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Preface

Visual question answering (VQA) is a fundamental task in vision-and-language
research and has attracted considerable attention from computer vision (CV), natural
language processing (NLP) and other diverse artificial intelligence communities.
VQA connects CV and NLP, thereby stimulating research and expanding the limits
of both fields. In the most common form of VQA, the computer is presented with an
image and a textual question regarding the image. Subsequently, the computer must
determine the correct answer and present it in a few words or a short phrase. Variants
include binary (yes/no) and multiple-choice settings, in which candidate answers are
proposed.

A key distinction between VQA and other tasks in computer vision is that the
question to be answered is not determined until run time. In traditional problems such
as segmentation or object detection, the question to be answered by an algorithm is
predetermined, and only the input image changes. In contrast, in VQA, the form of
the question and set of operations required to answer it are unknown. This task is
associated with the challenge of general image understanding. In particular, VQA is
related to the task of textual question answering, in which the answer must be sought
in a specific textual narrative (i.e., reading comprehension) or large knowledge bases
(i.e., information retrieval). Textual QA has been studied for a long time by the
NLP community, and VQA represents its extension to additional visual supporting
information. Notably, this extension is accompanied by a significant challenge, as
images have a larger number of dimensions andmore noise than pure text. Moreover,
images lack the structure and grammatical rules of language, and no direct equivalent
to NLP tools such as syntactic parsers and regular expression matching exists. In
addition, images capture more of the richness of the real world, whereas natural
language represents a higher level of abstraction. For example, consider the phrase
“red hat” and the multitude of its representations that can be pictured; among these
representations, many styles cannot be described in a short sentence. The increasing
interest in VQA is driven by the availability of mature techniques in both computer
vision and NLP and the availability of relevant large-scale datasets. Therefore, a
large body of literature and ground-breaking models on VQA have appeared in the
recent five years. The aim of this book is to provide a comprehensive overview of this
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emerging field, covering fundamental theories, models and datasets, and to suggest
promising future directions.

This book can function as a survey of the keymodels used in the VQA domain and
can serve as a textbook for researchers in the computer vision and natural language
processing domain, especially researchers and students focusing on visual question
answering.Weexpect our readers to be able to promptly gain knowledge regarding the
theory and pros and cons of different popularmodels in the vision-and-language area.
This book can be used as a textbook for a course that introduces the basic principles
andmodels for VQA.Moreover, this book can help students (especially postgraduate
students) systematically understand the concepts andmethods of vision and language.
Through adiverse set of applications and tasks, this book can allow students to explore
the use of different models to solve real-world VQA problems. The book is written
to be friendly to readers, who require only fundamental machine learning and deep
learning knowledge to understand the topics. Basics of deep learning and question
answering are first presented to lay the groundwork.

In this book, we first introduce fundamental methods and techniques that are
widely used in the vision-and-language domain, including convolutional neural
networks, sequential modeling and attention mechanisms. Subsequently, we cate-
gorize the VQA tasks into image and video methods according to the visual format.
The image-based VQA methods are further classified into five categories, namely,
joint embedding, attention mechanism, memory network, compositional models and
graph-based models. In addition, we present an overview of other image-based VQA
tasks, such as knowledge-based VQA, text-based VQA and visual question gener-
ation. In Part III, we discuss video-based visual question answering and its related
models. In Part IV, additional VQA-related tasks, including the recently introduced
embodied VQA, medical VQA and visual dialogue, which are extensions of VQA,
are discussed. Eventually, we highlight future research directions in the VQA field.

Adelaide, Australia
July 2021

Qi Wu
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Chapter 1
Introduction

Abstract Visual question answering (VQA) is a challenging task that has received
increasing attention from computer vision, natural language processing and all other
AI communities.Given an image and a question in natural language format, reasoning
over visual elements of the image and general knowledge are required to infer the
correct answer, which may be presented in different formats. In this section, we first
explain the motivation behind realizing VQA, i.e., the necessity of this new task and
the benefits that the artificial intelligence (AI) field can derive from it. Subsequently,
we categorize the VQA problem from different perspectives, including data type and
task level. Finally, we present an overview and describe the structure of this book.

1.1 Motivation

Themotivation for visual question answering (VQA) [2] arose from image captioning
[4, 8, 14, 16, 39, 44], a task originally proposed to connect the computer vision and
natural language processing (NLP) fields to examine the image understanding ability
and extend the limits of both fields. Figure1.1 shows examples of image captioning
and VQA.

Computer vision (CV) and natural language processing (NLP) are two indepen-
dent research areas. CV is aimed at teaching machines how to see and involves meth-
ods for acquiring, processing and understanding images. In contrast, NLP is aimed
at teaching machines how to read and is focused on enabling interactions between
computers and humans in natural language. Both computer vision and NLP belong
to the artificial intelligence domain and share similar methods rooted in machine
learning.

In recent decades, two fields have witnessed significant advancements toward
achieving their respective goals. Moreover, the explosive growth of visual and tex-
tual data is driving the combined efforts in these two fields. For example, research
on image captioning, i.e., automatic image description [7, 16, 25, 39, 43, 47],
has produced powerful methods for jointly learning from image and text inputs
to form high-level representations. A popular approach is to combine convolutional
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Fig. 1.1 Image captioning and visual question answering

Fig. 1.2 The task of object detection and image classification can be treated as a VQA problem,
except that the question is predetermined

neural networks (CNNs) trained on object recognitionwith recurrent neural networks
(RNNs) to generate word sequences.

In VQA, the machine is presented with an image and a textual question regarding
the image. Amodel must predict the correct answer, typically in the form of aword or
a short phrase. Variants include binary (yes/no) [2, 49] and multiple-choice settings
[2, 50], in which candidate answers are presented. A closely related task is to “fill
in the blank” [48], in which an affirmation describing the image must be completed
with one or severalmissingwords. These affirmations essentially amount to questions
phrased in declarative form.

A significant distinction between VQA and other tasks in computer vision is
that the question to be answered is not determined until run time. In traditional
problems such as object detection, classification (Fig. 1.2) and segmentation, the
single question to be answered by the algorithm is predetermined, and only the input
image changes. A sample object detection question is “Where is the location of XXX
in the image?”, and a sample classification question is “Are any XXX present?”,
where “XXX” is an object label. All these questions are predetermined, and the label
space is known.
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Fig. 1.3 Images returned in a Google search of “a red hat”

In contrast, in VQA, the form of the question is unknown, as is the set of oper-
ations required to answer this question. In this sense, this task closely reflects the
challenge of general image understanding. VQA is related to the task of natural
language (textual) question answering, in which the answer is to be found in a spe-
cific textual narrative (i.e., reading comprehension) or large knowledge bases (i.e.,
information retrieval ). In general, textual QA has long been a research focus in the
NLP community, and VQA represents its extension to additional visual supporting
information. However, VQA is considerably more challenging, as images and videos
have a larger number of dimensions and more noise than pure text.

Moreover, images/videos lack the structure and grammatical rules of language,
and there is no direct equivalent to NLP tools such as syntactic parsers and regular
expression matching. Indeed, as the 2D projection of the physical world, the variants
of contents that appear in an image may be unlimited, and it is generally challenging
to identify the structure and grammatical rules to define the visual world.

Finally, images capturemore of the richness of the realworld, and natural language
already represents a higher level of abstraction. For example, for the phrase “a red
hat”, multiple representations can be pictured (Fig. 1.3), several of which cannot be
described in a short sentence.

Visual question answering is a significantly more complex problem than image
captioning as it frequently requires information not present in the image. This infor-
mation may range from common sense to encyclopedic knowledge regarding a spe-
cific element of the image. In this context, VQA constitutes a truly AI-complete task
[2], as it requires multimodal knowledge beyond a single subdomain. Furthermore,
after collecting the relevant information, VQAmust reason over the information and
integrate the supporting facts to derive the answer.

This aspect is a leading reason for the increased interest in VQA, as this task can
help evaluate our progress in developing AI systems capable of advanced reasoning
combined with deep language and image understanding. Image understanding could,
in principle, be evaluated equally well through image captioning. Practically, how-
ever, VQA provides a more accessible evaluation metric. In particular, the answers
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typically contain only a few words. Extended ground-truth image captions are chal-
lenging to compare with predicted captions. Although advanced evaluation metrics
have been examined, this aspect remains a research problem [11, 22, 38].

Moreover, to realize VQA, superior knowledge representation and reasoning for
bridging vision and language are required because to answer questions, both common
sense and domain knowledgemust be understood. Recently, VQA has been extended
to other communities, from medical to robotics. Medical VQA [1, 20] requires the
VQA model to answer questions that are related to medical images, such as a CT
scan. Moreover, VQA associated with robotics [5] requires an agent to answer ques-
tions regarding objects that cannot be seen in the current view, i.e., the agent must
navigate to the target location before answering the question, in a framework known
as embodied VQA.

One of the first integrations of vision and language is “SHRDLU”, which was
developed in 1972 [42] and allows users to use language to instruct a computer to
move various objects around in a “block world”. More recent attempts at creating
conversational robotic agents [3, 17, 27, 34] are also grounded in the visual world.
However, these frameworks are limited to specific domains and/or restricted lan-
guage forms. In comparison, VQA addresses free-form open-ended questions. The
increasing interest in VQA is driven by the availability of mature techniques in both
computer vision and NLP and relevant large-scale datasets. Therefore, a large body
of literature on VQA has appeared in recent years, from classical CNN-RNNmodels
to attention mechanisms and transformers.

The trend of VQA models has followed the evolution of deep learning models.
The first dominant trend of the VQA model corresponded to the CNN-RNN frame-
work, in which CNN models such as VGG [35] are used to extract the image and
video features, and a recurrent neural network (RNN) is subsequently used to harvest
features from questions. Next, the visual and textual features are combined and sent
to a multi-layer perceptron (MLP) network to predict the answer. Later, different fea-
ture combination methods were developed, such as attention-based [46] and bilinear
pooling-based [9] methods. With the development of the graph convolutional neural
network (GCNN), graphs were introduced in VQA models [29] as they include the
structural representation of images. Another line of work focused on the explain-
ability of VQA models, including memory network-based and compositional-based
models. In this book, we cover these topics by introducing their theories, advantages
and disadvantages.

1.2 Visual Question Answering in AI Tasks

The overall research goal of artificial intelligence is to create technology that allows
computers andmachines to function in an intelligent manner. The general problem of
simulating (or creating) intelligence has been decomposed into several subproblems.
These subproblems consist of particular traits or capabilities that researchers expect
an intelligent system to display. Several research domains have been explored in the



1.2 Visual Question Answering in AI Tasks 5

Fig. 1.4 Artificial
intelligence research goals
and problems. Visual
question answering involves
multiple topics, including
perception, NLP, knowledge
and reasoning (indicated in
red)

past 50 years, including reasoning, knowledge representation, planning, learning,
natural language processing and perception (computer vision), as shown in Fig. 1.4.

Before the VQA, most of the abovementioned topics were separately studied. For
example, research on computer vision (CV) is aimed at examining howcomputers can
gain a high-level understanding from digital images or videos. This domain includes
methods for acquiring, processing, analyzing and understanding digital images and
extracting high-dimensional data from the real world to produce numerical or sym-
bolic information, e.g., in the form of decisions. Classical computer vision tasks
include image/video classification [19], object detection and segmentation [23].

In contrast, natural language processing (NLP) is concerned with the interac-
tions between computers and human language; specifically, programming computers
require to process and analyze large amounts of natural language data. The relevant
tasks cover text and speech processing [30], syntactic analysis, machine translation
[45], dialogue management and question answering [32]. Knowledge representation
and reasoning (KR&R) is dedicated to representing information regarding the world
in a form that a computer system can use to solve complex tasks. The relevant models
incorporate findings from logic to automate various kinds of reasoning, such as the
application of rules or relations of sets and subsets.

Visual question answering is the first research topic that connects these areas
because answering a visual question requires multiple capabilities. First, in contrast
to question answering in the NLP domain, which does not include any visual con-
tent, questions in VQA are all visually related, i.e., questions pertain to the visual
content, such as objects, visual attributes and relationships from images and videos.
Hence, VQA requires a machine to understand visual information, which is a typical
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computer vision task. Second, a VQA model must understand questions that are in
the format of natural language. Thus, NLP techniques are required in the VQA task.
Third, VQA is a complex task that may require knowledge, for instance, common
sense or expertise (such asWikipedia), to obtain the solution. For example, to clarify
whether any mammals are present in an image, the model must know the animals
that are mammals. This knowledge cannot be directly obtained from images or texts
and can only be acquired from external knowledge bases.

Overall, the VQA task combines different modalities and sub-AI tasks (such as
CV, NLP and KR&R), as shown in Fig. 1.4. Thus, solving the problem of VQA
implies the solution of several related AI tasks.

1.3 Categorization of VQA

Modern VQA does not have a long history as other computer vision tasks, such
as image classification and segmentation. The first benchmark VQA dataset is
DAQUAR [24], which refers to the dataset for question answering on real-world
images. DAQUAR, which was proposed in 2014, contains only 795 training and 654
test images. Subsequently, a larger human-annotated dataset named VQA [2] was
proposed in 2015. Since then, VQA has emerged as one of the most important topics
in computer vision and natural language processing, attracting an increasing number
of researchers.

Recently, several datasets and tasks associated with VQA have been proposed,
ranging from synthetic images and real images to videos, covering general open
questions and medical-related questions. In the following section, we classify the
VQA problem in terms of data-source-level or task-level settings (Fig. 1.5).

Fig. 1.5 Categorization of VQA according to data and task settings



1.3 Categorization of VQA 7

1.3.1 Classification Based on Data Settings

From the data perspective, we can classify the VQA problem as image-based and
video-based VQA.

In image-based VQA, only static images are input to the VQA models, although
the images may pertain to different sources. The widely used VQA [2] and VQA
2.0 [10] datasets use images from MS COCO [23] because these images cover rich
contextual information. Images from COCOQA [33] and Visual7W [50] have the
same source, specifically, MS COCO. The GQA dataset [12] also uses context-rich
images selected from the Visual Genome dataset [18].

Other image-basedVQAdatasets [49] are basedon synthetic images. For example,
the VQA abstract dataset is based on cartoon images, and the CLEVR dataset [15]
is based on synthetic images that cover a range of 3D shapes with different sizes,
colors and materials.

Moreover, certain image-based VQA datasets use specific image sources. For
example, images from medical VQA tasks [1] are related to the medical field, such
as CT, X-ray and ultrasound images. The Text-VQA dataset [36] uses general natural
images, but all images include rich text (OCR tokens), and thus, a model must
recognize the text that appears in the images. The input of embodied VQA [5] is also
images; however, the images are captured from 3D synthetic builds.

Video-based VQA [13, 21, 37] is aimed at answering questions about videos,
and it is thus more challenging than image-based VQA. In particular, video-based
VQA is considerably different from image-based VQA. First, video-based VQA
must manage long sequence images with both rich visual and motion context rather
than a single static image. Second, because videos exhibit temporal cues, video-based
VQA necessitates additional temporal reasoning abilities to answer questions.

1.3.2 Classification by Task Settings

VQA problems can also be classified according to task settings. The most common
setting is to answer general visual questions without providing candidate answers,
with the questions pertaining mainly to visual appearance, such as “what color...?”,
“howmany...?” and “what is...?”.Many datasets belong to this category, for example,
the most widely used VQA [2] and VQA 2.0 [10].

Furthermore, certain VQA questions can only be answered using common sense.
KBVQA [40], FVQA [41] and OKVQA [26] belong to this category. In these tasks,
although only images and questions are presented during testing, VQAmodels must
query relevant knowledge from the knowledge base to answer questions. For exam-
ple, for the question “How many mammals are present in the image?”, a model must
know the animals in the image are mammals. This information can only be obtained
from common sense knowledge bases instead of from images.
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In addition to knowledge reasoning, severalVQAproblems are designed to test the
compositional reasoning ability of VQA models. For example, the CLEVR dataset
[15] designs complex chain and tree-structured reasoning forms and functions and
transforms them into natural language questions such as “Howmany cylinders are in
front of the small thing and on the left side of the green object?”. Models can answer
these questions only if they have strong visual reasoning abilities from both spatial
and appearance perspectives.

Embodied VQA [5] represents a slightly different task: an agent is spawned at
a random location in a 3D environment and asked a question. The agent must first
intelligently navigate to explore the environment, gather information through first-
person (egocentric) vision and finally answer the question.

1.3.3 Others

Instead of answering questions, several tasks related to VQA focus on generating
questions or maintaining multiple question-answer rounds, known as visual question
generation (VQG) [28] and visual dialogue (VisDial) [6], respectively.

VQG [28] can be considered a complementary task of visual question answering.
This task involves generating meaningful questions based on the input image. In
particular, this task is a multimodal problem involving image understanding and
natural language generation, especially using deep learning methods. Certain VQG
models use both images and answers to generate questions, while other models use
only images.

Visual dialogue [6] is similar to multiple rounds of VQA, requiring an AI agent to
hold a meaningful dialog with humans in natural, conversational language regarding
the visual content. Given an image, a dialogue history and a question regarding the
image, the agent must ground the question in the image, infer context from history
and correctly answer the question. Furthermore, another agent must generate a new
question based on the dialogue history, thereby maintaining the dialogue. VisDial
is adequately disentangled from a specific downstream task to serve as a general
test of machine intelligence while being sufficiently grounded in vision to allow the
objective evaluation of individual responses and benchmark progress.

Referring expression comprehension [31] is another related topic. In this task, the
answer is not text-based but pertains to a detected region. Specifically, this task is
aimed at localizing a target object in an image described by a referring expression
phrased in natural language. In contrast to the object detection task in which the
queried object labels are predefined, the REC problem can only observe the queries
during the test. This task has attracted considerable attention from both the computer
vision and natural language processing communities, and several lines of work have
been proposed, from CNN-RNN models and modular networks to complex graph-
based models.
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1.4 Book Overview

In this book, we first introduce the fundamental methods and techniques that are
widely used in the vision-and-language domain, including convolutional neural net-
works, sequential modeling and attention mechanisms, in Part I (Chaps. 2 and 3).
Subsequently, we divide the VQA tasks into two categories according to the visual
format: image and video. The image-based VQA methods (in Part II) are classified
into five categories: joint embedding, attention mechanism, memory network, com-
positional models and graph-based models. Furthermore, we present an overview
of other image-based VQA tasks, such as knowledge-based VQA and vision-and-
language pretraining for VQA. In Part III, we discuss video-based visual question
answering and its related models. In Part IV, we describe additional VQA-related
tasks, including the recently highlighted embodied VQA, medical VQA and visual
dialogue, which is an extension of VQA. Finally, we discuss future research direc-
tions in the VQA field.

This book can function as a survey of the key models used in the VQA domain
and be used as a textbook for researchers in the computer vision and natural language
processing domain, especially researchers and students focusing on VQA.
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Part I
Preliminaries

In this part, we introduce the fundamental methods and techniques that are widely
used in the vision-and-language domain, including convolutional neural networks,
sequential modeling and attention mechanisms.



Chapter 2
Deep Learning Basics

Abstract Deep learning basics are essential for the visual question answering task
since multimodal information is usually complex and multidimensional. Therefore,
in this chapter, we present basic information regarding deep learning, covering the
following: (1) neural networks, (2) convolutional neural networks, (3) recurrent neu-
ral networks and their variants, (4) encoder/decoder structure, (5) attention mech-
anism, (6) memory networks, (7) transformer networks and BERT, and (8) graph
neural networks.

2.1 Neural Networks

Neural networks are important models in machine learning. The structure of artificial
neural networks is similar to that of biological neural networks,which consist ofmany
neurons connected with weighted edges. In this section, we present basic definitions
and describe the basic architecture of neural networks.

Neurons are the basic units of neural networks, which take a series of weighted
inputs and return a correspondingoutput.As shown inFig. 2.1, neuron y calculates the
intermediate value x with theweighted sumof the input and bias as x = ∑n

i=1 xi + b.
Next, an activation function is implemented over x to generate the output of the
neuron through z = f (y), which is also the input of the next neuron. The activation
function maps a real number to a number between 0 and 1, which represents the
activation of the neuron. In the activation function, 0 represents deactivated, while
1 represents fully activated. Several widely used activation functions are the sig-
moid function σ(x) = 1

1+e−x , tanh function tanh(x) = ex−e−x

ex+e−x and ReLU function
ReLU (x) = 0, i f x ≤ 0 ; 1, i f x > 0. Additionally, the activation function can be
manually designed, following the principles of smoothing and easy calculation.

A neural network usually consists of an input layer, several hidden layers and
an output layer, which all contain several neurons. In the input layer, variables a =
{a1, a2, ..., an} are input into the neural network; in the hidden layer, calculations are
performed; and in the output layer, the output is determined. A simple three-layer
fully connected neural network is shown in Fig. 2.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 2.1 Neuron

Fig. 2.2 Example of a
simple neural network

Forward calculation and backpropagation are key steps in the training and testing
processes of neural networks . We illustrate the two processes considering the neural
network shown in Fig. 2.2.

In the forward calculation process, a set of parameters and an input are provided,
and the neural network computes the values at each neuron in the forward order, as
indicated by the yellow arrows in Fig. 2.2. The generation of outputs of the hidden
and output layers, A2 and A3, respectively, can be expressed as

Z2 = f (W 1A1 + B2) A2 = f (Z2) Z3 = f (W 2A2 + B3) A3 = f (Z3).

Here, A1 is the input vector,W1 andW2 represent the learned weighted matrices, B2

and B3 are the learned biases and f is the activation function.

Backpropagation, which is an application of the gradient descent of the chain rule,
propagates error in the backward order to update the weight matrix, as indicated by
the blue dotted arrows in Fig. 2.2. Since the calculation of all the parameters is similar,
we consider the backpropagation of weight w2

11 as an example. The corresponding
generation can be expressed as follows:

∂eo1
∂w2

11

= ∂eo1
∂a31

∂a31
∂z31

∂z31
∂w2

11

,
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w2
11 = w2

11 − η
∂eo1
∂w2

11

.

In addition to the simplest neural network discussed above, a variety of neural
network structures exist, which can be classified into several categories: feedforward
neural networks, convolutional neural networks, recurrent neural networks and graph
neural networks, as described in the following sections.

2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a kind of multi-layer neural network that
can effectively addressmachine learning problems related to images, especially large
images.Througha series of operations, theCNNsuccessfully reduces thehighdimen-
sions of the image recognition task with a considerable amount of data. A CNN
was first proposed by Yann LeCun [7] and applied to handwritten font recognition
(MINST). The structure of the network proposed by LeCun and LeNet is shown in
Fig. 2.3.

This network is the most typical convolutional neural network, which consists of
convolutional layers, pooling layers and fully connected layers. The convolutional
layer cooperates with the pooling layer to form multiple convolutional groups to
extract features. Finally, the classification task is accomplished by several fully con-
nected layers. The operations performed by the convolutional layer are inspired by
the concept of local receptive fields, and the pooling layer is used to reduce the data
dimension.

The local receptive field is designed to lower the number of parameters. It is gen-
erally believed that people’s cognition of the outside world is from local to global,
and the spatial connection of an image is that the local pixels are closely connected
to distant pixels. Therefore, each neuron does not need to perceive the global image.
Instead, each neuron must perceive only the local part and synthesize the local infor-
mation at a higher level to obtain the global information, thereby minimizing the
number of parameters. The concept of network connection is also inspired by the
structure of the biological visual system. In Fig. 2.4, the pictures on the left and right
show fully and locally connected neural networks, respectively.

