputting the finished
picture through the network to a remote user. This can be convenient, in particular, for
remote preparation of tasks for calculation (e.g., for visualization of meshes and other
input data). Visualization nodes can play the role of pre-/postprocessing nodes.

Storage nodes can be used to organize a distributed data storage. Each such node is
connected to its own disk storage, and all storage nodes are united into a single network
with common access to the file system from all nodes (more about this in the next
section).

There may also be dedicated nodes among the service nodes:

e Backups
« Remote download

o Of software deployment

30

CHAPTER 4 SUPERCOMPUTER HARDWARE

e Authorization and authentication

e Remote journaling

e Collection and processing of monitoring data

e Collection and display of statistics and equipment status
e Of service databases, etc.

It all depends on what the needs of the users and administrators of the computing

complex are.

Network Equipment

Computer networks allow you to organize the interaction of computers with each

other. Special equipment is used to build them: network cards and switches. As a rule,
clusters have at least two internal networks. One, called a service network, performs the
same functions as a regular local computer network; it is used for remote nodes access,
monitoring, etc., and includes all the cluster nodes. The other is called compute (or
communication) network, has all compute nodes connected to it, and provides data
exchange between compute tasks on different nodes. Some clusters may have dedicated
storage, remote control, monitoring, or other types of networks, but this is a rare (and
usually more expensive) case.

Do not forget about the external network, which is used by users and admins for the
cluster access; if users will load a lot of data, it might be a bottleneck. As a rule, compute
nodes, storage servers, and most service nodes don’t have direct access to the external
network; they even don’t have public (or corporate) IP addresses. To access the world,
NAT or proxy is used, to access internal services (monitoring dashboards, admin ssh,
etc.) - port forwarding or reverse proxy. Plan this beforehand, to decide what type of
network switch you need for external network, which nodes will have direct access, etc.

The most serious requirements are placed on the communication network. Two
basic parameters are used to characterize the capabilities of Networking technologies:
throughput and latency.

Throughput characterizes how much information can be transmitted per unit of
time (most often a second). Network equipment manufacturers typically specify peak
throughput. In real applications, as a rule, the speed is 1.5-2 times lower than the peak

31

CHAPTER 4 SUPERCOMPUTER HARDWARE

speed. The term latency (delay) is the net time to transmit a zero-length message. It
primarily depends on the time taken by network devices and the system to prepare for
transmitting and receiving information.

Throughput and latency provide a measure of how efficiently tasks will be handled
on the cluster. If a task requires frequent data exchange between nodes, using network
hardware with high latency will result in most of the time spent on preparation rather
than data transfer, and the nodes will be idle. With low bandwidth, data exchange
between nodes will not keep up with the task count rate, which will also have a negative
impact on performance: nodes will spend a lot of time waiting for data over the network.

The latency and throughput of the network are primarily determined by the data
transmission technology used. The most widespread network technology is Ethernet, but
its parameters meet only the requirements for the organization of the service network of
the cluster, for data exchange networks less known, but higher speed networks are used.

Table 4-1 summarizes the most common network technologies in clusters and
their typical characteristics. Myrinet is not actively used now; SlingShot is a proprietary
network technology by Cray (bought by Hewlett-Packard).

Table 4-1. Some characteristics of networking technologies

Technology Throughput Latency MPI
(usec) latency

(nsec)

Gigabit Ethernet Peak — 1000 Mbit/sec (125 MB/sec), MPI — 60-120 MB/ 30-100 50

sec

10-Gigabit Peak — 10 Gbit/sec (1.2 GB/sec), MPI — 700-900 MB/sec 9 25-30

Ethernet

100-Gigabit Peak — 100 Gbit/sec (1.2 GB/sec) 0.3-1 1-3

Ethernet

Myrinet 2000, Peak is 2 Gbit/sec (10 Gbit/sec), full duplex. On TCP/IP, 2 10

Myrinet-10G speeds on the order of 1.7-1.9 Gbit/sec (9.6 Gbit/sec).
On MPI, up to 200 MB/sec (up to 400 MB/sec on duplex

operations)
InfiniBand 10 to 4800 Gbit/sec or higher, implementation dependent 0.1-0.6 1-3
SlingShot Peak — 200 Gbit/s 02-1.2 4-5

32

CHAPTER 4 SUPERCOMPUTER HARDWARE

Another important issue to consider when designing networks for computing
clusters is price. Without going into details, each high-speed network card costs about
$1,000, and the price of a communicator can range from $10,000 to $1,000,000 and
above. Today, the most popular technology for building clusters for creating data
exchange networks is InfiniBand. The reasons for its popularity are related to the perfect
performance, a good ratio between the price and capabilities of the equipment, as well
as the availability of software. We will consider InfiniBand more precisely in the next
chapter.

Some networks can only use one topology (the way network nodes are switched).
For example, Gigabit Ethernet only supports star topology, but since it is only used in
conjunction with TCP/IP in real-world applications, it is possible to combine multiple
stars with links by configuring routing.

InfiniBand allows you to use almost any topology that is supported by the installed
subnet manager. Standard subnet manager implementations support star, tree, fat tree,
and hypercube topology, but newer implementations are being introduced. Due to
the fact that InfiniBand allows multiple routes, the fat tree topology is well suited for
medium-sized configurations and makes good use of duplicate links.

Topology is an important factor in network efficiency. Topology bottlenecks can
negate high network speeds. For example, two Gigabit Ethernet switches connected to a
single link is not a good solution. And if you connect them with multiple links, you need
to make sure that they are interconnected at the switch level. Such interconnection is
supported by many types of network equipment; there are standard technologies such
as EtherChannel, bonding, and trunking. It is significant to make sure in advance that all
parties involved in such interconnection use the same standards (e.g., bonding may be
implemented differently from one vendor to another).

Let’s quickly go through typical types of network topology, available today (2025):

o Tree (star) - Typical Ethernet topology. Even if you have several
switches, connected in parallel, usually spanning tree algorithm will
left running only one and the second will work in standby mode.

33

CHAPTER 4 SUPERCOMPUTER HARDWARE

Root sw

Spine sw

—
—
—
—1
—
D
Q
TN
%]
2

Figure 4-1. Three-level fat tree network topology example

o Fattree - There are two options, which may be meant here. First - a
regular tree, but on the higher levels, links through output are higher
(usually links are aggregated). More interesting option, often used
in InfiniBand networks, when higher level switches are “multiplied”
(see Figure 4-1). In the simple case, instead of one root switch, we
have two or more, and each is connected to each next level switch.
This allows traffic distribution and easy recovery if one of the
switches fails, except the lowest level, so-called leaf switches, because
they are connected to the nodes.

2d-cube

3d-cube\§\:\«

4d-cube

Figure 4-2. Hypercube topology example

34

CHAPTER 4 SUPERCOMPUTER HARDWARE

e Hypercube - Rare topology, but is sometimes used as a part of
more complex topology (see Figure 4-2). To build N-dimensional
hypercube, you take 2 (N-1)-dimensional hypercubes and connect
corresponding vertices. In real life, in the vertices, usually you have
a leaf switch with some nodes connected. The advantage is that you
have no more than N hops between any two vertices. Disadvantage -
complicated and expensive cabling.

e Multidimensional torus - Similar to hypercube, but in each
dimension, you can have multiple vertices, and each dimension is
closed into a loop (see Figure 4-3). For example, in case of three-
dimensional torus, if we have dimension sizes N, M, and K, we have
maximum [N/2]+[M/2]+[K/2] hops between any two vertices ([X] is
integer part of X).

[N\ N\ [\

—/

Figure 4-3. 2d torus topology example

o Dragonfly/Dragonfly+ are the most recently used topology types. In
Dragonfly, you have several levels of groups; on the bottom level, the
group has a number of switches and each of them is connected to all
others in the group. Next level is a group, which consists of previous
level groups as members. In basic Dragonfly topology, on each
level, group members are connected all-to-all. In Dragonfly+, there
may be modifications, e.g., each member of previous level group is
connected to a subset of neighbor’s group members. This may reduce
number of required switch ports (and cables), while the average max
number of hops between any two vertices is still low.

35

CHAPTER 4 SUPERCOMPUTER HARDWARE

Data Storage

Local hard disks can be installed in each node - control, computing, or service nodes. It
is also possible to connect external disk subsystems that can be accessed from all nodes
simultaneously.

Local hard disks can be used for booting the operating system, as virtual memory
(swap space), and for storing temporary data. Of course, compute nodes may not have
local disks if the operating system is booted over a network, although even in this case a
local disk is useful for swap space and temporary data storage. On a management node,
local hard disks are usually installed and network booting is not provided.

c—|Server

/d'\

Storage server
5 5 E
e e (=

Storage Storage Storage

Storage server

Bl

Lol 01

Figure 4-4. Storage area network (SAN)

External storage systems (hereinafter referred to as storage) typically host software
packages and utilities that need to run on all nodes, as well as user home directories,
temporary shared storage (for storing temporary calculation data), and other data that

must be accessible from all nodes.

36

CHAPTER 4 SUPERCOMPUTER HARDWARE

External storage often differs in its internal structure and access method, which
determines the level of reliability of data storage and the speed of data access. We will
not discuss the internal structure of the storage system here, we will only mention the
different access methods.

Storage systems are categorized into at least two types based on their access method:

e Direct attached storage or DAS
e Network attached storage or NAS

NAS can be connected via servers (or special hardware), connected to physical
storage via dedicated storage network - storage area network or SAN (see Figure 4-4).

Direct attached storage is connected either to a dedicated storage node or to a
management node. Such storage is always visible in the operating system of the node to
which it is connected as a locally connected disk device (physical connection - via SATA,
SAS, FibreChannel, ...). RAID (redundant array of independent disks) technology is often
used in storage systems to provide fault tolerance and increase speed. RAID combines
several disks of equal capacity into a single logical disk. Combining occurs at the block
level (which may not coincide with physical disk blocks). One logical block can be
mapped to one or more disk blocks.

There are several “levels” that are accepted as the de facto standard for RAID:

RAID-0 - logical blocks unambiguously correspond to disk blocks, and they
alternate: block0 = blockO0 of the first disk, block1 = block1 of the second disk,
and so on.

RAID-1 is a mirrored array, logical block N corresponds to logical blocks N of all
disks, and they must have the same contents.

RAID-2 is an array with Hamming code redundancy.
RAID-3 and RAID-4 are disk arrays with striping and a dedicated checksum disk.
RAID-5 is a disk array with striping and an unallocated checksum disk.

RAID-6 is a striped disk array that uses two checksums calculated in two
independent ways.

37

CHAPTER 4 SUPERCOMPUTER HARDWARE

Level 0 provides the highest sequential write speed — blocks are written in parallel
to different disks, but does not provide fault tolerance; level 1 provides the highest
fault tolerance, as failure of N-1 disk does not lead to data loss.

Levels 2, 3, and 4 are not really used because level 5 provides better speed and
reliability with the same degree of redundancy. In these levels, disk blocks are
combined into strips, or stripes.

In each stripe, one block is allocated for checksum storage (two strips for level

6) and the remaining blocks are allocated for data, with the disk used for the
checksum interleaved across successive strips to even out the load on the disks.
When writing to any block, the data checksum for the entire stripe is calculated
and written to the checksum block. If one of the disks fails to read the logical block
that was on it, the entire strike is read and the data of the working blocks and the
checksum are used to calculate the block data.

Thus, for RAID-5, it is possible to obtain fault tolerance with less redundancy than
for a mirror (RAID-1) — instead of half of disks, only one disk in a stripe (two disks
for RAID-6) can be allocated for redundant data. As a rule, the “width” of a stripe is
3-5 disks. The cost of this is the speed of operation — to write a single block, you
must first read the entire stripe to calculate a new checksum.

Two-level schemes are often used — RAID arrays themselves are used as disks for
other RAID arrays. In this case, the RAID level is indicated by two numbers: first
the lower level, then the upper level. The most common are RAID-10 (RAID-0 built
from RAID-1 arrays) and RAID-50 and RAID-60 — RAID-0 arrays built from RAID-5
and RAID-6 arrays, respectively. Read more about RAID in the literature and on the
Internet.

If distributed data storage is used, e.g., as in Lustre (we will talk about it later), there
can be several storage nodes, and the data stored on such storage is distributed across
the storage nodes. Storage with LAN access (or network attached storage, NAS) usually
provides disk space to nodes using special protocols that can be grouped under the
general name of network file systems. Examples of such file systems are NFS (network
file system), server message block (SMB), or its modern variant - common Internet file
system (CIFS).

38

CHAPTER 4 SUPERCOMPUTER HARDWARE

Strictly speaking, CIFS and SMB are two different names for the same network file
system originally developed by IBM and actively used in Microsoft operating systems.
Nowadays, CIFS can be used in almost any operating system to provide access to files over
alocal network, but I don’t recommend using it, because of highly possible unexpected
problems, related to implementation details. As a rule, besides NFS and CIFS, NAS systems
can also provide access to stored data via other protocols such as FTP, HTTP, or iSCSI.

Storage devices connected via dedicated storage area networks (SANs) are usually
visible to the operating system as locally attached disk devices. The peculiarity of a
SAN is that duplicate switches can be used to form such a network in order to increase
reliability. In this case, each node will have several routes for accessing the storage, one
of which is designated as the main one, the rest are backup ones. In case of failure of one
of the components through which the network passes the primary route, access will be
via the backup route.

Switching to a backup route will be instantaneous, and the user will not detect
that anything has failed at all. For this to work, the hardware and OS must support
multipath. Note that although there are standards for multipath, in reality, there is
often “capricious” equipment, which requires nonstandard drivers or system software
packages to work correctly with multipath.

Note that SAN exports block devices, not a file system, and you should not mount
one network device on more than one node at once. There are some exceptions, e.g., for
implementing “heartbeat” techniques, or sophisticated databases, but in general this is a
bad idea.

Hardware Architecture Features

It is no secret that at the very beginning of the computer era, the terms “processor” and
“kernel” (meaning the compute core of the processor) were synonymous. To be more
precise, the term “core” did not refer to the processor at all, because there were no
multicore processors yet. Each computer usually had a single processor, which could
execute only one process at any given time. Modern systems of this type can still be
found today, but they are typically designed for special tasks (controllers, embedded
systems).

39

CHAPTER 4 SUPERCOMPUTER HARDWARE

To increase the power of a server or workstation, manufacturers installed multiple
“single-core” processors (frequently from two to eight). Such systems still exist today and
are called symmetric multiprocessor systems or SMP systems (see Figure 4-5).

1CPU LA 1 CPU
4L J4F L JF

TTT TV TTT T 7T
Cache Cache

!
I

BUS

o000 ... |c0O00O¢

Memory Memory

Figure 4-5. Symmetric multiprocessor system (SMP)

Asyou can see from the diagram, each processor, which is a single compute core, is
connected to a common system bus. In this configuration, memory access for all processors
is the same, so the system is called symmetric. More recently, each processor has multiple
cores. Each of such cores can be considered as a processor in a specific SMP system. Of
course, a multicore system differs from an SMP system, but these differences are almost
imperceptible to the user (until they think about subtle optimization of the program).

NUMA technology - nonuniform memory access - is often used to speed up work
with memory. In this case, each processor has its own channel to memory, with a part of
memory directly connected to it, and the rest - through a common bus. Now the access
to “own” memory will be fast and to “others” memory - slower (see Figure 4-6). If this
architecture is used correctly in an application, you can get a significant acceleration.
The significant problem in both cases is that each processor (or CPU core) uses its own
cache, which increases the speed, but makes possible invalid data to be processed.

To prevent it, caches should be synchronized (or be coherent), which can lead to
performance degradation. If each processor (or core) uses its own memory region, and
there is no need to synchronize caches, performance should be good.

40

CHAPTER 4 SUPERCOMPUTER HARDWARE

11111 NN

«~r - :l‘ O
jcPUE jcPut
1 - ® 060 4 .
Cache Cache
memory memory
T T

< BUS >

Figure 4-6. NUMA architecture

Another “roadblock” in modern multicore systems is the migration of processes
between cores. In general, to organize the work of multiple processes, the operating
system gives each process a certain period of time (usually about milliseconds), after
which the process is switched to passive mode.

The task scheduler, when moving a process out of passive mode, selects a CPU core
that is not necessarily the same as the one on which the process was running before. It
often happens that a process “walks” on all the cores available in the system. Even in the
case of SMP systems, the influence of the speed of program operation at such migration
is noticeable, and in NUMA systems, it also leads to large delays at memory access.

In order to get rid of the parasitic influence of process migration between cores,
processor affinity (processor pinning) is used. Binding can be performed either to
a single core or to several cores or even to one or more NUMA nodes. With pinning,
process migration will either occur in a controlled manner or will be eliminated
altogether. You can use numactl utility to “pin” processes to one or set of CPUs; most
implementations of MPI (see later) can set pinning for you.

A similar problem is present in the mechanism of memory allocation to user
processes. Suppose a process running on one NUMA node needs to allocate additional
memory for its work. In what memory area will the new block be allocated? What if it
falls on a rather remote NUMA node, which will sharply reduce the speed of exchange?
In order to avoid memory allocation on third-party nodes, there is a mechanism of
binding processes to the memory of a certain NUMA node (memory affinity).

In a normal case, each process of a parallel program is bound to certain NUMA
node both by core and memory. So the parallel program’s speed will not depend on
the launch and will be rather stable. When launching parallel programs, such binding

41

CHAPTER 4 SUPERCOMPUTER HARDWARE

is not just desirable but obligatory. This question is considered in more detail in the
chapter “System Libraries for Supporting Parallel Computations” where various parallel
programming environments are described.

Many modern processors utilize HyperThreading technology (or analogs). Thanks
to this technology, each compute core is represented in the system as two separate
cores, sharing the same computational devices, but having separated code processing
modules and registers. Of course, the efficiency of hardware resources utilization in this
case highly depends on how the program is written and what libraries and compiler it
is built with. In most cases, parallel computing programs are written quite efficiently, so
there may be no acceleration from using HyperThreading technology, and even on the
contrary, there will be a slowdown from its use, because computational devices are used
concurrently.

On supercomputers, this technology can be disabled in the BIOS of each node at all
so as not to introduce additional difficulties in the work of parallel programs. As a rule,
this technology does not bring acceleration for compute programs. If you use a small
set of programs on a supercomputer, test their work with HyperThreading enabled and
disabled and choose the best option. I'd recommend that you enable it, but tell the task
management system the number of cores as with HT disabled. This allows you to get
additional resources for system services while minimizing the impact on compute tasks.
If your task management system detects number of cores automatically, and it cannot be
overridden, I strongly recommend to disable HT.

Another feature of the architecture concerns not a single node, but several nodes. As
it was mentioned earlier, compute nodes in a compute cluster are united by a high-
speed communication network. Such a network can provide additional possibilities of
data exchange between the processes of parallel programs launched on many compute
nodes. Within one node the Direct Memory Access (DMA) technology is used, which
allows the node devices to communicate with the main memory without the processor’s
participation. For example, data exchange with a hard disk or network adapter can be
organized using DMA technology.

The InfiniBand adapter, using DMA technology, provides the ability to access the
memory of a remote node without processor participation on the remote node (Remote
Direct Memory Access or RDMA technology). In this case, it will be necessary to
synchronize processor caches (we will not consider this aspect in detail). Application of
RDMA technology allows solving some problems of scalability and resource utilization
efficiency.

42

CHAPTER 4 SUPERCOMPUTER HARDWARE

In addition to InfiniBand, there is a protocol, called RoCE (RDMA over Converged
Ethernet), which allows the use many of InfiniBand calls (verbs) to utilize RDMA with
Ethernet cards, which support it. It can reduce the price, but please, be aware that overall
speed and latency will be still worse than in case of InfiniBand, and you will miss such
features as subnet manager, effective topologies, and a lot of included counters.

Brief Summary

Knowledge of hardware, basic principles of your networks, data storage, and other
“hardware” components is very important for a supercomputer administrator. Without
this knowledge, it is often impossible to solve problems arising in such computing
complexes.

Search Keywords

numa, smp, cache, multiprocessor, latency

43

CHAPTER 5

InfiniBand

Let’s separately take a look at InfiniBand network technology. On the one hand, this
technology is widespread in the world of high-performance computing, and many
administrators of HPC clusters have to deal with this technology in their work. But

on the other hand, InfiniBand is quite different from Ethernet, which most network
administrators are used to, and there are many difficulties when getting acquainted with
it for the first time.

InfiniBand standard is developed by the InfiniBand Trade Association; InfiniBand
is an open technology whose standards are published and available, although there are
vendor-proprietary extensions. There is also a set of open source software called OFED
(OpenFabrics Enterprise Distribution), which contains everything needed to work with
InfiniBand-based networks (except for adapter drivers, perhaps). InfiniBand equipment
manufacturing companies may also release their own versions of the software stack.
Most often they include OFED and additional components oriented to work with the
equipment of a particular vendor.

Alink in an InfiniBand network consists of multiple lanes operating in parallel. Each
link works as a serial bidirectional communication channel. The most commonly used
links are 4x links (four lanes working in parallel). 12x links are mostly used to connect
individual elements, most frequently switch chips, within one large switch, but the latest
standards are going to use it for regular links too. The speed of data transmission over
the line depends on the generation of the InfiniBand standard. PCB connections, copper
wires (for short distances), and optical cables can be used for data transmission, often
sold with transmitters. See Table 5-1 for information on data transmission speeds.

InfiniBand networking materials usually specify the “raw” data rate, i.e., the rate at
which data is physically transmitted over the transmission medium. In this case, the user
data is encoded before transmission to recover from possible line errors. For SDR-QDR
generations, the 8 bits of user data are turned into 10 bits to be transmitted, and for

45
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_5

https://doi.org/10.1007/979-8-8688-1600-0_5#DOI

CHAPTER 5 INFINIBAND

FDR-EDR generations, 64/66 encoding is used, for NDR and higher - 256/257. Therefore,
the bandwidth available for user data transmission will be lower than that specified in
the specification.

Table 5-1. Performance of InfiniBand networks

0ld standards

SDR DDR QDR FDR
Raw data transfer rate, Gbps 25 5 10 14.0625
Theoretical effective communication 8 16 32 54.4
bandwidth 4x, Gbps
12x communication bandwidth, Gbps 24 48 96 163.2
Coding method 8/10 8/10 8/10 64/66

Modern standards

HDR NDR XDR GDR
Raw data transfer rate, Gbps 53.125 106.25 200 400
Theoretical effective communication 200 400 800 1600
bandwidth 4x, Gbps
12x communication bandwidth, Gbps 600 1200 2400 4800
Coding method 64/66 256/257 Not known yet Not known yet

An InfiniBand Host Channel Adapter (HCA) is installed in each device connected
to the InfiniBand network (a cluster node, typically referred to in InfiniBand literature
as a Processor Node, Storage Server, etc.). The standard provides a simplified version
of the HCA, called TCA (Target Channel Adapter), which was intended to be used for
connecting storage systems, but this type of adapter has not become widespread.

An adapter can have several ports to connect to the network. An InfiniBand network
(also called InfiniBand Fabric) consists of adapters that are connected by switches
and routers. Switches and routers always have more than one port. Each switch has a
dedicated virtual port 0, through which the switch can be managed.

The ports to which packets can be directed are called end ports. A set of adapters
connected by switches make up a subnet. Subnets have a limit on the number of devices
it can contain - no more than 2'° + 2! - 1 = 49,151 end ports and switches. Subnets
are connected using routers, allowing the creation of InfiniBand fabrics of virtually

unlimited size.

46

CHAPTER 5 INFINIBAND

Component Identification and Addressing
in InfiniBand Networks

InfiniBand network components have identifiers called GUIDs (globally unique ID),
which are 64 bits long. Depending on the type of device, there may be more than one of
these identifiers. GUIDs are assigned by the device manufacturer, although there may be
means to change them. Each adapter has a NodeGUID and one PortGUID for each port
of the adapter. One of the PortGUIDs can be the same as the adapter’s NodeGUID. The
switch also has a NodeGUID and a PortGUID, but all PortGUIDs must be the same for all
switch ports.

There is also an identifier called SystemImage GUID. Its purpose is to allow you
to determine which components make up a single system (are under the control of
a single software instance). For multichip switches, e.g., this parameter is the same
for all elementary switches that make up one large composite switch. For adapters
installed in a single server, this parameter will be different because each adapter has an
independent management program (what is called firmware). SystemImage GUID can
be equal to the NodeGUID of one of the components that make up a single system, or
null if the component is not part of any system (or the vendor does not want to allow the
components of their system to be identified).

GUIDs are used to identify the components of an InfiniBand network, i.e., to
distinguish one component from another. They are not used as addresses for data
transmission. LIDs (local ID) are used as addresses for data transmission within a
subnetwork. GIDs (global ID) are used as addresses when transferring data between
subnets. GIDs can also be used for data transmission within the same subnet, but
addressing with GIDs requires an additional GRH (Global Routing Header) in the data
packet, which increases the size of the service information in the data packet.

The local ID - LID - is 16 bits long. LID = 0 is reserved and cannot be used; LIDs from
1 to OXBFFF are regular LIDs used for point-to-point (unicast) transmission: LIDs from
0xC000 to OXFFFE are for multicast; LID = OXFFFF is a so-called permissive LID, a packet
addressed to such an LID will be processed by the first port to receive it. Each end port
and each switch (the LID is assigned to the switch as a whole, not to its individual ports)
in the subnet is assigned at least one LID during its initialization, and LIDs should be
unique within the same subnet.

47

CHAPTER 5 INFINIBAND

The available number of LIDs results in a limit on the number of devices in the
subnet. The LID of the packet recipient is used by switches to determine which port to
forward the received packet to: entries in the forwarding table of switches use the LID as
the key. To simplify the processing of subnets, where there are many possible alternative
routes between given pairs of points, a port or switch can be assigned several LIDs.

In this case, a Base LID and an LMC (LID Mask Control) are assigned. The LMC is a
number between 0 and 128.

The lower LMC bits of the Base LID must be zero, and it is considered that the port
is assigned 2LMC of consecutive LID values, i.e., the values from Base LIDtoBase LID
+ 2LMC - 1.If only one LID is assigned to a port, then LMC = 0. Typically, no more than
two LMC values are used per subnet: one for assigning LIDs to adapter ports and one
(most often zero) for assigning LIDs to switches.

The global ID - GID - is 128 bits long. It is assigned to each end port. In fact, a GID
is an IPv6 address in which the lower 64 bits are the GUID of the port to which the GID
is assigned. The higher 64 bits of the GID (GID Prefix) default to 0XFE80: : /64 (see
RF(C2373 for details on the textual representation of IPv6 addresses and prefixes). The
scope of this prefix is the subnet (link-local scope). Data packets with a destination GID
with this prefix will not be transmitted by routers between subnets, i.e., GIDs with this
prefix can only be used to transmit data within a subnet. One (or none) GID prefix other
than the default prefix can be assigned during subnet initialization. The GID with the
default prefix should still work as the port GID.

Prefix OXFECO: : /64 is a site-local scope prefix. Data packets destined for such
addresses can be transmitted by routers from subnet to subnet, but must not leave the
site-local scope.

A global scope prefix can also be assigned, and should be chosen according to the
rules established for IPv6 addresses.

In addition to unicast GIDs, there are also GIDs designed for multicast data
transmission. The prefix of multicast GIDs has the high byte OxFF; the meaning of the
other prefix bits can be found in RFC2373 and RFC2375.

In addition to LID and GID addressing, there is another addressing method, directed
route addressing. This method can only be used for sending subnet management
packets (SMP). It is mainly used during initial subnet initialization, when ports are
not yet assigned LIDs and switch forwarding tables are not set, or after rebooting an
adapter or switch, when access to them using LIDs is not yet possible. In directed route
addressing mode, the packet lists the switch ports through which the data packet must

48

CHAPTER 5 INFINIBAND

pass (initial path). The packet also contains a hop count that indicates the number of
elements in the port list, a pointer to the current element in the port list (hop pointer),
a D direction pointer (direction, 0 - the packet is forwarded from the source to the
destination of the request, 1 - the packet contains a response and is forwarded toward
the source of the original request), and a reverse path.

Upon receiving a packet with field D = 0, the switch uses the pointer to the current
hop pointer element to determine the port to which the received packet should be
routed, writes the port number through which the packet was received to the reverse
path field to store the reverse route, and increments the hop pointer field by one. If the
list runs out, the receiver processes the packet, generates a reply, changes the direction
pointer to reverse path (sets the D field to 1), and sends the reply. When receiving a
packet in which the direction pointer is set to reverse, the switches use the reverse route
to determine the port to forward, and accordingly do not write a new reverse route, and
decrease the hop pointer value by one at each step.

In addition to a pure directed route, it is also possible to specify the LID of the switch
to which the packet should be forwarded using normal addressing (by LID) and the LID
of the destination to which the packet should be forwarded after the path defined by the
directed route has been traveled. Obviously, the parts of the fabric before and after the
path defined by the directed route must already be initialized and support LID-based
forwarding.

InfiniBand Subnet Management

As it was mentioned above, for normal operation, the InfiniBand subnet must be
configured: LIDs are assigned to adapter and switch ports, and switch forwarding tables
are configured (unlike Ethernet networks, in InfiniBand networks, switches do not form
their own forwarding tables; it must be configured externally).

The component that is responsible for configuring and then maintaining the subnet
is the subnet manager (SM). A subnet manager is a program that can run on a computer
with an InfiniBand adapter or on the switch (not all InfiniBand switches support running
SM). For reliability, several managers can be launched in a subnet, in which case one
of them is the master and the others are standby. In case the master manager stops
working, one of the standby managers takes over its functions. The master manager can
also explicitly delegate the role of master to one of the standby managers, e.g., during a

normal shutdown.

49

CHAPTER 5 INFINIBAND

Once started, the subnet manager uses subnet management packets transmitted via
directed routes to find out the structure of the subnet: which adapters, switches, routers,
and which links there are between them. If after determining the subnet structure it
turns out that there are no other higher priority SM in this subnet, this manager becomes
active and configures the subnet, i.e., assigns LIDs to all end ports, tells each end port
the LID of the port on which the SM is working, sets up switch forwarding tables, and
makes some other settings. After that, the subnet is ready for operation. While the subnet
is running, the SM receives notifications about changes to the network structure and
reconfigures the subnet accordingly. The SM also periodically collects information
about the topology of the subnet from scratch, like when the subnet initialization occurs,
not relying on the reliability of topology changes notifications. This process is called
Sweeping.

The spare managers poll the master from time to time, and if the master stops
responding, one of the spare managers becomes the master and reconfigures the subnet
by pointing it to the location of the new SM.

Note that bad ports in the network (node hangs, bad cable, etc.) slow down the
collection, and SM sweep time, which can lead to the overall network failures, such as
nodes network loss, shared file system break, etc. The same can happen if the spare SM
takeover takes too long.

In the modern IB networks, you can see Uniform Fabric Manager (UFM), which
also has the role of SM. UFM usually has more features than a regular SM, like WebUT,
regular network check and sending reports, etc. It is required if you need support for
NVIDIA Scalable Hierarchical Aggregation and Reduction Protocol (SHARP). This
technology allows performing many collective operations, like barriers, summation, etc.,
directly on the switches, and UFM is required to configure them accordingly.

IP Over InfiniBand (IP Over IB, IPoIB)

The operation of the TCP/IP protocol stack over InfiniBand is not part of the InfiniBand
specification; it is defined in the relevant RFC documents. InfiniBand operation is quite
possible without IPoIB. However, some programs and libraries, although designed to
work over InfiniBand, also require working IP over InfiniBand. Most often IPoIB is

used to determine InfiniBand identifiers (LIDs, GIDs) of processes running on other
compute nodes, and once determined, further communications are performed without
the TCP/IP stack.

50

CHAPTER 5 INFINIBAND

Configuring IP over InfiniBand is basically the same as configuring IP over Ethernet.
There are only a few things to pay attention to.

The IPoIB interfaces in the system usually are called ib0, ib1, etc. (one interface
per InfiniBand port). It is better to assign addresses statically by writing them in the
configuration files of servers and compute nodes. DHCP protocol over IPoIB is possible,
but for reliability, it is not recommended to use it.

The link layer address, which in Ethernet networks are called MAC address or
hardware address for IPolIB, has a length of 20 bytes. That is why some utilities, in
particular, the widely used ifconfig utility, in which the length of Ethernet MAC address
is fixed at 6 bytes, cannot work correctly, and display link layer addresses for IPoIB. The
ip utility, which is recommended to replace ifconfig, does not have this disadvantage.
The link layer address contains the GID of the port, the Queue Pair Number (QPN,
analogous to the TCP port number for InfiniBand), and flags indicating which InfiniBand
transport layer protocols can be used for IP transmission.

Utilities for InfiniBand Network Viewing
and Managing

In this section, a number of examples of output is given from some utilities in the OFED
kit with explanations of the output information. This information will help you to
understand what is happening in the InfiniBand network and diagnose some errors in its
operation.

The ibstat command shows the status of all ports on all InfiniBand adapters
installed on the host where it is running.

CA 'mlx5 o'
CA type: MT4113
Number of ports: 2
Firmware version: 10.12.1100
Hardware version: 0
Node GUID: 0x00123456000073f0
System image GUID: 0x00123456000073f0
Port 1:
State: Active
Physical state: LinkUp

51

CHAPTER 5 INFINIBAND

Rate: 56
Base lid: 913
LMC: o
SM 1id: 43
Capability mask: 0x26516848
Port GUID: 0x001234560000730
Link layer: InfiniBand
Port 2:
State: Active
Physical state: LinkUp

Rate: 56

Base lid: 1361
LMC: 0

SM 1lid: 698

Capability mask: 0x26516848
Port GUID: 0x00265802000073f8
Link layer: InfiniBand

First, the adapter information is displayed: its name (mlx5_0), adapter type (model
name), number of ports, firmware and hardware versions, as well as Node GUID and
System Image GUID.

For each port, the Link layer line displays the connection type: InfiniBand or
Ethernet. Some InfiniBand adapters allow both InfiniBand and Ethernet connections.
The connection type is determined by the transceiver installed, and the adapter should
be set up accordingly. The Port GUID line shows the GUID of the port. Base 1id is the
first LID assigned to the port. There are a total of two consecutive LIDs assigned to the
port, as mentioned above. SM 1id - The LID of the port on which this subnet manager
is running. Rate - The baud rate at which the port is operating (56 in this case is 4x
FDR mode).

Physical state - The state of the physical layer of data transmission. The normal
state is LinkUp. It can also be Disabled, Polling (the port enters this state after powering
on), Configuration (coordination of operating modes with the other side of the link),
and Recovery (recovery after a link failure). There are other states, but their appearance
means a serious failure in the operation of the equipment, and I will not describe
them here.

52

CHAPTER 5 INFINIBAND

State - State of the data transmission link layer. Active - States of normal operation,
any type of data transmission is possible. Down - Data transmission is impossible (the
physical layer has not yet entered the LinkUp state). Initialize - The state to which
the link layer passes immediately after the physical layer has passed to the LinkUp state.
In this state, only SMP (subnet management packets) can be received and transmitted.
In this state, the subnet manager must configure the port (set the LID and other
parameters) and put the port in the Active state. There are other states, but ports
should not be in them for a long time, so I will skip their descriptions.

Capability mask - A set of flags describing the modes of operation (speeds, etc.)
supported by the port.

The ibstatus command also outputs information about all ports, but in a slightly
different format, and produces a partially different set of data:

InfiniBand device 'mlx5 0' port 1 status:
default gid: fe90:0000:0000:0000:0000:0026:5802:0000:73f0
base lid: 0x391
sm lid: ox2b
state: 4: ACTIVE
phys state: 5: LinkUp
rate: 56 Gb/sec (4X FDR)
link layer: InfiniBand

InfiniBand device 'mlx5 0' port 2 status:
default gid: fea0:0000:0000:0000:0000:0012:3456:0000:73f8
base lid: 0x551
sm lid: Ox2ba
state: 4: ACTIVE
phys state: 5: LinkUp
rate: 56 Gb/sec (4X FDR)
link layer: InfiniBand

Note that the base LID and subnet manager LID information is given in hexadecimal.
More detailed information about the speed at which the port operates is given. Also
added the default gidline, which specifies the GID for the port.

53

CHAPTER 5 INFINIBAND

Really useful command is ibdev2netdeyv; it shows you IB interfaces and
corresponding network interfaces with network status. Here is an example:

mlx5 0 port 1 ==> etho (Up)
mlx5 1 port 1 ==> ibo (Up)

Note that the first interface is Ethernet, most probably RoCE, which means that IB
utilities can interact with it.

Extremely important command is perfquery; it reads performance counters
from any point of the IB network. That means you can check how many packets were
dropped by the remote compute node being on a management node, connected to the
IB network, e.g., perfquery -a 123 - read all basic counters from device with LID 123.
If you want to specify GUID, add -G switch in the front of all options. If you want to get
extended counters, use -x option instead of -a. For different series of IB devices, list of
the supported counters can vary. To collect most significant errors from the network, you
can use ibqueryerrors command. For RoCE network, this may not work; in this case,
you should use ethtool -S device name, e.g., ethtool -S etho

If you need a deeper look, and you have Mellanox (NVIDIA) adapters, you can use
mlxlink command to get more details about the adapter and cables. Here is an example
of how to get counters from the device (-c):

mlxlink -d mlx5 1 -c

Operational Info

State : Active
Physical state : LinkUp
Speed : IB-EDR
Width D 4X

FEC : No FEC
Loopback Mode : No Loopback
Auto Negotiation : ON

Supported Info

Enabled Link Speed : 0x0000003f (EDR,FDR,FDR10,QDR,DDR,SDR)
Supported Cable Speed : 0x0000003f (EDR,FDR,FDR10,QDR,DDR,SDR)

54

CHAPTER 5 INFINIBAND

Troubleshooting Info

Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed.

Physical Counters and BER Info

Time Since Last Clear [Min] 1 12824.8
Effective Physical Errors : 0
Effective Physical BER : 15E-255
Raw Physical BER : 15E-255
Raw Physical Errors Per Lane : 0,0,0,0
Link Down Counter : 0
Link Error Recovery Counter : 0

Here BER is for “Bit error rate,” which is low-level counter and may indicate
problems, which are not shown by perfquery yet. In this example, this rate is low.
To get detailed info about the device itself, you can specify -m switch:

mlxlink -d mlx5_1 -m

Operational Info

State : Active
Physical state : LinkUp
Speed : IB-EDR
Width D AX

FEC : No FEC
Loopback Mode : No Loopback
Auto Negotiation : ON

Supported Info

Enabled Link Speed : 0x0000003f (EDR,FDR,FDR10,QDR,DDR,SDR)
Supported Cable Speed : 0x0000003f (EDR,FDR,FDR10,QDR,DDR,SDR)

55

CHAPTER 5 INFINIBAND

Troubleshooting Info
Status Opcode

Group Opcode
Recommendation

Module Info
Identifier

Compliance

Cable Technology
Cable Type

OuI

Vendor Name

Vendor Part Number
Vendor Serial Number
Rev

Attenuation (5g,7g,12g) [dB]
FW Version

Wavelength [nm]
Transfer Distance [m]
Digital Diagnostic Monitoring
Power Class

CDR RX

CDR TX

LOS Alarm

Temperature [C]
Voltage [mV]

Bias Current [mA]

Rx Power Current [dBm]
Tx Power Current [dBm]

: 0
: N/A
: No issue was observed.

¢ QSFP+

: N/A

¢ 850 nm VCSEL

: Active cable (active copper / optics)
: Mellanox

: Mellanox

: MEXXXXX-EXXX

: MT2135FT12345

: B2

: N/A

T XX XX XXX

¢ 850

. 10

: Yes

¢ 2.5 W max

: ON,ON,ON,ON

: ON,ON,ON,ON

: N/A

: 38 [-10..80]

: 3255.2 [3100..3500]
: 6.750,6.750,6.750,6.750 [5.492..8.5]
: 0,0,0,0 [-14..6]

: 0,0,0,0 [-12..6]

--json switch can be used to get the output in JSON format and use it in your scripts!

There is much more information you can get, but usually it is needed only in rare cases.

56

CHAPTER 5 INFINIBAND

In case you want to check the connectivity between two ports, you can use ibping.
In the contrast to regular ping, you have to start server process on the other side first:
ibping -S, then you can pingitas ibping 123 (here we are pinging LID 123).

Sometimes it is necessary to find out which machine a particular LID is assigned to.
The smpquery utility can be used for this purpose. In general, this utility is designed to
send SMP (subnet management packet) and provide answers in a human-
understandable form. In our case, we need a request for a node description. Here is an
example of issuing the smpquery nodedesc 914 command (request for node description
with LID 914):

Node Description:.......ccovvvuunnnn. n51001 HCA-1

The node responded that LID 914 is assigned to the HCA-1 adapter of the compute
node named n51001.

With smpquery, information about the node to which the query is addressed is
available. At the same time, the subnet manager has information about all nodes in the
subnet. You can request information from the subnet manager using the saquery utility.
Information about a subnet node with LID 914 can be requested with the saquery 914
command. Here is an example of how to issue such a command:

NodeRecord dump:

e 914
reserved...oeeeieeennnnn 0x0

base version............ 0x1

class version........... 0x1

node type............... Channel Adapter
num ports............... 2

SYs guid..eieeeiiiennnnnn 0x0012345600003740
node guid............... 0x0012345600003740
port guid............... 0x0012345600003740
partition cap........... 0x80

device id............... 0x1011
revision.......coeein.n 0x0

port num.........oco.... 1

vendor id............... 0x2C9
NodeDescription......... n51001 HCA-1

57

CHAPTER 5 INFINIBAND

The last line provides a description of the node, including the hostname. Additional
information is also provided. Once again, please note that the smpdump command allows
you to request information about a node in the InfiniBand network from the node itself,
while the saquery command allows you to request information about the node from the
subnet manager. If the results of these queries are different, or if the saquery command
gives an error, it is an indication that there is a problem with the subnet manager.

Two more useful utilities for troubleshooting InfiniBand networks are
ibnetdiscover and ibdiagnet. The ibnetdiscover tries to find all subnet components,
end nodes, switches, routers, and links between them, and displays information about
all found components. The ibdiagnet utility also tries to find all subnet components,
but it also tries to find subnet configuration errors, such as matching GUIDs, port
speeds, etc. I should also note ibswitches, and ibnodes, which are a quick way to get the
network inventory.

I'm not going to give examples of these utilities because they are quite large, and for
ibdiagnet, the output also consists of several files. I mention these utilities to have an
idea of what tools can be used to diagnose issues with the InfiniBand network.

Utilities that send information to the network have options to select the adapter and
port to work with (remember that the same LID can refer to different devices in different
subnets). The -C key is used to specify the adapter (e.g., mLx4_0 in the examples above),
and the -P key is used to specify the port number of the specified adapter (ports are
numbered starting from 1).

ofed_info - Useful command if you need to get information about your OFED
version and other details.

In the end of this subchapter - some information, which can help you debug user’s
applications errors. Most communications via RDMA are made using so-called “queue
pairs,” or QP. QP can be created in two modes - connected mode (dedicated QP) or
datagram mode. In the first case, QP can be used only for one dedicated connection
between two peers, while in the datagram mode, data can be sent to many destinations
and received from many sources. There are two types of connections - “reliable” and
“unreliable” In case of “reliable connection” every time the data is sent, it is required
to get a confirmation, that the data was received. If no confirmation was gotten, the data
is re-sent. In case of “Unreliable connection” there is no control if data was received or
dropped.

58

CHAPTER 5 INFINIBAND

Alternatives

Today, real alternatives to InfiniBand are RoCE and SlingShot. RoCE may be cheaper
but usually lacks advanced routing and still had higher real latency. In addition, you miss
the network observability. SlingShot is very similar to InfiniBand; it has FabricManager,
similar to SubnetManager in IB, supports wide range of topologies, has convenient
network management tools, and has low latency and high speed and Ethernet
compatibility. The key disadvantages of SlingShot in my opinion are limited community
and in fact computational software support via libfabric.! Libfabric is an open source and
well-supported initiative, which allows using almost any network for the communication
with low overhead. But still the libfabric itself is the overhead and gives slightly lower
performance than raw IB verbs.

Brief Summary

InfiniBand and RoCE are bare-bones of the modern HPC, so fine-tuning and diagnostics
of these networks significantly impacts the overall supercomputer performance.

Search Keywords

InfiniBand, OFED, rdma, hpc interconnect, latency, performance counters

'https://ofiwg.github.io/libfabric/
59

https://ofiwg.github.io/libfabric/

CHAPTER 6

How a Supercomputer
Does the Job

Which software stack is necessary to make a supercomputer alive? Let’s try to look at
this stack:

e Operating system

e The system software, which is required for hardware operation -
drivers, etc., as well as software for the network file system

e Overall system control software (boot, images, etc.), remote access
software, monitoring

o Task control system (queuing system, batch system)

o Applied software - software required for parallel programs, like
parallel packages and libraries, e.g., MPI, CUDA, etc.

An optional, but frequently required, component is compilers and additional
libraries often required for compute programs, such as BLAS, FFT, etc. If your users
are developers, or you plan to use applications, which require compilation (e.g., VASP,
NAMD, etc.), this is really needed, because compilation on the target architecture
usually turns on all needed optimizations, which maximizes performance, and makes
the installation easier.

For complete management of the supercomputer, you will also need software for
backup, alerting, statistics, and visualization of the supercomputer state.

© Sergey Zhumatiy 2025
S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_6

61

https://doi.org/10.1007/979-8-8688-1600-0_6#DOI

CHAPTER6 HOW A SUPERCOMPUTER DOES THE JOB

How a Typical User Session Occurs

There are many options for organizing work with specific compute packages that provide
their own interface for working with a supercomputer. Let’s consider the “general” variant.

So, a user is working on their computer - workstation, laptop, tablet, etc. To start a
session, they start an ssh client (putty, openssh, IDE ssh plug-in, etc.), enter an address,
login, specify a password or a private key file (or use a profile where all this is already
specified), and open a connection to the supercomputer. Depending on the organization
requirements, additional access procedures may be used, 2FA, key certificates, etc. Once
at the access node, the user can access local files, edit and compile their own parallel
programs, scripts, copy input data via sftp protocol, etc.

To start a program, the user executes a special command that queues his job. The job
queue (or often “partition”) is implemented by a job management system, and users
talk to it using special commands. In the command, they specify the number of required
parallel processes, possibly the number of nodes and other preferences, like memory,
GPUgs, licenses, etc., as well as the program and its arguments. The user can check the
status of their job and see the list of job in the queue. If it turns up that there is an error in
the program, the user can cancel it or remove it from the queue if it has not yet started.

If necessary, the user can submit to the queue several jobs (e.g., if they need to
process several sets of input data). Once a job is queued, its I/O will be redirected to the
files, so user can safely end the session and check the job status or view/download the
results later in another session. Most job management systems allow you to run a job
interactively as well, linking its I/O to the user’s terminal. In this case, you will have to
leave the session open till the job is finished.

All work is done at the command line, so the user must know the minimum set of
Linux commands (usually this is not a problem). An elementary Linux self-study book or
even a page on a website with a description of the necessary commands is sufficient in
general. For file management, many users use the Midnight Commander (mc) program,
which makes the job even easier.

Job Life Cycle

A typical job on a supercomputer goes through several phases. The first phase is
queuing the job. In this phase, the user specifies the path to the executable program, its
arguments, and startup parameters, such as the number of MPI processes, number of

62

CHAPTER6 HOW A SUPERCOMPUTER DOES THE JOB

nodes, node requirements, etc. Explicitly or implicitly, the user also specifies how the
job should be started - via the mpirun or mpiexec command (for MPI applications), as a
regular application, etc.

The job management system regularly checks whether a new job can be started
by reviewing the queue. As soon as our job reaches the beginning of the queue or is
otherwise suitable for launching, the management system (or rather, its scheduler) will
select a set of nodes on which to launch, notify them, possibly execute an initialization
script (the so-called prologue), and proceed to launch the job.

The startup phase may vary from system to system, but the general idea is the same:
a startup process, such as mpirun, is started on a compute or management node and is
passed a list of nodes and other parameters. This process starts job workflows on the
compute nodes, either by itself (via ssh) or with the help of the job management system.
From this point on, the job management system considers the job to be running. It can
monitor the state of the workflows on the nodes, if supported, or it can monitor only the
state of the start process. As soon as the start process terminates or the job is forcibly
canceled (either by the user or by the job management system itself), the job enters the
termination phase.

In this phase, the control system tries to terminate the job correctly - to make sure that
all its processes have finished, there are no unnecessary files left in temporary directories,
etc. A separate script, the so-called epilogue, is often used for this purpose. At the end of
the termination phase, the job is considered completed. For some time, information about
it may be stored in the management system, but usually, the data about it can now only
be found in logs. In the described cycle, there can be nonstandard actions, e.g., changing
the priority of a job that changes the speed of its passing in the queue, blocking that
temporarily prohibits the start of the job, suspending the job, and some others.

What Is Hidden from the User

All that was described above is what is visible to the average user. However, there is

also something that remains “behind the scenes” for the user, but plays an important
role for the administrator. These are the services that ensure correct operation of the
supercomputer: account management, distributed file system, quota management,
remote node monitoring, statistics collection and journaling, equipment and
infrastructure monitoring, emergency notification and shutdown, and backup. All these
services work invisibly for the user, but their importance can hardly be overestimated.

63

CHAPTER6 HOW A SUPERCOMPUTER DOES THE JOB

Brief Summary

You can build the simplest computing cluster “on the knee”: take two laptops, connect
them to a common network, set up passwordless access via ssh, run an NFS server on
one of them, and mount an NFS file system on the other, and - done, you can run MPI
programs. But the performance of such a cluster is very low, and when you try to connect
20 laptops instead of 2, problems arise: the network cannot cope with the load, NFS
slows down, one laptop hangs, and it takes us half an hour to figure out what happened,
and much more.

If the cluster is not a “toy” cluster, but is intended for real jobs, then its planning and
operation must be taken seriously. We have briefly outlined the main components of the
supercomputer software “stack”; further, we will try to consider them in detail.

Search Keywords

MPI], session, ssh client, NFS

64

CHAPTER 7

UNIX and Linux - the
Basics

If you already use Linux and have a good idea of its administration, you can safely skip
this chapter. If the information in this chapter is completely new to you, it is advisable to
read additional literature and practice writing scripts in bash for further reading.

In any case, I recommend checking out the books on the list below; they have a
wealth of information useful even to seasoned professionals:

Evi Nemeth, Garth Snyder, Trent Hayne, Ben Whaley.
Unix and Linux: A System Administrator’s Guide

This is a classic textbook on Unix and Linux. It often refers to ancient systems
such as VAX and PDP-11, but it still captures the essence of UNIX perfectly and is still
relevant today.

Thomas Limoncelli, Christina Hogan, Strata Chaylap.

System and Network Administration. Practical Guide
An updated Linux tutorial contains tons of useful examples.

Brian Kernighan, Rob Pike

Unix - Software Environment

This book is more about programming both in the bash shell and with other tools.
Even if you don’t have to do this regularly, I strongly suggest reading this book, as it will
reveal to you the principles that govern how to work in UNIX; you will become more
familiar with many of the processes that occur within the OS.

Thomas Limoncelli
Time Management for System Administrators

65
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_7

https://doi.org/10.1007/979-8-8688-1600-0_7#DOI

CHAPTER 7 UNIX AND LINUX — THE BASICS

The title speaks for itself. The book contains many situations in which any system
administrator finds himself and practical advice on how to get out of them with
minimal losses.

This chapter does not pretend to be a textbook on UNIX, but I have tried to collect
in it all the basic concepts that you will need to know later on. The vast majority of
supercomputers today use a UNIX-like operating system. I say “UNIX-like” because the
legendary UNIX OS in its pure form is not developed and practically not used nowadays.

Brief historical background. After the breakup of AT&T, which developed the
operating system, the UNIX trademark and the rights to the original source code
changed hands several times, most notably for a long time they belonged to Novell.
In 1993, Novell transferred the rights to the trademark and to certify the software
for compliance with this mark to the X/Open consortium, which then merged

with the Open Software Foundation and is now called “The Open Group.” This
consortium develops open standards for operating systems, such as POSIX (now
renamed the Single UNIX Specification).

According to The Open Group, only systems certified to the Single UNIX
Specification can bear the name “UNIX.” Currently, numerous operating systems
have passed different versions of this certification, e.g., Solaris, AlX.

Even those operating systems that have not passed UNIX certification (e.g., Linux)
try to comply with these standards. This is why the architecture of applications on
these OSes is very similar, and porting an application from one OS to another is easy,
especially if only standard libraries and functions were used to write the program.

It is these qualities and the immense popularity of UNIX in the past, as well as its
well-established successors - Solaris, OpenBSD, FreeBSD, AIX, and, of course, Linux -
that have given UNIX-like OSes leadership on servers around the world.

Computing clusters and supercomputers are no exception. The de facto standard
here is Linux. It is this operating system that we will focus on. Although there are many
installations on other operating systems, such as Windows, FreeBSD, Solaris, and others,
we will not dwell on their peculiarities in the HPC class in this book.

66

CHAPTER 7 UNIX AND LINUX — THE BASICS

Processes

The basic concept in any OS is a process. It is something like a container (actually - a
description in OS tables) containing a unique identifier (PID), rights (owner, group, and
some others), program code, data area, stack, set of memory pages, table of open files,
and other attributes. For the OS, a process is a unit of processor time scheduling; each
process can be executed as follows: processor, pending execution, system call state
(pass a request to the OS and wait for a response), stopped, and or terminated. They are
denoted as R (running), S (sleeping), D (uninterruptible sleep), T (stopped), and Z
(zombie).

For example, if you run 10 = calculation programs on a computer with two cores,
then only two will be able to count simultaneously. But the OS will pause the active
process with a high frequency (e.g., 100 times per second), put it in the queue and send
the next process from the queue (very roughly, but the essence is exactly the same).

For the process, it looks like it monopolizes the processor; it’s just that the speed of this
processor is five times slower than it could be.

The average number of processes in the queue is referred to as “Load Average.” If it
is higher than the number of cores, it usually means that not all tasks “get” the processor
and work slower. It should be taken into account that the queue also includes processes
in D state, i.e., a high LA can cause processes that, e.g., read a lot from disk or write (and
constantly wait for read or write calls). So high LA is a signal that something is potentially
wrong, but it is good to checkit.

A process is stopped only if another process has sent it a STOP signal. In this case, it
“freezes” and stops executing until it receives the CONT signal (or is terminated). If the
process is in state D, the signal is ignored, and in most cases, you cannot do anything to
clear it. In principle, the process can ignore the STOP signal, but this is rarely done.

The zombie state occurs when a process has terminated, but its parent has not
“acknowledged” it (has not called the wait system call). This is done so that the parent
process can get data about how the process terminated. That is, processes in the zombie
state do not consume any resources, neither processor and memory. For the same
reason, they cannot be forced to terminate - they are already terminated.

Every process in the system has a parent process (PPID); if the parent process has
terminated, it becomes a process with PID 1 (usually a special init process in the system,
we will talk about it below), which performs a wait for all such processes.

67

CHAPTER 7 UNIX AND LINUX — THE BASICS

You can view the list of processes and their status using the ps command. It has
had a difficult fate, as it has historically had many, including conflicting, options in
different versions of popular operating systems (UNIX, BSD, Solaris). As a result, Linux
uses a GNU variant that tries to combine them. In particular, there are options that must
necessarily be specified with a minus in front and others that must be specified with only

no minus. Below are the most useful ones from our point of view:

ps fax # all processes grouped into a tree,
you can see who's descended from whom
add 'u' flag to see processes owners too
ps aux # all processes with most useful fields
ps -eLf # show processes and threads
ps -eo pid,ppid,user,vsize,pmem,pcpu,stat,wchan:32,comm
explicitly specify the output format
(-e = all processes)

You can add w to most combinations, then the process name field (typically a
program with arguments) will be wider. If you add it twice, it will be even wider, and if
you add it three times, there will be no width restrictions at all.

It can be convenient to track the activity of processes in real time. This is where the
top command and the newer htop command can help. They show processes in the
form of a table sorted by one field and update it every five seconds (you can change the
interval). In this case, only those processes that fit on the screen are shown, plus some
general data about the system - CPU load, memory load, average load, and number of
processes in different states.

You can switch display and sorting modes. There are several hotkeys for top; their list
can be obtained by pressing ‘h! The most convenient sorting options and commands:

<Shift>+<P> - Sort processes by CPU usage
<Shift>+<M> - Sort processes by memory usage
1 - Show the load of each core or total

k - Send a signal to the process

I - Change the process priority

u - Filter by user

g - Quit

68

CHAPTER 7 UNIX AND LINUX — THE BASICS

htop has a friendlier interface, uses color output where possible, displays CPU and
memory load in the form of text progress bars, and can organize processes into trees
(and collapse them into a single line, which is sometimes very convenient). Control
keys are displayed in the bottom line in the style of Norton Commander (Midnight
Commander/FAR manager).

Other useful features of htop: Space key tags/untags processes (so you can kill or do
anything else with many processes if you want), s key allows to trace syscalls, made by
process, 1 key shows opened files (using 1sof, it should be installed), w key shows full
command line is a separate window, and x key shows all locks. See full list of hotkeys on
the man page.

I have already mentioned signals many times - they are a simple way for processes
to communicate, any process can send a signal to another if it belongs to the same
user (root user can send to everyone). A signal is an integer, so it doesn’t convey much
information, but its function is to ask a process to perform some action. All signals
except STOP and KILL can be intercepted and processed; if the process does not process
the signal, the OS performs a predefined action for it.

There are standard values for most signals and actions; below are the most
commonly used (See Table 7-1).

Table 7-1. Some signals in Linux

Number Designation Action

9 KILL Terminate immediately.

15 TERM “Politely” end the process.

3 QuIT Keyboard completion signal (if the Ctrl-C combination is pressed).

19 STOP Stop execution.

18 CONT Continue implementation.

4 ILL Is sent to the OS if a process has attempted to execute an invalid processor

instruction. By default, the process is terminated.

11 SEGV Is sent to the OS if the process has accessed a nonexistent address in
memory. By default, the process is terminated.

8 FPE Is sent to the OS if a floating-point operation exception occurred. By default,
the process is terminated.

10 USR1 Custom signal, ignored by default

69

CHAPTER 7 UNIX AND LINUX — THE BASICS

The “default” actions can be changed by the process (except for the STOP and KILL
signals). They can be handled or ignored. If the process terminates correctly, the process
memory can be written to a so-called core file so that the cause of the error can be
investigated by a debugger afterward. Whether a core file is created is determined by the
OS settings and limits (see chapter on quotas).

You can send a signal from the command line with the kill command. For example,
kill -9 1234 will forcibly terminate the process with PID 1234, and kill -STOP 2345 will
stop the process with PID 2345. As you can see, you can use either the signal number or
the signal designation. kill -1 will show a list of all signals.

Sometimes it is necessary to send a signal not to one process, but to many, e.g., to all
processes of a user. Then the pkill program comes to the rescue: pkill -u foo -TERM
will send the TERM signal to all processes of the user foo.

It was mentioned above, the processes that are to be executed are put into a queue.
They are not always executed in a row; each of them has a priority and a nice parameter
affecting it. The higher the priority, the faster the process moves to the beginning of
the queue. You cannot set the priority explicitly, but you can change the politeness
(often it is also called priority for simplicity, but it is not quite true). This is done with
the nice or renice command, the first one starts a program with the specified priority,
and the second one changes the priority of the already started program. The higher the
politeness, the lower the priority; the program will more frequently “pass” others ahead.
Historically, politeness varies from -20 to +19, and a normal user cannot specify it less
than 0, e.g.,

nice -n 15 ./my program # start a program with low priority
renice -n -10 -p 3322 # prioritize process 3322

Here we change the politeness from 0 to 15 (priority down) or to -10 (priority up).

In addition to the queue for CPU resources, there is a queue for hard disk resources,
several processes can read-write simultaneously and their requests will compete. This
queue also has a priority; it is controlled by the ionice command. There are three
priority classes - idle (execute the request if there is no one else in the queue), best
effort (normal queue), and real time (the request must be executed in a given time).
Within the classes, besides idle, there are own priorities, but in our tasks, we can
limit ourselves to assigning the idle class to a process that takes a lot of time on disk
operations but is not a priority:

ionice -c 3 -p 89 # set idle class to process with PID 89

70

CHAPTER 7 UNIX AND LINUX — THE BASICS

The concept of a process is a basic concept in any OS. Processes and threads should
not be confused; it is important to know what is real and virtual memory of a process,
how shared objects (so) and dynamic linker (1d. so) work. Look for documentation on
these topics in your OS distribution or in the extensive documentation on the Internet.

Access Rights

UNIX-like operating systems were originally designed as multiuser systems, which
means that user data and processes need to be protected from unwanted encroachment
by other users. I already mentioned “process rights’, e.g. that your process cannot send
a signal to a process of another user, unless you have special rights to do that. The same
principle is applied to the division of rights to other objects in the OS.

The basic mechanism for separating rights in UNIX-like systems is based on the
concepts of UID or user ID and GID or group ID. UIDs and GIDs are numbers, but it
is common to associate text names with them. Each process has a “real” UID and GID
(ruid/rgid) that does not change over time, as well as a list of additional groups to which
it belongs. In addition to the real ones, a process has “effective” UIDs and GIDs (euid/
egid), which define its current capabilities (i.e., they are used to determine its rights),
and “saved” UIDs and GIDs (suid/sgid) - the effective UIDs/GIDs are copied into
them when the UID/GID is changed. UID/GID can be changed if a process has such
permission (capability) or its EUID or SUID is 0.

A user with UID = 0 usually has the text name ‘root’ and has almost unlimited
permissions, so they are often referred to as ‘superuser’

Most typically, we have to deal with rights on the file system. Here each object (file,
link, directory, device, socket, channel, hereinafter we will write “file” for brevity) has
an owner and group, as well as associated rights - read, write, and execute. Typically,
the octal notation or the format of the 1s command is used to write them. For example,
permissions with the octal code 750 (in 1s output rwxr-x---) mean that the owner is
allowed to read, write, and execute (rwx / 7), the group is allowed to read and execute
(r-x / 5), and the rest are allowed nothing (--- / 0).

The rights are checked in this order - if the owner of the file matches the EUID,
the owner’s rights are taken. Otherwise, if the group or one of the additional groups
coincides with the group of the file, the rights of the group are taken and otherwise the
rights of “others” are taken.

71

CHAPTER 7 UNIX AND LINUX — THE BASICS

For a directory, the “execute” permission means that you can enter the directory.
However, you are not guaranteed to see the list of files in the directory - you need to read
permission for that. Write permission means the ability to create and delete files in the
directory.

Only the owner of a file (or other object) can change permissions for it. If you need
to change permissions for a group, the owner must be a member of that group. And, of
course, a superuser can change any rights, as well as the owner and group of any file.

As it was already mentioned, the right to write to a directory allows you to create and
delete files in it, including other people’s files. In order to ensure the comfort of working
with shared directories, such as /tmp, and not to allow deleting other people’s files, the
following was invented with an additional “sticky” flag. If a directory has this flag, then
only those who own the file and have write permission to the directory (and root, of
course) are allowed to delete files.

Speaking of the file system, two more flags should be mentioned - suid and sgid.

If a file has the suid flag, the EUID of the process will change to the owner of the file
when it is started. For sgid, it is similar, but for a group. It is most often put on files
whose execution is required with superuser rights, such as passwd. For scripts, they
do not work. If the sgid flag is set on a directory, the files and directories created in it
automatically inherit the group. The suid flag on directories is ignored.

Note that sgid flag on the directory is really useful for your users, working on
the same project. Make sure that all project members have umask like 0002, i.e.,
new files will allow group to write by default, give a project group to the project
directory and sgid bit, then all new files and directories will inherit the group and
will be available for all group members to read and write.

As mentioned above, you can view permissions with the 1s command. In the rights
line, the first character shows the file type (‘- =file, ‘d’ = directory, ‘1’ = link, ‘s’ = socket,
etc.), then three groups of rights for owner, group, and others with three characters
each ‘r/-) ‘w/-’" ‘x/-’ for read, write, and execute, respectively (‘-" means no rights). The
sticky flagis indicated by a ‘t’ instead of an ‘x’ in the ‘others’ group. suid/sgid flags are
indicated by an ‘s’ instead of an ‘x” in the ‘owner’ or ‘group’ group, respectively. If this
line is followed by a ‘+’ character, it means that acl is installed on this file (see below).

You can change file permissions with the chmod command. Change the owner of a
file with the chown command, and change the group with the chgrp command. In order

72

CHAPTER 7 UNIX AND LINUX — THE BASICS

to change file permissions, the chmod command needs to specify the new permissions
in octal or character form. The latter option allows you to add or remove separate
permissions for the owner, group, or others, e.g.,

chmod 660 myfile # read and write for owner and group
chmod g-w myfile # remove write acces for the group

In character form, chmod specifies one or more ‘u/ g/ o/a’ characters (owner, group,
others, all three groups together), followed by a ‘+” or ‘-’ character to set or reset
permissions, and then one or more ‘r/w/x’ characters to indicate which permissions are
affected. For example, chmod go+rx myfile would add read and execute permissions for
group and others to myfile.

The system described above covers many needs, but not all. To improve it, various
extensions implemented in Linux file systems have been created. One of them is
extended file attributes. These are enabled by default and can be viewed and modified
with the 1sattr and chattr commands. The most important ones for us are presented in
Table 7-2.

Table 7-2. Some extended attributes

Attribute Char Meaning

Append only a You can’t “erase” a file; you can only overwrite the information
Compressed c Use compression (if supported)

Immutable [File cannot be modified

Secure deletion S File data is overwritten when deleted

Undeletable u File cannot be deleted

No time updates A Do not update the “last access time” field

If an extended attribute prohibits some action (such as deletion), this applies even
to the superuser (unlike regular attributes). But the superuser can easily unset or set
any of them. Another extension, usually requiring activation on the file system, is ACL
(Access Control List). These can be viewed and modified with the getfacl and setfacl
commands. They work similarly to the traditional access rights discussed above, but
read/write/execute permissions can now be set for individual users and/or groups, as
well as restricted by a mask. A mask is a set of “maximum” permissions from acl rules

73

CHAPTER 7 UNIX AND LINUX — THE BASICS

(traditional permissions do not apply) that will work. For example, let’s allow user foo to
read and write to the test. txt file:

setfacl -m u:foo:rw test.txt
getfacl test.txt

file: test.txt

owner: root

group: root

USer: :rwx

user:foo:rw-

group::r--
mask: :Twx
other::---

Here, the ‘-m’ key specifies to modify acl rules. By specifying the ‘--set’ key, you can
replace rules, i.e., remove old rules and replace with new ones (multiple rules can be
specified in setfacl at the same time). With the key ‘-x; rules can be deleted. The string
‘u:foo;rw indicates that the rule refers to a user (u = user, g = group, o = others), its
name is oo, and read and write permissions are set.

Now let’s set a mask - allow user foo (and others with access via acl rules) “no more
than” reading:

setfacl -m m:r test.txt
getfacl test.txt

file: test.txt

owner: root

group: root

USEer: :Twx

user:foo:rw- #effective:r--
group::r--

mask::r--

other::---

74

CHAPTER 7 UNIX AND LINUX — THE BASICS

As you can see, the rule remains, but write privileges are restricted by the mask.

Another useful property of ACL is rule inheritance. You can set ACL “default” on
a directory, they may not be the same as ACL on the directory itself, and they will be
automatically applied to all files and directories created.

I suggest you read more about Linux permissions and the options of the above
commands; we have touched on them only a bit here.

Concept of Service, Key Services

I have used the terms “service” and “daemon” many times above. They all mean the
same thing: a process or a group of processes that run continuously or are automatically
started on demand. Their task is to serve certain requests from users, other processes,
and other computers on the network. For example, the apache web server is a service
that serves requests using the http protocol. SMTP-server is responsible for requests to
transfer mail messages, etc. Let’s consider the services often used in supercomputers.

Some services are launched via the “super daemon” inetd or its newer
implementation, xinetd. In this case, the inetd/xinetd configuration file describes the
required services: the start command, on which port to listen, on behalf of which user to
start, etc. After launching, inetd/xinetd starts listening on the specified ports and upon
receiving a request launches the corresponding command, which directs the established
network connection to the standard input stream. This principle makes it easier to write
the service and also allows for more flexible access policy customization. For example,
xinetd allows you to specify the range of addresses from which access is allowed, the
maximum number of simultaneous requests to the service, etc.

To find out if a particular service is running, you can check if the corresponding process
is running (except for services started via inetd/xinetd), if any process is listening to the
required port (if the service is bound to a port) with the ss -lepn command (socket stats).

Basic (but not all) services for the cluster are presented in Table 7-3.

75

CHAPTER 7 UNIX AND LINUX — THE BASICS

Table 7-3. Some standard services and their ports

Service Port Description

sshd 22 Encrypted remote console access

nfsd 2049/... Network file system. The actual set of ports is determined by
the portmap service

portmap 111 RPC service management

smtp 25/587 Email reception

dns 53 Domain name server. A bind (named) or dnsmasq

implementation is often used

bootps 63 Information for initial BOOTP booting as well as DHCP

tftp 69 Trivial File Transfer Protocol — protocol for downloading initial
files over the network

http 80/443 World Wide Web protocol — WWW

ntp 123 Time synchronization

snmp 161 Protocol for managing and monitoring network devices

idap, Idaps 389, 636 Lightweight protocol for accessing catalogs (databases)

syslog 514 Remote log

rsync 873 Server side of the rsync command

nfs 2049 NFS master server

nut 3493 UPS control

x11 6000..6000+N Xserver

x font server 7100 Font server for X server

bacula 9101..9103 Bacula backup

zabbix 10050/10051 Zabbix monitoring server

A more complete list can be found in the /etc/services file - it contains the
correspondence of the port number to the traditionally used service. Some services
are not represented in it because they are not very widespread, and, of course, nothing
prevents you from running any service on a nonstandard port, don’t forget about it. Via
super-daemon, inetd/xinetd often runs services such as tftp, echo, ftp.

76

CHAPTER 7 UNIX AND LINUX — THE BASICS

Manuals

There are several thousand commands in the UNIX system, but a few dozen commands
are enough for a user to know well in normal work. In this manual, we will briefly review a
small set of the most common commands. First, we will need commands for working with
directories and files. As before, we will specify optional parameters in square brackets.

The most important command you will need is man. Its name comes not at all from
man, but from manual. It is the main source of reference information on commands,
packages, and much more in UNIX and Linux. All information in man is divided into
sections, historically numbered (see Table 7-4).

Table 7-4. Sections of the man help

Number Section

1 User commands

System calls

C standard library functions

Devices and special files

File formats and format conventions
Games, etc.

Miscellaneous

0 N OO o B~ WD

System administration and daemons

As arule, to get help on a command, just type man command_name. Man command
will find the first page with the given name and display it. Since there may be pages with
the same name in different sections, sometimes it is necessary to specify the section
number explicitly. For example, the man crontab command will display information on
the crontab command from section 1. To display help on the format of the crontab file,
you should typeman 5 crontab, to display the list of files in which the required word is
mentioned - man -k word. And of course, don’t forget to execute man man.

In addition to man, there is also the info command, which was intended to replace
man, but despite a lot of new features, it has not become popular. But many aspects of
standard programs and services are described in info in much more detail than in man.

77

CHAPTER 7 UNIX AND LINUX — THE BASICS

File Naming Conventions

One of the most common tools for UNIX is the shell. In shell, some characters have a
special value (which can be overridden) - this makes it easier to work with files. Any
characters except ‘/’ and ‘\0’ can be used in file and directory names, including those,
which are used as special in shell. In the Table 7-5 you can see the list of shell special
characters.

Table 7-5. Shell wildcards

Special symbol Meaning

Backslash Special character value escape character

Ampersand (&) Symbol of command execution in the background

Parentheses '(', ')’ Tells the shell to run commands in a new instance of the shell

Angle braces (< and >) Output/input redirection characters

Space ' ' Command argument delimiter

Question mark (?) Means any character in the pattern

Dollar sign ($) Means substituting the value of the variable

Square braces ([]) Define a range of characters

Curly braces ({}) Define a list of values in bash

Asterisk (*) Any (including 0) number of any characters

Vertical bar (1) Conveyor operator

Colon (2) In many programs separates the name of a remote server from the
path to a file on that server, does not have special meaning in shell

Semicolon(;) Character to indicate the end of a shell command

Newline (\n) Line feed also means the end of the command in shell

Single and double quote (* ") Used to make strings

UNIX does not prohibit the use of these characters in file names, but you
must escape their special purpose with the ‘\’ character or enclose them in single

quotes '...

78

CHAPTER 7 UNIX AND LINUX — THE BASICS

Extension Agreements

The file extension is the part of the file name after the last dot; e.g., the file ‘text.cc” has
the extension ‘. cc! For most programs, the extension is not essential, but its presence
makes it easier to understand the purpose of the file. The most common extensions are
presented in Table 7-6.

Table 7-6. Common file extensions

Extension Common usage

.C C program file

.CC .cpp C++ program file

.h .hpp Include-file of C/C++ program
. .for Fortran program file

.0 Object file

.a Static library

.S0 Dynamic library

html HTML document

tar .cpio Archive file

.0z .bz2 .7z .zip Compressed file

It is important to understand that the file extension is not crucial for the OS and most
programs. Changing the file extension to ‘.exe’ or ‘. sh’ will not make the file executable.
But a script named ‘do_it_now’ can be made executable by executing ‘chmod a+x do_
it now! Extensions just make it easier to see what the file is, so you know what it is.

Names starting with a dot (.) are supposed to be hidden and often assigned to
service files and directories. These files and directories are usually ignored by programs
and file managers by default, but are visible if explicitly asked. For example, the 1s
command does not show them unless you specify the ‘-a” switch.

Many commands allow the use of lists of file names as arguments. These lists can be
conveniently generated using shell templates. Let’s consider them below.

79

CHAPTER 7 UNIX AND LINUX — THE BASICS

Templates

The standard shell in UNIX is a very powerful tool and, in addition to running
commands, has a lot of features that simplify work in the console. The simplest tool is
file name templates. For example, writing the command ‘1s *.c” will list all files with the
extension ‘¢’ in the current directory.

It is important to realize that “*. ¢’ is not a single argument, the shell itself will
substitute the desired list instead. If there are only two files in the directory, 1.c and 2.c,
the command ‘1s 1.c 2.c!If there is no file with a name matching the template, the
template itself will be substituted (i.e., the command ‘1s *.c’ will be expanded to ‘1s
1.c 2.c).

Table 7-7. Templates in shell

Template Meaning

* Matches any string (except ‘.’ at the beginning of the name)

? Matches any character (except ‘.” at the beginning of the name)
[c1- c2] Any character from the range c1..c2

[lc1-c2] Any character other than the specified range (bash/zsh only)
{a,b,c} Exact list of words, comma separated (only in bash/zsh)
{10..20} Sequence of numbers from 10 to 20 inclusive

All templates except ‘{}" apply to the actual list of files and select only those that fall
under the template. Using ‘{ }’ brackets, you can construct more complex templates (see
Table 7-7).

For example, ‘1s *.{cxx,h,1la}’ will turninto 1s *.cxx *.h *.la. A more
interesting trick is ‘cp config{, .bak}, which will turn into cp config config.bak. The
second file does not exist; the template explicitly sets it.

If a template is specified by ‘*; ‘?; or ‘[], but no file falls under it, the template itself
will be passed to the command. For example, if a directory is empty, and we execute
the ‘1s *.abc’ command in it, the command ‘1s *.abc’ will be executed, i.e., the
template text will be given to the command as an argument. Be careful with accidentally
or deliberately created files starting with dashes, as their names may be taken by the
command as the name of the command’s control key after the template is expanded!

80

CHAPTER 7 UNIX AND LINUX — THE BASICS

To undo a wildcard, just precede it with a backslash ‘\” or enclose the entire argument
in single quotes. For example, if we want to delete a file named “-rf *.?’, we can use

the command

m -- -rf\ *.\?
or

m -- ‘'-rf *.?'

Note the first argument ‘- -’ - this is often used in Linux commands and means “no
more keys here, just file names.” It is not necessary in this case, but, e.g., if you want to
delete a file named ‘-, the command ‘rm -f” will not work because ‘-f’ is the key of the

rm command. The command ‘rm -- -f" will work.

Commands for Working with the Directory Tree

pwd - Print the full name of the current directory.

cd [dirname] - Go to the specified directory (home directory if dirname is not
specified); dirname here is the name of the directory, which may consist of the name
itself and the path to it. The path can be absolute if it starts with / and relative if it starts
with any other character.

Examples of moving through the directory tree:

o cd /export/home/userl - Move to the home directory of userl
o cd /-Move to the root directory of the file system

e cd prog/cc - Move from the current directory to the cc directory
located in the prog directory

e cd ../foo/bin - Go back one step and move to the bin directory of
user foo

e cd- Go toyour home directory
Special catalog names:
. (dot) is the current directory.

.. (two dots) - Parent directory in relation to the current directory.

81

CHAPTER 7 UNIX AND LINUX — THE BASICS
In bash or zsh, you can use wildcards that shell converts to directory names:
~ (tilde) - Home directory
~name is the home directory of username

- (dash) - Return to the previous directory (feature of the built-in
cd command)

Please read about shell expansions; there are special hotkeys, allowing you to expand

paths, usernames, variables, and more directly in your command line.

Commands for Working with Catalogs

mkdir [options] directory name ... - Create new directories.

Options:
-m mode - Set access rights.
-p - Create parent directories if necessary

rmdir directory name ... - Delete directories (directories must
be empty).

1s [options/names] - Outputs the contents of a directory or file
attributes. names are the names of directories or files. If no names
are specified, the contents of the current directory are displayed.

The most commonly used options are
-a - Output all files (even if the names start with a dot).

-1 - Display detailed information about files and folders (access
rights, owner and group name, size in blocks by 512 bytes, last
modification time, file or directory name).

-t - File names are sorted not alphabetically, but by the time of

last modification.

-R - Recursively go through all subdirectories, outputting

information on them.