Convolution is similar to a sliding window, and the convolution kernel and corre-
sponding image pixels aremultiplied and summed. The parameters of the convolution
kernel remain the same when convolution is implemented over a data matrix, which
enables weight sharing and decreases the number of parameters. To generate more
features over the same data, multiple convolution kernels can be applied to repeat
the convolution over a data matrix.
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Fig. 2.3 Network structure of LeNet

Fig. 2.4 Different connections

2.3 Recurrent Neural Networks and Variants

A recurrent neural network (RNN) is used to process sequential data with inner
relations. By processing the data sequentially, an RNN can memorize the data that it
has processed. The structure of anRNN is shown in Fig. 2.5. At timestamp t , the RNN
operates on data xt with the hidden state st−1 at timestamp t − 1. The hidden state
ht at timestamp t and output yt at timestamp t are generated by yt , ht = f (xt , ht−1).
Therefore, the final output O = {y1, y2, y3...yT } is a sequence containing all the
outputs at each timestamp.

Long short-term memory (LSTM) is a special variant of RNN, aiming to solve
the problem of gradient disappearance and gradient explosion during long sequence
training. The LSTM can outperform ordinary RNNs in the case of long sequences.
As depicted in Fig. 2.6, an LSTM has two states, ht and ct , in contrast to RNNs,
which have only one state. First, z, zi , z f , zo are generated by Eq. (2.1) as follows:

z = tanh(W [xt , ht−1]),
zi = σ(Wi [xt , ht−1]),
z f = σ(W f [xt , ht−1]),
zo = σ(Wo[xt , ht−1]),

(2.1)
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where W is the weighted matrix, and operator [a, b] means concatenation of two
matrices on the y-axis. Subsequently, cell state ct , hidden state ht and output yt are
generated by z, zi , z f , zo from Equation (2.2).

ct = z f � ct−1 + zi � z,

ht = zo � tanh(ct ),

yt = σ(W
′
ht ).

(2.2)

In this manner, the LSTM controls the hidden states by the cell state, thereby
remembering the long-term memory and forgetting the unimportant information.
This framework is efficient for tasks requiring long-term memory. However, the
presence of a larger number of parameters renders training more difficult. Therefore,
we usually tend to use GRUs that have the same effect as LSTM but with fewer
parameters.

The gate recurrent unit (GRU) is another special variant of RNN, with the same
aim as that of the LSTM network but fewer parameters; consequently, the GRU is
considerably easier to train. The structure of GRUs is shown in Fig. 2.7.

Similar to a basic RNN, a GRU takes the hidden state of the last timestamp ht−1

and xt as input, generating two gates r and z according to Eq. (2.3). Subsequently,
hidden state ht and output yt are generated using Eq. (2.4).

Fig. 2.5 RNN

Fig. 2.6 LSTM
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Fig. 2.7 GRU

r = σ(Wr [xr , ht−1]),
z = σ(Wz[xt , ht−1]). (2.3)

h
′ = tanh(W [xt , ht−1 � r ]),

ht = (1 − z) � ht−1 + z � h
′
,

yt = σ(Woht ).

(2.4)

Compared with LSTM, there is one less “gate” in the GRU; thus, the GRU can
achieve performance equivalent to that of the LSTM with fewer parameters. Given
the computational ability of the hardware and time cost, GRUs are often preferred
over LSTM.

2.4 Encoder/Decoder Structure

The encoder/decoder model, which is composed of an encoder and decoder, has
emerged as a popular alternative for machine translation tasks [3]. The encoder
encodes a sequence of inputs into an intermediate code, and the decoder decodes
the intermediate code and generates the output sequence. The basic pipeline of
the encoder/decoder model is shown in Fig. 2.8 and can be described as follows.
The input sequence is described as X = x1, x2, · · · , xT . At each timestamp t , hid-
den state ht is generated as ht = RNNs(xt , ht−1), where ht−1 is the hidden state
at timestamp t − 1. After all the hidden states have been generated, the result
c = f (h1, h2, ..., hT ), where c is a contextual representation related to the whole
sequence. In the decoding process, the decoder outputs the prediction yt at times-
tamp t according to the probability function p(yt |y1, t2, ..yt−1, c) = g(yt−1, st , c),
where yt−1 is the output at timestamp t − 1, and the hidden state of the decoder
RNN unit, st , is generated as st = RNNs(st−1, yt−1).
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Fig. 2.8 Encoder/decoder structure

2.5 Attention Mechanism

The attention mechanism was first used in the field of natural language processing
for machine translation [2] and later applied in the field of image processing. The
attention mechanism can be described as a function that maps a query and a set
of key-value pairs to the output [13]. Specifically, the framework can be defined
as o = Attention(Q, K , V ), where Q is the query, K is the key, V represents the
values andO is the output. The query and source,which consist of key-value pairs, are
inserted in the attentionmodel to generate the output. First, a score function is used to
compute the similarity between the query and key as si = Score(query, keyi ), with
the queryused as a referenceor guide tofind the relatedkey-valuepairs. Subsequently,
an alignment function is operated over scores of all the keys by ai = exp(si )∑

exp(si )
. Finally,

the weighted value, also known as query-guided source representation, is calculated
as the result of attention by c = ∑

i ai valuei .

2.6 Memory Networks

Memory networks [15] (MemNNs) were proposed by Facebook AI in 2015 to use
memory components to store information to realize the memorization of long-term
memory. Many existing neural network models, including RNN, LSTM and GRU,
can memorize sequential information to a certain degree; however, these memories
are often inadequate. AMemNNmodel consists of memorym and four components:

• I , input feature map, which converts the incoming input to the internal feature
representation.

• G, generalization module, which updates old memories given the new input.
• O , output feature map, which produces a new output.
• R, response, which converts the output into the desired response format.

In the VQA task, the memory array can store the entire visual sequential informa-
tion and can thus retain the long-term memory of the sequence as a knowledge base.
In each updated timestamp t , the memory array indexed by mi in the MemNN can
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Fig. 2.9 Structure of a memory network

be updated as mi = G(mi , I (x),m),∈ i . Subsequently, the memory can be used to
infer the answer to a given question. According to the query and current memory
array, the output feature map unit conducts an inference to obtain the contextual
representation in the feature space. Finally, the response unit converts the contextual
representation into the predicted answer (Fig. 2.9).

MemNN frameworks involve a model in combination with several components;
therefore, they cannot be trained in an end-to-end manner. Sukhbaatar [12] proposed
end-to-end memory networks (MemN2Ns) based on the MemNN, which can be
trained end-to-end, and established a process for the repetitive extraction of useful
information to achieve multiple inferences. One characteristic of MemN2N is that
it uses two memory arrays to store the converted input sequences, denoted as input
memory mv and output memory mo. The input memory mv is generated using an
embedding matrix A to convert the input sequence, and the output memory mo is
generated using another embedding matrix B to convert the input sequence. Subse-
quently, the weight of the embedded question over input memory mv is calculated
and used to determine the weighted output memory c. Finally, the output c and
embedded question u are introduced in the softmax function to generate the answer.
The MemN2N model can be trained iteratively by updating the question embedding
per iteration.

Dynamic memory networks (DMNs) [6] are improved versions of MemNN. The
network consists of the following four components:

• Input module
• Question module
• Episodic memory module
• Answer module

The input module and question module use GRU to generate encoded visual rep-
resentations c = {c1, c2, ..., cT } and textual representations q. The episodic mem-
ory module generates contextual representations with an attention mechanism and
a memory update mechanism. For the i th iteration, the gate value is produced as
git = G(ct ,mi−1, q), where G is the gate function and mi−1 is the memory gener-
ated in the last iteration. The gate value is used to generate episode ei as follows:

hit = git GRU (ct , h
i
t−1) + (1 − git )h

i
t−1,
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Fig. 2.10 Structure of
dynamic memory networks

ei = hilast .

The episodic memory module uses a GRU to update the episodic memory: mi =
GRU (ei ,mi−1). Finally, the answer module uses the episodic memory to predict
the answer vector, which is used as the initial state of the GRU in the next iteration
(Fig. 2.10).

In conclusion, the memory array of the DMN is dynamic during the process of
reasoning, while the memory arrays of MemNN and MemN2N are static [13].

2.7 Transformer Networks and BERT

A transformer framework, proposed by Google [14] in 2017, is a type of seq2seq
model that replaces LSTM with an attention structure. The structure of the trans-
former, as shown in Fig. 2.11, consists of an encoder and a decoder.

The encoder contains six layers depicted as Nx on the left figure, which consist of
two sublayers, including a multihead self-attention mechanism and a fully connected
feedforward network. The multihead self-attention mechanism can be expressed as
follows:

Multi Head(Q, K , V ) = Concat (head1, head2, ...headh)W
o

headi = Attention(QWQ
i , KWK

i , VWV ).

Here, Q, K , V are the same as those for the self-attention mechanism. A posi-
tionwise feedforward network operates a nonlinear function over the input.

The decoder is similar to the encoder, except an additional sublayer of attention is
added to the decoder. The decoder takes the output of the encoder and output of the
last position as the input. The second multihead attention in the decoder is different
from that of the encoder (a multihead self-attention), in which the key and query are
the output of the encoder, and the query is the output of the last position.

Before the data are input to the encoder and decoder, they are subjected to posi-
tional encoding, and sequential data embedding is introduced with positional embed-
ding, which can be defined as follows:
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Fig. 2.11 Structure of transformer networks

PEpos,2i = sin(pos/100002i/dmodel )

PEpos,2i+1 = cos(pos/100002i/dmodel).

Bi-directional encoder representation from transformers (BERT) [5] is a pre-
trained model proposed by Google AI in 2018, which is built upon a bi-directional
transformer encoder block. The training of the BERT can be characterized by pre-
training, a deep structure, a bidirectional transformer and language understanding.

2.8 Graph Neural Networks

Graph neural networks (GNNs) were proposed by Scarselli et al. [11] to extend the
existing neural networks for processing graph-structured data. In particular, GNNs
are aimed at learning a state embedding, which encodes the information of the
neighborhood for all the nodes. Later, state embedding is used to produce an output,
such as the distribution of the predicted node label.

First, we introduce several basic definitions. A graph, denoted asG, is represented
asG = (V, E), where V = {vi } is the set of nodes and E = {ei j |ei j = (vi , v j )} is the
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set of edges. The adjacency matrix A is an n × n matrix with Ai j = 1 if ei j ∈ E and
Ai j = 0 if ei j /∈ E . The nodes can have attributes X = {xi }, and the edges can have
attributes Xe = {xei }. A spatial-temporal graph, denoted asG(t), is an attributed graph
in which the node attributes change dynamically over time and can be represented
as G(t) = (V, E, Xt ), where Xt represents time-related information.

In this chapter,we introduce the definition and frameworks of three types ofGNNs,
including vanilla graph neural networks (GNNs), recurrent graph neural networks
(RecGNNs) and convolutional graph neural networks (ConvGNNs).

Vanilla graph neural networks (GNNs) were proposed by Scarselli et al. [11]
to address the indicted attributed homogeneous graph. The model learns the node
embedding hv as hv = f (xv, xco[v], hne[v], xne[v]), where f is a parametric function,
xv is the attribution of node v, xne[v] is the attribution of the neighboring nodes of
node v, hne[v] is the embedding of the neighboring nodes of node v and xco[v] is
the attribution of the connected edges of node v. The output embedding of node
v is generated as ov = g(hv, xv), where g is a parametric function. Let H, O, X
represent the matrices constructed by stacking all the states, outputs and features; we
can iteratively update the node embedding via Ht+1 = F(Ht , X). The loss of the
vanilla GNN can be expressed as loss = ∑p

i=1(ti − oi ), where ti is the target output
of node i . Although the vanilla GNN can effectively manage graph-structured data,
certain limitations remain, including inefficient updates, use of the same parameters
in the iterations and ineffective use of the features of the edges.

Recurrent graph neural networks (RecGNNs) use gate mechanisms from RNNs
such as GRUs and LSTMs in the propagation step to alleviate the restrictions of the
vanilla GNN model and enhance the effectiveness of long-term information propa-
gation across the graph. Since RecGNNs have many variants, we introduce only the
basic framework of the RecGNNs referring to GGNN [8]. In iteration t , we update
the embedding of node v as follows:

atv = AT
v [ht−1

1 , ..., ht−1
N ]T + b,

zTv = σ(Wzatv +Uzht−1
v ),

r tv = σ(Wratv +Urht−1
v ),

h̃tv = tanh(Watv +U (r tv � ht−1
v )),

htv = (a − ztv) � ht−1
v + ztv � h̃tv.

Av is the submatrix of the graph adjacencymatrix A and denotes the connection of
node v with its neighbors. The GRU-like update functions take information from the
neighbors of each node and form the previous iteration to generate a new embedding.

Graph convolutional networks (GCNs) generalize convolutions to the graph
domain, thereby defining the convolution operation on graphs. GCNs and their vari-
ants can be categorized as spectral approaches, which work with a spectral represen-
tation of the graphs, and spatial approaches, which define convolutions directly on
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the graph, thereby operating on spatially close neighbors [9]. Herein, we introduce
only the classical framework of the GCNs of spatial approaches. First, we define the
receptive field of nodes. Second, graph normalization is performed on the graph to
specify the order of the nodes in the receptive field. Finally, a CNN architecture can
be used, considering the normalized neighborhoods as receptive fields and the node
and edge attributes as channels [10].
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Chapter 3
Question Answering (QA) Basics

Abstract The main objective of the question answering (QA) task is to provide
relevant answers in response to questions asked in natural language through either
a prestructured database or a collection of natural language documents [11]. The
basic architecture usually consists of three components: a question processing unit,
a document processing unit and an answer processing unit. The question processing
unit first analyzes the structure of the given question and transforms the question
into a meaningful format compatible with the QA domain. The document processing
unit generates a dataset or a model that provides information for answer generation.
The answer processing unit extracts the answer from information and formatted
questions. In this chapter, we discuss the QA task from the following aspects: rule-
based methods, information retrieval-based methods, neural semantic parsing-based
methods and approaches taking knowledge base into account.

3.1 Rule-Based Methods

Rule-basedmethodsusually implement handmade rules to identify either the expected
answer types or documents. These handmade rules may be accurate but time-
consuming to acquire and are usually used in language processing.

Riloff et al. [10] developed a rule-based system Quarc to answer a given question
with a short story. Quarc identifies the type of question (e.g., who/what/when/where/
why) and uses a separate set of rules for each question type. Partial parser Sundance
is applied to each sentence in the story and the question to obtain the morphological
analysis, part-of-speech tagging, semantic class tagging and entity recognition from
it to generate scores for sentences on which rules are applied. Rules award a certain
number of points to a sentence, and herein, we consider rules for thewho questions as
an example, as shown in Fig. 3.1. The confident and good clue are different constants
for points, Q is the question, S is the sentence in the story and NAME is a person-
noun that contains at least one human word. The answer is the sentence with the
highest score.

Based on this system, Gusmita et al. [5] proposed a rule-based system that uses
both relevant documents and rules. First, the relevant documents toward the keywords
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Fig. 3.1 Rules for
WHO-type question

are gathered and subsequentially used to identify answer candidates by using a rule-
based method. The system builds its own rules for Indonesian translation.

Archana et al. [1] proposed a rule-based system to identify the answer having the
sameVibhakthi andPOSattributes as the question. The systemfirst analyzes the ques-
tion given by the user and identifies the question type (e.g., who/which/whom/how
much, etc.). Subsequently, the rule-based analysis ofMalayalam, including Pos, Vib-
hakthi and Sandhi analyses, is performed upon questions to extract question features.
The analysis document corpus with the same rule is used to find the answer that best
matches the question.

3.2 Information Retrieval-Based Methods

Rule-based methods, described in the last section, have many limitations since the
manual rules are usually difficult to prepare for complex problems. Information
retrieval-based methods in which the relevant contexts for each question/answer
candidate pair are extracted using an information retrieval approach are more widely
used in question answering tasks.

Sebastian et al. [9] proposed a two-step method that combines information
retrieval techniques optimized for question answering with deep learning models
for natural language inference on multiple-choice questions. In the first step, rele-
vant knowledge support is extracted using Lucene, taking question/answer candidate
pairs. Subsequently, improved semantic similarity computation is performed over the
tuple (question, answer and context), which predicts whether the current answer is
the correct one. The solver employs a bi-directional attention flow (BiDAF) archi-
tecture to generate the answer. The rule-based methods introduced in the last section
have many limitations since the manual rules are usually difficult to prepare for com-
plex problems. Information retrieval-based methods in which the relevant contexts
for each question/answer candidate pair are extracted using an information retrieval
approach are more widely used in question answering tasks.

Manna et al. [8] proposed an information retrieval-based QA system to match
recipe-related information with food. The QA system consists of the following four
modules:
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• Apache Lucene module, which serves as a retrieval database related to cooking
recipe information and cooking-related documents.

• Query processing module, which tokenizes the question, identifies the question
type and extracts the segments of information from the question, including POS
tags.

• Document processing module, which obtains relevant information from one or
more data systems, and sorts and organizes the obtained documents into theApache
Lucene module.

• Answer processingmodule, which checks the information file and provides precise
answers for a specific question.

3.3 Neural Semantic Parsing for QA

Semantic parsing is the problem of translating human language into computer lan-
guage and is therefore at the heart of the question answering task, in which the ques-
tion and answer are represented in a human language format. The encoder/decoder
architecture neural network, described previously, is usually used for semantic pars-
ing.

The semantic parsing for questions usually involves tokenization and relation
extraction to identify the relation and entities. Yih et al. [12] performed semantic
parsing on a single-relation question. First, the question was separated into two dis-
joint parts: the entity mention and relation pattern. Later, a convolutional neural
network-based semantic model (CNNSM), consisting of a hashing layer, convolu-
tional layer andmax pooling layer, tookword sequences from the entitymentions and
relation patterns to generate semantic embeddings. Two CNN semantic models were
trained for the pattern relation and mention entity pairs separately, and the semantic
relevance score was defined as the cosine score of the two semantic vectors. In this
manner, the semantic relevance score of the pattern and entity in the knowledge with
relation and mention in the question was calculated to generate the answer.

Krishnamurthy et al. [7] proposed a semantic parsing model that followed an
encoder/decoder architecture using recurrent neural networks with long short-term
memory (LSTM) cells. Two modifications were introduced in the encoder/decoder
architecture. First, the encoder included a special entity embedding and linking mod-
ule that produced a link embedding for each question token that represented the table
entities to which it links. Second, type-constrained grammar was added to ensure that
the generated logical forms satisfied the type constraints.

3.4 Knowledge Base for QA

Aknowledge base (KB) is a technology used to store complex structures and unstruc-
tured information used by a computer system, each piece of knowledge of which is
represented by a triple containing two entities and the relation between entities. Two
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types of KBs exist: curated KBs and extracted KBs. Curated KBs extract a large
number of entities and entity relationships from web-based knowledge bases such as
Wikipedia and WordNet, which can be understood as structured Wikipedia, includ-
ing Freebase [2] and Yago2 [6]. Extracted KBs extract knowledge directly from
the internet, including Open Information Extraction (OpenIE) [4] and Never-Ending
Language Learning (NELL) [3]. Compared with curated KBs, the knowledge in
extracted KBs is usually more diverse and in a natural language manner, with more
noise and lower accuracy.

The two key technologies in generating a knowledge base are entity linking and
relation extraction. Entity linking connects the entity name in the document to a
specific entity in the knowledge base. This process encounters two problems in
the field of natural language processing: entity recognition and entity disambigua-
tion. Relation extraction extracts the entity relationship in the document through key
technologies such as part-of-speech tagging (POS), syntax analysis, dependency tree
generation, construction of SVM and maximum entropy model and classification of
relationships.
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Part II
Image-Based VQA

Visual question answering methods can be distinguished based on different input
visual formats. In this part, we focus on the classic VQA problem, specifically,
image-based VQA, which accepts only images as the input. This part includes three
chapters that describe classical VQA methods, knowledge-based VQA and vision-
and-language pretraining methods.



Chapter 4
Classical Visual Question Answering

Abstract VQA has received considerable attention from both the computer vision
and the natural language processing research communities in recent years. Given an
image and the corresponding question in natural language, a VQA system is required
to comprehend the question and find the essential visual elements in the image to
predict the correct answer. In this chapter, we first introduce the prevalent datasets for
VQA tasks, such as the COCO-QA, VQA v1 and VQA v2 datasets. Subsequently,
we present a detailed description of several classical VQAmethods classified as joint
embedding methods, attention-based methods, memory networks and compositional
methods.

4.1 Introduction

Many variants and extended versions of visual question answering (VQA) have been
proposed since its popularization. For example, video question answering [36, 46]
extends the VQA from images to videos, TextVQA [33] requires VQA models to
answer optical character recognition (OCR)-related questions and knowledge-based
VQA [37, 38] aims to answer knowledge-related visual questions. These extensive
and advanced topics are introduced and discussed in Parts III and IV and the following
chapter. In this chapter, we focus on the classical VQA task with the corresponding
datasets and methods.

In the most common form of visual question answering (VQA), a computer is
presented with an image and a textual question regarding the image (see the example
in Fig. 4.1). Subsequently, the computer must determine the correct answer, typically
in the form of a few words or a short phrase. Several other variants of the answer
space exist, for example, binary answers (yes/no) [4, 48] andmultiple-choice settings
[4, 51], in which candidate answers are presented.

In this chapter, we present a comprehensive review of classical VQA methods
classified into five categories based on the nature of their main contributions. Incre-
mental contributions mean that most methods belong to multiple categories.

First, joint embedding approaches (Sect. 4.4) are motivated by the advancements
in deep neural networks in both the computer vision and NLP domains. These
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methods use convolutional and recurrent neural networks (CNNs and RNNs, respec-
tively) to learn the embeddings of images and sentences in a common feature space.
These entities can be fed to a classifier that predicts an answer [11, 25, 27].

Second, attention mechanisms (Sect. 4.5) improve on the abovementionedmethod
by focusing on specific parts of the input (image and/or question). Attention in VQA
[1, 3, 7, 14, 40, 43, 51] has been inspired by the success of similar techniques in
the context of image captioning [41], the main idea of which is to replace holistic
(image-wide) features with spatial feature maps and allow for interactions between
the question and specific regions of these maps. The famous transformer [34] model
is an extensive version of the attention mechanism. In this section, the attention
mechanism is explained, and different variants are discussed.

Third, memory networks (Sect. 4.6) extend the attention mechanism but allow a
model to read and write operations on an internal representation of the input—in our
case, the question and image.

Fourth, compositional models (Sect. 4.7) allow us to tailor the performed com-
putations to each problem instance. For example, Andreas et al. [3] used a parser
to decompose a given question and built a neural network from modules with a
composition that reflects the structure of the question.

Finally, graph neural networks (Sect. 4.8) enable models to perform reasoning on
structure representations, such as a scene graph representation. This type of model
exhibits excellent performance, especially in terms of spatial and logical reasoning.
Graph attention is later introduced to boost performance.

Furthermore, in this chapter, we examine datasets available for training and evalu-
ating VQA systems. These datasets vary widely along three dimensions, specifically,
in terms of (i) their size, i.e., the number of images, questions and different concepts
represented; (ii) the amount of required reasoning, e.g., whether the detection of
a single object is sufficient or whether inference is required over multiple facts or
concepts; and (iii) synthetic or human annotation.

4.2 Datasets

A number of datasets have been proposed for the research on VQA. These datasets
contain, at a minimum, triples made of an image, a question and its correct answer.
Additional annotations are provided in certain cases, such as image captions, image
regions supporting the answers or multiple-choice candidate answers. Datasets and
questions within the datasets vary widely in their complexity, the amount of reason-
ing and nonvisual (e.g., “common sense”) information required to infer the correct
answer. This section presents a comprehensive comparison of the available datasets
and discusses their suitability for evaluating different aspects of VQA systems. We
only focus on the general classical VQA dataset in this section. Other VQA datasets
for specific domains, such as Medical VQA, TextVQA and knowledge-based VQA,
are introduced in other parts.
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A key characteristic that differentiates the various datasets is the type of their
images, whichwe broadly classify into natural, clip art and synthetic. Datasetswidely
used in the initial stage, such as DAQUAR [26], COCO-QA [32] and VQA-v1-
real [4], use natural (i.e., real) images. The most widely used dataset at present,
specifically, the VQA-v2 [13] dataset, an extensive version of the original VQA-v1-
real, also uses natural images. The VQA-v1-abstract [4] and its balanced version
[48] are based on synthetic clip art (i.e., cartoon) images.

The second key difference between datasets is the question/answer format: open-
ended versus multiple-choice questions. The former case does not include any prede-
fined set of answers and commonly pertains to DAQUAR, COCO-QA, FM-IQA [11]
and Visual Genome [19]. The multiple-choice setting provides a limited set of pos-
sible answers to each question and is used, for example, in Visual Madlibs [45]. The
VQA-v1-real and Visual7W [51] datasets allow evaluation with either open-ended
or multiple-choice questions. The results from the two settings cannot be compared,
and the open-ended setting is consideredmore challenging to quantitatively evaluate.
Most authors address the VQA-v1-real dataset in the open-ended setting, while the
authors of Visual7W recommend the multiple-choice setting for a more interpretable
evaluation.

Details of these datasets are presented in the following text, and the key charac-
teristics are summarized in Table 4.1.

DAQUAR

DAQUAR [26], which stands for dataset for question answering on real-world
images, is the first dataset proposed for VQA tasks. DAQUAR is constructed based
on the NYU-Depth v2 dataset and contains 1,449 images (795 images for training
and 654 images for testing). The corresponding question/answer pairs are collected
in two ways: synthetic, in which question/answer pairs are automatically generated
according to annotations in the NYU dataset by a predefined template, and human,
in which question/answer pairs are collected by human annotators to focus on basic
colors, numbers, objects and sets. In total, 12468 QA pairs are collected, of which
6,794 are used for training and 5,674 are used for testing. DAQUAR is the first large
VQA dataset, which promoted the development of early VQAmethods. However, its
disadvantage lies in the restriction of answers and strong biases toward a few objects.

COCO-QA

COCO-QA [32] is constructed based on the Microsoft Common Objects in Con-
text data (COCO) dataset [22] and contains 123,287 images (72,783 for training and
38,948 for testing). The corresponding question/answer pairs are collected in an auto-
matic manner, with the QA pairs generated by turning the image descriptions into the
question/answer form. Each image in the COCO-QA has one question/answer pair.
COCO-QA increases the training data for VQA tasks; however, the automatically
generated questions have a high repetition rate.
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FM-IQA

The FM-IQA dataset [11], which refers to freestyle multilingual image question
answering, is also constructed based on the COCO dataset and contains 120,360
images. The most notable difference between FM-IQA and COCO-QA is that the
QA pairs are collected by human annotators from the Amazon Mechanical Turk
(AMT) crowdsourcing platform. These annotators can specify any type of question
related to the given image, thereby increasing the diversity and quality of questions.
A total of 250,560 question/answer pairs are collected.

VQA-v1

The VQA-v1 dataset [4] is one of the most widely used VQA datasets constructed
based on the COCO dataset, which consists of two parts: VQA-v1-real using natural
images and VQA-v1-abstract using synthetic cartoon images. VQA-v1-real contains
123,287 images for training and 81,434 images for testing from the COCO dataset.
The question/answer pairs are collected by human annotators, leading to a high diver-
sity, and binary (i.e., yes/no) questions are introduced. Overall, 614,163 questions are
collected, each having 10 answers from 10 different annotators. However, this dataset
has a large bias, in which several questions can be answered without visual knowl-
edge. For example, for the question starting with “Do you see...”, blindly answering
“yes” without looking at the image will result in an accuracy of 87%. The aim of
the VQA-v1-abstract dataset is to improve the high-level reasoning of VQAmodels.
The VQA-v1-abstract contains 50,000 clipart scenes and a total of 150,000 ques-
tions (i.e., three questions per scene), with each question answered by 10 annotators,
which are collected in a similar way as in the VQA-v1-real dataset.

VQA-v2

The VQA-v2 dataset is an extensive version of the VQA-v1-real dataset, which aims
to solve the large bias in the original dataset. The balanced VQA-v2 dataset is con-
structed by collecting complementary images that are similar, but the answers of
these two images are different. Specifically, for each question, two similar images
are collected by AMTworkers, and the corresponding answers are different. Overall,
the VQA-v2 dataset has 204,721 images and 1,105,904 questions with 10 answers
for each question. The number of image-question pairs is twice that in the VQA-
v1-real dataset. The balanced VQA-v2 dataset mitigates the biases in the original
VQA-v1-real dataset, which prevents VQA models from exploiting language priors
to achieve higher evaluated scores and helps develop highly interpretable VQAmod-
els that focus more on the visual contents.

Visual Genome

The Visual Genome QA dataset [19] is constructed based on the Visual Genome
project [19], which includes unique structured annotations of scene contents in the
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form of scene graphs . These scene graphs describe the visual elements of the scenes
with attributes and the relationships between them. The Visual Genome contains
108,000 images derived from the COCO dataset. The question/answer pairs are col-
lected by human annotators. Two types of questions are considered: free-form and
region-based, and the questions must start with “who, what, where, when, why, how
or which”. In the free-form setting, the annotator is shown an image and asked to
provide eight question/answer pairs. To encourage diversity, the annotator is forced
to use three different start words among the seven mentioned above. In the region-
based setting, the annotator must provide questions/answers related to a specific,
given the region of the image. The diversity of the answers in the Visual Genome is
larger than that in VQA-real [4], and a key advantage of the Visual Genome dataset
for VQA is the potential for using structured scene annotations.

Visual7w

The Visual7w dataset [51] is a subset of Visual Genome that contains 47,300 images
and 327,939 questions with additional annotations. The questions are evaluated in
a multiple-choice setting in which each question is provided with four candidate
answers, among which only one is correct. In addition, all the objects mentioned in
the questions are visually grounded, i.e., associated with bounding boxes of their
depictions in the images.

4.3 Generation Versus Classification: Two Answering
Policies

A classical VQA model usually consists of three components: visual and textual
feature extraction from the given image and question, the joint fusion of visual and
textual features and answer generation based on the fused features. In general, CNN
networks such as VGGNet, ResNet and Faster R-CNN are used to extract image
features, and RNN networks such as LSTM and GRU are used to extract question
features. For feature fusion, deep learning techniques such as joint embedding and
attention mechanisms are utilized. In terms of answer generation, two answering
policies exist: question answering as a sequence generation task or as a classification
task. As shown in Fig. 4.1, when formulated as a classification task, the joint repre-
sentation of an image and a question is passed through a neural network classifier,
and a single-phrase answer from a predefined vocabulary is produced. In contrast,
when formulated as a sequence generation task, a decoder RNN network is used to
produce answers with different lengths.
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Fig. 4.1 Difference between two polices of generation and classification for VQA tasks

4.4 Joint Embedding Methods

Multimodal joint embedding was first proposed to perform image captioning tasks
[9, 21, 42, 44] and has been reinforced in VQA tasks. By projecting both images and
questions into a common space, simple and widely used joint embedding methods
can be used to accomplish VQA tasks. In this section, we introduce two kinds of
joint embeddingmodels: sequence-to-sequence encoder-decodermodels and bilinear
encoding models.

4.4.1 Sequence-to-Sequence Encoder/Decoder Models

Motivation

With thedevelopment of deep learning technology, end-to-endmethodshave emerged
as promising tools for solving computer vision and natural language processing
problems. In addition, multimodal learning, such as image captioning, has achieved
notable results, based on a multimodal encoder/decoder architecture. Thus, it is intu-
itive to incorporate the encoder/decoder architecture in VQA methods. To solve
challenging VQA tasks, several encoder/decoder VQA models have been proposed,
such as neural image-QA and multimodal QA (mQA).

Methods

Malinowski et al. [28] proposed neural imageQA, an end-to-end deep learning archi-
tecture, to answer natural language questions regarding real-world images in a single
holistic and monolithic model. As shown in Fig. 4.2, in neural image QA, a CNN



42 4 Classical Visual Question Answering

Fig. 4.2 Overview of neural image QA

network extracts image features, and an LSTM network is used to encode questions.
These two networks are subsequently combined to generate multiple word answers.
In this architecture, answer prediction is formulated as a sequence generation process
of multiple words:

ât = argmax
a∈V

p(a|x, q, Ât−1; θ), (4.1)

where Ât−1 = {â1, . . . , ât−1} represents the previous answer words, x and q rep-
resent the given image and question, V represents the answer vocabulary and θ

represents the learnable parameters in the model. The given image x is encoded
by GoogLeNet, which is pretrained on the ImageNet dataset and fixed except for
the last layer. Moreover, the given question q with answer words a are encoded as
one-hot vectors and embedded into low-dimensional vectors by a learned embed-
ding network. Subsequently, question q is augmented with answer words a as q̂ ,
i.e., q̂ = [q, a]. Specifically, in the training phase, q is augmented with ground truth
answer words a. In the prediction phase, at each time step t , q is augmented with
predicted answer words â1..t as q̂t , i.e., q̂t = [q, â1..t ]. Next, the LSTM unit takes vt

as input, which is the concatenation of [x, q̂t ] and predicts the answer word ât at each
time step t . In this procedure, the LSTM network predicts a sequence of multiple
words as answers until the symbol word <END> is predicted.

Gao et al. [11] proposed a multimodal QA (mQA) model, in which two separate
LSTM networks are used to prepare the question and answer. The mQA architecture
is different from that of neural image QA, in which the question is augmented with
the answer by concatenation and only one LSTM is used. As shown in Fig. 4.3,
the mQA consists of four key parts: an LSTM network named LSTM(Q) to extract
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Fig. 4.3 Overview of multimodal QA

the question representation, a CNN network to extract the image features, an LSTM
network known as LSTM(A) to extract representations of answer words and a feature
fusing network that generates answers. Specifically, GoogLeNet pretrained on the
ImageNet dataset is used to extract image features, which are fixed during the QA
training procedure. LSTM(Q) and LSTM(A) have similar network structures but
do not share the weight parameters, in contrast to the case of neural image QA.
The features from the first three components are fused by the last feature fusing
component for the t th word as

f (t) = g(VrQ rQ + VI I + VrArA(t) + Vww(t)), (4.2)

where “+” represents elementwise addition, rQ represents the representation of the
last word from LSTM(Q), I represents the image feature, rA(t) represents the hidden
representation of LSTM(A) for the t th word,w (t) represents the word embedding of
the t th word in the answer, V· represents the learnable weight matrices and g(.) is an
elementwise nonlinear function. After fusion, the fused multimodal representation
is mapped back to the word representation by an intermediate layer, followed by a
fully connected softmax layer to generate answers. In addition, because the same
words in both the question and answer must have the same meaning, mQA utilizes
a weight-sharing strategy that can reduce parameters and help enhance the perfor-
mance. In particular, the weight matrices of the word embeddings in both LSTM(Q)
and LSTM(A) are shared, and the weight matrix of the word embeddings is shared
with the softmax layer in a transposed manner.
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Performance and Limitation

The earliest joint embedding VQA methods of sequence-to-sequence encoder/
decoder models such as neural image QA and mQA can be considered simple base-
lines for VQA tasks, which exhibit an inferior performance on several VQA datasets.
Indeed, these methods are excessively simple to implement multimodal information
fusion by simple elementwise operations and thus cannot capture the complex infor-
mation embodied in the images and questions.

4.4.2 Bilinear Encoding for VQA

Motivation

Encoding an expressive joint representation of visual and textual features is necessary
for VQA systems, which renders it easier to learn a classifier and effectively realize
reasoning. In fact, simple methods of joint embedding, such as elementwise prod-
ucts, elementwise sum and concatenation, cannot easily capture the complicated
correlations between the visual and textual features. Bilinear pooling models are
believed to be more expressive than simple elementwise fusion methods. However,
due to their large memory consumption and computational cost, native bilinear pool-
ing models cannot be directly used in VQA tasks. For example, if we set the image
and question feature vectors to dimensions of 2048 and incorporate 3000 classes for
answers, then the learnable bilinear model will have 12.5 billion parameters. Thus,
several multimodal bilinear pooling models that can solve the above problem have
been proposed to encode joint representations in VQA tasks, such asMCB andMLB.

Methods

Native bilinearmodels take the outer product of the visual feature vector x and textual
feature vector q as the input and generate a projected feature vector z with a large
number of parameters in the learned linear model M as

z = M[x ⊗ q], (4.3)

where ⊗ denotes the process of the outer product, and [·] denotes the linearization
of a matrix into a vector.

To project the high-dimensional outer product into a lower-dimensional space and
indirectly compute the outer product, Fukui et al. [10] proposed multimodal compact
bilinear pooling (MCB), which utilizes a count sketch projection function � [6] and
projects a vector v ∈ R

n to a vector y ∈ R
d . This count sketch procedure is completed

using two vectors s ∈ {−1, 1}n and h ∈ {1, ..., d}n , which are initialized randomly
from a uniform distribution and fixed during future invocations of the count sketch.
In addition, y is initialized to a zero vector. Specifically, s is used to map the value
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Fig. 4.4 Overview of multimodal compact bilinear pooling for VQA

vi of each element in the input vector v to value vi or −vi , while h is used to map
each index i in the input vector v to the index j in the output vector y. For each
element vi in input vector v, the destination index is computed as j = hi , and the
corresponding value is obtained as y j = si · vi . Through this procedure, the outer
product can be projected to a lower dimensional space, thereby reducing the large
numbers of parameters in W . As shown in Fig. 4.4, both visual vector x and textual
vector q are projected to count sketch vectors of x ′ and q ′ using �. Furthermore, to
indirectly and effectively compute the outer product, the count sketch of the outer
product of x and q can be computed as follows:

� (x ⊗ q, h, s) = � (x, h, s) ∗ � (q, h, s) = x ′ ∗ q ′, (4.4)

where ∗ represents the convolution process. According to the convolution theorem,
the convolution of x ′ ∗ q ′ in the time domain can be rewritten in the frequency domain
as follows:

x ′ ∗ q ′ = F FT −1
(
F FT

(
x ′) � F FT

(
q ′)) , (4.5)

where � represents the elementwise product, F FT (·) represents the fast Fourier
transform and F FT −1(·) represents the inverse fast Fourier transform. At present,
the procedure of multimodal compact bilinear pooling has been established, and this
joint representation is considerably more expressive than those derived from simple
joint embedding methods.

Although the MCB involves considerably fewer parameters than native bilinear
models, it still generates high-dimensional features and is computationally complex.
To further reduce the number of parameters, Kim et al. [17] proposed multimodal
low-rank bilinear pooling (MLB). The procedure of generating projected vector z
by bilinear models can be rewritten as z = xT Wq, where W is a high-rank weight
matrix. The core idea of MLB is to factor the large weight matrix W into two small
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and low-rank weight matrices as W = U V T . In this case, the projected vector z can
be represented as

z = PT (U T x ◦ V T q), (4.6)

where P represents a matrix of ones, and ◦ denotes the Hadamard product.

Performance and Limitation

Bilinear encoding methods such as MCB and MLB have achieved notable perfor-
mance inVQA tasks. In particular,MCB exhibited state-of-the-art performance, with
an overall score of 66.5% on the VQA-v1-real test-std set for open-ended questions.
MLB achieved a competitive score of 66.89% with a slight improvement, albeit
with significantly fewer computational parameters. The most notable disadvantage
of bilinear encoding methods is the large computation cost.

4.5 Attention Mechanisms

Attention mechanisms have been widely and effectively used in computer vision and
natural language processing tasks. It is intuitive to utilize the attention mechanism
in VQA tasks, and the performance of attention-based methods is promising. In this
section, we describe several classic attention-based VQA models, such as stacked
attention networks (SANs), hierarchical question-image co-attention (HieCoAtt),
and bottom-up and top-down attention (BUTD).

4.5.1 Stacked Attention Networks

Motivation

A common practice in VQA tasks is to use a CNN network to extract global image
features and an RNN network to extract holistic question features. However, this
simple process cannot address complicatedVQA tasks, which often requiremultiple-
step fine-grained reasoning. The global image feature is expected to introduce noise
of irrelevant image regions in the VQA models. Moreover, a single-step attention
mechanism is not adequately effective to identify the correct region in the case of a
complicated question. Consequently, Yang et al. [43] proposed a stacked attention
network (SAN) to implement multiple-step fine-grained reasoning for VQA tasks,
based on a multi-layer attention mechanism.
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Fig. 4.5 Overview of the SAN

Method

As shown in Fig. 4.5, the SAN consists of three major parts: image feature extraction,
question feature extraction and stacked attention.

For image feature extraction, SAN utilizes the last pooling layer of VGGNet to
extract image feature f I , which can preserve the spatial information of input image
I :

f I = CNNvgg(I ). (4.7)

The image feature f I has dimensions of 512 × 14 × 14, where 14 × 14 represents
the number of regions in the input image I . Subsequently, each feature vector fi in
all 196 regions is transformed into the final image feature VI that shares the same
dimension as that of the question vector VQ :

vI = tanh(WI fI + bI ). (4.8)

Given the one-hot representation of T question words q = [q1, ..., qT ], SAN uses
two methods to extract the question features: an LSTM-based method and a CNN-
based method. In the LSTM-based method, question q is embedded into vectors and
fed into an LSTM network, where the hidden state hT of the last layer is considered
as question feature vQ . In the CNN-based method, the SAN first embeds a one-hot
word representation to vectors x = [x1, ..., xT ]. Subsequently, SAN uses multiple
convolution kernels and max pooling to generate unigram, bigram and trigram text
features h̃1, h̃2, h̃3 as

hc,t = tanh(Wcxt :t+c−1 + bc), (4.9)

h̃c = max
t

[hc,1, hc,2, ..., hc,T −c+1], (4.10)
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where c = 1, 2, 3 represents different kernel sizes. Next, these features are concate-
nated as the final question feature vQ :

vQ = [h̃1, h̃2, h̃3]. (4.11)

With the image feature vI and question feature vQ , attention weights pI over each
image region vi are computed for vQ by using a one-layer network with softmax,
and the attended image feature ṽI is obtained:

h A = tanh(WI,AvI ⊕ (WQ,AvQ + bA)), (4.12)

pI =softmax(WP h A + bP), (4.13)

ṽI =
∑

i

pivi , (4.14)

where W· represents learnable weights, b· represents biases and ⊕ represents the
addition of a matrix and a vector.

Next, ṽI is combinedwithVQ as a query vector u for themultiple attention process:

u = ṽI + vQ . (4.15)

Specifically, the SAN uses multiple attention layers, and for the kth attention layer,
query vector uk−1 is used to generate the attended image feature ṽk

I . Next, a new
query vector, uk , is obtained by summing uk−1 and ṽk

I , and this process is repeated
K times until the final query vector uK is produced:

hk
A = tanh(W k

I,AvI ⊕ (W k
Q,Auk−1 + bk

A)), (4.16)

pk
I = softmax(W k

P hk
A + bk

P), (4.17)

ṽk
I =

∑

i

pk
i vi , (4.18)

uk = ṽk
I + uk−1, (4.19)

where u0 is set as vQ .
Finally, uK is used to predict the answer:

pans = softmax(WuuK + bu). (4.20)

Performance and Limitation

The stacked attention network (SAN) achieves an overall score of 58.9% on
the VQA-v1 test-std set, thereby outperforming the best VQA baseline by 4.8%
and existing state-of-the-art methods by a considerable margin on the two VQA
datasets of DAQUAR and COCO-QA. An ablation study shows that two-layer SANs
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outperform one-layer SANs, which demonstrates the positive impact of using mul-
tiple attention layers.

4.5.2 Hierarchical Question-Image Co-Attention

Motivation

The existing attention-based approaches for VQA tasks, in which only question-
guided visual attention is implemented, focus is only on where to look. However, it
is as important to knowwhere to listen. Furthermore, image-guided question attention
canmitigate the linguistic noise of variable questions in VQA tasks. Considering this
aspect, Lu et al. [23] proposed hierarchical question-image co-attention (HieCoAtt)
to address VQA tasks, which can jointly implement co-attention with both question-
guided image attention and image-guided question attention.

Method

To implement hierarchical question-image co-attention, two novel components are
proposed: question hierarchy and co-attention.

Given the one-hot representation of T question words, Q = {q1, . . . , qT }, the
question hierarchy module generates three-level representations: word-level embed-
ding qw

t , phrase-level embedding q p
t and question-level embedding qs

t for each posi-
tion t . Specifically, one-hot question words are embedded in the word-level rep-
resentation as Qw = {qw

1 , . . . , qw
T }. The phrase-level representation is obtained by

convolution with multiple kernels and max pooling, which is similar to the CNN-
based question feature extraction in the SAN. The generation of the phrase-level
representation can be expressed as follows:

q̂ p
s,t = tanh(W s

c qw
t :t+s−1), s ∈ {1, 2, 3}, (4.21)

q p
t = max(q̂ p

1,t , q̂ p
2,t , q̂ p

3,t ), t ∈ {1, 2, . . . , T }, (4.22)

where s represents different windows sizes. Question-level representation qs
t is the

hidden state of the LSTM network at time t , where phrase-level representation q p
t is

encoded.
Two co-attention mechanisms are proposed, namely, parallel co-attention and

alternating co-attention. We present details of the more representative parallel co-
attention.

As shown in Fig. 4.6, in parallel co-attention, the co-attention is simultaneously
implemented between images and questions. First, given the feature map V and
corresponding question Q, a similarity matrix C is computed as

C = tanh(QT WbV ). (4.23)
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Fig. 4.6 Illustration of parallel co-attention in the hierarchical question-image co-attention model

UsingC , the attention score av for each location of the image and aq for each location
of the question are simultaneously computed:

H v = tanh(WvV + (Wq Q)C), Hq = tanh(Wq Q + (WvV )CT )

av = softmax(wT
hv H v), aq = softmax(wT

hq Hq),
(4.24)

where W· and w· denote the learnable weight matrices and vectors, respectively. The
attended image feature v̂ and question feature q̂ are obtained:

v̂ =
N∑

n=1

av
nvn, q̂ =

T∑

t=1

aq
t qt . (4.25)

In alternating co-attention, co-attention operates in a sequential manner. Specif-
ically, the model first generates attended image features under the guidance of the
question feature and later attends to the question feature under the guidance of the
attended image feature.

Both these co-attention mechanisms are implemented in the hierarchy architec-
ture, which generates hierarchical attended features v̂r and q̂r , where r ∈ {w, p, s}.

Performance and Limitation

The hierarchical question-image co-attention (HieCoAtt) method achieves an overall
score of 62.1% for open-ended questions and 66.1% formultiple-choice questions on
the VQA-v1 test-std set, thereby outperforming other state-of-the-art methods with
a margin of at least 1.7%. Qualitative results show that the hierarchical architecture
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in the proposed co-attention can capture complementary information well from each
level, which can help understand both questions and images. However, the parallel
co-attention is more difficult to train, whereas the alternating co-attention may suffer
from accumulated errors.

4.5.3 Bottom-Up and Top-Down Attention

Motivation

Attention mechanisms have been widely used in VQA tasks and proven to be effec-
tive. These attention-based methods often operate in a top-down and task-specific
manner, thereby computing a soft attention score over each grid region of the image
under the guidance of the question, treating all grid regions equally. This framework
is similar to a human vision system, in which humans focus on a specific region
according to the task context, such as searching for something. In addition to top-
down attention, there exists a bottom-up attention mechanism in the human vision
system. Specifically, humans are automatically attracted by salient objects or scenes.
Salient regions in an image are considerably more expressive than grid regions and
must be focused on. Thus, Anderson et al. [1] proposed a combined bottom-up and
top-down attention model (BUTD) for VQA tasks. In this framework, bottom-up
attention is implemented by detecting salient regions, and top-down attention is
implemented by computing attention scores over the proposed regions according to
the question context.