82

CHAPTER 7 UNIX AND LINUX — THE BASICS

Commands for Working with Files

touch [options] file name - Create the file if it did not exist or change the time of the

last modification of the file.
rm [options] file name ... - File deletion.
Options:

-1 - Interactive delete (with confirmation required)
-t - Without issuing messages

-1 - Recursively delete directories along with their components

Examples:
rm file1l file2 # delete files filel and file2
rm data # delete empty directory
rm -r data # delete non-empty directory
rm /tmp/file1 # delete file by full name

Templates can be used to specify the list of files, but they should be used with
extreme caution. Command:

rm test* - Will delete all files with names beginning with test

rm test * (with a space after test) - Deletes all files in the directory (except those
starting with a dot)

mv [options] source destination isto move files and directories.

Options:

-1 - Interactive move (with confirmation required)
-f - Without issuing messages
The mv command performs many functions depending on the type of arguments.

1) Renames files and directories if both arguments are either files or

directories:

mv filel file2 - filel will be named file2 in the working

directory.

mv dirl dir2 - If dir2 did not exist in the working directory,
the dir1 directory will be named dir2; if dir2 did exist, the dir1
directory will be moved to it.

83

CHAPTER 7 UNIX AND LINUX — THE BASICS

2) Moves a file or directory to another directory with the same name
or a different name:

mv filel dir2 - Moves filel from the working directory to the
directory dir2 with the same name

mv filel dir2/file2 - Moves file1 from the working directory
tothe dir2 directory named file2

If the source is a list of files and the destination is a directory, you can use templates:

mv file* ../dir2 - Moves all files whose names begin with
the string file to the directory of the same level as the working
directory

In all operations, objects acting as source disappear: change name or location.
cp [options] source destinationis to copy files and directories.
Options:

-1 - Interactive copying (requiring confirmation if the
destination object already exists)

- - Without asking for confirmation
-r - Recursively copies directories along with their contents

-p - Copying with preserving file attributes (access rights,

modification time)

Examples:

cp filel file2 - A copy of filel will be created in a file named file2.

cp filel dir2 - A copy of filel will be created in the dir2 directory (i.e., named
dir2/file1).

cp -r dirl dir2 - A copy of directory dir1 will be created in directory dir2.

cp filel file2 file3 /tmp - Copies files named filel, file2, and file3 to the
tmp subdirectory of the root directory. This can be done with the command:

cp file* /tmp
cat [options][file][file][file]...

84

CHAPTER 7 UNIX AND LINUX — THE BASICS

The cat command merges files and outputs them to a standard output stream. If
there is no file argument, the cat command will accept input from a standard input
(keyboard) file. Since the command works with a standard output file (terminal), it is
most often used to view the contents of a file on the screen. It is not recommended to
output binary files to the screen.

cat ls.txt - Outputs the contents of a file named 1s.txt to the
terminal.

cat lsi.txt ls2.txt 1s3.txt - Outputs the contents of files
Is1.txt, Is2.txt, and 1s3.txt to the terminal in turn.

cat Isi.txt 1s2.txt 1s3.txt > lsall.txt - Merges three files
into one. The old files are preserved. If the file 1sall.txt already
existed, it will be overwritten by the new content. It can be added
to the end of the file if you use the >> sign (two “more” signs) for
redirection.

The cat command can be used to create a file:

cat > ls.txt - Everything typed on the keyboard will be written
to the file 1s.txt. You can stop typing by pressing Ctr1-D.

The cat command displays the entire contents on the screen. If the file is large, you
will only see the last lines on the screen.
You can directly use commands to view text files in chunks:

e more file.txt
e less file.txt

The less command contains a large set of internal commands for navigating
through a file, finding context, and even editing (see Table 7-8).

85

CHAPTER 7 UNIX AND LINUX — THE BASICS

Table 7-8. Some keyboard commands for less

Command Meaning

d / Ctrl-d Move forward half screen

SPACE Move forward one screen

b / Ctrl-b Move back one screen

Return One line forward

b One line backward

g Jump to the beginning of the file

G Jump to the end of file

F Switch to “follow” mode — go to the end and show new lines in real time.
Press Ctrl-C to exit the mode

/string Search for a string further down in the file

?string Search for a string in the file backwards (upwards)

n Search for the next occurrence of a previously entered string

h List of available commands

q Quit

tail [options] file - View the end of the file. By default, the last ten lines are
displayed. Using options, you can start viewing from any position.
Options:

-n number - How many lines to output
-r number - Display in reverse order
-t - Continuous output of the file as it fills up

Interrupt the interactive output with the Ctr1l-C combination.
grep [options] string [file][file]... - Search for the context “string” in the
specified files.

86

CHAPTER 7 UNIX AND LINUX — THE BASICS

Options:
-1 - Case-insensitive search
-n - Display line numbers containing the context
-v - Display context-free strings

find dir [options] [expression] - Recursively search for files in the specified
directory by various attributes, such as name, size, modification time, and
permissions.

Expressions:

-name filename - Search for a file named filename. It is possible
to use templates, but then it is necessary to put them in quotes
‘test* or to escape characters of the template test*.

-size [+|-]number - Search for files with specified size, exceeding
it (+), or smaller (-). The size is specified in blocks of 512 bytes.

-atime number - Search for files that were accessed a number of
days ago.

-mtime number - Search for files that were modified number of

days ago.

-exec command \{\} \; - exec command over the list of files
found by the find command. Here the expression “{}” will be
replaced by the name of the found file, and ‘;” means the end of
the command. Since these characters are processed by the shell,
they should be escaped, for example.

find . -name 'core.*' -1s -1 \{\} \; - Recursively search
for coredump files starting from the current directory and print

their information using long Is format.
-delete - Delete files matching the conditions.

It should be noted that many of the actions listed above and related to manipulations
with directories and files can be performed with the help of a special program -
Midnight Commander file manager. It does not require a graphical shell and is called in
a terminal window with the command:

mc

87

CHAPTER 7 UNIX AND LINUX — THE BASICS

With this program, you can navigate the directory tree, view the contents of
directories and files, create directories (but not files), delete, copy, move directories and
files, and search for files. For many users, the Midnight Commander text editor is a very
good choice. It can be invoked separately with the mcedit command.

Editing files is an important topic. There are numerous editors that work in both
text and graphical modes. As administrators, we will foremost be interested in an editor
that can work in the most difficult conditions - without a graphical interface, possibly
over a network, when function keys are not available or do not work properly. There are
several such editors, e.g., nano and emacs. But, in our opinion, the most guaranteed to
work, which is installed on 99% of Linux systems, is the vim editor; it is installed almost
everywhere.

Its interface at first glance is not at all friendly and logical, but in fact, most of its
commands are well-thought-out and logical. Its main advantage is the ability to work in
almost any environment and quick execution of mass operations (search, replace, etc.).
It has two modes of operation - command mode and insert mode. Initially, the file is
opened in command mode. Use the cursor keys to move through the text; if they don’t
work, use the ‘h, j,k, 1" keys (look at the keyboard and you’'ll understand why it’s such a
strange set). The w and b keys move forward and backward per word.

The main terms in vim are

o Buffer - Place where you view or edit the text; vim can run several
buffers at the same time.

e Window - A view port to the buffer; you can have several windows on
your screen, showing the same or different buffers (files).

o Register - A place you can use to store some text (like a clipboard,
but vim has many of them!).

e Mode - How your input will be interpreted.

There are also macros, bookmarks, tabs, and many more, but this is not a book
about vim... Anyway, the most nonintuitive thing at first in vim is mode. By default, after
starting vim, you are in normal mode. You can move around the text, search, delete
and replace it, copy to the registers, and paste from the registers. But if you want to type
something new, then switch to the insert mode. Here you just type new text. There are
several hotkeys, which allow you to paste from the register quickly (Ctrl-r x, where x
is a register name) or indent the line (Ctrl-t) and even run a normal mode command
quickly (Ctrl-o CMD), but usually if you don’t add new text, you use a different mode.

88

CHAPTER 7 UNIX AND LINUX — THE BASICS

Visual mode is used to select text and then use the selection for some action.

Useful commands in the normal mode are presented in Table 7-9.

Table 7-9. Some vi keyboard commands.

Command Meaning
X Delete the character under the cursor (and copy it to the register)
dd Delete a line (and copy it to the register)
yy Put the current line into the register
p/P Paste text from the buffer before/after the current line
T Replace the character under the cursor
R Scribble on top of old text
cw/dw Replace/delete the word (read below for more options)
i/a Switch to insert mode at/behind the current position
0/0 Add a new line after/before the current line
/ Search by regular expression (? — search backwards)
n Repeat the search

Repeat the last command
u Cancel previous command (undo)
NN<cmd> Repeat the <cmd> command NN times

Extended command

And of course, the ‘most important’ command is exit with save: ‘:wq’ or simply ‘ZZ’

(in capital letters). Exit without saving can be done with the command ‘: q!’ Insert mode

allows you to insert text in the desired position. It can be exited with the <ESC> key.

You can type a number before any command, then the command will be repeated that

number of times. For example, ‘10dd’ will delete 10 lines (and put them together in the

buffer, then you can insert them elsewhere with the ‘p’ command). Repeating an insert

or replace command will also repeat the input. For example, typing ‘cwNEW_WORD<ESC>’

will replace the word after the cursor with ‘NEW_WORD; and if you then move the cursor to

the beginning of another word and press ‘., it will also be replaced with ‘NEW_WORD:

89

CHAPTER 7 UNIX AND LINUX — THE BASICS

Instead of ‘w’ in the previous command, you can use any “navigation” sequence, e.g.,
‘c$’ - till the end of line, or ‘c/qwe’ - till the first occurrence of ‘qwe’ (but not including it).
The same works for d (deletion) and y (yanking).

Of the extended commands, the ‘s’ mass-substitution command is particularly
convenient. Its syntax is taken from the sed command. The command can be preceded
by a comma to indicate the range of lines on which it will act. ‘.” denotes the current
line, ‘9’ denotes the last line, and the ‘+N’ indicates that the number is relative to the
current line.

For example, you can replace the address ‘old-cluster’ with ‘new-supercomputer’
in ten lines after the current line inclusive by typing:

:.,+10s/0ld-cluster/new-supercomputer/g<Enter>

Then you can use v to switch mode to visual mode and start visual selection of text.
After selecting, use any command like ¢, d, y, s, etc., and the selection will be used as a
range by default. Using V, you can select whole lines of text.

Very uncommon, but very effective. I strongly recommend reading the vim tutorial
and try using it for editing. Features such as fast word/regexp/anything replacement,
easy macros record and use, instant navigation, and support for huge file sizes make it
extremely effective for editing configuration files, logs, and more, comparing to nano,
pico, mcedit, and others.

Yes, I know about Emacs, if you're the fan and it is installed on all your servers - sure,
use it, it is also rocket-fast!

Packages

All Linux distributions have an excellent (in our opinion) system - packing software into
so-called “packages.” There are many variants of package systems; the most popular

are rpm (RedHat, Fedora, CentOS, SuSE and others), deb (Debian, Ubuntu, Mint, and
others), ports (Arch Linux and derivatives), ebuild (Gentoo and derivatives), and pkg
(Slackware and derivatives).

They all offer to store the tree of all files of some software, such as a web server, or a
part of it, such as an encryption module, in a single file (usually a compressed archive).
In addition to files, a package stores metadata such as package name, description, and
other data. The set of metadata varies from package system to package system, so the
capabilities vary.

90

CHAPTER 7 UNIX AND LINUX — THE BASICS

The most important features of package metadata in our opinion:

o Dependencies - Specifies other packages that are required or desired
to be installed. A function (e.g., smtp-server) may be specified
instead of packages, if it can be obtained from the metadata.

e Checksums of the files.
e Specifying which files are configuration files.

Dependencies make software installation much easier, and you can quickly figure
out which additional packages need to be installed. Often “package managers” such as
yum or dnf (RedHat), apt or aptitude (Debian), pacman (Arch Linux), etc., take care of
calculating and installing all additional packages.

In deb format, dependencies can be specified flexibly from “required” to “desirable”
(typically documentation and examples) to “optional,” so an interactive package
manager like aptitude can choose just the right set of optional packages. In the world
of rpm format frequently along with a package automatically a dozen more unnecessary
packages are installed, that possibly be required with it.

Having checksums of all files in a package, you can check the integrity of the system
to see if any important files have changed (of course, only those included in packages);
most package systems have separate commands for this.

Knowing the configuration files allows you not to overwrite them when upgrading -
the new version is copied “next to” the original one, so you can check the difference.
And in the interactive aptitude mode, you can see the difference at a glance and select
whether to use the old or the updated version. Similarly, when you uninstall a package,
as a rule, its configuration files remain and are not overwritten during a new installation.
It is usually possible to uninstall a package with its configuration files by specifying an
additional key when uninstalling it.

Information about packages installed on your computer is stored in a database,
and if it gets corrupted, it is very hard to restore it. Therefore, I do not recommend
uninstalling or installing packages on a file system that is 100% occupied, as this may
result in loss of the database.

Package files themselves can be simply downloaded or copied from somewhere, but
most often repositories are used - indexed directories of packages, often available from
the Internet. On the CD/DVD with the OS distribution disk, the package repository takes
up almost all the space, and after installation, it will be specified in the settings. In addition
to it, the main network repository of the OS (or several) will almost certainly be specified.

91

CHAPTER 7 UNIX AND LINUX — THE BASICS

Besides the main repository, you may need additional or even third-party

repositories. For example, the standard RedHat repository does not contain many

packages, and it is frequently necessary to plug in proven third-party packages like

EPEL. Some software projects create their own mini-repositories just for their software,

e.g., OFED. Sometimes it makes sense to create your own local repositories, e.g., for

computers without Internet access.

The most important yum and dnf commands and useful keys are presented in

Table 7-10.

Table 7-10. Important commands and keys of the yum command

Command

Meaning

install pkg1 pkg2 ...

remove
update
check-update

reinstall pkgl pkg2....

--enablerepo/
disablerepo=REPO

--nogpgcheck

--skip-broken

--downloadonly
--downloaddir=DIR

Install packages and their dependencies

Uninstall packages

Update all packages on the system, if there are new versions
check for updates to installed packages

Reinstall the packages

Temporarily activate/deactivate the repository

Disable signature verification (caution!)

Skip dependency checking, use only if you are 100% sure it is
needed

No installation, just download

Package download directory

When you have to work with a particular package or rpm file, the rpm command

comes to the rescue. The list of most important rpm key are presented in Table 7-11.

92

CHAPTER 7 UNIX AND LINUX — THE BASICS

Table 7-11. Some keys of the rpm command

Key Meaning
Modes
-q Search mode — get information about the package
-i Package installation mode
-U Package update mode
-e Packet removal mode
Keys of choice

-a Select all packages
-t path Find the package that owns this file/directory
-p file Package by rpm file

Setup/test/uninstall keys
--nodeps Disable dependency checking
--force Overwrite files if they conflict with files of other packages, allowing them to install

an earlier version of a package

Network Commands

Since computing clusters are inherently networked structures, networking commands
play an important role for cluster administrators. Let’s consider the most essential
of them.

The ping command is a command for checking the connection between two
computers in networks based on the TCP/IP protocol stack. The command sends
Echo-Request requests to the other computer via ICMP protocol and receives incoming
responses. By timing the time between sending a request and receiving a response, the
program determines the delay in packet transmission along the route and the frequency
of packet loss, allowing you to assess the quality of the network connection between
two nodes.

93

CHAPTER 7 UNIX AND LINUX — THE BASICS
Command syntax:

ping [options] the host name or its IP address
Example:

ping hosti.mynet

PING host1.mynet (10.0.1.2) 56(84) bytes of data.

64 bytes from hostil.mynet (10.0.1.2): icmp seq=1 ttl=64 time=4.69 ms
64 bytes from hosti.mynet (10.0.1.2): icmp_seq=2 ttl=64 time=0.169 ms
64 bytes from hosti.mynet (10.0.1.2): icmp seq=3 ttl=64 time=0.120 ms
--- hostl.mynet ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms

rtt min/avg/max/mdev = 0.120/1.661/4.694/2.144 ms

When run without a special option, the ping command in UNIX-like systems runs
indefinitely, sending requests to the specified host. Each sent request has its own
number, by which the program determines whether it reached the target computer or
not. In the command output, the number of the request is shown in the icmp_seq field,
the ttl - Time To Live - field defines the lifetime of the response packet, specified in the
number of nodes. This is exactly how many nodes the packet can pass through while
traveling along the route to the destination node.

Each node through which the packet passes decreases the ttl value by one; if the
counter value becomes zero, the packet will be destroyed as “lost” and will not be sent
further along the route. The last field shows the message exchange time between the
two nodes.

You can terminate the ping command from the terminal by pressing the Ctrl-C key
combination, after which the ping command will display the work statistics: how many
packets were sent, how many were received, the percentage of lost packets, and the total
running time in milliseconds. In addition, the minimum, average, and maximum packet
transit times are displayed.

The main options of the ping command:

e -c count limits the number of packets sent to the count value.

e -ncancel conversion of the IP address of the responding host to its
DNS name. This mode can speed up the program and eliminate
problems with DNS settings during network diagnostics.

94

CHAPTER 7 UNIX AND LINUX — THE BASICS

e -1 interval sets the time to wait before sending the next packet.
e -1 size setsthe packet size.

This command can also be used to test the InfiniBand network if the IPoIB (IP over
InfiniBand) protocol is raised on the InfiniBand interfaces. If you realize that a remote
host or network is unreachable, you can find out where the link is down. To do this, use
traceroute. In most distros by default, more modern command tracepath is installed,
but you still can install traceroute or more advanced command mtr. The command
takes the address of a host as an argument.

It sends ICMP ECHO packets (like ping command) to this node with a ttl value of 1,
then 2, and so on. The output of the program shows which nodes along the path of the
packet processed the fact that the ttl was zeroed and reported it. Thus, we can trace the
path of the packet.

Please note that some networks can block ICMP packets and ping, traceroute and
similar programs won’t work, but other types of traffic may be still available.

An example of how the traceroute command works:

traceroute 8.8.8.8

traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets
1 333.444.9.161 0.233 ms 0.223 ms 0.226 ms

333.444.9.1 1.262 ms 1.660 ms 2.143 ms

333.444.1.8 0.651 ms 0.652 ms 0.959 ms

333.444.0.190 0.933 ms 0.935 ms 0.943 ms

193.232.246.232 0.915 ms 1.187 ms 1.176 ms

72.14.236.220 8.712 ms 9.226 ms 9.221 ms

209.85.243.135 51.475 ms.

209.85.249.79 23.483 ms 24.171 ms

72.14.233.168 23.33 ms 12.3 ms 24.5 ms
X k%

O 60N O U1 &~ W N

[N
= O

8.8.8.8 12.678 ms 12.509 ms 23.694 ms

You can see that the 10th node has not responded; this means that it simply ignores
the packet without notifying the sender.

95

CHAPTER 7 UNIX AND LINUX — THE BASICS

Useful options for the traceroute command:
e -ndon’tresolve DNS hostnames.
e -f Nstart with TTL with the specified number.
e -m Nlimit TTL to the specified number (default is 30).
e -w Nresponse timeout (default is five sec.).
e -tuseterminal output.
o -guse graphical (gtk) output.
e -T/-uuse TCP/UDP protocols instead of ICMP.
e -P PORT use specified port, if -T or -u option was used.

mtr output is updating in real time and looks like this:

mtr -t destination.server.org
Keys: Help Display mode Restart statistics Order of fields quit

Packets Pings
Host Loss% Snt Last Avg Best Wrst StDev
1. gateway 0.0% 39 4.4 11.2 2.7 91.1 22.9
2. 10.11.12.13 0.0% 39 16.6 18.0 10.6 96.1 14.6
3. super.server.net 0.0% 39 12.2 18.0 10.6 91.0 14.7
4. destination.server.org 0.0% 38 13.0 17.0 9.7 89.3 13.7

Here you can see how many ping packets were sent and overall stats. You can change
the view using the ‘d’ key and see the graphical presentation of the stats.

In the modern Linux kernels, viewing and managing network-related stuff mostly is
done by ip command from the iproute2 package.

The format of the ip command is simple:

ip [options] command object

“Object” can be one of more than ten subsystems; here we will briefly review
only a few. “Command” is the action we want to perform. With optional options, it is
possible, e.g., to restrict the command action to ipv4 networks only, or to request more
detailed output.

96

CHAPTER 7 UNIX AND LINUX — THE BASICS

The link object reflects physical devices. For example, you can view the status of
physical interfaces with the following command:

ip link show

1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue

state UNKNOWN mode DEFAULT

1ink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

: etho: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast
state UP mode DEFAULT glen 1000

link/ether 00:10:20:30:40:5F brd ff:ff:ff:ff:ff:ff:ff:Ff.

: eth1: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast
state UP mode DEFAULT glen 1000

link/ether 00:10:20:30:40:5E brd ff:ff:ff:ff:ff:ff:ff:Ff.

Interface IP address data can be obtained and managed through the address object:

ip addr sh

: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
1ink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1.1/8 scope host lo

inet6 ::1/128 scope host

valid 1ft forever preferred 1ft forever

2: etho: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo_fast state
UP glen 1000

inet 10.0.0.2/24 brd 10.0.0.255 scope global etho

inet 192.168.222.1/24 brd 192.168.222.255 scope global etho

inet6 fe80::52e5:49ff:fe31:dd60/64 scope link

valid 1ft forever preferred 1ft forever

2: eth1: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo_fast state
UP glen 1000

inet 9.10.11.12/24 brd 9.10.11.255 scope global ethi

inet6 fe80::52e5:49ff:fe31:dd60/64 scope link

valid 1ft forever preferred 1ft forever

97

CHAPTER 7 UNIX AND LINUX — THE BASICS

By the way, here we did not write the object and command names in full - instead of
address show, we wrote addr sh. The ip command allows such abbreviations down to
one letter, but only in the names of objects and commands. Be careful: some objects and
commands start the same way. In many cases, you may want to see only essential data,
use --brief or -br option before object, e.g., ip -br a.

Note that the interface eth0 in this example has two IPv4 addresses, and there may
be even more.

Static routing table is managed by the route object:

ip route sh

9.10.11.0/24 dev eth1 proto kernel scope link src 9.10.11.12
10.0.0.0/8 dev etho proto kernel scope link src 10.0.0.2
default via 9.10.11.1 dev eth1

Along with classic route table, there is special set of rules (policy routing tables and
rules), allowing route the traffic using flexible conditions, like the source address or
interface, IP protocol, and many others. For this, use rule object. It may be useful when
you have several interfaces and want to control the traffic to minimize hops and some
other cases. This approach creates a set of routing tables and list of rules when to use
them. Read about it in the manual.

Another useful object is the neighbor. This is a table of IP addresses matching MAC
addresses, which is supported by the kernel (ARP-table). It can be used, e.g., to make the
kernel “memorize” MAC addresses of nodes forever and not allow them to be refined
again using ARP requests. Here only the show command was demonstrated, but for each
object, of course, a large set of other commands is supported - add, delete, modify, etc.
For example, adding the IP address 172.16.0.1 for interface etho would look like this:

ip addr add dev etho local 172.16.0.1/24 scope link
or just
ip addr add 172.16.0.1/24 dev etho

Here dev, local, and scope are keywords with arguments. Their order is not
important.

Adding a route:

ip route add to 172.0.0.0/8 dev etho via 172.16.0.2

98

CHAPTER 7 UNIX AND LINUX — THE BASICS

The keyword to indicates the destination address or network, and via indicates the
router for it.

All ip commands can be abbreviated to a single-digit prefix, i.e., instead of
ip addr show, you canwriteip a s (orevenip asince showis the default action).
Frequently used:

ip a = ip address

ip r = ip route
ip 1 = ip link
ip ru = ip rule

I already mentioned VLAN (Virtual Local Area Network). This is a general name
for a whole family of technologies and protocols, but the essence is the same - to unite
several devices in one or more connected physical networks into one virtual network, as
if they were connected to one switch. We are interested in two cases - combining various
switches into one virtual switch and splitting a common physical network into two or
more logically separated ones.

The first case can be implemented in different ways, not only with VLAN (e.g.,
stacking and others), but it all depends on the models of switches used. And even
with the help of VLAN, such aggregation is done differently for different switches and
manufacturers. If you need to do this kind of aggregation, call an experienced network
engineer.

The second case also requires configuring the switch (and supporting such
technology in it, of course), which varies from vendor to vendor, but it is much easier
to handle. There are two ways to create VLANSs in one physical network: untagged
and tagged.

An untagged VLAN is created by specifying the switch port(s) that will be included in
it. Once configured, all traffic, even broadcast traffic, from these ports will be visible only
within the created VLAN.

What if there are several devices on the same port? That’s when a tagged VLAN
comes to the rescue. It’s an open IEEE 802.1Q standard, so it is widely supported, but
requires configuration on the endpoint side (connected server). In Linux, this requires
creating a new interface specifying a tagged VLAN:

ip 1 add link etho name vlan101 type vlan id 101

99

CHAPTER 7 UNIX AND LINUX — THE BASICS

Here etho is the physical interface, vlan101 is the name of the new interface through
which traffic will flow to the VLAN, and 101 is the VLAN identifier. Accordingly, a VLAN
with ID 101 must be created and configured on the switch.

To have this interface automatically created at startup, on RedHat-like systems,
create the file /etc/sysconfig/network-scripts/ifcfg-vlan101 and write a text
similar to the one below:

VLAN=yes
VLAN_NAME_TYPE=VLAN PLUS VID NO_PAD
DEVICE=vlani101

PHYSDEV=etho

BOOTPROTO=static

ONBOOT=yes

TYPE=Ethernet

IPADDR=10.10.101.0.
NETMASK=255.255.255.0

Please note that in modern Linux, distributives may be newer network manager
systems, e.g., NetworkManager (please don’t use it on compute nodes and servers...), or
netplan.

I strongly recommend that you study the documentation for the ip command
and use it.

It is not necessary (although desirable) to know how to configure switches in detail;
often you can invite a specialist to configure them only once. I'm not a big expert in
switches, but I want to mention several Ethernet technologies you should take care
of or be aware of, as an HPC admin: spanning tree protocol and links aggregation
groups (LAG).

Spanning tree protocol (STP) is described in the IEEE 802.1D standard, but there are
some variations. This protocol is aimed to eliminate any loops in the Ethernet network.
If this protocol detects a loop, one of the ports, included into the loop, is disabled and
entire network (subnet) becomes a tree. Because of that in most cases in an Ethernet
network there is exactly one central (top) switch, which becomes a single point of failure.
There are some strategies on how to eliminate this, but they highly depend on switch
models and supported protocols.

100

CHAPTER 7 UNIX AND LINUX — THE BASICS

As we can create virtual networks (vlans), most switches use STP for each vlan and
the non-vlan network. If we need to pass more data, than one link allows, we can make
several parallel links, but all of them except one will be disabled by STP. To fix that,
switches allow declaring virtual links, combining many parallel physical links - links
aggregation. There are various standards, e.g., IEEE 802.1AX, LACP, and others, so not all
switches, even made by one producer, can “understand” each other.

“If it is so restrictive, maybe I can just disable it?” - you may think. Sometimes
itis not so bad idea, but only in cases, when your subnet is simple, and you have
strong control on it. But if you don’t use Ethernet network as a compute network, I'd
recommend keep it enabled.

Short resume - Find a good network expert and take a consultation.

In legacy Linux systems and old scripts, you can see old-style network managing
commands; most common are route, ifconfig, and arp. I want to slightly cover first
two, but you can safely skip this part.

The route command shows the current routing table, which is the rules by which a
node determines where to send a packet. This is old version of ip route. Typical output
of the command:

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 192.168.0.1 0.0.0.0 UG 600 0 0 etho

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 O 0 eth1

192.168.0.0 0.0.0.0 255.255.255.0 U 600 0 0 etho
Column values:

e Destination - The destination address of the packet

o Gateway - The address of the host (router) to which the packet
will be sent

e Genmask - Address(destination) mask
o Flags, Metric, Ref, Use - Service information

e Iface - Name of the interface to which the packet will be transmitted

101

CHAPTER 7 UNIX AND LINUX — THE BASICS

If it is necessary to send a packet over the network to the address x.y.z.q, the kernel
will sequentially check this address against the table: a mask (genmask) will be applied
to the address and the destination field, and if the results match, the packet will be
forwarded to the gateway via the network interface. Masking is done by a bitwise AND
operation, i.e., all zero bits in the mask will also be zero in the result, and the bits set to
1 in the mask will result in the same as the original address.

It follows that the 0.0.0.0 mask specifies a route that will always work, since the
result of its application will always be 0.0.0.0. Such a route is often referred to as
the default. In our example, network 9.10.11. * is accessible through eth1, network
10.*.* . * is accessible through interface etho (this is the internal network), and all other
packets are routed to router 9.10.11.1, which is accessible through interface eth1.

You can also add and delete routes with the route command. To add a route to a
network, use

route add -net 1.2.3.0 netmask 255.255.255.255 gw 1.2.3.1 dev etho
Here we added a route for network 1.2.3.* on interface etho:

route add default gw 1.2.3.4
This command is a shortened version of the command

route add -net 0.0.0.0 netmask 0.0.0.0 gw 1.2.3.4

The interface is determined automatically if the router (gw) is accessible through other
rules. If we replace ‘add’ with ‘del’ in the previous commands, we get the command to
delete a route. Note that when deleting, you must also specify all parameters: netmask,
gw, dev, etc., even if they are obvious; otherwise, the command may not work.

The ifconfig command controls the operation of a network interface. Without
arguments, it shows the status of active interfaces:

etho Link encap:Ethernet HWaddr 00:10:21:37:37:40:5F
inet addr:10.0.0.2 Bcast:10.255.255.255 Mask:255.0.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:25400911846 errors:0 dropped:5419 overruns:0 frame:0
TX packets:22217149338 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:13736261041 (12.4 GiB) TX bytes:10704560149 (9.7 GiB)
Memoxry : d8900000-d8920000

102

CHAPTER 7 UNIX AND LINUX — THE BASICS

ethl Link encap:Ethernet HWaddr 00:10:21:37:40:5E

lo

inet addr:9.10.11.12 Bcast:9.10.11.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:3419282263 errors:0 dropped:0 overruns:0 frame:0
TX packets:5796890559 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:1111996013 (1.0 GiB) TX bytes:7592797386 (6.9 GiB)
Memory :d8920000-d8940000

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:27777839 errors:0 dropped:0 overruns:0 frame:0

TX packets:27777839 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:10171240527 (9.4 GiB) TX bytes:10171240527 (9.4 GiB)

Here, we can see MAC addresses of the cards (HWaddr), IP addresses of the interfaces

(inet addr), network broadcast address and mask (Bcast, Mask), as well as statistics:

RX/TX packets - Packets transmitted/received.
RX/TX bytes - Bytes transmitted/received.

UP BROADCAST RUNNING MULTICAST - Interface status.
MTU is the Ethernet frame size.
txqueuelen - Packet queue limit.

errors - Number of errors.

dropped - Number of dropped packets.

overruns - Number of buffer overflows.

frame - Number of errors when accepting a frame.
carrier is the number of communication loss.

collisions - Number of collisions during transmission.

103

CHAPTER 7 UNIX AND LINUX — THE BASICS

To see data about all interfaces, not just the running interfaces, run ifconfig with
the -a switch. With root privileges, the ifconfig command can be used to control
interface parameters. You can quickly disable the etho interface with ifconfig
etho down and enable it again with ifconfig etho up. Example of quick interface
configuration and its address:

ifconfig etho 192.168.0.1 netmask 255.255.255.0

This command will set the eth0 interface to 192.168.0.1 and mask 255.255.255.0.
After that, the interface must be enabled (up) with the ifconfig eth0 up command.
In most implementations, the ifconfig command automatically creates a routing rule.
In contrast to ip addr command, ifconfig cannot manage and even display multiple
ip addresses, assigned to an interface. In old kernel versions, this issue was addressed,
using “interface aliases,” when one interface could be represented by various virtual
devices, e.g., eth0, eth0:1, eth0:2, etc. This technology still is supported, but highly not
recommended (because routing and firewall rules turn to hell).

“Cluster” Commands

Cluster commands are commands that perform operations on all nodes or on some
set of nodes. As such, there are no standard commands for clusters, but cluster
administrators with shell programming skills can create their own scripts to organize the
execution of commands on cluster nodes.

In real practice, I advise using commands like pdsh or clush, but here I show
a few variants of “cluster” scripts that can be taken as the basis of scripts for
nonstandard cases.

Let’s take a look at an example of a command to copy a file to all nodes in the cluster:

#1/bin/sh
for host in “grep -v "\# /etc/nodes’ ; do
for file in "$*"; do
scp -r "$file" "$host:$file"
done
done

104

CHAPTER 7 UNIX AND LINUX — THE BASICS

It is understood that the /etc/nodes file stores a list of all nodes in the cluster
and the command for all nodes in this list copies all files or directories specified as
arguments from the management computer to each node, preserving its name. If you
add ‘& to the end of the ‘scp. ..’ line and add ‘wait’ to the last line, the copying will run
in parallel. However, the output of all scp commands will be mixed up, and in case of a
large number of nodes, the head node may be significantly overloaded.

As you can see, the script is very simple, but it makes the administrator’s task of
managing the cluster much easier. Pay attention to the grep command: with its help, we
do not get the entire list of nodes, but only those whose names are not “commented out,”
i.e., there is no “#” in front of them. Thus, if a node fails, its name is not removed from
/etc/nodes, but simply “commented out” for the time being.

An even simpler form is a script to execute an arbitrary command on all nodes in the

cluster:
#1/bin/sh
for host in $(grep -v "\# /etc/nodes) ; do
echo "$host =================" && SSh $host "$*"
done

Here, the script is passed the name of the command with arguments to be executed
on all nodes in the cluster.
It is important that passwordless access to nodes is configured (see below).

Brief Summary

Knowing how the OS works, how the file system works, and how to manage services,
network, memory, and processor is an essential necessity for any administrator,
especially for a supercomputer administrator. Here is not even a young fighter course,
but a microintroduction to Linux for those who already want to read more, but have not
read a good Linux book yet.

But it is absolutely necessary to read such a book, and preferably more than one.
And not only to read it, but also to apply the acquired knowledge in practice, at least in a
virtual machine.

105

CHAPTER 7 UNIX AND LINUX — THE BASICS

Search Keywords

Bootloader, dhcp, bootp, pxe, grub, lilo, loadlin, sysv init, bsd init, runlevel, systemd,
Advanced Bash Scripting Guide, bash, iproute2, iptables, static routing, awk, sed, ssh,
procutils, netutils, chattr, facl, suid, sticky bit

106

CHAPTER 8

UNIX and Linux — Working
Techniques

For those who are already familiar with Linux and bash, here are a few tricks that can
save time, nerves, and effort. We will also look at a few Linux-specific subsystems that
allow you to fine-tune your system.

The Magic of sysctl

The Linux kernel allows you to change some parameters of its operation on the fly
and to keep track of internal information. For this purpose, a special virtual file system
proc is used, usually mounted in the /proc directory. Its subdirectories with numeric
names reflect data about processes with corresponding PIDs (this is where ps, top, etc.,
commands get their data from). Other files and directories reflect various information
about the system, but we will be interested in the sys subdirectory. It contains global
settings, which are organized according to the principle of one file - one value. It is very
similar to the registry in Windows.

To read a value, it is enough to output the contents of the corresponding file, e.g.,
with the cat command. To change the value, write the desired number or string to the
file, e.g., with the echo command, and redirect the output:

$ echo 1 > /proc/sys/net/ipv4/ip_forward
$ cat /proc/sys/net/ipv4/ip forward
1

To “ennoble” actions with these settings, the sysctl command was created. In its
arguments, the parameter name is specified relative to the /proc/sys directory and dots
are written instead of the directory separator. For example, the previous commands can
be executed as follows:

107
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_8

https://doi.org/10.1007/979-8-8688-1600-0_8#DOI

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

$ sysctl -w net.ipv4.ip forward=1
$ sysctl net.ipv4.ip forward
net.ipv4.ip forward = 1

If you specify the -a switch or a partition (directory) name, sysctl will show all
settings values or all values from the specified subdirectory, respectively. This can be
very handy for finding the right setting. Many distributions have a /etc/sysctl.conf file
that contains the settings that are enabled at system startup. You can read more about
the settings on the Internet and in the Documentation/proc.txt file of the Linux kernel
source code.

udev Subsystem

Almost every device in Linux has a special “device file.” In reality, there is nothing
in this file, the most important thing is the minor and major numbers, which are
properties of the file. By these numbers (not by name!), the kernel knows which device
you want to access. Usually, the major number defines the device class, and the minor
number defines the number of the device in the class. For example, a hard disk would
have a minor number of 0, its first partition would be 1, its second partition would
be 2, etc. Another disk will have a different major number, and its partitions will have
corresponding minor numbers.

Here is a sample output of the ‘1s -1 /dev/sda’ command. Note the first letter of the
output: ‘b’ stands for block device. The digits 8 and 0 are the major and minor numbers,
respectively:

brw-rw---- 1 root disk 8, 0 Jun 27 17:27 /dev/sda

Some devices have historically assigned numbers, but many get them dynamically.
Take a look at file /proc/devices - there is a correspondence of major device numbers
to the current drivers for this computer.

In older versions of Linux, there was a MAKEDEVICES script that created the
necessary device files, but with the kernel’s support for a huge number of devices, it
became impossible to cram them all into the script. At the moment (when this book
was written), the kernel has a separate /sys file system containing information about
all devices. You can “subscribe” to changes that occur in it and learn about connecting,
disconnecting, and changing the state of devices.

108

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

This is what a special udev service does. It filters events in / sys and creates or deletes
device files according to a set of rules. In addition, it can do other operations, but it is
better not to get carried away with such tricks. The udev rules can be located in different
places, usually /1ib/udev/rules.d/. Do not change the rules located there, but create
your own in /etc/udev/rules.d.

Each rule consists of a sequence of “matches” and “assignments,” all listed comma-
separated on a single line. At least one match and assignment must be specified. The
matches specify the condition that the event must satisfy. If more than one match is
specified, all listed matches must match. An assignment always looks like assigning a
value to a variable, but in reality, it can also specify an action. For example:

KERNEL=="1oop*", NAME="loop/%n", SYMLINK+="%k"

This rule will work when a device named ‘loop0; ‘loop1, etc., appears. It will create a
/dev/loop/N device and a /dev/1loopN reference to it.

The match must be of the form NAME == VAL orNAME != VAL, where NAME is
one of the options from Table 8-1.

Table 8-1. Some names for match rules in udev

Name Meaning

ACTION Event name — add or remove

KERNEL Kernel device name

SUBSYSTEM Subsystem name

DRIVER Driver name

TEST{file} Permissions on file {file}

ATTR{name} File “name” in the appropriate /sys branch
ENV{name} Device name property

PROGRAM Run the program

RESULT Execution result

Other names are also possible - see the documentation for details. In the right part of
comparisons, you can specify shell-style substitutions: *, ?, and [].

109

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

r

Assignments have the same form, but instead of ‘=="and ‘!=) ‘=) ‘+=) and ‘: =’

are used. The ‘=" sign means assigning a value to a variable, the old value (action) is
canceled. The ‘+=" sign means adding a value, the old value is not lost. For example,

you can create several symbolic links - by label, name, and UUID. The sign ‘: =’

means assignment and prohibition of new assignments - other rules will work, but no
assignments will be made to this variable. Table 8-2 presents a shortened list of possible

variables.

Table 8-2. Some udev rule variables

Name Meaning

NAME Set the name of the network device

SYMLINK Create a link

OWNER, GROUP, MODE Change owner, group, rights

ATTR{name} Assign a value to an attribute in sysfs

ENV{name} Assign a value to the devices property

RUN Run the program

LABEL name Tag a GOTO

GOTO name Jump to the line ‘LABEL=name’; the line should be further down in

the text of the rule

See the documentation for additional variables.

You can use special variables like $name or %X in the right part of the assignments.
Their full list is available in the documentation; Table 8-3 presents the most useful ones
in my opinion:

110

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Table 8-3. Some special variables in udev

Name

Meaning

Skernel, %k
$number, %n
$devpath, %p
$driver
$attr{file},%s
$envikey}, %E
$major, %M
$minor, %m
$result, %c
$parent, %P
$name

$sys, %S

$$

%%

Kernel name

Core number

Path

Driver name

sysfs attribute
Environment variable
Major device number
Minor device number
Output of the start of the matching program PROGRAM
Parent device name
Current device name
Mount point in sysfs
‘$’ sign

‘%’ sign

The only but powerful udev management command is udevadm. With this command,

PAM Modules

Later, I will often refer to the PAM modules, so let me tell you what it is. PAM stands for
“pluggable authentication modules,” and it is a library, which is widely used in many

you can debug rules and see the current state of the system. For example, the following
command will give all information about the sda device from the udev point of view:

udevadm info -a -p /sys/block/sda

programs, that requires authentication. The library gives a standard API and loads
modules - shared libraries, implementing authentication methods and some other stuff
and loaded when they are needed. Note, it is a library, not a service!

111

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Functions, implementing by modules, are divided into four groups:
e Auth - Authentication/credential acquisition
¢ Account - Account management
o Password - Authentication token (e.g., password) updating
o Session - Session management

Auth identifies the user and sets the credentials (UID/GID) and also can update
some information, like last login time, set limits, etc. Account checks if this account
is available/enabled, password allows changing password (or other auth token), and
session makes any action when user session is about to start or is finished. One module
can implement any subset of those groups. Each service using PAM has its own list of
modules, groups involved, and their options.

PAM configuration file may be in “BSD-style” - one big file for all services, where the
first word in every line is a service name, or a set of files named as the services. In Linux,
the second approach is used mostly, and I'll refer to it. The format of the line in the PAM
config file is “group flag module [options]” where group is auth, account, password,
or session; flag is required, requisite, sufficient, optional, or a list of conditions; module
is the modules name; and options is the module options. The lines are scanned one by
one in the same group, so the order is important.

For each line, the mentioned module is called, and depending on the result (OK or
FAIL) and flag, an action is taken:

Flag Action

Required OK=continue, FAIL=continue to process, but deny request in the end
Requisite OK=continue, FAIL=stop processing, and deny the request

Sufficient OK=stop processing and accept the request, FAIL=continue processing
Optional Ignore the result

Flag also can be a list in format “[value=action, ...]’ where value is the value,
returned by the module call, and action is what to do. Possible values are the following:

112

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Value Meaning

Success Module says it's happy = OK

Ignore Module signals it wants its return value to be ignored
Abort Module says stop now
Default “All return values not explicitly mentioned in this set,” often used to catch all errors/

failures (because there’s a bunch of those) having this often forces you to mention
ignore=ignore (and sometimes other things = some obvious thing), or they would fall
under the default action

Errors/ FAIL — all values from the list: open_err, symbol_err, service_err, system_err,

failures buf_err, auth_err, session_err, cred_err, conv_err, authtok_err, authtok_recover_err,
user_unknown, perm_denied, cred_insufficient, authinfo_unavail, new_authtok_reqd,
authtok_lock_busy, authtok_disable_aging, authtok_expired, acct_expired, maxtries,
cred_unavail, cred_expired, try_again, module_unknown, bad_item, conv_again,
incomplete, no_module_data

The actions can be

e ok - This module’s return code should be considered (...if there are
no errors).

o bad - Flag ourselves as having failed (doesn’t terminate).
o die - Bad + terminate.
e done - OK and termination.

o ignore - Module’s return status will not contribute to the stack’s
return code.

o n (aninteger >0) - OK and skip the next n rules.
e reset - Clear stack module state.

In this “list notation,” we can define regular flags as follows:

required = [success=ok new_authtok reqd=ok ignore=ignore default=bad]
requisite = [success=ok new_authtok reqd=ok ignore=ignore default=die]
sufficient = [success=done new authtok reqd=done default=ignore]
optional = [success=ok new authtok reqd=ok default=ignore]

113

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Here is an example of a simple authentication description, using unix, permit, and
deny modules. unix module checks password via /etc/passwd and /etc/shadow, permit
allows the access, and deny denies the access:

auth [success=1 default=ignore] pam unix.so nullok secure
auth requisite pam_deny.so
auth required pam_permit.so

For debugging the chains of rules, the debug module is really useful; it returns
values, specified in the arguments, e.g.:

auth optional pam debug.so auth=perm denied cred=perm denied
auth sufficient pam_debug.so auth=success cred=success

Special instruction in the config file is @include, which allows including the text from
another file - often used for common parts. Lines starting with ‘#’ are comments. There
are a lot of different modules, but I'd recommend reading at least about pam_limits,
pam_exec, pam_env, pam_warn, pam_listfile, and pam_access.

Shell Tricks

The command line has been and remains the administrator’s primary tool. The reason
is its versatility. To know how to work in the shell means to be able to quickly solve
administration tasks. These techniques become especially relevant when you need

to execute dozens or even hundreds of commands simultaneously (or, even worse,
sequentially).

For example, rebooting at least ten nodes via IPMI in the command line is no more
than one minute. But it takes much longer to open a browser window with the desired
address ten times, select the desired menu with the mouse, and press the “reboot”
button with the mouse. The person performing these actions will curse everything
already on the fifth window. And if you need to reboot 100 or 1000 nodes?

Let’s share some techniques for working in bash (or zsh) that improve efficiency.
Many will work in the “standard” sh interpreter (e.g., dsh), but not all.

The curly brackets specify an enumeration, for each element of which, including the
empty one, a different argument will be created. Let’s use it!

$ cp file{,.bak} # equivalent to cp file file.bak

114

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES
Or even so:

$ for i in node-{1,2,3,4}-{1,2,3,4}; do ... ; done
use a list of 16 nodes

You can also use them to generate ranges:

$ echo {1..15}
123456789 10 11 12 13 14 15

But, as you can see, leading zeros are missing. If this is necessary, you need to call
the seq command for help. It can generate sequences of numbers according to specified
rules. For example, you can quickly check the “liveliness” of nodes named node-001 ...
node-100 in the following way:

$ for i in $(seq -w 1 100); do ssh node-$i true; done

Note that the true command is executed on the node, which produces nothing. Thus,
we will only see error messages from failed nodes on the console.

Many people know about the history of commands and even often refer to it by
clicking the “up” button and editing the previous command. Very often, we need either
the whole previous command or only its last argument. And we can access them through
special sequences ‘!'!” and ‘! $,; respectively:

$ chown userl my special file

$ chmod 600 !$ # change permissions on the same file
$ tail /var/log/syslog

Permission denied

$ sudo !! # repeat the command under sudo

To find a command in the history, just press Ctrl-R and type any substring of the
command. Bash will find and display the last command with this substring. The next
occurrence can be found by pressing Ctrl-R again, and if you have missed what you
need, you need to search forward instead of backward - Ctrl-F. If you don’t want to
search interactively, use the history command. It will show all history commands:

$ history | grep sudo
Note the numbers in front of the lines - any command can be addressed by number!

$ 1123 # call command number 123

115

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Sometimes you need to perform a simple (or not so simple) calculation. Running a
graphical calculator is long and inconvenient, but bash has one ready! The expression
in double brackets after the ‘$’ sign will be calculated according to the rules of integer

arithmetic:

$ echo $((123*55+18))
6783

You can substitute variables there too, but without the ‘$’ sign in front of the name:

$ offset=18
$ echo $((123*55+0ffset))
6783

This is especially useful for scripts. If you want something more complicated, such
as real arithmetic, call the bc command for help; you may have to install the appropriate
package first.

You probably know that sh commands on the same line are separated by semicolons.
But this is not the only separator - the ‘&’ sign not only sends the command to the
background, but also separates it from the next one:

$ abc & xyz & wait

This code will run the abc and xyz commands in the background and wait for them
to complete.

Other valid delimiters are ‘4% and ‘I’ They differ from the others in that they specify
conditional execution: the second command will be executed only if the first command
succeeds for ‘&’ or fails for ‘Il Sample code to output the contents of a file, only if
it exists:

$ [-f "testfile'] && cat testfile

Note that here ‘[‘ is a command, and in the old UNIX tradition, it is a reference to the
test command.

Sometimes you may want to process only the error stream and ignore the standard
output stream or write it to a file. But the ‘I’ operation works only with the standard
output, what can we do? This trick of creating a dummy file descriptor can help; it swaps
the output and error streams:

$ my command 3>&1 1>82 2>&3

116

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

If you need to have the raw output of a command in a file and process it somehow,
e.g., tolook for a line occurrence, use the tee command. It writes its input to the file and
to the standard output:

$ my_command | tee out.log | grep warning

By the way, giving it a ‘-’ as the file name will double each line in the output.
You can use the tar command to quickly copy a directory with subdirectories to
another host:

tar cf - mydata/ | ssh remotehost 'cd place/to/go; tar xf -'

For more details, see the chapter on backups.
And lastly, important built-in variables that can help in scripts:

$? - Return code for the last command executed
$$ - PID of the current bash process

$! - PID of the last command run in the background

Tips for Some Often Used Commands

less is often used when you need to look at a long output or big file. Here are some

useful command-line options:
T - Open binary files
r - Print special symbols (colors!)
F - Quit if file fits screen

n - No line numbers
less -fFnr /tmp/dd

grep - I bet, you use it a lot.... Did you know that if you use ‘-E’
option, grep will use “extended regexp” syntax, and instead of

searching for ‘a\+bc\Ixy\?z\ (qwe\)\{1,4\} you can use just

‘a+bcixy?z(qwe){1,4}?

sort - Did youuse sort file | unig? You can use just sort
-u file.

117

CHAPTER 8 UNIX AND LINUX — WORKING TECHNIQUES

Brief Summary

Knowledge is power. In Linux, knowing the basic commands and their features is a great

way to solve administrator tasks and save time.

Search Keywords

ABS guide, tar, bash tricks

118

CHAPTER 9

Network File Systems

Starting with this chapter, we will not only talk about the technologies used in
supercomputers, but also give practical recommendations or brief instructions on how
to install and configure them. Let’s start with network file systems and consider only the
most common ones at the time of writing. In reality, there are many more, but not all of
them are suitable for HPC.

In a compute cluster, all nodes must have write access to the user’s directory. This
imposes very serious limitations on the implementation, in particular, technologies like
iSCSI, ATA-over-Ethernet, Network Block Device, etc., immediately disappear, as they do
not provide synchronization of data on nodes during writing.

Another important limitation is the speed of data access. If there are several dozens
of nodes in a cluster, the bandwidth of a single server is simply not enough for all of
them. Already on two dozen nodes, a single task can easily create a load that completely
blocks the NFS server, creating large time-sensitive files. This leads to the need to use
distributed file systems that can balance the load between multiple servers, as well as
distribute the load to disk subsystems, increasing their throughput.

NTP

NTP (Network Time Protocol) is not a network file system, as the name suggests, but

a protocol for time synchronization. I have intentionally included its description here
because time synchronization is of paramount importance for almost all network file
systems (and for cluster operation).

I'will not go into the details of the protocol; I will note one thing: the closer the server

is to the client on the network, the better and faster the synchronization. Therefore, I
recommend installing NTP server on at least one of the service servers, configure it to
work with the local network and to synchronize with one of the external NTP servers.
There are several implementations of NTP servers; we will shortly consider openntpd

119
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_9

https://doi.org/10.1007/979-8-8688-1600-0_9#DOI

CHAPTER9 NETWORK FILE SYSTEMS

and chrony, as most popular. The server is installed from the package on all nodes,
including client nodes. The configuration file is usually found in /etc/ntpd. conf.
Example settings:

server 1.ru.pool.ntp.org

server 2.centos.pool.ntp.org

listen on 10.1.2.251

restrict default kod nomodify notrap nopeer noquery

This specifies the two ntp servers ours will synchronize with, as well as the IP address
of the interface from which clients can connect. For the client, the 1isten string is simply
not specified.

The last line specifies restrictions for the clients:

e kod - “Kiss-of-death,” special packet, sent to the client to reduce
unwanted queries.

» nomodify restricts remote configuration updates.
e notrap turns off protocol traps support.

e nopeer prevents a peer association being formed (peers are clients
and servers for each other).

e noquery option prevents ntpq and ntpdc queries, but allows time
queries.

If you server IPv6 interfaces, copy “restrict line” and add a -6 option. If you want to
limit the IP addresses, allowed to request, you can replace “default” keyword by, e.g.,
192.168.2.0 mask 255.255.255.0.

chrony is a modern ntp client and server, available in many popular Linux
distributives. For the client part, the most important setting in the config file (/etc/
chrony. conf by default) is server or pool, following the remote server name and
optional parameters. pool assumes that the specified name resolves into multiple
IP addresses, and crony will try to connect to all of them. The common parameter is
iburst, which means “send requests with higher frequency in the beginning.” This
allows to sync time quicker on the server start.

To enable ntp server feature, just specify allow option with IP subnet, e.g., allow
10.20.30.0/24. If subnet is missing, or you specified all, then any client is allowed.
Crony has a lot of possible options; take a look into official documentation and guides.

120

CHAPTER9 NETWORK FILE SYSTEMS

An important feature of most ntp servers is their default policy of not changing the
time too quickly. For us, this means that if the time on the client is different from the
server, e.g., by an hour, then synchronization may take many minutes. And during these
minutes, some file systems that require precise synchronization may not be mounted, or
other troubles may occur.

Of course, sudden time jumps can also bring them, but they typically do not occur
at system startup, but a long “pulling” to a single time can bring a lot of problems. That’s
why I recommend running forced synchronization before starting the ntp service on the
client node with the command:

ntpdate server ntp server address

In many distributions, the ntpdate package also provides a “service” of the same
name, which quickly synchronizes the time with the server specified in /etc/ntpd.conf.
Note that the ntpd command cannot be executed while ntpd is running.

In many modern systems, ntpd is replaced by systemd component timesyncd.

Note that this service cannot run as a server; it can only synchronize the local time with
remote servers. If you want to use it (or it is already enabled), check if it is installed, then
check the configuration files; this service reads these configs:

o /etc/systemd/timesyncd.conf

o /etc/systemd/timesyncd.conf.d/*.conf

o /run/systemd/timesyncd.conf.d/*.conf

o /usr/lib/systemd/timesyncd.conf.d/*.conf

Format is following systemd standards; there is one section ‘Time’:

[Time]
NTP=0.ubuntu.pool.ntp.org 2.ubuntu.pool.ntp.org
FallbackNTP=0.pool.ntp.org 1.pool.ntp.org

Here we specify default and fallback NTP servers list. Now we can start the service:
systemctl enable --now systemd-timesyncd
To verify your configuration and status, run

$ timedatectl show-timesync --all
LinkNTPServers=

121

CHAPTER9 NETWORK FILE SYSTEMS

SystemNTPServers=
FallbackNTPServers=0.pool.ntp.org 1.pool.ntp.org
ServerName=0.ubuntu.pool.ntp.org
ServerAddress=50.218.103.254
RootDistanceMaxUSec=5s

PollIntervalMinUSec=32s
PollIntervalMaxUSec=34min 8s
PollIntervalUSec=1min 4s

NFS

NFS (Network File System) is one of the first network file systems. It was developed by
SUN in 1984 and allows you to work with a part of the file system of a remote server over
the network. The client does not even know what file system is used on the server - all
file operations are completely abstracted, and for the client, this file system looks like a
local one.

NFS implementation is based on the RPC protocol - Remote Procedure Call. This
protocol allows the implementation of remote subroutine calls and is used in many
other programs and protocols besides NFS. For RPC to work, it is necessary to install and
run the portmap (Port Mapper) service. This service is something like DNS for RPC. By
the name of an RPC service, it gives its “coordinates” on the server - the port on which
it works. Therefore, an NFS server may not have a fixed port, although in practice it is
usually port 2049.

There are two most common NFS protocol versions - v3 and v4.1 (usually specified
as v4). NFSv4 has a lot of new features, comparing to v3, like encryption, parallel NFS
(pNES), and smarter files lock support. In reality, there are a lot of “peculiarities” in
implementations as for the server and as for the client side. If everything is highly
compatible and well implemented, v4 may give you great performance boost, but in
many cases, it gives performance drop, instability, and even data loss. Be careful and test
any NFSv4 feature before you enable it in the production.

If you don’t plan to use NFS as main network file system, I would recommend to
use NFSv3. Most common case today is using NFS for home users directories, and
Lustre or other parallel file system for “scratch” directories, where users store data, used
for compute jobs. “Scratch” file system is not supposed to be a long-term storage, but
provides high performance. Here I will speak only about NFSv3. For v4 features, please

122

CHAPTER9 NETWORK FILE SYSTEMS

refer to your storage supplier, check for available features, decide if you want to use
them, and test them, not only for performance, but under long load too!

Depending on the settings, NFS can work via UDP or TCP. In modern versions, TCP
is used by default, as it is more reliable and adapts to network traffic. UDP requires
slightly less overhead, but when using it, NFS is worse at detecting communication
errors. Package and service names may vary from distribution to distribution, but to
successfully start an NFS server, it is sufficient to run portmap, followed by nfsd and
mountd. The latter is often started together with nfsd, i.e., the command systemctl
start nfs’ often starts both services.

NFS server (nfsd), as mentioned above, allows clients to work with a part of their local
system, or rather with a separate directory (as they say, “exports a directory”). In order to
provide some kind of directory for clients, you need to specify it in the /etc/exports file.
Startup options, nfsd typically has no startup options, or accepts the number of server
threads to be started. The number of these threads is equal to the number of concurrent
operations, so it makes sense to run as many as there are clients planned.

The /etc/exports file consists of lines, each of which describes an export rule for a
directory. One directory can be specified several times with different rules:

/export/dir host1,host2,host3(rw,root squash)

Here, /export/dir is the directory to be exported, followed by a list of nodes to
which access is granted, and options in brackets. The list of hosts is comma separated
and can include both DNS names and IP addresses and subnets in the format 1.2.3.4/8
or2.3.4.5/255.0.0.0. In the names of hosts, you can specify * and ?, denoting
any string or any character, e.g., *.local.net or host??.my.org. If you specify * or
0.0.0.0/0 as a list, any client will be granted access.

The options may vary depending on the server implementation, but most are standard:

e 10 -Read-only access.
e« 1w - Read-write access.

o root_squash (default) - The client root user will have nobody rights
(see below) on the server.

e no_root squash - The client root user will have root privileges on
the server.

Yor /etc/init.d/nfsd start on older systems

123

CHAPTER9 NETWORK FILE SYSTEMS
Table 9-1 presents some additional options.

Table 9-1. Some NFS exports options

Option Meaning
all_squash All client users will have nobody rights (see below) on the server
anonuid User, whose rights will be given to clients during root_squash or

all squash operations (by default — nobody)
anonguid Similar to anonuid, but for the group
no_subtree_check Do not check user rights in directories above the mount point
async Allow the server to confirm operations before they are actually executed

sync Confirm operations only after they have been performed

A more complete set of options can be obtained by running the man exports
command. Note that the sync option does not mean that the server will confirm the
write operation only when the data gets to the disk. The confirmation will be given after
the ‘write’ system call is completed on the server, and the data may remain in the OS
file cache.

After modifying the exports file, the exportfs -r command should be run to have
the nfs server reread the configuration. The exportfs command also allows you to
manually add or remove an export rule, but I do not recommend this, as the changes are
not written to /etc/exports and will not be saved when the nfs server is restarted.

Another command that allows you to view nfs server statistics is showmount. It shows
the list of clients using the nfs server resources. Since the client and server do not have to
be connected all the time, the list may include clients that are no longer on the network.

The -d option shows a list of directories used by at least one of the clients, -a shows
alist of host:directory pairs, and -e shows the contents of the /etc/exports file. NFS
clients are computers that mount the directories exported by the server into their file
system. Therefore, all options for clients are contained in the /etc/fstab file or in the
value of the -0 switch of the mount command. The most typical options, supported by
Linux are presented in the Table 9-2. There are many more in specific implementations,
but as a rule, they have almost no impact on performance.

124

CHAPTER9 NETWORK FILE SYSTEMS

Table 9-2. Some NFS mount options

Option Meaning

soft/hard Algorithm for behavior after a server connection timeout; hard (default)
forces the client to repeat the request until a response is received; soft stops
sending after retrans (see below) sends and returns an error to the calling
program. This prevents program hangs, but can lead to data corruption

retrans=n Number of request resends to the server before an operation error is generated

rsize/wsize=n

ac/noac
proto=udp/tcp

intr/nointr

acl/noacl

nfsvers=N

sync/async

lock/nolock

(if the soft option is used)

Maximum packet size for read/write operations in bytes; must be a multiple of
1024 and greater than zero. For modern clients, this is of little relevance, since
the maximum packet size is determined dynamically when mounting the file
system

Client can/can’t cache file attributes
Which protocol to use for connection — tcp or udp

You can/can’t interrupt file operations by signal (Ctr1-C, etc.). If intr is used,
if a signal is received during an operation, it is terminated and the program
returns an EINTR error

Use/not use the NFSACL auxiliary protocol to add access control lists to files

Use the specified version of NFS. The default is the maximum version
supported by both the client and the server

Whether or not to send data to the server before exiting the system call

Enable/disable the use of an additional protocol that allows f1ock calls to be
made for files on NFS. Using lock requires running an additional lock manager
(usually Tockd or nfslockd) on the server. In addition, using 1ock increases
the overhead of file operations

NFS is not a secure file system unless additional features are used, such as

encryption and Kerberos authentication (available in NFSv4). This means that if

someone can gain access to the network over which NFS data is transmitted, they can

gain access to all of that data or connect with the highest possible privileges.

125

CHAPTER9 NETWORK FILE SYSTEMS

Encryption alleviates this problem, but catastrophically reduces performance. So
when using NFS, make sure that only trusted computers are on the network. For large
systems, NFS is, alas, a poor fit. Its bottlenecks are the inability to scale (multiple NFS
servers cannot be made to work together, sharing the load) and the need to synchronize
clients when writing to a file.

Lustre

The Lustre file system architecture allows you to use multiple devices and storage nodes
to serve many clients at the same time. Unlike NFS, there is no single server bottleneck -
data is accessed by many servers simultaneously. And it is open source! And you can get
commercial support - please check which company does it today, they are changing so
rapidly.

Compared to NFS, the advantage of this file system is that it is designed to support
not only concurrency in the storage part of a compute cluster, but also to support
concurrent data access by clients (i.e., compute nodes in the cluster). To the user, Lustre
looks like a typical POSIX-compliant file system. Note that only Linux clients and servers
are supported; for any other clients, you will need to reexport mounted Lustre file system
as NFS or SMB, which zeroes its benefits.

An undeniable advantage of this architecture is its easy scalability: at any time, a new
server can be added to a running file system, increasing both speed and storage capacity.
Lustre supports both traditional TCP/IP networks and fast networks such as InfiniBand.
Note that the overall architecture is similar to other distributed file systems.

Architecture

Let’s take a closer look at the Lustre architecture (see Figure 9-1). It includes the
following components:

o Management server (MGS) - Stores configuration information
for the whole Lustre file system (or even multiple fs), like all OSTs
locations, MDTs, OSSes, MDSes, etc. It is recommended to dedicate
a separate disk to store MGS data, but it is allowed to combine it with
MDT (see below) and usually it is the case.

126

CHAPTER9 NETWORK FILE SYSTEMS

e Metadata servers (MDS) - Their purpose is to store metadata of all
objects on the file system, like files names, permissions, and where
are they stored (which OST). You can have multiple MDSes in one

file system.

e Object storage servers (0SS) - Provide file system objects, like file

chunks, directories, etc.

e Metadata target (MDT) - A metadata repository, such as a hard
disk, DAS, or NAS. An MDT can be accessed by multiple MDSs, but
only one of them is capable of using it. This helps to provide fault
tolerance for the MDS.

e Object storage target (OST) - Object storage (chunks of user files).
Like MDT, it can be either a hard disk or a network storage.

o Lustre clients - Compute and other nodes with Lustre software
installed that allows them to mount the Lustre file system.

== == == =l Clients
A /

r;/

MDSIMGS w\\ 0SS
0o = = [
s | | s | |
- -
» jT T\ jT AY /4A|
e . e e R e e . e
SENSS HE B
MDTs OSTs

< -» Backup connections
<—> Data connections

Figure 9-1. Simple Lustre architecture

127

CHAPTER9 NETWORK FILE SYSTEMS

Each OSS can mount several OST (and this is typical) and also can be configured to
be able to mount OSTs of one of its neighbors. This allows to survive if one OSS is down -
its partner can mount volumes and continue to manage them. We’ll return to this later.

The Lustre client software consists of the Metadata Client (MDC), Object Storage
Client (OSC), and Management Client (MGC). Each client provides interaction with the
corresponding component of the Lustre server side. The OSC group forms one LOV -
Logical Object Volume.

In the Lustre architecture, component communication over the network takes place
through the LNET interface - Lustre Networking. LNET allows the use of different
networks using Lustre Network Drivers (LNDs). LNET supports message passing for RPC
request and RDMA for bulk data movement and allows Lustre to work across InfiniBand,
TCP/IP, Quadrics Elan, Myrinet (MX and GM), and Cray. At the LNET level, recovery
capability is supported when any connection fails.

Each network interface in the LNET network has a unique NID - Lnet Network
Identifier, which has the format <address>@<LND protocol><1lnd#>. For address part,
IPv4 address is used. Even in IB networks, where no IP is used as the transport layer, the
NID will take ip-over-ib address to identify the interface. For example, 10.20.30.40@
021b1 may be a typical NID for and IB interface and 192.168.2.3@tcp2 - for TCP/

IP. Each “protocol+index” represents an isolated network from the LNET perspective, so
1.2.3.4@tcp0 never can talk to 2.3.4.5@tcp1. Note that on IP level, LNET module uses
port 988, do not block it by firewall.

When storing files, Lustre automatically divides them into blocks, and each block
can be stored on an OST, and the blocks can be accessed in parallel. It is important to
remember that Lustre does not provide redundancy when storing data. Consistency
can be provided on OST and MDT level by using RAID. MDT should use RAID-10 due
to small I/O size, while OSTs should use RAID-6 due to larger I/O size, usually 1 MB
or larger.

When planning a farm for Lustre, remember that MDT data is the most
critical - its loss or corruption is equivalent to the loss of all other data. Read current
recommendations from the official Lustre documentation to choose chunk size,
raid levels, and check your servers’ memory size. Please refer to the latest Lustre
recommendations; they may change pretty fast!

128

CHAPTER9 NETWORK FILE SYSTEMS

Creation of Lustre File System

Lustre has no user-space services, clients and servers are kernel modules. In some cases,
it is possible to build Lustre kernel modules for vanilla kernel, but the recommended way
is to download precompiled kernel module from official Lustre website? and matching
Lustre packages.

To deploy Lustre, you need to install the appropriate software on all components
(both servers and clients), configure LNET networks, format the MDT and OST
partitions, mount them on the appropriate MDS and OSS, and then mount the resulting
file system on the clients. Here is an example for a simple configuration.

Create (or edit, if exists) file /etc/modprobe.d/lustre.conf, which contains
LNET configuration. There are two options to defile an LNET network - networks
and ip2nets. The first option is highly recommended. The second one gives you more
flexibility, but in most cases is redundant because of complexity. To specify networks
LNET configuration, put into the lustre.conf file a line in format "<1nd><#>(<dev>)

[,.]" eg,
options lnet networks="02ib0(ib0),tcpo(eth2)"

To check if everything is OK, you can load Inet kernel module and run Inetctl
command (in this example, networks="tcpo(eth1)" was used):

modprobe lnet
lnetctl net show
net:
- net: lo
nid: o@lo
status: up
- net: tcp
nid: 192.168.2.3@tcp1
status: up
interfaces:
0: eth1

2https://Lustre.org as for 2025.

129

https://lustre.org

CHAPTER9 NETWORK FILE SYSTEMS

lo interface is shown always by default. Next step - Format MGS and MDT
volume(s)! Let’s run this command on the MDS:

mkfs.lustre --mdt --mgs --index=0 \
--servicenode 192.168.2.3@tcp0 \
--servicenode 192.168.2.4@tcpo \
--fsname=large-fs /dev/sdX

mount -t lustre /dev/sdX /mnt/mdt

Here we use one volume for both MGS and MDT. In this example, we use two nodes,
which can manage this target and specified their NIDs. Only one node can mount this
volume at the same moment. /dev/sdX is the device name and large-fs is the file
system name. The file system name is limited to eight characters. Index is used for MDTs
and OSTs only. If you use more than one MDT, increase the index when you create the
next one. Created volume can be mounted immediately.

Note that MGS and MDTs are recommended to be mounted first; all OST volumes
are safe to be mounted later. Remember that if you shut down the Lustre and then
need to power it up.

We then perform initialization on all OSSs:

mkfs.lustre --ost --index=0 --fsname=large-fs \
--mgsnode=192.168.2.3@tcp0 --mgsnode=192.168.2.4@tcpo \
/dev/sdz

mount -t lustre /dev/sdZ /mnt/ost1

Here /dev/sdZ is the device name, fsname is the system name, we used in MGS/MDS
creation, and mgsnode is our MGS node(s) NID(s). You also can use --servicenode to
allow several nodes to manage this volume; this is useful for the Lustre redundancy - if
one node goes down, you can mount the volume on the other.

After all MGS, MDTs, and OSTs are mounted, the Lustre is ready to run; you can
mount the file system on the clients with the command

mount -t lustre 192.168.2.3@tcp0,192.168.2.4@tcpo:/large-fs /mnt/lustre

130

CHAPTER9 NETWORK FILE SYSTEMS

Specify all MGS NIDs via comma. If you forgot your MGS NID, access it via ssh or
console and run the command

lctl list_nids

Remember that Lustre does not route its traffic between the different networks, so
both the client and MDS must be on the same network, and it is important to specify the
correct NID list if you are using multiple networks.

Lustre is quite demanding on RAM size, especially on OSS. For each OST, the default
is 400 MB for logging and about 600 MB for metadata caching. In addition, 1.5 MB for
each service thread (the number of threads can be roughly estimated as the number of
clients divided by the number of connected OSTs). For MDS, the calculation formula can
be found on the official website, and I'd recommend having more memory, than it gives.

The buffers of the operating system and network devices should also not be
forgotten. For normal OSS operation, it is recommended to have 2 GB of RAM plus
1 GB for each OST. Additional memory is not a bad thing; it will be used for additional
caching. Fine-tuning the Lustre settings is done with the 1ctl and tunefs.lustre
commands.

The 1ctl set param command performs on-the-fly configuration. The parameters
can be changed either temporarily (by default) or permanently and will be saved
after a reboot (add -P option). The 1ctl get param command gives a list of currently
valid parameters. 1ctl ping can be used to test if an OSS or MDS is available via the
Inet transport. These commands affect the internal logic of Lustre, so don’t use them
unless you really need to. Be sure to study the documentation carefully, as the wrong
combination or order of commands can cause the file system to malfunction.

The tunefs.lustre command is used in rare cases, like changing OST/MDT
NIDs, and is only executed on 0SS or MDS when the server is stopped!

If an OST has failed in the process of creation, the best recommendation is to
reformat it. If it has failed while the file system has data, you should unmount all clients,
then unmount all OSTs, then MDTs and MGS, and try to recover the OST. Usually it
is done by mounting the OST as a 1diskfs file system if ext4 was used as a carrier file
system and then checking using a special patched version of e2fsck. Please refer to the
documentation of the exact version of Lustre you are using, the instructions may differ,
and you can easily ruin your OST data. You're warned.

131

CHAPTER9 NETWORK FILE SYSTEMS

If you want to retire the OST, e.g., you see the hardware issues, you can disable
itusing 1ctl --device N deactivate, where N is the “device number” of desired
OST. You can get it using 1ctl d1 command, which lists all “devices” visible on the
client. After that, Lustre will stop to allocate new objects on this OST and you can migrate
the data to others OSTs using 1fs_migrate command. Removing and replacing of OSTs
is in active development in 2025; check your Lustre version instructions, if they are
supported.

Fault Tolerance in Lustre

Lustre does not support data duplication or redundancy,’ i.e., if data on OST or MDT
is physically lost, it is impossible to recover it using Lustre tools. In the case of MDTs,
this usually equates to losing the entire file system. That is why RAID is recommended,
although it does not guarantee data safety. You can try to recover the (some) data, using
officially recommended methods for your Lustre version.

To make the situation a bit better, and at least minimize the risk of failing a server,
but not a data volume, we use multiple service nodes in the volumes definitions.
If one node fails, the “partner” can mount its volumes and continue to serve them.
The problem is that Lustre cannot do this on its own. As a rule, for this purpose,
Corosyc+Pacemaker or similar software is used. Here we will not consider their
configuration, but there is nothing complicated in it. Please pay attention to the order
of the installation and configuration; it does matter. In order for this mapping to work,
the OSTs must be physically connected to two (or more) OSSs - service nodes. Common
case is when two OSSs share the same OST set, but first mounts the first half of them, and
the second - the rest.

Network redundancy means that the OSS can be accessed via multiple addresses,
e.g., via InfiniBand and via Ethernet. Both routes are used at the same time, but if one
of them stops working, communication will only continue via the second route. The
addresses (and LNET drivers) must be prescribed in the file system settings in advance.

If multiple interfaces on the same subnet are used, traffic will always go through
the first one. This is a limitation of the Linux kernel, use bonding for such
configurations.

*In the beginning of 2025

132

CHAPTER9 NETWORK FILE SYSTEMS

Striping and PFL

It was mentioned before that when storing a file, Lustre splits it into blocks. It is known
as “striping” in Lustre. You can manage stripe size and number of OSTs, between which
file stripes will be distributed. Here is an example how to apply new striping settings to a
directory:

1fs setstripe -S 4M -c 8 /lustre/testdir

Here we set stripe count to 8 and size to 4 megabytes. Each new file, created in this
directory, will get such stripe parameters. You cannot change stripe parameters for any
existing file; the only method to change them is to copy the file into the directory with
desired parameters set. To check the current file configuration and placement, you can
use this command (-y gives you yaml-formatted output):

1fs getstripe -y /lustre/testdir/testfile
lmm_stripe count: 8

Imm_stripe size: 4194304

lmm_pattern: raido

1mm_layout gen: 0

lmm_stripe offset: 2

Imm objects:

- 1 ost_idx: 2

1 fid: 0x100020000:0x2 :0x0
- 1 ost idx: 3

1 fid: 0x100030000: 0x2 : 0x0

Lustre 2.10+ supports “Progressive File Layouts” (PFL), which allows having
different stripe counts and sizes for different file regions (components in terms of
Lustre). Let’s modify our directory:

1fs setstripe -E IM -S 512K -c 1 \
-E 256M -c 4\
-E -1 -S 1M -c 8 /lustre/testdir

-E option sets the end of the component, and the options followed it - striping
parameters. In this example, the first megabyte of the file will be placed in 2 stripes by
512K on the same OST, the next 255 megabytes on 4 OSTs using the same stripe size,

133

CHAPTER9 NETWORK FILE SYSTEMS

and the rest of the file (after 256 megabytes) on 8 OSTs using stripes of 1 megabyte size.
See Figure 9-2 for the graphical representation of this layout. Note that OST’s indexes
here are just for the illustration; they are chosen randomly and can repeat in different
components. For example, if we have only 8 OSTs in our file system, the last component
will take OSTs from 1 to 8.

512K 512K | 512K | 512K | 512K
M IM | eee | 1M 1M
512K 512K | 512K | 512K | 512K
o . ° .) °
OST1

512K | 512K | 512K | 512K
512K | 512K | 512K | 512K

1M IM | eee | 1M M

, OST2 OST3 0OST4 OST5 : OST6 OST7 OST12 OST13
| | >

1M 256 M

Figure 9-2. PFL example

Quotas

Lustre supports user, group, and project quotas. Soft and hard quotas are supported.
Hard quota cannot be exceeded, but soft quota can for a grace time period. Here are
some examples:

1fs setquota -u foo -b 200G -B 300G -i 2M -I 3M /lustre
1fs setquota -g bar -b 200G -B 300G -i 2M -I 3M /lustre
1fs project -r /lustre/testdir

1fs setquota -p 1 -b 200G -B 300G -i 2M -I 3M /lustre

Here we set the same limits for user foo, group bar, and project 1 (projects have only
numbers): maximum 3 million inodes and 300 gigabytes. Soft quota is lower - 2 million
inodes and 200 gigabytes. For the project 1, we marked all files under /lustre/testdir.
Default grace time is one week; it is global for each type - user inodes, user block, group
inodes, group block, project inodes, and project block. To change it, use this command:

1fs setquota -t -u -i 1d8h -b 2d /lustre

134

CHAPTER9 NETWORK FILE SYSTEMS

Here we set grace times for users inodes and block quotas as one day, eight hours,
and two days, respectively. Default quota is also supported; to set it, use -U, -G, or -P to
set user, group, or project default quota. If you set some quota to a user, e.g., and want to
reset it to default, use this command:

1fs setquota -u foo --default /lustre

This works for groups and projects too, of course. To remove any quotas to user/
group/project, specify 0 as value when you use setquota.

Lustre is a good choice for a distributed file system used during computations
to store temporary as well as input and output data (so-called scratch file system).
However, for permanent storage of user data, I recommend using a more robust file
system. You're warned.

PanFS

The PanFS file system is another representative of the parallel file system. Solutions
based on this file system are a hardware-software complex produced by Panasas (now
VDURA), consisting of one or more ActiveStor storage systems and file system drivers for
installation on clients.

At the time of writing, file system drivers are available for Linux only. File system access
is also possible via CIFS and NFS protocols, but in this case, the modules that provide file
system reexport would be a potential bottleneck for the system. Nevertheless, in this way, it
is possible to provide, e.g., access to the network root file system for diskless nodes.

Note that file system drivers for clients (unlike, e.g., GPFS) are not licensed additionally
by the number of clients. The PanFS driver does not use the DKMS mechanism, so the set
of compatible distributions and kernel versions is very limited. A driver for a specific kernel
can be obtained from VDURA on a separate request. The VDURA storage system includes
metadata and management nodes (Directors) and object data storage nodes. The data
network may be only Ethernet (1, 10, or 25 GB), but VDURA provides an InfiniBand router
server, which allows using this product in IB networks (but may be a bottleneck).