Method

As shown in Fig. 4.7, given an image I , the BUTD first uses the Faster R-CNN
network to propose the top K salient regions. These K salient regions are passed
through the ResNet-101 network to generate image features V = {v1, ..., vK }, where
vi is a 2048-D feature vector, which represents the visual feature for each salient
region. K can be either a fixed value K = 36 or an adaptive value from 1 to 100.
Both Faster R-CNN and ResNet-101 are pretrained on the ImageNet dataset and
trained on the Visual Genome dataset. In addition, the BUTD involves an extra

Fig. 4.7 Overview of the bottom-up and top-down attention model for VQA



52 4 Classical Visual Question Answering

output for Faster R-CNN, which predicts the attributes of the detected regions to
enhance the performance.

Using the bottom-up attention andgenerated image featuresV , BUTD implements
soft top-down attention under the guidance of the given question. The question is
first trimmed to a fixed length with 14 maximum words and embedded in vectors
with dimensions of 14 × 300 initialized by GloVe. Subsequently, a GRU network
is used to extract question embedding q, which is the last hidden state of the GRU
network with dimensions of 512. Each visual feature vi of the proposed regions is
concatenated with q and passed to a nonlinear layer fa with softmax to compute the
attention score:

ai = wa fa([vi , q]), (4.26)

α = so f tmax(a), (4.27)

where [·] represents concatenation, and wa is a learnable weight. With the soft atten-
tion score over each salient region, the attended image feature v̂ is generated as
follows:

v̂ =
K∑

i=1

αivi . (4.28)

With both question embedding q and attended image feature v̂, the joint repre-
sentation h of the image and question is obtained as follows:

h = fq(q) ◦ fv(v̂), (4.29)

where ◦ represents the Hadamard product. Subsequently, the classification score ŝ
for each candidate answer is computed:

ŝ = σ(Wo fo(h)), (4.30)

where σ represents the activation functions, and W − o is a learnable weight matrix.

Performance and Limitation

The bottom-up and top-down attention method (BUTD) achieves an overall score
of 70.34% with 30 ensembled models on the VQA-v2 test-std set and ranked first
in the VQA Challenge 2017, outperforming other state-of-the-art methods with a
large margin across all question types. In addition, this framework has been the most
widely used baseline for VQA research since its realization. However, the capacity
of the Faster R-CNN object detector influences the performance of the VQAmodels,
and an increased capacity can help extract more expressive detection features.
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4.6 Memory Networks for VQA

Memory networks have been noted to be effective tools for question answering tasks
in NLP, which can explore fine-grained features with previous interactions. Thus, it
is natural to utilize thesememory networks in VQA tasks. In this section, we describe
two classic memory networks for VQA tasks: improved dynamic memory networks
(DMNs+) and memory-augmented networks (MANs).

4.6.1 Improved Dynamic Memory Networks

Motivation

The existing work on dynamic memory networks (DMNs) has demonstrated their
considerable potential in accomplishing natural language processing tasks, espe-
cially question answering (QA). However, this method requires additional labeled
supporting facts and is difficult to apply to other modalities. Thus, Xiong et al. [39]
proposed improved dynamic memory networks (DMNs+) for VQA tasks, which can
directly manage image data.

Method

The DMN for question answering consists of four main modules: An input module
to process the input text data as facts F , a question module to embed a question as
feature vector q, an episodic memory module to retrieve required information from
facts F and an answer module to predict answers. To adapt the DMN to VQA tasks,
DMN+ modifies the input module and episodic memory module.

As shown in Fig. 4.8, in the input module, DMN+ uses a VGG network to extract
196 local region features with dimensions of 512 and a linear network to project these
feature vectors into the same spacewith question feature vectorq. Subsequently, these

Fig. 4.8 Illustration of improved dynamic memory networks for VQA
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local feature vectors are passed through a bi-directional GRU network to generate
globally aware feature vectors known as “facts”

←→
F = [←→f1 , . . . ,

←→
fN ] as inputs of

the episodic memory module.
The episodic memory module retrieves information from the facts that are needed

to answer the question. Specifically, the module includes an attention mechanism for
selecting relevant facts that allows interactions between facts, questions and previ-
ous memory states and a memory update mechanism that generates a new memory
representation through the interaction between the current state and retrieved facts.
The attention mechanism is implemented using an attention-based GRU network to
generate the contextual vector ct for the update of the episodic memory state mt .

zt
i = [←→fi ◦ q;←→

fi ◦ mt−1; |←→fi − q|; |←→fi − mt−1|], (4.31)

Zt
i = W (2) tanh

(
W (1)zt

i + b(1)
) + b(2), (4.32)

gt
i = exp(Zt

i )∑Mi
k=1 exp(Zt

k)
, (4.33)

hi = gt
i ◦ h̃i + (1 − gt

i ) ◦ hi−1, (4.34)

where
←→

fi is the i th fact, q is the question vector, mt−1 is the state of the previous
episode memory, h is the hidden state of the GRU network, ◦ represents the elemen-
twise product, | · | represents the elementwise absolute function and [; ] represents
concatenation. The contextual vector ct is the last hidden state of the GRU network,
and the memory update is implemented by a ReLU layer:

mt = ReLU
(
W t [mt−1; ct ; q] + b

)
. (4.35)

Finally, the answer module uses the final state of the memory network and ques-
tion vector to predict the output of a single word or multiple word sentence.

Performance and Limitation

The improved dynamic memory network (DMN+) method achieves an overall score
of 60.4% on the VQA-v1 test-std set, outperforming other state-of-the-art methods
with a margin of at least 1.5%. For all types of questions, DMN+ achieves state-of-
the-art performance. For other questions, the margin is up to 1.8%. However, DMN+
cannot effectively address a large number of problems.

4.6.2 Memory-Augmented Networks

Motivation

The distribution of natural language question/answer pairs in the VQA dataset is
often heavy-tailed, and VQAmodels tend to respond to the majority of training data,
neglecting specific scarce but important exemplars. A common practice is to mark



4.6 Memory Networks for VQA 55

Fig. 4.9 Overview of memory-augmented networks

the rare words in questions as unknown tokens and exclude rare answers directly
in training data. In addition, VQA models are also inclined to learn simply from
question/answer pairs without understanding visual contents, known as the language
bias problem in VQA. To solve the above heavy-tailed problem and language bias
problem, Ma et al. [24] proposed memory-augmented networks (MANs) inspired by
memory-augmented neural networks and co-attention mechanisms.

Method

MAN utilizes co-attention to jointly embed image and question features with a fol-
lowed memory-augmented network to remember scarce exemplars in training data.
The augmented-memory network in MAN contains both an internal memory inside
LSTM and an external memory controlled by LSTM, and this framework is consid-
erably different from that of the DMN. As shown in Fig. 4.9, the MAN consists of
four components: input module, sequence co-attention module, memory-augmented
network and answer reasoning module.

For the image input, the MAN utilizes pretrained VGGNet-16 and ResNet-101 to
extract image features {vn} with spatial layout information, which are derived from
the outputs of the last pooling layer, corresponding to 14 × 14 spatially distributed
regions. For the question input, the embedded word tokens wt are fed into bidirec-
tional LSTMs to generate fixed-length sequential word vectors as question features
{qt }:

h+
t =LSTM(wt , h+

t−1), (4.36)

h−
t =LSTM(wt , h−

t+1), (4.37)

qt = [h+
t , h−

t ], (4.38)

where h+
t and h−

t represent the hidden states of the forward and backward LSTMs
at time step t , and [.] represents concatenation.

Subsequently, given the image and question features, a sequential co-attention
mechanism is utilized to attend to the most relevant parts of features for each modal-
ity according to the other modality. First, {vn} and {qt } are summed and averaged
to feature vectors v0 and q0, respectively. In addition, an elementwise product is
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implemented on v0 and q0 to generate the joint base vector m0. Using visual fea-
ture vectors vn and m0, soft attention weights αn are computed, and the attended
visual feature vector v∗ is generated using a two-layer neural network with a soft-
max layer. Similarly, using question feature vectors at and m0, soft attention weights
αt are computed, and the attended visual feature vector q∗ is generated. Finally, v∗
and q∗ are concatenated to represent the co-attended image and question features as
xt = [v∗

t , q∗
t ].

Considering the concatenated attended visual features and question features xt ,
theMANadopts amemory-augmented neural network to enhance the effect of scarce
training data during the training process. The memory-augmented neural network
uses an LSTM controller consisting of an internal memory that receives input data
and an externalmemory Mt fromwhich and towhich external information is read and
written. The feature vector xt is first passed to the LSTM controller, and the hidden
state ht is obtained, which is considered the query for Mt . Subsequently, the cosine
distance D (ht , Mt (i)) between ht and each element Mt (i) in the external memory
is computed and normalized as the attention weight wr

t (i) for the read process by
softmax. Using these read weights, the attended read memory rt is generated:

ht =LSTM(xt , ht−1), (4.39)

D(ht , Mt (i)) = ht · Mt (i)

‖ht‖‖Mt (i)‖ , (4.40)

wr
t (i) = softmax

(
D(ht , Mt (i)

)
, (4.41)

rt =
∑

i

wr
t (i)Mi . (4.42)

Finally, rt is concatenatedwith ht to generate the final feature vector ot as the input
for the answer classifier. Specifically, the answer classifier consists of a one-layer
perceptron with a softmax function:

ht = tanh(bWoot ), (4.43)

pt = softmax(Whht ). (4.44)

Performance and Limitation

The memory-augmented networks (MAN) method achieves a competitive perfor-
mance compared to the state-of-the-art method of MCB on both the VQA-v1 and
VQA-v2 test sets. On the VQA-v1 dataset, the MAN exhibits a slightly enhanced
performed on multiple-choice questions and slightly deteriorated performance on
open-ended questions. Compared to DMN+, which exploits only the internal mem-
ory inside RNNs rather than an augmented external memory, the MAN exhibits a
higher performance with a large margin of 3.5%. On the VQA-v2 test set, the per-
formance of the MAN is slightly decreased by approximately 0.2% compared to that
of the MCB.
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4.7 Compositional Reasoning for VQA

VQA models are required to implement complex reasoning, which is difficult for a
single holistic model to manage.

Modular methods are emerging effective tools for compositional reasoning in
VQA tasks,which connect differentmodules designed for different functions. Specif-
ically, modular networks decompose a question into several components and assem-
ble different networks to predict the answer. In this section, we mainly discuss two
compositional reasoning models, namely, the neural module network (NMN) and
dynamic neural module network (D-NMN).

4.7.1 Neural Modular Networks

Motivation

In VQA tasks, the questions are often complicated and multiple processing steps
are required to identify the correct answer. For example, given the simple question
of “What color is the dog?”, the VQA models must first locate the dog and then
recognize the color of the dog. However, even with advanced deep learning methods,
it is difficult for a single optimal network to manage all subtasks. Thus, Andreas et al.
[3] proposed neural module networks (NMNs), which decompose the problem into
amultistep process by using compoundmodular networks to predict the final answer.

Method

As shown in Fig. 4.10, the NMN consists of a set of modular networks (modules),
which are assembled by a network layout predictor. Especially for VQA tasks, the
NMN adds an LSTM question encoder to provide underlying syntactic and semantic
knowledge.

The NMN includes five modules: find module, transform module, combine mod-
ule, describe module andmeasure module. These fivemodules are utilized to address
three types of data: images, unnormalized attentions and labels. Specifically, as shown
in Fig. 4.11, the find module implements unnormalized attention over all regions of
the input image by convolution layers such as find[cat]. The transformmodule refines
one attention to another attention by using a multi-layer perceptron, which shifts the
input attention to other required regions such as the transform[above]. The combine
module fuses two attentions into one attention, for instance, through combine[and],
which only activates the intersection regions of the two attentions using a convolu-
tion layer with ReLU. The describe module takes the given image and attention as
the input and predicts a distribution over labels to problems except yes/no problems
such as describe[where]. The measure module is similar to the describe module;
however, it only predicts the distribution over labels to the yes/no problem such as
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Fig. 4.10 Overview of the neural module network for VQA

Fig. 4.11 Modules of the neural module network

measure[is]. Notably, these modules are trained together in the assembled model
rather than in isolation.

Using the abovementioned modular networks, the NMN generates layouts of the
required networks and assembles these networks according to the given question.
Specifically, the NMN uses a Stanford parser [8] to generate the filtered dependency
representation. For example, the question “what color is the cat?” is transformed
to color(cat). Subsequently, using the dependency representation, the layouts are
generated according to the rules as follows: leaf nodes that take the image as input
are implemented through the findmodule; intermediate nodes are implemented by the
transform module or combine module; and root nodes compute the final output and
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are implemented by the describemodule ormeasuremodule. After layout generation,
the question “what color is the cat?” is transformed to describe[color](find[cat]).

Finally, the root representation of the assembled modular networks is summed up
with the last hidden state of an LSTM question encoder to predict the final answer
with a fully connected layer and softmax.

Performance and Limitation

The neuralmodule network (NMN)method achieves an overall score of 58.0%on the
VQA-v1 test-dev set, outperforming other state-of-the-art methods. NMN performs
especially well on questions answered in terms of an object, attribute or number.
However, the use of a superior parser or joint learning can help reduce parser errors,
thereby enhancing the performance of VQA tasks.

4.7.2 Dynamic Neural Module Networks

Motivation

The existing frameworks of NMN use manually specified modular structures, which
are chosen by the syntactic processing of questions. These handwritten rules to
deterministically transform dependency trees into layouts limit the models’ capacity
to produce complicated structures in which large variations in the network struc-
ture per question are not permitted. To solve more difficult problems that require
enhanced generalization of more structured semantic representations, Andreas et al.
[2] proposed a dynamic neuralmodule network (D-NMN),which extends theNMN’s
mechanismof decomposingVQA tasks into a sequence ofmodular subproblems. The
D-NMN can automatically learn module layouts from a set of generated candidates
with a structure predictor. In addition, D-NMN can reason over structured informa-
tion such as knowledge bases in addition to unstructured information such as images.

Method

As shown in Fig. 4.12, the D-NMN consists of two parts: a layout model that auto-
matically chooses module layouts according to the given question and an execu-
tion model that predicts answers according to the layouts and world representations
(images or knowledge bases). Given question x , world representationsw, and collec-
tion of model parameters θ , these two models compute two distributions p(z|x; θl)

and pz(y|w; θe), respectively,where z represents the network layout, and y represents
the answer.

D-NMN first utilizes a fixed syntactic parser (Stanford parser) to generate a small
set of layout candidates, similar to the process of building module layouts in the
NMN. With these candidate layouts, the D-NMN uses neural networks with the
MLP to rank the candidates. Specifically, an LSTM encoding representation hq(x)



60 4 Classical Visual Question Answering

Fig. 4.12 Generation of layouts in a dynamic neural module network

of question q and feature vector representation fz(i) of layout zi are passed to an
MLP neural network, resulting in a score s (zi |x) for layout zi :

s(zi |x) = a�σ(Bhq(x) + C f (zi ) + d), (4.45)

where a, B, C and d are learnable parameters. The scores are normalized using
softmax to obtain the distribution p (zi |x, θl), which is used to select the best module
layout:

p(zi |x; θl) = es(zi |x)

∑n
j=1 es(z j |x)

. (4.46)

When the module layout z is selected, the execution model assembles the corre-
sponding modules with the world representations into a full neural network. Subse-
quently, the answer distribution pz (y|w, θe) is obtained according to the intermediate
results flowing between compositional modules. The following modules are used in
the D-NMN: A lookup module that manages proper nouns and produces one-hot
attention over the input feature map; a find module that manages ordinary nouns
with verbs and produces an attention over each position of the input feature map; a
relate module that addresses prepositional phrases and produces an attention from
one region to another; an and module that produces an intersection of attentions and
joins layout fragments; a describe module that predicts answers according to the
input attention; and an exist module that predicts existential answers according to
the input attention. Furthermore, the same module shares the same parameters for
different instances.

In addition, the D-NMN utilizes a policy gradient method to transform the non-
differentiable selection of z into a differentiable process. Thus, the layout model and
the execution model can be trained jointly, in which the parameters of both the layout
predictor and modules are simultaneously learned.
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Performance and Limitation

The dynamic neural module network (D-NMN) method achieves an overall score of
58.0% on the VQA-v1 test-std set, with high explainability. However, the D-NMN
must carefully design submodules. These predefined modules cannot be extended to
different datasets. Thus, the feasibility of neural module networks remains a chal-
lenge.

4.8 Graph Neural Networks for VQA

The existing CNN-based methods for VQA tasks cannot effectively model the rela-
tionships between salient objects in the given image. In addition, these methods
lack adequate interpretability for the model performance. Graph learning can effec-
tively address the abovementioned two problems. Thus, it is natural to utilize graph
neural networks in VQA tasks. In this section, we present a detailed description of
graph convolutional networks (GCNs), graph attention networks (GATs) and graph
convolution networks for VQA (graph learners).

4.8.1 Graph Convolutional Networks

Motivation

Amass of real-world data can be represented as a graph, a data structure that models
objects and their relationships using nodes and edges, such as social networks, traf-
fic networks and knowledge bases. Convolutional neural networks (CNNs) applied
to nonstructural and Euclidean data such as images and texts cannot effectively
address such structural and non-Euclidean data of graphs. As shown in Fig. 4.13,
the two kinds of data exhibit notable differences. To address graph data well, Kipf
and Welling [18] proposed graph convolutional networks (GCNs), which can learn
features automatically from objects (nodes) and their relationships (edges). With a
promising performance and high interpretability, GCNs are being widely used in
solving graph-based problems.

Method

As shown in Fig. 4.14, the propagation of the l-th layer in a neural network can be
formulated as follows:

Hl+1 = f
(
Hl, W l

)
, (4.47)

where Hl is the feature representation of the lth layer, f (·) is the function of prop-
agation and W l is a learnable weight matrix for the lth layer.
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Fig. 4.13 Difference between image data and graph data

Fig. 4.14 Illustration of the propagation of graph convolutional networks

For example, a simple propagation function in CNNs can be written as

f
(
Hl, W l

) = σ
(
Hl W l

)
, (4.48)

where σ represents nonlinear activation functions such as ReLU, and the bias is
omitted for simplification.

In contrast to CNNs, GCNs operate on graphs, and the propagation involves
structural information. Specifically, a graph is defined as follows:G = (V,E), where
V is the set of nodes that represent objects, and E is the set of edges that represent the
relationships between the objects. GCNs take two matrices as the input: a matrix of
node features X ∈ R

N×F , where N is the number of nodes and F is the input feature
dimension of each node, and an adjacency matrix A, the element Ai j of which is 1 if
nodes i and j are connected. The target of GCNs is to output a transformed feature
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matrix Z ∈ R
N×F ′

, where F ′ is the output feature dimension of each node. Thus, a
simple propagation function of GCNs can be expressed as

f
(
Hl , W l

) = f
(
Hl , A

) = σ
(

AHl W l
)

(4.49)

with H 0 = X and H L = Z , where L is the number of layers in the GCNs.
However, this propagation function, in which the features of nodes Hl are sim-

ply multiplied with the adjacency matrix A, has two shortcomings: (i) For each
node i in the graph, this function takes into account features from all neighboring
nodes but neglects its own features; (ii) High-degree nodes have large values in their
transformed features, which may result in vanishing or exploding gradient and high
sensitivity of the model to the data scale.

To solve these two problems, GCNs first insert self-loops into each node by adding
the identity matrix I to A as

Â = A + I. (4.50)

Second, inspired by the common practice in matrix normalization, specifically,
the multiplication of the matrix by a diagonal matrix, GCNs use the degree matrix
D̂ of Â to normalize Â in a symmetric manner:

Ã = D̂− 1
2 ÂD̂− 1

2 . (4.51)

Subsequently, the final propagation in GCNs can be formulated as follows:

f
(
Hl , A

) = σ
(

ÃHl W l
)

= σ
(

D̂− 1
2 ÂD̂− 1

2 Hl W l
)

. (4.52)

4.8.2 Graph Attention Networks

Motivation

Although GCNs exhibit a promising performance on graph-structured data, GCNs
are structure-dependent and transductive. In other words, a GCN network trained on
one graph is difficult to generalize to another graph with a different structure. The
attentionmechanism can effectively address this shortcoming by specifying different
importance scores to different neighboring nodes rather than treating all neighboring
nodes equally, as GCNs. Thus, Velickovic et al. [35] proposed graph attention net-
works (GATs) to manage graph-structured data, which incorporate a self-attention
mechanism with no requirement of knowing the structure of the graph in advance
and can be easily transferred to other structures of graphs. In other words, GATs are
structure-independent and inductive.
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Fig. 4.15 Illustration of graph attention networks

Method

GATs take a set of node features h = {h1, h2, . . . , hN }, hi ∈ R
F as the input and aim

at generating anewset of transformednode featuresh′ = {h′
1, h′

2, . . . , h′
N }, h′

i ∈ R
F ′
,

where N is the number of nodes, and F and F ′ are dimensions of the input and output
nodes.

As shown in Fig. 4.15, GATs first transform each input node feature vector hi to a
higher-level and more expressive feature vector asWhi by using a linear transforma-
tionmatrixW ∈ R

F ′×F . For each node i , a pairwise attention coefficient is computed
through additive self-attention between every neighboring node j connected to node
i (including node i itself) as

ei j = LeakyReLU
(
aT [Whi ‖ Whi )

]
), (4.53)

where a is a learnable weight vector, ·T is the transposition process and ‖ is the
concatenation process.

Next, the attention coefficients are normalized using the softmax function:

αi j = exp
(
LeakyReLU

(
aT [Whi‖Wh j ]

))

∑
k∈Ni

exp
(
LeakyReLU

(
aT [Whi‖Whk]

)) , (4.54)

where Ni represents the set of neighboring nodes of node i .
With the normalized attention coefficients, the final feature propagation of each

node can be formulated as
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Fig. 4.16 Overview of graph convolutional networks of the proposed graph learner for VQA

h′
i = σ

⎛

⎝
∑

j∈Ni

αi jWh j

⎞

⎠ . (4.55)

In addition, to enhance the learning capacity and stability, GATs utilize multihead
attention. Specifically, in the intermediate layers of GATs, K independent attention
mechanisms are used, and their corresponding transformed features are concatenated
as

h′
i =‖K

k=1 σ

⎛

⎝
∑

j∈Ni

αk
i jW

kh j

⎞

⎠ . (4.56)

In the final layer of GATs, averaging is used instead of concatenation:

h′
i = σ

⎛

⎝ 1

K

K∑

k=1

∑

j∈Ni

αk
i jW

kh j

⎞

⎠ . (4.57)

4.8.3 Graph Convolutional Networks for VQA

Motivation

VQA tasks often require complicated multimodal reasoning over both objects and
their relationships in the image conditioned on the given question. However, only a
few methods can effectively model the spatial and semantic relationships between
objects. In addition, most VQA models lack interpretability, which is common in
deep learning models. To solve these problems, Norcliffe-Brown et al. [31] pro-
posed the graph learner, an interpretable graph convolutional network that can learn
complex relationships of objects for VQA tasks.
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Method

As shown in Fig. 4.16, given the question embedding q and detected object features
vn , the graph learner aims at generating an undirected graphG = {V,E,A}, whereV
is the set of nodes representing the detected objects, E is the set of edges representing
the relationships between detected objects and A is the corresponding adjacency
matrix. Specifically, the graph learner learns the adjacency matrix A and uses it to
construct the set of edges E and corresponding relationships.

The question embedding q is first concatenated to the N detected object features
vn . Subsequently, a joint embedding of the question and image features is obtained
by a nonlinear function F as

en = F([vn‖q]), n = 1, 2, ..., N , (4.58)

where ‖ represents concatenation. Next, all joint embedding vectors en are concate-
nated into a joint embedding matrix E, and the adjacency matrix A is defined as

A = EET . (4.59)

To construct a local connected adjacency matrix in which only the most relevant
neighboring nodes are connected by each node, each element in the matrix E is
ranked to be selected or not: N(i) = topm(ai ), (4.60)

where the topm function returns the indices of the elements in the input vector that
have the m largest values, and ai represents the i th row of the adjacency matrix.

The graph learner utilizes a graph CNN to manage the graph representation of
the image. To capture the spatial relationships between two detected objects (nodes
i and j), a pairwise pseudocoordinate function centered at i is used, which returns
a coordinate vector (ρ, θ) of j , consisting of the orientation θ and distance ρ. For
each node i , multiple kernels wk are used to learn from neighboring nodesN(i) and
generate the graph convolution feature fk(i):

fk(i) =
∑

j∈N(i)

wk(u(i, j))v jα, k = 1, 2, ..., K , (4.61)

where αi j is a scaling weight for each selected element in the adjacency matrix.
These convolution features are later concatenated as the final graph representation
H, which is passed to the classifier with question embedding q.

hi =‖K
k=1 Gkfk(i), (4.62)

H =‖N
i=1 hi , (4.63)

where Gk represents the learnable weights.
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Performance and Limitation

The graph learner method achieves an overall score of 66.18% on the VQA-v2
test set, which is competitive with the state-of-the-art methods. Qualitative results
demonstrate the high interpretability of the proposed model. However, the simple
graph structure used in the proposed model cannot effectively manage the more
complex relationships between graph items, and a more complex architecture can be
utilized to solve this problem. In addition, the performance of the proposed model is
dependent on the pretrained object detector, and this aspect can be further enhanced.

4.8.4 Graph Attention Networks for VQA

Motivation

To more accurately answer questions in VQA tasks, the VQAmodels should capture
both the spatial (positional) and semantic (actionable) relationships between objects
in the given image rather than merely detecting relevant objects. Thus, Li et al. [20]
proposed the relation-aware graph attention network (ReGAT) for VQA tasks, which
treats the input images as graphs and captures the complicated relationships between
detected objects using graph attention mechanisms.

Method

As shown in Fig. 4.17, fourmain components are used inReGAT: an image encoder to
generate features of detected objects V = {vi }K

i=1 by the Faster R-CNN network, a
question encoder to generate question embedding q by a bi-directional GRU net-
work with a self-attention mechanism, a relation encoder to model explicit and

Fig. 4.17 Overview of the relation-aware attention network for VQA
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implicit relationships between objects by graph attention mechanisms and a mul-
timodal fusion with the answer predictor.

The first step to build a relation encoder is to construct graphs based on the given
image and question. Three graphs are constructed in ReGAT: a fully connected graph
Gimp = {V,E} tomodel implicit relations and two pruned graphsGspa andGsem with
prior knowledge to model spatial and semantic relationships, respectively. Among
these two pruned graphs, if an explicit relation between two objects does not exist,
the edge is pruned. The construction of spatial and semantic graphs can be viewed as
a classification task, implemented by pretrained relationship classifiers. Specifically,
the spatial relation spai, j is denoted as< objecti -predicate -object j >, e.g.
< kid-cover-sunglasses >, and semantic relation semi, j is denoted as <

subject-predicate-object >, e.g. < kid-wearing-sunglasses >.
Note that the relation between objects i and j in spatial and semantic graphs is
unsymmetrical.

In the relation encoder, a question-adaptive graph attention mechanism is used.
The mechanism is implemented by the concatenation of question embedding q with
K visual features vi and a following multihead self-attention mechanism:

v′
i = [vi ||q] for i = 1, . . . , K , (4.64)

v�
i = ‖M

m=1σ
( ∑

j∈Ni

αm
i j · W mv′

j

)
, (4.65)

where M is the number of attention heads, and the attention score αi j varies for
implicit and explicit relations. Specifically, for implicit relations, the attention score
is defined as

αi j = αb
i j · exp(αv

i j )
∑K

j=1 αb
i j · exp(αv

i j )
, (4.66)

where αv
i j and αb

i j represent the similarity between the visual features of objects and
relative geometry features of bounding boxes, respectively. For explicit relations,
i.e., spatial relations and semantic relations, the attention score is defined as

αi j = exp((Uv′
i )

� · Vdir(i, j)v
′
j + blab(i, j))

∑
j∈Ni

exp((Uv′
i )

� · Vdir(i, j)v
′
j + blab(i, j))

,

whereU andV represent the projectionmatrices, and dir(i, j) and lab(i, j) represent
the directionality and the label of each edge, respectively.

Finally, v�
i is added to vi as the final relation-aware visual features, which are up

with the question embedding q and passed through the answer classifier of a two-
layer MLP. Each relation encoder is trained independently, and the predicted answer
distributions of each answer classifier are ensembled for inference (Table4.2).
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Table 4.2 Comparison with state-of-the-art methods on VQA v1 dataset

Method Test-dev Test-standard

Y/N Num. Other All Y/N Num. Other All

iBOWIMG [50] 76.6 35.0 42.6 55.7 76.8 35.0 42.6 55.9

DPPnet [30] 80.7 37.2 41.7 57.2 80.3 36.9 42.2 57.4

VQA team [4] 80.5 36.8 43.1 57.8 80.6 36.4 43.7 58.2

Neural-Image-QA [28] 78.4 36.4 46.3 58.4 78.2 36.3 46.3 58.4

D-NMN 80.5 43.1 37.4 57.9 – – – 58.0

SAN [43] 79.3 36.6 46.1 58.7 – – – 58.9

ACK [38] 81.0 38.4 45.2 59.2 81.1 37.1 45.8 59.4

NMN [3] 81.2 38.0 44.0 58.6 81.2 37.7 44.0 58.7

D-NMN [2] 81.1 38.6 45.5 59.4 – – – 59.4

DMN+ [39] 80.5 48.3 36.8 60.3 – – – 60.4

HieCoAtt [23] 79.7 38.7 51.7 61.8 – – – 62.1

MCB-ResNet [10] 82.5 37.6 55.6 64.7 – – – –

MAN [24] 81.5 39.0 54.0 63.8 81.7 37.6 54.7 64.1

Table 4.3 Comparison with state-of-the-art methods on the VQA v2 dataset

Method Test-dev Test-standard

Y/N Num. Other All Y/N Num. Other All

MCB [10] – – – – 78.82 38.28 53.36 62.27

BUTD [1] 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67

GCN-VQA [31] – – – – 82.91 47.13 56.22 66.18

MFH [47] 84.27 50.66 60.50 68.76 – – – 66.12

DCN [29] 83.51 46.61 57.26 66.87 – – – 66.97

Counter [49] 83.14 51.62 58.97 68.09 – – – 68.41

MulRel [5] 84.77 49.84 57.85 68.03 – – – 68.41

Pythia [15] – – – 70.01 – – – 70.24

BAN [16] 85.42 54.04 60.52 70.04 – – – 70.35

DFAF [12] 86.09 53.32 60.49 70.22 – – – 70.34

ReGAT [20] 86.08 54.42 60.33 70.27 – – – 70.58

Performance and Limitation

The relation-aware graph attention network (ReGAT) method achieves an overall
score of 70.58% on the VQA-v2 test set, thereby outperforming the state-of-the-
art methods. The ReGAT model is compatible with generic VQA models and can
be easily incorporated with state-of-the-art VQA models. With the introduction of
ReGAT, several state-of-the-art VQA models exhibit a considerable performance
improvement on the VQA-v2 val set. However, the three relations can be used more
effectively to solve specific question types (Table4.3).
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Chapter 5
Knowledge-Based VQA

Abstract Tasks such as VQA often require common sense and factual informa-
tion in addition to the information learned from a task-specific dataset. Therefore,
a knowledge-based VQA task is established. In this chapter, we first introduce the
main datasets proposed for knowledge-based VQA and knowledge bases such as
DBpedia and ConceptNet. Subsequently, we classify methods from three aspects:
knowledge embedding, question-to-query translation and querying knowledge base
methods.

5.1 Introduction

The VQA task aims to understand the content of an image and answer questions,
often requiring prior nonvisual information. In real life, humans tend to combine
visual observation with external knowledge when answering questions. Therefore,
the model must refer to information that the image itself does not contain, such
as external or common-sense knowledge. However, the existing VQA models can-
not derive additional knowledge from existing datasets. Therefore, knowledge-based
visual question answering has been proposed.Knowledge-basedVQArequires exter-
nal knowledge beyond the visual content to answer questions regarding images,
which is challenging but essential for the implementation of universal visual ques-
tion answering. Since the structured representation of knowledge has been exten-
sively studied, external knowledge can be referred to as the knowledge base. Many
researchers [14, 23–25] have focused on knowledge-based VQA. In this chapter,
we examine knowledge-based VQA from three aspects: datasets, knowledge bases
and methods. The dataset introduces four kinds of mainstream datasets: KB-VQA,
FVQA, OK-VQA and KRVQA. Subsequently, we review the methods associated
with knowledge-based VQA, which can be categorized as methods for knowl-
edge embedding (Sect. 5.4), question-to-query translation (Sect. 5.5) and querying
of knowledge bases (Sect. 5.6).
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5.2 Datasets

Many datasets have been proposed for research on knowledge-based VQA. In the
following sections, we describe the existing knowledge-based VQA datasets, specify
the methods to create such datasets and compare the datasets. The key characteristics
are summarized in Table 5.1.

KB-VQA

The KB-VQA dataset [23] aims to evaluate the ability of the VQA model to answer
questions pertaining to a high knowledge level and reason using external knowledge.

This dataset involves 700 images from the MSCOCO dataset validation set and
3 to 5 question and answer pairs for each image, resulting in 2,402 questions. Each
question in the dataset has been generated by humans based on 23 predefined tem-
plates. For example, the template for IsThereAny is “Is there any <concept>?”.

Compared to those in the other VQA datasets, questions in the KB-VQA dataset
generally require a higher level of external knowledge to answer. The questions
are associated with three labels: “visual”, “common-sense” and “KB-knowledge”.
“Visual” questions are answered directly through visual concepts of ImageNet and
MSCOCO (“Is there a car in the image?”), “Common-sense” questions do not require
adults to refer to external knowledge (“How many dogs are in the image?”) and
“KB-knowledge” questions are answered using knowledge bases, such asWikipedia
(“What do the animals in the picture and zebras have in common?”).

FVQA

The FVQA dataset [24] provides a supporting fact for question and answer pairs in
the form of a structural triplet image-question-answer-supporting fact. For example,
for the question “Which animal in the image is able to climb trees?”, the answer is
“cat”, and the supporting facts are <Cat, CapableOf, ClimbingTrees>.

FVQAconsists of 2,190 images, 5,286 questions and a knowledge base of 193,449
facts. FVQAbuilds the knowledge base by collecting knowledge triples of knowledge
bases: DBpedia [2], WebChild [21, 22] and ConceptNet [19]. The dataset consists of

Table 5.1 Characteristics of major datasets for knowledge-based VQA

Dataset Number of
images

Number of
questions

Number
question of
categories

Avg. question
length

Avg. ans.
length

KB-VQA [23] 700 2,402 23 6.8 2.0

FVQA [24] 2,190 5,826 32 9.5 1.2

OK-VQA [13] 14,031 14,055 10 8.1 1.3

KRVQA [5] 32,910 157,201 – 11.7 –
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5 train-test folds. FVQA has 32 types of questions, which are categorized according
to the type of visual concept (object, scene, or action), source of the answer (image
or knowledge base) and knowledge base supporting the facts (DBpedia, WebChild,
or ConceptNet).

When creating the FVQA dataset, the annotator selects the image and visual
elements of the image and subsequently selects a pre-extracted supporting fact related
to the visual concept. Finally, the annotator specifies a question/answer related to the
selected supporting facts.

By providing supporting facts, FVQA enables complex questions to be answered,
even if all the required information is not shown in the image. Moreover, the dataset
supports explicit reasoning in a question and answer. Specifically, this framework
indicates how a method might arrive at an answer. This information can be used for
answer reasoning, searching for other appropriate facts, or evaluating answers that
contain an inference chain.

OK-VQA

The outside knowledge VQA (OK-VQA) dataset [13] consists of 14,031 images and
14,055 questions and 7,178 unique question words, covering a variety of knowl-
edge categories, including science and technology, history and sports. OK-VQA
uses random images from the MSCOCO dataset, using the original 80k training and
40k validation split to split the training and testing datasets. Unlike the existing fact-
basedVQAdatasets, such as KB-VQA and FVQA,which require theVQA system to
achieve visual reasoning with a given knowledge base, OK-VQA requires reasoning
based on uninstructed knowledge. In addition, each question is labeled considering
one of 10 knowledge categories: vehicles and transportation (VT); brands, companies
and products (BCP); objects, materials and clothing (OMC); sports and recreation
(SR); cooking and food (CF); geography, history, language and culture (GHLC);
people and everyday life (PEL), plants and animals (PA); science and technology
(ST); and weather and climate (WC). If a question does not fit into any category,
then it is classified as “Other”.

KRVQA

The knowledge-routed visual question reasoning (KRVQA) dataset [5] is the first
large-scale dataset that requires knowledge reasoning on natural images. The dataset
consists of 32,910 images, 157,201 pairs of different types of questions and answers
and 194,449 knowledge triplets. The average length of the questions is 11.7 words.
Questions can be divided into one- and two-step questions according to the reasoning
steps and KB-related and KB-unrelated according to the involved knowledge.

The construction of theKRVQAdataset is based on the scene graph annotations of
the visual genome dataset [10] and knowledge base of the FVQAdataset. To generate
nonbiased answer pairs, the KRVQA first cleans up object and relation names in the
visual genome scene map annotations. Using the scene graph and related knowledge
triplets, an image-specific knowledge graph is formed, which is used to describe
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the objects, relations and knowledge related to the images. Subsequently, facts are
extracted from the graph and assembled into a reasoning program. Finally, the ques-
tion and answer pairs are generated based on the program layout and predefined
question template.

5.3 Knowledge Bases

5.3.1 DBpedia

The DBpedia project is a data corpus from Wikipedia that aims at extracting struc-
tured information fromWikipedia and making this information available on the web.
DBpedia allows users to ask complex queries on datasets from Wikipedia and link
other datasets on the web to Wikipedia data. The project extracts knowledge from
Wikipedia in 111 different languages. The project was started in 2007 by Soren Auer
and Jens Lehmann [2].

Wikipedia is the most widely used encyclopedia, with official editions in 287
languages, ranging in size from a few hundred articles to 3.8 million articles (in
English). However, similar to many other web applications, the search functional-
ity of Wikipedia is limited to full-text search, which leads to its extremely limited
value. Moreover, the platform has certain other drawbacks, such as conflicting data,
inconsistent classification conventions, errors and spam.

Thus, the DBpedia project focuses on transforming Wikipedia content into struc-
tured knowledge so that semantic web technologies can perform complex queries
against Wikipedia, link it to other datasets on the web, or create new applications or
mashups.

The largest DBpedia knowledge base has been extracted from the English ver-
sion of Wikipedia. The dataset contains information on more than 400 million facts
about 3.7 million things. The DBpedia knowledge base has been extracted from
110 Wikipedia versions, containing 1.46 billion facts about 10 million things. The
DBpedia project maps Wikipedia information boxes from 27 language versions into
a shared ontology consisting of 320 classes and 1,650 attributes.

Notably, DBpedia has been created by extracting structured information from
Wikipedia and is thus significantly larger and more general than a handcrafted KB.
ThewholeDBpedia dataset describes 4.58million entities, amongwhich 4.22million
entities are classified in a consistent ontology. DBpedia concepts are described with
short and long abstracts in 13 languages.

DBpedia is available on the web in three forms. First, the base is available as a
downloadable dataset. Second, DBpedia provides services through public SPARQL
endpoints, and third, it provides dereferenceable URIs based on the linked data
principle.
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5.3.2 ConceptNet

ConceptNet is a knowledge graph that connects words and phrases of natural lan-
guage with labeled, weighted edges. The corpus contains over 21 million edges and
8 million nodes. The corresponding English vocabulary contains approximately 1.5
million nodes, with at least 10,000 nodes in 83 languages.

The initial version of ConceptNet was proposed in 2004 [12], and ConceptNet
5.5 [19] was proposed in 2015. The dataset is built from diverse sources, such as
Open Mind Common Sense (OMCS), Wiktionary, “games with a purpose”, Open
Multilingual WordNet, JMDict (Breen 2004), OpenCyc and a subset of DBPedia.
ConceptNet’s largest source of input is Wiktionary, which offers 18.1 million edges.
Most of the characters of ConceptNet pertain to OMCS and the various games with a
purpose. Compared to other knowledge base resources, ConceptNet provides an ade-
quately large and free knowledge graph that focuses on the common-sense meaning
of words.

Notably, ConceptNet represents relationships between words, which can be sim-
ply expressed as a triplet of their start node, relation label (such as IsA and UsedFor),
and end node. For example, the assertion “a cat has a tail” can be expressed as (cat,
HasA, tail).

5.4 Knowledge Embedding Methods

5.4.1 Word-to-Vector Representation

Motivation. In the traditional approaches for knowledge-based VQA, the model first
extracts visual features from thegiven image and linguistic features from thequestion,
and these features are associated with the external knowledge base. To search for
relevant facts from the knowledge base, the model predicts attributes from images
or relation types from questions. After the external knowledge is retrieved, it must
be encoded. To this end, the most commonly applied approach is word-to-vector
representation, such as GloVe embedding or Doc2Vec. Finally, the information is
summarized to obtain the final answer (see Fig. 5.1).
Methods.Wu et al. [25] proposed a method to combine the representation of image
content with information extracted from a common knowledge base to answer a
wide range of image-based questions. In the current model, the author first uses a
CNN to produce the attribute-based representation from the image. Based on the
image attributes, the model generates image captions as internal representations.
Subsequently, the model uses SPARQL to retrieve relevant knowledge from exter-
nal knowledge according to the predicted attributes. Since the text returned by the
SPARQL query is usually considerably longer than the generated captions, themodel
uses Doc2vec to extract semantic meaning from the retrieved knowledge paragraphs.
Specifically, Doc2vec, also referred to as paragraph vectors, is an unsupervised
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Fig. 5.1 Overview of the word-to-vector representation method

algorithm that learns fixed-length feature representations from variable-length frag-
ments of text, such as sentences, paragraphs and documents. Finally, the predicted
attribute, captions and database-based knowledge vector are passed as the input to
an LSTM that learns to predict the answer to the input question in the form of a
sequence of words.

Narasimhan et al. [14] developed a learning-based retrieval method that directly
learns an embedding of facts and question-and-image pairs into a space. This model
avoids the generation of an explicit query and learns to transform extracted visual
concepts into a vector that is close to the relevant facts in the embedded space
of learning. Specifically, the model extracts image features from a CNN and text
features from anLSTM. Subsequently, themodel uses amultilayer perceptron (MLP)
to combine the two modalities. An LSTM is used to predict the fact relation type
from the question and retrieve facts from the fact knowledge base. The retrieved
structured facts are encoded using GloVe-100 embedding. Finally, the retrieved facts
are ranked with image + question + visual concept embedding, and the top-ranked
facts are returned.
Performance and Limitations. Tables 5.2, 5.3 and 5.4 summarize the performances
of all the discussedmethods and datasets.Wu et al. evaluated the Toronto COCO-QA
and VQA datasets and demonstrated that the use of external knowledge base lessons
can effectively enhance the performance. However, the method proposed by Wu et
al. did not perform any explicit reasoning and may have ignored possible structures
in the knowledge base. In addition, this method only extracts discrete text fragments
from the knowledge base, thereby ignoring the structural representation ability. The
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Table 5.2 Comparison of results on the FVQA dataset

Model Overall
top-1

Accuracy (%)
top-3

LSTM-Question+Image+Pre-
VQA

24.98 40.40

Hie-Question+Image+Pre-
VQA

43.14 59.44

FVQA (top-3-QQmaping) [24] 56.91 64.65

FVQA (Ensemble) [24] 58.76 –

Straight to the Facts
(STTF) [14]

62.20 75.60

Reading comprehension 62.96 70.08

Out of the box (OB) [15] 69.35 80.25

Mucko [29] 73.06 85.94

GRUC [26] 79.63 91.20

approach proposed by Narasimhan et al. was evaluated on the FVQA dataset, and
the performance of this method was considered highest in the top-1 accuracy metric.

5.4.2 Bert-Based Representation

Motivation. Pretrained language representation models such as BERT are undergo-
ing rapid advancement. However, in the knowledge-based VQA task, most of the
existing studies are based on context-free word embedding rather than the fusion of
a knowledge graph (KG) and image representation.
Methods. Garderes et al. proposed ConceptBert [7], which uses pretrained image
and language features and fuses them with KG embeddings to capture image-and-
question knowledge-specific interactions. As shown in Fig. 5.2, ConceptBert consists
of visual embedding, text embedding and knowledge graph representation. Visual
representation is obtained using the Faster R-CNN framework [17]. Question rep-
resentation is realized using BERT [6]. ConceptNet is used as the knowledge base.
The method uses a graph convolutional network to integrate information from the
local neighborhood of the node in the graph. The network consists of an encoder
and a decoder. Graph convolution encoders take graphs as the input and encode
each node. The encoder operates by sending messages from a node to its neighbors
and weighting them according to the relationship types defined by the edges. This
operation occurs in multiple layers and contains multiple hops of information from
a node. The representation of the last layer is embedded as a graph of nodes. The
vision-language module represents the joint embeddings of the language and visual
content, which is based on two parallel BERT-style streams. The concept-language
module represents the language features conditioned on knowledge graph embed-
dings, which is a series of transformer blocks that examine question tokens based on
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Fig. 5.2 Overview of the BERT-based representation method

the KG embeddings. Finally, the concept-vision-language module uses the compact
trilinear interaction (CTI) to generate a joint representation. In addition, ConceptBert
does not need external knowledge annotations or search queries.

Recently, Shevchenko et al. [18] proposed a general-purpose technique that injects
additional information from the knowledge base into the visual and language trans-
former. The method preprocesses the knowledge base into knowledge embedding.
Moreover, the method uses an auxiliary objective to align the representation of its
learning with the knowledge embedding. This approach is implemented in addition
to LXMERT [20], which is a state-of-the-art multitasking model.
Performance and limitations. ConceptBert has been evaluated on the VQA 2.0
dataset [8] and OK-VQA dataset. Concepts related to “cooking and food” (CF),
“plants and animals” (PA) and “science and technology” (ST) correspond to a supe-
rior performance in the OK-VQA dataset. This phenomenon likely occurs because
the answers to such questions are usually entities different than the main entity in the
question and visual features in the image. This aspect indicates that the information
extracted from the knowledge graph is of significance in determining the answer. An
extensive empirical evaluation of Shevchenko’s approach on four downstream tasks
demonstrates that themethod performs satisfactorily in knowledge-basedVQA (OK-
VQA and FVQA datasets) and visual reasoning (NLVR2 and SNLI-VE datasets)
tasks.
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5.5 Question-to-Query Translation

When querying external knowledge, the model must select an entity from the knowl-
edge base to perform auxiliary reasoning to obtain the final answer. Generally, there
exist two kinds of methods to realize question-to-query translation: query-mapping
methods and learning-based methods.

5.5.1 Query-Mapping-Based Methods

Motivation. To translate questions into queries, query-mapping-based methods nor-
mally parse questions into keywords and retrieve them from the supporting entity.