VDURA storage management software runs on the metadata and management
nodes. The following configuration mechanisms are available to the cluster
administrator: https access, console access via ssh, or serial port. Note that even with
multiple VDURA systems (with different volumes and access levels), it is possible to
configure all systems from a single point.

135

CHAPTER9 NETWORK FILE SYSTEMS

Data fault tolerance is provided by storing object data with RAID-1 level redundancy
for small files or RAID-5 for large and medium files (these settings can be changed).
RAID redundancy is provided on the file system level, and different stripes are stored on
different nodes, which means, that if a node is down, the file system is still alive.

Fault tolerance for metadata is provided by mirroring it from the metadata node,
which is the primary node for this volume, to the standby node. If there are three or
more metadata and management nodes in the system, you can enable the fault-tolerant
cluster mode. In case of failure of the primary metadata node, the standby node will start
to perform the functions of the metadata controller transparently for the user.

A distinctive feature of the system is the transfer of part of the file system work to
the client driver (i.e., to the cluster nodes), in particular, RAID checksum calculation is
performed by the client part driver. If possible, the client part also caches data, so a lot of
RAM on the client can be occupied by system buffers.

PanFS storage systems are highly scalable. To increase data transfer speed and
capacity, one or more storage systems can be added, and system expansion can be
performed on-the-fly without stopping running applications.

VDURA has a user-friendly administration and configuration system that makes
it easy to manage the system for personnel who do not have in-depth knowledge
of parallel file systems. Metadata nodes, object data nodes, and file system clients
must have well-synchronized time for the file system to function properly. I strongly
recommend that all nodes be configured to synchronize with the NTP server on the
PanFS management node and that it in turn be synchronized with a public NTP server.
This allows you to remain operational in case of temporary problems with the external
network.

GPFS/IBM Storage Scale

General Parallel File System (GPFS) was developed by IBM in 1998 and has been
available for Linux since 2001. It is a proprietary distributed file system that supports a
wide range of Linux distributions. According to IBM’s 2013 information, this file system
can scale to 9300 nodes and 16386 clients, with the largest installation having 5000
nodes. GPES supports RDMA technology for InfiniBand.

Metadata in GPFS is distributed, there is no dedicated metadata servers, and it
supports indexing of directory entries for very large directories. It includes special
heartbeat and quorum protocols, which allows keeping working in degraded mode

136

CHAPTER9 NETWORK FILE SYSTEMS

even if a network fail divided the file system servers into two isolated subnets. Data is
duplicated, and if one server goes down, the whole file system is still alive.

The maintenance can be performed online; if you add new disks, do a bad disk
replacement, or rebalance the data, the file system is up and going. You can install GPFS on
any host, and depending on how you configure it, it will be either a GPFS server or a GPFS
client. Both server and client must be licensed. There is a large amount of documentation
on GPFS, both official and accumulated by the community, including on wikis and
forums. It is recommended to study the documentation and recommendations well before
installation, as many parameters cannot be changed once the file system has been created.

Unfortunately, I have no serious experience in using GPFS, and cannot give sound
advice about it. Nevertheless, this file system is used on many HPC clusters, which
indicates its suitability in our domain. If you decide to purchase GPFS, pay attention to
the OS and RAM requirements and of course plan your licenses and support (it will take
remarkable part of you budget), not only for current needs, but for possible extension.

Other File Systems

Among other distributed proprietary file systems, I can also note Weka. I didn’t use it,
but have good feedback from my friends. It has a lot of features, like POSIX, NFS, SMB, S3
and GPUDirect storage support, storage tiering, namespaces, encryption, and snapshots.
It protects data on the file level, and in case of failure, actively used files are recovered
first, which reduces the time of recovery and recovery overhead. If you deploy Weka
cluster in cloud, it supports auto expand and auto shrink. I have no information about
the pricing plans or real performance tests and cannot compare it with GPFS or Panasas,
but it seems like a real competitor.

The list of distributed file systems supported by Linux is certainly longer than the
one discussed above. For example, I can name Gluster, Coda, CEPH, Hadoop HDFS,
BeeGFS, MooseFS, zFS (not to be confused with ZFS), and others. So far I can’t say
anything positive about them as applied to HPC. Most of them are not POSIX-complaint
which breaks a lot of applications, some have problems with file sharing, others with
reliability, others with performance under heavy load, some are still under development
and not yet ready for serious production use.

This does not mean that the list of solutions is strictly limited - file systems evolve
and improve, new ones appear. I just want to warn you against making hasty decisions,
the file system is always one of the most “bottlenecks” of a supercomputer.

137

CHAPTER9 NETWORK FILE SYSTEMS

I should note that not always you need high-performance parallel file system; in
some cases, you may use NF§, or, e.g. CernVM-FS.* They may be useful for read-only
access, delivery of local container images, or static data; NFS is often used for home
user directories (in this case, [recommend mounting it in read-only mode on compute
nodes). You can combine different types of file systems depending on requirements.

If you use LDAP or NIS, it might be beneficial to use autofs for automatic mounting
of user home directories or other shared resources. I would not recommend using it on
compute nodes, but on the login and data copying nodes, it might help. Make sure that
your server software support it.

Before installing an advertised distributed file system, try to test it. You should be
interested in the degree of scalability, work under load of a large number of clients (e.g.,
virtual clients), fault tolerance, and the ability to recover from failures that do occur.

Brief Summary

Network file system is one of the key elements of a supercomputer. A mistake with its
choice can be very expensive - catastrophic performance losses, difficulty of installation
and diagnostics, support costs, etc. Take a responsible attitude to its choice and try to test
the selected system in advance on a test site or with your colleagues.

Search Keywords

NTP, NFSv4.1, NFSv4, NFSv3, mount, RPC, Lustre fs, parallel fs, pNFS, LustreFS, Panasas,
GPEFS, Ceph, Corosync, Pacemaker

“https://cvmfs.readthedocs.io/en/stable/index.html

138

https://cvmfs.readthedocs.io/en/stable/index.html

CHAPTER 10

Remote Management

For the simplest organization of remote access, it is enough to run sshd server on the
nodes. This is the basic means of access to compute (and not only) nodes. But what to
do if there is a problem with a node and sshd does not start? How do you find out the
cause of the issue? IPMI or iKVM/KVM-over-IP can help. In order to use remote access
via IPMI, you need to activate it beforehand; by default, only local access works, and
network access is disabled. There are other similar technologies, e.g., Redfish and DCMI,
but IPMI specification still is most common.

IPMI remote access can be activated via BIOS, if it allows it, or by booting as root
and configuring IPMI network settings with the ipmitool command (see IPMI chapter
below). Ensure that IPMI network is enabled by vendor, and getting IP via DHCP
is enabled (and you have MAC address list); otherwise, you'll have to set up IPMI
manually for all your nodes, which may take weeks. Access via iKVM usually needs to be
preconfigured as well. In many implementations, it is combined with IPMI. Don’t forget
to change the default password!

ssh and Parallel ssh

SSH is a secure shell; this protocol replaced the telnet and remote shell protocols, which
were previously widely used for remote access, but were absolutely insecure. The same
still applies to the FTP.

In 1995, Finnish computer scientist Tatu Ylonen designed SSH - open secure
protocol for remote access and file transfer. Now the most common implementation
of client and server is OpenSSH, evolved by OpenBSD developers, but there are
alternatives. By default, SSH server uses 22 port. Below we will use the abbreviation SSH
for the protocol and ssh for the name of the client command of the same name.

139
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_10

https://doi.org/10.1007/979-8-8688-1600-0_10#DOI

CHAPTER 10 REMOTE MANAGEMENT

SSH is based on two types of encryption: symmetric and asymmetric (public key).
Symmetric encryption uses the same key for both the encryption and decryption, i.e.,
both parties must have the same key to exchange data.

Asymmetric encryption algorithms use a pair of keys: one of them can encrypt
the data and the other can decrypt it. But with only one key, you cannot perform both
operations or recover the second key.!

Thus, we can generate a pair of keys, one of which will be “public”” It can be
transmitted through open channels to everyone with whom we need to communicate,
published on the Internet (there are even special key servers). The second key is called
the private key; it should remain a big secret. Now, for secure communication between
two parties, they need to exchange public keys and start encrypted data exchange:
everything that one of them encrypts with its private key, the other can decrypt with the
received public key. Moreover, it is often enough to have one key pair, since the second
respondent can send data to the first one by encrypting it with the public key received,
while the first one decrypts it with the private key!

The SSH protocol uses keys to identify not only clients but also servers. Each SSH
server has its own so-called host key. When connecting to a server for the first time,
the client will ask the server for the public part of the key and ask the user to confirm
that this is the right server by showing the key fingerprint. If the user knows the
correct fingerprint beforehand, the user can compare it to the reference and refuse the
connection if they differ. If the user has confirmed the connection, the client stores the
match between the host key and the server address (usually in the ~/.known_hosts
file). In case the next connection shows that the host key has changed, ssh will reject the
connection.

This is done to make it impossible to replace the remote server with your own and
intercept the transmission of information while acting as a transmitter. This type of
attack is called a man-in-the-middle attack.

In the SSH protocol, a typical session occurs like this:

e The client connects to the server and establishes an encrypted
connection with a symmetric key using the Diffie-Hellman algorithm,
then all communication is encrypted with this key.

'In some algorithms, the private key can be used to recover the public key, but not vice versa. In
openssh, the public key is also stored in the private key file.

140

CHAPTER 10 REMOTE MANAGEMENT

o Ifthe client has the server’s public host key, it generates a random
string, encrypts it with this key, and passes it to the server (if the key
is not available, the client requests it from the server and asks the
user to authenticate).

o The server decrypts the string with the private host key and sends it
to the client.

o Ifthe string matches the initial string, the client sends the server the
username under which access is requested.

e The client tries possible key pairs for connection, and each attempt
starts with sending the public part of the key to the server.

o The server checks if the public key is in the list of allowed keys (in the
~USER/.ssh/authorized keys file).

o [Ifthere is no key, the client tries the next key pair.

o Ifthe key exists, the server encrypts a random string with it and sends
it to the client.

e The client decrypts the string with a private key and sends it to
the server.

o Ifdecryption is successful, the server acknowledges the session and

starts the required command or console session.

Symmetric encryption is used because it is less resource intensive and to reduce
the amount of data that can be intercepted and attempt to recover the private key. The
symmetric key is periodically changed during an ssh connection. SSH servers typically
support nonpublic key authentication, such as password or Kerberos. In this case, all
data is also encrypted with symmetric keys.

I strongly recommend that you do not use password authentication. Passwords are
not very resistant to brute force, i.e., an attacker can simply pick the right password and
no encryption will save them. That’s why “secure” versions of telnet and ftp over
SSL/TLS encrypted connections are also considered insecure. It is almost impossible to
find a private key. There is a possibility that the key itself will be stolen, but even in this
case, there is an additional guarantee: SSH private keys can (and should!) be password
protected.

141

CHAPTER 10 REMOTE MANAGEMENT

Let’s consider the most popular ssh server and cldient for Linux - openssh. In most
distributions, the server and client are installed as separate packages. When installing
the server, a host key is automatically generated. If you reinstall the ssh server, take care
to save and restore the host keys!

In addition to providing console access, the openssh server provides several other
features. The most important ones are present in Table 10-1.

Forwarding Environment Variables

SSH allows us to set some environment variables (e.g., LANG) in a remote session to be
the same as on the work computer running the ssh client. The list of variables that the
client passes is set in its configuration or on the command line, and the list of variables
that the server can “cast” is set in the server configuration.

The variable must be enabled for both client and server to be able to proxy. Some
variables, such as LD_PRELOAD, are not allowed to be thrown unless specific server
options are specified (see below).

Port Forwarding

Avery flexible tool that allows you to create a small proxy server for a single connection.
There are two options for port forwarding - on the client and on the server. Port
forwarding on the client means that on your work computer, a connection on a given
port will be automatically tunneled to the ssh server.

For example, you need to access an internal web server with the address
192.168.0.10, which is available only on the internal network. When running ssh,
we will specify that we need to forward port 8080 to 192.168.0.10:80. After that, the
connection to local port 8080 will be automatically tunneled to port 80 on the server. For
the web server, this connection will look like a connection from the computer where the
ssh server is installed.

This is easily done by the command

ssh -L 8080:192.168.0.10:80 your.server.address

Similarly, it is possible to forward connections in the opposite direction (a port on
the server is forwarded to the client): assign a port on the server to which a connection
will be established through a secure channel to a host accessible from the machine
where the client is running. In this case, -R is used instead of the -L switch.

142

CHAPTER 10 REMOTE MANAGEMENT

X Connection Forwarding

Similar to port forwarding, you can forward connection to the X server. Remember, the
X server is your local server; it handles your graphical display, mouse, and keyboard.
If you use Windows, you may run a Windows implementation of X server, like Cygnus,
Xming, or its fork VcXsrv. When you run an ssh client locally and connect to the remote
computer with X connection forwarded, you may run an X application, e.g., xterm on
the remote computer, and it will show you the window on your local X server managed
display. You cannot run your local browser, e.g., on the remote computer.

You must have xauth program installed on both computers and be careful running
remote sudo - you will need to pass your XAUTHORITY variable through it (remote
variable, which ssh set after you logged in).

File Transfer

SSH has two built-in protocols for file transfer: SCP and SFTP. In addition to the not very
convenient console clients of the same name, there are many client implementations,
such as sshfs for Linux/MacOS, built-in support in Nautilus/Dolphin for Gnome/KDE
shells, FileZilla, WinSCP for Windows, and many others.

SSH Agent

This is an ssh built-in tool for storing keys. At the beginning, the agent loads ssh keys
from files and asks for passwords to decrypt them, then stores them in memory. When
new ssh/sftp connections are established, any data can be encrypted or decrypted with
these keys via the agent. This is useful for loading keys not from the ~/. ssh directory or
with nonstandard names. Access to the agent can also be forwarded, which means that
on the remote computer, you will have access to all keys from the local computer, but
indirectly, only be able to crypt/decrypt the data.

In case of all forwards, data is transmitted in a single encrypted channel, and no
additional connections to the ssh server are made. This means that the ability to connect
to the server on port 22 (or other port if the ssh server configuration is nonstandard) is
sufficient for operation.

143

CHAPTER 10 REMOTE MANAGEMENT

Configuring the ssh Server

The openssh server settings are usually stored in the /etc/ssh/sshd_config file.
The most important ones are present in Table 10-1.

Table 10-1. Some configuration options for the openssh server

Option Meaning

AcceptEnv Specifies a space-separated list of environment variables that the server
can set to the same value as on the client. Variable names can include ‘?’
and “*’ similar to shell.

AllowAgentForwarding (yes/no) enable agent forwarding.

AllowGroups If this parameter is set, only users belonging to the specified groups will be
allowed to log in. It is convenient to use it during preventive maintenance
by restricting access to the administrators group. Only group names are
allowed, not numbers.

AllowTcpForwarding (yes/no) enable port forwarding.

AllowUsers Similar to AlLowGroups, but specifies a list of users. It is allowed to
specify the name in the format user@host[/mask]; in this case, access
will be allowed only from the specified address or range of addresses.

Banner Path to the file whose contents will be output immediately after connection
to the server (before authentication).

DenyGroups Similar to AllowGroup, but lists the groups whose members are denied
access.

DenyUsers Similar to AllowUsers, but lists the users for whom access is denied.

ListenAddress Sets the addresses and ports on which the SSH server will run. The

defaults are 0.0.0.0:22 (for ipv4) and : : : 22 (for ipv6).

ForceCommand No matter what command the client requests to execute, only this
command will be executed. This parameter is conveniently set in the
Match block (see below). To restrict access using sttp, you can specify
“internal-sftp” in this parameter.

(continued)

144

CHAPTER 10 REMOTE MANAGEMENT

Table 10-1. (continued)

Option Meaning

LogLevel One of the following values: QUIET, FATAL, ERROR, INFO, VERBOSE,
DEBUG, DEBUG1, DEBUG2, DEBUG3. The default is INFO. Sets the logging
level. Convenient when analyzing problems with the input.

Match Sets the conditional block (see description below).

PasswordAuthentication (yes/no) enables password authentication.

PermitEmptyPasswords (yes/no) allows the use of blank passwords.

PermitRootLogin (yes/without-password/forced-commands-only/no) allows

PermitUserEnvironment

Port

PrintMotd

PubkeyAuthentication
StrictModes

UseDNS
UseLogin

X11Forwarding

XauthLocation

superuser login. If the parameter value is without-password, then login
is allowed only by key, and if forced-commands-only, then only by key
for which command forcing is specified.

(yes/no) allows a list of environment variables to be setin ~/.ssh/
environment. Setting this list explicitly allows you to bypass restrictions
on scrolling variables such as LD_PRELOAD.

Specifies the port on which the ssh server is running. The default is 22.
You can specify multiple ports by specifying different strings with the Port
parameter.

(yes/no) specifies to output the contents of the /etc/motd file after
login (message of the day).

(yes/no) enables key authentication.

(yes/no) specifies to check the permissions and owner of the user’s
home directory and ssh-critical files.

(yes/no) specifies to use DNS name resolving when logging.

(yes/no) specifies to use the standard Login program when logging in. If
this option is enabled, X connection forwarding will not work.

(yes/no) enables X connection forwarding.

Path to the xauth command. Used to forward the X connection if the path
is different from /usr/X11R6/bin/xauth.

145

CHAPTER 10 REMOTE MANAGEMENT

Only one of the parameters AllowUsers, DenyUsers, AllowGroup, and DenyGroups
can be specified. Any of them can be specified more than once if a large list is to be
specified.

The Match block specifies a set of options that will be applied only if the specified
condition is met. The condition can be User, Group, Host, LocalAddress, LocalPort, or
Address followed by a comma-separated list of arguments, e.g.,

Match User admin,superuser,lab*

For User and Group, you specify the lists of users and groups respectively, and for
Host, Address, LocalAddress, and LocalPort, you specify the remote hostname, remote
host address, local address, and local port, respectively.

When specifying user, group, and hostnames, you can use ‘?’ and ‘*, and
when specifying a remote address, you can use masks, e.g., 1.2.3.4/8. The
Match line is followed by an option block. AcceptEnv, AllowAgentForwarding,
AllowGroups, AllowTcpForwarding, AllowUsers, Banner, DenyGroups, DenyUsers,
ForceCommand, PasswordAuthentication, PermitEmptyPasswords, PermitRootLogin,
PubkeyAuthentication, X11Forwarding, and some others are allowed in this block. See
the documentation for more details.

Configuring the ssh Client

The openssh client also has a set of settings. Most of them do not need to be changed,
and they are located in the /etc/ssh/ssh_config file. If a user needs to change
something, it is enough to create a file ~/.ssh/config and make the necessary

settings in it. The ~/. ssh directory contains public and private keys, as well as the file
authorized keys (sometimes authorized keys2), which contains all the public keys
that can be used to authenticate to a given user, and the known_hosts file, which contains
the public keys of those computers that have been connected to in the past.

Let’s consider the process of configuring remote login from client computer to server
computer under foo user. On the client, run the command ssh-keygen -t rsa (if we
have not done it before).

The -t rsakey instructs you to create a key pair in RSA format. You can also use
ecdsa, ecdsa-sk, ed25519, ed25519-sk, or a newer format if available. You can add
-b NNN key, to specify key length in bits; the more bits, the stronger is the key. For RSA,
default length is 3072, and for ec-/ed-keys (elliptic curves), only 256, 384, and 521 values

146

CHAPTER 10 REMOTE MANAGEMENT

are available. The ssh-keygen program will ask where and with what name to form the
private key, offering a standard option. It is better not to change it. Then the program will
ask what password (passphrase) to protect the key and ask you to confirm the password
and generate a pair of keys. The public key will have the same name as the private key,
but with a . pub extension. For example, for a standard RSA key, we will get the files ~/.
ssh/id rsaand~/.ssh/id_rsa.pub.

Next, copy the id_rsa.pub file to the ~foo directory on the server computer. On
the server, add the contents of id_rsa.pub to the list of allowed keys: cat ~/id rsa.
pub >> ~/.ssh/authorized keys.Make sure that the .ssh directory and the ~/.ssh/
authorized keys file belong to the user foo and are not allowed to be written to by
anyone except foo.

Now from the client computer, it is enough to execute the ssh command foo@
my_server, confirm the addition of the public host key to known_hosts, and enter
the private key password. To allow a user to log on to a host without a password, it is
sufficient to generate a key pair by specifying an empty password. If the user’s directory
is on a network drive, after that it is enough to add the public key to the same user’s
authorized keys.

To ensure that the first time a user logs in, they are not asked for confirmation of
being added to known_hosts, you can log in to all nodes in a loop using the command
ssh -o StrictHostKeyChecking=no HOSTNAME true. This command will automatically
put the node HOSTNAME key into known_hosts. The “true” at the end is the command to
be executed on node name. You can specify any command, e.g., date, uname, and yes,
but true is executed instantly and without display. If no command is specified at the
end, the normal login to the remote system will be performed and the interactive shell
will run.

In the process, ssh intercepts a special control key combination - “Enter ~”.
After pressing this sequence, you can enter a control character command. The list of
commands is displayed by pressing “?”. The most convenient commands are

“~’ — Pass the “~’ symbol itself
‘.’ - Terminate the session immediately

‘Z’ - Suspend and take the ssh process to the background
(it can be resumed with the fg shell command)

147

CHAPTER 10 REMOTE MANAGEMENT

Let’s take a closer look at the set of ssh commands and their options. The ssh client

itself has an extensive set of keys. The most important ones for us are presented in

Table 10-2.

Table 10-2. Some keys of the ssh command

Key Meaning

-A Forward agent

-a Don’t forward agent

-i path Specify the path to the private key

-R [bind_address:] Forward the server port port to the hostport port of the locally available

port:host:hostport host

-L [bind_address:] Forward the local port port to the hostport port of the remote host

port:host:hostport

-l username Username on the remote host

-N Not to execute a remote command. Convenient for port forwarding

-0 option Set an option for a specific connection (see below)

-p port Specify the port on the remote machine if it is different from 22

-q Suppress informational messages (useful when using ssh in scripts)

-t Force the allocation of a pseudo-terminal. May be necessary when using
ssh in scripts for commands that require a terminal, such as sudo

-V Output more debugging information. You can specify several times in a
row — the more options, the more detailed the output. Specifying -vvvv is
often enough to diagnose input problems

-X/-Y Enable X connection forwarding (using slightly different strategies)

-M Try to reuse existing connection, see the ControlMaster option below.

In addition to command-line keys, ssh supports many options that can be set in the

~/.ssh/config file or via the -0 switch. More details can be found in the documentation.

The most useful ones are listed in Table 10-3.

148

CHAPTER 10 REMOTE MANAGEMENT

Table 10-3. Some ssh client options

Option Meaning

ConnectTimeout Connection timeout time

EscapeChar Change the control character from “~’ to the specified character

ForwardAgent Forward ssh agent

ForwardX11 Forward an X connection

IdentityFile Specify the path to the private key

PasswordAuthentication Force password authentication

SendEnv Forward the listed environment variables

XauthLocation Specify where the xauth command is located

StrictHostKeyChecking (yes/no/ask) action if remote server host key is notin ~/.ssh/
known_hosts file: yes = terminate session; ask = ask what to do;
no = add key to file

ControlMaster auto Enables ssh connection re-using, if there is existing ssh connection

ControlPath ~/.ssh/ssh_

m UX_%h_% p_%r

to a host, and you run ssh -M host, then the existing connection
will be reused (but new ssh session will be started)

In addition to the general parameters in the ~/.ssh/config file, it is possible to

specify sets for individual nodes. This is done with the keyword ‘Host, followed by a list

of hostname templates. The templates can include ‘?’ and “*’ signs, in particular a single

asterisk matches any name. After this line, all parameters up to the next line ‘Host’ refer

only to nodes matching the template.

This syntax, in particular, allows you to greatly reduce the string length in ssh

commands, since you can specify such in the parameters. Table 10-4 presents some

useful options for ‘Host’ section.

149

CHAPTER 10 REMOTE MANAGEMENT

Table 10-4. Some options in the host section

Option Meaning

HostName Remote server name

IdentityFile Path to the private key file

Port Remote server port

User Username on the remote server
ForwardX11 (yes/no) forward X11 connection
ForwardAgent (yes/no) agent forwarding

The name specified in the template does not have to be the server name at all,
because if the HostName parameter is specified, its value will be used. Here is a simple
example of how to use this feature:

Host home
HostName home.my.provider.com
User foo
Port 2222
IdentityFile ~/.ssh/home_key

Such a fragment in the ~/.ssh/config file allows you to log on to your home
computer with the ssh home command instead of ssh -p 2222 -i ~/.ssh/home_key
foo@home.my.provider.com.

ssh is undoubtedly one of the main tools for managing a computer system. The main
difficulty of its use arises in cases when it is necessary to perform one operation on many
nodes, e.g., to perform a forced remounting of a network file system, to clear a temporary
directory, to check the presence of processes of a particular user, etc.

Host-Based Authentication

Enabling passwordless authentication on dozens/hundreds/thousands of nodes may be
painful. Good, if you have your ssh keys on the shared file system, or baked into the installed
image. In other case, you may use much less secure, but efficient “trusted” host-based
authentication. In this case, server checks if the client is allowed to use this authentication
method, if the host key matches saved one, and if the user is allowed to use it.

150

CHAPTER 10 REMOTE MANAGEMENT
To enable it, put configuration block like this into sshd_config file on server side:

Match Address 10.20.30.0/24 User admin
HostbasedAuthentication yes

In this example, we enable this method for local subnet and for admin user only. You
can enable it globally, without Match restriction. Now we need to add our trusted nodes
into /etc/shosts.equiv file, one address per line, no netmasks allowed. Make sure that
this file is not allowed for reading and writing to group and others. The next step is to
collect client host keys. For each client node, run

ssh-keyscan CLIENT-IP-ADDRESS >> /etc/ssh/ssh_known hosts

Now we need to enable it on clients. On each client node, run the ssh-keyscan
command like above, but set server address, then add config block like this into /etc/
ssh/ssh_config file:

Host server.my.cluster
HostbasedAuthentication yes
EnableSSHKeysign yes

Last line enables special helper; it is required in the modern ssh implementations.
There may be some peculiarities in the configuration; please check man pages for your
openssh version. Please note that this method is much less secure, than public key
authentications.

pdsh

Let’s take a look on the script from “Cluster” Commands subchapter of “UNIX and
Linux - The Basics” chapter. It should work well, but disadvantages of this approach are

e The output of all commands will be messed up, and it is hard to
“mark” output by its source.

o Ifatleast one ssh commands hangs, the script also hangs. If the script
is interrupted with Ctr1-C, the console will sometimes receive error

messages from hung ssh commands.

e Ifthe number of nodes is large, several hundred concurrently
running ssh-es will cause significant impact to the server

performance.
151

CHAPTER 10 REMOTE MANAGEMENT

Of course, the script can be improved and even rewritten in a more convenient
language. But this has already been done for us, e.g., by the authors of the pdsh program,
which can run any commands on specified nodes in parallel, annotate the output, and
limit the number of simultaneously running programs.

The simplest example of using pdsh:
pdsh -w node-[01-10] 'wl grep loadaverage'

This command will execute on nodes node-01 ... node-10 shell with the given
command line. Due to the fact that the string is executed in the shell, we can run not just
one command, but several, as in the example. Each output string will have a prefix - the
name of the node from which it is received.

pdsh supports various transports other than ssh, so it can work in many exotic
environments. Its most useful options are presented in Table 10-5.

Table 10-5. pdsh basic keys

Key Meaning

-a Run the command on all machines listed in the hostfile (see below)

-w Execute the command on the listed nodes. The list is specified using commas (no spaces);
ranges of numbers can be used, e.g., node-[10-20].2If *-" is specified as the list, the list is
read from standard input

-X Exclude the listed nodes

-g Run the command on the nodes of the listed groups; the list of groups is specified using
commas

-N Do not output the node name before each line of output
-f Specify the number of parallel execution threads

-u Set the timeout in seconds of command execution on the node (by default there is no
timeout)

-l Execute the command as the specified user (similar to ssh)

-b Terminate execution by pressing Ctr1-C (by default, pressing Ctr1-C gives the current
execution status, and the second press terminates execution)

2Note that the standard shell may interpret square brackets, so specify the node list in quotes.

152

CHAPTER 10 REMOTE MANAGEMENT

It is very inconvenient to specify node lists manually each time, so you can save
the list of nodes in the /etc/pdsh/machines file, one per line. You can then run the
command on all nodes using the -a switch. Since nodes may be of different types, it can
be useful to use node groups in addition to a single file with a complete list of nodes.
These can be specified in /etc/dsh/group/ (note that it is dsh, not pdsh) or ~/.dsh/
group/. Each group is specified in a separate file with a list of nodes; the group name will
be the same as the file name.

In addition to keys, you can use environment variables:

PDSH_SSH_ARGS_APPEND - Keys to be added to the ssh command. For example, some
commands require a terminal to work even in noninteractive mode; for them, you need
to specify the ‘-t’ key to the ssh command. WCOLL - Name of the file with the list of
all nodes.

In addition to pdsh, the package includes a parallel version of file copying, pdcp,
which requires pdsh to be installed on nodes as well.

Cluster Shell

Another package, able to run commands in parallel on many nodes and copy files, is
cluster shell. It is written in python and often is available as a system package, but can be
installed as a python module:

pip install --user ClusterShell
The command to run something on many nodes is clush. Here is an example:
clush -w node-[01-10] uname -a

-w specifies the list of nodes, and after all switches and options, the remote
command comes, so -a in this case won'’t be treated as a clush switch. You can put the
remote command in quotes if needed, e.g., in this case, we want grep to be executed on
the remote nodes:

clush -w node-[01-10] 'ps aux | grep foo'

153

CHAPTER 10 REMOTE MANAGEMENT

Some important options of clush:

Key Meaning

-w NODES Nodes where to run the command
-x NODES Exclude nodes from the node list
-g GROUP,--group=GROUP Run command on a group of nodes
-X GROUP Exclude nodes from this group

--hostfile=FILE,--machinefile=FILE

Path to file containing a list of target hosts

-q, --quiet Be quiet, print essential output only

-v, --verbose Be verbose, print informative messages

-d, --debug Output more messages for debugging purpose
-N Disable labeling of command line

-P, --progress Show progress during command execution

-b, --dshbak Gather nodes with same output

-B Like -b but including standard error

--diff Show diff between gathered outputs

--outdir=OUTDIR
--errdir=ERRDIR

Output directory for stdout files

Output directory for stderr files

-f FANOUT,--fanout=FANOUT
-1 USER,--user=USER
-0 OPTIONS,--options=0PTIONS

Run no more than FANOUT parallel commands at once
Execute remote command as user

Pass the OPTIONS to ssh command (e.g., use a jumphost

or different port)
-t TMOUT,--connect_timeout=TMOUT Limit time to connect to a node

-u TMOUT,--command_timeout=TMOUT Limit time for command to run on the node

Note -b option - it is really useful when you do come check on the nodes and expect
the same results. --outdir is useful when you want to inspect the output of each node,
as it stores each node’s output in a separate file. As the pdsh, clush can be used for
copying files, to do that specify -c switch (or --copy). All names after this switch will be
treated as files and directories to be copied.

154

CHAPTER 10 REMOTE MANAGEMENT

By default, they are copied in the same paths on the remote hosts. To change that,
use --dest PATH option after the files list. To copy files from the remote hosts,
use --rcopy switch instead of --copy.

The groups support is more flexible in cluster shell, than in pdsh, but a bit more
complicated. The big advantage is that there is ability to integrate with external
programs, e.g., SLURM (we’ll talk about it in the “Job Management Systems” chapter). To
enable it, just rename a file:

mv /etc/clustershell/groups.conf.d/slurm.conf{.example,}

The exact path may depend on the way you installed the package. After doing that,
you can run a command on all nodes of specified partition or in specified state:

clush -w @sp:main uptime # nodes of the partition 'main’
clush -w @st:idle # all idle nodes

Check the docs if you want to make your custom integration. Note that lists of nodes
are cached for 60 minutes by default (for slurm - 1 minute), so sometimes lists can be
inaccurate.

Except the clush command, the package includes cluset command, which allows
you to manipulate with host lists - convert a list to “folded” format and back, count
nodes, join, intersect lists, etc. Here are some examples:

cluset -e node-[01-03,11-13] # expand the list
node-01 node-02 node-03 node-11 node-12 node-13
echo node-01 node-02 node-03 | cluset -f # fold the list

node-[01-03]
cluset -c node-[01-03,11-13] # count nodes
6

Read more in the docs; there are also tree mode for large clusters, special execution
modes, etc.

Screen and tmux

There are at least two packages I want to mention, which are not remote access tools,
but they make it much less stressful. Both tmux and GNU screen make two important
things - make possible to have many terminals opened on a remote host via single

155

CHAPTER 10 REMOTE MANAGEMENT

connection (ssh, or any other) and keep your remote session if the connection was
dropped. It is critical, e.g., if you started a long operation and your network connection
was interrupted, if you were in an ssh session, you have to start everything over and may
lose or, even worse, break some data. If you worked in a tmux or screen session, then
after reconnection you just join back to your session and continue to work, from the
perspective of any programs you started in this session nothing happened.

Let’s take a look on the most common options of GNU screen first:

Option Meaning

-X Join the latest session in “shared” mode — if there is another connection to this
session it won’t break (and you can share your actions with someone else, e.g.)

-d/-D Detach the existing connection to the session. If there was no active connection, -d
will fail, -D won’t

-r/-R/-RR Reattach to the existing session. -R — if there is no session, create it. -RR = “Attach
here and now. Whatever that means, just do it.” (Taken from the official docs)

-S [name] Create a new session, optionally giving it a name

-list List current sessions and their states

Usually, a good idea is to run screen with options -xRR or -DRR. After you started
a screen session, you get a new(!) virtual terminal, which starts your login shell. Being
attached to the screen session, you can send commands to screen, pressing a hotkey,
then a command key. By default, the hotkey is Ctr1-a, but you can redefine it in the
configuration file ~/ . screenrc. Useful keys (there are much more, of course):

Key Meaning

c Create new window — a new virtual terminal
k Kill current window

n Go to the next window

p Go to the previous window

“ List all the windows

(continued)

156

CHAPTER 10 REMOTE MANAGEMENT

Key Meaning

d Detach from the screen session

a Send Ctrl-a to the window

0.9 Go to the window with number 0..9

ESC Copy mode — move cursor through the window history. You can press space to start
selection, press it again to end selection, then ‘>’ to save the selection into a file

h/H Putthe current window history into a file, or start saving the window history into a file

1 Show current time, hostname, and load average

Ctrl-x Lock the screen, to unlock it you have to enter your password (be careful if you use
passwordless ssh!!!)

F Fit the window to the actual terminal size (e.g., when you reattached to the session from
another computer)
Split the current window vertically into two regions, each region is a window (new region
goes empty, just run Ctrl-a 0 to show the first window in it, or start a new with Ctrl-a c)

S Like the previous one, but split horizontally

TAB Change the focus to the next region

Q Leave the only current region, kill the others (regions, not the windows they show)

X Kill the current region

Z Suspend the screen

?

Show the key bindings

Enter a command mode — you can type a command, which is not bind to a key, e.g.,
“resize +20%” — increase current region size by 20%

See more info and commands in the docs. New key bindings can be made in the

configuration file. Also, I recommend adding some useful commands into it:

Enable scrolling back for 1000 lines in copy mode
defscrollback 1000

Enable search in screen commands with Ctrl-a {
history

157

CHAPTER 10 REMOTE MANAGEMENT

Enable mouse support (switch between regions and some more)
defmousetrack on

Reset terminal settings
termcapinfo xterm* ti@:te@

Enable a status line - STR is a format string
hardstatus alwayslastline STR

Sample of the STR:

%{+b rk}%ch{gk}%t [%n] %{y.}%Ll%{wk}

it gives you the status like
#10:23Iroot@server2:~/bin [2] 0.17 1.27 1.21

TMUX is another project, similar to screen, but it gives you more flexibility. The most
valuable feature is a command, starting new window with a given command, running
inside. Tmux also uses a hotkey, but instead of Ctrl-A in screen, here default is Ctrl-B,
and you can reassign it in the config file . tmux.conf. To imitate the screen -xRR options,
you can use either tmux attach Il tmux new command or tmux new -A -s 0.

Keys 0-9, ¢, d, %, p, and n are the same, as for screen. Here are other useful keys

for tmux:

Key Meaning

I Switch to the last used window

, Rename a window

’ Show windows list and select a window you want to switch to

% Split window vertically

¢ Split window horizontally

w Quick all windows check

-1l Navigate between opened panels (regions)

Ctrl/ Change the current panel (region) size: with Cirl — by one character, with Alt — by 5
At+— 1]

z Show the current panel only in full window (zoom), pressing it again restores it back

158

CHAPTER 10 REMOTE MANAGEMENT

There is no useful scroll mode, as with screen, so if you want to look back in the
history, press hotkey (Ctrl-b), then ‘[; which activates copy mode. Use arrow keys or
PgUp/PgDn to navigate and Ctrl-c to exit from the copy mode. To copy text in the copy
mode, use Shift-SPACE to start copying, then Ctrl-w to copy it. After exiting copy mode,
you can press hotkey, then ‘]’ to paste copied text. If you use mouse, I recommend
enabling it in the ~/.tmux.conf, adding the line set -g mouse on; this allows to copy
text without copy mode, resize panes, and switch windows clicking on status line. The
status line is enabled by default and highly customizable. Read the official docs to now
about all tmux features.

For both tmux and screen, I highly recommend not to use any commands, executed
for the status line update - in case of any issues, when this command hangs, you just lose

access to your windows.

IPMI

Intelligent Platform Management Interface is a standard for remote server management.
The standard assumes the presence of a special component in the server hardware -
management controller (MC). In fact, it is a small independent server that monitors
the performance of the main server by various sensors (e.g., I2C, SMB buses). It is able
to manage the power of the main server and often emulates a serial port for the main
server, giving a remote user access to it. The latter allows console access to the main
server through the MG, if the OS is configured correctly. MC can (must!) be configured
for access to it over the network, which allows remote access to information about the
state of the server, even if it is hung, as well as to reboot it or simply shut it down.

Since IPMI is an open standard, there are several implementations of its client
part. For Linux, the most popular are ipmitool and openipmi. We will take a look at
ipmitool and give the most common scenarios of its use. The ipmitool package is
available in all popular distributions, install it through the package manager, including
on compute nodes.

Most often network access to MC is disabled by default, and you need to enable it
from the BIOS (which is not always implemented in the BIOS itself) or from the OS on
the node. The second method always works, so let’s consider it. First, you need to load
the kernel modules that are responsible for communication with MC, if these modules
are not already loaded or statically connected to the kernel:

159

CHAPTER 10 REMOTE MANAGEMENT

modprobe ipmi_devintf
modprobe ipmi_si
modprobe ipmi_msghandler

Now the ipmitool command can work with the local MC, and we can configure it,
e.g., for network access. If network access is already configured, you can do something
on the remote MC with the command:

ipmitool -I lan/lanplus -H host -U user -P password COMMAND

The -1 option specifies the protocol version: 1an for 1.5 and lanplus for 2.0 and
higher. These versions are not compatible with each other, and backward compatibility is
typically not ensured, so you must explicitly specify the protocol version. For local MC, the
command is specified directly after ipmitool. Table 10-6 presents the main commands, or

rather classes of commands, since almost every command has many subcommands.

Table 10-6. The main ipmitool subcommands

Subcommand Meaning

Lan Network configuration

Power Power management

Mc Controller management

Sensor Sensor value printing

Sol Serial over LAN — remote console
User MC user management

Channel MC channel setup

Session Session information

Shell Input commands interactively

Use the ipmitool lan print command to view the current MC network settings.
Here is the typical output of this command:

Set in Progress : Set Complete
Auth Type Support : NONE MD2 MD5 PASSWORD
Auth Type Enable : Callback : NONE MD5 PASSWORD

160

IP Address Source
IP Address

Subnet Mask

MAC Address
Default Gateway IP

Backup Gateway IP
Backup Gateway MAC
802.1q VLAN ID

: OEM :
: Static Address

¢ 10.0.1.2

¢ 255.255.255.0

: 00:11:22:33:44:55
: 0.0.0.0

Default Gateway MAC :
: 0.0.0.0

: 00:00:00:00:00:00
: Disabled

CHAPTER 10

NONE MD5 PASSWORD

00:00:00:00:00:00

802.1q VLAN Priority: 0

The command is used to set the parameters:

ipmitool lan set <channel> <command> [option]

REMOTE MANAGEMENT

Here, channel is the channel number (usually 1), and command is an indication of

what and how to configure. Table 10-7 presents the list of the main subcommands.

Table 10-7. Main ipmitool channel subcommands

Subcommand

Meaning

ipaddr <X.X.X.X.X>
netmask <x.X.Xx.x.x>
defgw ipaddr <x.X.X.Xx.x>

password <password>

IP address

Set the IP address mask

Set a password for access

Set the default route IP address

The ipmitool power command allows you to control the server’s power supply. Its

subcommands are presented in Table 10-8.

161

CHAPTER 10 REMOTE MANAGEMENT

Table 10-8. ipmitool power subcommands

Subcommand Meaning

on Power up
off Power off
cycle Turn the power off and on (not always reliable, it is better to explicitly use two off/on

calls with a pause)
reset Perform actions similar to pressing the “reset” button

status Output the current power status

As of IPMI version 2.0, the sol (serial over LAN) command is supported, which
allows you to connect remotely to a virtual or real serial port. This means that if we run
a getty or similar program (mgetty, mingetty, etc.) on this port on the server, we can
access it via IPMI. To test this, run the /sbin/mgetty /dev/ttySO command on the
server (if IPMI is configured for the first serial port).

Example of running a sol session in ipmitool:

ipmitool sol activate

To exit a sol session, type “~.” Be careful if the same keyboard shortcut is used in
ssh to end the ssh session. A complete list of available MC sensors, along with their
values and other parameters, can be obtained with the sensor command or (in a
slightly different form) sdr. To get the value and details of a sensor named NAME, use the

command:
ipmitool sensor get <NAME>

To set up remote command execution, we need to create (or use an existing) user,
give it a password and a network interface. Below is the command sequence that allows
us to do this:

ipmitool user set name 3 adminuser
ipmitool user set password 3 MYPASSWORD
ipmitool user priv 3 4 1

162

CHAPTER 10 REMOTE MANAGEMENT

Here in the first line, we give user number 3 the name adminuser. Then for this
user, we set the password MYPASSWORD, and in the last line, we give him (number 3)
administrator rights (level 4) and the ability to log in from the first channel (1). The user
number, password, and channel number can of course be different, look at your current
settings.

Now we need to configure the channel:

ipmitool lan set 1 access on

ipmitool lan set 1 auth admin md5

ipmitool channel setaccess 1 3 privilege=4
ipmitool sol payload enable 1 3

ipmitool sol set enabled true

First line allows access on the first channel; second line allows password
authentication on it for admin level (this is not the username!). In the next line, for the
first channel and user number 3, we allow access with level 4 (admin). The next two lines
enable SOL payload for the channel 1 and user 3. In some cases, one of them or both are
not needed, but better to run them to be sure.

As you can see, the settings are partially duplicated, and in reality, only the user
settings may suffice, but this depends on the specific BMC IPMI model.

Now you can control the BMC remotely. You can enter a command from

another server:
ipmitool -I lan -U admin -P MYPASSWORD -H 10.0.1.2 sdr list all

It will connect to the BMC at 10.0.1.2 and show the list of sensors. If the remote
BMC is running IPMI 2.0 protocol, but instead of -I lan you should write -I lanplus.
To avoid writing the password directly in the command line, which is unsafe, it is better
to write it to a file and specify it with the -f pass_file key instead of -P.

IPMI network is not really secure, and good practice is to separate it into dedicated
physical network (yes, cheap Ethernet switches, miles of cables...), or, if it is possible,
set up a dedicated VLAN and enable it only on management (not user-facing!) nodes.
VLAN option is supported by most BMC makers, but, please, double-check that before
planning your management network. Also, setting up VLAN on all compute nodes
manually would be painful, so ask your supplier to set it up automatically if possible.

163

CHAPTER 10 REMOTE MANAGEMENT

Conman

Using a remote console connection via IPMI is really helpful in many cases, but
sometimes raw ipmitool is not convenient, especially when you need to monitor
consoles on several remote servers. In this case, you can use helper programs, like
conman. It is a “console manager,” which can keep the connection to a remote (or local)
console open, so you can see the current status. In the case of conman, you can even
automate some operations. There are some alternatives, e.g., XCAT includes rcons utility,
which has similar functions. Conman does not support power management, but for this
goal, I recommend using powerman?® project, which supports IPMI and wide range of
remotely controlled PDU models.

I highly recommend using such console managers, as they significantly improve your
efficiency in remote debugging.

IKVM

KVM is an abbreviation for Keyboard+Video+Mouse. This is a system that allows you

to connect a single console set (monitor, keyboard, and possibly a mouse) to multiple
system units. These were originally physical signal switches and can still be found on the
market today. Many rack-mounted consoles provide this capability.

iKVM (or KVM-over-IP) is a device that allows you to get a picture from the screen
and emulate the work of a keyboard and possibly a mouse connected to a computer via
a network. There is no single standard for implementing this technology, so different
manufacturers provide completely different features and interfaces.

Most of them use a browser with Flash, Java, or a special plug-in installed as a client.
The iKVM support itself can be either built into the server or implemented by an external
device. In the latter case, you will have to connect video and keyboard cables from the
required servers to it. External iKVM devices cannot always provide power management
of the connected servers unlike built-in ones, so I advise you to choose in favor of built-
in iKVM support.

Shttps://github.com/chaos/powerman
164

https://github.com/chaos/powerman

CHAPTER 10 REMOTE MANAGEMENT

As it was said, there is no standard for the iKVM protocol, which means that you
probably can’t automate iKVM for mass administration tasks, such as changing a
parameter in the BIOS for all nodes. If there is a protocol description for the iKVM
implementation you are using, that would be a big plus for you. Either way, iKVM will be
a great complement to ssh and IPMI. Unlike them, iKVM allows you to see the output of
a hung node, which makes diagnosing problems much easier.

Brief Summary

Because the number of nodes in a cluster is usually large, remote command execution
for administration and monitoring becomes critical. Use all the options you have
available for effective remote management - ssh, pdsh, IMPI, ILO, iKVM, SNMP, and
other services.

Take into account the peculiarities of these programs and services: they can poorly
tolerate intensive load, as well as not very sparing to your network, and, running in
parallel a thousand copies of the file via scp, you can create difficulties connecting the
head machine with the rest of the nodes.

Search Keywords

SSH, pdsh, parallel shell, remote server control, connman, connection manager, ipmi,
ilkvm, ILO, redfish, gnu screen, tmux

165

CHAPTER 11

Users — Accounting
Management

Account Synchronization

Account management becomes a challenge in a supercomputer environment. One of
the most important issues here is to ensure account synchronization between all nodes.
This can be achieved in different ways: by using single data source over the network,
like LDAP or NIS+, and by running periodic (or event-driven) synchronization of static
information.

In most cases, it is sufficient to keep basic information (uid, gid, home dir, ...)
synchronized, but don’t forget about things like quotas, access limitations, etc.
Information about them may be stored separately from the basic credentials, and their
synchronization should be organized separately. Moreover, it is not always necessary to
synchronize it, and in some cases, it should even be different on different service nodes.
For example, the CPU time quota on the compute node should not be limited, but on the
main machine, rather the opposite is true.

User access to service nodes (e.g., backup server) is generally undesirable, but
information about them is necessary. Do not forget about such moments and think
about the synchronization scheme in such cases in advance.

Classic Approach

Historically, Linux systems have stored user account information in /etc/passwd, /etc/
shadow, and /etc/groups. The disadvantage of this approach for clusters is obvious - it
is necessary to maintain a consistent state of these files for all nodes in the cluster.

167
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_11

https://doi.org/10.1007/979-8-8688-1600-0_11#DOI

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

The simplest solution is to use the widely used LDAP or NIS+ technologies, but they have
significant scalability limitations. How to get around them?

We can use the classical variant and store data in the passwd file and synchronize its
content with the master on all nodes. Let’s consider the pros and cons of this approach
and try to take them into account in the implementation.

Pros:

o Absence of network requests “storm” when a user logs on to a lot of
compute nodes (starts a large task)

e Low time to obtain accounting information
o Removing the point of failure as a network authentication service
Cons:

e In case of synchronization failure or node replacement, we get a
hard-to-diagnose error (missing or incorrect user data).

o Possible high load on the network when updating data.

¢ When adding/removing multiple users, there is a lot of unnecessary
data copying.

o Low flexibility of the solution.

So, the “bottlenecks” of our solution are potential data desynchronization and
shock loads on the network. To eliminate the first threat, I suggest using the following
synchronization scheme: data copying is started not on the master node, where
the master files are stored, but on the destination node. Copying can be organized
via scp or rsync, and it is better to put it in a separate script. This script should be
automatically started at node startup; if necessary, it can also be started remotely from
the master node.

Here is an example of such a script; let’s call it /usr/sbin/master-sync:

#!1/usr/bin/env bash
SYNC="rsync -e 'ssh -i /root/secret key'"
SRC_ADDR=root@master.cluster

$SYNC $SRC_ADDR:/etc/passwd /etc/passwd
$SYNC $SRC_ADDR:/etc/shadow /etc/shadow
$SYNC $SRC_ADDR:/etc/group /etc/group

168

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

Thus, if a node is replaced or temporarily disconnected, the data will still be updated
when the node is started. To reduce the load on the network, it is necessary to organize
synchronization properly: do not start many copying processes at once and monitor
their execution.

In order to avoid multiple repetitions of data copying during mass additions
or deletions of users, it makes sense to create a separate command that starts
synchronization and execute it manually only when the administrator finishes changing
the credentials. The workflow should be organized to run synchronization to remote
nodes with some delay or pools so that the network is not overloaded. You can use
running commands at 0.1- to 0.5-second intervals or use the pdsh/clush program,
which is better.

An example of such a script is as follows:

#!1/usr/bin/env bash
TIMEOUT=600
CT=3
exit the script after getting ALRM signal
trap 'exit' ALRM
schedule ALRM signal to self
(sleep $TIMEOUT &8 kill -ALRM "$$") &
do the sync!
for i in $(grep -v \# /etc/nodes); do
ssh -0 connecttimeout=$CT $i /usr/sbin/master-sync

echo -n .
sleep 0.1
done
echo

NIS/NIS+

NIS (Network Information System) was created by Sun in 1985. Initially, it was called
Yellow Pages, but the owners of the trademark of the same name sued and Sun changed
the name, although the names of all services and programs retained the prefix ‘yp’

169

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

The purpose of NIS is to distribute information over the network that must be
identical across multiple clients, such as account data and passwords, /etc/hosts files,
and so on. The first version of the system had fundamental security problems, so it was
replaced by a new version, NIS+ (NIS plus). Note that despite the identical program
names and many configuration files, NIS and NIS+ are not compatible and the client
from one system will not work with the server of the other. Hopefully, there should be no
NIS packages available, only NIS+.

The NIS+ server is rarely used for user authentication on clusters. This is due to two
circumstances: first, even NIS+ is not sufficiently secure; second, there are reliability
and performance issues with handling multiple RPC requests. If the number of clients is
more than 30-40, it is likely that a single NIS server will struggle to cope with the load.

On the other hand, the NIS+ subsystem has obvious attractive features such as
simplicity and ease of administration, server redundancy, and hierarchy, so it is
sometimes still used on some small-scale cluster systems.

Current administration consists of modifying (by any means, such as manual
editing) source files to be translated over the network, such as passwd, shadow, and
group, and executing the make command to modify the network databases. Connecting
anew node or even an entire cluster is a matter of configuring it to a running NIS+
server. The initial configuration of the NIS+ server is usually performed with the help of
special utilities, which may differ from one Linux distribution to another, but the actions
performed by these utilities are quite standard:

1) Configure NIS server components to start during the OS boot
process. There are three server processes running in NIS:

e ypservis the main NIS+ server.

e yppasswdd is a server that monitors password modifications
by users.

o ypxfrdis a server that performs database synchronization on
secondary NIS+ servers.

2) Open the necessary services in firewall (rpcbind, portmap, ypserv,
yppasswdd, ypxfrd).

3) Create a NIS+ domain (which has nothing to do with DNS
domain) - specify its name in a ypserv config file or start options;
on the clients, put this name into the /etc/defaultdomain file.

170

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

4) Create server configuration files /etc/ypserv.conf and /etc/
sysconfig/ypserv; specify there the directory for source files for
building network databases (usually /var/yp) and rules for the
clients subnets.

5) Create aMakefile in the directory with network databases for
operative updating of network databases and a file securenets, in
which the segments of IP networks from which access to the NIS+
server is allowed are specified.

6) On clients, the /etc/defaultdomain and /etc/yp.conf files
specify the NIS+ domain and a list of servers.

7) ypbind service is started.

8) Add nis+ to the necessary lines in the /etc/nsswitch.conf file, to
change the order of data search.

If the choice of authentication system is NIS+, the management computer must also
be configured as a NIS+ client. After configuration, the data on users, groups, and hosts
will be available to the clients via the NIS server. After updating the local data on the
server (adding users, changing passwords, etc.), you must go to the /var/yp directory
and perform the update with the make command. The procedures may differ slightly
in different distributions; pay attention to the documentation. For large clusters, I
recommend having several slave servers and distribute the load.

LDAP

The purpose of LDAP (Lightweight Directory Access Protocol) is to provide a universal
way to access structured data.

The protocol defines so-called schemes that specify what kind of data, with what
structure and of what type, can be stored and received by the user, e.g., data about an
organization (its name, address, etc.), a user (his login, password, password validity time,
etc.), a computer, and much more. Most of the schemes are standard, so different client
programs can retrieve the information without problems.

There are many LDAP server implementations, both commercial and free. The
well-known Microsoft Active Directory product is actually an LDAP server with a set
of extensions. As you can see from the description, the idea is very similar to NIS+, but

171

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

in this case, the functionality is wider: the information is not strings from text files (like
passwd, group, hosts, etc.), but full-fledged database records, which can include links
to other records, binary information (a picture, for example), you can search by a wide
range of parameters and much more.

A very important feature of LDAP is a complete system of access separation and
authentication, i.e., a user can access only those records to which his rights allow.
Approximately, as in a file system. LDAP is actively used to store user data and often
successfully replaces passwd and NIS+. Therefore, it is tempting to use it to manage
supercomputer users and many other things as well.

Unfortunately, this idea works only with small clusters. The point is that a computing
cluster is characterized not by uniform access to LDAP server, but by “explosive” access -
at the moment of launching a task, all nodes on which it is launched simultaneously
access LDAP server for information about the user. This mode of operation is not
acceptable for LDAP server, and with large number of simultaneous requests, it simply
discards the “unnecessary” ones, which leads to the impossibility of launching tasks.

This problem can be solved by configuring a hierarchy of caching LDAP servers,
but in practice, I have not yet encountered such solutions for clusters, so it is difficult
to say anything about their effectiveness. Besides purely technical concerns, such a
solution requires additional physical servers and careful implementation of the network,
which entails, among other things, lower reliability and more complicated support.
Nevertheless, for small clusters, such a solution can be very convenient, as it allows
storing in LDAP-based advanced user data and integrating with various applications and
web services.

Configuring an LDAP server is not easy and is described in detail in the literature and
on the Internet. Note that configuration on the client in RedHat-like distributions can be
done with the interactive authconfig program. After installing and configuring LDAP
server, you can install programs for its administration. There are many such programs,
such as phpLDAPadmin or LDAP Account Manager. Besides OpenLDABP, there are other
free implementations, such as Fedora Directory Server, Apache Directory Project, and
Mandriva Directory Server. Some of them include administration tools as well.

Brief Summary

The organization of account management seems very simple because it is built into the
OS. But this is only the technical part, and how to use it is not always clear either.

172

CHAPTER 11 USERS — ACCOUNTING MANAGEMENT

To effectively manage records, you need to make an informed decision about what
technology to use to do so, how to keep records, what to include and what not to include,
and very clear descriptions of all procedures, both in-house and not so in-house.

Search Keywords

LDAP, openldap, NIS+, PAM, passwd, rsync

173

CHAPTER 12

Users — Quotas
and Access Rights

No matter how good our users are, there is always a need for restrictions on various
resources both within the supercomputer as a whole and within an access node. This
task breaks down into two: a rigid “can/can’t” restriction and a flexible “can do no more
than” restriction. The first restriction, as a rule, is realized by means of user and/or group
rights to certain files and devices. The second one is realized with the help of quota
mechanisms that are built into some subsystems.

File System Quotas

Quotas and limits have been and still are one of the most effective methods of optimizing
resource usage and keeping order on any computing system. Quotas, as a rule, refer

to file systems, where they have existed for quite a long time. However, some other
resources can be quoted as well.

So how do disk quotas work? Most standard file systems in Linux have quota support
by default, but to activate it, you often need to specify special mount options - usrquota
and grpquota. Sometimes both options can be replaced by a single option - quota. To
work with disk quotas, you need to install a separate package, usually called quota.
Please note that some file systems, like zfs, btrfs, and lustre, have special commands for
managing quotas and have advanced quoting features. For such file systems, commands,
listed below, won’t work, but the general idea is the same.

After mounting the file system with the required options, you need to run the

command from the superuser:

quotacheck /path/to/fs

175
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_12

https://doi.org/10.1007/979-8-8688-1600-0_12#DOI

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS
or
quotacheck -a

These commands will correct or create data on the current usage of the file system
by users and groups. You cannot run the command while users are working, because the
data obtained will be incorrect. To avoid this situation, it is better to run the command
with the -M switch, then it will set the file system to read-only mode before checking. It is
recommended to reboot into single-user mode with the command systemctl isolate
rescue,’ to stop all running services.

Linux supports so-called soft and hard quotas. When a user or a group reaches a
hard quota, disk space allocation is stopped and the corresponding system calls (write,
seek, etc.) are terminated with an error in the user’s applications. When a soft quota
is reached, the user is allowed to continue using the resource for some fixed time (of
course, if the hard quota is not exceeded). After the specified time, if the soft quota
continues to be exceeded, disk space allocation stops.

Once the quota data has been created, the quotaon, quotaoff, setquota, repquota,
and edquota commands can be used. The quotaon and quotaoff commands turn quota
counting on and off, respectively. As an argument, they take the path to the mounted
file system or the -a switch, which means all file systems for which the quota option is
specified in the /etc/fstab file.

setquota sets a quota for a specific user or group. Command format:

setquota username block-soft block-hard \
inode-soft inode-hard filesystems

Here:
e username or UID of the user

o filesystems list of file systems or the -a key, meaning all file systems
for which the quota is enabled

e block-soft number of blocks (soft quota)
e block-hard number of blocks (hard quota)
e inode-soft number of files (soft quota)

e inode-hard number of files (hard quota)

1On systems with systemV-style init - init 1

176

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

Quota is set for each specified file system; quotas on different file systems are not
summarized. If some quota does not need to be specified (e.g., a soft quota on the
number of files), then 0 is specified in the corresponding field. If you specify the -g
switch, username will be the name of the group and the group quota will be set. The user
quota is set by default; you can specify it explicitly with the -u switch.

If you specify the -b switch instead of username and quota fields, setquota will
expect these values on the standard input stream - one line per user or group. The fields
must be specified in the same order as on the command line.

The size of disk space is specified in blocks, not (kilo)bytes.

The time after which a soft quota exceedance becomes a blocking quota is also
specified by the setquota command using the -t (default for all) or -T (for an individual
user or group) switch. Either time in seconds or the string ‘unset’ is specified if time is
not limited. Command format:

setquota -t [-u | -g] block-grace inode-grace -a | filesystems
setquota -T [-u | g] name block-grace inode-grace -a | filesystems

Another way to change quotas is the edquota command. Unlike setquota, it starts
an editor (set in the EDITOR environment variable), which is passed a text file in a special
format. You can view a report on current quotas and occupied space with the repquota
command. Its format is similar to edquota and setquota: the -u (default) and -g keys
specify the type of quota (user or group), -t and -T specify the times for soft quota, the
name of the user or group, and the list of file systems (or the -a key). If no user (group)
name is specified, statistics for all users (groups) are given.

Typical output of the repquota command with -s switch to show information in
human-readable format:

repquota -m /
¥k Report for user quotas on device /dev/sda
Block grace time: 7days; Inode grace time: 7days

Space limits File limits
User used soft hard grace used soft hard grace
root -- 52806M (0] oK 803k 0 0

177

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

As you can see, the header lists the default soft quota grace times for the size and
inodes count, and then there is a table by user that lists all the quota settings and current
usage statistics. Note that for different file systems, quota parameters may vary, like there
can be default quota (like for Lustre), projects quota support, etc.

A brief set of steps required to enable quota on an individual file system:

1. Editthe /etc/fstab file. Add usrquota key to the file system
mount options (in this example - /dev/sdaé mounted on
/export):

/dev/sda6 /export ext3 acl,user xattr,usrquota 1 2
2. Set the file system to read only or unmount:

mount -o remount,ro /dev/sda6

or

umount /export
3. Create a quota database:

quotacheck -vugc /dev/sda6
4. Remount the file system with the new options:

umount /dev/sda6
mount /dev/sda6

5. Enable quota on the file system:
quotaon -va

This is usually done automatically in startup scripts.

6. Set quotas for users:
edquota username

You can use any existing user or group as a reference to set quota for other users/
groups - use -p option. In this example, we copy quotas on all file systems from user foo
to user bar:

setquota -p foo -u bar -a

178

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

Quoting is also supported for the NFS file system; it is typically sufficient to install
the quota package on the NFS server and enable quota support on the partition being

exported. Do not forget to restart the NFS service. If quota is not enabled (repquota on

the network disk does not work), make sure that the rpc.rquotad service is started on

the server.

Note that some file systems, e.g., zfs and btrfs, can have their own quota utilities and

may slightly differ from “traditional,” but the overall principle would be the same. Lustre

quotas are similar and were described in the “Lustre” subchapter.

ulimits

In addition to disk space quota, Linux provides quota, or rather, limitation of some other

resources using the ulimit tool. Let’s run the ulimit -a command and see what is
available for limiting:

ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0

file size (blocks, -f) unlimited
pending signals (-i) 63616

max locked memory (kbytes, -1) 64

max memory size (kbytes, -m) unlimited
open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200
real-time priority (-r) o

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 63616

virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

The resource name is given at the beginning of the line, followed by the units in
parentheses and the ulimit command key that specifies this parameter.

179

CHAPTER 12

USERS — QUOTAS AND ACCESS RIGHTS

Let’s take a closer look at what these are. Limits that are not displayed by ulimit -a

command, but are available for modification, are presented in the Table 12-1 (the limits

that are important for us are highlighted in bold).

Table 12-1. Main limits set via ulimit

Limit

Meaning

core file size

data size
scheduling priority
file size

pending signals

max locked memory

max memory size
open files

pipe size

POSIX message queues
real-time priority
stack size

cpu time

max user processes
virtual memory

file locks

maxlogins

maxsyslogins

Size of core file to which the memory dump of the crashed process is
written

Process memory size for data

Minimum priority, which can be specified in the nice or renice command
Maximum size of the file to be created

Maximum number of pending signals

The maximum amount that a process can lock in RAM, preventing it
from being unloaded into swap

The maximum amount of memory that the process can allocate
Maximum number of simultaneously opened file descriptors
Maximum pipe size

Maximum number of queues created

Maximum real-time priority

Maximum stack size

CPU time limit

Limit of simultaneously running processes

The maximum amount of virtual memory that the process can allocate
Number of simultaneous file locks

Number of simultaneous user logins

Total number of simultaneous inputs

180

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

To avoid a fork-bomb attack,? I strongly recommend limiting the number of
simultaneously running processes on control nodes for ordinary users. Fifty to one
hundred processes per user are usually more than enough for comfortable work. It is
also worth limiting the processor time, e.g., to 100 seconds. This is not an astronomical
process running time, but exactly the time the processor spent on it. This will help to
limit random and nonrandom runs of calculations on the head machine.

A CPU time limit that is too small will cause large file transfers via sftp/scp to the
host machine to crash.

All ulimits can be also set via cgroups, €.g., in the user slice in systemd. Note that
some limits may have global limitation via kernel parameters, e.g., maximum
number of opened file descriptors can be limited via sysctl parameter
fs.file-max, and in this case, if you set ulimit higher, it actually will be limited
by sysctl value.

Some limits, especially on compute nodes, should be increased. First, it is open
files, because when starting many processes via ssh, a socket is created for each
connection, which is also a file in UNIX ideology. Second - max locked memory, because
memory for RDMA system buffers should be locked. On the user-facing nodes, e.g., login
nodes, I recommend restricting system resources usage, like CPU, memory, and number
of processes, to prevent accidental user misbehavior.

In many cases, you should change the stack size limit, because it is actively used by
OpenMP applications to store local variables. But don’t make it too big; otherwise, it will
take up alot of memory by default, even if it is not required. All these limits are specified
in /etc/security/limits.conf and set by the PAM module pam_limits.

If you use systemd (most probably yes), then you can use limits per service. Check
the chapter “Systemd - a Short Course” for details.

2 A program or even a script (for example, “./ & ./ &” written to a file named “_") that runs
itself many times. The consequences of not setting a limit on the number of processes are fatal -
the computer stops responding after a few seconds, and it is impossible to bring it back to life.

181

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

UNIX Groups, ACLs

Access to resources is rarely equal for all users. Not even because “everyone is equal,
but some are more equal than others.” Different types of tasks often require different
amounts of disk space, time for counting, and, in rare cases, higher priority for a short
time, etc.

To control access to disk space, the UNIX rights sharing system is traditionally used.
For example, to organize joint work on a project, it is convenient to create UNIX groups
and a common directory with a “sticky” bit per group. Sometimes more flexible control
of access to files and directories is required. In this case, an extension of the traditional
rights system - access control lists (ACLs) - can help.

Not all file systems support them, especially network file systems. The principle
of ACL is simple: in addition to the usual rights, lists of users with their own rights are
added. This allows you not to create a group for each case, but to set an explicit list of
users with the necessary rights. For example, it is possible to allow users user1, user2,
and user3 to read and write in the mydir directory; users reader1, reader2, and reader3
to read only; and all others to deny access completely by commands:

setfacl -m u:userl:rw, u:user2:rw, u:user3:rw mydir
setfacl -m u:readeri:r, u:reader2:r, u:reader3:r mydir
chmod o-rwx mydir

If ACLs are set for a directory or file, the 1s command will add a ‘+’ sign to the list of
permissions. You can view ACLs with the getfacl command. For more information, see
the documentation, e.g., man acl.

Restrict User Access

Blocking is an extreme measure prohibiting the use of an individual resource (as a rule,
direct access to compute nodes) or the supercomputer as a whole (login prohibition).
Such means should be used cautiously, only in cases when it is seriously justified - the
rules of operation are grossly violated or the user’s actions violate the operation mode of
the complex.

Now let’s look at ways to block a user if necessary. There are different locking
options available: blocking login; blocking login except for file access; and blocking
access to computing resources. Access to computing resources is controlled by the

182

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

task management system, so it depends heavily on which system you are using. Access
to the system can be restricted in several ways: in the sshd configuration, through the
pam_access module, by changing the shell. There are other options, but these are the
most common.

To block with sshd, insert a line of the form in the sshd_config configuration file
DenyUsers useril,user2

and restart sshd (running sessions will still work). After that, user1 and user2 will
not be able to log in. This option can also be used in the Match section if you want to limit
its effect by some condition. Instead of DenyUsers, you can use AllowUsers if you want to
deny access to all but a few users (e.g., during maintenance work).

You cannot mix AllowUsers and DenyUsers options — only one of them
will work.

An alternative to this method is to use the pam_access module. First, you need to
include it in the PAM chain for sshd (/etc/pam.d/sshd) or for all kinds of authorization
(/etc/pam.d/system-auth). Open the file in an editor and insert a line at the beginning:

account required pam_access.so
Now edit the /etc/security/access.conf file by adding a line to the end:
+:ALL:ALL

The file format is simple: each line has three fields separated by a colon. The first
field is a plus sign to allow access or a minus sign to deny access. The second field is a list
of user and/or group names, separated by a space. The third field is a list of addresses to
which the rule applies.

To specify a user group, add an ‘@ sign to the beginning of its name, e.g., ‘@wheel’ The
ALL keyword means all users. It is allowed to use the EXCEPT keyword, which indicates to
exclude from the listed users or groups (e.g., ‘ALL EXCEPT (@wheel)’). You can specify
the ALL keyword in the address list, as well as the IP or DNS address or network (e.g.,
10.0.0.0/8), terminal name (e.g., tty1, :0), or the LOCAL keyword (to log in from the
console or on behalf of a local service).

183

CHAPTER 12 USERS — QUOTAS AND ACCESS RIGHTS

Iwould recommend you to immediately write “permission” for administrators to log

in and do not delete this line. In the last line, I propose you to forbid all access:

+:@admins:ALL
... other access rules
-:ALL:ALL

Since the rules are executed sequentially, nothing else will be processed after this line.

The last method is to change the shell. As you know, when a user logs in successfully,
a shell process is started for the user to execute commands. Even if the user executes a
separate command (e.g., ssh remotehost uptime), itis still executed through the shell.
So if you change the default shell to a command like /bin/false, the user will not be
able to execute any program. To change the shell, use the chsh command:

chsh -s /bin/false useri

For the command to work, you must first put the /bin/false command in the
/etc/shells file. In some cases, this method can be bypassed, be careful.

Sometimes you want to restrict user logins, but still be able to access files via
scp/sftp. This can be done through the Match settings in the sshd configuration, which
is usually very cumbersome. You can use the scponly package, which is available in
most distributions and provides a special shell that allows only executing commands for
sftp/scp. After installing the package, just change the user shell to /usr/bin/scponly.

Blocking a user from logging in via ssh with usermod may not work if pam is not
enabled in openssh settings. In addition, it will be difficult to get a current list of blocked
users, so this method is not very good.

Brief Summary

Restriction systems serve not so much to prohibit as much as possible, but to protect
the users themselves from making silly mistakes and, of course, deliberately (or not so
deliberately) causing harm. Use them wisely and you can avoid a lot of trouble.

Search Keywords

chmod, chown, setfacl, ulimit, setquota, sshd_config

184

CHAPTER 13

Job Management Systems

Principles of Operation and Capabilities

The most optimal mode of supercomputer utilization is continuous launching of tasks
occupying the entire counting field. However, in reality, such a mode is practically
uncommon, except for cases when the supercomputer is actually built to solve a single
task. This is due to various reasons: limitations on the scalability of tasks, conditions on
the number of processes (e.g., power of two), etc. Even if all the tasks can occupy the
entire counting field, it is necessary to start a new task immediately after the previous
one is finished. It is not easy to track this manually.

What if you need to provide resources to more than one user? To solve this problem,
there are batch systems, or batch managers, a.k.a. resource managers. Originally,
batch managers were used to manage the resources of large machines for the needs of
composite tasks. Hence, the combination “batch processing” - in old large machines, a
task consisted of several steps that required different resources (disks, tapes, teletypes,
processor, etc.), and the task of a batch manager was to plan the use of all resources as
efficiently as possible.

Modern supercomputers rarely have tasks described in this way; as a rule, only one
type of resource (processors, GPUs) and its quantity are specified. Sometimes some
additional requirements (attributes) are given: memory size, availability of licenses, etc.
But the way of launching tasks and tracking their work has changed a lot. This has led to
difficulties in using old control systems in the new realities.

As arule, the task management system itself is a software complex of three or more
components: queue manager itself, scheduler, and agents on compute nodes. The
resource manager allows you to put a task in the queue, view the status of queues and
tasks, and change the statuses of nodes, queues, and tasks. It is also responsible for

185
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_13

https://doi.org/10.1007/979-8-8688-1600-0_13#DOI

CHAPTER 13 JOB MANAGEMENT SYSTEMS

launching a task and tracking its status during the task. Agents on compute nodes help
to start a task and track its status. If a task has crashed or has been forcibly withdrawn
from the account, agents must terminate the running processes of the task.

Scheduler is a component that determines when and on which resources a task
should be started. Many systems support replacing a simple built-in scheduler with a
third-party one. The efficiency of supercomputer utilization depends on the quality of
task scheduling. The usual “first-come, first-served” algorithm often leads to the idle
time of numerous processors when many tasks are waiting for a large task to run. The
scheduler can also use predefined priorities, allowed time intervals, and other rules set
by the administrator to make more efficient use of the supercomputer.

It is very important to choose a scheduler that works efficiently with your task flow.
The scheduler may require significant resources for its operation - complex logic, large
amounts of resources, and large number of tasks may result in scheduling times of tens
of minutes, which is unlikely to be acceptable in a real-world environment. In some
systems, the scheduler may be described by the administrator himself; some may use
an external service such as MAUI (http://www.adaptivecomputing.com), e.g., Torque.
Today, there are many task management systems available, both commercial (Moab, LSF)
and freely distributed (Torque, Slurm, SGE, Condor, OpenlLava).

For many clusters, it makes sense to divide the compute field into separate
partitions. For example, if there are compute nodes with and without accelerators, two
corresponding partitions can be created. The same problem is solved by describing the
resources of nodes and explicitly specifying the list of resources when a task is queued.
But in this case, the task of planning becomes more complex, and the description of
priorities and quotas becomes less transparent. As practice shows, it is easier for users to
specify the name of a partition than to write lists of additional resources.

For clusters in general, a small partition for testing is very useful. In such partition,
you should set a strict time limit (10-15 minutes) and the number of tasks in the queue
from one user (3-5), which will allow you to quickly (within 1-2 hours) guarantee to run
the task on several nodes with minimal data and make sure it works.

Here I want to note the most important concepts of any HPC resource manager -
partitions (usually they are the same as “queue”), jobs priorities, users, agents, and
schedulers. Another essential thing is batch scripts - almost all systems run a script, not
a single command line. Even if they allow this, they just wrap it into a temporary script.
The batch script is executed on the first allocated node, when the job is started, and has

186

http://www.adaptivecomputing.com

CHAPTER 13 JOB MANAGEMENT SYSTEMS

full information about the allocated resources. Many MPI implementations have support
for resource managers, and commands like mpirun typically can be executed without
specifying the full nodes list. There is a special standard PMIx, which unifies the interface
as for resource managers, as for parallel libraries, like MPI. Using this interface, parallel
program can start its processes using resource manager’s agents, which makes the
program start fast and controllable.

Kubernetes, etc.

Why cannot we use modern managers like Kubernetes, Swarm, or something like
this? We can! And actually sometimes, it is a good solution, but... You should clearly
understand what do you do and what are your goals. Kubernetes is good for managing
scaling services; this is its initial (and current) goal. It is not intended to be good at
network topology support, job priorities, and even job queuing; the common user’s
workflow is “submit it to the K8s and forget,” and it works, because it is supposed that
you have more resources than you request.

In HPC world in most cases, it is different. The resources demand is usually much
higher, than you have, and you should be able to organize your jobs queue in the
optimal way. Yes, it is possible in the K8s world too, if you install and/or write a lot of
plug-ins, sidecars, operators, etc. But is it worth it? Why should you tune a tractor for the
Formula-1 races, when you have special race cars?

There are still some cases when it is reasonable, but please, think twice before using

such instruments for managing your cluster resources.

Access Problem

Resource management systems usually only allocate resources between tasks but do not
always set strict restrictions on access to these resources. So user can sometimes run a
task “directly” - bypassing the system by simply explicitly specifying a list of nodes to the
mpirun command or by ssh-ing to the desired node and running his program there.

187

CHAPTER 13 JOB MANAGEMENT SYSTEMS

There are several ways to solve this problem. In our experience, the best way is to
use PAM modules that either integrate with the task management system themselves or
the management system itself sets the necessary rights in the prologue and epilogue' of
the task, e.g., via the pam_listfile module. Some systems, e.g., SLURM, provide special
PAM module, which controls user access.

Brief Summary

The job management system is one of the most important parts of your HPC cluster.
Choose it wisely, know it well, and use it smart. How the task management system is
configured directly affects whole cluster efficiency. Different scheduler settings can
change the average waiting time of tasks in the queue and node idle time by times. Don’t
forget about statistics: only with its help will you be able to understand how efficiently
your supercomputer works, what the real demand for it is, and whether there is a need
for expansion or modernization.

Search Keywords

batch system, resource management systems, SLURM, PBS, LSE, Moab, Grid Engine
Scheduler

'Prologue and epilogue are usually the names of the scripts called by the resource management
system before and after the task is started, respectively.

188

CHAPTER 14

OpenPBS and Torque

PBS (Portable Batch System) and its clones have gained great popularity. The system
started to be developed in 1991 by NASA order. Most of the developers involved in its
creation were employees of MR] Technology Solutions. MRJ was absorbed by Veridian,
from which Altair Engineering acquired the rights to PBS. Transfer of PBS technologies
to Altair Engineering and discontinuation of support for the open source version

of OpenPBS led to the fact that there are now three implementations of distributed
computing management systems based on PBS:

1. The original “open source” OpenPBS project, developed in 1998
by MR]J (not supported since 2004).

2. Torque (Terascale Open-Source Resource and QUEueue Manager)
is a project based on OpenPBS and maintained by Adaptive
Computing Enterprises, Inc.

3. PBS Professional (PBS Pro) is a commercial implementation
offered by Altair Engineering.

Installing Torque

The Torque package consists of four main components:

1. Asetof commands thatincludes system administrator commands
to configure the system and control its operation and user
commands to run and manage tasks.

2. pbs_server, which is the central PBS server. The central server
accepts tasks from users, deletes tasks, changes their status, logs
completed tasks, and so on.

189
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_14

https://doi.org/10.1007/979-8-8688-1600-0_14#DOI

CHAPTER 14 OPENPBS AND TORQUE

3. pbs_momis a “machine oriented mini-server” (agent) that must
be run on each compute node and that monitors the state of
the compute node and the program running on it; starting with
torque 4.0, the trqauthd authentication server must run with it.

4. pbs_schedis a scheduler that manages task queuing and running
tasks for execution.

Note that Torque allows the use of third-party schedulers, and often Maui scheduler
is used in conjunction with Torque, which has more functionality than the standard
scheduler. Depending on what functional tasks are assigned to the computer included in
the compute cluster, either all or some components of the system can be installed on it.

The Torque system is most fully installed on the cluster management computer.
Since tasks are not started on the management computer, there is no need to run the
pbs_mom server on it. As a rule, it is started to be able to monitor the status and load of
the control server. Torque does not require all of the above components to run on a
single computer. For large clusters, individual Torque components can be spread across
different computers; for small clusters, the management computer can easily handle all
services.

Torque is installed from distribution packages or from source code, which can be
obtained from https://github.com/adaptivecomputing/torque. Installation from
source is done in the standard Linux way in three steps: . /configure; make; make
install # or make packages

Torque services communicate with each other via fixed network port numbers. Port
numbers for Torque are defined in the /etc/services file, which links port numbers and
network service names:

pbs 15001/tcp # pbs server

pbs_mom 15002/tcp # mom to/from server

pbs resmom 15003/tcp # request mom to manage resources
pbs sched 15004/tcp # scheduler

Make sure that these ports are not blocked by a firewall. For compute nodes, the only
required component of the Torque system is the pbs_mom server.

190

https://github.com/adaptivecomputing/torque

CHAPTER 14 OPENPBS AND TORQUE

Setting Up Torque

It is advisable to start Torque configuration with the configuration of the control node.
The main configuration file of the main Torque server is $PBS_HOME/server priv/
nodes. The location of the file depends on the directory that was specified during system
installation.

The nodes file contains a list of compute nodes served by the server. This file
contains a description for each node managed by the server, one line per node:

node name[:ts] [property ...] [np=NUMBER]

node_name - Node name described in the /etc/hosts file; if : ts is after the node
name, this node belongs to the timeshared type. The state of nodes of this type is polled
by the server and their status is shown by information commands, but no tasks are sent
to them by the server. These nodes can be used to directly run interactive programs.

property - A set of any characters. Usually this attribute is used to associate a node
with a particular task queue.

parameter np = NUMBER defines the number of cores on the node.

The busy sign is set as soon as a task appears on a node, but any number of processes
can be started on a node within that task.

Example nodes file:

ib02 MYCLUSTER
ib03 MYCLUSTER
ibo4 MYCLUSTER
ibo5 MYCLUSTER

The list of nodes and their properties can be changed dynamically using the qmgr
administrator command, after which the system enters the waiting mode for input of
internal subcommands.

Add nodes:

gmgr: create node node name [attributes=values]

The values that the attributes parameter can take are listed in the Table 14-1.
Example:

gmgr: create node ib01 np=1,ntype=cluster,properties="MYCLUSTER"

191

CHAPTER 14 OPENPBS AND TORQUE
You can change the properties of a node with the command:

gmgr: set node node name [attributes[+l-]=values]

Table 14-1. gqmgr command attribute values

Name Meaning Possible
values

state Node state. In addition to these states, there is an additional excl state, free, offline,

which is set by pbs_mom when a task is started on the node down

properties Value similar to the nodes file any

ntype Node type cluster,
time-shared

np Number of processors on the node any number

The gmgr command is the main command of the PBS administrator. In particular, it
is used to create and configure task queues.
Creating a queue:

gmgr: create queue MYCLUSTER

The created queue is also configured using the gmgr command. First, define the
queue type:

set queue MYCLUSTER queue_type = Execution

The possible queue types are either execution or routing. The routing queue
is created for passing tasks to other queues. For attributes with numeric values, it is
possible to set three values: maximum, minimum, and default:

set queue MYCLUSTER resources_max.ncpus = 20
set queue MYCLUSTER resources min.ncpus = 1
set queue MYCLUSTER resources default.ncpus = 1

For example, to specify the number of cores that can be used in a given queue, you
can do this:

set queue MYCLUSTER resources_max.nodect = 20

192

CHAPTER 14 OPENPBS AND TORQUE
The command below sets the maximum possible calculation time for this queue:
set queue MYCLUSTER resources max.walltime = 336:00:00

If more time is ordered in the task, it will not be put in this queue.
This is how you can set the number of cores and nodes to default, meaning that these
values will be used if the user has not explicitly set them:

set queue MYCLUSTER resources_default.ncpus = 1
set queue MYCLUSTER resources default.nodect = 1

The default task counting time is set in the same way:
set queue MYCLUSTER resources default.walltime = 01:00:00

If the user has not specified the required time for the task, their task will run for one
hour. After this time, the task will be terminated forcibly.

An important parameter is the maximum number of nodes a user can
simultaneously occupy in a given queue with a single task or any number of them:

set queue MYCLUSTER resources max.nodect = 12
The maximum number of user tasks is set as follows:
set queue MYCLUSTER max_user_run = 12

Start or stop the queue operation:

set queue MYCLUSTER enabled = True # allow receiving tasks
set queue MYCLUSTER started = True # allow tasks to start

To disallow receiving tasks or launching them for execution, set the corresponding
command to False. Since the gmgr command accepts commands from the input stream,
it is easiest to prepare a text file with a set of commands for a given queue and send its
contents to the gmgr command input. For example, such as this one:

create queue MYCLUSTER

set queue MYCLUSTER queue_type = Execution

set queue MYCLUSTER resources_max.ncpus = 20

set queue MYCLUSTER resources_max.nodect = 20

set queue MYCLUSTER resources max.walltime = 336:00:00
set queue MYCLUSTER resources default.ncpus = 1

193

CHAPTER 14 OPENPBS AND TORQUE

set queue MYCLUSTER resources_default.nodect = 1
set queue MYCLUSTER resources default.walltime

01:00:00

set queue MYCLUSTER max_user_run = 12
set queue MYCLUSTER enabled = True
set queue MYCLUSTER started

True

and then execute the command:
gmgr < MYCLUSTER.txt

From some existing queue, you can retrieve such a file with all descriptions using the
command:

gmgr -c "print server" > MYCLUSTER.txt

The -c option indicates a one-time, noninteractive execution of the command
contained in the quotation marks.
The first startup of the head server is performed with a special option:

{sbindir}/pbs server -t create

This creates special PBS files to store the system databases. Previously, it was
recommended that the first startup be done manually. Now the standard startup script
of the head server contains a check if it is the first startup, and if it is confirmed, it is
started with the appropriate parameters. This defines the minimum required set of
server parameters. More fine-tuning of the server parameters is also done with the qmgr
command.

Starts server interaction with the scheduler:
set server scheduling = True

If this parameter is not set to True, the server does not communicate with the
scheduler and tasks are not executed except those started manually with the qrun
command.

Allow access to the Torque server from the computers listed in the acl_hosts
parameter:

set server acl _host_enable = True
set server acl hosts = *.mycluster.com

194

CHAPTER 14 OPENPBS AND TORQUE
Add a computer from which you can work with Torque:
set server acl hosts += server.mycluster.com
Specify a user on the specified computer who acts as Torque administrator:
set server managers = root@server.mycluster.com
Specify the queue in which tasks will be placed by default:
set server default queue = MYCLUSTER
Define which events the server will display in the log file:
set server log events = 511

To the right is the bit sum, which in this case indicates to display all events. The bit
decoding can be found in the Torque manual.
Command

set server mail from = root

determines on behalf of which user Torque will send mail.
Allow viewing tasks in the queue, even those for which it is not the owner:

set server query other tasks = True

The time in seconds between server attempts to start the task for execution:
set server scheduler iteration = 600

The time interval, in seconds, at which the server checks the status of nodes:
set server node ping rate = 300

The time interval after which the server, having received no response from the node,
will put it into the down state:

set server node_check rate = 600
Timeout time for TCP socket when pbs_server connects to pbs_mom:

set server tcp timeout = 6

195

CHAPTER 14 OPENPBS AND TORQUE

The frequency at which the server will check the status of MOM processes:
set server task stat rate = 30

The name of the server to which Torque will send mail messages:
set server mail to = mail.mycluster.com

After setting up the server, I recommend saving its configuration for quick recovery
in case of failure.
It's done by this command:

gmgr -c "print server" > /tmp/server.conf

All server and queue settings will be saved in the /tmp/server . conf file. To restore
the configuration, it is enough to execute the command:

gmgr < /tmp/server.conf

Configuring the MOM Server on Compute Nodes

Configuring Torque on compute nodes involves configuring the pbs_mom server to
start during the operating system boot process, creating a $PBS_HOME/server name

file specifying the name of the computer running the head pbs_server, and creating a
configuration file /var/spool/PBS/mom priv/config for the pbs_mom server. This file is
read when pbs_mom starts. Example file:

$logevent 255
$pbsserver rsufs
$cputmult 1.0
$ideal load 1.0
$max_load 2.0

Here:

$logevent is a bit string indicating which events will be logged in
the log files.

$pbsserver is the name of the computer running pbs_server.

$cputmult is a multiplier that scales the performance of the node.

196

CHAPTER 14 OPENPBS AND TORQUE

$ideal load is the normal load level of the node.
$max_load is the level of maximum node load.

All configuration files are identical on all compute nodes, so they can be created
once and copied to all nodes.

For most batch systems, including Torque, this problem is typical: when executing
a parallel program, the head process terminates for some reason, while processes on
other nodes continue executing, often actively consuming resources. At the same time,
the status “free” is set for these nodes, and they are considered ready to receive the
next task. In Torque, this can be dealt with using the so-called “epilogue”: when any task
on the head node is finished, the pbs_mom server automatically launches the epilogue
executable file located in the mom server working directory /var/spool/PBS/mom_priv.

By default, this script simply does not exist, and no clear sample is offered either.
Below is an example of a working epilogue script that kills the remaining application
processes and cleans the file system:

#!/usr/bin/env bash
JOBID=$1
USER=%2
HEHHEHE Get the list of task nodes #iHHHHEHHHHE
if test -r "/var/spool/PBS/aux/$1"; then
PBS NODEFILE="/var/spool/PBS/aux/$1"

Perform cleanup on each node of the task
for node in $PBS NODEFILE; do
ssh -o ConnectTimeout=5 $node \
"pkill -KILL -u $USER; \
find /tmp -user $USER -exec rm -r \{\} \; >& /dev/null’
done
fi

The script is designed so that only one user task is executed on one node. Otherwise,
when one task is finished, other tasks will be deleted as well.

197

CHAPTER 14 OPENPBS AND TORQUE

Customizing the Scheduler

In Torque, a separate process, the scheduler, is responsible for selecting the next task
to launch it for execution. This allows the implementation of a more flexible policy of
task execution organization on the computer system. The scheduler evaluates each
task according to its strategy and decides which one to run. The strategy can take into
account many factors such as time of day, system load, task size, queuing time, etc.
When the scheduling attribute is set to True, the server, responding to events, calls the
scheduler to select the next task to run. Events in Torque can be

e Adding a task to the queue
o Completion of the assignment

Torque comes with several schedulers with different strategies for advancing tasks
in the queue. A third-party scheduler can be used if the proposed algorithms are not
suitable. Scheduler selection is done at the Torque installation stage when executing the
configure command using the --set-sched and --set-sched-code options.

For example:

configure --set-sched=cc --set-sched-code=sgi origin

By default, a FIFO scheduler is installed during installation, which implements the
“First In First Out” strategy. The task that was first placed in the queue will be the first to
be executed if there are enough free resources for it.

In addition to the basic FIFO scheduling strategy, a number of additional strategies
can be configured using the scheduler configuration file, which is located in /var/
spool/PBS/sched priv/sched config. The format of the entries in the file is

name:value [prime | non prime | all]

Parameter round_robin - If true, tasks will be executed one by one from each queue
cyclically; if false, tasks will be executed from one queue until they reach any of the
limits (resources_max, max_running, max_user_run) set on the server, and only then the
system will switch to processing tasks from another queue.

by_queue - If true, the scheduler will work with queues; if false, all tasks on the
server will be interpreted as one big queue.

198

CHAPTER 14 OPENPBS AND TORQUE

strict fifo - If the value is true, the FIFO strategy will work strictly. This will cause
that if a task cannot be executed for some reason (no resources available), other tasks
will not be executed. If strict_fifo is not set, this can lead to longer queue times for
large tasks. Smaller tasks will go first, and there will be constantly insufficient resources
to run the larger tasks.

fair share - Ifsetto true, the fair share algorithm is enabled.

load_balancing - If set to true, tasks will be distributed only on time share nodes.

help starving jobs - If set to true, a special strategy for “suffering” tasks is
enabled. A task is considered to be suffering if it has been waiting to start for more time
than specified by the max_starve parameter. Other tasks will not be started until the
suffering task is started.

sort_by - Enables sorting of tasks. Possible values are presented in the Table 14-2.

Table 14-2. Sorts of the built torque scheduler

Sorting Meaning

no_sort Don’t sort tasks

shortest_task_first In ascending order by cput attribute
longest_task_first Descending by cput attribute
smallest_memory_first Ascending by mem attribute
largest_memory_first Descending by mem attribute
high_priority_first In descending order by task_priority attribute
low_priority_first In ascending order by task_priority attribute
large_walltime_first Descending by task_walltime attribute
short_walltime_first In ascending order by task_walltime attribute

multi_sort - Sorting by a set of keys
For example:

sort_by: multi sort

key: sortest task first
key: smallest memory first
key: high priority first

199

CHAPTER 14 OPENPBS AND TORQUE

o log filter - Specifies the list of events that should not be displayed
in the log

o max_starve - The time a task is in the queue, after which itis
considered to be suffering

e half_life - Half the term of use of fair share

o sync_time - Time interval between writes to disk of data on fair
share usage

Documentation on the official website is incomplete and doesn’t include scheduler
options, so I recommend to look into the source code for the comprehensive options list.

Using Torque

Running a program through Torque is done with the gsub command with the script name
as an argument, which specifies the resources required by the task (node architecture,
number of processors, and solution time). The command has the following form:

qsub -q QUEUE -1 ncpus=CORES script name

Where
e QUEUE is the name of the queue in which the task is placed.
e CORES is the number of cores.

e script nameis the name of the running script, which can be created
by any text editor.

The gsub command actually has many options, but almost all of them can be placed
inside the running script, including the -q option.
Then the launch command is even more simplified:

qsub script name

To run a single-processor program on a MYCLUSTER cluster, you can generate a file
(e.g., named myprog.batch) with the following contents:

#!1/usr/bin/env bash
#PBS -1 nodes=1:ppn=4

200

CHAPTER 14 OPENPBS AND TORQUE

#PBS -q MYCLUSTER
cd $PBS_0_WORKDIR
./progname

In this case, a task, requesting one node and four processes per node, will be
generated to run on the MYCLUSTER cluster with a program named progname and a
default time order of one hour. The “#PBS” special comments are recognized by the qsub
command and set the limits for the task.

The cd command specifies the path to the working directory of the executable
program. It is assumed here that the task is started from the working directory where
the executable program named progname is located. The progname program should be
started with the command:

qsub myprog.batch

A simple multithreaded program is run on a single node, and its startup is no
different from the startup of a regular single-processor program, neither in terms of the
startup script nor in terms of the startup command. By default, an OpenMP program
spawns as many threads as there are cores on the node. If you want to control the
number of threads spawned, the OMP_NUM_THREADS line is added to the script:

#!/usr/bin/env bash

#PBS -1 nodes=1

#PBS -q MYCLUSTER

#PBS -v OMP_NUM_THREADS=2
cd $PBS O WORKDIR
./progname

In this task, two threads will be spawned that engage two cores.
Torque often defaults to a maximum time for a task to run. For tasks that require
more time, you need to explicitly specify the task runtime:

#!/usr/bin/env bash

#PBS -1 walltime=300:20:00
#PBS -q MYCLUSTER

#PBS -v OMP_NUM THREADS=2
cd $PBS_O WORKDIR
./progname

201

CHAPTER 14 OPENPBS AND TORQUE

Here 300 hours and 20 min are ordered for solving the task. When the ordered time
expires, the task will be forcibly terminated. The administrator has the ability to set limit
values for any limits (solution time, maximum number of nodes, maximum number of
running tasks).

To run a parallel MPI program on four nodes of the MYCLUSTER cluster, the same
command format is used, but the contents of the script must be different:

#!/usr/bin/env bash

#PBS -1 walltime=30:00:00
#PBS -1 nodes=4:MYCLUSTER
cd $PBS O WORKDIR

mpirun -np 4 ./progname

When the program is started via the qsub command, a unique number is assigned to
the task. This number can be used to track the progress of the task, to withdraw it from
the account or to remove from the queue, move in the queue relative to your other tasks.

Everything that is output to the standard output and error streams while the task
is running will be written to a file and copied to the directory from which the task was
started at the end of the count. The names of these files are automatically generated as
follows:

<script_name>.o<task_number> - Standard output
<script_name>.e<task_number> - Error stream

These names can be changed using the qsub options. If you want to view the results
as the task progresses, you can use the output redirection mechanism in the program
start command. Moreover, Torque internal variables can be used to make each output
file have a unique name.

For example:

#1/bin/sh
cd $PBS_O_WORKDIR
mpirun -np 4 progname > $PBS_JOBID

In this case, the results will be written to a file whose name will be formed from the
task ID. This file can be viewed during program execution using the cat, less, or
tail -f command.

202

CHAPTER 14 OPENPBS AND TORQUE

If the program is interactive, i.e., contains keyboard input, the script must use the
input redirection mechanism.

mpirun -np 4 progname < input_file > $PBS_JOBID

If the system has trouble finding the path where the output files should be written,
they remain in the system directory /var/spool/PBS/undelivered/ on the
cluster node where the task was read, and a mail message is sent to the user
about it.

Job Control Commands

In addition to the gsub command described briefly, there is a set of commands for
task management. Their detailed description can be seen with the help of the man
command:

o qdel - Delete the task

e ghold - Prohibit execution of the task

e gmove - Move the task

e gmsg - Send a message to the task

e grls - Remove the execution ban set by the ghold command
o gselect - Task selection

e gsig- Sending a signal (in UNIX OS sense) to the task

o gstat - Output queue status (the most useful commands are gstat
-aandgstat -q)

e qsub - Puts the task in the queue

o pestat - Output the state of all compute nodes (the command is built
separately)

203

CHAPTER 14 OPENPBS AND TORQUE

o xpbs - Graphical interface for working with Torque (X-server

required)

e Xxpbsmon - A graphical program for outputting the state of compute

resources

Brief Summary

Torque is still widely used and may be a good option for you.

Search Keywords

PBS, Torque

204

CHAPTER 15

Slurm

Slurm Workload Manager, formerly called “Simple Linux Utility for Resource
Management,” is a freely distributed resource manager for supercomputers. It is written
in C and was built entirely from scratch by a coalition of Lawrence Livermore National
Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. SchedMD is
currently providing primary development and commercial support for this project.

Slurm is designed to be extensible and modular. In practice, there are very few
additional (not included in the distribution) modules, primarily because the interfaces
of modules are not always well-thought-out. That’s why you often have to use internal
Slurm functions and structures to implement a module that extends functionality. Many
standard modules do exactly that. This approach makes modules intolerable between
versions, because internal data formats and functions frequently change from version to
version. Nevertheless, Slurm has a lot of plug-ins available by default or which you can
compile/install in addition. They give you a lot of flexibility, but remember to turn on
needed and off not needed ones.

I'd specially note SPANK plug-ins, which have fixed AP], so are portable between
Slurm versions. Also job_submit plug-ins have fixed API and reach functionality.
Moreover, there is a possibility to use LUA for writing such plug-ins, which makes some
tasks much easier to implement. I won'’t stop on them here, but the official doc is really
good. Also, you can check the git repository https://github.com/zhum/hpc-book-
matherials for some useful scripts (and contribute yours!).

The basic Slurm modules give good flexibility and wide capabilities, so they are
sufficient for most cases. Most Linux distributions include ready-made packages for Slurm.
The manager architecture is similar to Torque. The main process slurmctld runs

on one or more servers (this provides fault tolerance). This daemon controls compute
nodes, task accounting, resource scheduling. Optionally, the slurmdbd process can be
run, which writes task, user, etc., credentials to a database and can analyze resource
usage. The same database stores an extended set of restrictions for users, which are not
available without slurmdbd.

205
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_15

https://doi.org/10.1007/979-8-8688-1600-0_15#DOI
https://github.com/zhum/hpc-book-matherials
https://github.com/zhum/hpc-book-matherials

CHAPTER 15 SLURM

The slurmd agent runs on compute nodes, and slurmctld determines the state of
the node based on its operability. The same agent is used to launch applications, but
the slurmstepd process is started beforehand, which launches and further controls the
application.

Launching an application in Slurm happens in stages. First, on the nodes allocated
by the scheduler, agents execute “prologue” scripts that can prepare a node for
launching. Then, on the first of these nodes, the script that the user queued is run. The
script can get a list of all the allocated nodes and, e.g., run something on them with
the ssh command. But it is more correct to execute the srun command, which will run
what it was asked to run on all the nodes allocated to the task, with the slurmstepd
process controlling the running processes. After the task is finished, the agents run the
“epilogue” scripts and the task is finished. As noted above, only scripts can be queued,
and Slurm will generate an error if you try to queue a binary file.

Unlike Torque, Slurm configuration is stored in a file. If a database is used, Slurm
stores statistics and additional settings in it, such as the number of simultaneously
running tasks of one user, the number of tasks in the queue of one user, etc. The runtime
data, which should be saved between Slurm controller restarts, is stored in a set of files,
located in the directory specified by StateSavelLocation option in the config file.

Important additional service required for Slurm is munge - it “confirms” which user
sent the request to the controller and agents. munge servers on all nodes (compute,
controller, submit, etc.) should share the same certificate, and all nodes should have
synchronized time.

Slurm Installation

Before installation, make sure that the compute and control nodes have synchronized
credentials (passwd/1dap), time (ntp), and the munge package installed and running.

The latter is available in the repositories of almost all distributions and serves for
authentication of remote requests; without it, Slurm will not work. I also recommend
creating a Slurm user on the control node to prevent the main daemon from running as a
superuser.

Most distributions have Slurm packages, but they are often pretty old and not
updated for a long time. But you can install them if you want. On compute nodes and
Slurm control nodes, we put packages: slurm and slurm-munge; if desired, we add
slurm-perlapi and slurm-torque (for compatibility with torque-scripts). On the

206

CHAPTER 15 SLURM

controller node, we have to install slurm-slurmctld and slurm-plugins packages,
optionally (but recommended) slurm-plugins, and on compute nodes slurm-slurmd.
On the node with database (if used), we install MySQL/MariaDB and packages slurm,
slurm-munge, slurm-slurmdbd, slurm-sql, and if desired slurm-plugins. Of course, the
actual names may vary in different distributions.

In the Slurm versions starting from 23.11, there is a slurm-sackd package, containing
internal plug-in for authentication as an alternative to munge; see the documentation if
you want to use it.

If you need a fresh Slurm version, you can compile it from source code and even
build packages, which is pretty convenient. To do this, download the latest version from
schedmd. com or from https://github.com/SchedMD/slurm repository. Then unpack
the archive, navigate to the created directory, checkout the desired version by tag, e.g.
slurm-24-11-5-1, and execute the commands:

./configure --prefix=/opt/slurm
make
make install

You can do it even easier - build rpm- or deb-packages by yourself; just run
rpmbuild -ta slurm-XX.YY.Z.tar.bz2
or

mk-build-deps -i debian/control
debuild -b -uc -us

Don’t forget the devel packages for mysql/mariadb if you plan to use accounting and
all prerequisite devel packages. If you don’t have any preinstalled slurm config file, you
can generate a simple one at https://slurm.schedmd.com/sched config.html

Accounting

All (almost) information about the user jobs, like submit time, start and end time,
requested and actual resources, user login, etc., may be stored in the database and used
for traditional accounting and for dynamic priority changing. Also without accounting,
many things won’t work, like QOS, multifactor priority, FairShare, and some others.

207

http://schedmd.com
https://github.com/SchedMD/slurm
https://slurm.schedmd.com/sched_config.html

CHAPTER 15 SLURM

If you use accounting, each user should be a member of at least one “account” -

a group of users. Accounts can be nested and intersected, and each account can be
associated with its own parameters and limits.

Slurm has two main commands for working with accounts: sacct for viewing
statistics and sacctmgr for managing accounts and associations. An association is a
relationship of four parameters user, cluster, partition, and account, where user
is the user login, cluster is the cluster name, partition is the cluster partition, and
account is the account name. First, you need to create a cluster with the sacctmgr
create cluster mycluster command.

You can create an account with the command:
sacctmgr create account name=first
You can create an association with the command:

sacctmgr create user name=userl cluster=mycluster \
account=first partition=def maxtasks=2 maxwall=60:00

Here, for login user1, we have created an association with cluster mycluster,
partition def, and account first. Within this association, the user will be able to run no
more than two tasks at a time, and the maximum time a task can run is limited to one
hour. A user can log in to multiple accounts through different associations, in which
case you can explicitly specify the account with the -A switch of the sbatch or srun
commands.

You can change the association like this:

sacctmgr modify user where name=userl partition=def set \
MaxSubmit=10

Here we set records with the where parameter (all records that fall under the
condition will be changed) and changes with the set parameter. As a result, the
maximum number of tasks in the queue for user1 in all accounts and on all clusters in
the def partition will be limited to 10.

To view the current associations, you can command:
sacctmgr list assoc
or

sacctmgr list assoc user=useri

208

CHAPTER 15 SLURM

In the second case, only the associations for user1 will be shown. Here is an
example, showing account hierarchy and formatted in a friendly way:

sacctmgr -P list account withassoc \
format=account,parentname,user,share,qos | column -ts \

Account ParentName User Share Q0S

foo root 1 normal
foo foo1 1 normal
foo fo02 1 normal
foo fo03 1 normal
bar root 1 normal
bar bar1 1 normal
bar bar2 1 normal
bar bar3 1 normal

Accounting Setup

To set up the accounting, you have to compile SLURM with mysql (or mariadb) support
or have a prebuilt package (most of them have this support compiled it). If building,
make sure that the configure script finds the mysql _config program or specify the path
to it explicitly. After installation on the account node, prepare the database: log in to the
mysql console and run

mysql> create user 'slurm'@'localhost' identified by 'pas’;
mysql> grant all on slurm acct db.* TO 'slurm'@'localhost’;
mysql> create database slurm acct db;

Here ‘pas’ is the password to access the database; change it to your own. After that,
check and edit the /etc/slurm/slurmdbd. cont file. Its main options are

AuthType - Authentication type; ‘auth/munge’ is recommended.
DbdHost - The name of the host on which slurmdbd is running.

SlurmUser - The username on behalf of which slurmctld runs
(recommended ‘slurm’).

209

CHAPTER 15 SLURM

DebuglLevel - Level oflogging granularity; ‘error’ is
recommended.

PrivateData - Types of data stored in the database.
Recommended ‘accounts,users,usage,reservations,tasks!

StorageType - The method of data storage. In our case, it is
‘accounting storage/mysql!

StorageHost - The address of the node with the database.

StoragePort - Optional - the port on which the database is

running.
StorageUser - Database user; ‘slurm’ is recommended.
StoragePass - Database password in plaintext.

Storageloc - Name of the base in the database. Recommended
‘slurmdb!

In the configuration file /etc/slurm/slurm. conf, change/add lines:

AccountingStorageType=accounting storage/slurmdbd
AccountingStorageHost=ADDRESS slurmdbd
AccountingStoragePass=secret-password-here

Now you can run slurmdbd and check from the log that table creation and
initialization was successful.

Basic Setup and Usage

Athttps://slurm.schedmd.com/configurator.easy.html, there is a configuration
file generator, but it may not be suitable for your version, be careful. Typically, the
configuration file is located in /etc/slurm/slurm.conf and already contains most of
the default settings, so a good option is to make a backup of a file and edit it the way you
want. Below are the main parameters to pay attention to:

ControlMachine=slurm_master
ControlAddr=10.0.2.3.
SlurmctldPidFile=/var/run/slurmctld.pid
SlurmdPidFile=/var/run/slurmd.pid

210

https://slurm.schedmd.com/configurator.easy.html

CHAPTER 15 SLURM

SlurmdSpoolDir=/var/spool/slurmd

SlurmUser=slurm

StateSavelocation=/var/spool/slurmctld

SwitchType=switch/none

TaskPlugin=task/none

#

TIMERS

#KillWait=30

#MinJobAge=300

#SlurmctldTimeout=120

#SlurmdTimeout=300

#

SCHEDULING

FastSchedule=1

SchedulerType=sched/backfill

SelectType=select/linear

#

LOGGING AND ACCOUNTING

AccountingStorageType=accounting storage/filetext

JobCompType=taskcomp/filetxt

ClusterName=mycluster

JobAcctGatherType=taskacct gather/none

#S1lurmctldDebug=3

SlurmctldLogFile=/var/log/slurmctld.log

#SlurmdDebug=3

SlurmdLogFile=/var/log/slurmd.log

#

COMPUTE NODES

NodeName=node[1-10] State=UNKNOWN

PartitionName=def Nodes=node[1-10] Default=YES\
MaxTime=2-00:00:00 State=UP

ControlMachine specifies the name of the Slurm control node; slurmctld should
run on it. SchedulerType specifies the scheduler; I recommend sched/backfill.
SelectType specifies the node selection algorithm - select/linear will select free
nodes sequentially by name.

211

CHAPTER 15 SLURM

AccountingStorageType and JobCompType specify how to store the accounting data.
In this example, the task data will simply be written to a file. Commands to process this
data, such as sacct, will not work.

The NodeName and PartitionName can be repeated, i.e., you can enter a different
NodeName string for each node or group of nodes, and if you need multiple partitions,
each is described by its own string. Note the node name range entry, Slurm uses it
wherever it can. You can use square brackets in the multiple node entry to specify: a
numeric range (e.g., [15-33]) or a list that can include ranges ([1-4,6,8]). Slurm does
not include any tools to convert “brackets” notation to plain lists and vice versa, but
there are some external tools for that, e.g., cluset from ClusterShell package.

Partitions

Slurm uses several concepts in addition to those mentioned before, and here you
can find the most useful of them. You already know about partitions if you read the
subchapter above; if not, it is a set of compute nodes, possibly with some limits.
Partitions can be nested, share the same nodes, or even intersect. Each partition in
Slurm can have some important attributes, which you can specify in the partition
definition in the configuration file and change temporarily via scontrol:

Name Meaning

Nodes The list of nodes belongs to this partition

AllowAccounts, List of accounts or groups, allowed to use this partition; Deny-based options

AllowGroups also are here

Default If “yes,” all commands without explicit partition name specified will use this
partition

DefaultTime If no time limit is specified in sbatch/srun, this value will be used

MaxTime Maximal time limit, which can be specified

Hidden If “yes,” the partition won’t be shown by default in any commands for

nonadmin users; if the name is given explicitly, it will be shown

MaxCPUsPerNode Force number CPUs per node, useful, e.g., if you don’t want to use
hyperthread CPU cores

(continued)

212

CHAPTER 15 SLURM

Name Meaning
MaxNodes Maximum nodes, the job can requested
OverSubscribe yes[:N] = one node can run multiple jobs all resources except GRES can

be shared and oversubscribed explicitly (no more than N times)no = one
node can run only one jobforce[:N] = like yes, but oversubscription works
by default (user don’t have to specify - -oversubscribe option in srun/
sbatch)exclusive = like no, but with different behavior in preemption. See
the docs, for more info

PriorityJobFactor Factor for calculating job priority (partition factor)

PriorityTier Any job in the partition with higher priority tier will be planned before the jobs
in partitions with lower PriorityTier

QoS QOS associated with this partition, only one Q0S can be specified
TRESBIllingWeights See below in “Priorities and FairShare”

Partition configuration can be changed on the fly, like this:

scontrol update partitionname=main nodes=node[1-29] \
MaxNodes=5 MaxTime=24:00:00 DefaultTime=12:00:00

Here we explicitly specify the list of partition nodes; you can add or remove nodes
using “+=" and “-=" Note PartitionName instead of Partition - such a change is normal
for Slurm control programs.

Partitions in Slurm may have four states, and you can change them using scontrol.
They are

e Up-New jobs can be submitted and started.

e Down - New jobs can be submitted, but no jobs can be started (already
started won't stop).

e Drain - No new jobs can be submitted, but queued jobs will start.
e Inactive - No jobs can be submitted or started.

Create a new partition:

scontrol create partition name=new nodes=node[30-32] \
allowaccounts=acci1,acc3

213

CHAPTER 15 SLURM

Note that here you should use partition and name=. ... separately. Only accounts
accl and acc3 will be able to submit jobs to the new partition.

Nodes

In slurm.conf file, nodes are declared via NodeName=. . . lines. You can use several lines
to specify several sets of nodes or even declare each node in its own line (don’t do that,
please). After the equal sign, the list of nodes follows, and after space, you can specify
nodes attributes. If you specify special name DEFAULT, then the attributes in this line will
be applied to all following NodeName line, till the next DEFAULT line if any. Explicit values
in the attributes list override default values.

Some important attributes for nodes:

Name Meaning

NodeHostname If the real node hostname differs from NodeName, specify it
here

NodeAddr Node IP address (optional)

Boards, CPUs, Sockets, Motherboards, CPU cores, CPU sockets, and memory on the

SocketsPerBoard, CoresPerSocket, node. Detected by default, but may be overridden
ThreadsPerCore, RealMemory

Features List of any node feature strings, see below

Gres List of generic resources, see below

Weight If you really want some nodes to be more often used for jobs,
set higher weight for them

Node features are generic node markers. For example, some nodes have access to
additional file system, then you can just mark them using Feature attribute. Users can
require node with exact features when they submit a job. Features are Boolean - node
either has a feature, either not.

Generic resources are measurable resources the node has, e.g., GPUs, fast network
access, etc. Their names should be defined in GresType config parameters before the
use. Format is <name>[:<type>][:no_consume]:<number>[K|M|G]. Type is optional and

214

CHAPTER 15 SLURM

may be used to distinguish resource subtypes. :no_consume means that Slurm won't
count it if a job requires this resource. Here is an example:

GresType=gpu, fastfs
Gres=gpu:volta:8,fastfs:lustre:no_consume:100G

Some generic resources, e.g., GPUs can be autodetected by Slurm. Add gres.conf
configuration file in the same location as other config files. In this file, you can specify
the autodetect method and specifications for specific nodes. Here is an example:

AutoDetect=nvml

NodeName=nv4-[1-8] AutoDetect=off Name=gpu \
File=/dev/nvidia[0-3]

NodeName=amd-[1-4] AutoDetect=rsmi

Here for all nodes by default, autodetect NVIDIA GPUs are enabled. For nodes nv4-
[1-8], we force having four GPUs and specify their devices. If any device is missing,
Slurm will mark the node as invalid. For nodes amd-[1-4], we enable AMD GPUs
autodetect.

Please refer to the docs for current supported autodetect methods and additional
options.

You can use NodeSet to shorten your nodes lists in partition definitions:

NodeSet=Set1 Nodes=n[10-20],n[55,66,77]

Generic and Trackable Resources

Slurm supports tracking and limiting nodes resources, some of them are predefined
(trackable resources), and some you can declare by yourself (generic resources, see
above). List of supported trackable resources, which are tracked by default:

o Billing
« CPU
e Energy

215

CHAPTER 15 SLURM

e Mem (memory)
e Node
o Pages
e VMem (virtual memory/size)
o FS(file system - only disk and lustre are valid)
You can enable additional trackable resources, to enable limiting them:
o BB (burst buffers)
« GRES
o IC (interconnect - only ofed is valid)
o License

To enable such resources, use the line like this:
AccountingStorageTRES=gres/gpu,license/cad,ic/ofed

In addition, make sure that you enabled SelectType=select/cons_tres in the
config file. Also, refer to the docs about SelectTypeParameters, because it defines which
resources are consumable and are taking in account in scheduling at first. For example,
you can track CPUs or CPU cores.

Backfill and Preemption

Pretty common situation is when the next job in the queue has not enough free resources
and cannot be started, but there are some free resources. To reduce the resource waste in
such situation, there is a backfill algorithm. It scans the queue back and looks for small
jobs, which can be started right now, and the estimated start time of the first job in the
queue won't increase (or increase not so much).

To enable this algorithm, set SchedulerType=sched/backfill in the config file.
Some parameters of the algorithm can be tuned via SchedulerParameters; they usually
have bf _prefix. See most important options in the “Advanced Parameters for slurm.
conf” subchapter below.

216

CHAPTER 15 SLURM

In Slurm, jobs can be preempted by other jobs in several ways. The preempted job
can be stopped, canceled, requeued, or started to share time slots with the other job
with a low priority (“gang scheduling” - I don’t recommend using it in HPC and will not
stop on this option). Preemption happens, e.g., if you have two partitions sharing the
same nodes, but one of them has PriorityTier higher than other. Then if all nodes are
occupied by jobs, and new job comes from the high-priority partition, it can preempt a
running job, belonging to the low-priority partition.

To use or not use preemption in Slurm, you need to specify some parameters in the
slurm.conf: PreemptType - plug-in name, which chooses the jobs, which should be
preempted. It can be preempt/none - to disable preemption, preempt/partition prio -
to use PriorityTier, like in the example above, and preempt/qos - use QoS in addition
to PriorityTier. Also, you have to specify PreemptMode, to set how the jobs will be
preempted. Possible values are

e OFF - Disable job preemption and gang scheduling (default).
PreemptType should be preempt/none.

o CANCEL - The preempted job will be canceled.
¢ GANG - Enable gang scheduling.

« REQUEUE - Cancel the job and requeue it, --requeue sbatch
option was set or if JobRequeue parameter in slurm.conf was set to 1.

e SUSPEND - The job will be stopped and then resumed after the high-
priority job finishes, requires gang scheduling to be turned on.

Preemption is a tricky option; I recommend using it only for partitions, where job
interruption is not critical, if you have such. Your users should be well-informed of this
behavior to exclude any surprises.

QoS and Limits

QoS or quality of service is the most inappropriate title in Slurm. Actually, it is a named
limit, which can be associated with user, partition, or account, and can be attached to a
job automatically or manually. Except of limits, QoS can specify priority or preemption. If
QoS is associated with a partition, it will override others by default, but if you create a QoS
with Flags=0verPartQos, it will override partition QoS.

217

CHAPTER 15 SLURM

As QoS can set some limits, there is the order, to determine which limit definition
will be enforced:

1. Partition QOS limit (if OverPartQOS is set, goes after Job QoS)
2. Job QOS limit

3. User association

4. Account association(s), ascending the hierarchy

5. Root/cluster association

6. Partition limit

There are a lot of different limits, please check them in the docs,' here I will describe

some most useful:

o (GrpJobs - Max jobs, allowed to run at the same time and sharing this
QoS, e.g., if you associate it with two accounts, they could run in sum
no more jobs than this limit.

e GrpSubmitJobs - The same as above, but for jobs in queue (including
running jobs).

e (GrpWall - The same as above, but for summary jobs work time.
o MaxJobsPerUser - Max running jobs from one user.

e MaxSubmitJobsPerAccount - Max jobs in the queue (including

running) from an account, including subaccounts.
e MaxSubmitJobsPerUser - The same as above, but for user.

e MaxTRESPerAccount - Max TRES, which all running jobs from an

account can use at the same time.

e MaxTRESPerJob, MaxTRESPerNode, MaxTRESPerUser - Same as above,
but relates to one job, each node, and one user, respectively.

Yhttps://slurm.schedmd.com/resource limits.html

218

https://slurm.schedmd.com/resource_limits.html

CHAPTER 15 SLURM

Note - Limits with prefix Grp summarize the resource usage between all jobs,
having this QoS, limits with Max prefix - only between jobs, sharing specified
attribute (username, account, ...). To specify TRES limits, you can use a list, e.g.,
GrpTRES=cpu=20,gres/gpu:tesla=10, which will set limit of 20 CPUs and 10 GPUs.

User associations are set by using sacctmgr command. With the sacctmgr
command, you can set not only associations, but also additional constraints on each
association. Below are the most useful ones:

Name Meaning

MaxJobs Total number of counting tasks
MaxNodes Number of nodes per task
MaxSubmitJobs Total number of tasks in the queue
MaxWall Task time limit

The time limit cannot exceed the limit set in the partition settings, be careful.
Here are some examples:

sacctmgr add account name=accl [parent=accto]

sacctmgr add user name=userl,user2 account=accl

sacctmgr add assoc user=userl account=accl maxsubmit=5

sacctmgr modify assoc where user=userl account=accl \
set maxjobs=2

To delete a limit, just set its value to -1. An important feature of the limits set via
sacctmgr is that there is no way to set default limits - only per individual association.

Priorities and FairShare

Each job in Slurm has a priority. It can be set directly by admin using command like

scontrol update jobid=123 priority=1000000, or, by default, a formula calculates it.
In most cases, a “multifactor priority plug-in” is used, which calculates each job priority
summing several “factors,” multiplied by a coefficient; each factor is in the range from 0
to 1. All coefficients are tunable, so you can decide which factor impacts the priority the

most. The list of factors is as follows:

219

CHAPTER 15 SLURM

Name Meaning
Age How long the job was waiting in the queue
Assoc Each association can have this factor value, so you can give boosts to groups of

users, e.g., in different partitions

FairShare See below

JobSize The number of nodes or CPUs a job is allocated

Nice Users can use it to change their job priorities (usually to lower it); it always has the
coefficient = -1

Partition Each partition can have a priority, not a PriorityTier!

QoS Each quality of service can have its own priority factor

Site Slurm can manage several clusters (sites), and they can have different priorities; its
coefficient is always = 1

TRES Each TRES can have its own factor too

For each factor, except Nice and Site, you can set the coefficient by
PriorityWeight[FACTOR]=number line in the config. PriorityFavorSmall parameter
says if JobSize factor prioritizes small jobs or large jobs. PriorityMaxAge specifies which
job wait time in the queue makes this factor max, by default it is seven days.

FairShare is an algorithm, which distributes resources according to number of
“shares” it has. The idea is to give each account some shares, like this:

sacctmgr modify account foo set fairshare=100

Then, if any job of this account is running, it consumes given shares, proportionally
to allocated resource, and its FairShare factor becomes lower. By default, the resource is
number of allocated_cpus*seconds. You can change it, adding any TRES resources with
weight using configuration file option TRESBillingheights, e.g.,

TRESBillingWeights=GPU=1.0,CPU=0.001,Mem=0.01G

In this example, if the job requires 2 GPUs, 16 CPUs, and 1024 G memory, the
number of shares will be calculated as 2*1.0 + 16*0.001 + 1024*0.01. There is
another method, when instead of sum, the maximum value of each weighted TRES is
taken. It may be turned on by the option PriorityFlags=MAX_TRES in the config file. It is
alist; you can have different flags together.

220

CHAPTER 15 SLURM

By default, Slurm uses more complicated FairTree algorithm, which calculates
shares hierarchically; you can read more about it on the slurm.schedmd. com website.
If you don’t want to use it and want to use simple FairShare algorithm, add to
PriorityFlags value NO_FAIR TREE.

As resources are consumed, you have either to give new shares to the accounts
sometimes, either consumed resources should be reset somehow for all accounts. In
Slurm, it is implemented by two options. First is a half-decay - period of time when the
historical usage lowers its impact into FairShare value. Here is an example:

PriorityDecayHalflLife=3-6:30

Here we set the half-decay period to 3 days, 6 hours, and 30 minutes. If we set it to 0,
then the second option goes in play - reset period:

PriorityUsageResetPeriod=WEEKLY

In this example, every Sunday at 00:00, FairShare usage is reset. Unfortunately, there
is only fixed list of periods: DAILY, WEEKLY, MONTHLY, QUARTERLY, YEARLY - do reset at the
midnight of the first day of the period, and special ones: NONE (default) and NOW - on the
Slurm controller restart.

There are sshare utility, which shows the current FairShare values. Here are some
hints on how to “decode” its output. NormShares is a number of given shares, divided
by total shares given to all, i.e., normalized shares; it is always in range from 0 to 1.
RawUsage -how many normalized shares are used. EffectvUsage - if it is under 0.5,
then account used more shares, than it has, and its priority will be lowered a lot; if it is in
the range 0.5-1, then its priority will be increased by the FairShare factor, the closer to 1,
the higher. Here is an example:

$ sshare

Account RawShares NormShares RawUsage EffectvUsage FairShare

root 1.000000 694362950 1.000000 0.500000
abc 2000 0.011481 28 0.000000 0.999998
foo 3000 0.017221 45166247 0.065072 0.072870
bar 100 0.000574 0 0.000000 1.000000
baz 300 0.001722 19770 0.000028 0.988597

221

http://slurm.schedmd.com

CHAPTER 15 SLURM

Here foo account consumed a lot of resources (RawUsage) and has low FairShare
factor, which will decrease the priority; other account will have higher priority (if you
made the FairShare factor significant in the priority formula of course).

The overall checking, if one job has higher priority than the other or should preempt
the other, follows this order:

¢ Reservation - Jobs with a reservation are higher priority than
other jobs.

o Partition priority tier - Jobs in a partition with higher tier has higher
priority.

e Job priority - In case of multifactor priority plug-in use, calculated
priority is used.

e JobID - Jobs, submitted earlier (with lower job id), have higher
priority.

User Levels

Slurm allows executing privileged commands to non-root users, if they are allowed to.
There are several levels of privileged users in Slurm:

Administrator - Can do any commands, by default root and user
specified in SlurmUser have these rights.

Operator - Can add, modify, and remove any database object
(user, account, etc), and add other operators. On a SlurmDBD
served cluster, these users can view information that is blocked to
regular uses by a PrivateData flag and manage reservations.

Coordinator - Trusted users, who can change limits on account
and user associations, as well as cancel, requeue, or reassign
accounts of jobs in their accounts. Also, they can add new users
and subaccounts in their accounts. They cannot increase job
limits above the parent account allows.

To give or revoke a user privilege, use the command:

sacctmgr update user name=USERNAME set \
adminlevel=[admin/operator/coordinator/none]

222

CHAPTER 15 SLURM

Topology

Optional description of the network topology. I recommend using it if you have
InfiniBand network or similar, do minimize number of network hops, and as a result
latency and neighbor noise. To enable it, specify TopologyPlugin=topology/TOPO NAME,
where TOPO_NAME is one of:

Name Meaning

default One-dimensional topology

block Block topology, see below

3d-torus 3d-torus topology

tree Hierarchical topology, like tree, fat-tree, dragonfly

Block topology describes a simple network with several leaf switches (blocks) and
one top switch. Topology configuration is specified in the topology.conf file. Here is an
example for the block topology:

topology/block
BlockName=block1 Nodes=n[1-32]
BlockName=block2 Nodes=n[33-64]

And here - for the tree topology:

topology/tree

SwitchName=s0 Nodes=n[0,2,4,6]
SwitchName=s1 Nodes=n[1,3,5,7]
SwitchName=top Switches=s[0-1]

Note that in the second example, nodes are in the mixed order. If you have similar
situation, this may cause communication problems in the apps, if they allocate nodes
from several leaf switches, because by default neighbor ranks will communicate via top
switch. To prevent it, use TopologyParam=SwitchAsNodeRank parameter in the slurm.
conf. It will sort ranks (nodes list actually) by switches first, then by node names.

Be careful - if you add new nodes, update the topology file; otherwise, those nodes
will never be selected for jobs!

223

CHAPTER 15 SLURM

Reservations

Reservation is a way in Slurm to request some number of nodes or specific nodes for
individual users for a time in the future. Other users’ assignments to these nodes will not be
allocated, even if the nodes are free. This is useful as for dedicated calculations, as for the
maintenance, because admins can run test jobs on the nodes and keep user jobs in queue.

In a reservation, you should specify the number or exact list of reserved nodes, start
time, end time, or duration. You also can specify a list of allowed users or accounts,
reservation name, and special flags. Let’s look at an example:

scontrol create reservation name=important \
StartTime=2100-06-01T08:00:00 Duration=5:00:00 \
Users=user1,user2 NodeCnt=100 Flags=IGNORE JOBS

Here we have created a 100 node reserve for users user1 and user2, which will be
available to them from 8am on 2100-06-01 for five hours. The IGNORE_JOBS flag means
“if the required number of nodes have not been released by this time, ignore it,” and in
this case, there may be fewer nodes than requested at the start of the reserve. To use the
reservation, user must specify a key to the sbatch/srun command:

sbatch --reservation=important -N100 ./my task

Other useful (but not all) flags are

o OVERLAP - Allow the list of nodes to overlap other existing
reservation(s).

o NO _HOLD JOBS_AFTER - By default if the reservation ends, any tasks
submitted to it will be held. This flag allows such tasks to just remain
in pending state. This flag cannot be removed using ‘-=.

o DAILY, HOURLY, WEEKLY - Repeat the reservation every day, hour,
or week.

o WEEKDAY, WEEKEND - Like DAILY, but on weekdays or weekends.

e STATIC ALLOC - By default if you ask to reserve a number of nodes and
any node, selected for the reservation, goes down, then a new node is
added to the reservation (if possible). This option prevents this.

e MAINT - Like OVERLAP and STATIC_ALLOC together.

224

CHAPTER 15 SLURM

If you want to modify the reservation, use the command shown below. Note

“reservationname” without space and “+=" operator in flags. You can use it in users/

accounts lists too, and “-=" operator, if you want to delete flags or names.

scontrol update reservationname=important \
duration=14-00:00:00 flags+=STATIC ALLOC

User Experience

For users, the basic Slurm commands are

sbatch - Put the task in the queue.

srun - Run the program interactively (it is queued as in sbatch, but
control is not given to the shell until the program terminates).

salloc - Allocate nodes for a task, but do not run anything on them,
the user must do it himself. It is necessary, e.g., for some interactive

programs.
squeue - List of tasks in the queue.
sinfo - Information about the partition.

sacct, sshare, sprio - Information for advanced users about
priority, resource usage, and FairShare.

Ajobis a script, like in PBS. And in the similar way, the script can include special

comments, starting with ‘#SBATCH ‘ and following any sbatch options, which will be

applied by default. They can be overridden by the environment variables or explicit

sbatch options. This script is executed on the first allocated node and has set of

environment variables, specific to the job. Unlike PBS, you can run ‘srun something’

inside the batch script and something will be executed on all allocated resources, e.g., if

we run the script like this:

#/usr/bin/env bash

#SBATCH --nodes 2

#SBATCH --ntasks-per-node 2
echo Start

srun hostname

echo End

225

CHAPTER 15 SLURM
We can expect the output like:

Start
nio
ni1
nil
n10
End

Note the random order of hostname outputs. Batch script can include several srun
executions; they are called steps in Slurm. Step 0 is always the script run itself. If it is
needed, several srun runs can be executed in parallel, e.g., if four CPUs were requested,
first stun can be executed with option ‘-n 1, requesting only one CPU and the parallel
one - with option ‘-n 3, requesting the rest CPUs. Such cases are rare, but possible.

Slurm supports work with containers directly, but requires some additional software
to be installed. But I would recommend to use enroot software and pyxis Slurm plug-in -
they are open source, well-supported, lightweight, and pretty customizable.

Each command has a lot of possible keys; the main ones for sbatch/srun are listed
in the Table 15-1.

Table 15-1. sbatch/srun primary keys

Key Meaning

-p partition Partition name

-n NUMBER Number of processes (cores) for a task

-N NUMBER Number of nodes to specify

--ntasks-per-node N Combined with -n/-N specifies the number of processes on the node

-A account Explicitly account

--gres=... Require some GRES in format NAME:NUMBERY(....], e.g., --gres=gpu:8

-C/--constraint=... Require a list of features for nodes

-d condition Specify dependencies on other tasks, e.g., start this task only after another
task has been successfully completed

-i/-o/-e file Specify the name of the 1/0/errors file. The name can include the name of
the node/user/task, etc. Default slurm-%j.out (%] = task name)

(continued)

226

CHAPTER 15 SLURM

Table 15-1. (continued)

Key

Meaning

-J name

--[no-Jrequeue
-t/--time=TIME

-w nodelist

-X nodelist
--qos=NAME

Set the task name, by default — its ID
Queue tasks again on failure [not]

Maximum time of task operation, after expiration of this time the task is
forcibly terminated

Require specific nodes
Ask to not select specified nodes
Use QoS with name NAME

The -p, -A, and -] keys also work for sinfo/squeue, and you can specify a list of

partitions/accounts/tasks. The -u key for squeue restricts the list to tasks of specific

users, and -w restricts the list to specified nodes. Option - -me shows only jobs of the

current user and - -start adds a column with estimated job start time. The -0/-0 keys

can be used to specify the output format in short or long format, respectively. The basic

format characters in both formats for squeue are shown in the Table 15-2.

Table 15-2. Formats for squeue

Short Long Meaning

%a account Account

%C numcpus Number of cores requested or allocated (for a running task)

%D numnodes Number of nodes requested or allocated (for a running task)

%e endtime Task completion time

%l taskid Task ID

%ij name Task name

%l timelimit Time limit in the format [[[DDD- JHH:]JMM:]SS, either “NOT_SET” or
“UNLIMITED”

%L timeleft Remaining operating time in the format [[[DDD- JHH: JMM:]SS

%M eligiletime Task runtime in the format [[[DDD- JHH: JMM:]SS

(continued)

227

CHAPTER 15 SLURM

Table 15-2. (continued)

Short Long Meaning

%N nodes List of task nodes, for a task in COMPLETING state — list of nodes that
have not yet been released

%0 command Launch command

%P partition Partition

%r reason Reason for the current task status

%t statecompact Task status in compact form: PD(pending), R(running), CA(canceled),

CF(configuring), CG(completing), CD(completed), F(failed), TO(timeout),
NF(node failure), and SE (special exit state)

%T state Task status in expanded form: PENDING, RUNNING, SUSPENDED,

CANCELED, COMPLETING, COMPLETED, CONFIGURING, FAILED,
TIMEOUT, PREEMPTED, NODE_FAIL or SPECIAL EXIT

%u username Username

%U userid User ID

%v reservation Reserve name
%V submittime Queueing time

You can specify the size and alignment of the field: for short format, “%[. [size]NAME’,
and for long format, “NAME[: [.]size]’ e.g., “%.181” or “userid:.8" A dot in the format
means right-alignment; the default is left-alignment.

Default format:

"%.181 %.9P %.8j %.8u %.2t %.10M %.6D %R"

Most notable keys for sinfo are presented in the Table 15-3.

228

CHAPTER 15 SLURM

Table 15-3. sinfo primary keys

Key

Meaning

-T reservation
-t STATES

-n NODES

-R

--json / --yaml
-S

-h

Only what is relevant to the specified reservation

Only nodes in the specified states (list of states: ALLOC, ALLOCATED, COMP,
COMPLETING, DOWN, DRAIN, DRAINED, DRAINING, ERR, ERROR, FAIL,
FUTURE, FUTR, IDLE, MAINT, MIX, MIXED, NO_RESPOND, NPC, PERFCTRS,
POWER DOWN, POWER_UP, RESV, RESERVED, UNK, and UNKNOWN

Only on the specified nodes

Show reasons

Output the data in JSON / YAML formatted
Show only partitions summary

Don’t print the header (useful for scripts)

The -o option also works in the case of sinfo. Table 15-4 presents the short list of

format characters.

Table 15-4. Basic sinfo formats

Symbol Meaning

%a Partition status

%A Number of nodes in the “busy/free” format

%C Number of processors in the format “busy/free/other/total”
%D Number of nodes

%E Node lockout

%F Number of nodes in “busy/free/other/total” format

%P Partition name, “*” is added for the default partition

%S Whether tasks are allowed to run

%t Node condition, short form

%T Node condition, long form

229

CHAPTER 15 SLURM

Width and alignment control: %[.] [number]character. Number specifies width; dot
specifies right-alignment. The given lists of options and format symbols are by no means
complete; see the documentation for more details.

Sometimes you can see that the node state is “duplicated,” but a symbol is appended
to it. Slurm does it to show additional information:

* The node is not responding.

$ The node is in the maintenance mode.

~ The node is presently in powered off.

The node is presently being powered up or configured.
I The node is pending power down.

% The node is presently being powered down.

@ The node is pending reboot.

~ The node reboot was issued.

Job Life Cycle

There are a lot of different steps happening during the job life in Slurm. I'll skip some,
which are rarely used, but I recommend you to look in the docs about prologues/
epilogues types and plug-ins invocation types. Here are the most common steps:

e Submit the job (sbatch/srun/salloc) - Here Slurm makes some
checks, if this job is allowed to be queued, and also invokes SPANK
plug-ins, which are registered for this step. Such plug-ins can add
options and flags to sbatch and srun, like pyxis does. Special type of
plug-ins, also invoked on this step, are job_submit plug-ins, where
you can make special checks or actions.

o Job start - Before it happens, several types of prologue scripts and
plug-in hooks are executed. Most common and interesting is the
script (or a set of scripts) specified in the Prolog line in the config file.
It is executed on all allocated nodes from the root user, and I highly
recommend using it for making additional checks, if all hardware

230

CHAPTER 15 SLURM

is ready, if all resources are clean (shared memory, semaphores,
temporary directories, etc.). Note the prologue script time is limited!

¢ Creating the job step - The slurmstepd is starting, running any
plug-ins hooks, if needed, then it starts the job script. By default, the
cgroup plug-in is used, so it creates a special namespace and sets
some limits before the step starts.

e Jobis running, new steps start and end via srun - Also some plug-
ins can handle those events (but rarely). During the job is running
(and actually when not), Slurm can run a HealthCheckProgram - a
script, which makes quick(!) and harmless(!!) checks of the node. If
it fails, e.g., detects important errors in the kernel logs, or a GPU fail,
then it may do some actions - usually drain the node. You can specify
in which node states it should run and in which interval.

« Jobis preempted - See the chapter about the preemption.

e Job ends - It can happen if the batch script is finished, canceled, or
if the job is out of the time limit. The Slurm sends to all job processes
on all allocated nodes SIGTERM, then in some time SIGKILL. Then
epilogue script is executed and plug-ins hooks, just like for the
prologue. And I also recommend using it for additional checks and
cleanups.

Note - If prologue script fails (returns nonzero code), Slurm stops the job start,
drains the node, and either cancels the job or requeues it. Be careful in the prologue and
epilogue scripts.

scontrol

The next important command is scontrol. With its help, you can quickly change the

state of partitions, nodes, tasks, and much more. Regular users can use it to check full
status of a partition of a job and hold/unhold their jobs if needed. The command has
many subcommands, Table 15-5 presents the most interesting ones.

231

CHAPTER 15 SLURM

Table 15-5. Main scontrol subcommands

Subcommand Meaning

all Show the partitions, their nodes, and assignments

cluster NAME Specify the cluster we are working with, followed by the following
subcommand?

create OBJECT Create a Slurm object, see below

delete OBJECT Delete the Slurm object

show OBJECT Show Slurm facility

update OBJECT Modify the Slurm object

hold/release JOBS Lock/unlock tasks

suspend/release JOBS Pause running tasks

The main objects that scontrol works with are partition, task, node, and
reservation. The delete subcommand works only with reservations and partitions.
Block tasks from running on the nodes (drain the nodes):

scontrol update nodename=n[22,25] state=Drain reason='badmem’
Show the current running config:

scontrol show config
Reload all controllers and agents configuration:

scontrol reconfigure

Drain the node(s) and after the last job finishes reboots the node and set the state to
STATE (really useful if you want to apply changes, like new image, kernel version, etc):

scontrol reboot asap nextstate=STATE NODE_LIST

2] don’t understand why it’s not put in an option, but it’s far from the only illogical decision of
Slurm authors.

232

CHAPTER 15 SLURM

Accounting and Statistics

If you have previously configured accounts, you can get statistics on tasks with the
sacct command, filtering them by start/end time, accounts, logins, or partitions. If the
taskacct_gather plug-in is enabled, you can get maximum/average CPU, memory,
and disk utilization by individual tasks or by groups of tasks with the sstat command,
filtering them as in sacct.

The sreport command can be used to get reports on cluster utilization. The
following types of statistics are available:

cluster - Total utilization, can be grouped by logins and

accounts.

task - Stats by task classes; class is set by the interval of number of
cores per task, grouped by accounts.

user - Utilization by logins.

Here are some examples. Get statistics on tasks for one day: task number, partition,
login, number of core-hours, and completion status:

sacct -S 2024-01-01 -E 2024-01-02 \
-0 JobID,Partition,User%16,CPUTimeRAW,State%20 -X

JobID Partition User CPUTimeRAW State

522783 test user_12345 7168 COMPLETED
523455 compute user_23456 0 CANCELLED by 0
526258 compute user 55436 0 CANCELLED by 10107
527646 compute user 11231 1624 FAILED

528244 compute user 43546 46125352 NODE_FAIL
528479 compute user 12345 10526502 COMPLETED
528480 compute user 12345 15060654 COMPLETED

Another tool for statistics generation is sreport. Here is an example for the report for
task classes 0-16 cores, 17-1024 cores, and 1024+ cores for the week:

233

CHAPTER 15 SLURM

sreport job SizesByAccount grouping=0-16,17-1024 \
start=2024-01-01 end=2024-01-07

Job Sizes 2018-01-01T00:00:00 - 2018-01-06T23:59:59 (518400 secs)

Time reported in Minutes

superhpc userst500 6678604725 1000612 6677604113 100.00%

Total statistics for the cluster for the month - how many resources were spent on
tasks, Idle, Reserved, or lost due to downed nodes:

sreport cluster utilization Start=2024-11-01 End=2024-12-01 -t percent
Cluster Utilization 2024-11-01T00:00:00 - 2024-12-01T00:00:00 Usage
reported in Percentage of Total -------------------------co

Cluster Allocated Down PLND Dow Idle Planned Reported

superhpc 85.08% 8.59% 0.00% 2.10% 4.23% 100.00%
Statistics on users for the month (top five by resource utilization):

sreport user topusage topcount=5 start=2024-01-10 \
end=2024-02-10

Top 10 Users 2024-01-10T00:00:00 - 2024-02-09T23:59:59

Use reported in TRES Minutes

Cluster Login Proper Name Account Used Energy
superhpc user 12 UserNamel2 usert500 43466331 0
superhpc user 25 UserName25 usert500 35227321 0
superhpc user 11 UserNamell usert500 35104234 O
superhpc user 32 UserName32 usert500 30548681 0
superhpc user 47 UserName47 usert500 27162101 0

234

CHAPTER 15 SLURM

Troubleshooting

If you have a large cluster, please refer to the recommendation on the page https://
slurm.schedmd.com/high throughput.html. In case of problems, the first place you
want to look at is logs of course. By default, there are not so much information, so try to
increase the verbosity level of the logs and probably fine-tune DebugFlags parameter
to concentrate on something specific. Note that you can temporarily change them on
the fly using scontrol setdebug LEVEL and scontrol setdebugflags {+|-}FLAG
[{+]|-}FLAG ...].Ifyouadd ‘nodes=..." with the nodes list, your changes affect only
specific nodes.

Another good tool for looking inside your job manager is sdiag. It shows useful
statistics, especially RPC stats, so you can detect if your Slurm is dying under
request storm.

Agent queue size: 0

Remote Procedure Call statistics by message type
REQUEST_PARTITION_INFO (2009) count:325127 ave time:183 total time:5978485

Remote Procedure Call statistics by user
root (0) count:728986 ave time:10228 total time:456422703
userl (25002) count:29784 ave time:13439 total time:269036

sacctmgr show stats gives you information about accounts and used resources;
sacctmgr show problem displays issues, which Slurm treats as potential problems; and
sacctmgr show runawayjobs checks for jobs, which are orphaned somehow and ask for
fix if any. scontrol show configshows the current configuration parameters; they may
differ from your actual slurm.conf, so it is useful to check for unexpected values.

OK, you detected something odd and want to fix it. Depending on the type of the
problem, the solutions may be quite different - sometimes you need to adjust users or
accounts limits, sometimes you need to change Slurm scheduler parameters. In the
second case, you usually want to change options using SchedulerParameters. There are
alot of them; here are some useful:

235

https://slurm.schedmd.com/high_throughput.html
https://slurm.schedmd.com/high_throughput.html

CHAPTER 15 SLURM

o max_rpc_cnt=N (for large number of jobs) increase max number of
slurmd threads, 256 by default

e defer - Do not try to schedule each job, do it together with all once in

a period of time (for LONG queues)

» salloc_wait_nodes / sbatch_wait_nodes - Start the job only when all

nodes are ready (prologues and other init procedures are finished).

Advanced Parameters for slurm.conf

Here are some (there are much more, read the latest doc) of parameters in slurm. conf,

which can help you.

Parameter

Meaning

PropagateResourceLimits

HealthChecklinterval

HealthCheckNodeState

PrivateData

PrologFlags
SchedulerParameters
SlurmSchedLogFile
SlurmSchedLogLevel

Force SLURM to set specified ulimits for the started jobs, as they are
specified on the submit node. Possible values are ALL, NONE, CPU,
NOFILE,...

Interval in seconds between health check script runs, 0 (default) disables
it
Nodes in which states should run health check script: ALLOC, ANY,

CYCLE (run gradually on all nodes), IDLE, NONDRAINED IDLE, MIXED.
You may specify several via comma

Hide some information from regular users — list via comma: accounts,
events, jobs, nodes, partitions, reservations, usage, users.
See more info below

Control prologue behavior, list via comma. See more info below
Options for the scheduler
Path to the log file for the schedulers

1 = scheduler logging is enabled, 0 = disabled

236

CHAPTER 15 SLURM

For PrivateData, nodes and partitions hide nodes and partitions state;

reservations hides the reservations, unless the user can use them; and accounts, jobs,

usage, and users hide the information, unless the user is a coordinator or an operator.
Useful PrologFlags (see full list in the docs):

Alloc - Run prologue in the allocation phase. By default, the
prologue is executed before the allocation phase and is not executed
with salloc. This flag is required by many others.

Contain - Use the ProcTrack plug-in to create a job container on
all allocated compute nodes. pam_slurm_adopt then can place
processes launched through a direct user login into this container.

DeferBatch - Wait until the prologue completes on all allocated
nodes before sending the batch job launch request. May prevent
nonsynced MPI jobs start.

RunInJob - Run prologue and epilogue in the extern slurmstepd.
Implicitly sets the Contain and Alloc flag and runs prologue and
epilogue in the job’s container.

Serial - Run prologue and epilogue on each node sequentially,
one by one, instead of default parallel run. This is incompatible with
RunInJob.

The most useful (in my opinion) SchedulerParameters (note that different type of

schedulers may take different parameters):

batch_sched_delay - How many seconds delay the job scheduling
(default 3). May be useful if jobs are submitted with a high rate, and
we want to collect many jobs before the scheduler starts.

bf _interval - The number of seconds between backfill iterations.
Default: 30, -1 disables the backfill.

bf_max_job_assoc - The maximum number of jobs per user
association to attempt starting with the backfill scheduler. Default: 0
(no limit).

bf_max_job_part - The maximum number of jobs per partition to
attempt starting with the backfill scheduler. Default: 0 (no limit).

237

CHAPTER 15

238

SLURM

bf_max_job_user - The maximum number of jobs per user to attempt
starting with the backfill scheduler for all partitions. Default: 0
(no limit).

bf_max_job_user_part - The maximum number of jobs per user per
partition to attempt starting with the backfill scheduler for any single
partition. Default: 0 (no limit).

bf_max_job_start - The maximum number of jobs which can be
initiated in a single iteration of the backfill scheduler. Default: 0
(no limit).

bf_max_job_test - The maximum number of jobs to attempt to
backfill. Default: 500.

bf max time - The maximum time in seconds for the backfill
scheduler loop. Default: bf_interval value.

default_queue_depth - The default number of jobs to attempt
scheduling after a job completes or other routine actions occur.
Default: 100.

defer - Defer the job scheduling at job submit time, but defer it until
a later time when scheduling multiple jobs simultaneously may be
possible.

defer_batch - Like defer, but only will defer scheduling for batch jobs.
Interactive allocations from salloc/srun will still attempt to schedule

immediately upon submission.

ignore_prefer_validation - Ignore errors requesting nodes features.
May be helpful when you add and remove nodes frequently, but is
dangerous otherwise.

max_rpc_cnt - Defer scheduling jobs, if the number of active
controller daemon thread is equal or higher than this. Default: 0
(unlimited).

max_sched_time - Maximum seconds the scheduler loop can run. If
it is set, then other operations will be deferred while scheduling, so
ensure that it is lower than MessageTimeout.

CHAPTER 15 SLURM

e max_switch_wait - Maximum number of seconds that a job can delay
execution waiting for the specified desired switch count. Default: 300.

e nohold_on_prolog_fail - By default, if the prologue exits with a
nonzero value, the job is requeued in a held state. By specifying this
parameter, the job will be requeued but not held.

o pack serial_at_end - With the select/cons_tres plug-in, put serial jobs
at the end of the available nodes rather than using a best fit algorithm.
This may reduce resource fragmentation for some workloads.

¢ salloc_wait_nodes - The salloc command will wait until all allocated
nodes are ready for use before the command returns. By default,
salloc will return as soon as the resource allocation has been made.
The salloc command can use the --wait-all-nodes option to

override this configuration parameter.

e sbatch_wait_nodes - The sbatch script will wait until all allocated
nodes are ready for use before the initiation. By default, the sbatch
script will be initiated as soon as the first node in the job allocation is
ready. The sbatch command can use the --wait-all-nodes option to
override this configuration parameter.

e sched_max_job_start - The maximum number of jobs that the main
scheduling logic will start in any single execution. Default: 0 (unlimited).

All backfill-related parameters are active only with SchedulerType=sched/backfill.

Brief Summary

Slurm is the most actively developed job management system today and most reach of
functions (in my personal opinion). It is easy to be integrated with containers, license
managers, and much other stuff; the things you are missing often are easy to be added
via scripts/plug-ins. Don’t try to change the scheduler itself - it is a big pain; the rest is

more or less manageable.

Search Keywords

SLURM, Schemd, scheduler, job_submit plugins, LUA

239

CHAPTER 16

Containers

Today, many applications are available via docker containers - in most cases, they help
to avoid dependency hell while recompiling or trying to run a single binary. What is the
container? Simply put, it is an isolated set of processes, which don’t have any access to
other processes and are limited to access full network, full file system, devices, etc. It is
similar to a virtual machine, but there is no emulation; all processes are real, and from
the “top level,” you can see all of them.

In Linux, it is possible thanks to cgroups, namespaces, and chroot technologies.
Cgroups allow you to limit sets of processes in use of memory, CPU, network, devices, and
some other resources. Namespaces help to isolate PIDs, UIDs, etc., so processes in one
namespace don’t see others and even can have “virtual” numbers. chroot is a very old
kernel trick, which allows to change root of the file system for the process to any directory.

Container actually is a combination of those technologies, applied to a set of
processes. For example, you want to test a new database, but don’t want to install it into
your system, as it will conflict with the existing one. If you have a container with this
database, it has a file system with all needed files, like binaries, libraries, and even its
own libc. When you start this container, this file system is mounted into yours, then a set
of cgroups and namespaces is created, and finally, the first container process is started
with chroot to mounted file system.

As aresult, all processes in the container have access only to other processes in the
same container. They have their own set of users and have access only to the file system
dedicated to the container as if it was the root file system. From the network perspective,
itis a bit more complicated, but the overall idea is the same - you can limit the container
to “see” only certain interfaces, usually virtual, which you created especially for this
container. But here may be many options. You even can allow this container to use no
more than 20% of your memory or only 1 CPU core.

Docker is the most popular container technology today, and in addition to all above,
it uses squashfs - “layered” file system. The idea is to have a “base” file system, e.g., a
freshly installed Ubuntu, which is a first layer, then you can install some libraries and

241
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_16

https://doi.org/10.1007/979-8-8688-1600-0_16#DOI

CHAPTER 16 CONTAINERS

other software and “save” all changes in a second layer. And you can continue to create
new layers as far as you want - all changes will be saved (even file deletions). All layers
are stored in the docker repository and/or on your local docker storage. If you install one
container, all its layers are cached on your file system, and if you install a second one,
which has some same layers (e.g., is based on the same Ubuntu version), only new ones
will be loaded. This allows to save space and memory. If you have worked with docker
and know about Dockerfile format, you may know that every line in this file creates

a new squashfs layer (OK, almost every). When you change the line and rebuild the
container, it will be rebuilt only from the changed line, because all previous layers are
unchanged.

“OK, but I need to process my data!’, a user would say. No problem, in Linux, you can
mount local directory as a file system into any other directory, using ‘--bind’ key. Using
this trick, you can make your directory with data or anything else visible in the container.
By default, all container systems allow you to specify what you want to mount and at
what path inside the container.

How can we use containers in HPC? Unfortunately, docker technology has a
lot of limitations, and directly, we almost cannot use it in HPC in 2025. By default,
docker requires a special service, running with root privileges, doesn’t allow using
InfiniBand and GPUs directly, and badly integrates with job managers. There are ways
how to overcome those and some other issues, but fortunately, we have many other
technologies, which allow using containers and even prebuilt docker containers. Let’s
talk about the most useful today.

Singularity

This is the project by Sylabs Inc., but it has a mature open source community edition. It
uses its own format, but you can easily convert a docker container into singularity. There
is an option to run a docker container “directly,” but actually singularity will import it,
convert, run, and then delete converted one, so it is not recommended.

Also, you can build a singularity container using special “definition file,” similar to
Dockerfile. Singularity containers were designed especially for HPC and can be easily
integrated with any batch system. It allows HPC applications to have transparent access
to InfiniBand interfaces and GPU accelerators. To use it with NVIDIA GPUs, you should
have nvidia-container-toolkint installed.

242

CHAPTER 16 CONTAINERS

To run an MPI application in the singularity container, you can use a command
like this:

mpirun -n $NP singularity run app.sif /opt/my-mpi-app

Here, NP is the number of processes, app. sif is the singularity container, and /opt/
my-mpi-app is the path to the MPI application inside the container. This command line
can be used inside the batch file. In case of SLURM, we’d recommend to use srun instead
of mpirun.

Read more about singularity here: https://docs.sylabs.io/guides/latest/
user-guide.

Apptainer

This technology is a fork of singularity, developed independently by the Linux
Foundation. Almost everything, related to the singularity, is applied to apptainers.

Actually, vice versa, the singularity was a fork, but it is a bit complicated:; if you
want, you can read some details here: https://apptainer.org/news/
community-announcement-20211130/.

CharlieCloud

The open source technology, similar to singularity, but is intended to be lightweight
and uncomplicated. It contains several utilities, like ch-image, ch-build, ch-run, and
ch-convert, and allows you to deal with docker images, extract the squashfs, build your
containers, and run squashfs as a container. It integrates with job management systems
via PMIx, so its use is pretty simple.

Pyxis + Enroot

These projects are open source and developed by NVIDIA, so only NVIDIA GPUs will
be well managed if you use them. Enroot is a lightweight container implementation;
it doesn’t require docker or other container engine to be installed. When you run the

243

https://docs.sylabs.io/guides/latest/user-guide
https://docs.sylabs.io/guides/latest/user-guide
https://apptainer.org/news/community-announcement-20211130/
https://apptainer.org/news/community-announcement-20211130/

CHAPTER 16 CONTAINERS

container using enroot, it extracts the squashfs into the local file system and then runs
the application with cgrops/namespaces/chroot set. Pyxis is a complimentary SLURM
plug-in, which adds some useful flags to stun command and runs the container using
enroot transparently. This technology is really easy to use and requires minimum
overhead, comparing to the other options.

Caching

If you use containers, please be ready that each process before the start will download
this container, prepare it (unpack/convert/etc.), and then start. It takes time and also
forces the container images to be downloaded many times and often at the same time.
This is not efficient, so I recommend to

1. Stimulate your users to load containers into the shared file system
and reuse loaded images.

2. Use caching options when available (Charliecloud and Enroot
give you some).

3. Use special caching proxy, like docker-registry-proxy project.
Regular proxy may be not a good choice, because docker image
registries frequently require authorization and also you don’t want
to cache manifests (at least for a long time).

Brief Summary

Containers are a lightweight option of virtual machines; they are convenient to use if
you need to run applications without installing new packages or compiling them from
the source code. In HPC world, you should be cautious, because you need low-latency
access to devices and ability to run MPI applications.

Search Keywords

Linux Containers, Docker, Open Container Initiative, cgroups, linux kernel namespaces,
chroot, singularity, apptainer, charliecloud, enroot, pyxis

244

CHAPTER 17

Clouds

If you don’t have an HPC cluster and cannot build it right now but need to run HPC
computations, you can try to get access to an existing one. Another option is build

your own HPC cluster in clouds. Today, some cloud providers give you special HPC
instances - virtual machines with almost transparent access to high-performance
network and accelerators. Please note that the overall performance will still be less than
on a “real” hardware, but depending on the provider, it can have a 5-15% performance
drop. If it is OK to you, let’s take a look to the details.

A very important aspect is price; carefully estimate your expenses, it might turn
out that building and managing an on-prem cluster would be even cheaper in the long
term! But cloud can be a perfect playground to test technologies and software before
production use. Some cloud providers can give you almost raw HPC hardware today, so
you can imitate almost real cluster.

Before you buy cloud resources, precisely check which type of the network is used
and what resources are included into your instances. In many cases, if you use a high-
performance low-latency network, you are limited in number of instances, which can
be connected. Make sure they are in one performance subnet (capacity reservation,
domain, etc.). Otherwise, the overall performance can be times lower.

Network file system is really important, and you should ensure that you have access
to a good one. If it is just an NFS volume, probably it is not what you want. If the cloud
provider cannot give you clean performance estimations, you can try to buy cheap
instances with this file system and run I/O performance tests, ideally similar to your
production I/0. For example, you know that your HPC application saves temporary
data every five minutes and size is around the compute node memory. Then you can
simulate this pattern and check how long this save takes and how long it loads from the
file system.

Some cloud providers allow you to bring up a SLURM-based HPC cluster as an
option. In simple cases, it may be really useful. But if there is no such option, or you need
some features, not included in this option, you can bring it up by yourself. I recommend

245
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_17

https://doi.org/10.1007/979-8-8688-1600-0_17#DOI

CHAPTER 17 CLOUDS

to use automation tools like terraform for the initial setup. After bringing up the nodes,
you need to install all needed software, and this process also should be automated. You
can use Ansible or other tools. If it is possible to create a custom image and use it on
new nodes, this will be the best solution. Some cluster management tools, like BCM, can
help you to manage this. Test your solution on cheap instances first!