Ahab [23] detects relevant content from images and searches information from a
knowledge base. To obtain the query, Ahab first parses the question into keywords,
retrieves relevant facts through keyword matching and finally predicts the answer.
Ahab reduces the question to one of the available query templates, which parse
questions using NLP tools. Specifically, the natural language toolkit (NLTK) is used
to tag eachword in the question,which consists of a tokenizer, a part-of-speech tagger
and a lemmatizer. Subsequently, the tagged question is parsed by a set of regular
expressions (regex), where each regex is defined for a specific question template.
The extracted slot phrases are mapped to KB entities, and the appropriate SPARQL
queries are formed based on the question template.

FVQA [23] automatically classifies and maps the question to a query that is
not subject to the constraint of template. As shown in Fig. 5.3, the KB query is
implemented based on three attributes of the question: visual concepts, predicates
and answer sources. Overall, there are 32 combinations of the three properties. Each
combination is considered a query type, and the LSTM model is used to learn a
32-class classifier to identify the three attributes of the input question and execute a
specific query.

Cao et al. [4] proposed a knowledge-routed modular network (KM-net), which
performsmultistep reasoning by incorporating visual knowledge and common-sense
knowledge. For a given question,KM-net parses the question into the query layout via
a query estimator. The query estimator adopts the widely used sequence-to-sequence
model, which takes the sequence of words in the question as the input and predicts
the sequence of query tokens.
Performance and limitations.Ahab [23] relies heavily on predefined templates and
accepts only predefined format problems. Although FVQA reduces the question to a
query template, the types of questions that can be asked are limited, especially when
the question does not accurately refer to a visual concept or information included in
a knowledge base. The accuracy and interpretation capability of KM-net have been
evaluated on the HVQR dataset.
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Fig. 5.3 Overview of the query-mapping-based method. First, the visual concepts of the input
images are extracted through and linked to the corresponding semantic entities in the knowledge
base. The input question is first mapped to the query type by using the LSTM model, from which
the type of predicate, visual concept and answer source can be determined. Subsequently, a specific
query is executed to identify all facts meeting the search conditions in KB. These facts further match
the keywords extracted from the question sentences. Subsequently, the model selects the fact that
matches the highest score to obtain the corresponding answer

5.5.2 Learning-Based Methods

Motivation. The drawback of query mapping is that it does not focus on the most
notable visual concepts and exhibits an inferior performance in the presence of syn-
onyms and homographs. Therefore, a learning-based approach is proposed that can
embed image question pairs and facts in the same space and sort them according to
the relevance of the facts.
Methods. The method proposed by Narasimhan et al. [15] introduces visual infor-
mation into the fact graph and uses implicit graph reasoning to predict answers. In
particular, the method applies GCN on the fact graph, and each node is represented
by a fixed image problem entity embedded form. This method provides the visual
information equally to each graph node through the connection of the image, problem
and entity embeddings. Only part of the visual content is relevant to the problem and
entity. In addition, because each node is represented in a fixed image problem entity
embedding form, the fact graph remains isomorphic, which limits the flexibility of
the model to adaptively capture evidence from different patterns.

Zhu et al. [29] proposed a model named Mucko that focuses on multilayer cross-
modal knowledge reasoning. Mucko consists of two modules: multimodal hetero-
geneous graph construction and cross-modal heterogeneous graph reasoning. Mul-
timodal heterogeneous graph construction encodes images through three layers of
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graphs: visual graph, semantic graph and fact graph. The visual layer preserves the
appearance of objects and their relationships, the semantic layer provides a high-level
abstraction for connecting visual and factual information and the fact layer supports
the corresponding factual knowledge. Furthermore, the authors proposed amodality-
aware heterogeneous graph convolutional network to capture problem-oriented evi-
dence from different modalities. This network contains two parts: intramodal knowl-
edge selection to choose question-oriented knowledge from each layer of graphs by
intramodal graph convolutions and cross-modal knowledge reasoning to realize the
adaptive selection of complementary evidence in three-level graphs through cross-
modal graph convolutions.

Yu et al. [26] interpreted images using amultimodal knowledge graph and adopted
a memory-based recurrent network for cross-modal reasoning to obtain complemen-
tary evidence from different modalities. The proposed model consists of four mod-
ules: multimodal heterogeneous graph construction, intramodal knowledge selec-
tion, cross-modal knowledge reasoning and global assessment and answer predic-
tion. Specifically, the multimodal knowledge graph construction module represents
knowledge of different modalities through different knowledge graphs, including the
visual, semantic and fact graphs. The intramodal knowledge selectionmodule selects
the knowledge related to the problem from each mode of the knowledge graph. The
cross-modal knowledge reasoning module iteratively collects complementary evi-
dence from visual and semantic knowledge graphs via the graph-based read, update
and control (GRUC) module. The global assessment and answer prediction mod-
ule uses graph convolutional networks to jointly analyze all concepts and a binary
classifier to predict the answer.
Performance and limitations. Narasimhan’s approach exhibits excellent perfor-
mance onFVQAdatasets anddoes not require visual concept types or answer sources.
These improvements can be attributed to the joint reasoning pertaining to answers,
which helps share information before a final decision is made. However, since the
visual information is fully provided, redundant information may be introduced to
infer the answer. Moreover, each node is represented in a fixed image-question-
entity embedding form, and the fact graph is isomorphic, which limits the flexibility
of the model to adaptively capture evidence from different modalities.

GRUC achieves state-of-the-art performance on three benchmark datasets—
FVQA, Visual7W-KB and OK-VQA—and its effectiveness and interpretability have
been proven. This model exhibits satisfactory explanatory abilities and can identify
the knowledge selection patterns under different modes through comprehensive visu-
alization.
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5.6 Methods to Query Knowledge Bases

5.6.1 RDF Query

Motivation. The information in KBs can be efficiently accessed using a query lan-
guage. In structured KBs, knowledge is typically represented by a large number of
triples of the form (arg1, rel, arg2), where arg1 and arg2 denote two concepts in
the KB, and rel is a predicate representing the relationship between the concepts.
A collection of such triples forms a large interlinked graph. Such triples are often
described according to a resource description framework (RDF) specification and
housed in a relational database management system (RDBMS) or triple store.

The resource description framework (RDF) is the standard format for the knowl-
edge base, having the form fi = (ai , ri , bi ), where ai is a visual concept in the image,
bi is an attribute or phrase and ri is a relation between the two entities. For example,
the information that “The image contains a cat object” can be expressed as (Img,
contain, Obj-1) and (Obj-1, name, ObjCat-cat).
Methods. Ahab [23] detected visual concepts from images and stored them as
RDF triples. As shown in Fig. 5.4, by mapping object/property/scene categories to

Fig. 5.4 RDF-query visualization. Using the predicate same concept to map the object, attribute
and scene categories to DBpedia entities, the extracted visual concept graph (left) is linked to
DBpedia (right)
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DBpedia entities, these visual concepts are linked to the external knowledge base
that has the same semantic meaning. Thus, the resulting RDF graph includes all
relevant information in DBpedia that corresponds to the visual concepts. Finally,
the combination of this image and DBpedia information is accessed through a local
Openlink Virtuoso RDBMS.

Wu et al. [25] adopted an SQL-like query language for RDF, SPARQL, to access
the knowledge base. Given an image and its prediction attributes, the method uses
the top five strongest predicted attributes to generate a DBpedia query. The comment
field text for each query is retrieved.

5.6.2 Memory Network Query

Motivation. The existing approaches typically use structured knowledge graphs and
images based on supporting facts for reasoning. These algorithms first extract visual
concepts from a given image and explicitly implement inference on a structured
knowledge base. However, it is not easy to extract adequate visual information due to
the lack of structure as well as the grammatical structure, like language conventions.
Methods. Li et al. [11] proposed a knowledge-incorporated dynamic memory net-
work framework (KDMN), which uses dynamic memory networks to introduce a
large amount of external knowledge to answer the visual questions of open domains.
KDMN is the first attempt at combining external knowledge and image representa-
tion with memory mechanisms. As shown in Fig. 5.5, KDMN is composed of three
parts: candidate knowledge retrieval, dynamic memory network and knowledge-
incorporated open-domain VQA. First, the candidate knowledge retrieval module
retrieves candidate knowledge related to the images and questions. To extract the
candidate nodes fromConceptNet, Fast R-CNN is used to extract visual objects from
images and syntax analysis is performed to extract textual keywords from questions.
The candidate knowledge is represented as context-relevant knowledge triples. Sub-
sequently, the image representation and knowledge are extracted and integrated into
a common space and stored in the dynamic storage module. Unlike ordinary RDF
queries, KDMNgenerates the query vector by feeding visual and textual features into
a nonlinear fully connected layer to capture information from the question/answer
context. Finally, the model generates answers by inferring facts in the memory.
Performance and limitations. The evaluation of KDMN is based on Visual7W. The
framework automatically generates a number of arbitrary question/answer pairs,
and its performance was evaluated on open-domain VQA. KDMN performs well to
varying degrees on various questions, such as who(5.9%), what(4.9%), when(1.4%)
and how(2.0%), likely because who and what questions have a greater variety of
questions and multiple-choice questions than do other types of questions, and the
system can benefit more from external knowledge.
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Fig. 5.5 Overall architecture of the memory network query method
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Chapter 6
Vision-and-Language Pretraining for
VQA

Abstract Multimodal (e.g., vision and language) pretraining has emerged as a pop-
ular topic, and many representation learning models have been proposed in recent
years. In this chapter, we focus on the vision-and-language pretraining model, which
can be adapted in the VQA task. To this end, we first introduce three general pre-
training models—ELMo, GPT and BERT—for which only the representation of
natural language is considered in the original research. Subsequently, we describe
the vision-and-language pretraining models, which can be regarded as extensions of
the language-aware pretrainingmodels. Specifically, we categorize thesemodels into
two types: single stream and two stream. Finally, we describe the method to finetune
these models for each specific downstream task, e.g., VQA, visual common-sense
reasoning (VCR) and referring expression comprehension (REC).

6.1 Introduction

Vision-and-language pretraining has attracted considerable attention in recent years.
This process is aimed at learning a task-agnostic joint representation of both visual
content (e.g., images and videos) and natural language. To this end, the model must
understand visual concepts, language semantics and alignment and the relationship
between these two modalities. Therefore, many researchers [1, 3, 8, 9, 11, 12, 19,
20] have attempted to develop more promising joint representations. Visual question
answering (VQA) is a key downstream task of vision-and-language pretrainingmeth-
ods. In this chapter, we focus on methods to adapt well-designed pretraining models
to the VQA task. To this end, we first introduce three typical pretraining models
(i.e., ELMo [15], GPT [17] and BERT [4]), which consider only natural language in
their original versions, in Sect. 6.2. Subsequently, we present a series of vision-and-
language extensions (vision-and-language pretraining models) in Sect. 6.3, which
can be categorized into two types: single stream and two stream. In the single-stream
models, visual information and linguistic information are fused at the beginning and
directly and concurrently input to the encoder (transformer) module. In the other
models (i.e., two streams), the visual and linguistic information first passes through
two independent encoder (transformer) modules, and a cross transformer is used to
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integrate the output from different modalities. Finally, in Sect. 6.4, we discuss the
methods to adapt the vision-and-language pretrained models in the VQA task and
other downstream tasks.

6.2 General Pretraining Models

In this section, we introduce several general pretrainingmodels designed for generat-
ing a general representation of a given input. We consider three classical pretraining
models (i.e., ELMo [15], GPT [17] and BERT [4]) as examples, which are based
on deep neural networks (DNNs). The original versions of these three models con-
sider only natural language. Following the settings of the original versions, we also
consider natural language as the input when describing the models.

6.2.1 Embeddings from Language Models

The main idea of embeddings from language models (ELMo) [15] is to optimize a
language model on a large amount of unlabeled data via a deep bidirectional RNN
(BiLSTM) (as shown in Fig. 6.1). In this context, this language model processes the
input sentence and obtains the output vector, which can be regarded as a feature
extractor. Unlike the pretraining of Word2Vec [13] or GloVe [14], the embedding
obtained by ELMo is contextual due to the BiLSTM,which enables the ELMomodel
to learn the context information from a given sentence (i.e., a series of word tokens).

Fig. 6.1 Overall architecture of embeddings from language models (ELMos). The input sentence
is represented by a series of word tokens, which are fed to the ELMo model. The output is the
corresponding representation for each input token
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6.2.2 Generative Pretraining Model

According to the framework shown in Fig. 6.2a, Radford et al. [17] proposed a gen-
erative pretraining (GPT) model, which aims to learn a general representation of
natural language. To this end, the GPT model seeks to capture long-term dependen-
cies in sentences, replacing the conventional LSTMwith a series of transformer [21]
modules. Similar to the ELMomodel, the GPTmodel takes a set of word tokens (i.e.,
sentence) as input and outputs the corresponding representation for each input token.
However, as the GPTmodel is a single directional model, it predicts the current word
based on only the previous words, thereby limiting the capability of understanding
the context of an input sentence. To alleviate this issue, a bidirectional encoder rep-
resentations from transformers (BERT) model has been proposed, which focuses
on the forward and backward directions of the input sentence (Fig. 6.2b). Notably,
the BERT model is widely used in many existing vision-and-language pretraining
models [9, 11, 19]. More details regarding the model are presented in the following
text.

6.2.3 Bidirectional Encoder Representations from
Transformers

As shown in Figs. 6.2b and 6.3, Devlin et al. [4] devised a language representation
model known as bidirectional encoder representations from transformers (BERT),
which learns deep bidirectional representations from unlabeled sentences by jointly
using conditions on both left and right contexts in all layers.

Fig. 6.2 Overall architectures of the a OpenAI generative pretraining (GPT) model and b bidirec-
tional encoder representations from transformers (BERT) model. The notation “Trm” denotes the
transformer module. The inputs are a series of word tokens, while the outputs are the corresponding
representations of the input tokens



94 6 Vision-and-Language Pretraining for VQA

Fig. 6.3 Overall BERT architecture. The input is an unlabeled sentence pair of A and B. The
[CLS] symbol is added in front of every input example, while [SEP] represents a separator token
between two sentences. NSP refers to a next sentence prediction model, which aims to distinguish
whether the input two sentences are relevant. The masked language model (MLM) seeks to learn a
deep bidirectional representation

Input Representation. The inputs of BERT are shown in Fig. 6.4. Two sentences,
“my dog is cute” and “he likes playing”, are fed into themodel. Special tokens[CLS]
and [SEP] are added at the beginning and end of the first sentence separately, which
indicate the start and end of the first sentence, respectively. For the second sentence,
an ending token [SEP] is placed after “##ing” (i.e., the end of the second sentence).
This method divides “playing” into two tokens, “play” and “##ing”. In this manner,
the model can manage a word that it has never encountered before, like “playing”.
Next, each input word is represented by three embeddings: a token embedding, a
segment embedding and a position embedding. Each token embedding refers to a
word represented as a feature vector in common space. As the input only involves two
segments (i.e., either the first or second sentence), two segment embeddings exist, and
the embedding derived from the same sentence is shared. In this manner, the model
can recognize whether the information is from the first segment/sentence or second
segment. For tasks that contain only one input sentence, the segment id is always
0; for tasks that input two sentences, the segment id is either 0 or 1. Similarly, the
position embeddingmaps the position of each word (Fig. 6.4) into a low-dimensional
dense vector.

Masked Language Model (MLM). To ensure that the model can consider contex-
tual information, BERT introduces a masked language model (MLM). The MLM is
similar to a closed test, in which we randomly hide a word involved in a given sen-
tence and allow people to guess the possible words. Specifically, 15%1 of the words
are randomly replaced by tokens named [Mask], and subsequently, BERT tries to
predict the words of these [Mask] tokens. The probability of correct prediction
is maximized by optimizing the model parameters by using the cross-entropy loss.

1 Excessively little masking impedes the learning of the information from context, while excessively
large masking can increase the computational cost.



6.2 General Pretraining Models 95

Fig. 6.4 Input representations of BERT. We consider two sentences as inputs, e.g., “my dog is
cute” and “he likes playing”. The input representation of each word contains three embeddings: a
token embedding, a segment embedding and a position embedding. The token embedding is a dense
vector of words. The segment embedding indicates whether the current word is from the first or
second sentence. The position embedding denotes the order of each word in the two input sentences

This approach enforces the BERT model to consider contextual information when
encoding a word.

However, a problem remains: the special token [Mask] appears in the training
phase ofMLM; however, this token does not appear in the finetuning phase. Thus, the
presence of several newwords (i.e., words not encountered in the training phase)may
lead to a mismatch when finetuning BERT in other downstream tasks. To alleviate
this issue, in pretraining BERT, if a token is among the selected 15% of words, it
would be randomly executed in the following three ways:

• 80% of the selected tokens are replaced by [Mask], e.g.,
my dog is hairy → my dog is [Mask]

• 10% of the selected tokens are replaced by a random word, e.g.,
my dog is hairy → my dog is apple

• 10% of the selected tokens are not replaced, e.g.,
my dog is hairy → my dog is hairy

In this scenario, the BERT model does not know which word the [Mask] replaces,
as any word may be replaced, e.g., the word “apple” may be the replaced word.
Hence, the model does not only rely on the current word when encoding the current
word, but also scan the context. This framework helps fill in the blanks ([Mask])
or correct the replaced/mismatching word in the sentence. For instance, in the above
example, when encoding word “apple”, if the model considers the context “my dog
is”, it would output an embedding of “hairy” instead of “apple”.

Next Sentence Prediction (NSP). Inmany natural language processing (NLP) tasks,
such as question answering (QA), relationships between sequential sentences are
vital. Therefore, BERT introduces a new module known as next sentence prediction
(NSP), which aims to predict whether two given sentences are related. This frame-
work requires the pretraining data to be an “article”, which contains multiple sequen-
tial sentences. To this end, the data from the BookCorpus [25] dataset and English
Wikipedia are used when optimizing this model. BookCorpus contains books, and
the sentences in each book are related. Similarly, the sentences in English Wikipedia
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Fig. 6.5 Downstream BERT tasks. We consider four types of downstream tasks for which the
BERT model can be finetuned

are also related. To accomplish this task, BERT selects sequential (related) sentences
with a probability of 50% while randomly selecting two unrelated sentences with a
probability of 50%. Subsequently, the model determines whether the selected two
sentences are related. For example, the following two sentences are related:
[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

The following sentences are unrelated:
[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]

Finetuning to Downstream Tasks. As shown in Fig. 6.5, BERT can be finetuned
to accomplish four types of downstream tasks: single sentence classification task,
sentence pair classification task, single sentence tagging task and question answering
task. The tasks can be described as follows.

• For single sentence classification tasks, the input is a single sentence (Fig. 6.5a),
and all tokens belong to the same segment (i.e., id=0). In this task, a softmax
function is added to the last layer of the model, and a series of labeled data is used
for finetuning.

• For sentence pair classification tasks, as shown in Fig. 6.5b, given two sentences,
each token may correspond to different sentences/segments (id=0 and id=1 corre-
spond to the first and second sentences, respectively). Moreover, the model intro-
duces a softmax function in the last layer, and the modified model uses labeled
data for finetuning.

• For single sentence tagging tasks (e.g., named entity recognition, NER), given an
input sentence (i.e., token sequence), there exists an output tag for each input token
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except for [CLS] and [SEP]. For example, as shown in Fig. 6.5c, the notation
“B-PER” represents the beginning of a person’s name, while “O” indicates that a
token belongs to no entity. In this sense, the model is finetuned by evaluating the
differences between the predicted tags and ground-truth tags.

• For the question answering task, the input is a question (Q) and a long paragraph
(P) containing answers, while the output is the answers (A) found in this paragraph.
E.g.,
Q: Where do water droplets collide with ice crystals to form precipitation?
P: ... Precipitation forms as smaller droplets coalesce via collision with other rain
drops or ice crystals within a cloud ...
A: within a cloud
The BERTmechanism for this task can be summarized as follows: The model first
represents the question and paragraph as a long sequence, separated by [SEP]
in the middle. The question is a segment/sentence (id=0), while the paragraph
containing the answer is another segment/sentence (id=1). It is assumed that the
answer is a continuous sequence (i.e., span in Fig. 6.5d) in the paragraph. BERT
transforms the problem of finding an answer into a problem of finding the starting
and ending indexes of this span.

6.3 Commonly Used Methods for Vision-and-Language
Pretraining

Problem Definition and Pretraining Paradigms. Vision-and-language pretrain-
ing aims to produce a joint representation from both visual and linguistic inputs.
Specifically, given an image (vision) with the corresponding description (language),
the model seeks to yield a uniform representation, which retains both text context
and visual information. This representation can be applied to a variety of vision-
and-language downstream tasks, such as visual question answering (VQA) or refer-
ring expression comprehension (REC). To this end, many paradigms for vision-and-
language pretraining frameworks have been proposed, which can be categorized into
two types: single stream and two stream (Fig. 6.6). Notably, the two-stream paradigm
can be further divided into two subtypes, i.e., cross type and joint type.

Notations. Based on BERT [4], each token/word is projected to a corresponding
embedding e ∈ E, where E denotes the set of word embeddings. Each word embed-
ding e consists of three parts: a token embedding etok, segment embedding eseg and
position embedding epos. For the input image, similar to the processing of the word
embedding, themodel considers each bounding region in the image as an input token,
which can bemapped to a visual embedding f ∈ F . Here,F refers to the set of visual
embeddings. Similar to the word embedding, each visual embedding contains three
components, i.e., a visual feature representation fvis, a segment embedding fseg and
a position embedding fpos. The visual feature representation fvis is the feature of the
bounding region, often generated by a convolutional neural network (CNN). The
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Fig. 6.6 Various paradigms for vision-and-language pretraining frameworks. The methods can be
categorized into two types: single stream and two stream. Two-stream frameworks involve two
subtypes: cross type and joint type

segment embedding fseg aims to indicate whether this embedding is derived from the
input image or input text.

6.3.1 Single-Stream Methods

Motivation. Many vision-and-language tasks require the understanding of visual
contents, linguistic semantics, cross-modal alignments and relationships. A straight-
forward method is to use separate vision-and-language models designed for vision
or language tasks that are pretrained on vision or language datasets, respectively.
However, this method lacks a unified foundation for learning joint representations
among visual concepts and linguistic semantics. Consequently, the method often
exhibits an inferior generalization ability when the paired vision-and-language data
are limited or biased. To alleviate this issue, a jointly pretrained vision-and-language
model must be considered, which can provide a joint knowledge representation for
downstream vision-and-language tasks.

Methods. Li et al. [9] proposed a vision-language representation framework known
as VisualBERT (Fig. 6.7), aimed at producing a unified representation, which con-
tains both linguistic semantics (from the caption) and visual concepts (from the
image). Specifically, to capture rich semantics in images and corresponding text,
VisualBERT employs BERT [4] (a transformer-based model [21]) for natural lan-
guage processing and Faster R-CNN [18] (an object detection model) to generate
region proposals from images. Similar to the processing of tokens in BERT, Visual-
BERT takes each bounding region as an input token and feeds it to the model along
with the word tokens. Each bounding region is mapped to a visual feature via a CNN
model. Subsequently, the text and image features are jointly processed by multiple
transformer layers. The interaction among words and object regions empowers the
model to consider the associations between text and image. VisualBERT is trained
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Fig. 6.7 Overall architecture of VisualBERT (a typical single-stream vision-and-language pre-
training framework). The model takes both text and image as inputs and seeks to produce a joint
representation that contains both linguistic semantics and visual concepts

on the COCO dataset [2] with two objectives. The first objective is masked language
modeling (MLM), following the settings in BERT. However, unlike BERT based
only on natural language, VisualBERT considers visual information when filling the
[MASK] token. The second objective is sentence-image prediction, which focuses
on whether or not the given text and image are aligned. To this end, the model takes
an image with two captions as input. One caption is associated with the given image,
while the other caption only has a 50% chance of being relevant.