Check the cloud API to be able to automate any additional actions, like terminating
the instance and bringing up a new one, or just power on/off any subset of your
instances.

Via cloud API, you might be able to collect useful metrics, like power consumption,
network counters, node health, etc. If it is possible, use this ability. If not, try to collect as
much as you can directly on the nodes.

All questions, you have to check before building an on-prem cluster, are actual in the
cloud, but may be slightly corrected. For example, user management may be integrated
with your corp authentication mechanisms, but may be implemented independently.
Checking nodes and reporting service tickets may be automated via cloud provider
API. Take another look at the chapter “How to Build and Start It?”

Brief Summary

Many HPC applications can be run on HPC clouds today, and in some cases, it may be
a cheap solution. Amazon, Oracle, Google, Coreweave, Lambda, and HyperStack are
just a few providers I can name off the top of my head.! But don’t underestimate the
management overhead and limited choice of assets in the cloud environment. Check
for the network and storage options, price for traffic, price for turned off nodes, and any
other possibly hidden factors. Make a test, try to assess the risks and performance first.

Search Keywords

HPC cloud, HPC cloud network, Cloud security, Low-latency cloud network

'Not an advertisement, they don’t pay me :)

246

CHAPTER 18

Remote User Access

SSH

This is the main method of remote access to supercomputers today. Don’t be
intimidated by the fact that access will be on the command line and your users are
working in graphical environments. They only need to know a few commands to work,
and if they use open source projects that require building or developing programs
themselves, the command line is no longer scary for them.

To ease the plight of newcomers, I recommend installing the mc (Midnight
Commander) file manager package on the access node, the interface of which is very
similar to Far Manager or TotalCommander for Windows or other “two-panel” file
managers. Our experience shows that beginners rarely have problems in communicating
with the command line, because for them, the set of operations is limited to putting a
task in the queue and viewing its status. Copying files from or to a cluster is done in a
convenient client on a personal computer, and editing is also done.

So, to organize remote access, we need to install openssh server (see chapter
“Remote Management”) and configure it for the mode we need. The “classic” password
access will work by default, but I strongly advise against it. Password access can be
allowed from a limited set of addresses (from administrator workstations) and only to a
limited set of users. This may be necessary to resolve emergency situations.

For regular users, I recommend allowing access only by key. When registering, the
user forms a key pair (or uses existing) and sends the public key - this is enough to give
access. You need to add this open part to the ~user/.ssh/authorized keys file (do not
replace the contents, and add it exactly!). It was probably already created by you when
you created the user account and generated the keys for passwordless access to the
nodes. Note that public ssh keys come in two formats: “OpenSSH” and “RFC.” They differ

247
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_18

https://doi.org/10.1007/979-8-8688-1600-0_18#DOI

CHAPTER 18 REMOTE USER ACCESS

slightly in the form of writing, RFC is multiline, and OpenSSH is single line. If you are
sent a public key in RFC format, convert it to OpenSSH with the following command:

ssh-keygen -f -i rfc-key.pub >> ~user/.ssh/authorized keys

This command will at the same time immediately add the obtained key to the
required file. Now a user only needs to type ssh -i .ssh/cluster-key cluster to get
to your cluster, if he is running Linux or MacOS and has a private key stored in .ssh/
cluster-key.

For Windows users, I can recommend the Putty suite of programs. It includes the
putty-gen program, which can generate and convert keys, and the putty ssh client itself.
To access a cluster, you need to load a ppk-formatted key into the program (putty-gen
generates it by default) and specify the cluster address. Take a look at the git repository
https://github.com/zhum/hpc-book-matherials; it has a simple webpage describing
basic ssh key creation for Windows users; feel free to use, beautify, and improve it.

In addition to console access, the SSH protocol allows you to organize file transfers.
For Linux clients, you can use scp command, FISH virtual file system in Midnight
Commander, sshfs, or remote ssh connections in file managers. For Windows clients,

I recommend the WinSCP program or the winscp plug-in for FAR. You can also use
popular programs like FileZilla that support SCP/SFTP, but since they usually do not
support key authentication, you need to run the putty-agent program beforehand
(once) and load an ssh key into it.

FTP and WWW

FTP (File Transfer Protocol) was very popular for file transfer in the early days of the
Internet. Nowadays, it is also often used for file distribution, and FTP support is even
built into most browsers and supported by many file managers. This protocol allows
both downloading and transferring data to a server, which has made it a very popular
means of file transfer. A significant disadvantage of this protocol is its very weak security.
The only way of authentication for FTP is the transfer of login and password without
encryption.

There are several implementations of secure FTP variants, but, alas, they are not
standardized and are not supported by all clients. Besides, even with encryption, a
password is required for authentication, and the very possibility to enter by password
weakens security. It is not so difficult to find a weak password, and it is not always

248

https://github.com/zhum/hpc-book-matherials;

CHAPTER 18 REMOTE USER ACCESS

possible to control the strength of user passwords. FTP is a good solution only in one
case: for organizing public file storage with anonymous (passwordless) read-only access.

Currently, an excellent alternative to FTP are the SFTP and SCP protocols,
standardized and supported by all SSH server implementations. They allow
authentication by key, which virtually eliminates the possibility of tampering. The
downside of these protocols is higher CPU time consumption and often slower
transfer speeds. This is due to both overhead encryption costs and peculiarities of data
transmission over encrypted channels. There is a possibility to apply encryption only
at the authentication stage and not to encrypt file transfer, but unfortunately, it is not
supported by standard servers and clients.

The second important protocol that can be used to access a supercomputer is HTTP,
which is the basis for the World Wide Web (WWW). In other words, access through a
browser to a web server. Often there is no need for a web server on a supercomputer -
all the necessary information can be placed on a separate server that is not part of the
supercomputer. This option is much preferable, as any web server becomes vulnerable
as soon as it begins to serve dynamic content - cgi-scripts, application servers, etc. Even
with static content only, a web server can be vulnerable to attacks through inadvertently
included modules.

But sometimes it is necessary to receive or transmit information directly to the
supercomputer, e.g., to display the queue status, etc. In this case, you can implement
such functionality through an external server, e.g., by receiving data via ssh or rsync,
having previously limited the allowable command line in the server key (see the section
about ssh), or configuring the web server in such a way as to exclude the possibility of
hacking.

It is advisable to severely restrict it with a chroot or, preferably, run it in a virtual
machine such as a lightweight LinuxContainer (LXC). Do not forget about log analysis
and intrusion detection systems (IDS): any “unnecessary” services, especially those
available from the outside, are a reason to try to break into your system, if only for fun.

X-Window

The main feature of the graphics subsystem in Linux, unlike MS Windows, is that it is
not part of the operating system. In Linux, it is possible to work without problems only
in terminal mode, without using the graphical interface. This is the mode in which you
usually work with a supercomputer. But there are situations when the use of graphical

249

CHAPTER 18 REMOTE USER ACCESS

programs is necessary. For example, some commercial systems can be configured only
through graphical programs or a browser.

Visualization of scientific data is also often preferred on the supercomputer side, as it
is much more costly to transfer the data itself for visualization at the user’s workstation.
This is why I have included a chapter on graphics in Linux to give an idea of how
graphics programs work and how to access them remotely. The graphics system in Linux
is called the X-Window System (or X-Window, or simply X). It is gradually being replaced
by Wayland, but compatibility with X will be maintained for a long time to come.

X-Window implements the basic functions of a graphical environment: drawing and
moving windows on the screen, interacting with the mouse and keyboard, but does not
define the details of window design - this is handled by window managers. Because of
this, the appearance of graphical user interfaces in UNIX-like systems can vary greatly,
depending on the capabilities and settings of a particular window manager.

A window manager controls the placement and framing of application windows
(frame and title bar). It can create a Microsoft Windows or Macintosh-like appearance
(e.g., this is how Kwin window managers work in KDE, Metacity in GNOME), or a
completely different style, such as in frame-based window managers like Ion.

A window manager can be simple and minimalistic (like twm, the basic window
manager shipped with X), or it can offer additional functionality close to a full desktop
environment (like Enlightenment). Many users use X along with a complete desktop
environment that includes a window manager, various applications, and a unified
interface style. The most popular desktop environments are GNOME and KDE. The
Single UNIX Specification specifies the CDE environment. The freedesktop.org project
attempts to provide interoperability between different environments and to develop the
components needed for a competitive X-based desktop.

X-Window is built using client/server technology; server is the X server or X process,
which “owns” resources such as the screen and input devices, and the clients are
graphical applications. The client and server communicate using a specially designed X
protocol. At the moment, the 11th version of the protocol is up-to-date, so you can often
see the designation X11.

X server consists of two main parts: drivers responsible for working with input/
output devices (keyboard, mouse, video adapters, monitors, etc.) and a part that
provides interaction with applications via X protocol via UNIX sockets or Internet
sockets. The ability to communicate over a network allows the X server and client to run
graphical applications remotely.

250

CHAPTER 18 REMOTE USER ACCESS

When starting an X server, you can specify the number of the display it will serve.
In Linux, multiple X servers can be started to serve different displays. By default, the X
server starts on display number :0, after which this number is considered occupied, and
an attempt is made to start a server with the same number will fail. Physically, a display
can be real hardware (monitor, mouse, keyboard) connected to the server, or it can be
virtual. A display in the X sense is not necessarily one monitor and one mouse-keyboard;
it can include multiple screens and many input devices.

Most applications that have a graphical interface have a special -display option that
specifies which display the program will interact with:

xclock -display :0

If the option is not supported or if you just want to specify a default display, you must
use the DISPLAY environment variable:

export DISPLAY=:0

X.Org Foundation’s reference implementation, called X.Org Server, is the canonical
implementation of X-Window. Modern implementations of X.Org Server are capable
of running, automatically detecting hardware parameters and requiring no manual
configuration. However, in some cases, this is still necessary, e.g., to specify the use of a
particular driver rather than what X.Org considers optimal.

The main X server configuration file is /etc/X11/xorg.conf; many distributions
maintain a /etc/X11/xorg. conf.d directory, which may contain multiple files with
separate configuration sections. The X server will work with the /etc/X11/xorg.conf
file if it exists. The configuration defined in this file has a higher priority than other
configurations.

There may be situations when the system will incorrectly detect the parameters of
your I/0 devices, in which case you need to edit the configuration file. Since this file
does not exist by default, you can create it with the Xorg -configure command. This
will result in the file xorg. conf.new, which can be edited and copied to /etc/X11/xorg.
conf. The structure of this file is described in the chapter “One-Two-Three Instructions,”
in the standard documentation (man xorg.conf) and on the Internet. If the X server fails
to start, more detailed information can be found in the file /var/log/Xorg.0.1log. Here 0
is the display number.

251

CHAPTER 18 REMOTE USER ACCESS

The X server can be started directly from the command line, but this method is very
rarely used. Usually it is started as a service at system startup. In addition to the server,
at least one client must be started for normal operation. In case of launching from the
command line, the startx script is usually run, which in addition to the server starts a
script that starts a set of clients. When this script (session) terminates, the server also
terminates. The session script is typically located in /etc/X11/Xsession.d orin~/.
xsession.

In the case of running X server as a service, its only client is the screen manager -
an application that allows you to authenticate the user and launch the session of your
choice (frequently a desktop environment such as KDE).

The basic Linux screen manager is xdm. Gnome and KDE have their own screen
managers, gdm and kdm, and sometimes others, such as lightdm, are used. The main
function of a screen manager is to allow the user to enter their login and password in
graphical mode. Additional functions are selecting the input language, selecting a window
manager or a graphical shell, and shutting down the computer without logging in.

The xdm manager configuration files are located in the /etc/X11/xdm/ directory.
After a user successfully logs in, the /etc/X11/xdm/Xsession script will run and continue
loading the graphics subsystem. Configuration files for gdm are located in the /etc/gdm/
directory and for kdm (fourth version) in the /etc/kde4/kdm directory.

If the workplace is running Windows, you will need to install X server to work with
X clients. There are quite a lot of X server implementations for different versions of MS
Windows (Exceed, Xwin32, etc.), but almost all of them are commercial products.

However, there is a quality open source and free implementation of the X server. This
is the Xming package. You can download it from the official site.! There are two variants
of this software on the site: xming and xming Mesa. The second variant allows you to run
applications using OpenGL on a remote terminal. In addition to the X server itself, you
can download additional backgrounds for it, including Cyrillic ones, and a program for
managing X server startup parameters - Xlaunch. After installing the program on your
computer, you should make a shortcut for the Xming program on your desktop. The
program should be launched with some set of parameters:

"C:\Program Files\Xming\Xming.exe" :0 -clipboard \
-multiwindow -xkblayout us,ru -xkbvariant winkeys \
-xkboptions grp:ctrl shift toggle

Yhttp://www.straightrunning.com/XmingNotes/

252

http://www.straightrunning.com/XmingNotes/

CHAPTER 18 REMOTE USER ACCESS

Here:
e :0-Display number
e -clipboard - Allows the use of the system clipboard
e -multiwindow - Sets multiwindow mode

o -xkblayout us,ru - Sets two keyboard layouts: English and Russian
(in case if you need it)

o -xkboptions grp:ctrl shift toggle - Switch layouts by pressing
Ctrl-Shift, if you selected two layouts

o -xkbvariant winkeys - Allows additional window keyboard keys to
be processed

When Xming is first started, it may ask you to unblock ports in the Windows
Firewall so that it can receive information over the network. To ensure security, it
is recommended that you edit the firewall settings entry for Xming and list only the
machines that will be used.

Let’s consider an example of a session with a remote system using an X server. First,
Xming is started on the local machine. Then use a terminal program (e.g., Putty) to
connect to the remote UNIX system. Set the “Connection/SSH/X11 Forwarding” option
in the Putty session parameters. In this case, Putty will automatically set the DISPLAY
variable on the remote computer and add an authorization string to the XAUTHORITY
variable, allowing you to run X applications without any additional steps. Note: The
remote computer must have the xauth program that manages authentication installed.

If there is no xauth command on the remote computer, or if you are using a
program for remote access without X connection forwarding, you can edit the X0.
hosts file, usually located in the C:\Program Files\Xming\ directory. This file should
list the domain names or IP addresses of the computers from which Xming can receive
graphical information.

Example file X0.hosts:

localhost
cluster.mycompany.org
192.168.32.23

253

CHAPTER 18 REMOTE USER ACCESS

A similar function, allowing access via the X protocol, in UNIX systems performs a
command:

xhost +computer_name

Authentication via xhost is unreliable and may be turned off by default. It is strongly
recommended to avoid it and use xauth if possible.

Alternatives for X11

A serious limitation of the X protocol is its low speed. When running applications

with rich graphics, there can be very long delays, leading to almost impossible work,
especially on narrow communication channels. An alternative in this case can be
protocols that have long been used for Windows systems. The VNC protocol is very
common; there are many clients for it and several server implementations for Linux.
The protocol supports image scaling and compression, which allows you to dramatically
increase the speed of transmission at the expense of quality.

The disadvantage of this approach is that it does not support multiuser organization:
the server is started on behalf of one of them and then any client connecting to it will
have access to the applications and desktop running in the current session. Dynamic
session spawning based on username is not available in any of the available servers, as
far as I know. Nevertheless, this technology can be used to organize access to dedicated
applications - visualization of scientific calculations (if the number of its users is small),
administration of specific hardware, etc.

Don’t forget to set a password to log in!

For Linux, the best known implementations are tightvncserver, its modern fork
TigerVNC. They both run as X11 servers, so any X applications can run in their sessions.
Images from the server can be sent to clients over the VNC protocol, and there can be
multiple clients at the same time. They can be passive, receiving only the image but not
being able to enter information, or active - with full access. Similar but more developed
technology is the RDP (Remote Desktop Protocol), used in the standard delivery of
Windows. It supports authorization and simultaneous work of several users, as well as
file transfer. The speed of RDP is usually faster than VNC and with higher image quality.
Due to the fact that this protocol is closed, there are far fewer Linux implementations of

254

CHAPTER 18 REMOTE USER ACCESS

both clients and servers for it. The authors have no successful experience in organizing
an RDP server on Linux.

A good alternative is the x2go protocol, which is an open source variant of the closed
NX protocol developed by NoMachine. x2go clients and servers are available for most
distributions from a separate repository, as well as for Windows.

The server doesn’t even need to run a separate service - just install the required
package. The client accesses the server node via ssh protocol (which solves many
authentication problems) and runs the server program there as a user. Thus, the use
of x2go is well protected and secure on the server side. In terms of speed, x2go is not
inferior to VNG; it also supports compression, scaling, and the ability to transfer the
image not the entire desktop but only the windows of one program.

You can also work with the previously mentioned NX protocol; it requires a server
and a client from https://nomachine.com/. There are clients for both Windows
and Linux. In the free version, the server allows no more than two users to work
simultaneously. An additional plus of NX is the ability to authenticate by password with
session saving and possible subsequent reconnection.

Another alternative is the SPICE protocol, but it is less widespread. You can learn
more about it at https://www.spice-space.org/.

Brief Summary

Remote access is the “face” of your computing complex for users (after the official
website and registration, of course). It is the one they will use 99% of the time. Try to
make the access process comfortable: describe basic procedures, problems on the
site, and supplement this information with answers to questions as they come to you
from users.

For a supercomputer, as for any server, the principle works: the less access, the
better. But at the same time, users should not be clamped in a hedgehog’s grip. SSH
combined with SCP/SFTP is usually sufficient for normal operation.

Search Keywords

Ssh, putty, shellinabox, secure ftp, xserver, X11, vnc, rdp, nx, spice remote, x2go, IDS,
LXC, KVM/QEMU, logcheck, logwatch

255

https://nomachine.com/
https://www.spice-space.org/

CHAPTER 19

Cluster Status Monitoring
Systems

SNMP

SNMP (Simple Network Management Protocol) is a protocol designed for management
and monitoring. It was created in 1988 and is supported by most network devices. It is

a de facto industry standard, and many hardware platforms support it. The goal of this
protocol is to give the ability to get monitoring data from (almost) any device and change
their settings. At the moment, there are three major versions of the protocol: 1, 2c, and 3.

First version uses “Simple” in the title as a keyword. But because of this simplicity,
this version has a lot of problems - short counters, poor security, and no encryption.
Version 2c (c = “community”) is probably the most common today. It has additional
commands, compared to version 1, but still has poor security and no encryption
support. The only security feature in both versions is the “community” string with
optional password. You can treat “community” as a “login.” Third version supports
authentication, encryption, and user-based views.

Each network device has its own set of internal variables and commands that are
grouped into a tree structure. The names of all these variables are encoded according to
this structure (similar to DNS names). Such a name is called an “object identifier” (OID).
The description of the correspondence of OIDs to their actual purpose and type is stored
in the management information base (MIB). There can be a different MIB for each type
of device. SNMP supports several types of variables: integers, counters, strings, from
more complex types - only tables. As a rule, interface counters of network devices are
organized into tables.

257
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_19

https://doi.org/10.1007/979-8-8688-1600-0_19#DOI

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

OID consists of a sequence of numbers, e.g.,1.3.6.1.2.1.1.1.3. Such
representation is not very convenient for perception, so MIB files usually contain
“human-readable” names for OIDs. For the previous example, such a name would be
iso.org.dod.internet.mgmt.mib-2.system.sysUpTime - the time the device has been
running since it was last powered on. Most OID branches are standardized by ITEF, ISO,
and IANA, but many are “given” to other organizations. A separate branch is dedicated
to manufacturers, where each subbranch is controlled by a dedicated organization, e.g.,
Cisco, APC, etc.

In SNMP terms, a device supporting SNMP protocol is called an agent (although it
essentially acts as a server), and a program communicating with the agent (management
or monitoring) is called a manager. As a rule, the agent passively responds to the
manager’s requests, but the protocol provides “traps,” notifications, which the agent
can send to the manager in special cases. Usually, it is a signal about anomalies in the
work, and the set of trap types is hardcoded in the agent. SNMP agent mainly uses UDP
protocol and port 161. Notifications are sent to port 162 of the manager. The encrypted
version of the protocol (v3 TLS) may use ports 10161 and 10162, respectively,' or reuse
161 and 162 ports.

Here is the basic set of commands used in the SNMP protocol:

o GetRequest - A request to the agent from the manager to get the
value of one or more variables

o GetNextRequest - A request to the agent from the manager to get the
value of the next variable in the hierarchy

o SetRequest - Arequest to the agent to set the value of one or more
variables

o GetReponse - A response from the agent to the manager returning the
requested values

o GetBulkRequest - A request to the agent to get a range of variables

e Trap - One-way notification to the manager from the SNMP agent
about the event

"https://www.rfc-editor.org/info/rfc6353

258

https://www.rfc-editor.org/info/rfc6353

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

When the manager calls the agent, it is necessary to correctly specify not only the
OID, but also the protocol version, as well as the community - the name of the group that
is allowed to access this variable and, if necessary, the password. Different versions of
the SNMP protocol are incompatible, so it is important to specify the exact version of the
protocol. Most devices support version 2c.

To install command-line client programs (managers) in most distributions, it is
enough to install the net-snmp package or sometimes simply snmp. The most interesting
commands for us from this package are snmpget/snmpbulkget and snmpwalk/
snmpbulkwalk. With their help, you can read values of specified variables or whole
subtrees. If the snmpwalk command is not given the initial OID, it will try to read the
entire tree starting from iso.org.dod.internet.mgmt.mib-2 (where almost all branches
for network devices start).

The purpose of the snmpset program, I think, is easy to guess: it sets the value of a
variable. It can be a sensor threshold, a server name, an email address, etc.

Let’s look at an example:

$ snmpget -v 2c -c demopublic test.net-snmp.org sysUpTime.O
DISMAN-EVENT-MIB: :sysUpTimeInstance = Timeticks: (4935618) 13:42:36.18

Here we request the uptime of the test.net-snmp.org server since it was last
powered on. Note that by default, it is allowed to omit the prefix “iso.org.dod.
internet.mgmt.mib-2.system”

Another example is the description of that MIB element we just received:

$ snmptranslate -Td -Ib 'sysUptime'

SNMPv2-MIB: : sysUpTime

sysUpTime OBJECT-TYPE

-- FROM SNMPv2-MIB, RFC1213-MIB

SYNTAX TimeTicks

MAX-ACCESS read-only

STATUS current

DESCRIPTION "The time (in hundredths of a second) since the
the network management portion of the system was last
re-initialized."

::={ iso(1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) system(1) 3 }

259

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

The snmptranslate command outputs the description of the element (description),
its access level (max-access), and its full path (last line). This command does not access
remote servers; it only translates complex text descriptions of MIBs into a human-
friendly format.

The next example is the operation of the snmpwalk command. With its help, we can
“bypass” a whole tree of values without knowing its composition beforehand. Let’s look
atthe system tree on the same test server:

$ snmpwalk -v 2c -c demopublic test.net-snmp.org system

SNMPv2-MIB: :sysDescr.0 = STRING: test.net-snmp.org

SNMPv2-MIB: :sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB: :sysUpTimeInstance = Timeticks: (5337593) 14:49:35.93
SNMPv2-MIB: :sysContact.0 = STRING: Net-SNMP Coders

SNMPv2-MIB: :sysName.0 = STRING: test.net-snmp.org

SNMPv2-MIB: :sysLocation.0 = STRING: Undisclosed

SNMPv2-MIB: :sysORLastChange.0 = Timeticks: (5) 0:00:00.05

SNMPv2-MIB: :sysORID.1 = OID: SNMPv2-MIB::snmpMIB

SNMPv2-MIB: :sysORID.2 = OID: SNMP-VIEW-BASED-ACM-MIB::vacmBasicGroup
SNMPv2-MIB: :sysORID.3 = OID: SNMP-MPD-MIB::snmpMPDMIBObjects.3.1.1
SNMPv2-MIB: :sysORID.4 = OID: SNMP-USER-BASED-SM-MIB::usmMIBCompliance
SNMPv2-MIB::sysORID.5 = OID: SNMP-FRAMEWORK-MIB::snmpFrameworkMIBCompliance
SNMPv2-MIB: :sysORDescr.1 = STRING: The MIB module for SNMPv2 entities
SNMPv2-MIB: :sysORDescr.2 = STRING: View-based Access Control Model for SNMP.
SNMPv2-MIB: :sysORDescr.3 = STRING: The MIB for Message Processing.
SNMPv2-MIB: :sysORDescr.4 = STRING: The MIB for Message Processing.
SNMPv2-MIB: :sysORDescr.5 = STRING: The SNMP Management Architecture MIB.
SNMPv2-MIB: :sysORUpTime.1 = Timeticks: (4) 0:00:00.04

SNMPv2-MIB: :sysORUpTime.2 = Timeticks: (4) 0:00:00.04

SNMPv2-MIB: :sysORUpTime.3 = Timeticks: (5) 0:00:00.05
-4
5

SNMPv2-MIB: : sysORUpTime Timeticks: (5) 0:00:00.05
SNMPv2-MIB: :sysORUpTime Timeticks: (5) 0:00:00.05

As you can see, the command returned us a set of values along with the names.

Let’s see how to configure the SNMP server on the server. With its help, we will be
able to remotely receive data about the server operation. Run the snmpconf program. The
program will ask whether it needs to read existing configuration files and which file to
generate. Select snmpd. conf (usually item 1).

260

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS
After that, we are taken to the section menu:

: Extending the Agent

: Monitor Various Aspects of the Running Host
: Trap Destinations

Agent Operating Mode

System Information Setup

: Access Control Setup

S VT AW N

We are interested in sections 4, 5, and 6. In section 4, you can specify the address
(interface) on which the agent will run, as well as the user and group on behalf of which
it will run. Section 5 is data about the server, which will be available in the system
subtree. Section 6 allows you to specify the username (for SNMP v3) and/or community
name for reading or read-write in a certain subtree (by default - for all values):

: an SNMPv3 read-write user

: an SNMPv3 read-only user

: a SNMPv1/SNMPv2c read-only access community name
: a SNMPv1/SNMPv2c read-write access community name

» w N R

For example, let’s set the ability to read all values for the 192.168.0.0 network in a
community named public (user input is indicated in bold):

Select section: 3

Configuring: rocommunity
Description:
an SNMPv1/SNMPv2c read-only access community name
arguments: community [defaultlhostnamelnetwork/bits] [oid]
The community name to add read-only access for: public
The hostname or network address to accept this community name from [RETURN
for all]: 192.168.0.0
The OID that this community should be restricted to [RETURN for no-
restriction]:
Finished Output: rocommunity public 192.168.0.0

After configuration, the program writes the configuration file to the current directory,
and it can be copied to /etc/snmp/.

261

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

The snmpconf program does not always generate a correct configuration file; be
sure to save the original (cp /etc/snmp/snmpd.conf{,.bak}) and compare the
new file with it if errors occur.

So, our server can now be monitored over the network. Unfortunately, not all
its parameters are interesting, and not with the best protection, but most standard
monitoring packages will see it and will be able to receive data from it. Monitoring
functionality can be extended if desired.

Let’s consider another very important service for us - snmptrapd. This program
receives notifications (traps) that are sent by other SNMP devices - servers, routers, air
conditioners, UPSs, etc.

To make it work, you need to configure the device to send the necessary
notifications to the address of the server where snmptrapd is running!

Now let’s edit the snmptrapd configuration file - /etc/snmp/snmptrapd.conf. For
minimal configuration, it is enough to add the following line:

authCommunity log,execute,net public
Restart the snmptrapd server and run the test command:

snmptrap -v 2c -c public localhost "" \
NET-SNMP-EXAMPLES-MIB: :netSnmpExampleHeartbeatNotification \
netSnmpExampleHeartbeatRate i 123456

This command will send a test notification to localhost. If snmptrapd is running, an
entry like this will appear in the log (usually /var/log/syslog or /var/log/messages):

[UDP: [127.0.0.1]:48680->[127.0.0.1]]:#012is0.3.6.1.2.1.1.1.3.0 = \
Timeticks: (189767908) \

21 days, 23:07:59.08#011i50.3.6.1.6.3.1.1.1.4.1.0 =\

0ID: is0.3.6.1.4.1.8072.2.3.0.1#011is0.3.6.1.4.1.8072.2.3.2.1 =\
INTEGER: 123456

262

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

That is, the message was accepted. If nothing happened but snmptrapd is running, it
might be using tcpwrappers. Then write a line in the /etc/hosts.allow file:

snmptrapd: 0.0.0.0.

You can configure snmptrapd to only accept messages from certain addresses and
communities; the help is well written about this.

Usually, messages sent via notifications are critical or very important, so logging
them is useful but not sufficient. We would like to configure some kind of action to be
taken when such events occur. And snmptrapd helps us with that. Let’s open the /etc/
snmp/snmptrapd. conf file again and add the line:

traphandle NET-SNMP-EXAMPLES-MIB: :netSnmpExampleHeartbeatNotification \
/tmp/demo demo-trap

Let’s create a /tmp/demo script with the contents:

#!/bin/sh
read host
read ip
vars=

while read oid val

do
if ["x$vars" = "x"]
then
vars="$oid = $val"
else
vars="¢$vars, \n$oid = $val"
fi
done

echo -e "trap: $1 $host $ip $vars" > /tmp/demo.log

Allow its execution with chmod a+x /tmp/demo. Now restart snmptrapd and run the
snmptrap command again to send a test notification. The line like this should appear in
the /tmp/demo. log file:

263

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

trap: demo-trap localhost UDP: [127.0.0.1]:51240—[127.0.0.1],
SNMPv2-SMI::mib-2.1.3.0 = 21:23:11.65,

SNMPv2-SMI::snmpModules.1.1.4.1.0 = NET-SNMP-EXAMPLES-MIB: :netSnmpExampleHe
artbeatNotification,

NET-SNMP-EXAMPLES-MIB: :netSnmpExampleHeartbeatRate = 123456

As you can see, the /tmp/demo script, which we specified in the configuration, is
launched when a notification with the specified OID is received and gets all the data
about it. Based on this script, you can create your own handler (do not place it in /tmp)
and perform necessary actions when critical events occur. Be careful when working
with several devices at the same time: running several handlers in parallel may be
undesirable. You should also be careful when handling events that arrive at short
intervals, e.g., short-term events such as power failure. If possible, outsource notification
and SNMP data processing to off-the-shelf, proven monitoring systems.

Ganglia

Ganglia is an open source monitoring system originally developed to work with
computing clusters by scientists at the University of Berkeley. Each machine runs the
gmond daemon, which collects system information (CPU speed, memory usage, etc.) and
sends it to one server (or several, as we will see below).

Ganglia has two network transmission modes - unicast and multicast. The default
mode is multicast. This mode assumes that data is sent to everyone who “subscribes” to
the multicast stream. That is, the ganglia agent, which is called gmond, sends a packet of
data to a certain multicast address, and all those who are “subscribed” to this address
receive it. In the case of unicast mode, the packet is sent to only one subscriber, the
server specified in the agent’s configuration.

The modern version of Ganglia server is able to process the received data, e.g.,
compute max or sum, then it stores it, usually in RRD files (Round-Robin Database). It
can also pass data up the hierarchy by aggregating it. On a large scale, it is recommended
to use aggregation, because otherwise it can affect network performance when gmonds
from many nodes start transmitting data at the same time.

264

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

Install the ganglia package and related packages; they should be available in your
Linux distributive by default. If for some reason you can’t find them, or if you want to
install the latest version, download the source code from http://ganglia.sourceforge.
net/ and build with the commands:

tar zxvf ganglia*gz

cd ganglia-*/

./configure --with-gmetad
make && make install

You may need additional libraries for the build, supplying them if necessary. Now
let’s install the web interface for ganglia (assuming the web server is already installed
and its root directory is /var /www/html):

cp -ra web/* /var/www/html/ganglia/

cp gmetad/gmetad.init /etc/rc.d/init.d/gmetad
cp gmond/gmond.init /etc/rc.d/init.d/gmond
mkdir /etc/ganglia

gmond -t | tee /etc/ganglia/gmond.conf

cp gmetad/gmetad.conf /etc/ganglia/

mkdir -p /var/lib/ganglia/rrds

chown nobody:nobody /var/lib/ganglia/rrds

By default, ganglia uses multicast packets to communicate with the gmetad server.
The IP protocol has a separate subnet for multicast packets. To ensure that this network
is properly routed on our server, where the ganglia server will run, add a route:

ip r add 239.2.11.71/4 dev etho

Here etho is the interface of the network on which the compute nodes reside. Add
this setting to the network configuration. Start the server and the ganglia agent and
restart the web server (apache on RG-based system in this example, adjust for your
system!):

systemctl start gmond
systemctl start gmetad
systemctl restart httpd

265

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

Now you can go to http://localhost/ganglia, where you should see a web
interface with a single node - our server. Let’s add agents to the nodes. To do this, install
the gmond package from ganglia on all nodes and run the gmond service on them:

systemctl start gmond

After some time, all nodes should appear in the web interface.

Ganglia has several predefined metrics, which are collected by gmond, but you can
extend this list using C++ modules and python modules or using external tools, which
use XDR protocol to mimic gmond.

Ganglia is a handy tool for quickly visualizing the state of cluster nodes and some of
its aggregate characteristics. Its limitation is that it has no tools for alerting or any data
analysis, just simple aggregations. You can fix it using integration with Nagios, but it
requires additional work. Also, as it uses RRD database, carefully plan your data storage
for the Ganglia server.

Nagios

The Nagios monitoring system was developed by the company of the same name
(http://www.nagios.org/) and exists in two variants - core (community) and a set of
applications based on core (Nagios XI, Nagios Fusion, etc.). This system has become a
default standard in many applications, mainly for monitoring network equipment and
network services. It is built on a modular principle - to perform monitoring of a certain
type of services. I should note that there is an alternative implementation (a fork),
named Icinga (https://icinga.com/), which has some additional features, but they lie
outside our topic anyway, so I won’t make difference between it and Nagios here.

There are numerous plug-ins for Nagios that allow you to monitor almost any
type of service - SMTP, HTTP, SNMP, etc., as well as network equipment - Cisco,
Brocade, etc.

By default, Nagios is installed in a centralized manner: a server is installed on the
master server, and data is collected and transmitted from the other nodes using remote
execution via SSH, or local agents, using internal NRPE protocol. Using some techniques,
it is possible to build hierarchical monitoring schemes as well as fault-tolerant ones.
The basic installation does not include a web or GUI interface, but there are many
clients that provide different interface options, but they do not provide configuration

266

http://www.nagios.org/
https://icinga.com/

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

capabilities. This is due to the fact that each plug-in is a separate program (or script) and
all its configuration consists in correctly specifying the command-line arguments of the
startup, which are very different for different plug-ins.

The implementation of plug-ins as separate programs is both a strength and a
weakness of Nagios. On the one hand, it gives high flexibility - it is very easy to write
your own plug-in. On the other hand, collecting many metrics requires running many
separate programs, which creates a high load on the node on which they run. This is
why the polling frequency in Nagios is usually a few minutes. This is fine for monitoring
services like a database, web server, etc., but it is very inconvenient when monitoring the
state of a compute cluster, as it puts an unwanted load on the compute nodes. Besides,
there are not so many services in a compute cluster; it is much more important for it to
monitor resources; Nagios can do this too, but not as well and conveniently as we would
like it to be.

For small clusters, Nagios may be a good choice for tracking the overall health of
nodes and infrastructure, such as SNMP hardware, but for clusters of several dozen
nodes, it is not recommended or should be limited to a small number of metrics.

Zabbix

Zabbix is a free monitoring system designed to track the state of network services. All

information is stored in a database - MySQL, PostgreSQL, SQLite, or Oracle. Zabbix

supports several modes of data collection - over the network (for SMTP, HTTP and

similar), through an agent installed on the host, and with the help of external programs.
A monitoring complex based on Zabbix can consist of the following components:

e Server - Stores configuration data and statistics and is responsible
for aggregation and storage of collected data and notification of
problems. It can collect information from proxies, agents, and
network services.

e Proxy - Collects data from other proxies, agents, and network
services. The collected data is transmitted to the server. By using
proxies, you can build hierarchical configurations and reduce the
load on networks and the central server.

267

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

e Agent - Runs on nodes, collects data on local resource and
application usage (CPU, memory, hard disk usage, etc.),

e Web interface - Usually runs on the same computer as the server
and uses a locally installed web server, such as apache or nginx.

Due to the use of data collection hierarchy, Zabbix makes it possible to organize
monitoring of up to 1000 nodes. A nice feature is the automatic detection of SNMP
devices, which can make it much easier to set up monitoring of network devices and
peripherals.

Zabbix supports grouping nodes by attributes and/or manually. Creating
synthetic sensors and using scripts allows you to set up very flexible and multistage
responses to situations. Unlike Nagios, Zabbix can be configured entirely from the
web interface (except for minimal initial setup). Like Nagios, Zabbix is intended
solely for monitoring the state of servers and services, so it should be used with
caution in large configurations. Collecting data from hundreds of nodes in one local
network can completely paralyze its operation or lead to unexpected and irregular
performance drops.

The installation of Zabbix usually consists of installing the appropriate packages,
preparing and specifying the correct settings for the selected database, and running the
necessary components. Zabbix does not support fault tolerance for the central server, so
if you need it, you will have to provide it by other means: lightweight monitoring from
another server (e.g., monit, etc.) or installing another Zabbix server that uses different
settings.

Modern Approach

Nowadays, the efficient approach is to use specialized data collectors, time-series
database, standalone visualizer, and an analyzing/alerting system. All four components
may be chosen judging on performance, storage, and other requirements.

Data collectors - in 2025 really popular is prometheus, especially
because it is open source and there are a lot of collectors, using
the same protocol. They are easily customizable, and you can
implement your own relatively easy, based on the existing generic
collector code. Another good example is telegraf - it includes a
lot of metrics out of the box and is extendable. I would also note

268

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

collectd - it is modular and includes a lot of ready to use modules.
In addition, it supports aggregation modules and store modules,
s0 you can aggregate your data and send it using any protocols or
store it in any formats. Action modules are also available, so you
can implement a simple alerting system using collect.

Data storage - There are several high-performance time-series
databases, one of the most common is InfluxDB; it supports many
types of requests with aggregations and selections. The next one

is Prometheus TSDB, which is similar to InfluxDB and works
natively with prometheus collectors. VictoriaMetrics is highly
optimized time-series database; it is much faster than InfluxDB
and requires less disk space, but cannot store any string data, only
numeric data. I'd like to mention PostgreSQL and MongoDB
time-series extensions, because they have well known by many
people query language and decent performance (but I still

recommend to use native time-series database).

Data visualization - The leader here today is Grafana - it allows
getting data from almost any source and visualize it in dozens
ways. Because of modular structure, you can create custom
databases requests and then filter the data as you want. Next
option is Kibana - a lot of predefined profiles, visualization
methods, and analytics. The drawback is that it highly oriented
on the ElasticSearch stack, and it is not so easy (but sometimes
possible) to integrate it with other software. And, of course,
there are commercial solutions like Splunk and DataDog and
commercial options for ElasticSearch and Grafana.

Data processing and alerting - Prometheus has special package
called alertmanager, Grafana project implemented its own
Grafana Alert, I mentioned collectd processing and action
modules and of course commercial options of ElastiSearch,
Splunk, DataDog, and companies, who specialized on alerting,
like PagerDuty.

269

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

I cannot strongly recommend any of combination of the tools above, but I personally
saw really good and scalable results using collectd+victoriametrics+grafana and
prometheus (collector and DB)+grafana and telegraf+influxdb+grafana. I should note
that in 2025, ElasticSearch is good for analytics, but not so good at security and access
protection.

XDMoD

Grafana, data collectors, or ElasticSearch are flexible, but require a lot of work to set

up collection and dashboards. Binding collected data to jobs may be really painful,
especially if you allow sharing nodes. And here XDMoD? (XD Metrics on Demand)

can help. It is developed at the University at Buffalo, SUNY, and it ingests data from job
management systems, like SLURM, PBS, etc., and provides nice visualizations, which can
help to analyze supercomputer resources usage efficiency, plan upgrades, and resources
distribution across user groups. All collected metrics are organized in hierarchy, which
allows analyzing, e.g., specific user’s or user group’s efficiency.

XDMOD +eto,sign n to view personaized infomaten. @ About 53 Rosdmap [AContactUs @ Help ~
Summary | Usage | About
Duration: (3 Previous month « Start: 20250401 [3|End: 20250430 (3| & Refresh | SPFiter | {6} Display = | Top 10| @ Export | @iPrint
TP Quick Fiters +
Metrics and Options. < I1yobs by Parent Science/ACCESS CPU Utiization
Title: Chart Title ACCESS CPU Utilization (%): by Parent Science
Legend Bottom Center v
Font Size: 1. Physical Sciences:

2. Engineering and Technology’

dliAccess cp n 3. Biological Sciences
JACCESS Credit Equivalents Charged: Per Job

ACCESS Credit Equivalents Charged: Total

i Alocation Usage Rate

i Alocation Usage Rate ACEs

4. Chemical Sciences

CPU Hours: Per Job
[GPU Hours: Total

i Job Size: Max

i Job Size: Min

lliJob Size: Normaiized

Job Size: Per Job

Job Size: Weighted By ACEs

Job Size: Weighted By CPU Hours

5. Earth and Environmental Sciences

6. Computer and Information Sciences

Parent Science

7. Medical and Health Sciences

[
[

[

o

[

o

[

o

d

d

[

lliJob Size: Weighted By XD SUs 8. Mathematics
lliNUs Charged: Per Job
lliNUs Charged: Total

lliNode Hours: Per Job. 9. Social Sciences
lliNode Hours: Total

lliNumber of Allocations: Active

[

[

d

d

o

d

o

d

[

d

[

[

Number 10. Agricultural Sciences

[Number

[Number of Jobs Running 11. Avg of 3 others

[Number of Jobs Started

[Number of Jobs Submitted

Number of Jobs via Gateway 0 s 10 % 5 20
[Number of Pis: Active
[Number of Resources: Active

i Number of Users: Active

j User Expansion Factor

Jj Wait Hours: Per Job B ACCESS CPU Utilization (%)

Wit Hours: Total

Figure 19-1. XDMoD interface examples

2https://open.xdmod.org
270

https://open.xdmod.org

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

If you want to see GPU usage, licenses, or energy consumption, they should be
enabled in the job manager (TRES/GRES in SLURM). But if you want to see more details,
XDMoD has to be extended by SUPReMM module, then you can collect data using
prometheus (yes, collection set up is still yours to do). This information automatically
applies to your jobs data, and you get the ability to analyze resource usage and individual
or overall job efficiency. If you want, you can use Performance Co-Pilot® or TACC_Stats*
instead of prometheus. The installation is well documented and may be done via RPM
packages or from source code. It requires MySQL/MariaDB, Apache webserver with
PHP, and nodejs installed and some other pretty common packages. XDMoD is open
source and is supported by the National Science Foundation under the ACCESS Track 4:
Advanced CI Coordination Ecosystem: Monitoring and Measurement Service Program
(grant no. 2137603).

Lm_sensors/Hwmon

Yes, I know that this information can be collected by the collectors from the previous
subchapter. But I want to show you how to get some low-level information if you haven’t
installed the collector yet. Im_sensors and hwmon packages collect information from the
low-level sensors, like temperature, voltage, and fan speeds. Hwmon is not so common,
and I will show you some examples with Im_sensors only.

In the Linux environment, the standard for working with sensors is the 1m_sensors
package, which includes kernel modules for interacting with sensors (most of them are
already shipped with the kernel), the 1ibsensors library, and a set of basic user utilities
for reading data and outputting the read information. This project does not work on
creating graphical interfaces for colorful presentation of information, but independent
developers have created many utilities and plug-ins based on the libsensors library to
display information in graphical form.

Unfortunately, for the long history of microprocessor technology development, there
are no unified standards for sensors and their connection to electronic devices; on the
contrary, their variety is increasing every year. In this regard, the Im_sensors package
is constantly updated to expand the range of supported devices. Currently, it supports
more than 150 different sensors, including sensors:

Shttps://pcp.io/
“https://github.com/TACC/tacc_stats

271

https://pcp.io/
https://github.com/TACC/tacc_stats

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

e OnthelISAbus
e Using I2C and SMBus
o Via SPI (Serial Peripheral Interface)
» Integrated into the super-1/0 controller
o Integrated into the motherboard’s south bridge
as well as
o Temperature sensors integrated into the processor
o Temperature sensors in the memory modules

A special sensors-detect script written in perl is used to configure 1Im_sensors.
The script sequentially searches through the supported controllers, determining which
kernel modules need to be loaded in order to read information from sensors located
inside the computer. During operation, sensors-detect generates the configuration file
/etc/sysconfig/1m sensors, which lists the kernel modules to be loaded.

The /etc/sensors. cont file defines the format of data output. In the latest versions
of LM-sensors, the /etc/sensors3. conf file is used. The file is written during package
installation and contains entries for all supported sensors, each of which refers to
a certain chip or chip family with the same parameters. The record begins with the
keyword chip, followed by the names of the associated chips. The names are separated
by spaces. They themselves consist of several fields separated by dashes.

The first field is the chip type; the second field is the name of the bus to which the
sensor is connected; the third field is the hexadecimal address of the chip. For an LM78
chip with address 0x2d on the I2C bus, the chip name will look like this: 1Im78-i2c-2d.
Any fields other than the controller name can be unspecified by using the * sign. “Any
LM78 chip on any bus” can be written as 1m78-*.

The chip can monitor many sensors. For example, the LM78 chip can control up
to seven voltage sensors, one temperature sensor, and three fan sensors. Standardized
sensor names are used:

e 1in0,1in1,1in2, ... - For voltage
e fani, fan2, fan3, ... - For fans
o tempi, temp2, temp3, ... - For temperature

272

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

Each sensor can have several parameters: current value, minimum, maximum, and
alarm values. Parameter names are also standardized. For example, for an in0 sensor,
the parameter containing the current value is called in0_input; the minimum value is
called the in0_min; the maximum value - in0_max; and containing alarm value - in0_
alarm. Within the records, four keywords define the format of the output information.

The label operator specifies under which name to output the corresponding sensor:

label in3 "+5V"

The first field specifies the sensor, and the second field specifies how this sensor will
be displayed in the output. The ignore operator specifies that no information should be
output from the corresponding sensor. For example, in case the returned value is garbage:

ignore fani

The compute statement is used to specify a formula for converting a read sensor
reading to an output value. It is commonly used to output voltage data since it is usually
taken from voltage dividers:

compute in3 ((6.8/10)+1)*@ , @/((6.8/10)+1)

The first parameter is the sensor name, and the second is an expression that
specifies how the read value should be converted to an output value. “@” indicates the
read value. The third parameter is an expression that specifies how the output value
should be converted back to the sensor value. In this case, “@” denotes the output value;
this formula is used if the data needs to be written to the chip. A comma separates the
functions.

The set statement is used to write values to the chip:

set in3_min 5 * 0.95
set in3_max 5 * 1.05

Not all values can be written to the chip, mainly the minimum and maximum
allowable values. To write data to the chip, a command with a special option is used:

SEensors -s

273

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

The sensors command without parameters is used for data output. It outputs the
names of detected sensors and the values read from them:

host:~-># sensors
fschds-i2c-5-73
Adapter: SMBus I801 adapter at 1c20
+12V: +12.00 V

+5V: +5.15 V

Vbat: +3.14 V

PSU Fan: 1440 RPM (div = 4)

CPU Fan: 720 RPM (div = 4)

System FAN2: FAULT (div = 4)

System FAN3: 720 RPM (div = 4)

System FAN4: 720 RPM (div = 4)

CPU Temp: +36.0°C (high = +69.0°C)

Super I/0 Temp: +38.0°C (high = +52.0°C)
System Temp: +41.0°C (high = +56.0°C)
temp4: +36.0°C (high = +73.0°C)

temp5: +39.0°C (high = +62.0°C)
coretemp-1isa-0000
Adapter: ISA adapter
Core 0: +51.0°C (high

+82.0°C, crit = +100.0°C)
Core 1: +51.0°C (high = +82.0°C, crit = +100.0°C)
Core 2: +49.0°C (high = +82.0°C, crit = +100.0°C)
Core 3: +49.0°C (high = +82.0°C, crit = +100.0°C)

Modern Linux kernels include support for outputting data from some types of
hardware sensors directly via the /sys/class/hwmon file system. So in many cases, it is
possible to obtain information similar to that provided by the sensors command simply
by reading data from the required file. Note that in any case, you will need to load the
required modules and manually recalculate the read values.

274

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

IPMI

As it was mentioned in the “Remote Management” chapter, IPMI allows you to read
many system sensors, as locally, as remotely. ipmitool and similar utilities can read
sensors data, but note that often remote sensors reading may overload BMC controllers
(depending on the model). I recommend using any metrics collector, like prometheus,
and collect local sensors info via local IPMI interface. In addition to sensors, IPMI

can store information about system events, which may be useful for hardware issues
resolving.

APCUPS

Computing clusters are usually used for solving large resource-intensive tasks.
Therefore, it is very important to ensure their reliable uninterrupted operation, and this
task cannot be accomplished without the use of a quality uninterruptible power supply
system. Such a system includes both physical devices called uninterruptible power
supplies (UPS) and software for organizing interaction between the power supply and
the protected equipment.

Uninterruptible power supply (UPS) is a device that provides power supply to
electrical equipment connected to it in case of a short-term loss of voltage in the power
grid. The main purpose of a UPS is to maintain equipment operability in the event of a
short-term power failure, but the functionality of modern UPS is much broader.

As arule, the system is designed to provide power to the cluster for at least 10-30
minutes in the event of a power failure. If power is not restored within five minutes, the
UPS must ensure that the cluster is shut down correctly. Prepare and test(!) emergency
shutdown scripts, taking special care for the proper storage unmount and shutdown.

If your cluster uses APC UPSs, then you can use apcupsd service to monitor the UPS
equipment and react in case of emergency. The apcupsd package is a freely distributed
software that allows organizing interaction with most APC UPS models. It consists of
several components:

e A daemon that receives information from available uninterruptible
power supplies and generates signals for various events

e Aprogram that allows you to read the UPS status information

275

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

o Programs to adjust the parameters of its operation

e Asetof cgi-scripts allowing to use the web interface - to control and
manage the UPS

The apcupsd package is included in many Linux distributions, but it is more practical
to download the latest version as source code and install it yourself. This allows you to
customize the package to your needs at the installation stage. The installation procedure
is straightforward and is accomplished by sequential execution of three commands:
configure && make && make install. The only command that requires attention is
configure, which defines the basic properties of the package. As a rule, it is executed
with a set of parameters. In a typical case, the command looks as follows:

./configure \

--prefix=/usr \

--sbindir=/sbin \

--enable-threads \

--enable-snmp \

--enable-cgi \
--with-1libwrap=/1ib64/libwrap.so0.0 \
--with-cgi-bin=/usr/apache/cgi-bin

After the installation is complete, further configuration is performed by editing the
configuration file /etc/apcupsd/apcupsd.conf. Here is an example of the file with brief
comments. All variables are commented in English in the real system file. During the
installation of the package in the platforms directory, the apcupsd script is configured to
run the daemon. This script should be placed in the /etc/init.d directory and is used
to automatically start the daemon during the system boot process. On a running system,
the daemon is started by the command

systemctl start apcupsd

The correctness of the system installation can be checked with the apcaccess
command, which gets information about the UPS status from the apcupsd daemon. If
everything is configured correctly, the output should look like this:

APC : 001,048,1157
DATE : Tue Aug 02 16:01:49 MSD 2011
HOSTNAME : rsufs

276

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

VERSION : 3.14.7 (August 1, 2009) suse
UPSNAME : UPS 3

CABLE : Custom Cable Smart

MODEL : SNMP UPS Driver

UPSMODE : Stand Alone

STARTTIME: Thu Aug 20 14:58:12 MSD 2011
STATUS : ONLINE

LINEV : 226.0 Volts

LOADPCT : 32.0 Percent Load Capacity
BCHARGE : 100.0 Percent.

TIMELEFT : 73.0 Minutes

MBATTCHG : 5 Percent

MINTIMEL : 3 Minutes

MAXTIME : 0 Seconds

MAXLINEV : 227.0 Volts

MINLINEV : 221.0 Volts

OUTPUTV : 218.0 Volts
csssssssssss[there's a lot more information here]
APCMODEL : Smart-UPS RT 10000

END APC : Tue Aug 02 16:02:47 MSD 2011

In addition to the apcupcd daemon and its access command (apcaccess), the
package includes a set of scripts that are run depending on the occurrence of a certain
event. In normal mode, they simply generate some message that is output to the
terminal and sent to the administrator by email. The control functions consist in sending
a shutdown command to the protected server when the battery charge falls below a
certain critical level.

The scripts are easy to modify to organize flexible management of the whole cluster.
The main events captured by apcupsd are switching to battery power and restoring
normal power. When these events occur, the onbattery and offbattery scripts located
in the SCRIPTDIR directory (/etc/apcupsd) are run, respectively.

In the case of a large configuration, such scripts will certainly not be sufficient.

Take care of duplicating UPS monitoring servers, as well as carefully customizing the
shutdown procedure for the supercomputer or its parts. Remember that compute nodes
should be the first to be shut down - this will significantly relieve the energy load. You

277

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

should not care about correct task termination - it is not appropriate in this situation,
but you should prohibit launching new tasks in advance. Network file systems and
monitoring servers themselves should be the last to shut down.

Please note that some shutdown procedures may hang for various reasons and
block the general system shutdown process. Such cases should be excluded: shutdown
procedures should be run through special wrappers or in the background, etc.
Remember that if a supercomputer is powered by several UPSs, it will require more
fine-tuned system shutdown procedures. Modern UPSs allow connection of temperature
sensors to the control devices, which can be used to organize continuous temperature
control in the server room.

The values read from the sensor can be written to a special log file, and if some
critical value is exceeded, the cluster can be shut down, as in case of power failure. An
example of a script for temperature monitoring is given in the chapter “One-Two-Three
Instructions.”

Figure 19-2. APCUPS web UI

The apcupsd package includes tools for monitoring the UPS status via web interface
(see Figure 19-2). During the installation of the package, a set of cgi programs is
created, of which the multimon.cgi program is the main one. These programs should
be placed in the cgi-bin directories on all servers controlling the UPS. In the /etc/
apcupsd directory of the head server, to which the browser will access, a hosts. conf file
containing the list of servers should be generated. The file has the following form:

Network UPS Tools - hosts.conf

MONITOR <address> "<host description>"
MONITOR 192.168.5.11 "asile1"

MONITOR 192.168.5.77 "asile2"

MONITOR 192.168.5.99 "storage"

278

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

If we go to the address http://localhost/cgi-bin/multimon.cgi in the browser,
we will see a picture similar to Figure 19-1. Thus, customizing the interaction between
the operating system and the UPS will make the cluster system more reliable and user-
friendly.

NUT

The apcupsd program is designed only for APC UPSs, although it can work with some
other models as well. The purpose of the open source NUT (Network UPS Tools) project
is to work with a wide range of UPSs from different manufacturers. The list of supported
models is available on the website (http://www.networkupstools.org/). NUT is
included in all popular Linux distributions. This package consists of three components:
drivers, server, and clients.
Driver - A program that implements all the necessary commands to work with
UPS; usually, it is not directly run. Server - A program that runs one or more drivers to
monitor the status of UPSs and control them through the network. Clients can connect
to a server (or several at the same time) and monitor the status of UPSs or change
their mode of operation. One of the most important clients included in the NUT is the
monitor. This is a client that reacts to changes in the status of UPSs; it can send an alert
about power loss in the network, shut down the equipment when the battery is low, etc.
To install NUT, use the package manager and install the server and monitor.
Typically, the directory with the configuration files is located in /etc/nut. All

components have their own configuration files:
ups.conf driver settings
upsd.conf server settings
upsd.users access settings
upsmon. conf monitor settings

Let’s start with the driver (ups.conf):

[ups1]
driver = usbhid-ups
port = auto
serial = 1234567890

279

http://www.networkupstools.org/

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

The format of the file is simple: in square brackets the name of the UPS, by which
we will identify it, and then specify its settings. The only mandatory parameter is
‘driver’ - driver name. Various UPSs can be configured in one file. In this example, it is
usbhid-ups - UPS connected via USB and using the standard interface. The search for a
particular UPS (you can connect several of them) is done by serial number. For different
drivers, the set of parameters will be different. For a list of drivers and supported UPS
models, see the website or /usr/share/nut/driver.1list file.

Server settings (upds . conf) are usually not required, but some settings can be
changed if desired:

MAXAGE seconds - Sets the driver response timeout. If it is
exceeded, the data from UPS is considered lost (stale).

LISTEN interface port - Specifies the interface and port on which
the server will respond. Numerous such strings can be specified. The
interface is often specified as its IP address, e.g., 172.0.0.1.

MAXCONN connections - Sets the number of simultaneous client

connections.

It remains to configure access parameters for clients - this is done in the upsd.
users file:

[admin]
password =adminpass
actions = set
actions = fsd

all

instcmds
[tester]

password =tstpass

instcmds = test.panel.start

instcmds = test.panel.stop
[monmaster]

password =123qweasd

upsmon master

280

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

The format of the file is already familiar to us: section name means the name of the
user, and parameters mean his rights. The mandatory parameter is password - password,
actions - allowed actions, set - update UPS parameters, and fsd - forced shutdown
(emulation of “On Battery”+”Low Battery”).

instcmds allows you to specify a list of commands that can be executed by the user.
ALL = any commands. In this example, the tester user can start and stop the UPS panel
test procedure (if supported by the driver).

upsmon - Predefined set of parameters for the monitor. Here you should specify
master if our monitor is running on the same server as the server and slave ifit is
running on a different server. Slave servers will be shut down first, and master will be
shut down last.

Now we can start the server - usually, its service name is nut or upsd. Let’s check if

our configuration works with the command:
upsc upsi@localhost

The command should output the current state of the UPS, which we configured
under the name ups1. Let’s configure the monitor on the computer where the server is
running (upsmon. cont):

MONITOR upsi@localhost 1 monmaster 123qweasd master

The format of the string is clear from the comment: the keyword MONITOR, then the
address of the UPS, the conditional power (in this case we write 1), the username from
upsd.users, the password, and the role of the monitor - master or slave. It is possible to
set more complex configurations, e.g., if the computer is connected to several UPSs, but
we will not dwell on it. If you want to react more flexibly to UPS events, e.g., to receive
sms about power failure or battery failure, you can configure the following options in the
same file:

NOTIFYCMD command - When an event occurs, the specified command will be called.
The command is passed an environment variable, NOTIFYTYTYPE with the name of the
event that occurred. Be careful: each event launches its own instance of the command,
no waiting for the previous launch to complete.

NOTIFYFLAG type flag[+flag][+flag]... - Whatto do when an event (type)
occurs. Types are ONLINE, ONBATT, LOWBATT, FSD, COMMOK, COMMBAD, SHUTDOWN, REPLBATT,
NOCOMM, and NOPARENT. Flag specifies a list of actions:

281

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

e SYSLOGlog entry

e WALL alerting with the wall command

e EXEC execution of the command we specified in NOTIFYCMD
o IGNORE doing nothing

NOTIFYMSG type message - A message to log if you are not satisfied with the
standard ones.

To monitor and visualize the status of UPSs under NUT control, there are many
programs, including the “standard” web interface upsstat. We will not dwell on its
configuration; it is well described in the documentation. Besides the web interface, there
are many other clients, including agents for monitoring systems.

Healthchecks

After the node is booted, it makes sense to run checks and decide if it is healthy enough
to run users’ jobs. Moreover, this is a good idea to do that before each job start. Usually,
such checks are called “healthchecks.” If you use SLURM job manager, you can enable
periodical execution of custom healthcheck script, and it is a good idea to include
heltchcheck run in the prologue scripts.

What to check, how to react on issues (drain node, try to fix, alert sysadmins, send
emails/notifications, push events into monitoring systems, ...), and which tests to run in
different cases (full check, prologue, background check) - these are questions you have
to answer. Note that prologue time is limited, and it is also included into the job runtime,
s0 you cannot run long tests.

You may implement your own healthcheck script (or a set of scripts), or use one
of the opensource solutions. I have good experience using LBNL Node Health Check;®
itis highly portable, because it is written in bash, has a lot of modules, and simple
configuration file. To implement different modes, e.g., full check and prologue check,
you can just use different config files. If you miss some functions, you can implement
your custom module.

Shttps://github.com/mej/nhc
282

https://github.com/mej/nhc

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

Security Scans

This subchapter should be actually a full chapter and be one of the first ones. In fact,
I often can see that only basic security rules are applied, but the rest is just ignored.
“The cluster is inside the protected perimeter, we are not exposed to the external world,
firewalls will save us” - typical way of thinking, and this is a big mistake.

There are a lot of specialized books and resources about the cybersecurity, so I will
just touch the basic rules you can follow:

1. Do regular system software updates. Test them on a small subset
of nodes first. Do backups. I recommend doing updates two to
four times a year; this supposes to have relatively small updates
and short maintenance times.

2. Do daily security scans. You can use opensource solutions like
chkrootkit, rkhunter, Nessus, Lynis, and Maltrail. And read the
reports!

3. Checkremote logins activity, especially who have sudo access.
4. Firewall is still your friend, use it wisely.

5. Monitor unusual activity - this is a hard part; manually, you can
just check running processes list and detect new malware, missed
by rkhunter. I don’t know good opensource automation tools for
this, but there are commercial solutions from SentinelOne, Palo
Alto Networks, CrowdStrike, and others. You don’t have to install
them on all nodes, but I recommend protecting all user facing and
service nodes.

Brief Summary

Superreliable systems, redundancy, redundant power, and cooling - all of these greatly
increase the reliability of your computing complex. But, yes, there’s still no guarantee.
Moreover, no redundancy will save you if a failure has already occurred and the
system is running on standby, and you are not even aware of it. Monitoring is one of
the most important components of any computing complex and even more so of a

283

CHAPTER 19 CLUSTER STATUS MONITORING SYSTEMS

supercomputer. Plan and implement monitoring for as much equipment and services as
possible as early as possible - preferably before the actual equipment starts working, do
not forget about security monitoring too.

If your supercomputer is powered by multiple UPSs, try to provide redundant power
to the most critical components: network file systems, monitoring, and management
servers. Don’t forget to take this into account in the configuration of the monitoring and
shutdown systems! Of course, it is best to use complex solutions, but if it takes a long
time to implement them and the system is already running, start using at least the basic
tools that are available in any Linux distribution.

Search Keywords

Monitoring, SNMP, UPS, Im_sensors, hwmon, security scanner, nodes healthchecks

284

CHAPTER 20

Backup

Tar

The tar (Tape ARchiver) command is one of the oldest commands in UNIX systems and
is designed to work with tape drives. The command combines files into a single file to
be written to magnetic tape. Although the tar command was created to work with tape
devices, nowadays it is more often necessary to work with files located on disks; if you
use -f option, the archive is stored into specified file. By itself, tar is an archiver with
very limited capabilities, e.g., it cannot compress files on its own. The Gnu version of
the tar command on Linux systems can invoke the gzip, bzip2, or any other archivers
to create compressed archives. The use of external archivers is reflected in the names of
the archives, which usually have the extensions .tar.gz (.tgz) or .tar.bz2 (.tbz2),
depending on which archive was used to compress the files.

When calling tar, you must be sure to specify one of the eight modes of operation
using one of the key, presented in the Table 20-1.

Table 20-1. Modes of operation of the tar command

Key Meaning

-A, --catenate Add files to an existing archive

-C, --create Create a new archive

-d, --diff, --compare Find the differences between the files in the archive and on disk
--delete Delete files from the archive (does not work on tapes)

-1, --append Append files to the end of the archive

-t, --list List the files in the archive

-u, --update Add only files that are newer than the existing copy in the archive

-X, --extract, --get Extract files from the archive

© Sergey Zhumatiy 2025 285

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_20

https://doi.org/10.1007/979-8-8688-1600-0_20#DOI

CHAPTER 20 BACKUP

Note that single-letter tar options can be specified without the ‘-’ prefix and can
also be ‘glued’ together. If several “glued” options require arguments, you should specify
them in the same order as the options, but it is better to avoid such situations and not
“glue” such options together.

General view of the tar command:

tar [options] [files]

To create an archive, the ‘c’ option is used, frequently in conjunction with ‘f; to
specify the name of the archive.

tar cf filename archive filel file2

Here filel and file2 are the names of files that will be added to the archive when
itis created. If a directory name is specified, its contents, including subdirectories, will
be added to the archive. In the example below, all files with the extension ‘.c’ located
in the current directory and the includes directory are written to the archive named
project.tar:

tar cf project.tar *.c includes

File compression by archivers is enabled by the options z for the gzip archiver and
j for the bzip2 archiver. In GNU-tar, it is also possible to specify your own command
for compression with the I key (the specified program must accept the -d key to
decompress). This allows to use, e.g., pigz - parallel version of gzip, which can compress
(but not decompress) data on many CPU cores. This is what the previous example with

compression looks like:

tar cvzf project.tar.gz *.c includes # gzip archive
tar cvjf project.tar.bz2 *.c includes # bzip2 archive

The v option outputs a list of processed files. This command will archive all files and
folders in the . /folder directory while preserving its full structure:

tar cvzf project.tar.gz ./folder

Files are unpacked using the x option. You can unpack the contents of the project.
tar.gz fileinto the current directory with recreation of the entire directory and
subdirectory structure from the archive file as follows:

tar xvzf project.tar.gz

286

CHAPTER 20 BACKUP
The ‘C’ option allows you to specify the directory where the archive will be deployed:
tar xvzf project.tar.gz -C /path/to/folder

Itis not necessary to use the full path starting from the root directory, you can use
arelative path from the current directory. To view the contents of the archive, use the

command:
tar tzf project.tar.gz
An example of adding files to an archive:
tar rvf project.tar new file
An example of adding directories to an archive:

tar rvf project.tar new folder

You can add files and directories to the archive only if the archive is not
compressed by archivers; otherwise, the tar command will generate an error.

The tar command is often used to create data backups. Backing up information
allows you to avoid complete data loss in case of failures and significantly reduce system
recovery time, of course if you store backup on the different physical device, don’t you?
The tar command algorithm is well suited for backup operations; it saves in the archive
not just the contents of the file, but also full information about it: who is the owner,
access rights to the file, etc.

Moreover, the data structure is fully preserved during copying, i.e., character
references and other special file system objects will be correctly restored. This property
of the tar command is typically used for full copying of file systems, because the
standard cp command does not always handle special files correctly.

Command to completely copy the datao1 directory to the new /dbo1 folder:

tar cf - datao1i | (cd /dbo1i; tar xvf -)

This example uses the | pipeline. The first tar ¢f - data0l command creates an

- n

archive and outputs it to the standard output stream, indicated by the “-” sign instead

of the archive name; the second | command (cd /dbo1l; tar xvf -) goes to the folder

287

CHAPTER 20 BACKUP

where the directory will be located and calls the command to unpack the data received

[

through the standard input stream, indicated by the “-” sign instead of the archive name.
Hint - You can use ssh or netcat to remote host instead of just cd.

Using the tar command allows you to implement any complex backup schemes.
There are two basic schemes: full backup is a long procedure; everyday it will be
expensive to use it; the second scheme is making a full copy in days of minimum load,
e.g., on weekends, and on weekdays, you can create incremental archives, which will
store only the changes that occurred in the system during the day.

Creating an archive with the possibility of incremental archiving:

tar --create \
--file=archive.1.tar \
--listed-incremental=/var/log/usr.snar \
Jusr

In this case, we create an archive of the /usr directory. If there is no file specified by
the --1listed-incremental option, it will be created, and metadata about the archived
data will be stored in it. If there is no such file, full data archiving will be performed, and
only new or modified files will be stored in the archives. To perform full archiving, you
should set the --1evel=0 option or delete the /var/log/usr.snar file:

tar --create \
--file=archive.1.tar \
--listed-incremental=/var/log/usr.snar \
--level=0 \
/ust

Please note: compression is not supported when creating incremental archives.

Besides tar, there are other classic tools for creating archives - cpio and pax. cpiois
not designed to work with tapes and, unlike tar, cannot get file lists from the file system
by itself - the list of files must be passed to its standard input. Usually find is used in
conjunction with cpio for this purpose. pax can be used to make backups on the tape
devices, like tar. We will not dwell on cpio and pax modes and options: they are similar
to tar. See the documentation for details.

288

CHAPTER 20 BACKUP

Bacula

Bacula is a backup system that is based on the network principle. It uses several types
of server programs, each of which performs a different function. They can run either
on different physical servers or on a single server. The types of program servers used

in bacula:
o Storage server
o Data server (file server)
e Director

In addition, various client programs can be used to manage and control the system.
The purpose of the storage server is to work with archive drives. It receives data for
archiving over the network or, conversely, gives the data read from the archives. Data
servers supply data to storage servers, they must have direct access to the information to
be archived. Finally, the director is the server that gives commands to the rest of the servers
and manages the data streams. It also stores information about where and what data has
been stored using the database. Officially supported are sqlite, mysql, and postgresql.

For example, you have a disk shelf connected to server storil and a tape library
connected to server stor2. Your network file system is accessible from the head machine
head1, and you would like to additionally backup local data from servers srv1, srv2, and
srv3. In this case, you can install storage servers on storl and stor2 and data servers on
head1, srvi, srv2, and srv3. Director can be installed on any server, but it is better if it is
the most fault-tolerant server.

Bacula allows you to create very flexible configurations for data archiving; its
capabilities are probably the most extensive in its class of programs. The only serious
disadvantage of bacula is the need to manually configure all parameters and operations.
Once the settings are made, everything will work automatically. To control and manually
start archiving or restoring data, you can use the bconsole program that comes with
bacula, or third-party programs such as bat or web-bacula. Unfortunately, none of these
programs support the ability to edit the configuration.

The bacula configuration is “smeared” across servers - each instance of each type of
bacula server has its own configuration file. But this does not mean that the information
is duplicated; on the contrary, this approach allows describing the necessary settings
only where they are needed. Let’s look at the concepts that bacula operates with in the

configuration:

289

CHAPTER 20 BACKUP

e Pool - Pool is a representation of a data store. In our example, a disk
shelf and a tape library are two pools.

e Volume - A volume is a single copy of data stored in a pool.

o Device - The device on which pools are stored (usually one device
contains one pool).

e FileSet - A set of files describes exactly what we will write to (or read
from) the volume.

e Job - Job describes the process of writing or restoring data.

Now let’s turn to the files to configure the backup in our example. Let’s start with the
storage servers (stor1, stor2). By default, their configuration file will be called /etc/
bacula/bacula-sd.conf.

All configuration files are internally divided into sections. For a storage server, the
main section is Storage. In the file, which is supplied by default, we must be sure to fix
the Name parameter - it specifies the name of the server, which does not necessarily have
to match the name of the physical server. Storage devices are described in the Device
sections, of which there may be several. Example configuration file for stor1 (usually
/etc/bacula/bacula-sd.conf):

Storage {
Name = storil
SDPort = 9103
WorkingDirectory = "/var/spool/bacula"”
Pid Directory = "/var/run"
Maximum Concurrent Jobs = 10
}
Director {
Name = dir1
Password = "storage-password"
}
Device {
Name = DiskArray
Media Type = MyFiles
Archive Device = /mnt/backups
Random Access = Yes;

290

CHAPTER 20 BACKUP

RemovableMedia = no;
LabelMedia = yes;

}

In the Director section, we specify the name of the director and the password to
connect to it. In the Device section, we described the disk shelf connected to stor1 in
the /mnt/backups directory. The Name parameter specifies the name of the device; the
Media Type parameter specifies an arbitrary name to be used by bacula when restoring
data. For each device describing the file storage (i.e., the directory where the backups
will be stored), a unique Media Type name must be specified, although this is already
obvious. The main parameters of the Director section:

e Archive Device - The path to the device, in this case a directory. For
a stor2 that uses tape, this will be the path to the tape drive
(e.g., /dev/nsto0).

o Device Type - The type of device. For a directory, it is File; for a tape
drive, itis Tape.

e Random Access determines whether the device can be accessed by a
random address. Write “No” for tape and “Yes” for files.

¢ RemovableMedia indicates whether the device can be removed. For
tape, it is “Yes”; for files, it is “No.”

o LabelMedia instructs bacula to automatically label media.

After configuring the storage servers, you can configure the director. On the physical
server where the director is installed, edit the /etc/bacula/bacula-dir.conf file:

Director {
Name = my-director
DIRport = 9101
QueryFile = "/etc/bacula/query.sql"”
WorkingDirectory = "/var/spool/bacula"
PidDirectory = "/var/run"
Maximum Concurrent Jobs = 1
Password = "my-password"
Messages = Daemon

291

CHAPTER 20 BACKUP

Here Name is the name of the director, and Password is the password for access.
The rest of the parameters should be left by default. The Director section is usually
followed by the Catalog section, which describes the parameters of the database
for storing internal information. Leave this section unchanged, specifying only the
necessary name, e.g., “my-catalog”

The next section is Storage; this is where we need to specify our storages:

Storage {
Name = dir-storage1
Address = stori.localnet
SDPort = 9103
Password = "storage-password"
Device = DiskArray
Media Type = MyFiles

And a similar section is for stor1.

The Name parameter is the unique name used to address the Storage section in the
bacula-dir.conf file; the Device, MediaType, and Password parameters are the same as
those specified in bacula-sd.conf.

The next section, Pool, describes the media pool:

Pool {
Name = storil-pool
Pool Type = Backup
AutoPrune = yes
Recycle = yes
Volume Retention = 1 month
Maximum Volume Jobs = 1
Maximum Volumes = 32
Storage = Dir-Storagel
Label Format = "stori-"

The Name parameter defines the unique name of the pool. The Pool Type parameter
defines the type and should be set to Backup for backups. The Maximum Volume Jobs
parameter specifies the maximum number of tasks whose data can be placed on the
media. For files, it is desirable to set it to 1.

292

CHAPTER 20 BACKUP

Volume Retention is the time after which the backup data stored on the media
will be deleted from the bacula catalog. Too many entries in the bacula catalog can
significantly slow down its operation. Maximum Volumes is the maximum number of
carriers available in a given pool.

The Recycle parameter indicates that media marked as obsolete should be reused.
In this case, the actual overwriting of the media will take place only when there is no free
media left, i.e., when there are no blank tapes or the number of files is equal to Maximum
Volumes and no new files can be created.

The AutoPrune parameter instructs to remove obsolete records from the catalog
automatically after the next task is completed. The Label Format parameter defines
the prefix to be used by bacula for labeling media - naming files or labeling tapes.

The Storage parameter contains the name of the storage device specified in the Name
parameter of the Storage section of the bacula-dir. conf file.

The next section is FileSet. It defines which set of files will be saved (or restored):

FileSet {
Name = "users-set"
Include {

Options {
signature = MD5
compression= GZIP
recurse = yes

}

File = /home

File = /etc/passwd

File = /etc/shadow

File = /etc/group

}
Exclude {
File = /home/tmp

The Name parameter defines a unique name for the set. The Include section contains
paths to files and/or directories, and Exclude contains paths to files and/or directories
to be excluded from the list. The Include section has a possible Options section that

293

CHAPTER 20 BACKUP

defines the reservation parameters. The Signature parameter specifies the algorithm
for calculating file checksums, the Compression parameter specifies the algorithm
for compressing files, and the Recurse parameter specifies the subdirectories to be
included. There can be several FileSet sections, such as user data, system settings,
installed application packages, etc.

Finally, the client sections, i.e., file servers:

Client {
Name = client-1
Address = headnode.localnet
FDPort = 9102
Catalog = my-catalog
Password = "my-password"

Here Address specifies the address of the data server, Catalog is the catalog name
(seeitin the Catalog section), and Password is the password to access the data server.
Each data server has its own Client section.

Now let’s look at the Schedule and Job sections, which describe the archiving or
restoring tasks. All the data relies on the parameters mentioned above.

Schedule {
Name = "Weekly"
Run = Full sat at 10:00
Run = Incremental mon-thu at 02:01
}
Job {
Name = "users-backup"
Type = Backup
Client = client1
FileSet="users-set"
Schedule = "Weekly"
Messages = Standard
Pool = example-pool
Write Bootstrap = "/var/spool/bacula/%n.bsr"
Priority = 1

294

CHAPTER 20 BACKUP

The Schedule section describes the schedule for starting tasks. You can describe
several different schedules for use in different situations. In our example, a task that
runs on the “Weekly” schedule should run every night on weekdays at 2:01 AM, making
incremental copies, and on Saturday at 10:00 AM, making a full copy.

The Job section describes the actual task. The Type parameter specifies the type
of the task; in our case, it is Backup. The Schedule parameter specifies the name of the
schedule; it must be described in one of the Schedule sections.

The Write Bootstrap parameter specifies the path to a file to which information will
be written that can be used to restore data from a backup without a connection to Bacula
Catalog. Instead of %n, the value of the Name parameter will be substituted.

Now let’s look at configuring the data server. Its configuration file is usually called
/etc/bacula/bacula-fd. For minimal customization, it is sufficient to specify only the
Director section, where the password is given, and the FileDaemon section, with the
data server settings. In the FileDaemon section, it is necessary to set the Name parameter -
the unique name of the data server; it must match the name in the Client section of the
Director.

Director {
Name = my-director
Password = "my-password"
}
FileDaemon {
Name = client-1
FDport = 9102
WorkingDirectory = /var/spool/bacula
Pid Directory = /var/run
Maximum Concurrent Jobs = 20

After starting the corresponding servers on all necessary computers, bacula starts
working offline. To perform some manual actions or to monitor the system operation
process, it is necessary to launch the client program.

The bacula software includes a console client bconsole. Its configuration file has the
same structure as those discussed above. It is typically called /etc/bacula/bconsole.
conf. Since it communicates only with the director, the main section of the configuration
file is Director:

295

CHAPTER 20 BACKUP

Director {
Name = my-director
DIRport = 9101
Address = headnode.localnet
Password = "my-password"

}

Here Name, Address, and DIRport are the name, address, and port of the director, and
Password is the password to access the director. After starting the bconsole client, we are
in the command prompt. The list of commands can be obtained by typing help.