Li et al. [8] devised a universal encoder named Unicoder-VL, which seeks to
learn joint representations of vision and language in a pretraining manner. Specifi-
cally, inspired by cross-lingual pretrained models, e.g., XLM [7], Unicoder [6] and
BERT [4], Unicoder-VL uses a multi-layer transformer [21] to capture both visual
and linguistic contents from the multimodal inputs. The optimization of Unicoder-
VL involves three objectives, including masked language modeling (MLM), masked
object classification (MOC) and visual-linguistic matching (VLM). Similar to Visu-
alBERT, MLM forces the model to consider both linguistic semantics from text
and visual information from images. In addition to masking the text tokens, MOC
enhances the context-aware representation ability of the generated multimodal fea-
tures bymasking the detected objects. Finally, VLM tries to predict whether an image
and a text describe each other, similar to the VisualBERT framework.

Su et al. [19] proposed a new model for visual-linguistic tasks, named visual-
linguistic BERT (VL-BERT). The VL-BERTmodel adopts a multi-layer transformer
as the backbone, which takes the text tokens and image regions as inputs and outputs
features with both visual and linguistic information. The model is optimized via
two pretrained tasks: masked language modeling with visual clues and masked RoI
classification with linguistic clues. The former task is similar to the masked language
modeling (MLM) implemented in BERT. The difference is that VL-BERT focuses
on both linguistic and visual clues from the input text and image, respectively, while
the conventional BERT model considers only natural language. Unlike the first task,
which seeks to mask the tokens in the input sentence, the second task aims to predict
the masked region of interest (RoI) in a given image. In contrast to the Unicoder-VL
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or VisualBERT framework, VL-BERT masks the RoIs at the pixel level, while other
methods add masks in the features of RoIs. In this manner, VL-BERT can avoid
visual clue leakage during the process of visual feature extraction.

Alberti et al. [1] designed a model named bounding boxes in text transformer
(B2T2), which tries to verify whether a satisfactory integration of visual and lin-
guistic information can enhance the model performance in downstream tasks. To
this end, B2T2 introduces two kinds of fusion methods: late fusion and early fusion.
Inspired by dual encoder models [5, 22], which map a whole image into a common
representation space, the late fusion method maps both the input image and sentence
into a common space at the end of the backbone model and calculates their inner
production as an output score. In contrast to late fusion, the early fusionmethod seeks
to integrate the image and sentence at the beginning of the backbone model. To this
end, this model utilizes the [MASK]mechanism similar to BERT, which also adopts
the [MASK] token into object regions of the given image. Model training is based
on two pretraining tasks, i.e., masked language model (MLM) and sentence-image
alignment, which are the same as those of VisualBERT.

Chen et al. [3] devised a universal image-text representation (UNITER) model.
Unlike the existing approaches, which consist of a multi-layer transformer, UNITER
leverages only a single transformer. The input image is configured following the
settings of existing approaches (e.g., VisualBERT), which rely on the region of
interest (RoI) that contains the visual features and position information. The key
difference is that the position is represented by a vector with 7 dimensions (i.e.,
height, width, and area of the bounding box), while other methods consist of only 4
dimensions (i.e., coordinates of the bounding box). The optimization of this model is
based on four pretraining tasks: masked language modeling (MLM), masked region
modeling (MRM), image-text matching (ITM) and word-region alignment (WRA).
The first three tasks (i.e., MLM, MRM and ITM) are the same as those in Unicoder-
VL. In addition to ITM (global image-text alignment), UNITER introduces a new
WRA, which focuses on fine-grained alignment between words and image regions.
Specifically, this model regards the problem of token/word-region matching as a
transfer problem between two distributions. In this sense, the model can use the
optimal transportation (OT) approach to encourage the alignment between words
and regions in an unsupervised manner. The corresponding loss estimates the OT
distance between the word and region distributions.

Performance and limitations. In addition to the abovementioned methods, many
variants, like VLP [24], ImageBERT [16], XGPT [23] and OSCAR [10], have been
established. However, due to the limitation of the model structure, the single-stream
models cannot accommodate the different processing requirements associated with
different modalities (i.e., vision and language), which limits the interaction among
different modalities, as the interactionmust be able to occur in varying representation
depths. Such a rigid architecture may hamper the general ability of the yielded mul-
timodal features and further deteriorate the finetuning performance in downstream
tasks.
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6.3.2 Two-Stream Methods

Motivation. For two-stream models, the linguistic semantics and visual information
are not directly fused at the beginning of the model but are first encoded by different
encoders. The shunt design is based on the assumption that language understanding
is more complex than image understanding, and the image input is a series of higher-
level features extracted by the object detection model (e.g., Faster R-CNN). Thus,
the encoding required by the two inputs should be different (e.g., different model or
representation depths).

Methods. Lu et al. [11] proposed a model known as vision-and-language BERT
(ViLBERT) for learning the joint representations of image content and natural lan-
guage. As shown in Fig. 6.8, the model consists of two streams, which first sepa-
rately process the visual and textual inputs, and the two streams interact with each
other via coattention transformer layers. The optimization of ViLBERT is based on
two pretraining objectives: masked multimodal modeling and multimodal alignment
prediction. Masked multimodal modeling follows the MLM of conventional BERT,
whichmasks both thewords/tokens and image regions in the input and tries to recover
them in the output of this model. Notably, rather than recovering the masked feature
value for each image region, ViLBERT seeks to predict the distribution of semantic
classes for each region. To this end, the model considers the predicted distribution
as the ground truth, which is derived from the same detector used for region detec-
tion. Subsequently, the model ensures that the recovered distribution is similar to the
predicted distribution via KL diversity. Multimodal alignment prediction focuses on
whether or not the given image and sentence are aligned.

Tan et al. [20] devised a framework for learning cross-modality encoder rep-
resentations from transformers (LXMERT), which seeks to learn the vision-and-
language connections from input images and sentences. The model consists of
three components: an object relationship encoder, a language encoder, and a cross-
modality encoder, which focus on capturing visual features, extracting linguistic
embeddings and fusing the visual and linguistic information, respectively. LXMERT
involves five pretraining tasks, which can be categorized into three types: language

Fig. 6.8 Overall architecture of ViLBERT (a typical two-stream vision-and-language pretraining
framework). Given an image with a caption, the model first separately manages the two inputs by a
series of transformer blocks (TRM) and realizes interaction through a coattentional TRM (Co-TRM)
module
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tasks, vision tasks and cross-modality tasks. For language tasks, the model follows
masked language modeling (MLM) in BERT. The vision task contains two subtasks:
masked object prediction via RoI-feature regression and masked object prediction
via detected-label classification. In both tasks, RoI features are randomly masked
with zeros. The difference is that the former approach seeks to recover the masked
region, while the latter focuses on classifying the given RoI region. Cross-modality
tasks also involve two subtasks, i.e., cross-modality matching and visual question
answering (VQA). The first task checks whether images and text are aligned, while
the second task is the conventional VQA task, which is used to enlarge the pretraining
dataset.

Lu et al. [12] designed a multitask vision-and-language representation learning
method known as 12-in-1. This method optimizes a model on 12 datasets pertain-
ing to four types of tasks: visual question answering, caption-based image retrieval,
grounding referring expressions and multimodal verification. The backbone archi-
tecture follows the ViLBERT model, containing two streams pertaining to vision
and language. Similar to ViLBERT, 12-in-1 also considers two pretraining tasks,
i.e., masked multimodal modeling and multimodal alignment prediction. In the first
task, 12-in-1 masks words/tokens and image regions with a probability of approxi-
mately 15%. However, unlike the original ViLBERT, 12-in-1 also masks the regions
with an overlap (i.e., >0.4 IoU), which can avoid the leakage of visual information.
The section task distinguishes whether text and image are matched. In contrast to
ViLBERT, 12-in-1 does not implement the masked multimodal modeling loss when
processing negative (not aligned) text. In this manner, the model can remove the
noise derived from the negative samples to a certain extent.

Performance and limitations. Compared to one-stream architectures, although the
two-streamarchitectures aremore flexiblewhen handling visual and linguistic inputs,
the models often contain additional parameters with a higher computational cost
(e.g., the pretraining process of LXMERT requires 10 d on 4 Titan Xp). It remains a
challenge to decrease the computational cost and design a lighter model.

6.4 Finetuning on VQA and Other Downstream Tasks

Pretrained visual-linguisticmodels can be used inmany types of vision-and-language
applications, e.g., visual question answering (VQA), visual common-sense reasoning
(VCR), referring expression comprehension (REC), natural language visual reason-
ing, Flick30k entities, image-text retrieval, zero-shot image-text retrieval, grounding
referring expressions, visual entailment, image captioning and GQA. Each appli-
cation/task corresponds to a specific finetuning method, which adapts the original
model to a certain extent. In this section, we describe the first three typical down-
stream tasks.

Visual Question Answering. Visual question answering (VQA) is a vital down-
stream task that has been attempted to be realized using various vision-and-language
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Fig. 6.9 Finetuning on the visual question answering (VQA) task

Fig. 6.10 Finetuning on the visual common-sense reasoning (VCR) task

Fig. 6.11 Finetuning on the referring expression comprehension (REC) task

pretraining models, e.g., VisualBERT, VL-BERT, UNITER, ViLBERT, LXMERT
and 12-in-1. In general, the VQA task takes an image with an image-dependent
question as the input and requires the model to return a proper answer for such a
question. As shown in Fig. 6.9, when using a vision-and-language pretraining model
(e.g., VisualBERT), VQA can be regarded as a classification problem, in which the
model must select an appropriate answer from a predefined answer pool. To ensure
that the pretrained model is suitable for the VQA task, an additional [MASK] token
is introduced, which was fed to the model to return a predicted answer.

Visual common-sense Reasoning. Another downstream task is visual common-
sense reasoning (VCR). Similar to VQA, VCR requires the model to generate a
correct answer based on the given image and question. The key difference is that in
addition to the output answer, VCR necessitates the verification of the reasonability
of the generated answer. In this sense, the VCR task can be divided into two subtasks:
question (Q) → answer (A) and question (Q) & answer (A) → reasoning (R). Each
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training sample contains four candidate answers, which are combined with the given
question and images separately. Consequently, there are four combined sequences for
each sample. As shown in Fig. 6.10, the model takes sequences as inputs and seeks
to classify the input sequence that is correct. Object classification is often introduced
as an auxiliary module.

Referring Expression Comprehension. Referring expression comprehension
(REC) aims to localize a specific object in a given image, which is described by
a linguistic query. According to Fig. 6.11, the task takes a query-image pair as the
input and outputs a detected region, which covers the described object of the given
query. A vision-and-language pretraining model can be easily adapted in this task,
as the inputs contain a linguistic sequence and a series of image regions in both
the pretraining and REC tasks. The only difference is the integration of a region
classification module in the output layer of the original model (Table 6.1).
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Part III
Video-Based VQA

Video question answering takes videos as the input and answers questions regarding
video content. In contrast to the image-based VQA problem, video QA requires a
model to understand both the spatial and temporal contexts, which naturally exist
in a video. In this part, we focus on video QA methodologies. We describe video
representation learning and introduce several classical and advancedmodels for video
QA.



Chapter 7
Video Representation Learning

Abstract Video representation learning generates visual semantic representations
from given videos, which is vital for video-related tasks, including human action
understanding in videos and video question answering. Video representations can be
categorized into handcrafted local features and deep-learned features. Handcrafted
local features are video features extracted by handcrafted formulas, and deep-learned
features are extracted automatically through neural networks. In this chapter, we
discuss video representation learning from the two aspects of handcrafted features
and deep architecture-generated features.

7.1 Handcrafted Local Video Descriptors

The calculation of handcrafted local video features involves two processing units:
(1) a detector to identify the significant and informative regions and (2) a descriptor
to generate semantic information regarding the extracted regions. There exist several
typical handcrafted local features:

1. Space-time interest points [8]
2. Cuboids [5]
3. Dense trajectories [10]

Space-Time Interest Points The solution of space-time interest points [8] is
based on considering the video as a three-dimensional function and identifying a
mapping function to map the three-dimensional video to a one-dimensional space, in
which the local maximum value is sought. The calculation process can be described
as follows: First, we convert the video into a linear scale space representation as

L
(·; σ 2

l , τ 2
l

) = g
(·; σ 2

l , τ 2
l

) ∗ f (·)

Here, g
(·; σ 2

l , τ 2
l
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is a Gaussian kernel with distinct spatial variance σ 2

l and temporal
variance τ 2

l . This Gaussian kernel is calculated as
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Similar to the Harris algorithm, a 3 × 3 matrix composed of first-order spatial and
temporal derivatives averaged with a Gaussian weighting function is established as
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Subsequently, we calculate the three eigenvalues of theμmatrix to obtain the expres-
sion form of the Harris corner function in the space-time domain by

H = det(μ) − k · trace3(μ) = λ1λ2λ3 − k (λ1 + λ2 + λ3)
3

By calculating the positive maximum value of H , space-time interest points can be
obtained.

Cuboids Cuboid [5] feature extraction involves four processes: feature detection,
cuboid generation, cuboid prototype generation and final behavior descriptor gener-
ation. The feature detection process finds the local maximum point of the following
function:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2

Here

g(x, y; σ) = 1

2πσ 2
e

−(x2+y2)
2σ2

hev(t; τ, ω) = − cos(2π tω)e− t2

τ2

hod(t; τ, ω) = − sin(2π tω)e− t2

τ2 .

After obtaining the feature points, we generate cuboids with feature points as centers.
Subsequently, we transform the cuboids, scale the transformed cuboids into vectors
and adopt the PCA to reduce the dimension for generating cuboid feature descriptors.
Cuboid prototypes are generated by applying the k-means method on the cuboid
feature descriptors, which are finally used to generate behavior descriptors.

The most commonly used handcrafted local video descriptors include the his-
togram of oriented gradient (HOG) [2], histogram of optical flow (HOF) [9]
and motion boundary histogram (MBH) [3]. The histogram of oriented gradient
(HOG) [1] captures the edge or gradient structure of images. The normalization over
the concatenated vector of normalized cell histograms from all the block regions is
the final calculation of the HOG descriptor. The advantage of the HOG descriptor
is that it can reflect the local shape, which is of significance for human detection in
images.
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Fig. 7.1 HOG feature extraction

The histogram of oriented optical flow (HOF) descriptor, which is similar to the
HOG, performs weighted statistical analyses in the direction of the optical flow to
obtain a histogram for the optical flow direction information and is usually used in
action recognition (Fig. 7.1).

The motion boundary histogram (MBH) descriptor treats the optical flow images
in the x- andy-directions as twograyscale images and extracts the gradient histograms
of these grayscale images. Specifically, the MBH feature calculates the HOG feature
over the optical flow image in the x- and y-directions of the image. TheMBH feature
extracts the boundary information of the moving object and can thus be used in
pedestrian detection applications. In addition, the calculation of the MBH feature is
simple and convenient (Fig. 7.2).

Fig. 7.2 MBH descriptor. From left to right: original image, optical flow, gradient magnitude of
flow field and average MBH descriptor
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In summary, the abovementioned three local video descriptors are the most com-
monly used features. HOG is calculated in the image field and is thus a spatial feature,
while HOF and MBH are calculated over optical flow images and are thus temporal
features.

7.2 Data-Driven Deep Learning Features for Video
Representation

Deep learning featuremethods aim to automatically learn the semantic representation
from raw video by using a deep neural network trained from a large dataset contain-
ing labeled data. Compared with handcrafted methods, data-driven deep learning
methods are similar to a black box containing a large number of parameters and
complex structures. In this section, we introduce several efficient data-driven deep
learning features for video representation.

Feichtenhofer et al. [7] proposed a SlowFast network to capture spatiotemporal
features. The SlowFast network is a two-stream network, including low and high
frame rate streams. Among the retinal ganglion cells of primates, 80 (Fig. 7.3).

Diba et al. [4] proposed temporal 3D ConvNets to generate a video representation
and accomplish the video classification task. The temporal transition layer (TTL),
which can effectively model the variable time 3D convolution kernels in a shorter or
longer range, is used to replace the standard transition layers in DenseNet. Subse-
quently, a temporal 3D ConvNet (T3D) is built based on the DenseNet architecture,
which replaces 2D convolutionwith 3D convolution and uses TTL to replace the stan-
dard transition layers in DenseNet. T3D exhibits excellent performance on a small
dataset; however, the number of parameters of the T3D model is 1.3 times larger

Fig. 7.3 SlowFast network
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Fig. 7.4 Temporal 3D ConvNet (T3D)

Fig. 7.5 3D temporal transition layer

Fig. 7.6 Architecture for knowledge transfer from a pretrained 2D ConvNet to 3D ConvNet

than that for DenseNet3D. Therefore, a transfer learning method is used to transfer
the weights of the two-dimensional convolutional network to the three-dimensional
convolutional network to decrease the number of parameters (Figs. 7.4, 7.5 and 7.6).

7.3 Self-supervised Learning for Video Representation

Video representation based on supervised learning methods can be expensive. Fine-
grained annotations for each frame of the video are required for supervised learning.
In addition, training different actions requires new annotations to provide supervision
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Fig. 7.7 Framework for self-supervised video representation learning by pace prediction

signals. Therefore, self-supervised learning methods have been proposed for video
representation learning.

Dwibedi et al. [6] proposed a self-supervised method named temporal cycle-
consistency (TCC) learning. The key concept of TCC is to find the same action from
multiple videos by the principle of cyclic consistency. The goal of the algorithm is
to train an effective frame encoder to obtain the representation of the corresponding
action. The training process can be described as follows. Two videos are used for
training, with one of the videos being the reference video. One frame in the ref-
erence video is encoded to find the most similar frame in another video, which is
subsequently used to identify the most similar frame in the reference video. If the
learned embedding space has cyclic consistency, this frame should be the same frame
as the reference frame. The training process of the model decreases the loop con-
sistency error by continuously improving the semantic understanding of each video
frame. Since this method can effectively learn the transfer expression of videos, it
can be widely used in small-sample video action classification, unsupervised video
alignment, multimodal transfer and frame-by-frame video retrieval.

Wang et al. [11] established a new perspective for learning video representations
in a self-supervised manner by pace prediction, inspired by the rhythmic montage
technique in film production. Training clips are generated using three paces: a slow
pace, normal pace and fast pace. Next, the training clips are used to extract spatiotem-
poral features using a 3D CNN. Later, pace prediction and contrastive learning are
simultaneously employed, and the weighted sum of the two losses is the final loss.
The main contribution of the paper is that it proposes a new perspective of video
representation learning in self-supervised learning, namely, video speed prediction.
Moreover, a comparative learning method is used to further regularize the learning
process and help the model learn high-level semantic information (Fig. 7.7).
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Chapter 8
Video Question Answering

Abstract The video question answering task, which was first introduced in 2014,
is a more complex task than the classical visual (static image) question answering
task. For video question answering tasks, both datasets and models are essential for
research. Therefore, in this chapter, we first illustrate the most popular datasets for
video question answering, ranging from datasets containing physical objects to those
characterizing the real world, and subsequently introduce several models based on
the encoder-decoder framework.

8.1 Introduction

Themain objective of the video question answering task is to learn amodel, for which
it is necessary to understand the semantic information in the videos and questions and
their semantic correlation to infer the correct answer to the given question [9]. Video
question answering can be divided into many subtasks, including video grounding,
object detection, feature extraction, multimodal fusion and classification.

The inputs to the model f (v, q, a; θ) are defined as follows: a video denoted as
v ∈ V , a question denoted as q ∈ Q, and an answer denoted as a ∈ A output by the
model. Therefore, the objective function in the learning process is defined as

min
θ

L(θ) = Lθ + λ||θ ||2,

where θ denotes the model coefficients, Lθ denotes the loss function and λ denotes
the trade-off parameter between the training loss and regularization. The method to
trainmodel parameters θ to answer the question is the key point to solve theVideoQA
task.

Various metrics can be used to evaluate model performance. The evaluation met-
rics of the general performance, which pertains to answer prediction, are accu-
racy and WUPS [6]. Temporal mean intersection-over-union [4] is a fine-grained
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metric to evaluate span prediction (answer-related temporal span). Additionally, the
answer-span joint accuracy (ASA) jointly evaluates both answer prediction and span
prediction [6].

The remaining section is organized as follows. First,we introduce themost influen-
tial video question answering datasets. Subsequently, we describe traditional models
for the VideoQA task based on the encoder-decoder framework.

8.2 Datasets

With considerable research efforts devoted to VideoQA, a number of datasets have
been established.We broadly classify the existing typical VideoQA datasets based on
the complexity and necessary reasoning steps for the questions. Questions in certain
datasets require only single-step reasoning, for example, what and how questions.
Other datasets pertain to a more complex question like “After walking through a
doorway, which object were they interacting with?”, which require multistep rea-
soning. Moreover, according to the video source, datasets can be categorized into
movie types, TV types, TGIF types, geometry types, and game and cartoon types.
Therefore, in each class, we introduce the datasets in the order of the video source.

8.2.1 Multistep Reasoning Dataset

TVQA [4] is a large-scale compositional video QA dataset based on 6 popular TV
shows spanning 3 genres: medical dramas, sitcoms and crime shows. The dataset
consists of 152,545 QA pairs from 21,793 clips, spanning over 460 h of video. The
video clips in TVQA are relatively long (60?0 s), rendering video understanding
challenging. In addition to QA pairs, the dialogue (characters and subtitles) for each
video clip is provided. The questions in TVQA are in a compositional-question
format: [What/How/Where/Why/...] combinedwith [when/before/after]. The second
part localizes the most relevant frames among the video, and the first part poses
a question regarding that relevant frame. One key property of TVQA is that the
TVQA dataset provides a temporal timestamp annotation indicating the minimum
span (context) needed to answer each question.

TVQA+ [5] is an augmented version of TVQA. While TVQA provides temporal
timestamp annotations for each question, it lacks spatial annotations, i.e., bounding
boxes of the objects and people. TVQA+ samples one frame every two seconds
from each span for spatial annotation and adds framewise bounding boxes for visual
concepts mentioned in the questions and correct answers to the dataset. Overall,
TVQA+ contains 148,468 images annotated with 310,826 bounding boxes (Figs. 8.1
and 8.2).

SVQA [8] is a large-scale automatically generated dataset. The dataset contains
12,000 videos and 118,680 QA pairs. SVQA generates each video using Unity3D,
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Fig. 8.1 Sample entry from the TVQA dataset

Fig. 8.2 Sample entry from the TVQA+ dataset
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Fig. 8.3 Sample entry from the SVQA dataset

accompanied by a JSON file recording the attributes and position of each involved
geometry. The questions in SVQA are generated by predefined question templates.
The key properties of questions are the exclusively long length and compositional
property regarding various spatial and temporal relations between objects. The ques-
tions in the SVQA can be decomposed into a logical tree or chain layouts, in which
each node can be regarded as a subtask requiring a reasoning operation, i.e., filter
shape (Fig. 8.3).

CLEVRER [13] is a diagnostic video dataset to perform the systematic evaluation
of computational models on a wide range of reasoning tasks. CLEVRER includes
20,000 synthetic videos of colliding objects and more than 300,000 questions and
answers. Videos are generated by a physics engine, including three shapes, two
materials, eight colors and three types of events: enter, exit and collision. The dataset
offers object attributions, event annotations and object motion traces as annotations.
CLEVRER includes four types of questions: descriptive (e.g., “what color”), explana-
tory (“what responsible for”), predictive (“what will happen next”) and counterfac-
tual (“what if”), with 219,918 descriptive questions, 33,811 explanatory questions,
14,298 predictive questions and 37,253 counterfactual questions. Each question is
represented by a tree-structured functional program.