Commands, presented in the Table 20-2, are of most interest to us in the
initial phase.

Table 20-2. bconsole commands

Command Meaning

cancel Cancel the task

disable Temporarily prevent the task from running

enable Task startup

exit Exit

list View the list of objects in the catalog

messages View recent messages from the system

quit Exit

restore Restore data

reload Reread the configuration

run Run the task

status Show the status of the system (director, storage servers, data servers, or all
together)

show Show detailed information about the task, bullet, etc.

To start the task of archiving user directories, type

run job=users-backup

296

CHAPTER 20 BACKUP

Then bacula will start executing the task. If you do not specify a task name, bconsole
will prompt you to select one from the list. Once started, you will be periodically warned
that there are new messages. To view them, use the messages command. To see the
current state of the system, run the status command. If you don’t specify an argument
to it, you will be asked whether you want to display the status of the director, storage,
clients, or all of them together. By issuing this command, you can diagnose problems, if
for some reason the tasks terminate with an error. Detailed information about the system
configuration can be obtained with the show command. Without arguments, it will show
nothing and offer no choices. To see a list of available choices, type

show help

For example, the show tasks command will show the most complete information
about task descriptions. This can be very useful when searching for configuration errors.
Project website: www.bacula.org.

Rsync and Others

Along with tar, the rsync program is one of the classic backup tools. The task of rsync
is to synchronize the contents of two directories, and one of them can be on a remote
machine. Synchronization is only one way, i.e., the newer contents of the first directory
will be copied to the second, but the newer contents of the second will not be copied

to the first. The good thing about rsync is that it performs a “smart” comparison of
directory contents before copying starts: newer files are detected by update time, and
then the contents of larger files are compared side by side using checksums and only the
changed parts of the files are copied (this behavior can be overridden). The transport for
accessing remote directories is rsh, ssh, or a proprietary protocol. In the latter case, the
rsyncd process must be running on the remote machine.

The disadvantages of rsync include the absence of the ability to create incremental
or differential copies, read data from standard input (for database backups), and the
inability to work with removable drives. Nevertheless, for relatively small backup tasks, it
remains a great tool.

Let’s look at some simple scenarios for using rsync.

rsync -avz hosti:data dir /backups/host1

297

http://www.bacula.org

CHAPTER 20 BACKUP

This command will copy the contents of the data_dir directory along with

subdirectories on the remote machine host1 to the local directory /backups/host1/

data_dir. To ensure that the data_dir directory is not created and only its contents

are copied, specify the source as host1:data_dir/, i.e., add a slash to the directory

name. The key ‘-a’ prescribes saving maximum of meta-information, like permissions,

attributes, symbolic links, etc., ‘-v’ - reporting the copying process, and ‘-z’ -

compressing the data during transmission.

To explicitly specify that ssh is used for remote access, with logging in as a specific

user and with a non-standard private key, specify the -e switch:

rsync -av -e "ssh -1 backuper -i secret key" \
host1:/to backup/ /backups/host1

Table 20-3 presents some more useful rsync keys.

Table 20-3. Useful rsync keys

Key Meaning

--delete Deleting files that are not in the source directory

-b When overwriting files, back them up by copying them to a separate
directory (option --backup-dir) or adding a specific extension to their
name (option --suffix)

-u/--update Do not process files newer than those in the source

-n/--dry-run Do not perform copying — only show that it will be performed

--ignore-errors
--max-size=N
--exclude=PAT

--exclude-from=FILE
-h/--human-readable
-8/--8-bit-output
--progress

--daemon

Skip read/write errors

Skip files larger than N

Skip files and directories with names matching the PAT mask (set in shell
style)

Similar to --exclude, but read the list of masks from the FILE file
Output file sizes in "human-readable" form, i.e., add MB, GB, etc.

Save file names with 8-bit set (for UTF-8 encodings, etc.)

Copy progress

Work in daemon mode (rsyncd)

298

CHAPTER 20 BACKUP

If you need to perform the same(!) update on many machines at once, you can
use the --write-batch=update option. In this case, rsync will not perform a copy, but
will create two files - update and update. sh. These files can be copied to the required
machines or made available on them via the network FS, and then run the update.sh
script on each machine, which will perform the required update. If rsyncd
(rsync --daemon) is running on the host, you can use the syntax rsync://host/remote
path or host::remote path to access it, for example:

rsync -avz rsync://hosti:data_dir /backups/host1

In this case, rsync will not use ssh/rsh and additional access control must be
taken care of. I recommend to use daemon mode, if possible, because it doesn’t require
encryption and saves CPU resources. At the same time, it is less secure; therefore, I'd
recommend to use chroot and separated secrets file instead of UNIX passwords. See the
documentation for more details.

There are several projects, using rsync to make incremental, encrypted, and
observable backups. Also, there are some projects, using similar, but more efficient
approaches, e.g., borgbackup,' which implements efficient deduplication and store all
backups in a special database. Every backup is a set of internal links to unique file system
objects, so there are no incremental or differential backups, and backup database always
contains only files, used by one of backups. If you remove a backup, only its unique files
are deleted from the database. Borg supports remote backups via sshfs or using its own
service and backups encryption.

In the repository https://github.com/zhum/hpc-book-matherials, you can find
a simple script, which makes managing borg backups a bit easier. Of course, there are
many other good projects, open source and paid, you can use if you need more features.

Brief Summary

As you know, all system administrators are divided into “those who don’t yet do backups
and those who do now” (and there are smart admins, who test backups at least two
times a year, because backups may fail silently). Indeed, very often setting up or testing
backups remains a task that is done last, and sometimes only after “thunder rumbles.” In
such a large system as a supercomputer, data backup has a special role - users, as arule,

'https://www.borgbackup.org/
299

https://github.com/zhum/hpc-book-matherials
https://www.borgbackup.org/

CHAPTER 20 BACKUP

cannot solve this task on their own, as they have only remote access to the data. And
after losing the settings of system software, especially commercial software, it can take
weeks or even months to restore the system after a failure.

If data volumes are relatively small, and you don’t need to use tape drives, it is
possible to organize regular backups of system settings and user data by very simple
means. In more complex cases, the task can also be successfully solved by both

commercial and free software.

Search Keywords

Backup, gnu-tar, cpio, pax, bacula, archiver

300

CHAPTER 21

Compilers and
Environments, for
Parallel Technologies

There are many ready parallel programs and packages which are widely used for
calculations. However, progress does not stand still and the need for new programs and
packages does not disappear. Often users of supercomputers write compute programs
themselves or compile the latest versions of open source packages (which often surpass
commercial ones in capabilities) from source texts. This requires compilers and tools to
support parallel programming.

At the moment of writing this book, the de facto standard in the HPC world for
distributed programs is MPI (Message Passing Interface). This is a standard that
describes a set of library procedures for C and Fortran languages. These procedures
allow you to organize the launch of several program processes and organize message
exchange between them. The standard is approved by a special committee and further
supported by various independent implementations.

Why do I need to know this? I am not a programmer but an administrator! - some
people may say. But don’t hurry, I won’t teach you programming with MPI; nevertheless,
itis important for an administrator to know how parallel programs are arranged and
what “this MPI” does. At least in order to understand the diagnostics being generated.

So, a simple example of a C program using MPI that calculates the number of pi (MPI
functions are in bold) is as follows:

#include "mpi.h"
#include <stdio.h>
#include <math.h>
#define NINT 1000000

301
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_21

https://doi.org/10.1007/979-8-8688-1600-0_21#DOI

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

#define COUNT 100000

double f(double a) {

}

return (4.0 / (1.0 + a*a));

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;

double startwtime=0.0, endwtime;

int namelen;

char processor name[MPI_MAX PROCESSOR NAME];
int rep;

double *mem[1000];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
MPI_Get_processor_name(processor_name,&namelen);
fprintf(stderr, "Process %d on %s\n",
myid, processor name);
n =20,
while (!done) {
if (myid == 0) {
if (n==0) n=NINT; else n=0;
startwtime = MPI_Wtime();
}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0)
done = 1;
else {
for(rep=0; rep<COUNT;++rep){
h =1.0 / (double) n;
sum = 0.0;

302

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += f(x);
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, \
MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) {
printf("pi is approximately %.16f,"
" Error is %.16f\n",
pi, fabs(pi - PI25DT));
endwtime = MPI_Wtime();
printf("wall clock time = %f\n",
endwtime-startwtime);

}
}
}

}
MPI_Finalize();

return 0;

}

At the beginning of the program, the MPI_Init procedure is called, to which the main
arguments are passed. Only after calling this procedure can other MPI calls be used.

MPI_Comm_size, MPI_Comm_rank, and MPI_Get processor_ name get the number
of running processes, their number, and node name, respectively. MPI_Bcast sends
information from one process to all others - in the example above, this is a sign of the
end of the calculation. MPI_Reduce performs a collective operation on the data of all
processes and returns the result - the sum of intermediate results of all processes. Each
process is terminated by MPI_Finalize call, after it MPI calls are forbidden.

Besides MPI, popular parallel programming technologies are OpenMP, CUDA,
OpenCL, OpenACC, and SHMEM. OpenMP is a standard describing a set of special
comments in C and Fortran programs which can help to distribute computations in a
program among several threads. Unlike MP]I, there is only one process, within which
various threads work on shared memory. Since working with shared memory is easier
and cheaper, “hybrid” programming is often used (it is often denoted MPI+X, meaning

303

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

CUDA, OpenMP, OpenACC, OpenCL under X) - a program is written using both MPI
and OpenMP (or similar technology) simultaneously. When running such a task on
many compute nodes, usually one MPI process runs on each node, within which the
work is distributed using OpenMP, OpenACC, OpenCL, or CUDA, and the processes
themselves exchange data via MPL

CUDA and OpenCL technologies allow you to use different accelerators, typically
video cards, for computing. CUDA technology was developed by NVIDIA and works only
on NVIDIA’s graphics cards. It is an extension of the C language, so a special compiler
is required to compile CUDA programs. Some CUDA functions are implemented as a
library and can be used from ordinary C/C++ and Fortran programs.

OpenCL is an open standard that allows you to work with any gas pedal for which
there is an implementation. It is also focused on video cards, but can be applied more
widely. Its advantage is the uniformity of code description for both the main processor
and the gas pedal. Being universal, it does not provide many optimization possibilities.

OpenACC is also an open standard developed by a group including CAPS, Cray,
NVIDIA, and the Portland Group. The first implementation was created by the “Portland
Group.” The approach of the standard is very similar to OpenMP: code markup is also
used with the help of special comments that specify how to execute parallel sections.
OpenACC emphasizes using graphic cards, but theoretically, it can be used for any
accelerator. As in OpenCL, the same code can run on both CPU and GPU.

OpenSHMEM standard is an attempt to compromise between distributed memory
(as in MPI) and shared memory (as in OpenMP). Here memory is explicitly distributed
between the processes of a task, but there is a possibility of direct access to “other
people’s” memory.

Let’s take a closer look at compilers and implementations of parallel programming
standards. Pay special attention to the last section of this chapter; it is devoted to
managing the “zoo” of compilers and other tools.

gcc/gfortran

GNU compilers are one of the greatest creations of open source. Thanks to them, we
have such a wide range of open source (and beyond) programs on a wide variety of
architectures. The biggest advantages of these tools are that they are available in any
Linux distribution and are constantly evolving. As a rule, there are no special subtleties
when working with gcc/g++/gfortran. Nevertheless, let’s try to highlight the main

304

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

techniques of working with them. Right away, I will draw your attention to the fact that
there is still the g77 project, an early implementation of Fortran in the GNU project.
Today, it is completely replaced by gfortran, which supports the language standard
more fully.

The simplest variant of compiling a C program from a single file looks like this:

gcc myprog.c

If the compilation was successful, an executable file a.out will be created. If we
want to immediately create an executable with the desired name, we need to add the ‘-0
filename_file name’ key. For large projects consisting of many files, it is often used to
compile them into object files first, to assemble (link) them together into an executable
by a linker program. This is convenient, because if you change one source file, there is
no need to recompile the whole project, just recompile the corresponding object file and
link the executable one.

To compile an object file, the ‘-c’ key must be specified. By default (if the -c switch
is not specified), the name of the object file will be the same as the original one, but
the extension will be changed to ‘. 0! For convenience, the compiler can work as a
linker (more precisely, it calls the linker itself with the necessary parameters). Here is a
simplified example of compiling a program from several files with a mathematical library
attached:

gcec -c *.c
gcc -o myexe *.o0 -1m

First, we compile all ‘. ¢’ files into object files, then link them in place with the 1ibm
library into the myexe executable. The -1zzz switch tells the linker to link a dynamic
library named 1ibzzz.so. The -I and -L keys are used to tell the compiler and linker
where to find the include files and libraries, respectively.

In order not to compile all the files every time, the make program is usually used,
which runs only the necessary commands for compilation on a preprepared Makefile.
You can read more about it in the documentation. By default, the compiler does minimal
code optimization. To make it perform more serious optimization, various combinations
of keys are used. The most common one is the -On key, which sets the “optimization
level” equal to n, where n is an integer from 0 to 6.

In fact, each level is simply a combination of other keys specifying different aspects
of the optimization. If necessary, you can add or remove the desired optimization with a
separate key. By default, level 2 (-02) is used. In real projects, levels 3 or higher are most

305

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

often used. To optimize for a specific processor model, specify the -ftune and -farch
options. Level 0 (disable optimization) may be required for debugging.

By default, code is generated that should work on any processor of the given
architecture, i.e., on the x86 architecture, the code will work even on Pentium-I, but no
“advanced” instructions, e.g., AVX, will be generated. All the above options remain valid
for the gfortran compiler. Some projects require combining parts of C and Fortran code.
In these cases, compiling files into object files and linking them together is used.

Because C and Fortran use slightly different naming conventions for variables
and functions in object files, C files are required to be compiled with the -fleading-
underscore switch. Combining with C++ requires that all functions to be called in C or
Fortran code be in C format. In general, combining code in different languages often
leads to compilation difficulties that are difficult to resolve. Added to this is an unpleasant
feature of GNU compilers: sometimes the order of keys and even file names changes the
behavior of the compiler or linker. Frequently, the place on the command line where a
library is specified determines whether it will be accepted by the compiler at all.

Intel and NVIDIA HPC Compilers

Among commercial compilers for the X86/X86-64 platform, I should mention the most
popular ones - Intel Compiler/OneAPI and NVIDIA HPC Compilers. All of them
produce noticeably faster programs (on newer processors) than the GNU compilers and
are fully compatible in object file format with it, allowing code from different projects

to be combined. Note at once that compatibility is lost if nonstandard optimization
techniques (e.g., IPO) are used - note this in the documentation. The basic keys of all
compilers (including GNU) are the same, the differences mainly concern optimization
keys (with -On supported by all of them). When using fine optimization keys, analogs
from one compiler may not always be present in another.

Intel Compilers are well integrated with other Intel tools, like IntelMPI, MKL,
IntelGDB, Vtune, etc. They have excellent performance even on non-Intel x86-64
processors. NVIDIA HPC Compilers are coupled with CUDA and some other NVIDIA
tools, so they are really handy on NVIDIA platforms.

The compilers, I mentioned, in 2025 are free to use, but have paid support option.
In the past, good compilers (PGI, Pathscale) had licensed model, and I don’t exclude
that this can repeat for some special cases in the future. Let me tell you about the license
options (it applies not only to the compilers).

306

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

The simplest one - for one person (account) on one fixed computer. It is usually
available from all compiler manufacturers, but in our case, this option is rarely suitable:
we need to provide compilation for all our users.

Another type of license is for an unlimited (or rather large) number of users,
but on a fixed computer. As a rule, this is the most optimal option, but it is not always
available from compiler manufacturers.

Another option limits the number of simultaneous uses of the compiler, e.g., 3, i.e.,
three users can compile their programs simultaneously. This variant looks good, but it
has one pitfall: in the implementation, I met with the Pathscale compiler, “simultaneity”
is counted to the nearest... 15 minutes! 15 minutes! That is, when the compiler is called,
it leases a license for 15 minutes, which can be used by this user. They can run the
compiler once or 20 times, it doesn’t matter, but other users cannot use this license, even
if the compiler was called just once.

You should be especially careful when building fault-tolerant schemes: if the license
server is installed in this mode on several machines, it usually requires a quorum, i.e., at
least 50% of the machines must be working. If you use Intel Compiler on one computer,
it supports the mode of operation without a license server - just specify the directory
with the license file during installation. At startup, the compiler will check the license
by itself.

All licenses are “bound” to the MAC address of the network card of the computer
with the license server and sometimes additionally to its network name. In some cases,
this information is required at the purchase stage, but most often it is required after
payment, at the stage of “activation” of the product. I strongly advise you to always study
the license terms and conditions very carefully. Many obvious concepts may in reality
mean things that are not obvious at all.

PMIx

Process Management Interface - Exascale (PMIx)! is a standard that allows MPI
application to get the information, needed for bootstrapping, like network topology, MPI
ranks placement, etc., and start up the app in efficient way. If MPI implementation and
job management system have PMIx support, the app is started using job management
system agents, takes much less time, and is more controllable.

"https://pmix.org/
307

https://pmix.org/

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

There are old standards PMI-1 and PMI-2, and they can be emulated via PMIx, but it
depends on the client and server implementation. Luckily, today, most implementations
use PMIx. I recommend to make sure that your job management systems and MPI
libraries, used by your applications, have compiled in PMIx support, and it is enabled as
default startup method. For example, in SLURM, you can run srun --mpi=list and get
list of supported MPI startup methods.

mpich

One of the earliest implementations of MPI was created at Aragon Laboratory back in
1992. The first version was based on the Chameleon system, which facilitated portability,
and the name originally stood for “MPI over Chameleon.” The project’s website is
http://mpich.org/. This implementation supports a variety of transports, including
Blue Gene and Cray network, through so-called drivers, which makes it easy to port it to
new systems, but, on the other hand, limits the optimization possibilities. At the end of
2025, the stable branch is MPICH-4, and branches 1 and 2 are frozen.

Many commercial implementations of MPI, such as IntelMPI, HP-MP], etc., were initially
created on the basis of MPICH. In their development, they have gone far away from the
initial version, and some developments even returned to the parent project. The MPICH-1
implementation was characterized by the simplicity of launching: a ready executable file can
launch an application without additional means. The mpirun script only generates a set of
necessary keys and runs the ready program with them. At startup, the program launches MPI
processes by ssh or rsh to the nodes and specifying special options to the executable.

At the moment, MPICH is not the best MPI implementation, but pretty good for
many applications. It is best to build it from source code, which can be found at mpich.
org. If you use non-GNU compilers, specify the CC=my-compiler option when building,
where my-compiler is the name of the compiler, e.g., icc. It is also desirable to specify
the installation prefix, e.g., --prefix=/opt/mpich.

OpenMPI

This implementation was created independently of MPICH, and it is a development
of ideas and works of previous implementations - LAM/MPI, FT-MPI, LA-MPI, and
PACX-MPIL. Its first version was released on November 17, 2005. Project website:

308

http://mpich.org/

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

http://www.open-mpi.org/. OpenMPI implementation approaches are very
different from MPICH: there is no concept of “driver” here, although many transport
environments are supported. The scheme of launching applications here is also
different: special daemon programs must be launched on nodes beforehand.

In a standard build, this startup can be done by the mpirun program itself, so for the
user, the startup process remains simple, but for the administrator, it means that on the
nodes it is necessary to install in advance a set of software to run openmpi applications.

OpenMPI is characterized by good performance, and on many applications, it
outperforms even commercial implementations. Its disadvantages include very poor
documentation; most of the options and settings can be found only on forums and in
the updated FAQ of the project. The project is actively developed and supported. Even if
you use another MPI implementation, you should keep OpenMPI build as an alternative
one. Note that if you build OpenMPI from source (which is recommended), make build
variants with different compilers.

Although the mpicc/mpiCC/mpif77/mpif90 compilation commands included in the
OpenMPI distribution support the ability to specify the compiler separately, difficulties
may arise during linking if the program is compiled with one compiler and the OpenMPI
libraries with another.

OpenMPI is highly customizable via the configuration file, command-line options,
and environment variables. For example, by default, OpenMPI uses a library hcoll,
which implements collective operations via different transports. Sometimes it works
incorrectly, and you want to disable it or give it some hints. Here are some ways how to
do that:

mpiexec -mca coll hcoll enable 0 ... myprog # disable it

export OMPI MCA coll hcoll enable=0 # if you use PMIx
srun --mpi=pmix ... myprog # AAAANAANAAANAAN

-x HCOLL_MAIN IB=mlx5 0:1 # force use device

-x HCOLL_ENABLE_NBC=1 # enable non-blocking collectives

-x HCOLL_ENABLE_SHARP=1 # enable SHARP

-Xx OMPI_MCA pml="ucx # UCX off, if needed (see below)

You could note ‘MCA’ abbreviation above. This stands for “Modular Component
Architecture,” and many OpenMPI components are modules in this framework. Main
modules are

309

http://www.open-mpi.org/

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES
o pml - Point-to-point messaging layer (PML). These components are
used to implement MPI point-to-point messaging.

o btl - Byte transport layer; these components are exclusively used as
the underlying transports for the obl1 PML component.

e coll - MPI collective algorithms.
e io-MPII/O.

o mtl - MPI matching transport layer (MTL); these components
are exclusively used as the underlying transports for the cm PML
component.

You can get all available parameters and their current values via ompi_info -a
command. To change any parameter, you can use these ways (in order of increasing the
priority):

+ Global config file (usually /etc/openmpi-mca-params.conf?), format
is key=value.

« Local config file $HOME/ . openmpi/mca-params.conf.

e Tuned file - Any file(s), with any mpiexec options inside, you can
specify them like mpiexec --tune file1,file2 ..., and their
content will be interpreted as regular mpiexec options.

o Environment variables, format is export OMPI_MCA xxx=value.
e mpiexec command-line options: -mca xxx value.

For example, to force use intranode connection and InfiniBand and forbid using TCP
stack, we can export variable OMPI_MCA btl="tcp,self,openib. The same way you can
tune timeouts, communication algorithms parameters, etc.

2 And for PMIx- and PRRTE-related parameters, special file can be used - openpmix-mca-params.
conf, or prte-mca-params.conf respectively. For environment variables in this case preixes PMIX_
MCA_ and PRRTE_MCA _ are used.

310

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Mvapich/Mvapich2

This implementation was developed at Ohio University based on MPICH-2. The main
goal of the project development was to optimize MPICH to work with InfiniBand. Just
implementing a driver for mpich was not enough and the developers created their own
project, making many changes to the original code. Mvapich is included in the standard
package OFED on a par with OpenMPI. At the moment, the implementation with
support of MPI-3 standard - Mvapich?2 - is being actively developed. The project website
ishttp://mvapich.cse.ohio-state.edu/.

What distinguishes this implementation from MPICH is the way of launching:
instead of mpirun (which for some strange reason is left in the distribution), you should
use mpirun_rsh command, and its keys differ from mpirun keys from MPICH. At the
moment, Mvapich’s performance is not superior to OpenMPI on most applications, but
the project is actively developing, and perhaps, new implementations will outperform its
competitors.

Proprietary MPI: Spectrum MPI and IntelMPI

IBM has its own implementation - Spectrum MPI. It is tuned for use on proprietary IBM
hardware, is based on OpenMPI, and supports InfiniBand and GPUDirect RDMA. It is
well documented and recommended for use on IBM hardware.

IntelMPI is another good choice; it is developed almost “from scratch,” has good
InfiniBand support, is well optimized and documented, and is pretty tunable. In 2025, it
is free, but has paid support option.

SHMEM Library, OpenSHMEM Standard

The SHMEM programming system (from “shared memory library”) was developed by
Cray Research in 1999 as a one-way communications interface capable of becoming

an effective alternative and complement to MPI and PVM. In fact, SHMEM realizes

the simplest variant of PGAS-style programming (Partitioned Global Address Space).
Each node has local memory; each node also has access to remote memory: a node can
directly access the local memory of any node in the system.

311

http://mvapich.cse.ohio-state.edu/

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Since remote memory accesses occur through a communication network, their
execution time is noticeably longer and their tempo is slower than that of local memory
accesses. It is extremely expensive to wait for each single operation to be executed, so
itis required that the programmer explicitly allocates accesses to nonlocal memory
locations.

Unlike other PGAS languages (e.g., UPC), SHMEM forces the programmer
to explicitly allocate external accesses using functions, with further grouping of
accesses and optimization performed in hardware. Here we can add a comparison
with OpenMP’s shared memory paradigm, in which the programmer should slice
computations into pieces without worrying about memory allocation. This paradigm
take into account the difference in memory access price of NUMA systems, especially
systems without cache-coherent shared memory. That is why OpenMP support
could not be implemented efficiently on systems with distributed memory, although
unsuccessful attempts were made (Intel Cluster OpenMP and ScaleMP vSMP).

The PGAS paradigm extends OpenMP’s shared memory paradigm in that the
programmer needs to distribute not only computations, but also data, and when
distributing computations, take into account how the data has been distributed.

Historically, the SHMEM interface has been supported by all MPP systems from
Cray, Silicon Graphics, and Quadrics interconnects. All these implementations were
essentially proprietary and available only on the equipment of those manufacturers who
offered it. Most Russian supercomputers and clusters lacked support for programming
with SHMEM. Another problem is the lack of a standard for SHMEM calls. Thus,
different implementations from different vendors differed slightly in both call format
and functionality. All this had a negative impact both on the portability of existing
applications and on the popularity of SHMEM.

Since 2009, a group of members of the SHMEM user community has begun work
on standardizing the SHMEM library under the name OpenSHMEM, emphasizing the
openness of this initiative. At the time of writing, several references to implementations
are available on the community website http://www.openshmem. org, including those in
OpenMPI and MVAPICH2-X.

Compilation of programs using SHMEM is done with the oshc/oshfort commands
for C and Fortran, respectively. It should be noted that the MPI implementation is used
to build and run the GASNET library and the compilers and libraries based on it. Thus,
it will be required when building both GASNET and OpenSHMEM. On the other hand,

312

http://www.openshmem.org

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

programs can be started using the same commands that MPI programs are started with
on the cluster. Although the OpenSHMEM package offers an oshrun script, it actually
uses mpirun in the case of a multiprocessor machine.

At startup, users should control the size of the symmetric heap using the SHMEM
SYMMETRIC_HEAP_SIZE environment variable. In the oshconfig command help page,
users can read about how to control algorithms for performing collective operations
such as barrier.

CUDA

The word “CUDA” often refers to several similar but different things: the programming
technology offered by NVIDIA, the library and compiler to support this technology, and
even the architecture of graphics cards and gas pedals that support this technology.
The same is true for the CUDA version: sometimes it may be the revision number
of the standard for the programming technology, sometimes it may be the software
version, and sometimes it may be the maximum version of the standard supported
by the gas pedal. Officially, NVIDIA calls CUDA a “parallel computing platform and
programming model.”

The main tool for the CUDA programmer is the nvcc compiler, which supports
the CUDA dialect of the C language. It is used to compile files with the . cu extension.
Besides direct use of the compiler, it is possible to call CUDA functions from ordinary C
or Fortran programs using the cudart library; this library is included in the CUDA SDK.

Installation of CUDA SDK is quite simple. Download the RPM package or binary
installer from the official website, and make sure the gcc compiler is installed on the
host. Then install the downloaded package, which will add the official repository entry to
the system, perform a repository update (yum clean expire-cache or zypper refresh
or apt-get update depending on the distribution), and install the CUDA package: yum
install CUDA or zypper install CUDA orapt-get install CUDA.

If a binary installer has been downloaded, just run it, and it will automatically
download and install the necessary files. The disadvantage of the binary installer is
that it does not install the package into the system, which means that you will need to
manually install the binary installer again when upgrading.

Next, it is desirable to specify paths to CUDA files so that they are available to users. It
is best to do this by creating a module for environment modules. For CUDA to work, it is

313

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

necessary to add the path /usr/local/CUDA-VERSION/bin (if the installation was done in
/usr/local) to the PATH environment variable and the path /usr/local/CUDA-VERSION/
1ib64 to the LD_LIBRARY_PATH variable, respectively.

The main CUDA libraries are 1ibcuda and libcudart. The first enables basic GPU
operations, like enumeration, read/write GPU memory, check performance, etc. The
second one gives access to the CUDA API calls. For more high-level programming, in
addition to the CUDA library, you can also install implementations of popular libraries
using this technology - cuBLAS, cuFFT, cuRAND, cuSPARSE, and others.

Remember to install the latest version of the NVIDIA driver and CUDA driver on the
compute nodes. To diagnose problems, use the nvidia-smi tool included in the driver
kit. It allows you to see detailed information about NVIDIA graphics cards and change
some parameters of their operation. nvitop and nvtop can be used to quick check and
monitor the GPU (and CPU) load.

With nvidia-smi, you can also control some driver and card modes:

« Enable/disable ECC (memory error correction - with it, the card
works slower but more reliable).

o Enable/disable persistent mode - Then the driver always hangs in
memory; otherwise at each program launch, at the first call of CUDA
function, there is a delay for driver loading.

e Choose compute mode - No one counts, or counts any threads but
from one process, or counts anyone.

e Check for XID,? ECC errors, overheat, and other issues.

Sometimes when installing a new driver, you cannot remove the old driver because
itis loaded and not unloaded. In this case, add the kernel module to blacklist, reboot,
and then remove it from blacklist. In this case, the module will not be loaded, and you
can install the new driver version.

If the driver “hangs,” you can try reinitializing it by explicitly unloading and loading it:

rmmod nvidia; modprobe nvidia; deviceQuery

Here deviceQuery is a program from CUDASDK that outputs card information
using CUDA. Its call leads to loading the driver. You can use nvidia-smi instead of
deviceQuery in this case.

3XID - eXception ID.

314

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

UCX and NCCL

Unified Communication X (UCX) - optimized production-proven communication
framework for modern, high-bandwidth, and low-latency networks - supports RoCE,
InfiniBand, TCP sockets, shared memory (CMA, knem, xpmem, SysV, mmap), and Cray
Gemini/Aries (ugni). It is well-supported by OpenMPI, MPICH, Charm++, NCCL, and
many others. If you didn’t disable it in your MPI implementation and have problems,
you may either disable it or try to tune via specific variables like this (OpenMPI
example):

mpirun -np 2 -mca pml ucx -x UCX _NET DEVICES=mlx5 0:1 ./myapp

Here we specify to use UCX as PML transport (-mca pml ucx) and pass the UCX-
specific variable, forcing it to use specific device (-x UCX_NET DEVICES=mlx5 0:1). You
can get all UCX-specific variables via ucx_info -c command, and if you add ‘-f’ option,
you get the documentation about each of them.

NCCL stands for “NVIDIA Collective Communications Library,” pronounced
“Nickel.” It is closed source, but freely available library, implementing a lot of point-to-
point and collective operations, like MPI, but intended to be highly optimized to use on
GPU and with RDMA. It can be used to scale up an application to use single-GPU, multi-
GPUs, many nodes + GPUs. And it works without GPUs, of course, and even together
with MPI. The advantage is automatic detection of the network topology, PCI-express
configuration, etc.

Via the environment variables, you can tune NCCL-based apps, e.g., in
multiinterfaces networks, sometimes you need to specify network parameters explicitly.
When you specify interfaces in NCCL, there is a convention:

o Ifyou specify just a string, like ‘eth; it means prefix, and it matches to
all interfaces, starting with it.

o Ifyouadd ‘=’ prefix, it means exact matching, e.g., ‘=eth1’ matches
only to one interface, but not to ‘eth11’

o Ifyouadd ‘" prefix, it means negative prefix, i.e., matches to all,
except this prefix.

e ‘“="means “except exactly this interface.”

315

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

You can specify a list of interfaces via comma. Some important environment

variables for NCCL, if you need to tune/fix NCCL-based applications:
e« NCCL_DEBUG - Debug level, INFO is recommended for debugging.

e« NCCL_SOCKET_IFNAME - List of IP(!) interfaces for
communication.

¢ NCCL _IB HCA - List of RDMA interfaces.

¢ NCCL_IB_TIMEOUT - Timeout in seconds for RDMA
communications.

¢ NCCL _IB RETRY CNT - Number of RDMA retries.

e NCCL_IB_SL/NCCL_IB_TC - IB service level and traffic class, may
be important in some IB and RoCE networks.

e NCCL_TOPO_FILE - If the PCI topology is detected incorrectly,
specify it explicitly.

OpenCL

Open Computing Language - OpenCL - is designed as a standard for programming
heterogeneous computing systems. Such systems may include CPUs, GPGPUs, FPGAs,
and other devices. All of them must be connected to a host; distributed configurations
are not supported in the standard. The basis of the OpenCL programming paradigm is
the language of the same name, which is a dialect of C99. Unlike ordinary C, it does not
contain pointers to functions, header files, bit fields, recursion is prohibited, memory
qualifiers, and some other extensions are added.

The standard defines a set of special procedures for organizing calculations. In
this case, calculations can be run on any device available to the system and supported
by OpenCL, i.e., the same code can run simultaneously on CPU cores, video cards,
and connected FPGA accelerators. This approach greatly facilitates programming
in contrast to CUDA, where it is necessary to describe the code for GPGPU and CPU
separately. But the price for universality is flexibility and performance (it is more difficult
to write efficient code in OpenCL for NVIDIA cards than in CUDA), and optimization
possibilities are much less.

316

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Since OpenCL is a set of specifications, independent implementations are made
for each type of device. There is an NVIDIA implementation for its own video cards (it
is included in the standard driver), AMD implementation for its processors and video
cards, and Intel implementation for its processors.

OpenACC

The OpenACC standard is a set of specifications according to which any compiler can
implement it. The standard also has a set of implementation recommendations for
different gas pedals. Unlike OpenCL, OpenACC supports traditional languages - C, C++,
and Fortran. When modifying the program text, only directives-special comments are
introduced and the modified program can work without OpenACC, but in sequential
mode without gas pedals.

OpenACC directives are very similar to OpenMP directives, and for good reason: the
initiators of the new standard were participants and developers of OpenMP standards.
As aresult, all OpenACC directives are compatible with OpenMP and can be used in the
same program, and some OpenACC directives will probably be ported to OpenMP.

From the administrator’s point of view, this technology does not require any separate
support, except for installation of a compiler supporting OpenACC. Currently, this
technology is supported by NVIDIA, GCC (NVIDIA and AMD cards), and Intel (for Xeon
Phi processors) compilers.

Environment Modules and LMOD

I already mentioned above that it is very desirable to install several MPI compilers
and implementations on a supercomputer at the same time. But how to use them
simultaneously? It is very inconvenient to specify full paths to executable files and
libraries every time. The problem is mostly solved by adding the necessary paths to
environment variables such as PATH, LD_LIBRARY_PATH, and some others. In order
to automate adding and removing the necessary paths, the Environment modules
package, or modules for short, was created.

“http://modules.sourceforge.net/
317

http://modules.sourceforge.net/

CHAPTER 21

COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

For any package or library, it is possible to create a “module” - a file describing

what should be added or removed from the required user environment variables when

loading or deleting the module. With module, you can easily “switch” between compilers,

MPI implementations, and add environments to work with application packages. All

commands are implemented through a single command (actually a shell function) -

module. It takes as an argument the name of the command and additional arguments,

usually a list of modules. Table 21-1 presents the list of the main commands.

Table 21-1. Basic module commands

Command Meaning

addlload Add modules to the environment

rmiunload Uninstall modules from the environment

displaylshow Show information about the specified modules

avail Show list of available modules

switchlswap Switch the status of the specified modules: if loaded — unload, if not — load

use [-al--append]
unuse

update

purge

list

clear

Add a directory with module files

Delete the directory with module files

Try to reload all loaded modules by updating the environment
Unload all modules

Show loaded modules

Clear the list of loaded modules, but do not change the environment

For a complete list of commands and options, please refer to the documentation.

Here is an example of a module for OpenMPI:

#iModulel . OfHHHEHHHHHHHHHEHHHHHHHHHEHHEHHH
proc ModulesHelp { } {

global version

puts stderr "\tThis module will set up \

environment for OpenMPI 4.0.1 \
(build by Intel compilers)"

puts stderr "\n\tVersion $version\n"

318

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

set base /opt/mpi/openmpi-4.0.1-icc
module-whatis "adds OpenMPI 4.0.1 build by Intel compilers”.

prepend-path PATH $base/bin/
prepend-path LD LIBRARY PATH $base/lib
prepend-path MANPATH $base/share/man

The first line of the module file should be #%Module1.o0.

If the version number (1.0) is omitted, the file format is assumed to be compatible
with the latest version of Environment Modules.

The module file is a program in the Tcl language. Text output to the standard error
stream (stderr) will be shown to the user. It is not worthwhile to output anything to the
standard output stream (stdout); it may spoil the whole module system.

It is not necessary to know Tcl to write module files. As you can see, the syntax of
the description is simple. The main actions are performed by prepend-path commands
(append-path) - they change the contents of variables containing colon path lists, such as
PATH, LD_LIBRARY_PATH, and MANPATH. Many other actions are allowed, such as explicitly
setting the value of a variable, deleting a variable, loading another module, etc. You can
learn more about the syntax in the documentation, e.g., by typing man modulefile.

The original Environment Modules project, also called Tcl modules or Tcl/C
modules, stopped development for a while in 2012 with the release of version 3.2.10. The
main drawbacks encountered with this version were difficulties in loading a package
if another version was already loaded and in tracking dependencies between different
modules (e.g., MPI implementations built with different compilers).

To solve these and other problems, an alternative project Lua Modules® (LMOD) was
created. As the name implies, this project is designed to use the Lua language for module
files. At the same time, it can use files from the original Tcl modules written in Tcl,
translating them on the fly. That is, LMOD can be used on a ready-made infrastructure of
module files, allowing you to add new functionality to them.

LMOD, in particular, solves the two problems already mentioned. When loading a
module for a package for which a module to support another version has already been
loaded, the previously loaded module is automatically unloaded (the version change
diagnostic is printed). This avoids the situation when two versions of the compiler are
available at once, which can create a conflict between their runtime libraries.

Shttps://www.tacc.utexas.edu/research-development/tacc-projects/lmod

319

https://www.tacc.utexas.edu/research-development/tacc-projects/lmod

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

In addition, LMOD supports on-the-fly change of the list of paths to module
files (MODULEPATH variable). This allows you to dynamically generate lists of available
modules. For example, when loading a compiler module, the path to the modules
directory is added to the MODULEPATH variable for the version of packages built by this
particular compiler (and this version of the compiler). When MODULEPATH is changed, not
only what new modules are available, but also what modules are no longer visible. Such
modules are marked as inactive, i.e., the environment variables are modified as when the
module is unloaded, but the module itself remains in the list of loaded modules (with
the corresponding marking).

If later, due to changes in the MODULEPATH variable, a module with the same name
becomes available, it is automatically loaded. In this way, it is realized as replacement of
module versions in case of changes in other modules on which this module depends.

For example, a cluster may have a version of OpenMPI built by two different
compilers: gcc and Intel Compiler. We can load the gcc module and the OpenMPI
module sequentially. Then, when we unload the gcc module, the OpenMPI module is
marked as inactive, i.e., access to OpenMPI is removed from the environment variables.
If you then load an Intel compiler module and it has its own OpenMPI module, it
will be automatically loaded, and the environment variables will be set for use on the
correct build.

LMOD provides module spider command, which provides information about all
available modules, selected module, or detailed info about one module version. Here is
an example of all modules info:

$ module spider

gcc: gec/4.8.1, gcc/10.4.0, gcc/15.1.0
The Gnu Compiler Collection

Imod: 1mod/8.7.60
Lmod: An Environment Module System

openmpi: openmpi/4.1.8, openmpi/5.0.7
Openmpi Version of the Message Passing Interface Library

320

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Info about all version of one module can be obtained using module spider
MODULENAME command and is pretty similar to the above. Detailed info about exact
module version is more interesting:

$ module spider openmpi/5.0.7

Description:
Openmpi Version of the Message Passing Interface Library

You will need to load all module(s) on any one of the lines below
before the "openmpi/5.0.7" module is available to load.

gcc/10.4.0
gcc/15.1.0

You can load modules specifying only the module name, or with version (like
gcc/15.1.0); in the first case, default version will be taken. In LMOD and latest modules
package, you can specify it explicitly; otherwise, the highest version will be selected. In
LMOD, versions are sorted as numbers, in modules - as strings (mk1/4.0 is higher than
mk1/11.0).

Other nice features of LMOD: saving/restoring a set of modules, hiding modules
(e.g., for testing), and flexible dependencies system.

I'will not describe the syntax of the modules in Lua. Most of the commands, such
as prepend-path, are taken over from the original project, but should be used with Lua
syntax in mind. Other commands can be found in LMOD documentation.

At the end of 2017, the original Modules project started to develop quite a bit again.
So far, its development goes toward other functionality, which is not very clear how
to apply to problems that are solved with LMOD, plus quite a lot of purely technical
changes. But it is worth following this project; perhaps, it will have some useful features
of its own.

321

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Build Systems

Many HPC packages depend on tons of other packages and libraries. If you need to
build a fresh one, it might be a headache. To help admins building and managing HPC
software, there are at least two popular packages - EasyBuild and SPACK. Let’s take a
look, how to use them.

EasyBuild® is an open source python package, and you can install it using pip.
Use python3.6 or higher, and I'd recommend to use venv to install it into a separated
namespace:

python3 -m venv easybuild
source easybuild/bin/activate
pip3 install easybuild

If you use Lmod or EnvironmentModules (and you do, right?), you can install
easybuild as a module (after you've done the installation above):

eb --install-latest-eb-release --prefix /opt/easybuild
module use /opt/easybuild/modules/all

How to load module:

module load EasyBuild

After loading the module, you are able to use eb command. Simple example -
building a new package:

eb HPL-2.3-foss-2024a.eb
== Temporary log file in case of crash /tmp/eb-rpdngte7/
easybuild-3761s4k7.1log
== found valid index for /home/foo/eb/easybuild/easyconfigs, so using it...
== processing EasyBuild easyconfig /home/foo/eb/easybuild/easyconfigs/h/
HPL/HPL-2.3-foss-2024a.eb
== building and installing HPL/2.3-foss-2024a...

>> installation prefix: /home/foo/.local/easybuild/software/HPL/2.3-
foss-2024a
== fetching files and verifying checksums...

Shttps://docs.easybuild.io/
322

https://docs.easybuild.io/

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

Here we use EasyBuild installation in user’s foo home and try to build HPL-2.3
package using GCC toolchain. List of directories with configuration files, build
descriptions, and default installation path can be found running command eb -show-
config. After build, package module and its dependencies are available via modules.
EasyBuild has good documentation, and if you want to use it, please check for details,
like using optimizations, specific libraries, like CUDA, etc.

Another popular build system is Spack.” Installation is pretty simple:

git clone -c feature.manyFiles=true --depth=2 \
https://github.com/spack/spack.git
source spack/share/spack/setup-env.sh

The last line should be added in your shell profile, if you want to activate Spack in
every shell session. After the installation, you can immediately run it, e.g. try to install
HPL package:

spack install hpl

==> Fetching https://ghcr.io/v2/spack/bootstrap-buildcache-vi/blobs/sha256:
8d2764eefad43c29c7c9120079e3bbe7576bbc496b15843ad18d18892338a5ba

==> Fetching https://ghcr.io/v2/spack/bootstrap-buildcache-vi/blobs/sha256
:a4abec667660307ad5cff0a616d6651e187cc7b1386fd8cd4bb6b288a01614076

==> Installing "clingo-bootstrap@=spack~docs+ipo+optimized+python+st
atic_libstdcpp build_system=cmake build_type=Release generator=make
patches:=bebb819,ec99431 arch=linux-centos7-x86 64" from a buildcache

==> Compilers have been configured automatically from PATH inspection

[+] /usr (external glibc-2.39-o06w364jwmtleiolghwv7qzmglqt3zidé6)

[+] /usr (external gcc-13.3.0-hl3rnt2aupy5ask7pzxkqkm3qjbepopq)

==> No binary for compiler-wrapper-1.0-xi6ijcvw2a5Sxtrfyz4zgtzwscmtmist3
found: installing from source

==> Installing compiler-wrapper-1.0-xi6ijcvw2a5xtrfyz4zgtzwscmtmist3 [3/44]

List of available package descriptions can be found running spack list.Be
patient, first run may take long. If you want to check which versions and flavors has a
package, e.g., hpl, run spack info hpl. All compiled packages can be added into your

"https://spack.readthedocs.io/en/latest/index.html

323

https://spack.readthedocs.io/en/latest/index.html

CHAPTER 21 COMPILERS AND ENVIRONMENTS, FOR PARALLEL TECHNOLOGIES

environment modules, by command spack module lmod refresh (use tcl, for tcl
modules). This should add your packages as modules, and you should be able to see
them via modules available. If not, runmodule use SPACK ROOT/spack/share/spack/
modules/linux-ubuntu14-x86 64 (check for your path) and add it into default shell
profile.

Iwon’t focus on other abilities of EasyBuild and Spack, like support of compilers,
libraries, building stacks, etc. Please check their excellent documentation.

Brief Summary

Itis not easy to write a parallel program, and the first thing you need is parallel
programming technology. There are many such technologies - from manual thread and
process management to using libraries with built-in parallel methods. Currently, the
most popular are MPI, OpenMP, CUDA, OpenCL, OpenACC, and SHMEM.

MPI and SHMEM are implemented as libraries but require a special way of
launching because they support work of parallel processes on several compute nodes.
Unlike other technologies, they do not require compiler support. That’s why the
administrator takes care of installing and configuring them.

OpenMP and OpenACC are implemented as extensions of Fortran, C, and C++
languages in the form of special comments, i.e., a program with OpenMP or OpenACC
directives remains a correct program in the source language. CUDA and OpenCL
implement C language extensions; a program using them cannot be compiled by a
regular compiler.

The efficiency of programs depends on the compiler, so try to install the one that best
meets your needs.

Search Keywords

GCC, Gfortran, NVIDIA Compilers, Intel Compilers, MPI, OpenMPI, IntelMPI, MPICH,
Mvapich, OpenSHMEM, CUDA, OpenMP, OpenACC, OpenCL, NCCL, UCX, Imod,
Environment modules

324

CHAPTER 22

Parallel Computing
Support Libraries

“Libraries? Those are for users, not for sysadmins” - you may say. Correct. But, trust me,
even if you don’t need to install them (with nonstandard options, e.g., because “they
are needed for this latest version of our groundbreaking app!”), you will see the error
messages from the user jobs, and the ability to distinguish system issues and userland
issues is essential. The bad news is that there are tons of such libraries and frameworks.
The good news is that most real apps use the most popular ones.

Here is the shot (really short!) overview of some popular libraries; hope this will help
understand how they work, how to build their custom versions, and understand their
error messages better. When you have to help users to debug an app, you have to speak
to users with common language.

I don’t touch here libraries like PyTorch, or TensorFlow, and apps like OpenFOAM,
or NAMD. They (and others) are really widely used today, but to cover them, I would
need another hundred pages, and, more important, I'm not a big expert on most of
them. Probably, I can collaborate with real applied libraries and apps experts and write a
book about it, what do you think? Drop me a line if you think it might be useful, and you
know someone who can help here.

ScaLAPACK

The most important role in numerical methods belongs to the solution of linear algebra
problems. This is reflected in the fact that all manufacturers of high-performance
computing systems supply with their systems highly optimized subroutine libraries,
including mainly subroutines for solving linear algebra problems. The most common
standard libraries in this area are BLAS, LINPACK, and LAPACK, originally developed

325
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_22

https://doi.org/10.1007/979-8-8688-1600-0_22#DOI

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

by Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and other researchers. They are
distributed in open source; their optimized variants are included in such libraries as
Intel MKL (Math Kernel Library) and ACML (AMD Core Math Library).

With the emergence of multiprocessor systems with distributed memory, work
began on porting the LAPACK library to this platform as the most fully compliant with
the architecture of modern processors (subroutines are optimized for efficient use of
cache memory). Leading scientific and supercomputer centers of the USA participated
in the work on LAPACK library porting. The result of this work was the creation of the
ScaLLAPACK (Scalable LAPACK) subroutine package. The project was successful, and the
package actually became a standard in the software of multiprocessor systems. In this
package, the composition and structure of the LAPACK package are almost completely
preserved and the references to the top-level subroutines are practically unchanged. The
success of this project was based on two fundamentally important decisions:

1. Inthe LAPACK package, all elementary vector and matrix
operations are performed using highly optimized subroutines of
the BLAS (Basic Linear Algebra Subprograms) library. By analogy
with this, when a parallel version of this library - PBLAS - was
developed to implement ScaLAPACK, which eliminated the need
to radically rewrite top-level subroutines.

2. All communication operations are performed using subroutines
from the specially developed BLACS (Basic Linear Algebra
Communication Subprograms) library, so porting the package to
different multiprocessor platforms requires setting up only this
library.

The general structure of the ScaLAPACK package is shown in Figure 22-1. Here, the
package components above the dividing line contain subroutines that are executed in
parallel on some set of processors and use vectors and matrices distributed over these
processors as arguments. Subroutines from package components below the dividing
line are called on a single processor and operate on local data. Each of the package
components is an independent library of subroutines that is not part of a library
ScaLAPACK, but is necessary for its operation. In cases where optimized proprietary
implementations any of these libraries (BLAS, LAPACK) are available on the computer, it
is strongly recommended to use these implementations for better performance.

326

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

SCALAPACK
PTOOLS ’ PBLAS
Global /' t
/ Local
LAPACK ‘ BLACS

Y

Message passing

BLAS (MPI/PVM/etc)

Figure 22-1. ScalLAPACK structure

ScaLAPACK installation begins with the installation of additional software packages.
Parallel Basic Linear Algebra Subprograms (PBLAS) implements the second and third
level functions of the BLAS library for distributed memory systems. The PTOOLS library
is a part of PBLAS. Download the source code of ScaLAPACK http://www.netlib.org/
scalapack/. After unpacking the package, edit the SLmake. inc file (only significant lines
of the file, which may need to be changed, are shown below):

SHELL = /bin/sh

set the path to the directory where SCALAPACK will be located
To avoid rebuilding the library on all nodes, we create it

in a directory that will be available to all nodes in the cluster.
home = /share/download/SCALAPACK

#

set the string identifier of the platform under which

A library is being assembled

#

PLAT = LINUX

#

327

http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

BLACS setting. set debug message level 1

or 0. and the path to the directory where the library is located.
#

BLACSDBGLVL = 0

BLACSdir = /usr/local/lib

#

MPI setting if used as

communication library

#

USEMPI = -DUsingMpiBlacs
SMPLIB =

BLACSFINIT = -lblacsF
BLACSCINIT = -lblacsC

BLACSLIB = -lblacs

TESTINGdir = $(home)/TESTING

CBLACSLIB = $(BLACSCINIT) $(BLACSLIB) $(BLACSFINIT)
FBLACSLIB = $(BLACSFINIT) $(BLACSLIB) $(BLACSCINIT)
#

Catalogs where the corresponding components are located
#

PBLASdir = $(home)/PBLAS

SRCdir = $(home)/SRC

TESTdir = $(home)/TESTING

PBLASTSTdir = $(TESTINGdir)

TOOLSdir = $(home)/TOOLS

REDISTdir = $(home)/REDIST

REDISTTSTdir = $(TESTINGdir)

#

Customize compilers and their options.

#

F77 = mpif77

CC = mpicc

Instead of the standard BLAS library, plug in

a highly optimized goto library

328

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

BLASLIB = -lgoto -lpthread

LAPACKLIB = -1lapack

#

PBLIBS = $(SCALAPACKLIB) $(FBLACSLIB) $(LAPACKLIB) \
$(BLASLIB) $(SMPLIB)

PRLIBS = $(SCALAPACKLIB) $(CBLACSLIB) $(SMPLIB)

RLIBS = $(SCALAPACKLIB) $(FBLACSLIB) $(LAPACKLIB) \
$(BLASLIB) $(SMPLIB)

LIBS = $(PBLIBS)

Note, here we use mpicc and mpif77 as compilers, so they should be available. You
can specify regular cc and fortran compilers, but in this case, linking MPI library may
become a hard task.

In this example, we used the BLAS implementation from the Goto library. If you use
a different variant (MKL, ACML, Atlas, ...) you need to substitute the corresponding
paths to the library. After editing the SLmake. inc file, run the make command, which will
compile and assemble the ScaLAPACK library. The ScaLAPACK library itself consists of
530 subroutines, which are divided into three categories for each of the four data types
(real, real with double precision, complex, complex with double precision):

e Driver subroutines, each of which performs the solution of some
complete problem, e.g., a system of linear algebraic equations
or finding eigenvalues of a real symmetric matrix. There are 14
such subroutines for each data type. These subroutines access
computational subroutines.

o Computational subroutines perform separate subtasks, e.g., LU
decomposition of a matrix or conversion of a real symmetric
matrix to tridiagonal form. The set of computational subroutines
significantly overlaps the functional needs and capabilities of driver
subroutines.

» Service subroutines perform some internal auxiliary actions.

The names of all driver and computing subroutines coincide with the names of
the corresponding subroutines from the LAPACK package, with the only difference
that the P symbol is added at the beginning of the name to indicate that it is a parallel

329

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

version. Accordingly, the principle of forming subroutine names has the same scheme
as in LAPACK. According to this scheme, the names of the package subprograms are
represented in the form PTXXYYYY, where

T - Code of the source data type, which can have the
following values:

S is a real of single precision.

D is a double-precision real.

C - Complex single precision.

Z is a complex double precision.
XX - Indicates the type of matrix:

DB - Banded general appearance with predominantly diagonal
elements.

DT - Tridiagonal of general form with predominant diagonal
elements.

GB - General view ribbons.

GE - General view.

GT is tridiagonal of the general form.

HE is Hermite.

PB - Band symmetric or Hermite positively definite.
PO is symmetric or Hermite positively definite.

PT is tridiagonal symmetric or Hermite positively definite.
ST is symmetric tridiagonal.

SY is symmetrical.

TRs are triangular.

TZ - Trapezoidal.

UN - Unitarian.

YYY - Indicates the actions to be performed by this subprogram:

330

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

TRF is a factorization of matrices.
TRS - The solution of SLAU after factorization.

CON - Estimation of the matrix conditioning number
(after factorization).

SV is the solution of the SLAU.

SVX - SLAU solution with additional studies.

EV and EVX - Computation of eigenvalues and eigenvectors.
GVXis the solution of the generalized eigenvalue problem.
SVD - Singular value calculation.

RFS - Refinement of solution.

LS - Least squares finding.

A complete list of subroutines and their purpose can be found in the ScaLAPACK
manual, but you need only to know the basics if you try to debug ScaLAPACK-
based apps.

PETSc

The PETSc (pronounced “petsy”) library was originally designed for problems that
actively use the solution of partial differential equations. The library’s Internet address
ishttps://petsc.org/release/. PETSc (Portable, Extensible Toolkit for Scientific
Computation) is a set of data structures and procedures that are the building blocks for
implementing large-scale application programs for both serial and parallel computers.
This library has in its arsenal not only differential equations, but also many other
algorithms used in scientific calculations. PETSc uses the MPI standard, the hybrid
MPI+thread model, and the MPI+GPU model (note that not all algorithms can use these
models). PETSc includes an extended package of linear and nonlinear equation solvers
and time integrators that can be used in applications written in Fortran, C, and C++.
The library is organized hierarchically, allowing users to select the levels of abstraction
appropriate to their private problem. The library can be used with C, C++, Fortran,
and Python.

331

https://petsc.org/release/

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

To build the library, download the latest distribution from the website and unzip it.
Navigate to the created directory. Run the . /configure command with the necessary
keys. The --with-cc, --with-fc, and --with-cxx keys specify the C, Fortran, and C++
compilers, respectively. I strongly recommend specifying mpicc, mpif90 (mpifort), and
mpicxx (mpiCC) as compilers.

If some libraries are not found during compilation, they should be specified with the
option LIBS="...". Compiler options for optimization (e.g., explicitly specify processor
architecture, etc.) can be specified by variables COPTFLAGS, FOPTFLAGS, and CXXOPTFLAGS,
e.g., FOPTFLAGS="-05". PETSc can use external solvers and packages, such as BLAS/
Lapack (required), Hypre, MUMPS, Parmetis, and others. In order to include them, the
options --with, --with-PACKAGE-include, and -download-PACKAGE should be used. In
the first case, the package must be preinstalled and the option specifies its directory. In
the second case, the installer will download the package itself, compile and connect it to
PETSc. You can see the full list of external packages with the command . /configure
-help. To utilize the GPU, the CUDA library is used in conjunction with the Cusp
package. You will need the CUDA driver version 4.1 or higher installed. If you want to use
pthreads, specify the --with-pthreadclasses option.

The PETSc library can be built in several ways. Before configuring and installing, set
(or setin configure and/or make commands) the variables PETSC_ARCH and PETSC_DIR,
specifying the name of the build profile and the path where the library will be installed.

Example of PETSc build with Intel compiler and Intel MPI and MKL libraries:

./configure PETSC ARCH=1linux-intel -with-cc=mpicc \
--with-fc=mpifort --with-blas-lapack-dir=/opt/intel/mkl

After running the . /configure command, run the make command:

make PETSC_ARCH=linux-intel all test
sudo make install

After installation, users can use PETSc by first setting the PETSC_DIR and PETSC_
ARCH environment variables. It is recommended to set them in /etc/profile or /etc/
bashrc or, preferred, use Environment Modules or LMOD.

To diagnose problems, I advise you to use the keys when running PETSc programs:

o -log summary - Provide a performance summary at the end of
the program

332

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

o -fp_trap - Stop on floating-point operation exceptions

e -trdump - Perform memory tracing, output a list of unreleased
memory areas at the end of the program

o -trmalloc - Trace memory

o -start in debugger [noxterm, gdb, dbx, xxgdb] - Start program
in debugger

o -on_error attach debugger [noxterm, gdb, dbx, xxgdb] - Run
debugger when an error is detected

These options should not be used by default, but they can help when diagnosing
strange behavior of PETSc programs.

FFT/FFTW

The FFTW (Fastest Fourier Transform in the West) library implements the fast discrete
Fourier transform. This transform is often used in many numerical algorithms, especially
in frequency analysis. The library is a set of C and Fortran modules for computing the
Fastest Fourier Transform (FFTW). FFTW allows you to work with both real and complex
numbers, with an arbitrary input data size, i.e., with the data length not necessarily being
a multiple of 2"

The library also includes parallel FFT processing modules that allow its use on
multiprocessor machines with shared and distributed memory. FFTW consists of four
different variants of FFT calculation:

¢ One-dimensional transformation for complex numbers
e Multivariate transformation for complex numbers

e One-dimensional transformation for real numbers

e Multivariate transformation for real numbers

To connect the library, you must specify the -1ttfw switch to the compiler. In
addition, you may have to specify paths to directories, containing include-files and the
library itself with the -I and - L keys. There is a parallel variant of FFTW which uses MPI;
to compile with it, you should specify the -1fftw_mpi switch in addition to the usual
library. You should also use parallel FFTW constructs instead of the usual ones in the

333

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

program source code. The library can often be found in standard packages, but I don’t

advise you to install it this way. You can download the source code of the library from the

official site http://fftw.org/ and compile it with optimization for your processors.
There are two incompatible versions of FFTW - 2 and 3. Both versions may be

needed in different applications, so compile and install them. If you have the MKL

or ACML library installed, each includes an optimized version of FFTW and manual

installation is not required.

TBB

Intel TBB (Intel Threading Building Blocks) library is a library of C++ templates and
functions that allows you to simplify writing parallel programs in terms of threads. It
supports various thread implementations - POSIX threads, Windows threads, and Boost
threads. The library offers a way of building a program “in blocks,” abstracting from
threads themselves. Due to this approach, the programmer doesn’t have to worry about
thread synchronization, thread generation, and thread management.

Most standard parallel constructions and algorithms are implemented in the library
in the form of “tasks,” which are linked together and generate a graph of dynamically
generated threads. In the process, the threads are optimized for efficient cache and CPU
usage. On the other hand, this approach practically does not allow adapting a ready-
made program - the algorithm must be initially written in terms of TBB task blocks.

TBB library exists in two versions: commercial and free open source. The
commercial library provides a wider set of algorithms and technical support. As
the name implies, the library implements only thread support; it does not contain
distributed block tasks. Therefore, working with MPI and distributed memory is left on
the programmer’s side. It is necessary to be very careful, because in this case, the work
on thread synchronization is hidden from the programmer, and in combination with
asynchronous MPI calls, it can lead to hard-to-diagnose errors.

Debuggers and Profilers

You cannot do without debugging in any programming, and even more so when
developing a parallel application. Even if you use a third-party package rather than your
own development, sometimes you need to find out where and why an error occurs. If it

334

http://fftw.org/

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

is a program package with open source code, you may launch it under a debugger. The
source code is needed to compile the package with the debugging information. Usually,
itis enough to add the -g option to the compiler and linker.

Unlike sequential programs, parallel programs are executed on several
processes and/or threads and often on different nodes at the same time. In this case,
traditional debuggers such as gdb (GNU debugger) are of very limited use. Many MPI
implementations allow you to run under a debugger, in which case each MPI process is
run under a debugger program, and if the process crashes, you can log into the debugger
and find out the local cause. Unfortunately, it is impossible to know what is happening in
the other MPI processes. In some implementations, it is possible to execute the debugger
command simultaneously in all processes, but if there are several hundred processes,
the output of this command will be simply unreadable.

There are several debuggers specially oriented to work with parallel programs.

One of them is TotalView. It was developed by Etnus (later renamed TotalView
Technologies), which was bought by RogueWave in 2010. This debugger supports most
parallel technologies.

The programmers include MPI, OpenMP, OpenACC, and CUDA. Unlike many
other debuggers, TotalView optionally adds the possibility of “reverse” debugging, i.e.,
recording variable values and execution flow and then playing it back. This allows you
not only to see the state of the program at the moment of stopping or crashing, but also
to go back some time and thus find the cause of incorrect program behavior.

With TotalView, you can connect to an already running application or initially run
the application under a debugger. Work with many queue management systems is
supported, as well as remote debugging - you can run the debugger on a supercomputer
and control debugging on a remote machine, in a separate application (remote client).
In debugging mode, many features are available to make it easier to find errors in
a parallel program: memory debugging, simultaneous stopping of all threads and
processes of the application, viewing the stack and variables of all processes, and more.
Besides TotalView, RogueWave offers other tools allowing you to find not only errors
but also “bottlenecks” in a program. For example, the ThreadSpotter tool can help you
identify inefficient memory utilization, thread conflicts, etc.

Another parallel debugger is DDT (Distributed Debugging Tool) developed by
Allinea (later it was bought by ARM). Its capabilities are similar to those of TotalView in
many respects, in some respects it is better, in some respects it is not. For example, there
is no “reverse” debugging feature, but there is an offline debugging feature: the program

335

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

is launched under the debugger, but without an interactive client. After successful or
failed completion, the debugger creates a report file that contains all the data that can
help in analysis situations - values of variables, stack, suspected memory leaks, etc.

Besides debuggers, whose main task is to help you find errors, there are two other
closely related classes of programs - profilers and tracers. Their task is to collect data
about program operation for further use. As a rule, these are data about the operation
times of separate subroutines, code sections. For parallel programs, they often add
information about when and what synchronization means were executed. This allows
you to analyze how efficiently the program worked: how much time was spent on data
transfer, how much time was lost waiting for synchronization, and so on. As a rule, the
profiler collects total data about the resources spent (time, memory size, etc.), while
the tracer records data about events (subroutine call, message reception, etc.) in a file -
a trace.

The collected trace can be analyzed, visualized, or used in complex analysis. There
are several open standards of trace files, so often a trace collected by one tool can be
analyzed in another program. The most common trace file formats are SLOG, CLOG,
OTF, and OTF2. The MPI standard provides a separate mechanism for profiling -
PMPI, most implementations support it. This standard allows you to load a library
that intercepts all MPI calls and can write information about them into a trace (or do
something else). Some parallel debuggers also use this interface to debug correctness of
parallel programs.

One of the very first packages for tracing MPI programs - MPE! - was created in
Argonne Laboratory for MPICH, but currently works with OpenMPI. The package
includes a set of libraries for profiling and tracing, as well as the Jump Shot SLOG trace
visualization package. The package is free and distributed in source code. Figure 22-2
shows an example of visualization of MPI exchanges in Jump Shot. There are several
commercial tracers for MPI (and not only), which provide different modes of trace
collection, as well as their visualization and analysis. The most popular ones are Intel
Trace Collector and Analyzer (ITAC) and Vampir.

"http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm

336

http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

_ TimeLine : cellular2d _paramesh3 slogz <ldent|!y Map> F]F_|
Lowest / Max. Depth’ PR Global Min Time View Init Time ZoomFocusT:me Vlewhnamme Global Max Time _ Time PerPo<eI Row ¥

0/13] ’ | 10 |-0.0060565 |175.0731618075 175.3409581597 |175.6087542037 (477.634607

1100007543556

ﬂ»

ll-'
AT m ‘1 | 7\
ﬁﬁ

" | J hﬁ
P O |
4

l-—_l_
| - Ifil ';;
| — -

TimeLines - =

Row Count
17.0

Il

175.10 17515 175.20 175.25 17530 175.35 17540

|
175.45

|
175.50

| |
175.55 17¢

| rit 11 Row

&@l

Time tseconds) < Zhg

Figure 22-2. Jump Shot interface example

Vampir (http://www.vampir.eu/) is one of the oldest commercial tools for
profiling and exploring parallel programs. It can use traces collected by third-party
tools; open OTF (Open Trace Format) is used as a standard format. The open library
VampirTrace is used to collect traces by means of Vampir itself. This library is widely
used for trace collection by third-party programs. Vampir is available for 32- and 64-bit
versions of Linux, as well as for Windows and MacOS. A demo version of the product
can be downloaded on the website. Vampir supports a variety of options for displaying
the collected information and also allows you to automatically search for potential

application problems - reduced efficiency, “bottlenecks.”

Another popular tools for trace collection and analysis are Intel Advisor, Intel
Inspector, and Intel VTune, included into Intel oneAPI HPC Toolkit. They use its own
trace format - STF. A trace for ITAC can be collected automatically if the application
uses Intel MPI; for this purpose, it is enough to specify an additional key at startup.

337

http://www.vampir.eu/

CHAPTER 22 PARALLEL COMPUTING SUPPORT LIBRARIES

You can also start an MPI application with a special wrapper program or instrument it
beforehand. Depending on the settings, a full trace or a sample trace will be collected;
in the latter case, the analysis accuracy will be lower, but the program performance will
be close to the real one. VTune and ITAC provide probably the most advanced and deep
analysis of the program efficiency.

In the open source world, there is TAU - Tuning and Analysis Utilities,* developed
in the University of Oregon. This is a powerful toolkit, providing tracing and analyzing
collected traces. It has Jump Shot integration and own graphical tools to view and
analyze collected data.

For debugging NVIDIA GPU applications, you can use cuda-gdb and cuda-nsight
packages, which should be included into cuda-toolkit by default. cuda-gdb can be used
instead of gdb binary in any GUI packages like DDD, VSCode, etc.

Brief Summary

Optimized libraries and debugging tools seem to be unnecessary for a system
administrator, but their presence (and active use) significantly improves the efficiency of
a supercomputer and increases its efficiency. This means that users are less worried and
come to you with problems. It is an important task of an administrator to install and help
users to master these tools.

Search Keywords

Scalapack, BLAS, PETSc, parallel debugging, parallel tracer, OTF2, SLOG, MKL, ACML,
VTune, oneAPI HPC toolkit, TAU

2https://www.cs.uoregon.edu/research/tau/home.php

338

https://www.cs.uoregon.edu/research/tau/home.php

CHAPTER 23

Booting and Init

This chapter is a bit out of the ordinary. It is a bit like Chapter 7, so it will be of no use
to experienced administrators. Here I would like to take a closer look at the process of
booting the server, both from disk and over the network. Understanding the stages and
logic of this process can help a lot in some situations, e.g., with a broken xCAT.

In addition to booting, it also covers the operation of the “main” process in Linux -
init, i.e., the first process in the system. So, if you are interested in the details, go ahead!
But let’s start by describing the procedure of turning on and starting any computer, so
that we can understand how init itself is started and what happens before it.

Booting from Hard Disk

The boot procedure automatically starts when the computer is powered up. The process
begins by transferring control to the built-in system test program (Power-On Self-Test
Procedure - POST). During the test, the hardware is checked, and external devices are
numbered and initialized.

There are two' mechanisms for booting an operating system, BIOS (Basic Input-
Output System) and UEFI (Unified Extensible Firmware Interface). BIOS is a very old
system, but still in use. To boot using BIOS, the disk is partitioned using MBR (Master Boot
Record). MBR is the first sector of the disk (sector 1, cylinder 0, head 0) with a size of
512 bytes. The MBR contains the disk partition table and the bootloader. The number of
primary partitions is limited to four; to create more partitions, you must create a special,
so-called extended partition, in whose space additional partitions are created. The MBR
partition size is limited to two terabytes. At boot, BIOS reads the MBR into memory and
transfers control to the bootloader.

! Actually more, but x86/x86-64 systems traditionally use these.

339
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_23

https://doi.org/10.1007/979-8-8688-1600-0_23#DOI
https://doi.org/10.1007/979-8-8688-1600-0_7

CHAPTER 23 BOOTING AND INIT

MBR is replaced by GPT - GUID Partition Table, where the possible number of
partitions is 128 and the partition size is more than 18 exabytes. Along with GPT, BIOS
is replaced by UEFI (Unified Extensible Firmware Interface). For UEFI operation, a
special “system” partition is created with the code EF00, formatted in VFAT32, where, in
particular, bootloaders, drivers, device firmware, etc., are placed. The size of the system
partition can be much larger than 512 bytes, so the situation with bootloaders is much
better. The default bootloader is \efi\boot\boot[architecture name].efi, e.g., for
x86-64, the file will be called bootx64.ef1i. In the system menu, you can usually choose
an alternative bootloader.

We will consider booting using MBR as an example, since the process is not
fundamentally different from UEFI. The first 446 bytes of MBR represent the program
code of the bootloader. The 64 bytes located after the bootloader contain the partition
table. The table can hold a record of four primary disk partitions (16 bytes each). At the
end of the MBR, there are two bytes, and they are called “magic numbers” (0xAA55). This
magic number is used to verify the integrity of the MBR.

The purpose of the bootloader is to find and load the main boot program and
transfer control to it. Currently, the primary bootloader for Linux operating systems is
GRUB (GRand Unified Bootloader).

One of the main advantages of GRUB is that it can understand the file systems used
in Linux. GRUB is capable of booting the Linux kernel from file systems such as ext3 and
vfat32, unlike previous bootloaders such as LILO, which first had to remember the sector
numbers of the kernel disk and read the kernel code from them when booting.

The ability to work with file systems is achieved by introducing another stage at
boot, making the two-stage bootloader a three-stage bootloader. Stage 1 (MBR) loads a
1.5-stage loader capable of understanding the file system where the Linux kernel image
is stored. Examples are xfs_stagel_5 (for booting from the XFS file system) or e2fs_
stagel_5 (for booting from ext2, ext3,ext4 file systems).

After the stage 1.5 bootloader has been run, the stage 2 bootloader can be loaded.
After loading stage 2, GRUB offers to make a choice from the available set of kernels,
which are listed in a special configuration file /boot/grub/grub. cfg (for old version
1 /boot/grub/menu.1st), or to load a default kernel. It is possible to pass additional
parameters to the bootable kernel before starting the boot procedure, or to load
a nonstandard kernel and initial system image (initrd). This is very useful if the
bootloader is corrupted, and you are booting from an external disk. In this case, you can
manually specify boot parameters, and after booting, install the bootloader again.

340

CHAPTER 23 BOOTING AND INIT

If the user does not interfere with the boot process, the second stage bootloader
loads the default kernel image and initrd image into memory. Once the kernel image is
in memory, it receives control from the second stage loader. The stage of kernel loading
comes. The kernel loading procedure also consists of several stages. In most Linux
distributions, the kernel image is compressed. The kernel can be packed using zImage or
bzImage, which use the libz or libbz2 library. At the beginning of the compressed kernel
image is a program that performs minimal hardware configuration and then unpacks the
kernel, placing it in the top memory location.

If the initrd RAM disk image is required to start the kernel, the program will also
place it into RAM. The program is completed by passing control to the start_kernel()
function, which performs further actions to prepare and configure the hardware to start
the operating system.

initrd acts as a temporary root file system in RAM so that the kernel can fully boot
without mounting any physical disks. Typically, initrd contains the kernel modules it
needs to communicate with peripherals. This organization of the boot process allows you to
work with a very compact kernel and still support a wide variety of hardware configurations.
Once the kernel is booted, the initrd root file system is replaced by the real root file system.

In computers without a hard disk, initrd is not replaced by another file system or
the root file system is mounted using NFS (network file system). After loading the kernel,
whose task is to make sure that the computer’s devices work, the root file system is
mounted, and the init process is started. To start it, the kernel looks for the /sbin/init
executable or the file specified in the kernel’s “init” parameter at startup. If no such file
exists, the kernel tries several standard names and crashes if it finds no candidates for
init. As a rule, init has PID = 1.

INIT in SystemV Style

Yes, I know that modern distributions don’t use SystemV-style init. You safely can skip it
and look into systemd. But, some parts of SystemV init are alive even in 2025, so you may
spend 15 minutes and know how this legacy works.

A few words about the role of init in Linux. It is the only process that is monitored
by the kernel - if init terminates, the kernel crashes. The task of init is to configure the
system, mount the necessary file systems, and start the initial set of services and programs.
Another function of init is to terminate zombie processes if they have no parent (they are
automatically “assigned” to init’s descendants) by calling the wait system call.

341

CHAPTER 23 BOOTING AND INIT

The standard init program (SystemV style)? reads the configuration file /etc/
inittab and starts various processes according to this file. The most important line of
the /etc/inittab file is the following line:

id:<number>:initdefault

This entry specifies the startup level of the system at boot time. The startup level
determines which scripts the init process will execute. By default, there are six levels in
the system:

0. System shutdown

1. Single-user mode

2. Multiplayer mode without network support
3. Multiplayer mode with network support

4. Not being used

5. Multiplayer mode with network support and graphical
shell launch

6. Reboot

Different Linux distributions may have their own special system boot levels, but this
is very rare.

Linux system is most often booted to either level 3 or level 5. You can change the
level by running the following command:

init <Level number>

The init 6 command starts the system reboot, and init O turns it off. In addition to
the line specifying the default system boot level, there are other lines in the configuration
file /etc/inittab. If a line starts with a # sign, it is considered a comment and is not
processed by the init command. All other lines consist of four colon-separated fields:

id:runlevels:action:process

2SystemV is one of the UNIX versions. For a long time, there were two main types of init program
configuration files, SystemV-style and BSD-style. Some distributions (e.g., Slackware) use BSD-
style init.

342

CHAPTER 23 BOOTING AND INIT

where

e 1id- String identifier. It is an arbitrary combination of one to four
characters. There cannot be two lines with the same id in the
inittab file.

e runlevels - runlevels at which this string will be used. The levels are
specified by numbers or letters without separators, e.g., 35.

e process - The process to be run at the specified levels. In other
words, this field specifies the name of the program to be called when
moving to the specified execution levels.

e action.

The action field contains a keyword that specifies additional conditions for
executing the command specified by the process field. Valid values of the action
field are

o respawn - Restart the process if it terminates.

e once - Execute the process only once when moving to the
specified level.

e wait - The process will be started once when going to the specified
level and init will wait for this process to complete before proceeding.

e sysinit - This keyword indicates the very first actions performed by
the init process before it moves to any level of execution (the id field
isignored). Processes labeled with this word start before processes
labeled with boot and bootwait.

e boot - The process will be started at the system boot stage regardless
of the execution level.

e bootwait - The process will be started at the system boot stage
regardless of the execution level, and init will wait for it to complete.

e initdefault - The line with this word in the action field defines the
execution level to which the system switches by default. The process
field in this line is ignored. If the default execution level is not
specified, the init process will wait until the user starting the system

enters it from the console.

343

CHAPTER 23 BOOTING AND INIT

o off -Ignore this element. It is convenient to use it for making
temporary changes.

o powerwait - Allows the init process to stop the system when power
is lost. The use of this word assumes that there is an uninterruptible
power supply (UPS) and software that monitors the status of the UPS
and informs init that power has failed.

o ctrlaltdel - Allows init to reboot the system when the user
presses the <Ctrl>+<Alt>+ key combination on the keyboard.
Note that the system administrator can define actions on the
<Ctrl>+<Alt>+ key combination, e.g., ignore pressing
this combination (which is quite reasonable in a system with

many users).

Having determined the boot level number, the system starts executing boot scripts
from the /etc/rc.d/rc<number level>.d directory; if you look through the contents of
this directory with the Is command, you will see that there are references with special
names like S<number><name> and K<number><name>.

<Number> specifies the sequence number of the script execution on loading. A script
reference with the number 15 will be executed before a reference with the number 20.

<name> specifies the name of the script to be executed. The scripts themselves are
located in the /etc/init.d directory.

The letter S or K specifies the parameters with which scripts in the /etc/init.d
directory will be executed. The scripts in this directory have many options, but the two
main ones are start and stop. References starting with S will run scripts with the start
option, and those starting with K will be executed with the stop option. Scripts to start
services can also be executed at any point in the system. For example, to start the apache
web server, just run the following command:

/etc/init.d/apache2 start

If the web server is already running, the script will give you a message about it.

There are two ways to specify that the server automatically starts at system startup.
The first is to run the chkconfig command (for RedHat-like systems) or update-rc.d (for
Debian-like systems). Console command:

chkconfig apache2 on

344

CHAPTER 23 BOOTING AND INIT
or
update-rc.d apache2 enable

By default, apache2 will start at boot levels 3 and 5. The chkconfig and update-rc.d
commands allow you to specify at which boot level the service should start.

In standard UNIX systems, boot scripts were just ordinary scripts that prepared the
environment for running daemons (otherwise known as services or services, which we
will discuss later in a separate chapter) and took the words start or stop as command-
line arguments.

On Linux systems, init scripts are shell scripts, but they often already contain
additional information about the procedure for running them, allowing the system to
automatically determine when the script should be executed when the system boots.
This information is specified in comments in the first lines of the script - the header.
Here is an example of such a script header:

BEGIN INIT INFO

Provides: skeleton

Required-Start: $remote fs $syslog
Required-Stop: $remote fs $syslog
Default-Start: 2 3 4 5

Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct scripts to be
placed in /etc/init.d.

Should-Start: $portmap

Should-Stop: $portmap

X-Start-Before: nis

X-Stop-After: nis

X-Interactive: true

HoH O OHF OH OHF OH O OHF OH OHF OH =

Each line is labeled with a # comment icon. The chkconfig command analyzes this
information when it creates references in the rcN.d directories. The Required-Start
keyword specifies which services must be loaded by the time the script runs. In this
example, the remote file system services and the system log must be started.

The $remote fs construct denotes a set of services required to maintain remote file
systems. Such services are described in the /etc/insserv. conf file.

345

CHAPTER 23 BOOTING AND INIT

Required-Stop specifies the services that must be stopped before running the script
with the stop argument.

Default-Start specifies the levels for starting the daemon by default; if not specified
in the chkconfig command arguments, the script will be activated at the appropriate
system boot levels when the daemon enable command is executed.

The other keywords have the same meanings, specifying when the daemon
should be started. The directory structure in which initialization scripts are located
can vary significantly from distribution to distribution. The major commercial Linux
distributions - SuSE and RedHat - try to follow the directory structure of initialization
scripts defined in the UNIX SystemV standard. But since Linux is not always rigidly
adhering to the standards, the directory structure can vary.

For example, most Linux distributions have a script called rc. local, which
historically came from FreeBSD. This script is executed last during the boot process. It
can be used to run your own commands, but it is desirable to do it as a separate script.
The use of rc.local is allowed, but not recommended.

Finishing the topic of system booting, I would like to draw attention to a problem
faced by cluster administrators when installing a system on a system installed on a
hard disk by cloning. Often a system installed on a hard disk by cloning refuses to boot
or mount file systems. This happens because when installing the system, factory disk
identifiers are written in the configuration files in the disk partition addresses. This is
done to increase the system security, but the system rewritten to another disk will not be
able to find the required partitions. Therefore, before the cloning procedure, you should
carefully review and correct the configuration files of the bootloader (/boot/grub/menu.
1st or /boot/grub/grub.cfg) and mounter (/etc/fstab) on the prototype node by
deleting disk identifiers in the partition addresses.

Systemd

Today, the most common init implementation is systemd; let’s take a look on it.

Besides the standard SystemV-style init, there are several other popular boot
managers: daemontools, OpenRC, Upstart, Initng, and others. Some of them are just
lightweight versions of init (for embedded devices, e.g.), and some of them try to solve
the problem of parallel loading and service dependencies.

346

CHAPTER 23 BOOTING AND INIT

Parallel loading is an important problem of standard init, it starts services only
sequentially, and this can take a long time. Attempts to introduce elements of parallelism
in standard init by introducing special comments in the start scripts have failed.

Lennart Poettering, working at RedHat, with the participation of developers from
Novell, IBM, Intel, and Nokia, has developed a new initialization system for the Linux
operating system - systemd. The reason for creating systemd was the desire to make
greater use of parallel execution of services at boot time, providing administrators with
a number of new features that greatly simplify the process of system maintenance.
Currently, systemd is used as init in many distributions, including RedHat/Centos
(since version 7), Fedora, Debian, Archlinux, and others.

Standard UNIX and Linux services (daemons) are started via init scripts. Such a script
prepares the environment for the daemon and then starts it. Scripts are written in shell, so
they are characterized by low speed and are difficult to parse because of the abundance
of hard-to-read code. Many tasks arising when working with services are rather hard to
solve by means of scripts, e.g., such as organizing parallel execution, correct tracking of
processes, and configuration of various parameters of the process execution environment.

There are advantages to using scripts: they are familiar to many administrators, and
you can see the progress of starting or stopping a service. Therefore, systemd can also
use standard init scripts to start system services, but this is sometimes problematic, so
try not to do this.

You can determine which initialization method your distribution uses by looking
at the name of the first process. If the process is named systemd, or init is a symbolic
reference to /bin/systemd.

The basic concept of systemd is a unit, which is a description of a service, a group
of services, just a command to be executed, etc. Units can be related to each other and
always have a certain type. The key type is target - analog of runlevel in init, but
unlike it, several targets can be activated simultaneously. Essentially, target is a list
of dependencies. A normal unit can be stopped or restarted. In the case of a target,
restarting is impossible, and it is generally not possible to stop all units included in it.

To stop a unit automatically if all the targets it is part of are stopped, you must have the
StopWhenUnneeded=yes directive in its description.

If you still need to stop all units from some target, you can use the type following

command:

systemctl stop -- $(systemctl show \
-p Wants MYTARGET.target | cut -d= -f2)

347

CHAPTER 23 BOOTING AND INIT

That is, get the list of required units from the target description, select only the name
from the list, and substitute the list into the stop command. There may be other variants.
To force a switch to a target, stopping all units not included in it, type

systemctl isolate rescue

Here rescue is the name of the target, in this example a single-user mode.
There are various kinds of units in systemd, the following are the main ones:

e service - Services that can be started and stopped. Services can be
classic SysV scripts of daemon initialization.

o slice - A group of processes, in a separate cgroup space (e.g., user
session, cron task, etc.).

e socket - Bind points to network or file sockets, allowing to build an
association with a certain service (analog of inetd).

e device - Elements of the device tree that can be handled by udev.
o mount - Specify the file systems used, which are found in /etc/fstab.

e automount - Determines which FS to mount when accessing a given
directory.

o target - Used for logical grouping of units. For example, multi-
user.target is identical to runlevel 5, bluetooth. target causes the
bluetooth subsystem to initialize, etc.

e timer - Designed to replace cron, runs on a schedule.

Each unit can require other units for its correct operation, conflict with units,
define the possibility to run only after or before a certain unit (configuration directives
Requires, Conflicts, Before, After, Wants). Systemd starts each unit in a separate
namespace, which allows you to group all processes running within a unit (and if
necessary, terminate them forcibly), set uniform restrictions for them, etc.

You can get a list of running services by using the systemctl command, which gives
the administrator a wide range of options for managing services. Common uses of this

command are presented in Table 23-1.

348

CHAPTER 23 BOOTING AND INIT

Table 23-1. Some systemctl commands

Command Meaning

systemctl stop name.service Service stop

systemctl start name.service Service startup

systemctl restart name.service Service restart

systemctl status name.service Service status information
systemctl enable name.service Allow service startup
systemctl disable name.service Prohibit service startup
systemctl list-units List of running services
systemctl list-units --all Status of all running services

Running services, as mentioned above, can be both standard init scripts and systemd
units. Files describing the units can be located in /etc/systemd/system (recommended
for nonstandard units or standard units modifications), /usr/1ib/systemd/system
(from the distribution), and /run/systemd/system (created automatically). You can
display the list of units and slides in the form of a process tree with the command
systemd-cgls.

Chapter “Systemd - A Short Course” will go into more detail about unit files, if you
need to create or customize your own service for systemd, look there. There will also be a
more complete list of systemct]l commands.

Systemd goes beyond service management and includes additional subsystems that
you can optionally enable and disable. Table 23-2 presents the types of systemd units,
supported at the time of writing.

349

CHAPTER 23

BOOTING AND INIT

Table 23-2. Main types of units in systemd

Unit type/function

Description

systemd-tempfiles
systemd-networkd
timers

journal

Fstab

socket activation

activation by file or
directory change

traffic filtering and
counting

managing some virtual
machines

time synchronization

name resolution

user sessions

Creating and deleting temporary files and directories
Network address and route management
Replacing the crond service via the timer unit type

Replacing syslog, rsyslog can automatically retrieve data from journal;
see chapter "Systemd — A Short Course" for details

Mounting file systems is also assigned to systemd, as long as full
compatibility with historical /etc/fstab is maintained

Note separately the automount unit type and the udisks2 subsystem
that automatically mounts removable media, it has almost become part of
systemd

inetd/xinetd replacement, implemented in the socket unit type

icron replacement, implemented in unit type path

In units, you can enable a set of rules to limit the addresses available to
the service over the network and traffic accounting

The systemd-nspawnd service manages lightweight virtual machines
a-la Ixc

Replacing ntpd with systemd-timesyncd service

Replacing DNS resolver with systemd-resolved service, use
resolvectl status to get current settings

logind —a systemd component, controlling users’ sessions

One special type of units - user unit. It describes user session properties and limits.
Default files, describing it, are in /usr/1ib/systemd/system/user-.slice.d/*.conf,

and some useful settings of logind (which controls the sessions) can be found in /etc/

systemd/logind.conf. Some interesting parameters in the user-.slice:

e (CPUAccounting=yes - Turn on CPU accounting

e (CPUQuota=10% - Limit CPU usage by no more 10% CPU (CPU
accounting should be on)

350

CHAPTER 23 BOOTING AND INIT

e MemoryAccounting=yes TasksAccounting=yes IOAccounting=yes
IPAccounting=yes - Accounting for memory, processes, I/0, IP
addresses

o MemoryHigh=bytes MemoryMax=bytes - Set soft and hard mem limits
e TasksMax=N - Set processes limit

o IOReadBandwidthMax=device bytes, IOWriteBandwidthMax=device
bytes, IOReadIOPSMax=device IOPS, IOWriteIOPSMax=device
IOPS - Set limits for I/O on a device by bandwidth or IOPs

o IPAddressAllow=ADDRESS[/PREFIXLENGTH]
IPAddressDeny=ADDRESS[/PREFIXLENGTH] - Limit IP
addresses access

o RestrictNetworkInterfaces=ifaces list - Limit access to the
network interfaces

In the logind. conf file, you can set an option KillUserProcesses=yes if you want to
kill all processes on session end. Note that it breaks screen/tmux/etc sessions!

If you want to set specific limits to one user, instead of defaults, use /etc/systemd/
system/user-NNN. slice file (or corresponding directory), where NNN is the numeric
user UID.

Network Booting

It is not uncommon for supercomputer nodes to be diskless, and even if there are disks
on the nodes, they do not have their own copy of the OS. In this case, network booting is
required to start the nodes. To boot over the network on a node, you need a network card
whose BIOS supports PXE booting (most cards can do this), as well as the option to boot
over the network in the node’s BIOS/UEFI. DHCP and TFTP services must be running on
the server.

The boot process is similar to booting from a local disk:

o The BIOS/UEFI of the node is started at power up.
¢ Control is transferred to the BIOS of the network card.

e The BIOS of the network card sends a BOOTP request.

351

CHAPTER 23 BOOTING AND INIT

e The DHCP server sends boot parameters (TFTP server address, etc.).

e The BIOS of the network card loads the bootloader via TFTP protocol
and transfers control to it.

o Loaderloads the kernel and initrd image over the network and
passes control to the kernel.

We will look at DHCP and TFTP configuration in more detail later.

Typically, a parameter is passed to the kernel at boot to indicate that the root file
system is located on a network drive. Linux so far only supports NES as a network root. It
is theoretically possible to use other options (e.g., Lustre), but this would require a lot of
manual work to optimize the initrd image. The best option is to use read-only NFS for
the root system.

When booting a large number of nodes, you should be careful and boot them one
by one with an interval of at least one to two seconds. This is due to several factors.
Firstly, it is dangerous for the infrastructure equipment to increase power consumption
sharply; it may end up with an emergency shutdown. Secondly, if a one-rank network
and one DHCP/TFTP server are used, then at mass startup the network will be flooded
by broadcast requests. The servers may not be able to cope with the flow of UDP packets,
since UDP is a protocol without reliable data transmission, some nodes will simply fail to
boot. For such a “DDOS-attack,” it is usually enough to have five to ten nodes booting at
the same time.

When mounting a network root, there is a problem with directories that should be
writable - /tmp, /var, possibly some others if specific software is installed. To avoid this,
you can apply a tmpfs file system that uses RAM. For the /tmp directory, this is solved
simply by writing to /etc/fstab. For /var, itis a bit more complicated, as it must include
a system of subdirectories and the contents of some of them do not change (e.g., /var/
1ib). One solution is to use /var on NFS and replace the directories in which the files
should change with symbolic links to directories located on tmpfs or directly mount
them as tmpfs. Be careful using tmpfs, as it takes up RAM. Just in case, set a hard limit on
its size with the option size=xxxMb or size=yyy%, where xxx is the size in megabytes and
yyy is the percentage of total memory. This parameter is specified in the options field in
the /etc/fstab file.

3 A distributed denial of service attack.

352

CHAPTER 23 BOOTING AND INIT

I recommend setting up remote logging so that node logs are not written to /var/log
on the node, but to the server. Check the documentation for rsyslog or the version of
syslog you have installed to configure remote logging.

So, to make network booting work, install DHCP and TFTP servers, install and
configure the network bootloader, prepare images for booting, and configure nodes for
network booting. Let’s see how to do all this!

DHCP

Dynamic Host Configuration Protocol is a protocol used for initial configuration of
computers. It allows you to get data about IP addresses, boot parameters, and some
other parameters. I will focus only on the ones we are interested in for computing
cluster operation: IP addresses, routing settings, and DNS server. Currently, there are
many implementations of the DHCP server, but in most cases, Linux uses the ISC
implementation, so this is what we are going to look at.

First, install the dhcp-server from the OS package manager (usually the package
is called dhcp-server). After that, make sure that the server starts automatically in the
init scripts. The DHCP server configuration specifies the parameters of the server itself,
the address ranges that will be “handed out” by the server, and the parameters that
will be passed along with the address. These parameters are known as options and
have fixed numbers and names. A list of them can be found on the Internet, e.g., at this
address: https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-
parameters.xhtml.

We will be interested in the following options:

e routers - List of IP addresses used for the default route
e ntp-servers - List of NTP servers addresses
¢ domain-name-servers - List of DNS servers addresses

In addition, the parameters passed to clients are important: next-server and
filename. These are, respectively, the address of the TFTP server from which the file will
be downloaded and the name of the file. The configuration is typically located in the
/etc/dhcp/dhcpd. conf file, and usually, there are already some commented examples
there. Unlike “office” solutions, where the workstation does not care what IP address
it gets, in a cluster, it is highly desirable that each node has a fixed address. Otherwise,
diagnosing hardware problems can become very difficult.

353

https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml

CHAPTER 23 BOOTING AND INIT

First, we need a list of MAC addresses of all nodes. This is not an easy task, as it is not
very convenient to load each node and write out its address. There are several ways to
solve it:

e Ifthe nodes themselves have the MAC address written on them, you
can collect them manually.

e Ifyour Ethernet switch has SNMP support, you can enable all nodes
and collect MAC address statistics by port.

e Oruse the same dhcp server!

Let’s consider the last option, because the server keeps records of all requests. By
default, requests are logged via syslog to the /var/log/syslog or /var/log/messages
file. If this does not happen for some reason, check if logging is enabled in your DHCP
server, or run it in debug mode and redirect the output to a file.

Beforehand, we need to create a “normal” configuration file, such as this one:

subnet 192.168.123.0 netmask 255.255.255.0 {
range 192.168.123.10 192.168.123.100;

}

Here we specify that in the 192.168.123.0/24 network, a range of addresses with
the last octet from 10 to 100 is allocated for distribution to clients. Make sure that the
addresses do not conflict with the addresses on the main network! Now start the DHCP
server with the dhcpd etho command, where eth0 is the compute node network
interface (don’t confuse it with an external interface). To make the DHCP server start
correctly from the init script, specify this interface in the /etc/sysconfig/dhcpd file
(for RH-like systems) with the line “DHCPDARGS=ethX” or in the /etc/default/dhcp3 file
(for Debian-like systems) with the line “INTERFACES=ethX” Check if everything worked:
click on the power button on the first node and wait for loading to start. A message like
this should appear in the log:

dhcpd: DHDISCOVER 00:01:02:03:04:05 via etho

That is, the MAC address of our server is 00:01:02:03:04:05. It remains to turn
on all nodes in turn (do it with an interval of 5-10 seconds, no less) and get the list of
addresses in the required order by command:

grep DHDISCOVER /var/log/syslog | awk '{print $3}' > macs.txt

354

CHAPTER 23 BOOTING AND INIT

Make sure that you get the same number of addresses as nodes. If there is a
discrepancy, check which node did not make it to the download.
Now let’s generate a new configuration file for dhcpd. Let’s make a script:

#!/usr/bin/env bash
n=10
for mac in $(cat macs.txt); do
no=$(printf "%02d" "$n")
echo <<END
host node-$n0 {
fixed-address 192.168.123.%n;
hardware ethernet $mac
option host-name node-$no;
}
END
n=$((n+1))

done

In this script, we assume that node names will be of the form node-NN. If this is not
the case, modify the script as you need. It is also assumed that addresses are issued
sequentially from 192.168.123.10.

The script generates a record of the form for each node:

host node-10 {
fixed-address 192.168.123.10;
hardware ethernet 01:02:03:04:05:06
option host-name node-10;

}

Here we specify that MAC address 01:02:03:04:05:06 will be given the IP address
192.168.123.10 and assigned the name ‘node-10: Let’s run the script and redirect the
output to the dhcpd. conf. new file. Edit the resulting file by adding to the beginning of
the line:

max-lease-time 1200;
default-lease-time 600;
ddns-update-style none; ddns-updates off;

355

CHAPTER 23 BOOTING AND INIT

subnet 192.168.123.0 netmask 255.255.255.0 {
range 192.168.123.150 192.168.123.200;
allow unknown-clients;
allow bootp;
filename "pxelinux.0";
next-server 192.168.123.222;
option routers 192.168.123.222;
option ntp-servers 192.168.123.222;
option domain-name-servers 192.168.123.222;

Add one line ‘}’ at the end to close the subnet definition block. In this example, we
have specified the address range that is “served” by this DHCP server (subnet). The
range from which addresses will be issued (from 150 to 200) - there is no MAC address
binding for them (range), specified DNS-, NTP-servers, and default route (domain-name-
servers, ntp-servers, routers), as well as the file name for TFTP upload and TFTP server
addresses. Global options at the beginning of the file specify the lifetime of the issued
address (max-lease-time) in seconds, the recommended address update time (default-
lease-time), and disable DNS server notifications about address issuance (ddns-*).

Now you can save the old /etc/dhcp/dhcpd. conf file somewhere (don’t delete it!),
rename our new one to /etc/dhcp/dhcpd. conf, and restart dhcpd, making sure it is
configured for the correct interface. If you don’t want to stay in the machine room for a
long time, you can try to “pull” the MAC address records of the enabled nodes from the
Ethernet router. To do this, use the snmpwalk command. If it is not found, install the net-
snmp-utils or snmp package. Run the following command:

snmpwalk -c public -v2c swaddr iso.org.dod.internet.mgmt.mib-2.dot1dBridge.
dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry.1

Here swaddr is the address of the switch. The result should be a list of strings of

the form:
17.4.3.1.1.1.0.0.12.7.172.8 = Hex: 00 00 00 oC 07 AC 08
17.4.3.1.1.1.0.1.2.27.80.145 = Hex: 00 01 01 02 1B 50 91

where each line is a representation of one cell in the switch’s arp-cache. To understand
which port each cell corresponds to, run the following command:

snmpwalk -c public -v2c swaddr iso.org.dod.internet.mgmt.mib-2.dot1dBridge.
dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry.2

356

CHAPTER 23 BOOTING AND INIT
As aresult, we get a list of the form

17.4.3.1.2.0.0.12.7.172.8 = 13
17.4.3.1.2.0.1.2.27.80.145 = 14

Here we see the same cell numbers, but their values are not MAC addresses,
but port numbers. There can be multiple addresses on one port, but in the case of
compute nodes, this should not usually be the case. I leave writing a script that builds a
correspondence of port number to MAC address and generates configuration for DHCP
server as an exercise.

Please note that UEFI and legacy BIOS require different bootloaders (see PXE
below), and if you have a mix, then you need to provide correct “filename” option
for each. The DHCP client sends information about the architecture, including UEFI
support,* and you can include block like this in your subnet definition (codes are taken
from RFC4578):

class "uefi-x86-64" {

match if substring(option vendor-class-identifier, 0, 20)
"PXEClient:Arch:00009";

filename "ipxe.efi";
}
class "legacy" {

match if substring(option vendor-class-identifier, 0, 20)
"PXEClient:Arch:00000";

filename "pxelinux.0";

}

TFTP, PXE, and NFS-Root

TFTP (Trivial File Transfer Protocol) was developed as a simple variant of FTP
specifically for implementation in hardware. It is actively used for downloading data
to routers, network cards, PBXs, etc. Unlike FTP, there is no authentication, the set of
commands is extremely simplified (there are only two commands on the client side),
and the transfer is performed in blocks.

“http://tools.ietf.org/html/rfc4578
357

http://tools.ietf.org/html/rfc4578

CHAPTER 23 BOOTING AND INIT

To set up a tftp server, it is enough to install the standard package from the
distribution and configure it to distribute a separate directory (usually /tftproot or
/srv/tftproot). In network booting, an OS bootloader is passed to the network card
via the TFTP protocol. This is regulated by the standard PXE (Preboot eXecution
Environment, pronounced “pixie”) environment. Typically, a file from the syslinux
package is used as the bootloader. Install this package and copy the file /usr/share/
syslinux/pxelinux.0 to the root directory of the TFTP server.

Besides the bootloader itself, the kernel and initrd image to be booted and the
directory with the bootloader configurations should be copied to this directory. If all
nodes are loaded the same way, you can use one configuration file for all of them. All
configuration files are located in the pxelinux.cfg directory, you need to create it
yourself. Make sure it is read-only for everyone. The default configuration file is named
default.

An example of such a file:

default linux
timeout 30

label linux

kernel vmlinux

append initrd=myinitrd splash=silent ip=dhcp root=/dev/nfs \
nfsroot=192.168.123.1:/noderoot,rsize=8192,wsize=8192,\
retrans=10,soft,intr

label single

kernel vmlinux

append initrd=myinitrd single ip=dhcp root=/dev/nfs \
nfsroot=192.168.123.1:/noderoot,rsize=8192,wsize=8192,\
retrans=10,soft,intr

Here the long lines are moved for ease of reading, but in a real file, everything should
be on one line. At the beginning, we specify the default linux boot option, with a
timeout of three seconds (timeout 30). Then we describe the boot options themselves.
In this case, there are two of them - 1inux and single. The label directive marks a new
variant and its name. The kernel directive specifies the name of the kernel file on the
TFTP server, and the append directive specifies the kernel parameters.

358

CHAPTER 23 BOOTING AND INIT

In the kernel parameters, we specify:
e initrd - Name of the file with the initrd image on the TFTP server.
o ip-IP address of the host; in this case, it is obtained via dhcp.
o root is the path to the root file system; here it is NFS.
e nfsroot - Mount parameters of the final NFS partition.

Note that network booting can also be successfully used for initial installation of the
OS on local compute nodes. In this case, you should use the files from the distribution
intended for network installation as the kernel and initrd. Most likely, you will need
to perform a “reference” installation on a node and use the resulting file with its
description for network installation (e.g., kickstart.cfg, autoinst.xml). For more
details, see the instructions for network installation of the OS.

Now, after turning on the host and passing control to the BIOS of the network card,
we should see DHCP address acquisition, pxelinux booting, and a small menu with a list
of boot options (in our case 1inux and single). After three seconds, the default option
should boot.

The root file system on NFS has a lot of peculiarities, and simply taking a copy of the
file system from a local disk will not work. If this is really necessary, you will need to add
lines to /etc/fstsb to mount some directories in tmpfs, such as /var/run, /var/cache,
/var/lock, /tmp, etc. It is best to use ready-made solutions from your OS distribution
that generate initrd with the right parameters and perform the necessary preparation.
For RedHat, it is dracut-network; for Debian/Ubuntu, it is nfsbooted.

Brief Summary

Booting compute nodes over the network is a good idea, but requires a lot of
preparation. If you don’t want to do this preparation yourself, use xCAT (see Chapter 19),
but you need to know how it works.

Search Keywords

systemd, SystemV, linux init, UEFI, DHCP, Bootp, PXE, ARP, network broadcast, syslinux,
pxelinux, kickstart, autoyast

359

https://doi.org/10.1007/979-8-8688-1600-0_19

CHAPTER 24

Node Setup and
Software Installation

Network and Hardware Drivers

Most network drivers are included in the Linux kernel. However, some types of network
cards may require separate installation of drivers from the manufacturer. In this case,
pay special attention to the list of officially supported operating systems and warranty
terms. Also pay attention to how the network equipment is managed: some switch
models require installation of special programs that do not work with all OS versions,

or installation of browser plug-ins that may also not work with all OSes. For example, at
the time of writing, there is no Oracle Java plug-in for 64-bit Linux variants, and the open
source version of the IcedTea plug-in does not work with all products.

There is support for the InfiniBand stack directly in the Linux kernel, but in most
cases, it is not worth using it, as the performance of applications may be lower than
expected. For efficient operation of HPC applications, it is better to use the OFED
package, which is developed and supported by the InfiniBand consortium, or take a
ready-made package from the card manufacturer. This package includes drivers for most
card models as well as a full stack of libraries (mad, verbs, ibutils), network diagnostic
programs, simple subnet manager, and MPI implementations with IB support (openmpi
and mvapich). MPI implementations in OFED are compiled with predefined settings, so I
recommend compiling them separately, specifying exactly the settings you need.

Note that OFED is extremely demanding on the version of the Linux kernel and libc.
Usually you can download ready-made packages for some distributions from the official
website, but the best way is to download and run the installer, which will compile the

361
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_24

https://doi.org/10.1007/979-8-8688-1600-0_24#DOI

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

packages for the target system and install them. If you upgrade OFED, make sure to make
backup copies of its packages, because before starting the build, the installer deletes all
OFED packages it found, and if the build fails, you will get a system without InfiniBand.
If the build is successful, all packages will be saved in a separate directory in the
installer. Note: Not all of them will be actually installed; some of them are mutually
exclusive. Manufacturers of IB-equipment can provide their own implementations of IB-
stack. In this case, it is worth using these packages first, because OFED may not support
such equipment fully.
Pay special attention to RAID support. If any important data is located on hardware
RAID, take care of regular backups and maintenance. No RAID will save you in case
of failure of the main board, as well as in case of failure of several disks in case of
power failure (even with UPS it happens). A very good solution is hardware mirroring.
It is reasonable to add RAID-0 (stripe) to it to speed up operation, but it is better to
implement it at the level of Linux itself: there will probably be no loss in speed, almost no
load on the system, but the protection against failures will be much higher.

Configuring the Control and Compute Nodes

In the simplest case, a computing cluster consists of a control computer and an array of
compute nodes. Of course, when building large cluster systems, the set of nodes will be
much larger. Let’s consider a simple variant and the actions that need to be performed to
install and configure the software.

A small compute cluster software installation is typically performed in the following

sequence:
o Installation of the control server
o Installation for the network file system, if used
o Installation of the compute node
o Installation of communication software (OFED)
o Installation of the second compute node

e Creation of a minicluster of a control computer and two
compute nodes

o Installation of compilers and test packages

362

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

e Testing of communication equipment
o Installing a task management system
¢ Task completion testing

e Cloning compute nodes or creating an image for network booting
and connecting all nodes to the cluster

The main idea of this approach is that before proceeding to the stage of cloning
compute nodes, the cluster should be at maximum readiness and its functionality should
be fully tested. In the course of testing, the main attention should be paid to checking
whether the technical parameters of the cluster, such as communication network
bandwidth and performance of compute nodes, correspond to the parameters declared
by computer hardware manufacturers.

Testing a minicluster does not guarantee the subsequent failure-free operation of the
full cluster, as it does not fully identify such issues as response time to network requests
when their intensity increases and reliability of network services. But nevertheless,
it allows you to detect most of the problems at an early stage and not to clone failed
solutions. If a local copy of the OS is required on each node, it is sufficient to clone the
image of the first node on the hard disks of the others. This can be done by physically
connecting the disks to the reference node (note: both disks and controller must support
hot swap, otherwise the connection should be made only when the node is powered off)
or by performing a network installation of the OS on them and adding the changes that
were made on the reference after the installation.

Installation and Configuration of the Login Node

The login node by its functional purpose is a link between the user and the array of
compute nodes. On the one hand, it provides user interaction with the cluster, and
on the other hand, it serves various requests from compute nodes. Therefore, the
login server must have at least two network interfaces - external and internal. Note
that internal services should generally not be accessible from the outside. I strongly
recommend that you configure a firewall on the external interface.

In case of small clusters, often the login node has a role of the management (control)
node too. I always recommend having a separated control node if possible, because you
won't lose control in case of incorrect user’s doings.

363

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

If the cluster uses a high-speed network, it is worth connecting the control node
to it, as this typically makes it easier to manage the network and collect statistics. In
addition, some communication software packages require the appropriate hardware to
be installed.

If the control server acts as a storage of user data and exports them to compute
nodes, it should have a sufficiently powerful disk subsystem capable of storing a large
amount of data and providing high-speed access to them. For large cluster systems, I
advise using a dedicated file server or a group of distributed file system servers for the
data storage.

NFS Server Configuration

This procedure can be easily performed by usual admin routine and consists of the

following steps:

1. The nfs-server package install, enable its autostart by systemctl
enable --now nfs-server orvia chkconfig or update-rc.d
command (name of the package and service may differ).

2. Open the corresponding RPC services in the firewall if it is
enabled on the internal network interface.

3. Edit /etc/exports file and specify the exported directories and
lists of nodes that are allowed to mount, with client permissions
parameters.

4. Runexportfs -avcommand for force nfs server config reload.

Configuring the Communication Software

Currently, the most common communication network on computing clusters is the
InfiniBand network, for which the OFED (OpenFabrics Enterprise Distributions)
package has become the de facto standard software. The package is freely distributed in
the form of source code and therefore can be easily interfaced with various GNU/Linux
OS implementations. It includes

e InfiniBand network card drivers
e InfiniBand network management utilities

364

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

e Various MPI implementations (MVAPICH, OpenMP], ...)
o [P protocol support over InfiniBand network
e IB network performance tests

The OFED package is often included in GNU/Linux distributions, but the OFED
developers do not recommend using software from distributions, but rather perform
a full installation by downloading the latest stable version from the project’s website
http://www.openfabrics.org/downloads.

The installation procedure starts with deploying the distribution kit:

tar xzvf OFED-<version>.tgz

It is recommended to unpack the package into a network file system, which will
simplify the installation of the package on the compute nodes. Installation on the host
computer or, if it does not have an InfiniBand network card, on the first compute node
is performed in interactive mode. To do this, go to the directory with the unpacked
distribution kit and run the install.pl script without parameters. At the beginning
of the procedure, you are offered to answer a number of questions that define the
installation parameters. They are mainly related to the selection of components of the
software to be installed. Before starting the installation, you should carefully study
the list of basic OS components that must be present in the system and install them if
necessary.

Lists for different GNU/Linux OS implementations are given in the installation
instructions. The installation process compiles the source code of the modules,
assembles them into packages, and installs the packages on the system. All stages are
executed in automatic mode. It should be noted that before starting the installation,
previous versions are searched for and completely removed from the system, so I do not
recommend doing this on a working system. Each of the MPI implementations is built by
all available in the system by compilers. By default, all created versions are placed in the
/usr/mpi directory.

Separately, a configuration file is created for the IPoIB (IP over IB) subsystem, which
allows the high-speed network to be used by application software packages oriented
to TCP/IP protocols as a communication medium. This fact somewhat complicates
the launching of these packages through the task management systems, because the
task management systems generate the names of the nodes connected to the Ethernet
network, and the communications should be performed over the InfiniBand network.

365

http://www.openfabrics.org/downloads

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

In this case, it is necessary to replace the generated node names with names associated
with InfiniBand interfaces. For InfiniBand interfaces to work correctly, the following
lines must be added to the /etc/security/limits. conf file.

* soft memlock unlimited
* hard memlock unlimited

The complete installation of the communication software on the control node
will not be possible if it does not have an InfiniBand card. In this case, the installation
must be performed on one of the nodes and the necessary files must be copied to the
control node.

Typically, the installation process creates packages that are then installed via the in-
house package management system, so you can simply install the desired set of packages

on the management node.

Installing Compilers and Libraries

As arule, installation of compilers is not very difficult. It is important that the libraries
that are needed during the operation of programs compiled by them are available on
compute nodes. For this purpose, it is best to install the compiler in a directory on the
network file system.

In order to make the libraries available to the dynamic linker, you need either to write
the paths to them in the LD_LIBRARY_PATH environment variable (which is conveniently
done via environment modules), or explicitly specify these paths in the /etc/1d.so.
conf file and run the 1dconfig command. In the latter case, do not forget to update this
file when you update the compiler version: the path to the libraries may change. And of
course, don’t forget to update the information on the nodes - run ldconfig on all nodes
of the cluster.

Customizing the Job Management System

This stage was described above, we will not dwell on it in detail. After installing,
configuring, and testing the task management system, you can start deploying the
rest of the compute nodes. As soon as the cluster is ready to run tasks, there is a great
temptation (or pressure from users and not only) to put it to work right away.

366

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

If possible, I advise against doing this until the monitoring and backup systems are set
up. Otherwise, there will be catastrophically little time to set them up, which can lead to
very dire consequences.

Installation and Configuration of the Cluster
Compute Node

The main purpose of a compute node with maximum efficiency is to execute user tasks
received by it. These can be both independent programs and parallel program processes.
Due to the different functional purpose of a compute node compared to a control
computer, its architecture may differ significantly.

The compute node does not need a powerful disk subsystem; moreover, its complete
absence is acceptable. However, in this case, the load on the network infrastructure,
which is already very busy, increases and the size of memory, available for user jobs, is
decreased. NFS file system may become a bottleneck, especially for programs generating
many temporary files during the computations; even parallel file system performance
may degrade in such cases. I strongly recommend having at least local /tmp directory
and suggest your users to use it as a scratch space. Here also, enroot and others will
unpack the container file systems by default.

The main purpose of the disk subsystem in a compute node is to store temporary
files. It can be used for the local version of the OS as well. If you decide to install the
operating system locally, create a separate partition at least of 50-100 GB for it.

Be sure to create a swap partition and a partition for the /tmp directory. The swap
partition does not need to be large - its purpose is to provide a small reserve for RAM. If
a large amount of swap is required, the task will spend more time waiting for memory
pages than running. Allow all remaining space for the /tmp partition. If you have two
local disks, I recommend that you create a swap partition on each and merge the
partitions for /tmp into a logical RAID-1.

A more careful approach is required when configuring the network subsystem.

It must provide, firstly, high-speed communication between nodes for data exchange
between processes of a parallel program; secondly, interaction with control and
service nodes. The first task is solved by using specialized high-speed communication
equipment, e.g., InfiniBand. To solve the second task, standard Ethernet networks are
used as a rule. However, the load on this network can also be quite significant,

367

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

so it is quite common practice to use two or more networks. In this case, it is possible to
separate different services on different networks, e.g., to allocate a separate network for
servicing NFS, which accounts for most of the network traffic.

You can load the OS directly into the RAM disk, but it will reduce the memory,
available to the user jobs. If you want to install the OS on a computer node, it can
be done in two ways - on a local disk or as an NFS-root image. In the first case, the
installation can be performed from a USB drive, having previously written the installer
image to it or using virtual drive via IPMI if it is supported. Please note that in this
case, the path to the drive will be specified in the node repositories configuration, so
you should remove it from the settings after the installation. By the way, to simplify
OS updates, you may want to create a local update repository available on the internal
network and specify it in the node settings, but this is a topic beyond the scope of
this book.

If there are many nodes, I recommend performing a network installation. For
some distributions, it is possible to perform remote installation of a compute node
in text (via ssh) or graphical (via VNC) mode directly from the management node.
Almost all distributions support automated installation. In this case, a file with the
installation description is created, and the installer follows it to perform all actions in
automatic mode.

For example, for RedHat-like systems, this is done using the kickstart system.
When installing to a host in manual mode, a file /root/anaconda-ks.cfg is created,
which represents all the settings specified during installation: disk partitioning, network
settings, package list, etc. This file can be edited and placed on a flash drive or NFS
server if necessary. When writing to a flash drive, the file name should be ks .cfg. For
automatic installation over the network, you must specify the path to the kickstart in
the DHCP server settings:

filename "/opt/ks.cfg";
next-server server.cluster.myorg;

The filename is the path to the kickstart config file on the NFS server, and the
next-server specifies the name or address of the NFS server. If the filename returned by
the BOOTP/DHCP server ends with a slash (“/”), it is treated as a directory. In this case,
the client system connects that directory over NFS and looks for a file named <ip-
addr>-kickstart. For example, a client with the address 10.0.0.2 will search the file
named 10.0.0.2-kickstart. This is how you can install multiple servers with different

368

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

installation parameters. If you do not specify a directory or file name, the client system
will first try to mount the /kickstart directory located on the NFS server and then try to
find the kickstart config file as described above.

To reduce system overhead on a compute node, you try to minimize the number
of services running on the compute node. Many services that are installed by default
are not required on the compute node, such as mail server, print server, etc. Note that
some of them do not run all the time, but run on a cron schedule, e.g., updating the man
page cache or the locate database. Mounting a network file system solves the problem
of availability of programs and user data on compute nodes. Besides, this mechanism
can be conveniently used to ensure availability of specialized application packages on
compute nodes.

The NFS client can be configured using a system utility, but really you just need to
add a line to the /etc/fstab file:

myserver:/export /export nfs defaults 0 0

The first field contains the name of the NFS server and the exported directory; the
second field contains the name of the directory to which the network file system will be
mounted; the third field contains the file system type; the fourth field contains the mount
options; the value 0 in the fifth field prohibits automatic backup of the file system; the
same value in the last field prohibits checking the file system with the fsck command.

The next step is to install proprietary compilers. In normal operating mode, they are
not used on compute nodes but will be required when configuring the node for installing
communication software. In the future, only runtime libraries will be used. It is advisable
not to rewrite the compilers from the control computer, but to perform a full installation
again so that their presence is fixed in the system, and they participate in the installation
of communication software, or to use a compiler available over the network via NFS.

The installation and configuration of the communications software is described
above, although it is not mandatory for the control computer and may not always
be done in full volume. For compute nodes, this procedure is one of the most
important ones.

The configuration of the computer node is completed by installing the client part of
the task management system. Next, you should prepare the second compute node for
work. You can clone the hard disk of the node to the disks of the others, e.g., using the
Clonezilla program, and write the finished image to an NFS partition or flash drive and

369

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

specify it during cloning. If the disks are identical and their number is small, you can
connect them to the node one by one and perform a full disk cloning with the following
command:

dd if=/dev/sda of=/dev/sdb

Here /dev/sda is the name of the disk with the prepared system, and /dev/sdb is the
disk to be fabricated. This procedure may fail, and the system prepared by the cloning
method will not boot if the prototype system is not adjusted beforehand. The point is
that many systems associate device names with factory identification numbers in the
bootloader and mount configuration files. For example, in SUSE OS in GRUB bootloader
configuration file /boot/grub/grub. cfg, you can see an entry of this kind:

root=/dev/disk/by-id/ata-WDC_07TMAO_WD-WCAPW5389339-part1

It will not be correct on another computer with a different disk number. Therefore,
before cloning, such entries should be replaced with anonymized device names, e.g.,
root=/dev/sdal. The /boot/grub/grub.cfg and /etc/fstab files should be edited in
this way. After that, you will get a prototype OS that can be moved to other disks.

Another problem can arise if the OS binds network interfaces to MAC addresses.
Usually, these are specified in /etc/udev/rules.d/70-persistent-net.rules or
similar. If this is the case, you will need to mount the new file system and correct the
MAC address after cloning. There may be other nuances - pay attention to the first boot
from the cloned disk.

A safer and faster option in this respect is to install the operating system on an NFS-
root. To do this, you need to prepare a minimal image of the system ready for network
booting and allow its mounting via NFS in read-write mode. After that, DHCP and TFTP
servers are prepared, pxelinux is configured, and the initrd image is prepared. Once
the node is booted, packages can be installed and configured. Do not put the node name
in any configuration files. After installation, the node is shut down and the NFS server
changes the NFS-root access mode to read only. If you need to update the software
(except OFED), you can do so in the chroot environment on the node where the NFS
server is installed. Remember to set up passwordless ssh login for the root user during
the initial installation. This will help if the network partition with user home directories
is not mounted.

370

CHAPTER 24 NODE SETUP AND SOFTWARE INSTALLATION

Final testing of the cluster requires the following:

Configure the ability to run remote commands without password for
the superuser

Register a regular user on the cluster
Set it up to run remote commands without password

Customize the user’s environment for any of the installed MPI

versions

Prepare a running script for the corresponding test program from the
OFED package

Check if the program is started for execution

If the whole chain - launching the program, executing it, writing the result to the

working directory - goes correctly, you can start connecting the remaining nodes to the

cluster.

Brief Summary

Be sure to plan your cluster deployment; make sure you understand all the steps, if you

are unclear or have doubts: practice on a minicluster. In Linux, it is usually not difficult

to configure networks initially; most drivers come with the kernel. InfiniBand is usually

best used with the OFED package. Test all hardware and software components on the

minicluster. Be careful with systems controlled via Java applets or proprietary programs.

Search Keywords

Linux network driver, ofed, ulimit, NFS, diskless

371

CHAPTER 25

Out-of-the-Box Stacks
and Deployment Systems

As we have seen, it is not easy to install the software of an entire cluster. And it still needs
to be updated, new software installed, etc. Linux “cluster distributions” were created

to simplify this task. Unfortunately, they only solve the problem of cluster deployment
to a limited extent. It is not always possible to install additional software, commercial,

or even open source tools in them. I don’t recommend using them if your cluster

will not work with a limited set of tasks, but with a growing set of tasks or if users will
compile their own or open source packages. But if the set of tasks is small, and they can
successfully work with the stacks under consideration, using them can save you a lot of
time and effort. Let’s take a look at some of them.

ROCKS

This project was developed by the National Partnership for Advanced compute
Infrastructure and San Diego Supercomputer Center in 2000. The distribution is based
on the RedHat distribution, but currently uses CentOS. A modified version of the RedHat
anaconda auto-installer is used for automatic installation. The distribution is divided
into so-called Roll CDs with software suites, e.g., for Java, Lustre, Ganglia, etc. It is
possible to create Roll CDs yourself. All information about the cluster configuration is
stored in a MySQL database, and you can update the installed software using new Roll
CD images.

For typical tasks and small configurations, this distribution may be a good choice.
However, if you plan to use nonstandard or not-so-standard hardware, network topology,
or applications, it can take a lot of time and effort to optimize and configure ROCKS.

373
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_25

https://doi.org/10.1007/979-8-8688-1600-0_25#DOI

CHAPTER 25 OUT-OF-THE-BOX STACKS AND DEPLOYMENT SYSTEMS

Let’s imagine the simplest installation of ROCKS on a cluster. We will need two Roll
CDs: Base and HPC. Turn on the head machine and boot from the Base Roll CD. At the
beginning of the boot, you need to specify ‘frontend’ mode instead of ‘compute; which
is the default. When the installer asks “Do you have a roll CD/DVD?’, answer “Yes” and
the CD drive should open and the HPC Roll CD should be inserted. After the installer
recognizes the CD and reports it, it will ask “Do you have a roll CD/DVD?” again,
this time you should answer “No.” Then insert the Base Roll CD into the CD drive and
continue with the installation.

The installation process will ask general questions as well as questions regarding
the network settings of the cluster. Consider in advance what network settings will be
used on your system. The hard disk of the head machine can be partitioned manually,
but it is better to rely on the ‘Autopartition’ option. Be careful when specifying network
card settings: the installer will decide which of them will be for the internal network and
which will be for the external network, and this choice will not necessarily be the same
as yours. For the internal network, select manual mode (unselect “configure using
DHCP”). We will not dwell on all the questions asked by the installer, as most of them are
standard for all distributions. After answering all the questions, the installer will format
the hard disk and start unpacking the packages. During the unpacking process, it will
require additional Roll CDs, in our case the HPC Roll CD. After installation, the system
will automatically reboot and be ready for use.

Now you need to install and configure the compute nodes. Assume that the nodes
are diskless, or you do not want to remove the operating system installed on them (e.g.,
if the nodes are used as workstations in a computer lab). Make sure that the nodes are
capable of booting over the network (PXE protocol). To start the installation, turn on
the host machine and log in as root. From the command line, run the insert-ethers
program, select ‘compute, and click ‘OK’ After that, turn on the first compute node in
network boot mode (e.g., by selecting this option in BIOS). While the node is booting,
the insert-ethers program will display information about its MAC address and start
installing the node.

Since the node is diskless, the installation is reduced to downloading the image of
the compute node over the network and writing the data about the node in the base of
the head machine. Turn on the other compute nodes in the same way. After all the nodes
of the cluster are installed, exit the insert-ethers program by pressing “F1.” After the

374

CHAPTER 25 OUT-OF-THE-BOX STACKS AND DEPLOYMENT SYSTEMS

compute nodes are installed, the cluster is ready to work. To get started, I recommend
creating a regular (nonprivileged) user with the command useradd USERNAME on the
root machine. Then log out of the root console and log in as the newly created user.

You can compile programs using the mpicc or mpif77 compilers. Before running an
MPI program for the first time, execute the following commands:

ssh-agent $SHELL
ssh-add

To run the MPI program myexe in manual mode, create a machines file with a list of
compute nodes on which to run the task, one node per line. After that, run the task with
the command like this (mpich example):

/opt/mpich/gnu/bin/mpirun -nolocal -np 2 \
-machinefile machines ./myexe

By default, ROCKS uses the Grid Engine task management system. Therefore, to start
tasks, you must first create a startup script.

An example script can be found on the ROCKS website. To run it via Grid Engine, use
the following command:

gsub sge-run-script.sh

For more information, visit http://www.rocksclusters.org/.

Parallel Knoppix/PelicanHPC

This is a distribution that is usually not installed on the host machine and nodes, but
runs in LiveCD mode. It is not usually used for permanently running clusters, but is used
for a quick temporary transformation into a classroom or workstation computing cluster.
The distribution is based on Debian. Please note that it is not in active development, so it
may be outdated.

You can install the head machine image for permanent operation and load nodes
as needed. Cluster monitoring and management capabilities are practically absent in
this distribution. Since the purpose of the distribution is to run one or more tasks after
hours, management is typically not needed. Changes in images are made as in most
LiveCD distributions, so adding packages, updates, and configuration changes are done
manually.

375

http://www.rocksclusters.org/

CHAPTER 25 OUT-OF-THE-BOX STACKS AND DEPLOYMENT SYSTEMS

Here is an example of a PelicanHPC session. Boot from the LiveCD/LiveUSB. From
the menu that appears, select “Start Debian Live.” The next screen is “Pelican Setup,”’
where you will be prompted to set the location of the /home directory. The default
suggestion is to place it on a virtual disk in RAM. If you need to save the state of
home directory between reboots, you can specify mount command keys to mount a
preformatted(!) partition. If you are booting for the first time, it is better not to change
anything, but just press “Enter” and after booting examine the /home/user/pelican_
contig file, which describes different home directory mount configurations.

The next setup screen is a prompt to copy the initial settings for users to the /home
directory. If you booted with the default settings, select “Yes”; if you are using persistent
storage for /home, you should only copy these data on the first boot. The next step is
to set a password for the user user. Delete the phrase “PleaseChangeMe!” and enter a
new password. After that, the download will continue and soon a login prompt (login:)
will appear. Enter the name ‘user’ and the password you just entered. If you are more
comfortable working in a graphical environment, type ‘startx’ and the Xfce graphical
environment will be loaded.

To start forming your cluster, type the pelican_setup command. The program will
prompt you to select the network interface that corresponds to the cluster network. Be
careful, as there will be a DHCP server on this network, which can disrupt your regular
network if you specify the wrong interface.

The next screen of the program prompts you to start the required services. If you are
ready and are sure you have selected the correct interface, click “Yes.” After the services
start, a screen will appear inviting you to start the compute nodes. Select “Yes” and begin
powering on or rebooting the compute nodes. Make sure the nodes are booting over the
network. Once booted, the compute node screen should display “This is a PelicanHPC
compute node.” and the standard prompt.

After all compute nodes have been loaded, the pelican_setup program should
display the number of nodes. If all went well, click “Yes.” On the next screen, the program
will provide brief information about the newly created compute cluster. Click “OK” and a
simple cluster performance test will be run, and the program will finish.

The /home/user/tmp/bhosts file contains a list of the nodes in your cluster and
some other parameters. If you need to add or remove compute nodes, run the pelican_
restart_hpc command, which automates these tasks. If you need additional packages,
you can deliver them with the apt-get command. Keep in mind that the downloaded

376

CHAPTER 25 OUT-OF-THE-BOX STACKS AND DEPLOYMENT SYSTEMS

system is Debian-based, so only deb packages will do. If you wish, you can create your
own PelicanHPC image with the required packages (see the documentation for details).
By default, PelicanHPC includes parallel versions of Linpack and Octave, as well as
OpenMPIL.

Project website - https://sourceforge.net/projects/pelicanhpc/

Brief Summary

To solve simple typical tasks, a “real” supercomputer is not always required; a BeoWulf
class cluster is quite sufficient, i.e., assembled from improvised materials, or you can
simply use the computers of an idle classroom or office at night. A ready-made stack that
does not require much time for installation (or no installation at all) will be useful for this
purpose. It should be remembered that the flexibility of this solution is much lower than
installing all the necessary components yourself.

The deployment system can help with the initial installation and configuration of
the OS - after spending a day on it, you can install the entire cluster in an hour, and if
necessary, expand it or change its configuration to do everything in half an hour. The
solutions we have considered are by no means the only ones, but they are probably the
most popular at the moment.

Search Keywords

HPC, LiveCD, LiveUSB, beowulf, rocks, knoppix, pelicanhpc

377

https://sourceforge.net/projects/pelicanhpc/

CHAPTER 26

Cluster Management
Systems — xCAT
and Others

As your cluster contains a lot of nodes, it is reasonable to have a system, which tracks all
their names, addresses, OSes, and other attributes and helps you to update them and
keep consistent. There are several solutions; the most popular open source (at the date
of writing this book) is xCAT. We will talk about it and show how to use such systems,
then will mention some alternatives.

xCAT - Extreme Cloud Administration Toolkit (http://xcat.org). This toolkit
was developed by IBM and has been fully open source since 2007 and is being actively
developed. It is not a distribution, unlike ROCKS and PelicanHPC, but a cluster
deployment and management system.

XCAT can

o Create OS images for downloading over a network or installing on a
hard disk

e Automatically perform image installation
e Manage nodes via IPMI, ILO, and other protocols

« Maintain information about hosts in the internal database and
in TFTP, DHCP, DNS, and hosts databases

Please note that not all OS and even OS versions are supported. You can have
problems using fresh images and/or kernel; make sure that all your drivers and system
software, especially proprietary, are compatible!

379
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_26

https://doi.org/10.1007/979-8-8688-1600-0_26#DOI
http://xcat.org

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

Installation and Initial Setup

You can install xCAT by cloning the git repository and compiling the required
packages (most of them are perl modules) or by installing the required packages from
the repository. Repositories for RedHat-compatible, SuSE, and Debian-compatible
distributions are supported. Let’s consider the RedHat repository option.

Install the xCAT management server on the selected node (management or
dedicated service node). Download the xCAT-core.repo file from the download section
of http://xcat.org/ and place it in the /etc/yum.repos directory. Now run the
command and respond affirmatively to all prompts. After installation, the /opt/xcat
directory should appear, where all the necessary programs are located.

Now you can either re-login or run the command source /etc/profile.d/xcat.sh,
and we are ready to work with xCAT.

XCAT changes NFS, DHCP, apache, and TFTP settings without preserving the
original settings. Save your settings, if any, before executing xCAT commands.

Architecture and Commands

xCAT stores data about all objects in a specialized database. The tabdump, tabedit, and
tabrestore commands are used to view, modify, or replace data in it, respectively. To
maintain data integrity with complex objects, the commands 1sdef, mkdef, rmdef, and
chdef are often used to view, create, delete, and modify data, respectively.

Based on data from the xCAT database, it creates configuration files for NFS, TFTP,
DNS, and DHCP. Be careful, old configuration files will be overwritten! Updates do not
occur automatically, but only by the corresponding command.

When a node listed in the xCAT database is powered on, it attempts to perform a
network boot (except in certain cases) and the DHCP server offers it a special bootloader
via TFTP, which in turn performs the download or installation of the desired image. If the
network is divided into several segments, a subordinate xCAT server with its own DHCP
and TFTP servers can be installed in each segment. The xCAT includes many service
commands, including those for node power management via IPMI and mass execution

of commands, similar to pdsh.

380

http://xcat.org/

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

First, let’s run the tabdump site command. Here site is the name of the table that is
responsible for the settings of our cluster as a whole. Here is an example of such output

(some lines were removed):

#key,value, comments,disable
"domain", "mycluster",,
"installdir","/install",,
"ipmiretries", "3", "3",,

"master", "10.0.5.1",,
"forwarders", "8.8.8.8,4.4.4.4",,
"nameservers", "10.0.5.1",,

"SNsyncfiledir","/var/xcat/syncfiles",,

10 "nodesyncfiledir","/var/xcat/node/syncfiles",,
11 "tftpdir","/tftpboot",,

12 "xcatconfdir","/etc/xcat",,

13 "timezone","Europe/London",,

1
2
3
4
5 "ipmitimeout", "2", "2",,
6
7
8
9

The structure is quite simple: the first line contains a list of fields, of which the first
two - key and value - are the most interesting. Line 2 specifies the common domain
name; lines 3, 9, 10, 11, and 12 are directories with key files; lines 4 and 5 specify IPMI
parameters; line 6 is the address of the xCAT head server; and lines 7 and 8 are addresses
of external and internal DNS servers. Line 13 specifies the time zone; most likely, it will
need to be changed to the one you need.

The same information can be obtained with the command 1sdef -t site -1, but
the presentation will be more concise:

Object name: clustersite
domain=mycluster
forwarders=8.8.8.8,4.4.4.4
installdir=/install
ipmiretries=3
ipmitimeout=2
master=10.0.5.1

381

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

You can change data in tables with the tabedit command - the editor defined by the
EDITOR variable will open, and you can edit one or more rows of the table. If you need
to change just one key, or do it in a script, the chtab command will come in handy. Here

is an example of its use:
chtab key=tftpdir site.value=/tftpboot

Since some descriptions can affect multiple tables, there is a chdef command. Here
is an example of its use:

chdef -t node -o node01 groups="all,compute"”

Here we change the object of type “node,” named node01, and specify that it is now
a member of the “all” and “compute” groups. This change will affect both the node and
group descriptions.

For some objects, such as nodes, there are specialized commands and the previous
action can be performed like this:

nodech node01 groups="all,compute"

The 1sdef command has a -z switch, which can be used to save the current object
description, which can be edited and then loaded back with the mkdef -z command:

1sdef -z node0o1 > /tmp/n01.stanza
vi /tmp/no1.stanza
cat /tmp/no1l.stanza Imkdef -z

What objects does xCAT support? Here is a partial list:
e site (cluster(s))
e node
o group (group of nodes)
e network (subnetwork)
e osdistro (OS distribution)
e osimage (OS image)

o route (routing description)

382

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

Besides these types, there are auditlog, boottarget, eventlog, firmware, kit,
kitcomponent, kitrepo, monitoring, notification, osdistroupdate, policy, rack,
and zone.

Alas, not all of them have clear descriptions. For example, you can specify racks,
firmware, or switches, but there seems to be no tools to use or manage them (I'd be
happy to be wrong).

The description of one object can be distributed over several tables - tables are
the repository of all data in xCAT. There are already many more table types than object
types, and some of them can store data from different object types to link these objects
together.

For example, a node description affects at least the tables domain, hosts, hwinv,
hypervisor(for container nodes), ipmi, litetree, mac, nodegroup, nodelist, nodetype,
postscripts,

The list of all tables can be obtained with the tabdump command. If you add the -d
parameter, you will get the same list with explanations in English.

By default, xCAT commands can only be executed by a superuser, which is
inconvenient. XCAT supports permission sharing and remote management, i.e., you can
install the xCAT server on the service node and execute commands on the management
node. This requires installing the xCAT package on the management node and creating
access certificates. It is important that the usernames on the remote server and on the
xCAT server match and that the user details on the xCAT server are in /etc/passwd. In
the example, the username would be xadmin.

On the xCAT server, let’s perform certificate generation:

/opt/xcat/share/xcat/scripts/setup-local-client.sh xadmin

The following files will appear in the ~xadmin/.xcat directory: ca.pem, client-
cert.pem, client-cred.pem, client-key.pem, and client-req.pem. If we plan to
perform remote management, we will copy them to the same directory on the remote
server. Also, the environment variable XCATHOST=<xCAT-server> :3001 must be set on
the remote server.

Now let’s allow the xadmin user to execute commands. To do this, edit the policy
table with the tabedit policy command:

#priority,name,host, commands,noderange,parameters,time,rule,comments
Il1ll,Ilroot"’,,,,,llallowll,

n II*II n

"2","xadmin","*","nodels",,,,"allow",

383

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

Here we have allowed the xadmin user to execute the nodels command from any
remote servers. If we specify nothing instead of nodels, then any command will be
allowed. You can specify more complex restrictions, like this:

mkdef -t policy -o 7 name=xadmin commands=rpower \
parameters=stat noderange=h02-h05 rule=allow

Here we allow the rpower stat command to be executed only for nodes h02. . ho5.
That is, you cannot execute rpower on h02 or rpower stat ho1.

Note the key in this table is the execution priority. This is a numeric parameter, but it
can be dotted, such as 6.1 or 7.012. Viewing policies is sorted in ascending order; the first
matching rule is triggered.

Node Management

Let’s add the first node to our cluster. Nodes in xCAT are of three types - statefull
(OS is installed on the hard disk), stateless (OS is loaded over the network and runs
in RAM), and statelite (OS is loaded via NFS in read only and stores some files in
RAM). The most convenient variants are statefull (for service nodes) and statelite (for
compute nodes).

First, we need to get the necessary packages and files to create the images. To do this,
we will need an iso-image of the selected distribution. xCAT supports Redhat, Ubuntu,
SLES, CentOS, and Windows, but not all versions, be careful. Other distributions are not
officially supported. Example for RHEL 7.6:

copycds RHEL-7.6-20181010.0-Server-x86_64-dvdi.iso
Let’s create images to bootstrap the node:
genimage

By default, the install, netboot, and statelite images will be created. The image
name, if not explicitly specified during generation, will be rhel76-x86_64-
statelite-compute.

Let’s add descriptions for the nodes in the “compute” group:

chtab node=compute \
noderes.netboot=pxe \
noderes.tftpserver=10.0.0.0.102 \

384

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

noderes.nfsserver=10.0.0.1 \
noderes.installnic=eth0 noderes.primarynic=etho
chtab node=compute \
nodetype.os=rhel76 \
nodetype.arch=x86_64 nodetype.profile=compute \
nodetype.nodetype=osi
chtab key=system \
passwd.username=root \
passwd.password=cluster
chtab netname=main vlan \
networks.dynamicrange="10.0.0.200-10.0.0.254"

Now any node added to the compute group will get the specified parameters.
Let’s add a description of the node:

mkdef -t node nodel groups=all,compute arch=x86 64 \
bmc=node1ipmi bmcusername=ADMIN bmcpassword=admin \
MAC=XX: XX :XX:XX:XX:XX mgt=ipmi netboot=pxe \
provmethod=rhel76-x86 64-statelite-compute

To avoid writing the node’s IP address every time, you can use the template
mechanism. Let’s execute the command:

chtab node=compute hosts.ip="I\D+(\d+)I10.0.0.(10+$1)I".

With this rule, we set the IP address for each node in the compute group as 10.0.0.X,
where X is obtained by adding 10 to the node number. So node node15 will get the
address 10.0.0.25

Let’s check the obtained parameters for the node:

1sdef node1

Object name: nodel
arch=x86_64
bmc=10.1.1.3
bmcpassword=admin
bmcusername=ADMIN
groups=all, compute
mac=00:10:30:30:40:03

385

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

mgt=ipmi

netboot=pxe

postbootscripts=otherpkgs
postscripts=syslog,remoteshell,syncfiles
provmethod=rhel76-x86 64-statelite-compute

Let’s look at the characteristics of the image:

lsdef -t osimage rhel76-x86_64-statelite-compute
Object name: rhel76-x86 64-statelite-compute
imagetype=1inux
osarch=x86_64
osname=Linux
osvers=rhel76
otherpkgdir=/install/post/otherpkgs/rhel76/x86 64
authorization=755
pkgdir=/install/rhel76/x86 64
pkglist=/opt/xcat/share/xcat/netboot/centos/compute.rhel7.pkglist
profile=compute
provmethod=statelite
rootimgdir=/install/netboot/rhel76/x86 64/compute

Note the pkglist parameter - this file specifies the list of packages for the image.
This list is rather sparse and can be expanded if you need additional packages. It is best
to create a new profile, e.g., by copying compute.rhel7.pkglist tomyprofile.rhel7.
pkglist. The template should be copied in the same way.

If you want to add packages that are not included in the distribution (or not copied
from disk with the copycds command), you should copy them to the /install/post/
otherpkgs directory and list their names in the file

/install/custom/install/centos/compute.rhel7.otherpkgs.pkglist

To change other image parameters, such as disk partitioning, if any, we will use a
template. The default image creation template is located in the file /opt/xcat/share/
xcat/install/centos/compute.rhel7.tmpl (or similar file corresponding to the
distribution). Copy it to the /install/custom/install/centos directory and edit it. In
the same way, you can create a new template, e.g., for a service node. The file name must

386

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

match the template, e.g., for the service template, the name would be service.rhel7.
tmpl. Now you can regenerate the image, but it is highly desirable to delete the old one

with the command
rm -Rf /install/netboot/rhel76/x86 64/compute/

For the statelite version of the image after (re)generation, execute the command
liteimg rhel76-x86_64-statelite-compute

This command modifies the image for statelite mode. It cannot be used for
stateless mode.

As it was mentioned earlier, in the statelite mode, the image is loaded by the root
on NFS in read-only mode. For normal operation, some files and directories must be
writable; this problem is solved by mounting these directories and files in tmp*s, i.e.,
they are located in memory. Their list is set in the 1itefile table. By default, it is empty,
but I recommend adding at least these files and directories (with the tabedit litefile
command):

#image,file,options,comments,disable
"ALL","/etc/adjtime",,,
"ALL","/etc/inittab",,,
"ALL","/etc/ntp.conf",,,
"ALL","/etc/ntp.conf.predhclient”,,,
"ALL","/etc/resolv.conf",,,
"ALL","/etc/resolv.conf.predhclient”,,,
"ALL","/etc/ssh/",,,
"ALL","/etc/sysconfig/",,,
"ALL","/etc/sysconfig/network-scripts/",,,
"ALL","/etc/udev/",,,
"ALL","/opt/xcat/",,,,
"ALL","/root/.ssh/",,,

"ALL","/tmp/",,,

"ALL","/var/",,,

"ALL","/xcatpost/",,,

387

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

Here “ALL” is a special name for all images. If you want to specify a specific image,
specify its name in the first column. After updating the 1itefile table, 1iteimg must be
run again. Note that it is highly undesirable to do this when nodes using this image are
enabled.

If desired, you can save the state of files and directories between node reboots; in
this case, they should be listed in the statelite table, but it is desirable to use a separate
network storage for this purpose. Read about the specifics of this method in the official
documentation.

If after generating the image you want to modify it by adding some files or something
else, you can do it with the postscript located in the /opt/xcat/share/xcat/install/
centos/compute.rhel7.postscript. The following arguments are passed to this script:
directory with the finished image, OS version, architecture, profile name, and working
directory (where genimage is launched from).

It is not uncommon for some actions to be performed after the node has been
booted. In this case, you can also execute one or more scripts. Sets of these scripts
are listed in the postscripts table. The scripts themselves should be located in the /
install/postscripts directory.

For example, let’s create the script /install/postscripts/mypost and specify its
execution for node1:

chdef node1l -p postbootscripts=mypost

Pay attention to the file, which is used to generate the actual script that will be
executed after the image is generated, or the node is booted: /opt/xcat/share/
xcat/mypostscript/mypostscript.tmpl. Instead of the line, the contents of the
desired scripts will be inserted. By the contents of this file, you can judge what
environment your scripts will have when executed. The script generated from this
template will be placed in /tftpboot/mypostscripts/mypostscript.<node name>.
If the script is not automatically generated, run the command nodeset <node name>
osimage=<image name>.

Loading and Controlling

Having prepared the image, we are ready to upload it to the nodes. But first, we need to
update the information about it for DHCP, DNS, and TFTP services. Let’s execute the

commands:

388

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

makenamed. conf

makehosts compute

makedns compute

makedhcp compute

systemctl restart dhcpd

systemct restart bind

nodeset compute osimage=rhel76-x86 64-statelite-compute

Run the command rpower nodel boot, and if the IPMI settings on this node match
the ones we specified in the configuration, it will reboot into the new image.

The rpower command controls node power over IPM], its first argument is a list of
nodes and/or groups, and its second argument is an action on them. Table 26-1 presents
some examples of using ‘power’ command.

Table 26-1. Examples of how the rpower command works

Command Meaning

rpower compute stat Output the status of nodes in the compute group
rpower node1 off Shut down node1

rpower node1 cycle Turn the unit off and on

rpower node[1-100] on Enable nodes nodel.. node100

rpower node1 reset “Press” the reset button on the node

The psh and pscp commands are similar to pdsh and pdscp, respectively, but have
fewer parameters and settings. You can execute the command on all nodes in the
compute group with the command:

psh compute uname -n
Copy the file to all nodes - with the command
pscp /tmp/myfile all:/tmp

In addition to the features discussed here, xCAT supports other features such as node
identification by switch port (instead of MAC address), multiple head servers, hierarchy
of subordinate servers, and more. We will not dwell on these features here; you can read
about them in the project documentation.

389

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

xCAT is really good tool for your nodes management, but it has some flaws too. In my
opinion, the most critical are

e Limited support of the Linux distributions; you usually cannot add
the latest version, because the image creation fails.

¢ You cannot use already installed image snapshot as a base for
the image.

e DNS and DHCP management is limited to managed nodes; you
cannot add custom zones, sections, options, etc.

e No verification for the images, installed to the local disk.
« No statistics, history, etc.

Be aware, test before use, and plan wisely.

Canonical MaaS

MaasS stands for “Metal-as-a-Service” and is widely used. For example, XCAT can be
considered as a MaaS$ platform. Canonical company has a product with the same name,
and it is designed, how you can guess, to automate the process of installing operating
systems on cluster computing nodes and collecting information about the hardware of
cluster nodes. Later, we use “MAAS” for canonical MAAS product.

MAAS provides the following functions:

e Storing images of Ubuntu, CentOS 7, CentOS 8, Oracle Linux,
Windows, and VMware ESXi operating systems

o Deploying stored OS images to computing nodes

e Collecting information about the hardware of computing nodes

e« DNS, DHCP, TFTP, PXE, and NTP server functions

o Computing node power management functions via the IPMI protocol
e Network address space management functions

Also, it has native integration with Ansible, Chef, Puppet, SALT, and Juju, REST AP],
CLI and Python bindings, which makes it really easy to build custom workflows. Support
for KVM and LXD makes possible to provision virtual machines.

390

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

MAAS server hardware requirements depend on the number of nodes; minimum
requirements are the following:

e Itisrecommended to use SSD drives in RAID-1.
o Disk space over 120 GB.

e Dual-core processor with a frequency of each core over 2 GHz,
enabled virtualization option.

e 2GBofRAM.
o Network adapter operating at 1 Gb/s.

To install MAAS, you need to add it to the repository with the command (adjust the
version to the actual one):

sudo apt-add-repository ppa:maas/3.2
sudo apt update

Then install MAAS packages:

sudo apt-get -y install maas
sudo apt install maas-region-controller

After installation, you can log in to the web UT: http://<MAAS_IP>:5240/MAAS. First,
you have to make an initial setup:

e Download the image(s) you want to use for your nodes in the
“Images” tab.

e Inthe DNS tab, add a domain.

e Create the required subnet and enable DHCP MAAS in the “Subnets”
tab. DHCP is configured in the “vlan type — Configure DHCP”
section.

Now we're ready to add a new node! For a physical node, we need to get its BMC
IP address and administrator credentials first, and of course, BMC should be enabled
to operate via LAN. Node boot should be set as network, and we need to copy its MAC
address.

Go to the MAAS “Machine” tab, click “Add Hardware — Machine,” specify name,
domain, arch, kernel version, zone, pool, IPMI as “Power type,” LAN_2_0(ipmi2.0) as a
“Power driver” and “Automatic” for “power boot type.” Put copied MAC address, BMC

391

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

address, and credentials, and click “Save Machine.” You'll see your new machine in
the list with “New” status. In the “Actions” menu, select “Commission” and the initial
provisioning (commissioning) should start. MAAS supports many power drivers, not
only IPMI - Redfish, Intel AMT, HP iLO, etc.

After the initial provisioning, in the “Network” tab inside the machine information,
we can see all the network cards found and can assign an IP address in our subnet.

You can make a bond connection, selecting several interfaces and then clicking
“Create bond.”

The next step is the OS installation - in the action menu, select “Deploy” and wait for
“Deployed” status of the node. After the node OS is installed, the IP address cannot be
changed.

To simplify the overall process, you can set default values for the new nodes in
the global “Settings” tab: default image, kernel and kernel parameters, NTP server,
etc. MAAS can act as a proxy for deployed distributions; this is convenient and does
not require the creation of local repositories. It is not recommended to use public
repositories for clusters, since the nodes have drivers installed (Mellanox, NVIDIA),
which may stop working after updating through public repositories and will require
reinstalling these drivers. If you need to install packages from public repositories, you
have to test on a node that is not involved in the calculations.

By default, MAAS is taking role of DNS and NTP server in the cluster, but you can
specify additional ones. MAAS supports LDAP authentication via FreeIPA, so you can
configure it too. For virtual machines, use KVM tab - it supports KVM and LXD VMs. For
large installations, MAAS has HA support; you can deploy “rack controllers” in addition
to the region controller and distribute the load.

MAAS supports custom images, but it requires Ubuntu Pro license, and I'm not sure
if you can use any custom distributions. More information on https://maas.io/.

Foreman

Another management tool is Foreman (https://www.theforeman.org/) - open
source solution for provisioning and managing servers. It supports virtual machines
(KVM, Vmware, some others), docker, and clouds (OpenStack, Amazon EC2, Microsoft
Azure, Google CE). Foreman supports many popular OS, but you have to download
the installation media first. The overall procedure for the initial installation image
preparation is a bit complicated, but is more flexible, than in MAAS, and you can add

392

https://maas.io/
https://www.theforeman.org/

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

any custom installation medias and adapt the installation process for your needs.
Foreman has an API, so you can build your automation, and it has command-line tools
and web UL

Postinstall management is provided via Puppet, Ansible, or Salt; installed hosts state
is monitored via Puppet (by default) and indicates only the basic states, but it can be
enhanced. The project is actively developed and is highly extensible via plug-ins.

The Foreman server itself is not scalable, but the project includes so called
“smart-proxies,” which allows you to use it in the large-scale installations. I don’t have
experience with Foreman, but it is actively used in many large installations.

NVIDIA Base Command Manager

This product is proprietary and doesn’t have a “community edition” (at 2025), but it has
a free license for the cluster of 16 nodes and 16 GPUs or less. Formerly it had title Bright
Cluster Manager, and you might hear about it before. This solution is HPC-

oriented and provides compute node provisioning, storage setup, network switches
control, monitoring, OS consistency control, and many more. IB and CUDA support is
available out of the box, Slurm setup and control are included by default, and other job
management systems are available.

In addition, there is support for Kubernetes and CEPH, if it is needed for any tasks.
Baremetal clusters can be combined with cloud nodes; fully cloud clusters are also
supported. Available providers are Amazon EC2, Microsoft Azure, and Oracle Cloud,
but new ones are added gradually. One of the most interesting features is seamless
Slurm integration - new nodes are automatically added into the Slurm configuration
and become available just after provisioning and are removed if you delete the node in
the configuration. Base Command Manager supports integration with external LDAP,
DHCP, and DNS servers, which makes it easy to integrate into existing infrastructure.
Command-line interface makes automated control simple, but you can use web UIL. My
experience using BCM is very positive, but note that it requires commercial license.

393

CHAPTER 26 CLUSTER MANAGEMENT SYSTEMS — XCAT AND OTHERS

Brief Summary

xCAT is a very powerful open source tool for deploying and maintaining clusters. It does
not include elements such as account synchronization and task management, but does
an excellent task of managing OS images and booting nodes. It has a lot of caveats, so
maybe take a look at alternatives. Choose wisely - switching from one system to another
is very difficult.

Foreman and MAAS are good open source alternatives, but they are less oriented
on HPC; you will need to spend some time to make them convenient for managing
HPC cluster. In contrast, BCM is HPC-oriented, but is available only with a commercial
license.

Search Keywords

xCAT, DHCP, pxe, tftp, Canonical MAAS, Foreman Manager, Base Command Manager

394

CHAPTER 27

Communicating
with Users

One of the most important “components” of any supercomputer is its customers, or
users. Without them, it is of no use to anyone. Therefore, like any system administrator,
a supercomputer administrator must communicate with users and help them solve

problems that arise during operation.

Correspondence

Email is one of the most popular ways of communicating in IT environments, including
administrators with users, especially when users are mostly remote. There are several
options for organizing user support via email. We will consider the most convenient
one, from our point of view; in your work, you can adapt this set of techniques to your
own needs.

First, create an address for user addresses. Do not specify a personal or work address!
Set up a virtual address (alias) on your mail server and forward emails from it to multiple
addresses. This will help you over time or immediately connect to support assistants
and easily separate user requests from other correspondence. You can create a separate
mailbox, but in our opinion, it is inconvenient, even if everyone will use IMAP and store
mails on the server.

For most mail servers on Linux, to configure an alias address, all you need to do is
write a line similar to this one in the /etc/aliases file:

cluster-support: foo, bar, expert@supermail.org

Then you usually need to run the newaliases command, after which all mail sent
to the “virtual” address cluster-support@your.server will be forwarded to foo@your.
server, bar@your.server, and expert@supermail.org. In your email client, be sure to

395
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_27

https://doi.org/10.1007/979-8-8688-1600-0_27#DOI

CHAPTER 27 COMMUNICATING WITH USERS

create a support folder where all emails addressed to support will go - this is done by
simply creating a filter. For example, in your Thunderbird mail client, go to the “Tools/
Message Filters” menu and create a filter by the “to whom/copy” field. Add here emails
sent from the cluster-support address.

It is better to create another folder, e.g., support_done, and put into it the emails
that are finished (problem solved, question answered, etc.). This allows you to keep “in
view” all user issues in the process of solution and conveniently store the history. Set up
a profile in your email program to be able to reply from the cluster-support address
and reply only from that address. Be sure to set up your profile to set the headers “return
address (reply-to)” and “blind carbon copy (bcc)” to “cluster-support@your.server”.
This way, your helpers will immediately see your replies, and you will see their replies
to users.

In addition to individual communication, it is often necessary to notify all users
about something: software updates, preventive maintenance, etc. You can use address
groups in your mail client for this purpose, but then you and your assistants will have to
manually add each new address to such a group. It is enough to forget to do it once and
the user will be offended.

To automate such operations, you can use mailing managers such as mailman,
majordomo, and others. If your registration process is somehow automated,
supplement it by calling a program that adds a new user’s email to the mailing list
(usually manager programs allow this). After that, only the operations of changing the
address on request or deleting the address when a user is deleted will remain manual.

Don’t forget to set moderated mode in the mailing list manager: there will definitely
be situations when a user will reply not to the address specified as the return address
(reply-to), but to the mailing list and his reply should not go to everyone. If the manager
supports the possibility to limit the reception of mails to a set of addresses, then specify
only the address cluster-support. Don'’t forget to confirm sending a mail to the mailing
list when moderating mode is enabled!

If you have an internal chat or messenger, like Slack, Rocket.Chat, Microsoft Teams,
Telegram, etc., where you can create a dedicated channel for the cluster support, it
is a wonderful idea to do that. But the problem here is that the requests in the chat/
messenger are not tracked, it is hard to keep up with a long-term problem or refer to old
solutions. I highly recommend to force users to create tickets, or add any automation
(bots, etc.) into the channels, which help to create such tickets. The same is about the
emails - try to automate transform questions via emails into the tickets and track them.

396

CHAPTER 27 COMMUNICATING WITH USERS

Observe the culture of communication in email correspondence with users. Remove
unnecessary quotations of the question (address, etc.), leaving only the key ones, and
write your answer underneath them. If there are several questions in the letter, answer
each one separately under the corresponding quotation.

If you are asked a question that comes first in the documentation, you should not
write “read the docs, it’s written for you!”; it’'s much better to write “pay attention to
point 1.1 of frequent questions in our documentation (http://your.server/docs/faq.
html#p1.1)” Don’t be lazy to create templates for typical emails - alerts, answers to
common questions.

Accounting for Requests from Users

Various software systems have already been created to facilitate communication with
users, as well as to keep track of requests, problems, etc. Unfortunately, most of them are
focused on a rather narrow range of tasks and do not involve close integration with third-
party systems, especially such as a supercomputer. Nevertheless, they perfectly fulfill the
tasks of processing and accounting of requests. Classic examples from the open source
world in this area are RT, OTRS, Track, and OpenProject. All these systems are actively
developed and supported.

The main object in such systems is a ticket. It is created by a user (the administrator
is also a user), and its processing can be subject to strict rules. A ticket has a status, a
creator, and a party responsible for the decision. Notes or correspondence can usually
be attached to it, which allows tracking the history of problems solving. As applied to a
supercomputer, a request can be a user’s request for technical support, records about
equipment failures and its transfer to service, records about installed software, and even
users’ requests for access to the supercomputer.

Such systems are often well integrated with email, both for sending information
messages and for receiving applications. Often they can be well integrated with web
forms. The main problems that arise when using such systems are

o Complexity of authorization of users, as they are not tied to the users
of the supercomputer

o Complexity of linking actions in the system to actions on the
supercomputer and vice versa

397

http://your.server/docs/faq.html#p1.1
http://your.server/docs/faq.html#p1.1

CHAPTER 27 COMMUNICATING WITH USERS

The solution to these difficulties always depends on many nuances specific to a
particular supercomputer. And if we take into account that the configuration of such
systems itself requires serious qualification, their implementation becomes a very
difficult task. In addition to storing information about requests from users, such systems
can also store internal data: event logs, requests to technical support (not yours, but
those of hardware and software manufacturers), preventive maintenance plans, etc.

Nevertheless, the use of such systems, even in their simplest form, can make
accounting tasks much easier. I do not advise you to use bug accounting systems in
programs like Bugzilla, Redmine, etc., as their adaptation to our tasks is much more
difficult and often simply impossible, despite the apparent similarity of the problems
being solved.

Actualization

This part applies only to those supercomputers whose resources are not only given to
internal users (employees of your organization).

Let’s say you've already built a great system for account management, set up
registration, alerts, etc. But think about what to do in three or four years when the
number of accounts is in the dozens or even hundreds? I'm not talking about active
users; I'm talking about accounts, many of which will be dead souls. How can you tell the
difference between an account that has not been used for a long time and one that is no
longer needed? And if it takes up 5% of the disk and the question arises, “Can I delete all
this data?”

A solution is to introduce “draconian rules” and delete all accounts that have not
been logged in, e.g., for more than a year. But it is better not to do this, because sooner
or later you will delete the data of an important experiment or an important employee,
and you will be guilty despite the rules. And in general, this policy is not very friendly
to users.

I recommend that you follow the re-registration procedure. This consists of regularly,
e.g., once a year, asking users to confirm that their account is up-to-date. It is a good
practice to ask for a report on the activity for the specified period. A “report” is a general

term; it can be, e.g., a web form with a survey on several topics.

398

CHAPTER 27 COMMUNICATING WITH USERS

Users who have not re-registered within a given period of time are blocked.

The duration of the re-registration period should be at least two to three weeks, as
people may be on business trips, vacations, and writing a report may take a considerable
amount of time, if it is supposed to describe the work or its results. Unregistered reports
should not be deleted until at least the next re-registration. If disk space is important to
you, send the data of such users to the archive.

Users who have not re-registered should be able to re-register later. The form of re-
registration can be very different - choose the most convenient for your infrastructure.

It can be email distribution with subsequent automated processing of letters (if the
number of users is not very large), but it is more convenient to use filling out a web form
with entering the results into the database, log, etc.; the web form can be a part of your IT
infrastructure or a separate cgi-script. It does not matter much.

If you develop a web-based re-registration form yourself, don’t forget about handling
duplicate data (someone will probably submit the form by mistake two or three times),
saving the submission date, notifying the administrator, and, of course, notifying the
submitter that the data has been accepted. It is a good idea to give the submitter a
message number that they can refer to if there are any problems.

Education

Provide as much as possible information to your users, if it may help them to solve their
issues and answer their question before they ask you. This is related not only to day-to-
day cluster usage, like cluster limits, partitioning, and priorities structure, but also links
to the best practices, FAQs and docs of software vendors, and other useful materials.

I may recommend very good series “The Art of HPC”! by Victor Eijkhout from TACC
(Texas Advances Computing Center). It touches many parallel programming aspects,
HPC applied packages usage, basic SLURM knowledge, and many other aspects.

'https://theartofhpc.com/
399

https://theartofhpc.com/

CHAPTER 27 COMMUNICATING WITH USERS

Brief Summary

Communication with users is an integral part of an administrator’s work. Try to organize
it as transparently as possible for users and conveniently for yourself. Keep a history of
correspondence; make a list of problems and solutions. Use automation tools for routine
processes to communicate; they will save you a lot of time.

Compile help notes on basic actions, such as gaining access, working with login and
file transfer programs, how to contact tech support, and solving typical problems.

Search Keywords

Mailman, majordomo, mail alias, RT, OTRS, Trac, helpdesk, openproject

400

CHAPTER 28

One-Two-Three
Instructions

What? I promised you that this book is not about guides “you have to do it that way,” how
come? Keep calm, here you can find kind of “guides,” but you don’t have to follow them.
But you can use them as a good start point.

This is a very “harmful” chapter and is inserted more for reference than for actual
use. Here are brief instructions on how to install or configure various components of
a supercomputer. Depending on real-world conditions, they may simply not work, as
I have given the simplest and most typical options. The purpose of this chapter is to
remind you of the basic steps, give you examples of configurations, etc. That is why there
are no explanations, and all steps are described in the style of “do one, do two, do three!”
Please do not use it as a guide to action.

Now that you've been warned, let’s get started.

NTP

1. Install the ntp package.

2. Onthe server, fix /etc/ntpd. conf.
Example:

server 1l.us.pool.ntp.org
server 2.centos.pool.ntp.org
interface listen etho # internal interface

401
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_28

https://doi.org/10.1007/979-8-8688-1600-0_28#DOI

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

3. Onthe nodes, in /etc/ntpd. conf, write only the line server

server.cluster.myorg.

4. Putthe ntpd service in autoload on nodes and servers.

Configuring the NFS Server

Install the nfs-server package or similar and portmap if needed.

Start the portmap and nfsd services, and include them in the
services that start at startup.

To export the /home directory to clients on the 10.0.0.0/8
network, write the following line in the /etc/exports file:

/home 10.0.0.0/8(rw,no_subtree check)

Run the exportfs -ra command.

Configuring the NFS Client

Install the nfs package or similar.

To mount the /home directory from server 10.0.0.1, add a line
to /etc/fstab:

10.0.0.1:/home /home nfs rw,noatime,nodiratime 0 0

Create a /home directory (if necessary).

Run the mount /home command.

Installing Lustre (No HA)

402

Install the lustre package or similar.

On all servers and clients, create proper Inet configuration in
lustre.conf file (in /etc/modprobe.d), e.g.,

options lnet networks="02ib0o(ibo),tcpo(eth2)"

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS
3. Load lustre module on all servers and clients.
4. On the MDS server, create MGS and MDT volumes:

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sdX
mount -t lustre /dev/sdX /mnt/mdt

5. Onall 0SS, execute (create as many OSTs as you need)

mkfs.lustre --ost --fsname=large-fs --index=0 \
--mgsnode=mds . your.org@tcpo /dev/sdzZ
mount -t lustre /dev/sdZ /mnt/osto

6. After the OSS is initialized, mount the file system on the clients
with the command (use you MGS address ad mgsnode):

mount -t lustre mgsnode:/large-fs /mnt/lustre/

NIS+ Server Installation

1. Install the required packages and their dependencies from the
packages (nis or ypserv).

2. Onthe server, in /etc/sysconfig/network (for RH), add a line:
NISDOMAIN="MYCLUSTER"

3. For Debian-like systems, write in /etc/default/nis:
NISSERVER=master

4. Inthe /etc/defaultdomain file, also write the domain name:
MYCLUSTER.

5. Inthe /etc/ypserv.securenets file, enter the internal network
settings and remove access from everywhere:

255.255.255.0 192.168.123.0 # format: MASK SUBNET
host 192.168.111.222 # individual host

403

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

6.

Create the NIS server database with the command /usr/1ib/yp/
ypinit -m. When asked for a list of NIS servers, enter the name of

our server.

Start the NIS+ service:

systemctl start rpcbind ypserv yppasswdd ypxfrd
or

service nis start

service portmap restart

or

service ypserv

service yppasswdd start

service portmap restart

Enable autostart of the service:

systemctl enable rpcbind ypserv yppasswdd ypxfrd
or

update-rc.d nis enable

or

chkconfig ypserv on

chkconfig yppasswdd on

chkconfig ypxfrd on

Update the NIS database:

cd /var/yp; make

Installing the NIS+ Client

404

Install the required packages and their dependencies from the
packages (nis or ypserv).

In the /etc/yp.conf file, add the line:

domain MYCLUSTER my-nis-server-ip-address

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS
3. Inthe /etc/nsswitch.conf file, change the lines:

passwd: compat nis
group: compat nis
shadow: compat nis
hosts: files dns nis

Installing OpenLDAP (Using RH As an Example)

Let’s install the packages on the server:
yum install openldap-servers openldap-clients nss_ldap

Generate a hash of the administrator password - the program will request the
password twice and output its hash to the console:

slappasswd
>>> {SSHA}ABCDEF1234567890.

Copy this line and open the LDAP server configuration file /etc/openldap/slapd.
conf for editing. Before opening it, make a backup copy.
Find and correct the lines in this file:

database bdb

suffix "dc=ldap,dc=server,dc=org"

rootdn "cn=Manager,dc=1dap,dc=server,dc=org"
rootpw {SSHA}ABCDEF1234567890

Here database is the type of database, and suffix is the path to the subtree of
directories where your information will be located. Instead of 1dap.server.org, you can
use any other address; it does not have to match the DNS name of the server.

rootdn - Path to the administrator record. In this example, his name is Manager. And
the last entry is the password hash we generated earlier.

Now let’s specify in this file the circuits that we will need for our work:

include /etc/openldap/schema/core.schema

include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema

405

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

include /etc/openldap/schema/redhat/autofs.schema
include /etc/openldap/schema/openldap.schema
include /etc/openldap/schema/misc.schema

Save file. Copy the sample database configuration to the “live” database:

cp /etc/openldap/DB _CONFIG.example /var/lib/ldap/DB CONFIG
chown ldap:ldap /var/lib/ldap/DB CONFIG
chmod 600 /var/lib/ldap/DB_CONFIG

Add lines to the LDAP configuration file /etc/openldap/ldap.conf:

BASE dc=ldap, dc=server, dc=org
URI ldaps://ldap.server.ru:636/

Now the LDAP server is ready to work. You can check it using the systemctl start
sldapd command. If everything started, go on; if not, look for errors and descriptions of
their solutions, maybe there were changes in the openldap configuration. Now we need
to add data about the administrator (in our case, it is Manager) to the openldap database
itself. To do this, let’s create a 1dif file that describes this information. In your favorite
editor, create a file, e.g., with the name /etc/openldap/ldap-init.1dif, and fill it with
this content:

dn: dc=ldap,dc=server,dc=org
objectclass: dcObject

objectclass: organization

o: Servidor LDAP ldap

dc: ldap

dn: cn=Manager,dc=1dap,dc=server,dc=org
objectclass: organizationalRole

cn: Manager

Here instead of 1dap.servser.org and Manager, we specify our own values. Save the
file. Enter these data into the database:

/usr/bin/ldapadd -a -x \
-D 'cn=Manager,dc=1dap,dc=server,dc=org"' \
-W -f ldap-init.1ldif

> Enter LDAP Password:

406

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

adding a new entry "dc=ldap,dc=server,dc=org"
adding new entry "cn=Manager,dc=1ldap,dc=server,dc=org"

The program will prompt for the password we entered earlier in the slappasswd
command, and then add two entries to the database - the root branch and the
Manager user.

Let’s check the contents of these records in the database:

ldapsearch -h 127.0.0.1 -x -b "dc=ldap,dc=server,dc=org"
ldap.server.org

dn: dc=ldap,dc=server,dc=org
objectClass: dcObject

objectClass: organization

o: Servidor LDAP ldap

dc: ldap

Manager, ldap.server.org

dn: cn=Manager,dc=1dap,dc=server,dc=org
objectClass: organizationalRole

cn: Manager

search result

search: 2

result: 0 Success

numResponses: 3

numEntries: 2

The server returned two records, and their contents match what we entered earlier.

Let’s migrate user information from passwd to LDAP. Usually the openldap package
includes migration tools. Edit the file /usr/share/migrationtools/migrate _common.ph,
specifying our LDAP root:

Default DNS domain

$DEFAULT _MAIL DOMAIN = "ldap.server.org";

Default base

$DEFAULT BASE = "dc=ldap,dc=server,dc=org";

407

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Let’s convert passwd to 1diff format and enter data from the resulting file into the
database:

/usr/share/migrationtools/migrate passwd.pl \
/etc/passwd people.ldif

ldapadd -x -W -D "cn=Manager,dc=1dap,dc=server,dc=org" \
-f people.ldif

We will do the same with the groups:

/usr/share/migrationtools/migrate group.pl \
/etc/group group.ldif

ldapadd -x -W -D "cn=Manager,dc=1dap,dc=server,dc=org" \
-f group.ldif

Our server is ready to work. Now we need to configure clients. On the clients, we
need to configure authentication with PAM. Install the openldap-clients and nss_ldap
packages and edit the /etc/openldap/ldap.conf file:

base dc=ldap,dc=server,dc=org

rootbinddn cn=Manager,dc=1dap,dc=server,dc=org

port 389

scope sub

pam_filter objectclass=posixAccount

pam_login attribute uid

nss_base passwd ldap,dc=server,dc=org?sub?bjectClass=posixAccount
nss_base_shadow ldap,dc=server,dc=org?sub?bjectClass=posixAccount
nss_base group ldap,dc=server,dc=org?sub?bjectClass=posixGroup
ssl no

pam_password SSHA

In the ssl line, disable encryption. In the future, of course, it is desirable to enable
it, for which it is necessary to generate certificates and correct settings. In the last line,
specify the password hashing method - it must match the one given (or explicitly
specified by us) by the slappaswd program.

After that, it is necessary to give our password to the PAM module. For this purpose,
our password is saved in a file in text form so that it is readable only by the superuser.
Execute the commands:

408

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

vi /etc/ldap.secret
chmod 600 /etc/ldap.secret
chown root:root /etc/ldap.secret

The first command is to create and edit a password file. Edit the /etc/nsswitch.
conf file by changing the following lines:

passwd: files ldap
shadow: files ldap
group: files ldap

Finally, make changes to the PAM authentication procedure. To do this, add (not
replace!) lines to /etc/pam.d/system-auth:

auth sufficient /1lib/security/pam ldap.so use first pass
account sufficient /lib/security/pam ldap.so

password sufficient /lib/security/pam ldap.so use authtok
session optional /lib/security/pam ldap.so

PAM authentication will now include authentication via LDAP. It is strongly
recommended that you do not delete entries for traditional (unix) authentication, as you
will not be able to log in as root or dedicated admin user to the host in case of boot or
network problems.

Customizing Xorg

In most cases, Xorg server does autodetection of everything pretty well. But sometimes
you need to override something or give Xorg some hints. The /etc/X11/xorg. conf file
is divided into sections using the keywords section and end section. Let’s look at the
most important sections. The ServerFlags section specifies the options with which the
X server is started. In most distributions, the options for starting the server are set by
window managers and are outside the xorg.conf file.

In this example, the AllowMouseOpenFail option tells the server to start even if
the mouse is not present. The ZapWarning option causes the X server to sound a long
beep when the user presses the Ctrl-Alt-Backspace key combination, rather than
terminating (as it did before). Only pressing Ctr1-Alt-Backspace again will terminate
the X server.

409

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Section "ServerFlags"
Option "AllowMouseOpenFail" "on"
Option "ZapWarning" "on"
EndSection

The Files section sets the paths to files that are necessary for the X server to function
properly. For example, the paths to the X server fonts are specified here. Fonts can be
located not only on the local computer, but also on a remote computer where XFS (X
Font Server) is installed:

Section "Files"
FontPath "/usr/share/fonts/misc:unscaled"
FontPath "/usr/share/fonts/local"

EndSection
The Modules section lists the modules that will be loaded by the X server at startup:

Section "Module"

Load "dri"
Load "glx"
EndSection

There can be several InputDevice sections; they are distinguished by a unique
identifier (Identifier). For each input device connected to the computer, an
InputDevice section is created in the file. If a mouse and keyboard are connected, the
xorg.cont file will have at least two sections: one to describe the keyboard and one to
describe the mouse:

Section "InputDevice"
Driver "kbd"
Identifier "Keyboard[o0]"
Option "XkbLayout" "us,ru"
Option "XkbOptions" "grp:ctrl shift toggle,grp led:scroll”
EndSection
Section "InputDevice"
Driver "mouse”

410

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Identifier "Mouse[1]"

Option "Buttons" "9"

Option "Device" "/dev/input/mice"

Option "Protocol" "explorerps/2"

Option "ZAxisMapping" "4 5"
EndSection

Let’s take a closer look at the options of the InputDevice section for the keyboard.
The Driver parameter specifies the keyboard driver for graphical mode only; consoles
and terminals are controlled by the terminal driver built into the kernel. The XkbLayout
parameter specifies keyboard layouts. XkbOptions sets the keys for switching between
layouts, in this case Ctrl+Shift, and that the Scroll indicator on the keyboard will light
up when the Russian layout is enabled.

The second InputDevice section describes the mouse. The Option "ZAxisMapping"
parameter "4 5" is responsible for scrolling the mouse wheel. If the numbers 4 and 5
are swapped, the scrolling will work in the opposite direction. The Device, Monitor,
and Screen sections describe the output devices. The Device section contains
information about the video card and its drivers, the Monitor section describes the
physical characteristics of the monitor, and the Screen section describes the screen
characteristics (resolution, etc.). At least one such section should be present in
the configuration file, and if there are several devices (when several monitors are
connected), then a corresponding section should be created for each device:

Section "Device"
Identifier "Intel Video Controller"
Driver "i810"

EndSection

Section "Monitor"
Identifier "Universal Monitor"
Option "DPMS"
HorizSync 28-64
VertRefresh 43-60

EndSection

Section "Screen"
Identifier "Default Screen"
Device "Intel Video Controller"

411

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Monitor "Universal Monitor"
DefaultDepth 24
SubSection "Display"
Depth 16
Modes "1280x1024" "1024x768" "800x600"
EndSubSection
SubSection "Display"
Depth 24
Modes "1280x1024" "1024x768" "800x600"
EndSubSection
EndSection

There may also be several ServerLayout sections. They describe combinations
of I/0 devices for the X server. If multiple monitors or keyboards are connected, one
section will specify one keyboard and another will specify another:

Section "Serverlayout"
Identifier "Default Layout"
Screen "Default Screen"
InputDevice "Generic Keyboard"
InputDevice "Configured Mouse"

EndSection

APCUPSD

Below is an example apcupsd. conf configuration file with comments under each line:

apcupsd.conf vi.1

for apcupsd release 3.14.7 (August 1, 2009) - suse

========= Basic Configuration Parameters ============
UPSNAME Smart-UPS RT 10000

Device name.

UPSCABLE smart

Possible values:

simple, smart, ether, usb.

UPSTYPE snmp

DEVICE 195.208.252.115:161:APC:private

412

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

#POLLTIME 60

Time interval for device polling. Default is 60 sec.
LOCKFILE /var/lock

Directory for storing the process ID of the daemon.
SCRIPTDIR /etc/apcupsd

The directory where the daemon's configuration and command files
are stored.

PWRFAILDIR /etc/apcupsd

Directory where the flag file is created on power failure.
NOLOGINDIR /etc

The directory where the nologin file for blocking is created
of log-ins.

#

== Parameters used in case of power failure ==
ONBATTERYDELAY 6

The time (in seconds) after which the system starts to

react to a power failure.

Note. Three parameters: BATTERYLEVEL, MINUTES

and TIMEOUT - work in conjunction.

The one that trips first will shut down the system.
BATTERYLEVEL 5

The remaining battery charge (in percent) at which the battery will be
shutting down the server.

MINUTES 3

Remaining battery life (in minutes) at which

will shut down the server.

TIMEOUT o

Battery runtime (in seconds) allowed for the UPS.

If set to 0, # this timer is disabled.

ANNOY 300

Time (in seconds) between alarm and shutdown.

ANNOYDELAY 60

Delay after power failure before users

sends a notification to exit

out of the system.

413

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

NOLOGON disable

A condition that determines at what point users

it is forbidden to connect to the server during a power failure.
Possible values: disable, timeout, percent, minutes, always.
KILLDELAY o

The time interval between shutting down the UPS and issuing the shutdown
command.

If the value is 0, the UPS shutdown command will not be issued
is served.

#

==== Configuration parameters for NIS ====

NETSERVER on

Variable enables or disables NIS startup.

NISIP 0.0.0.0

IP address that the NIS server will listen to.

Address 0.0.0.0 means handling all requests on the network.
NISPORT 3551

The port number (3551 is the default value) on which to send
data exchange with UPS.

EVENTSFILE /var/log/apcupsd.events

A file in which all events are logged.

EVENTSFILEMAX 10

Maximum log file size (in kilobytes).

Older records are deleted if the specified value is exceeded.
===Configuration parameters for shared UPSs=====

#

UPSCLASS standalone

UPSCLASS [standalone | shareslave | sharemaster |

UPSMODE disable

UPSMODE [disable | share]

#

===== Configuration parameters for log files.
#

STATTIME o

Time interval between UPS status records.
A value of 0 will block recording.

414

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

STATFILE /var/log/apcupsd.status

STATUS file name (if STATTIME is not equal to 0).
LOGSTATS off

LOGSTATS [on | off]

Setting the variable to on produces a very large
output volume.

DATATIME o

Time interval between log file entries.

A value of 0 will block recording.

#FACILITY DAEMON

FACILITY defines the service in the syslog file.
Parameters for writing to non-volatile storage

UPS memory.

Parameters are only used by the apctest program for
of modifications to settings in the UPS EEPROM.
UPSNAME UPS 3

UPS Name. Maximum 8 characters.

BATTDATE 02/04/08

Date of installation of new batteries.
#SENSITIVITY M

SENSITIVITY H M L (default = H)

Voltage measurement sensitivity.

WAKEUP 60

WAKEUP 000 060 180 300 (default = 0)

Delayed UPS turn-on when voltage is restored.
SLEEP 180

SLEEP 020 180 300 600 (default = 20)

Standby time before the UPS shuts down.
LOTRANSFER 208

Minimum voltage to switch to batteries.
HITRANSFER 253

Maximum voltage to switch to batteries.
#RETURNCHARGE 15

RETURNCHARGE 00 15 50 90 (default = 15)

Percentage of battery charge to be ready for operation.
#BEEPSTATE T

415

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

BEEPSTATE 0 T L N (default = 0)

Alarm Delay.

0 = zero delay, T = + 30 seconds, L = low level,
N = never.

LOWBATT 2

LOWBATT 02 05 07 10 (default = 02)

Low level alarm delay

of battery charge (in minutes).

OUTPUTVOLTS 230

UPS output voltage during battery operation.

Depends on the UPS model.

SELFTEST 336

SELFTEST 336 168 ON OFF (default = 336)

Interval (in hours) between UPS self-tests

(336 = 2 weeks, 168 = 1 week, ON=on power up).

Table 28-1 lists the possible UPSTYPE and DEVICE values.

Table 28-1. UPSTYPE and DEVICE values

UPSTYPE DEVICE Meaning

apcsmart /dev/tty** Connection via computer COM port.

ush - In most cases, the daemon will find the USB connected UPS
itself.

net hostname:port Connection type is used when UPS is not directly connected

to a computer, but communicates through the daemon on the
computer to which the UPS is connected.

dumb /dev/tty** Connection for older unmanaged UPSs.
pcnet ipaddr:username: PowerChute Network Shutdown protocol — a replacement
passphrase for SNMP protocol for network communication with the

uninterruptible power supply.

snmp hostname:port; Communication between the computer and the uninterruptible
vendor:community power supply is carried out via SNMP protocol. The UPS must
support SNMP capability and SNMP protocol operation must be
enabled on the device.

416

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Example of onbattery script:

#1/bin/sh
SYSADMIN=root
APCUPSD_MAIL="/usr/bin/mail"
HOSTNAME=$ (hostname)
MSG="$HOSTNAME Power Failure !!!"
#Sending a mail message when switching to batteries
(
echo "Subject: $MSG"
echo " " "
echo "$MSG"
echo " " "
/sbin/apcaccess status
) | $APCUPSD MAIL -s "$MSG" $SYSADMIN
Run the script that shuts down the cluster
nohup /etc/apcupsd/haltall &
exit 0

In bold is the added line that runs a special shutdown script. This script takes quite
along time to execute, and power may be restored during its execution. In this case,
the apcupsd daemon will run the offbattery script, which can be used to interrupt the
shutdown procedure. The offbattery script has been amended for this purpose:

#1/bin/sh
SYSADMIN=root
APCUPSD_MAIL="/usr/bin/mail"
HOSTNAME=$ (hostname)
MSG="$HOSTNAME Power has returned"
(

echo "Subject: $MSG"

echo " " "

echo "$MSG"

echo " " "

/sbin/apcaccess status
) | $APCUPSD MAIL -s "$MSG" $SYSADMIN

417

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

echo "::: Interrupt Shutdown process...$(date):::" I\
wall -a
echo "::: Interrupt Shutdown process...$(date)::::" >> \

/etc/apcupsd/halt.log 2>8&1
#Stop the haltall script.
pkill -9 haltall
exit o

The haltall script implements the controlled staged cluster shutdown algorithm,
which should ensure the longest possible uptime of nodes busy with task execution. In
real life, this script can be much larger, as it controls shutdown of, e.g., several clusters
and workstations.

Below is a fragment related to one of the real clusters. Immediately after a power
failure, the onbattery script is started, which runs the haltall script. The script outputs
to the log file the information about that the shutdown process has started and the start
time. The process then goes into standby mode for 30 minutes in case power is restored,
and the shutdown process is interrupted. Next, all nodes are scanned to see if they are
loaded and a poweroff command is sent to those that are not loaded.

The tlwait function is then started and waits for the battery charge to drop to a level
sufficient for only five minutes of battery life. When this state is reached, the task queue
is stopped and a list of currently running tasks is generated. The user jobs are stopped;
after a one-minute pause, the procedure of shutting down all nodes is started, and after
next minute - shutting down the server itself. Such an algorithm allows keeping busy
nodes in a workable state for as long as possible.

Script for shutting down a cluster (PBS version):

#1/bin/sh
#
CLUSTERNAME=MYCLUSTER
OUT=/etc/apcupsd/halt.log
TPRED=7200
Function to print the expected battery life.
tlprint()
{

t=$(/sbin/apcaccess | \

awk '$1 == "TIMELEFT" {printf "%.of\n", $3 }')

418

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

echo "TIMELEFT = $t" >> $0UT 2>&1
}
Standby function until the time reserve is reduced to
of a given number of minutes.
tlwait()
{
while [$t -gt $1]
do
sleep 60
t=$(/sbin/apcaccess | \
awk ' $1 == "TIMELEFT" {printf "%.0f\n", $3 }')
echo "TIMELF=$t SECONDS=$SECONDS" >> $OUT 2>8&1
if [$SECONDS -gt $TPRED]; then

break
fi
done
}
echo "::: Starting Shutdown process: $(date) :::" | wall
echo " " >> $0UT 2>8&1
echo "::: Starting Shutdown process: $(date) :::" >> $OUT 2>&1
tlprint
sleep 1800
tlprint

Turn off free nodes
echo "Shutdown free nodes ... $(date) " >> $0UT 2>8&1
for host in $(cat /etc/nodes) ; do
ping $host -i 1 -c 1 > /dev/null 2>&1
if [$? -eq 0]; then
avg=$(ssh $host /usr/local/cluster/ndload)
if [$avg -1t 10]; then
echo "Send poweroff to $host" >> $OUT 2>&1
ssh $host /sbin/poweroff
sleep 1

419

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

fi
else
echo "$host not answered!" >> $0UT 2>&1
fi
done
tlprint
tlwait 5

echo "Stop running task... $(date) " >> $OUT 2>&1

gstop $CLUSTERNAME

LIST=$(qstat -algrep $CLUSTERNAME | grep " R " Il \
awk -F. '/~[0-9]*\./ {print $1}')

qdel $LIST

sleep 60

Turn off all nodes
echo "Shutdown all nodes" >> $0UT 2>&1
tlprint
for host in $(cat /etc/nodes) ; do
ping $host -i 1 -c 1 > /dev/null 2>&1
if [$? -eq 0]; then
echo "Make poweroff to $host" >> $0UT 2>&1
ssh $host /sbin/poweroff

else
echo "$host not answered!" >> $OUT 2>&1

fi
done
tlprint
echo "::: End Shutdown process: $(date) :::" >> $OUT 2>81
sleep 60
echo "::: Shutdown host-computer $(date) :::" >> $OUT 2>81
/sbin/poweroff

420

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS
upstemp temperature monitoring script:
#1/bin/sh

echo >> /usr/local/cluster/upstemp.txt
HOST=$(hostname)

TMAXW=25.0
TMAXSH=30.0
while :

do

TEMP=$(/usr/local/cluster/ambtemp.sh)
echo "$(date "+%F/%T') temp = $TEMP" >> \
/usr/local/cluster/upstemp.txt

if [$(echo "$TEMP > $TMAXW"| bc) -eq 1]; then
mail root << EOT

Temperature UPS $HOST = $TEMP

EOT
write root << EOT

WARNING! Temperature UPS $HOST = $TEMP

EOT

fi

if [$(echo "$TEMP > $TMAXSH"I bc) -eq 1]; then
/usr/local/cluster/haltall

fi

sleep 600

done &

The temperature is polled every ten minutes. If the temperature exceeds 25 (TMAXW)
degrees, notifications will be sent to the administrator at the terminal and by email. It is
possible to organize a mailing to several addresses or to issue an alert to all terminals.

If the temperature situation continues to worsen, the haltall script - cluster
shutdown - is launched when the temperature exceeds 30 (TMAXSH) degrees. The
difference between it and the previously discussed haltall script is that the shutdown
of all equipment is immediate. The ambtemp. sh script, which reads the temperature from
the sensor, communicates with the UPS, like the apcupsd daemon, via snmp protocol.

421

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

The ambtemp. sh script:

#1/bin/bash
SNMP command that retrieves the internal temperature of the UPS.
inttempcmd=".1.3.6.1.4.1.318.1.1.1.2.2.2.0"
SNMP command that receives data from an external sensor.
ambtempcmd="1.3.6.1.4.1.318.1.1.10.2.3.2.1.4.0"
Function that sends a request to the UPS
function sendcmd(){
host=$1
cmd=$2
res=$(snmpget -c public -v 2c $host $cmd | awk -F: '{print $4}")
echo $res
}
tempamb=$(sendcmd ups_3 $ambtempcmd)
print the temperature obtained.
echo $tempamb

Note once again that these scripts are given as an example — in a real
configuration, you will need to take into account many nuances: storage servers,
job management system (here | used Torque), equipment connection schemes,
load distribution on the UPS, etc.

XCAT

To install xCAT, let’s download the files for the repositories and install the packages:

cd /etc/yum.repos.d/

wget https://xcat.org/files/xcat/repos/yum/2.12/xcat-core/xCAT-core.repo
wget https://xcat.org/files/xcat/repos/yum/xcat-dep/rh6/x86 64/
XxCAT-dep.repo

yum install -y xCAT

422

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS
Let’s set the domain name for our cluster:
chdef -t site -o clustersite domain=mycluster
Change the cluster parameters if necessary:
tabedit site
Let’s fix the list and settings of networks:
tabedit networks
Let’s copy the distribution files:
copycds Cent0S-7.6-x86_64-bin-DVD1.iso
Let’s create a description of the nodes:

mkdef -t node node node[1-100] groups=all,compute \
arch=x86_64 \
mgt=ipmi \
netboot=pxe

Let’s set the rule of forming IP address by node name:
chtab node=compute hosts.ip="I\D+(\d+)I10.0.0.(10+$1)I"'
If we have a list of MAC addresses, let’s match them with IP addresses:
chdef -t node nodel mac=xx:Xx:XX:XX:XX:XX
Let’s create a boot image:
genimage
Set the nodes in the compute group to have an image to load:
chdef compute provmethod=centos7.6-x86_64-statelite-compute
Prescribe a set of files and directories stored in memory:

tabedit litefile
#image,file,options,comments,disable
"ALL","/etc/adjtime",,,
"ALL","/etc/inittab",,,

423

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

"ALL","/etc/ntp.conf",,
"ALL","/etc/ntp.conf.predhclient”,,,
"ALL","/etc/resolv.conf",,,
"ALL","/etc/resolv.conf.predhclient”,,,
"ALL","/etc/ssh/",,,
"ALL","/etc/sysconfig/",,,
"ALL","/etc/sysconfig/network-scripts/",,,
"ALL","/etc/udev/",,,
"ALL","/opt/xcat/",,,
"ALL","/root/.ssh/",,,

"ALL","/tmp/",,,

"ALL","/var/",,,

"ALL","/xcatpost/",,,

Add keys and users from /etc/passwd to the image:

cd /opt/xcat/share/xcat/netboot/add-on/statelite
./add_ssh /install/netboot/centos7.6/x86 64/compute/rootimg/
./add_passwd /install/netboot/centos7.6/x86 64/compute/rootimg/

Update the statelite image and service configurations:

liteimg centos7.6-x86 64-statelite-compute
makehosts

makedhcp compute

systemctl restart dhcpd

makenamed. conf

makedns compute

Update the tftp configuration:
nodeset compute osimage=centos7.6-x86 64-statelite-compute
Overloading the nodes:

rpower node[1-100] boot

424

CHAPTER 28 ONE-TWO-THREE INSTRUCTIONS

Brief Summary

Use these instructions with care; they may be (really may be) outdated. Use them only as

a plan of work.

Search Keywords

apt, yum, dnf, NTP server, NFS server, Lustre, NIS server, OpenLDAP server, Xorg config,
APCUPSd, xCAT

425

CHAPTER 29

Shell Scripts — Basics
and Common Mistakes

This chapter is not intended to be a tutorial on shell programming but to cover some
basic concepts that are useful for beginners to know about and some common mistakes
that are often encountered. I strongly recommend that you study the Advanced Bash
Scripting Guide and use this chapter as a quick reference only. Here we treat bash syntax as
the most common syntax. Most of the constructs will work in shells other than csh/tcsh.

I deliberately do not include all shell expressions and do not show all the features of the
described constructs, but only the main ones. I highly advise you to learn advanced bash
syntax, as it helps you to understand not yours scripts and write efficient bash code.

In a script, the ‘#’ character is a comment character; the rest of the line after it is
not processed by shell. Scripts actively use special characters that are processed by
shell (e.g., $, !, etc.). In order to cancel their special action, ‘escaping’ is usually used -
inserting a backslash ‘\’ before the character.

If a script starts with the characters ‘#!’ (shebang) and the script file is marked as
executable, it can be run directly by the operating system. In this case, the OS will run
the command that is written after these two characters and pass the path to the script as
the last argument. Note that there can be no other characters before or between them.
This means, in particular, that if the script text was prepared in a text editor in UTF-8
mode, it may add a BOM (Byte Order Mark) character to the beginning of the file. It is not
displayed, but the OS will not be able to determine that this file should be run as a script.

A script consists of a sequence of commands; each command is a call to a program,
possibly with arguments, or a call to a built-in shell command. Since a command can
have multiple arguments, there are special delimiter characters to help you understand
where one command ends and the next begins. These delimiters are

o Line feed (UNIX-style ‘\n’ ONLY)

o End offile

427
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_29

https://doi.org/10.1007/979-8-8688-1600-0_29#DOI

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

e Semicolon (;) or double semicolon (; ;) in the case construction
e Ampersand (&)

e Pipe(l)

e I/Oredirection (&, >, &>, >&, >>, <)

e Logical commands (88, II, !)

For example, you can write the condition like this:
if mytest; then echo OK; else echo Fail; fi
or you could do this:

if mytest
then

echo OK
else

echo Fail
fi

or even like this:

if mytest; then
echo OK
else echo Fail; fi

All operators that check conditions take a command as an argument, execute it, and
check the return code. If the return code is 0, the result is interpreted as logical true; if
not, it is interpreted as false. This applies to the if, elif, while, and until commands.
The built-in shell command can act as a command. Unlike "usual" languages like C,
you cannot substitute the value of a variable. If you write $myvar instead of a command,
the interpreter will get the value of the variable and use it as the name of the command.
To check the value of a variable, use the built-in test command. There is "syntactic
sugar” for the test command in the form of the ‘[program, i.e., the following lines are

completely equivalent:

test "$myvar" = "ok"
["$myvar" = "ok"]

428

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

That is why there must be a space before and after a square bracket and a line feed,
semicolon, or other command delimiter after a closing square bracket. By the way, the
closing square bracket is mandatory - the test program checks for its presence. Pay
attention to quotation marks; they are very important in shells. For example, the strings

myvar='1 > 3'
if [$myvar = "1 > 3']; then ...

equivalents

myvar="1 > 3'
if[1>3="1>3"1]; then ...

It is clear that the test command will generate an error on such a set of arguments.
In this case, the value of myvar was substituted “as is” - with spaces. To avoid such
problems, you should enclose the variable in quotes in the argument of the test
command: “$myvar”. Try to avoid tests where the variable can be empty, as it will cause

an error. For example:

V:
if [$v = "'];then

It’s better to write it like this:
V=I 1

if ["x$v" = 'x"];then

Shell separates script text, input argument values, and variable substitution results
into separate words separated by spaces, tabs, or line feeds. If a variable must contain
text with spaces, you can either escape the spaces or enclose the text in quotation marks.

Quotation marks in the shell are of three types: single, double, and inverse. Text in
single quotes is processed “as is,” without changes. If you need to insert a single quote
in this text, it must be escaped. Double quotes allow you to interpret the text internally,
i.e., to substitute variable values. In the example above, we used double quotes to get the
value of the variable v.

In addition to variable values, double-quoted variables reveal history by the
‘1" character (unless explicitly disallowed), backquotes, and their alternate entry.
Backquotes interpret the string inside as a command with arguments, execute it, and

return the output of the command as a string.

429

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

Interestingly, within double quotes, nested double quotes are grouped together,
meaning such a string would work fine:

base="'basename "$file" .bak'"

You can use the $(. . .) construction instead of backquotes, and I recommend
using it. For built-in variables $@ and $* that represent script (or function) arguments,
enclosing them in double quotes will list the arguments as if they were each enclosed
in quotes.

For example, by calling this script

for i in "$@"; do echo "$i"; done
with arguments ‘abc 123’ ‘qwe; we get

abc 123
que

If you remove the quotation marks around $@, the result is this:

abc
123
qwe

Quotation marks should be put everywhere, except where they are definitely not
needed (e.g., when a variable contains a prepared command line). Without quotation
marks, even a simple command like

echo $var

may produce unexpected results if var contains a word that matches the command key,
such as ‘-n’

Shell supports the ‘%" and ‘Il’ ‘conditional’ constructs. They can be used both in ‘if’
conditions and instead of them. The com1 && com2 construct will execute com1, and if
it returns 0 (i.e., true, completed successfully), then com2 will be executed and its result
returned. If com1 terminated with a code other than 0, com2 will not be executed. That’s
why this construction is often used for “light” implementation of conditions. The same is
the case with com1 Il com2, but in this case, com2 will be executed only if the completion
code of coml is not equal to 0.

430

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

It is not uncommon to see lines of this kind in scripts:

[ux$inpn —
#f or
grep "$search" testfile Il echo "Nothing found."

] & { echo "Empty input. Exiting"; exit 1}

instead of

if ["x$inp" = "']; then
echo "Empty input. Exiting"
exit 1

fi

or

if | grep "$search” testfile; then
echo "Nothing found."
fi

Remember, it’s wrong to write that way:
if ["$x" = one Il "$x" = two]; then ...

The Il and 8& constructs combine different commands, and the -0 and -a options are
used within the test command arguments for similar purposes.
The right options are

if ["$x" =one] II ["$x" = two]; then .. # 2 "test' runs
if ["$x" = one -0 "$x" = two]; then .. # 1 '"test' run

You can invert the logical result of a command execution with an exclamation point:
if | my test; then echo my test failed; fi

If you are familiar with programming in C, Java, or a similar language, you have
noticed an unfamiliar comparison operator - an equal sign instead of the usual double
equal sign. This is not the only surprise: the usual comparison signs =, !=, >, and < work
with strings only (and the value of any variable is a string). To compare numbers, use
keys -eq, -ne, -gt, and -1t of the test command, respectively.

For example:

if [$count -gt 10]; then ...

431

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES
Any command can use I/0 redirection.

mycommand < ./infile

mycommand > ./outfile

mycommand 2> ./errfile

mycommand &> ./fulloutput

mycommand | grep failed

mycommand & grep error # like &>, but for pipe

In the first line, standard command input is redirected from the . /infile file (by
default, input is taken from the terminal); in the second line, output is redirected to ./
outfile; in the third line, the error stream is redirected to the . /errfile file. In the
fourth line, we use the pipeline - the output of a command is redirected to the standard
input of another command, in this case grep. Multiple redirects can be used at the
same time. The ‘&>’ is used to redirect the output and error stream to the same file at the
same time.

We have already used the control constructs in the shell more than once. Let’s briefly
list them:

if COND then ... [elif COND then] [else ...] fi

while COND do ... done

until COND do ... done

for VAR in LIST; do ... done

case WORD in PAT[IPAT...]) .. ;; [PAT[IPAT]) .. ;;;] esac
select VAR in LIST; do ... done

The square brackets contain optional elements. We are already familiar with the if
operator. As you can see, it allows you to use one or more branches with additional elif
conditions:

if mytest one; then
echo "test one passed"
elif mytest two; then
echo "test one failed, test two passed"
else
echo "both tests failed"
fi

432

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

The classic while loop - its body is executed as long as the COND condition is true.
The until loop is made for convenience - its body is executed while the condition is
false, i.e., it is fully equivalent to the while ! COND; doThe for loop is very popular
when processing files. At each of its iterations, the VAR variable is assigned a value from
the LIST list. For example, this is how to extract all zip files in the current directory into
the corresponding subdirectories:

for i in *.zip; do

base=$(basename "${i}" .zip)

mkdir "$base"

pushd "$base"; unzip "../$i"; popd
done

We use basename program to get the archive name without the extension, then create
the directory, save the current dir path in a special stack by pushd command, and go into
the new directory, unzip the content there, and return into our directory using popd,
which takes the path from the stack. One more important detail: the variable name can
be enclosed in curly brackets to avoid misinterpretations.

The case branching command is only slightly similar to its C counterpart. It gets a
string and compares it with templates in each branch. Templates are similar to file name
templates: metacharacters * and ? and lists in square brackets are allowed. Multiple
templates can be listed via pipe sign. One or more templates are followed by a closing
parenthesis, followed by a block of commands that will be executed if the string falls
under the template. The block ends with two semicolons. Example:

case "$input" in

y*IYIYES)
echo "ok, let's go."
35

n*ININO)
echo "program canceled."
exit 1
55

*)
echo "Bad answer. Try again.'
retry=1

55
esac
433

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

The select operator is introduced to facilitate exactly one, but often used
operation - user selection from the offered options. Example:

PS3="Select action: ' # prompt
echo
select action in "reboot" "on" "off"
do
echo "Executing $action."
break # without 'break' you will get an infinite loop.
done

The prompt from the $PS3 variable will be displayed, followed by the list passed to
the select command, with a number before each item. The user enters a number, and
action will get either the value of the corresponding item in the list or an empty string if
an invalid number is entered.

You can get user input in another way - by using the read VAR command. When
this command is executed, the user will be prompted, and after pressing the Enter key,
everything he has entered will be written to the VAR variable. If the script input is directed
and is read from a file or from the output of another program, one line will be read.

Another useful operator in bash is getopts; it allows you to process command-line
options in a really convenient way. The syntax is getopts "abc:d:" arg [...], where
"abc:d:" are options description and arg is the variable name and optional list of strings;
ifit is specified, it is used instead of "$@". Options description is a string; each letter is
a possible option (only one-letter options are allowed); if it is followed by ‘:; then this
option requires additional argument. If “:” is specified in the string beginning, the "quiet
mode" is activated - the messages about bad options won’t be printed. Quiet mode can
be activated also by setting OPTERR variable into 0. getopts gets one option per call and
saves the current index in the options array in the OPTIND variable (you can change it if
itisneeded, e.g., set it into 1 to reset the index), if the option is successfully processed,
it returns 0, puts its value into the arg variable, if there was an argument, puts it into the
OPTARG variable. If the option was not found or the argument was required but not found,
then arg will be setinto ‘?; and the OPTARG will be unset. In quiet mode, if the argument
was not found, arg is set into ‘:” and OPTARG into the option value.

Here is an example:

while getopts ":ht:" arg; do
case $arg in

434

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

h)
echo "Usage: myscript [-h][-t dir]"
55

t)
targetdir=$0PTARG
55

2
echo "$OPTARG requires an argument!"
exit 1
55

*)
echo "Oops! Bad option $OPTARG!"
exit 1

esac

done

Commands can be grouped using parentheses or curly brackets. Commands in curly
brackets are executed sequentially, and the result of the operation is the result of the last
command. The command block in parentheses is executed in the same way, but in a
separate shell instance (called subshell). This is important to remember, because if you
change the value of a variable in such a block, it will not change in the main shell:

myvar=10

(echo subshell; myvar=20)

echo $myvar

true 8% { echo shell; myvar=30; }
echo $myvar

The result will be this:

subshell
10

shell

30

435

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

Subshell is convenient to use to execute parts of a script in the background or in a
separate directory (in this case, you don’t need to return to the current directory).

Another useful feature of shells is functions. Although bash has the function
keyword, it is better not to use it, but define a function like this:

myfunc () {

You should not write anything inside the parentheses! All arguments passed to the
function will be available in the body via position variables $1, $2, etc., or via variables
$@ and $*. Local variables can be defined in the function body; for this purpose, the
declaration must be preceded by the keyword local.

You can exit a function by executing either the last command in its body or the
return command. A function is called in the same way as a normal command; no
brackets for arguments and no commas between them are needed:

myfunc argl arg2 arg3

The shell has exception and signal handling. It is done with the trap command. The
first argument of the trap command is the handler command or the ‘-’ sign, followed by
the names of the signals to be handled. If the second argument is ‘-, the handlers of the
specified signals will be reset. You can pass a function name as a handler:

myhandler () {
echo "Auch"

}
trap myhandler SIGINT SIGTERM

sleep 60
echo I was not interrupted

This script will run for a minute and print how many times it was attempted to be
interrupted by pressing Ctrl-C or sending a SIGTERM signal. The special "signals" are
RETURN, ERR, EXIT, and DEBUG. It is better to read about them in the documentation.

436

CHAPTER 29 SHELL SCRIPTS — BASICS AND COMMON MISTAKES

Not-a-Mistake

Here are some command lines, I often can see, but which have more handy and practical

shortcuts:

Often used May be better

sudo su sudo -s / sudo —i

cat file | grep grep file #in scripts

grep ‘abc’ file | awk ‘{print $2} awk ‘/abc/ {print $2)

exit Ctrl-D

echo “$var” | we -c “${#var}”

echo “$var” | sed ‘s/A.*abc//’ “${var#*abc}”

if [“x$var” = “x"1]; ... if [${var:-none} = none J; ...

sort | unig sort -u # exception: sort | uniq -c
if [“x$VAR” = “x”]; then VAR=abc; fi ${VAR:-abc} (default value)${VAR:=abc} (assign value)
Brief Summary

Bash scripts are powerful tools you can use almost everywhere. They are relatively slow,
and it is useful to know how you can optimize them.

Search Keywords

BASH scripting manual, Advanced BASH Scripting Guide

437

CHAPTER 30

Systemd - A Short Course

Units

There was a brief introduction to systemd in the chapter “Booting and init.” The basic
concept for systemd is unit - it can be a description of a service, an action, or a rule. As a
rule, a unit is a file with a standard structure in the style of ini-file, i.e., the file is divided
into sections, and the name of the section is given in square brackets. Within a section,
each line has the form “key = value.”

All processes, defined in units, are running inside Linux control groups; each group
is called “slice,” and inside the slice, you can specify various control group limits; we’ll
stop at this later. Units can belong to system or to user, but here we'll talk only about
system ones.

If you have changed or created a new unit, its description file should be copied to
/etc/systemd/system. Generally, units are stored in the /1ib/systemd/system/
directory (or sometimes in one of many others, refer to the man page), but if you copy
the file there, it may be overwritten when the package is updated, so the /etc/systemd/
system directory was created to prevent such situations. Descriptions from this directory
have higher priority, so you can override defaults.

Moreover, you can override not the full unit definition, but just selected parts. And I
recommend using this approach, instead of replacing system unit, even in /etc folder. In
this case, future updates will be applied gently, if they don’t interfere with your changes.

To do that, for service servicename, you have to create a directory titled /etc/
systemd/system/servicename.d and then put there file(s) with . conf extension. This
applies not only for service units, but for all unit types. In those files, you can specify only
sections you want to modify and only keys/values you want to add, update, or delete. To
delete the value, usually you just need to specify an empty value. Note that some keys

439
© Sergey Zhumatiy 2025

S. Zhumatiy, Supercomputers for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1600-0_30

https://doi.org/10.1007/979-8-8688-1600-0_30#DOI

CHAPTER 30 SYSTEMD — A SHORT COURSE

can be specified multiple times, e.g., ExecStart. If you specify such key, it will be just
added, if you want to replace the current value, specify an empty value first, the key(s)
and value(s) you want to set.

After updating the unit descriptions, you should force systemd to reread them with
the systemctl daemon-reload command.

Here is an example unit describing a service:

[Unit]

Description=MDM Display Manager
Documentation=man:mdm(1)
Conflicts=getty@tty7.service
After=system-user-sessions.service

[Service]

ExecStart=/usr/sbin/mdm --nodaemon
ExecReload=/usr/sbin/mdm-restart
ExecStop=/usr/sbin/mdm-stop
Restart=always

RestartSec=1s

TimeoutStopSec=5s

[Install]
WantedBy=graphical.target
Alias=display-manager.service

The first section, Unit, describes the dependencies; it also contains a description
and optionally a link to documentation. Dependencies are managed by the following
options:

Requires=srvi1, ... -Ifour unitstarts, the units listed here start and continue only
if all of them have started successfully.

Requisite=srvi, ... -Ifatleastone of the specified units is not started, the start of
this unit automatically fails.

Wants=srv1, ... - Before starting this unit, the units listed here are started, but their
start status is not checked.

BindsTo=srv1, ... -SimilartoRequires, butin addition, if one of the specified
units stops, this also stops.

440

CHAPTER 30 SYSTEMD — A SHORT COURSE

PartOf=srvi - All actions (start, restart, stop) on the specified unit will be performed
on this unit as well.

Conflicts=srvi, ... - Starting this unit will cause the specified ones to stop and
vice versa.

Before=, After= ... - Specifies the launch order relative to other units, if they are
launched simultaneously or by dependency.

PropagatesReloadTo= ... - When restarting this unit, the specified ones will be
restarted.

ReloadPropagatedFrom= ... - When one of the specified units is restarted, this unit
is restarted.

StopWhenUnneeded=true/false - Stop this unit if it is no longer needed for any other
unit. The default is false, i.e., if the unit was started by dependency and the “parent”
unit is stopped, this continues to work.

You can also specify other options here, but it is better to read about them in the
documentation.

The next section is Service; it describes the life cycle of our service and everything
related to it. For the different types of units, this section will be omitted and replaced
by a relevant one, e.g., for timer unit, section [Timer] will be used. The most necessary
options are in this section:

Type=. .. - Variant of service startup. Possible values:

o simple starts the program specified in the ExecStart option and
monitors this process. Its completion means that the service is
terminated.

o forking is similar to simple, but expect the program to call fork and
create a new process group (a standard “daemonizing” mechanism
in UNIX-like systems). It is recommended to specify the PIDFile
parameter if the program creates a PID file.

o oneshot is similar to simple, but the program is expected to
terminate shortly, only then running units by dependencies.

o dbus is similar to simple, but expect the program to register the name
in D-BUS. The name is specified in the BusName= parameter.

o notifyissimilar to simple, but expect the program to call sd_notify
and send a notification. Only after the notification, the units by
dependencies will be started.

441

CHAPTER 30 SYSTEMD — A SHORT COURSE

o 1idleissimilar to simple, but program start is delayed until other
active tasks are started. This is done only so that the output of this
unit is not mixed with others and is at the very end.

RemainAfterExit=true/false - If true, then after the program specified in
StartExec is terminated, the service is considered to continue running (convenient in
combination with Type=oneshot).

ExecStart=prog - Start string. For oneshot type, you can specify any number of
such options, for all others - only one. One or more prefixes can be specified before the
start string:

o “@” - The second word in the string will be passed as argv[0] to
the running process. In other words, it will be shown in the list of
processes as specified by the second word in the string.

(.

- Ignore the return code (a nonzero return code is also considered
a successful completion).

e “+” - Run the process with full permissions; User=, Group=,
CapabilityBoundingSets=, etc., options are ignored.

«u l ” ., n

- Similar to “+’, but only User=, Group=, and
SupplementaryGroups= are ignored.

e “I'1” _Similar to

Hl"
)

but does not work on systems without
AmbientCapabilities= support and may be used if they are required.

” u I ”

Multiple prefixes can be specified, but only one of “+’, “!”J and “!'!” can be used. The
same prefixes work in other options where startup strings are specified: ExecStartPre=,
ExecStartPost=, ExecReload=, ExecStop=, and ExecStopPost=.

ExecStartPre=, ExecStartPost= - Execute the command before/after StartExec=.

ExecReload= - Execute the command if necessary to reread the unit’s configuration.

ExecStop= - Execute command to stop the unit. Often needed for forking or
oneshot types, when systemd does not know the PID of the service.

ExecStopPost= - Execute the command after stopping the unit.

RestartSec= - Time to wait before restarting the unit. It can be set as a number in
seconds or as a string like “1min 15sec”; default is 100 ms.

442

CHAPTER 30 SYSTEMD — A SHORT COURSE

Restart= - In which cases, the service will be automatically restarted:
e no - Never

e on-success - Upon successful completion or completion by a
standard signal (TERM, PIPE, INT, HUP)

e on-failure - When terminated with a nonzero code, by abnormal
signal or by timeout

e on-abnormal - When terminated by timeout or abnormal signal
¢ on-watchdog - On timeout

e on-abort - On an abnormal signal

» always - In any of the above cases

TimeoutStartSec=/TimeoutStopSec= - Waiting time for confirmation of unit start/
stop for dbus/inotify types. For other types, when stopping the unit, the TERM signal
is sent first, and if the process has not finished after the specified time, the KILL signal
is sent.

WorkingDirectory= - The directory to which the transition will be made before
launching all commands.

User=, Group=, SupplementaryGroups= - Username, group, and the list of
supplementary groups with which the unit will be launched.

LimitCPU=, LimitFSIZE=, LimitDATA=, LimitSTACK=, LimitCORE=, LimitRSS=,
LimitNOFILE=, LimitAS=, LimitNPROC=, LimitMEMLOCK=, LimitLOCKS=,
LimitSIGPENDING=, LimitMSGQUEUE=, LimitNICE=, LimitRTPRIO=, LimitRTTIME= - Limits
(seeulimits).

Umask= - File and directory creation mask

Nice= - Specify the level of “politeness,” nice

Environment= - Specify environment variables in the following format:
“VAR1=word1 word2” VAR2=word3 “VAR3=$word 5 6" The list is separated by a space,
values are specified in double quotes, and the ‘$’ sign has no special meaning.

EnvironmentFile= - Full path to the file with environment variables in the format
“VAR="word1 word2"”, one variable per line. Lines starting with ‘#, ‘;, without ‘=" or
empty lines are ignored. If there is a ‘-’ sign before the file name, the file may be absent;
otherwise, an error will be generated, and the unit will not start.

443

CHAPTER 30 SYSTEMD — A SHORT COURSE

444

StandardInput= - Where to redirect standard input from, possible values:

null (default) to /dev/null.
tty to the console specified in TTYPath-=.

tty-force is similar to tty, but first disconnect the occupying
process, if any, from the terminal.

tty-fail is similar to tty, but if the terminal is occupied by another
process, complete the startup crash.

data to the thread connected to the running process specified in
StandardInputText=/StandardInputData=.

file:path into a file system object (file, FIFO, socket, device).

socket (only for socket-activated units) to the active socket.

StandardOutput=/StandardError - Where to redirect the output/error stream.
Possible values:

inherit to the same place as standard input.
null to /dev/null.
tty to the console specified in TTYPath=.

tty-force - As tty, but if the terminal was used by a running
process, detach it first.

tty-fail - As tty, but if the terminal was used by a running process,
then fail.

journal to a journal that can be accessed via journalctl.
syslog to log and syslog to log.
kmsg to the kernel log buffer (you can then see this output in dmesg).

journal+console, syslog+console and kmsg+console - Similar to
the above three options and additionally to the system console.

file:path into a file system object (file, FIFO, socket, device).

socket (only for socket-activated units) to the active socket.

CHAPTER 30 SYSTEMD — A SHORT COURSE

Environment variables are set for all running processes (they can be changed via the
Environment and EnvironmentFile options):

o $PATHis forcibly reset to /usr/local/sbin:/usr/local/bin:/usr/
sbin:/usr/bin:/sbin:/bin.

e $LANGis the locale from locale.conf or kernel.
e $USER, $LOGNAME - Username.

e $HOME is the home directory.

o $SHELL - Login shell.

o $INVOCATION IDis a string with a hexadecimal representation of a
128-bit number unique to each unit run.

o $XDG_RUNTIME_DIR is the directory to save the state.
o $XDG_SESSION ID, $XDG_SEAT, $XDG_VTNR - Session, login, and virtual

terminal identifiers.

e $MAINPID - PID of the head process, if known, is passed to processes
started via ExecReload= etc.

o $TERM - Terminal type (only for units connected to the terminal).

o $SERVICE_RESULT for service type only, passed to processes started
via ExecStop= and ExecStopPost=, the value reflects the service

termination status:
o success - The service was completed successfully.

e protocol - The service did not perform the necessary steps at
startup.

¢ timeout - One of the startup steps has timed out.

« exit-code - The service has terminated with a nonzero status; the
start code is passed to $EXIT_CODE.

o signal - The service was terminated by sending a signal without
saving the core file.

o core-dump - The service was terminated abnormally by sending
a signal with saving the core file.

445

CHAPTER 30 SYSTEMD — A SHORT COURSE

o watchdog - The watchdog for the service has been activated, and
the timeout time has passed.

o start-limit-hit - The service start time limit was set, and the
service failed to meet the limit.

« resources - The service has exhausted the resource limit.

o S$EXIT_CODE for service type only - Service termination status
(“exited,” “killed,” or “dumped”).

o $EXIT_STATUS for service type only - The return code of the service
process or the name of the signal by which it was terminated.

This data should be enough to implement almost any service description similar to
the SystemV start script. I will not write here how to start the service by timer, file system
change, socket connection, etc., and leave it as an exercise. Hint - There is nothing
complicated; in addition to the service description, you will need a description of
.timer, .path, etc., and their binding together.

As I said before, systemd uses “slices” to run everything. There is a possibility to run
several instances of the same service or several user sessions in different slices. This is
done by creating a unit template with a name ending in ‘@. For example, the file getty@.
service:

[Unit]

Description=Serial Getty on %I
BindTo=dev-%i.device

After=dev-%i.device systemd-user-sessions.service

[Service]

ExecStart=-/sbin/agetty -s %I 115200,38400,9600
Restart=always

RestartSec=0

You can see that in some lines, the parameters %I and %1 are used; the instance
name will be passed through them when creating an instance from the template. The
difference between them is that in %I will be the real name, and in %i - an adapted name,
in which the characters ‘/’ will be replaced by ‘-, and special characters (including ‘-") -
by their hex code in the format ‘\xAB! Therefore, the second option is convenient when
forming file names, e.g., in the bind-to parameter.

446

CHAPTER 30 SYSTEMD — A SHORT COURSE

You can start an instance of such a template as follows: systemctl start getty@-
dev-ttyUSBO.service. In this case, our service will start the service with the command

/sbin/agetty -s /dev/ttyUSBO 115200,38400,9600

User sessions are slices too. They are controlled by 1logind service. Using logind
settings and user slices you can control user limits, sometimes in a more flexible way
than we considered in the chapter “Users - Quotas and Access Rights.”

Here is an example you can use to set limits for all users’ sessions by default - file /
etc/systemd/system/user-.slice.d/10-defaults.conf:

[Slice]
TasksAccounting=yes
CPUAccounting=yes
TasksMax=1250
CPUQuota=100%
MemoryMax=160G

Here two first lines turn on the accounting for the number of tasks and resources,
and later - set exact limits. Note that CPU quota 100% means “one full cpu core.” Note
that the corresponding “Accounting” should be enabled to make quotas work.

If you need to change such limits for the exact user (but not for group), you can
create file like /etc/systemd/system/user-UID.slice.d/10-defaults.conf; it will
override the default settings. You should specify the UID, not the username.

All these limits can be used for any service/slice in the system! Here are some useful
limits, you can use:

Option Meaning
CPUAccounting=yes Turn on CPU, memory, processes, 10, network
MemoryAccounting=yes accounting

TasksAccounting=yes
I0Accounting=yes
IPAccounting=yes

CPUQuota=10% Limit service or user session more than 10% of one CPU

MemoryHigh=bytes Soft and hard memory limits (see ulimit)
MemoryMax=Dbytes

(continued)
447

CHAPTER 30 SYSTEMD — A SHORT COURSE

Option Meaning

TasksMax=N Max number of processes (see ulimit)
IOReadBandwidthMax=device bytes, Limit read or write bandwidth/IOPs on the specified
|OWriteBandwidthMax=device device

bytes, I0ReadlOPSMax=device IOPS,
[OWritelOPSMax=device I0PS

IPAddressAllow=ADDRESS[/PREFIXLEN] Limit access to/from specified IP address ranges
IPAddressDeny=ADDRESS[/PREFIXLEN]

RestrictNetworkInterfaces=LIST Limit access to specified network interfaces
DeviceAllow=DEV Limit access to devices
Slice=NAME Put this service into a slice with specified name. By

default, for services — system.slice

More info in man systemd.resource-control. Logind service has its own config
file - /etc/systemd/logind.conf. Here are some useful options you can tune in its
[Login] section:

Option Meaning

KillUserProcesses=yes Kill all user processes on the session end. Breaks screen/tmux/nohup/etc
SessionsMax=N How many sessions can a user have at one time. Default 8192

RemovelPC=yesIno Free any allocated IPC resources (shared memory, semaphores, etc.) after
the session ends. Default — yes

RuntimeDirectorySize=N Limit the size of the $XDG_RUNTIME DIR

systemctl Commands

In addition to the systemctl commands discussed in the chapter “Booting and init,”
note the following:
list-sockets [PATTERN...] - List of socket units. Example output:

LISTEN UNIT ACTIVATES
[::]:22 sshd.socket sshd.service
448

CHAPTER 30 SYSTEMD — A SHORT COURSE

You can see that port 22 is listening to the description of the socket unit in sshd.
socket, and it starts the sshd.service unit.

list-timers [PATTERN...] - Similar to the previous one, but timer units are listed.

try-restart units - If the listed units are running, restart them; if not, do nothing.

cat unit - Display the text of the unit description file on the screen.

show unit - Show all internal properties of the unit.

set-property unit keyl=valuel ... - Change the unit property on the fly,
if possible. Useful for changing limits if they are set for a unit.

list-dependencies unit - List of unit dependencies with sub dependencies.

reset-failed unit - Reset the failure counter. If a service has failed to start several
times in a row, systemd gives it a failed status. After that, even an attempt to execute
systemctl start srvwill fail, systemd will generate an error and will not even try
to start srv. With this command, you can reset the failed status and try to start the
service again.

mask/unmask unit - Similar to disable/enable, but in the disabled state, the unit
cannot be started even manually.

set-default target - Specify this target by default, i.e., it will be loaded
after reboot.

daemon-reload - Reread unit description files.

rescue/emergency/halt/poweroff/reboot - Similar to running systemctl isolate
X.target, where X is the specified mode, but in addition, a message is sent to all users
with the wall command.

Journald

The systemd-journald service is optional, but it is usually enabled by default. It can run
in parallel with the regular syslog server, and messages will appear in both. Events are
stored in a special database, which allows you to quickly find the necessary data. You can
view logs with the journalctl command. Its useful keys are

e -a-Show all fields completely, even if they contain problematic
characters (control characters, etc.).

e -f-Gotothe end of the list and show new lines as they appear.

e -n NNN - Output NNN lines of logs (10 by default); if “all” is specified
instead of a number, then output all.

449

CHAPTER 30 SYSTEMD — A SHORT COURSE

e -e-Gotothe end of the list; default assumes the key ‘-n1000’
e -X-Add auxiliary information (return codes, etc.).

e -u unit - Show information only for the specified unit; you can
specify a mask, e.g., “*tty*"

e --disk-usage - How much space the binary logs take up.
e --sync - Flush the data from memory to local files.
e --vacuum-size=NNNN - Delete old events from the log until the log

size is less than the specified size (the number is assigned to ‘K; ‘M,
and ‘G’ for kilo-, mega-, and gigabytes, respectively).

e --vacuum-time=NNNN - Remove events from the log older than the

“S" «“ ” « n «

specified value; the suffix “s’, “min", “h’, “days’; “months”, “weeks’, or

“years” is specified to the value.

e --no-pager - Do not use an external program to display information;
the default is less.

e --since / --until - From what moment/to what time to show logs
(time format YYYYY-MM-DD HH:MM:SS; some fields can be omitted,
also acceptable are the words today, yesterday, and tomorrow, to
which you can add relative time, e.g., “yesterday-10:00:00").

o -b-Show logs since the last time the server was turned on; you can
add relative time to it as in the previous option.

e -p prio - Limit output to events with priority not higher than
specified. The priority is specified by number or name in syslog
format: emerg (0), alert (1), crit (2), err (3), warning (4), notice
(5), info (6), and debug (7).

You can select the output option with the -o key. We will not dwell on the possible
variants in detail; I will note only short-iso, verbose, and json variants, which may be
useful for further processing in some script. If you need to clean your journal records for
some reason, use a command like journalctl --sync --vacuum-time=5s. Note that
without --sync, only records written to the disk will be cleaned.

450

CHAPTER 30 SYSTEMD — A SHORT COURSE

Network Config, Time Sync, and Hostname
Resolving

systemd-networkd service can be used to control and automatically configure your
network interfaces. When a new network device link appears, this service checks the
rules from the config files, and it finds a match, applies them. Files should have .network
extension and by default are located in /usr/1ib/systemd/network directory. In the
/etc/systemd/network, you can place files to override defaults.

The file has two main sections: [Match], which defines if the configuration should
be applied to the link, and [Network], defining the interface configuration. The first
matched file will be applied, and the rest will be ignored, so the file name is important. It
has really many options and cases of application. I don’t describe them here, and if you
see that some interfaces in your systems are managed by networkd (or want to use it),
please read the official documentation.

To replace ntp client service in the systemd ecosystem, there is a systemd-timesyncd
service. The main section of the service definition is [Time], and the main key there is
“NTP” - space-separated list of remote ntp servers. Note that some NTP servers can be
obtained by networkd from DHCP server; in this case, they are added to this list.

systemd-resolved is a service, implementing the hostname DNS resolving. To
enable it, add ‘resolve’ to the list of options in ‘hosts:’ line in /etc/nsswitch.conf file.
Alsoif127.0.0.53 or 127.0.0.54 are used as a DNS server (e.g., in /etc/resolve.conf),
then also local resolved service will be used. Configuration file is resolved. conf, located
in well-known places. The most important options:

Option Meaning
DNS=LIST A space-separated list of IPv4 and/or IPv6 addresses of DNS servers
Domains=LIST A space-separated list of domain prefixes, used in search

Cache=yeslnolno-negative Controls whether the DNS responses should be cached or not.
no-negative means caching only positive results

This service can be controlled by resolvect]l command. resolvectl status shows
current settings, including the actual list of remote DNS servers. resolvectl query
works like dig command - resolves the given hostname. Other useful subcommands are
statistics, reset-statistics, flush-caches, show-cache, and monitor.

451

CHAPTER 30 SYSTEMD — A SHORT COURSE

Analyzing

systemd-analyze allows you to analyze some issues in services loading and overall
system boot process. systemd-analyze blame shows you the sequence of all services,
started in the current session with times, taken for start. The list is sorted by times, so
it is easy to check which services are slow to start. Another option is systemd-analyze
critical-chain, showing only the longest chain of dependent units:

$ systemd-analyze critical-chain
The time after the unit is active or started is printed after the "@"
character.

The time the unit takes to start is printed after the "+" character.

graphical.target @4min 4.109s
L—watchdog.service @min 3.616s +492ms
Lmulti-user.target @min 3.552s
L—remote-fs.target @1min 48.526s
L—remote-fs-pre.target @1min 48.526s
L —open-iscsi.service @1min 48.101s +407ms
L—iscsid.service @imin 34.602s +13.496s
L—network-online.target @53.979s
L—iptables-openvpn.service ®26.857s +26.862s
L basic.target @26.853s
L—paths.target @26.853s
L—acpid.path ©26.853s
L sysinit.target @26.301s
L—sys-fs-fuse-connections.mount @53.921s +51.085s
L—systemd-modules-load.service @9.274s +2.112s
L—systemd-journald.socket @8.536s
Lsystem.slice @8.230s
L—-.slice @8.230s

If you use systemd timers and want to use complicated time expressions, you can
check them using systemd-analyze calendar, like this:

systemd-analyze calendar --iterations=2 '*-2-29 0:0:0'
Original form: *-2-29 0:0:0
Normalized form: *-02-29 00:00:00

452

CHAPTER 30 SYSTEMD — A SHORT COURSE

Next elapse: Tue 2028-02-29 00:00:00 PST
(in UTC): Tue 2028-02-29 08:00:00 UTC
From now: 2 years 9 months left

Iteration #2: Sun 2032-02-29 00:00:00 PST
(in UTC): Sun 2032-02-29 08:00:00 UTC
From now: 6 years 9 months left

systemd-analyze cat-config works line systemctl cat, but for configs, not for units.
For example, if you put additional info into /etc/systemd/logind.conf.d/50-
override.conf, systemd-analyze cat-config systemd/logind.conf shows you full
config with changes.

When you modify or create a systemd unit, a good idea is to check if you didn’t make
any types, or other mistakes; in this case, systemd-analyze verify path-to-file can
help. It will check the syntax, dependencies, and if all referenced files and services exist
in the system. If your file name is not in systemd format, you can specify alias for this
unit: systemd-analyze verify ./myfile:alias.service. For other useful commands,
see the documentation.

Brief Summary

Systemd today is the central system for managing services and many other aspects of
the OS; even if you don’t use it, you have to know about its abilities and how it can spoil
(or help) your life. For example, if you don’t see a cronjob, but something is running as a
cronjob, it may be a systemd timer.

Search Keywords

systemd, journald, logind, systemd-resolved, systemd unit, systemd service, systemd
slice, systemd timer, systemd socket

453

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Glossary of Terms
	Chapter 1: Introduction
	Conventions and Notations Adopted in the Book

	Chapter 2: What Is “Super”?
	General Concepts of Parallel Processing and Parallel Programs
	Types of Clusters
	Clusters and Supercomputers – Common and Different

	What “Super” Means to a Supercomputer Administrator
	Centralized Management of the Computer Complex
	Brief Summary
	Search Keywords

	Chapter 3: How to Build and Start It?
	Anatomy of a Supercomputer
	Planning
	Documentation
	OK, We Got It, What’s Next?
	What Should I Do Later?
	Short Notes
	Brief Summary
	Search Keywords

	Chapter 4: Supercomputer Hardware
	Control Node
	Compute Node
	Login Node
	Service Nodes
	Network Equipment
	Data Storage
	Hardware Architecture Features
	Brief Summary
	Search Keywords

	Chapter 5: InfiniBand
	Component Identification and Addressing in InfiniBand Networks
	InfiniBand Subnet Management
	IP Over InfiniBand (IP Over IB, IPoIB)
	Utilities for InfiniBand Network Viewing and Managing
	Alternatives
	Brief Summary
	Search Keywords

	Chapter 6: How a Supercomputer Does the Job
	How a Typical User Session Occurs
	Job Life Cycle
	What Is Hidden from the User
	Brief Summary
	Search Keywords

	Chapter 7: UNIX and Linux – the Basics
	Processes
	Access Rights
	Concept of Service, Key Services
	Manuals
	File Naming Conventions
	Extension Agreements
	Templates
	Commands for Working with the Directory Tree
	Commands for Working with Catalogs

	Commands for Working with Files
	Packages
	Network Commands
	“Cluster” Commands
	Brief Summary
	Search Keywords

	Chapter 8: UNIX and Linux – Working Techniques
	The Magic of sysctl
	udev Subsystem
	PAM Modules
	Shell Tricks
	Tips for Some Often Used Commands
	Brief Summary
	Search Keywords

	Chapter 9: Network File Systems
	NTP
	NFS
	Lustre
	Architecture
	Creation of Lustre File System
	Fault Tolerance in Lustre
	Striping and PFL
	Quotas

	PanFS
	GPFS/IBM Storage Scale
	Other File Systems
	Brief Summary
	Search Keywords

	Chapter 10: Remote Management
	ssh and Parallel ssh
	Forwarding Environment Variables
	Port Forwarding
	X Connection Forwarding
	File Transfer
	SSH Agent
	Configuring the ssh Server
	Configuring the ssh Client
	Host-Based Authentication

	pdsh
	Cluster Shell
	Screen and tmux
	IPMI
	Conman
	iKVM
	Brief Summary
	Search Keywords

	Chapter 11: Users – Accounting Management
	Account Synchronization
	Classic Approach
	NIS/NIS+
	LDAP
	Brief Summary
	Search Keywords

	Chapter 12: Users – Quotas and Access Rights
	File System Quotas
	ulimits
	UNIX Groups, ACLs
	Restrict User Access
	Brief Summary
	Search Keywords

	Chapter 13: Job Management Systems
	Principles of Operation and Capabilities
	Kubernetes, etc.
	Access Problem
	Brief Summary
	Search Keywords

	Chapter 14: OpenPBS and Torque
	Installing Torque
	Setting Up Torque
	Configuring the MOM Server on Compute Nodes
	Customizing the Scheduler
	Using Torque
	Job Control Commands
	Brief Summary
	Search Keywords

	Chapter 15: Slurm
	Slurm Installation
	Accounting
	Accounting Setup
	Basic Setup and Usage
	Partitions
	Nodes
	Generic and Trackable Resources
	Backfill and Preemption
	QoS and Limits
	Priorities and FairShare
	User Levels
	Topology
	Reservations
	User Experience
	Job Life Cycle
	scontrol
	Accounting and Statistics
	Troubleshooting
	Advanced Parameters for slurm.conf
	Brief Summary
	Search Keywords

	Chapter 16: Containers
	Singularity
	Apptainer
	CharlieCloud
	Pyxis + Enroot
	Caching
	Brief Summary
	Search Keywords

	Chapter 17: Clouds
	Brief Summary
	Search Keywords

	Chapter 18: Remote User Access
	SSH
	FTP and WWW
	X-Window
	Alternatives for X11
	Brief Summary
	Search Keywords

	Chapter 19: Cluster Status Monitoring Systems
	SNMP
	Ganglia
	Nagios
	Zabbix
	Modern Approach
	XDMoD
	Lm_sensors/Hwmon
	IPMI
	APCUPS
	NUT
	Healthchecks
	Security Scans
	Brief Summary
	Search Keywords

	Chapter 20: Backup
	Tar
	Bacula
	Rsync and Others
	Brief Summary
	Search Keywords

	Chapter 21: Compilers and Environments, for Parallel Technologies
	gcc/gfortran
	Intel and NVIDIA HPC Compilers
	PMIx
	mpich
	OpenMPI
	Mvapich/Mvapich2
	Proprietary MPI: Spectrum MPI and IntelMPI
	SHMEM Library, OpenSHMEM Standard
	CUDA
	UCX and NCCL
	OpenCL
	OpenACC
	Environment Modules and LMOD
	Build Systems
	Brief Summary
	Search Keywords

	Chapter 22: Parallel Computing Support Libraries
	ScaLAPACK
	PETSc
	FFT/FFTW
	TBB
	Debuggers and Profilers
	Brief Summary
	Search Keywords

	Chapter 23: Booting and Init
	Booting from Hard Disk
	INIT in SystemV Style
	Systemd
	Network Booting
	DHCP
	TFTP, PXE, and NFS-Root
	Brief Summary
	Search Keywords

	Chapter 24: Node Setup and Software Installation
	Network and Hardware Drivers
	Configuring the Control and Compute Nodes
	Installation and Configuration of the Login Node
	NFS Server Configuration
	Configuring the Communication Software
	Installing Compilers and Libraries
	Customizing the Job Management System
	Installation and Configuration of the Cluster Compute Node
	Brief Summary
	Search Keywords

	Chapter 25: Out-of-the-Box Stacks and Deployment Systems
	ROCKS
	Parallel Knoppix/PelicanHPC
	Brief Summary
	Search Keywords

	Chapter 26: Cluster Management Systems – xCAT and Others
	Installation and Initial Setup
	Architecture and Commands
	Node Management
	Loading and Controlling
	Canonical MaaS
	Foreman
	NVIDIA Base Command Manager
	Brief Summary
	Search Keywords

	Chapter 27: Communicating with Users
	Correspondence
	Accounting for Requests from Users
	Actualization
	Education
	Brief Summary
	Search Keywords

	Chapter 28: One-Two-Three Instructions
	NTP
	Configuring the NFS Server
	Configuring the NFS Client
	Installing Lustre (No HA)
	NIS+ Server Installation
	Installing the NIS+ Client
	Installing OpenLDAP (Using RH As an Example)
	Customizing Xorg
	APCUPSD
	xCAT
	Brief Summary
	Search Keywords

	Chapter 29: Shell Scripts – Basics and Common Mistakes
	Not-a-Mistake
	Brief Summary
	Search Keywords

	Chapter 30: Systemd – A Short Course
	Units
	systemctl Commands
	Journald
	Network Config, Time Sync, and Hostname Resolving
	Analyzing
	Brief Summary
	Search Keywords