AGQA [1] is a benchmark to assess the compositional spatiotemporal reason-
ing ability. The dataset contains a balanced 3.9M and an unbalanced 192M ques-
tion/answer pair associated with 9.6K videos. The video source is from Charades,
and annotations are from Charades?action annotations and Action Genome spa-
tiotemporal scene graphs, which ground all objects with bounding boxes and actions
with timestamps in the video. Questions are generated by handcrafted programs that
operate over these annotations. Moreover, AGQA also provides three new compo-
sitional spatiotemporal splits—(i) novel compositions, (ii) indirect references and
(iii) additional compositional steps—for testing the reasoning ability of the model.
AGQA is a highly challenging benchmark as it is built upon real video data sources
and generated from complex question templates.
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Fig. 8.4 Sample entry from the CLEVRER dataset

Fig. 8.5 Sample entry from the AGQA dataset
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Traffic QA [11] is a diagnostic benchmark for the cognitive capability of causal
inference and event understanding models in complex traffic scenarios. The dataset
contains 10,080 in-the-wild videos and 62,535 annotated QA pairs. Traffic QA pro-
poses 6 challenging traffic-related reasoning tasks (Figs. 8.4 and 8.5):

• Basic understanding
• Event forecasting
• Reverse reasoning
• Counterfactual inference
• Introspection
• Attribution

QA pairs are designed by annotators related to the 6 tasks above. The average
length of questions is 8.6 words. Various levels of spatiotemporal understanding and
causal reasoning are required for this dataset.

8.2.2 Single-Step Reasoning Dataset

MovieQA [10] is a dataset that aims to evaluate automatic story comprehension from
both video and text. The dataset consists of 14,944 questions regarding 408 movies.
A key property of the dataset is that it contains video clips, plots, subtitles, scripts
and DVS. Furthermore, for 140 of 408 movies (6,462 of 14,944 QAs), the dataset
has timestamp annotations indicating the location of the question and answer in the
video. The multichoice questions contain who? did what? to whom? why? and how?
certain events occurred, and the multichoice questions have 4 wrong answers and 1
right answer. The average length of questions and answers is approximately 9 and 5
words, respectively.

ActivityNet-QA [14] is a fully annotated and large-scale VideoQA dataset. The
dataset consists of 58,000 QA pairs on 5,800 complex web videos derived from
the popular ActivityNet dataset, which contains approximately 20,000 untrimmed
web videos representing 200 action classes. ActivityNet-QA includes three types
of questions, pertaining to motion, spatial relationship and temporal relationship.
To avoid improper representation of the QA pairs, the maximum question length is
limited to 20 words, while the maximum answer length is limited to 5 words. The
QA pairs are designed by separated question annotators and answer annotators to
ensure high quality of the dataset.

TGIF-QA [2] is a large-scale dataset consisting of 103,919 QA pairs collected
from 56,720 animated GIFs. TGIF-QA involves four types of tasks:
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Fig. 8.6 Sample entry from the TGIF-QA dataset

1. Repetition count, with 11 possible answers from 0 to 10+.
2. Repeating action, which is in a multiple-choice question format. Each question

has 5 potential answers.
3. State transition, which queries the transitions of certain states.
4. Frame QA, which can be answered from one of the frames in a video.

Questions are generated automatically based on several manually designed templates
(Fig. 8.6).

MarioQA [7] is a synthetic dataset of events that uses Super Mario gameplay
videos with their logs. Each entry in the dataset consists of a 240?20 video clip con-
taining multiple events and a question with the answer. A total of 187,757 examples
are collected from 13 h of gameplay. There exist 92,874 unique QA pairs, and each
video clip contains 11.3 events on average. The question/answer pairs are generated
based on 11 distinct events: kill, die, jump, hit, break, appear, shoot, throw, kick,
hold and eat. The generated questions are categorized into three types: event-centric,
counting and state questions. The dataset contains three subsets with different tem-
poral relationships:

1. Questions with no temporal relationship (NT).
2. Questions with easy temporal relationships (ET).
3. Questions with hard temporal relationships (HT).

In particular, NT, ET and HT pertain to queries regarding unique events in the entire
video with temporal relationships, globally unique events, and distracting events,
respectively. Notably, the dataset is designed for reasoning the temporal dependency
and understanding the temporal relationships between video events.

PororoQA [3] is a dataset built on the video series for a children cartoon. The
dataset contains 16,066 scene-dialogue pairs of 20.5 h videos, 27,328 fine-grained
sentences for scene description and 8,913 story-related QA pairs. Since the video
source is a children’s cartoon, the dataset has a simpler background and clearer
events than those built on movies and TVs, which facilitates the understanding of the
video. The video series contains 171 episodes, and the average length of the videos
is 7.2 min. The description sentences and question/answer pairs have been manually
collected by annotators from the Amazon Mechanical Turk (AMT) platform. The
dataset contains 11 types of questions:
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1. Action
2. Person
3. Abstract
4. Detail
5. Method
6. Reason
7. Location
8. Statement
9. Causality
10. Yes/No
11. Time

The average length of the scene description is 13.6 words.

8.3 Traditional Video Spatiotemporal Reasoning Using an
Encoder-Decoder Framework

The core of video question answering is video spatiotemporal reasoning. The fun-
damental pipeline can be described as follows. First, video is represented as features
of different levels, including object-level, frame-level and clip-level features. For
object-level feature extraction, most researchers adopt Faster R-CNN to detect local
parts of videos. Frame-level features are coarse-grained representations of global
visual information that capture more information than object-level features, such as
scenes, and ResNet and VGGNet are widely used to extract such features. Clip-level
features capture the information conveyed by several frames (e.g., actions), and C3D
networks are frequently used to extract such features. Second, text is represented
as features of different levels, including sentence- and word-level features. Word
embedding techniques such as word2vec and GloVe are widely used for extracting
word-level features, while skip-thought and BERT are used to extract sentence-level
features. After obtaining the visual and text features, the model implements video
spatiotemporal reasoning on the input features, thereby obtaining a contextual rep-
resentation. Finally, the contextual representation is input to the answer generation
unit, which is usually a discriminative or multiclass classification model.

Since videos and questions are naturally in a sequential format, the encoder-
decoder model, which is widely used in machine translation applications, can effec-
tively realize video spatiotemporal reasoning.

Zhu et al. [17] used aGRU to learn the temporal structures of videos and designed a
dual-channel ranking loss to answer multiple-choice questions. As shown in Fig. 8.7,
the authors first trained three encoder-decoder models to learn the past, present and
future representation of the input frames and separately trained the three models. In
this context, the main purpose of the encoder-decoder model is to reconstruct the
input frame to ensure that the encoder can better represent the frames. The structure
of the decoder is similar to that of the encoder. Subsequently, a dual-channel ranking
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Fig. 8.7 Encoder-decoder model (top). Learning to answer questions (bottom)

loss is adopted to calculate the similarity between the visual contextual representation
and candidate choice of the question, which can be expressed as follows:

Loss = min
θ

∑

v

∑

j∈K , j �= j ′
λ�word + (1 − λ)�sent , λ ∈ [0, 1]

�word = max
(
0, α − vTp p j ′ + vTp p j

)

�sent = max
(
0, β − vTs s j ′ + vTs s j

)
,

where vp = Wvpv, vs = Wvsv and p j = Wpv y j , s j = Wsvz j . Here, v is the visual
representation learned from the encoder-decoder model, and y and z are the textual
representations. The final answer is the candidate with the highest similarity. Other
researchers [17] used only the GRU to realize the temporal reasoning of videos. In
this framework, themodel can capture the information of the video in a long duration.
However, the answer generation and video representation are separately trained, and
thus the ability to reason the relation between the text and video is inferior.

Although the abovementioned studies used the basic encoder-decoder framework,
reasoning between textual and visual information could not be realized. Certain
researchers added simple attention to the model either in the encoder or decoder to
examine the relations between different modalities of information.

Lei et al. [4] proposed a multistream end-to-end trainable neural network. This
model takes different contextual sources, including regional visual features, visual
concept features and subtitles, along with question/answer pairs as inputs to each
stream. The video is represented by three features:

1. Regional visual features, which are top-K regions detected by Faster R-CNN in
each frame.

2. Visual concept features, which are detected labels including both objects and
attributes.

3. ImageNet features, which are extracted by ResNet101.
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Fig. 8.8 Multimodal model

All the sequential information, including text and visual information, is encoded
using a bidirectional LSTM, in which the hidden states are concatenated to serve
as visual and textual representations. Subsequently, a context matching module,
which is a context-query attention layer, is adopted to generate video-guided-question
and video-guided-answer representations, which are fused as the contextual input
of the answer generation layer. In another approach [4], multimodal information
is fully used, as shown in Fig. 8.8, which enriches the contextual representation.
Furthermore, the context matching unit yields richer relations between the textual
and visual information.

Jang et al. [2] proposed a dual-LSTM-based model with spatial and temporal
attention frameworks. As shown in Fig. 8.9, first, both frame-level and sequence-level
video features are extracted byResNet pretrained on the ImageNet 2012 classification
dataset and C3D pretrained on the Sport1M dataset, which are concatenated as the
visual representation. Questions and answers are embedded as two sequences. Three
dual LSTMs are applied as separate encoders for the visual, question and answer
representations. Before the visual representations are input to the LSTM, an attention
unit is adopted, as shown on the left side of Fig. 8.10, which considers the visual
features with encoded text representations to determine which regions in a frame are
most related to the questions and answers. Furthermore, another attention unit, as
shown on the right of Fig. 8.10, is used to learn the frames that must be examined
in a video, thereby considering the sequential visual hidden states from dual-LSTM
with encoded textual representations. Since the dataset used to train the model has
three types of answers (multichoice, open-ended number and open-ended word), the
proposed model especially trains three decoders to generate answers along with two
attention units to implement spatiotemporal reasoning over the video information
associated with the question/answer pairs.

Xue et al. [12] proposed a set of models, as shown in Fig. 8.11, including the
following three models:

1. A sequential video attention model, as shown in the top left part of Fig. 8.11.
2. A temporal question attention model, as shown in the top right part of Fig. 8.11.
3. A decoder for answer generation, as shown in the bottom part of Fig. 8.11.
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Fig. 8.9 ST-VQA model

Fig. 8.10 Spatial attention (left). Temporal attention (right)

The sequential video attention model and temporal question attention model are in a
dual format. The sequential video attentionmodel considers the video representations
encoded by LSTM with a sequence of question hidden states from LSTM, and the
final accumulated representation is the visual encoding of this model. The output
V = r(T ) can be expressed as follows:

r(i) = yTv sv(i) + tanh (Vrrr(i − 1)) , 1 ≤ i ≤ T

s(i, j)v ∝ exp
(
WT

csc(i, j)
)

c(i, j) = tanh
(
Wvcyv( j) +Uqcyq(i) + Vrcr(i − 1)

)
,

where yv( j) is the jth frame feature, and yq(i) is the ith text feature. The temporal
question attention model considers the question representations encoded by LSTM
with a sequence of video hidden states from the LSTM, and the final representation is
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Fig. 8.11 Model for unified attention

the textual encoding of this model. The output q = wT can be expressed as follows:

w( j) = yTq s( j)t + tanh (Vwww( j − 1)) , 1 ≤ j ≤ N

s( j, i)t ∝ exp
(
UT

csc( j, i)
)

c( j, i) = tanh
(
Wqcyq(i) +Uvcyv( j) + Vwcw( j − 1)

)
.

Subsequently, the two types of encodings are fused and fed into the decoder, which
is a two-layer LSTM, to generate the open-ended answer sequence.

Zhao et al. [15] proposed a hierarchical spatiotemporal attentional encoder-
decoder learning method with a multistep reasoning process to realize open-ended
video question answering. As shown in Fig. 8.12, first, a multistep spatiotemporal
attentional encoder network is developed to learn the contextual representation of
the video and question. Similar to the introduced models, in each step, the model
first uses the spatial attention model to localize the targeted regions in each frame
attended with the question. For the ith object in the jth frame, the spatial attention
score s(s)

j i is defined as

s(s)
j i = w(s) tanh

(
Wqsq + W f sf j i + bs

)
.

Subsequently, the spatially attended frame representation is expressed as

v(s)
j =

∑

i

α j i f j i
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Fig. 8.12 Overview of open-ended video question answering via a hierarchical spatiotemporal
attentional encoder-decoder learning framework

α j i =
exp

(
s(s)
j i

)

∑
i exp

(
s(s)
j i

) .

In the presence of redundant and multiple frames, it is important to localize the
relevant video frames, and the temporal attention model is operated over the videos,
thereby localizing the target frames in the video. The relevance scores of the sth
hidden state are expressed as

s(t)
j = w(t) tanh

(
Wqtq + Whth

(s)
j + bt

)
.

Subsequently, the aGRU updates the current hidden state by

h(t)
j = β j � h̃(t)

j + (
1 − β j

) � h(t)
j−1

β j =
exp

(
s(t)
j

)

∑
j exp

(
s(t)
j

) .

The information of the relevant video frames is embedded into the hidden states
according to the abovementioned process. To learn better visual and textual represen-
tations, the representations are recursively updated following the updating formula.

Zhao et al. [16] proposed an adaptive hierarchical reinforced encoder-decoder
network to address a long-form video question answering task. The adaptive recur-
rent neural networks with the binary gate function segment the frame-level features
extracted using ConvNet and decide whether the hidden state and memory cell at
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Fig. 8.13 Framework of adaptive hierarchical reinforced networks for open-ended long-form video
question answering

timestamp t must be transferred to the next timestamp t + 1. The binary gate func-
tion, which segments the frame features during the encoding process, calculates γt to
identify the similarity between the hidden state at timestamp t and visual represen-
tation at timestamp t + 1. Given the semantic representation {h1, h2, . . . , hN } with
binary gate values {γ1, γ2, . . . , γN }, joint question-attended video segment represen-
tations are learned,which are then input to segment-level LSTMnetworks to generate
semantic representations, denoted as {hs1, hs2, . . . , hsK }. The decoder is designed as a
reinforced neural network, and it generates open-ended answers based on the sim-
ilarity between the semantic and question representations. The key contributions
include the development of an adaptive hierarchical encoder to learn segment-level
question-aware video representations and the formulation of a reinforced decoder to
generate answers (Fig. 8.13).

As discussed previously, traditional video spatiotemporal reasoning uses an
encoder-decoder framework as their basic framework. Although other techniques,
e.g., attention, have been applied, detailed attention structures cannot be designed
and deeper relations associated with the multimodal information cannot be explored.
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Chapter 9
Advanced Models for Video Question
Answering

Abstract In Chap. 8, we introduced several traditional models for video question
answering tasks based on the encoder-decoder framework. However, other models
exist beyond this framework, which exhibit fine architectures and performances.
In this chapter, we categorize these methods into four categories, i.e., attention on
spatiotemporal features, memory networks, spatiotemporal graph neural networks
and multitask pretraining and discuss the characteristics of these frameworks.

9.1 Attention on Spatiotemporal Features

As described in Chap. 2, the attention model can be described as a function that maps
a query and a set of key-value pairs to an output [16], where the query, keys, values
and output are vectors. In the video question answering task, the visual and textual
representations usually serve as queries, keys and values to obtain question-attended
video representations and video-attended question representations at different levels.
As described in Sect. 8.3, the models usually apply simple spatiotemporal attention
over feature vectors. In this section, we introduce models that adopt a more complex
attention architecture to employ deeper reasoning.

Xu et al. [17] proposed an end-to-end model that gradually refines its attention
over the appearance and motion features of the video attended with questions. First,
feature extraction is performed, in which frame-level features are extracted by the
VGG network, clip-level features are extracted by the C3D network and word-level
features are extracted. The proposed model designs an attention unit named the
attention memory unit (AMU), which contains the following four subunits:

1. Attention (ATT), which attends visual features with contextual representations.
2. Channel fusion (CF), which scores the frame-level feature representation and

clip-level feature representation and fuses them according to the score.
3. Memory (LSTM), which uses the sum of (i) the fused representation, (ii) hidden

state ht of the word encoder and iii) visual representation vt−1 produced by AMU
at timestamp t-1, as the input of an LSTM, thereby controlling the input of the
second attention operation and remembering the attention history.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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4. Refine (REF), which performs the final attention over the features to obtain the
final visual representation vt at timestamp t .

Each question is processed per word at each timestamp, and the word embedding
and hidden states of the word encoder are input to the AMU unit until all the words
have been processed to generate the final refined contextual representation. Finally,
contextual representation vT , question memory vector cqT and AMU memory vec-
tor caT are input to a softmax classifier to generate an answer. The contribution of
Xu et al.’s research [17] is the design of an attention unit (AMU) that can gradu-
ally refine the attention over information, thereby identifying richer spatiotemporal
relations.

The abovementioned models treat the words in the questions in a similar manner
and cannot differentiate the words before they are input to the models. Xue et al. [18]
proposed the heterogeneous tree-structured memory network (HTreeMN), which is
based upon the syntax parse trees of the question sentences. HTreeMN defines two
types of words as follows:

1. Visual words, which are combined with visual features.
2. Verbal words, in which the former words are processed with an attention module

while the latter words are not.

First, a parse tree is developed according to the grammatical structure of the ques-
tion by using the StanfordParser tool, in which nodes with visual words as children
are regarded as visual nodes and other words are treated as verbal nodes. In the visual
node, temporal attention is produced over the video frames, and the output is passed to
the father node. In contrast, the verbal node implements a linear operation. Thewhole
network is processed in a bottom-up manner to generate a contextual representation.
Finally, the softmax function in the root node helps generate the answer.

Although the abovementioned models use single-hop reasoning, certain
approaches employ multihop reasoning to extract richer contextual representations.
Mun et al. [13] proposed a neural network containing three components: question
embedding, video embedding and classification networks. The question embedding
network uses a pretrained question embedding network to process the sequential
information, and the video embedding network uses a 3D fully convolutional net-
work to generate visual features. In addition to the traditional question attending
single-step temporal attention, the approach proposed by Mun et al. [13] utilizes a
multistep temporal attention mechanism, in which the question attending embedding
at timestamp t is refined by adding the previously attended embedding. Furthermore,
spatiotemporal attention over frame features and fully connected layers is employed
to obtain two more contextual representations. Finally, a classification network is
designed to use the fused representation of the three representations to generate an
answer.

In contrast to the simple application of multihop reasoning on temporal attention,
certain researchers employ multihop reasoning over a more complex unit in the
model. Song et al. [15] proposed a refined GRU known as temporal attention-GRU
(ta-GRU) to capture the long-term temporal dependency and gather complete visual
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cues. ta-GRU is a refined GRU whose hidden state transfer processes attention over
the entire historical hidden state attended with the question to strengthen the long-
term temporal dependency.

Le et al. [10] proposed an end-to-end layered architecture, which is composed of a
question-guided video representation layer and a generic reasoning layer to produce
answers. The model contains the following three components:

1. Hierarchical video representation with CRN.
2. Visual multistep reasoning with MAC cells.
3. Answer decoders.

First, a video is represented as clip-level features, with each clip consisting of
several frame features. Later, question-attended clip-level features are placed in a
clip-based relation network (CRN) to generate the relation between different clip
segments, the sizes of which are 2, 3 and 4 clips. Subsequently, memory-attention-
composition (MAC) networks are used to implement multistep reasoning on the
video contextual representation. Finally, regression or classification is employed
according to the question type to generate an answer. The main contribution of
Le et al.’s work [10] is a hierarchical model that can identify spatiotemporal relations
at the clip level.

Le et al. [11] designed a novel neural structure to identify nonadjacent relations,
named the conditional relation network (CRN), which can universally serve as neural
units in themodel. The reusable computation unit of theCRN takes an array of objects
S (e.g., frames and clips) and conditioning feature c as inputs and outputs the k-tuple
conditional relations of the input, where k = 1, 2, ..n − 1, and n is the size of the
input array. Subsequently [11], a hierarchical conditional relation network (HCRN)
is built upon a CRN unit, which consists of a clip-level processing network and
video-level processing network. For the clip-level processing network, each clip is
processed by a dual layer CRN unit conditioned by clip-level motion and questions
separately,while all the outputs from the clip-level network form an input sequence of
the video-level network, processed by a dual layer CRN unit separately conditioned
by video-level motion and questions. Finally, the contextual representation of the
network is input to a softmax function to generate an answer.

The abovementioned approaches adopt RNNs to encode sequential informa-
tion. Notably, these models are time-consuming and cannot easily model long-
range dependencies. Therefore, certain researchers use self-attention instead. Li et
al. [12] proposed a new structure, named positional self-attention with coattention
(PSAC), which does not require RNNs for video question answering. The architec-
ture consists of three key components: video-based positional self-attention block
(VPSA), question-based positional self-attention block (QPSA) and video question-
coattention block (VQ-Co), among which the former two blocks share the same
positional self-attention structure. The positional self-attention model calculates the
weight distribution at each position by attention over all positions within the same
sequence and adds the representation of the absolute positions. First, the model cal-
culates the positional self-attended frame features and self-attended textual features.
Subsequently, the visual-attended textual representation and textual-attended visual



138 9 Advanced Models for Video Question Answering

representation are concatenated as the final contextual representation. Finally, the
contextual representation of the network is input to a softmax function to generate
an answer.

Manymodels autonomously learn all the knowledge from the supervised informa-
tion, while other models refer to an external knowledge base according to the content
of the video and question. Jin et al. [7] developed a question knowledge-guided pro-
gressive spatiotemporal attention network to learn the joint video representation for
video question answering tasks. Because the model refers to the external knowledge
base, it can grasp the knowledge that cannot be learned during the training process
(e.g., common sense), which strengthens the ability of the models.

9.2 Memory Networks

RNNs and their variants are usually used for memorizing sequential information;
however, this frameworkmay not be adequate for long-term information (e.g., video).
As discussed in Chap. 2, a memory network that is equipped with a more powerful
memory has been widely used to solve the VideoQA task. In the following section,
we describe models based on the memory network and its variants, such as the
end-to-end memory network and dynamic network.

Kim et al. [9] developed a video-story learning model known as deep embedded
memory network (DEMN) to reconstruct stories from a joint scene-dialog video
stream by using a latent embedding space of observed data. For a given ques-
tion, an LSTM-based attention model uses the long-term memory to recall the best
question-story-answer triplet by focusing on specific words containing key informa-
tion. DEMN takes clip-level features and textual features describing the clip as inputs
and modifies the generalization component of the memory networks to generate the
story description, and these entities are stored in the memory array in order. There-
fore, the memory array represents the entire video content. The output feature map
component utilizes the question-guided attention model to generate the question-
attended video story. Finally, this story concatenated with the question is the input
of the response component to generate the answer.

In contrast to the use of a memory array as a sequence, Fan et al. [1] employed
an attention model over the memory array. The authors propose a heterogeneous
memory network that processes heterogeneous visual features such as motion and
appearance visual features, thereby generating global context-aware visual and tex-
tual features, respectively, by interacting current inputs with memory contents. The
heterogeneous visual memory unit contains the following three main parts:

1. Memory array.
2. Multiple read heads and write heads enable multiple inputs and outputs, including

encoded motion features and appearance features.
3. Three hidden states, which store the motion contents, appearance contents and

global context-aware features.
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The write operation calculates the weight of the appearance, motion and memory
array based on hidden states and updates the contents of memory arrays according
to the weight values associated with the inputs. The read operation determines the
weight for each memory unit according to the hidden state and content of appear-
ance and motion. Subsequently, the model fuses the contents from the memory array
according to the weights to generate a contextual representation. Next, the hidden
states are updated according to the current hidden states and contextual represen-
tation. The question is processed in the same manner by another external question
memory with a single write head, read head and hidden state. Subsequently, the two
contextual representations are fused and concatenatedwith a question-attended video
representation to generate the answer using the softmax function.

Na et al. [14] proposed a novel memory network model named the ReadWrite
Memory Network (RWMN), which is trained to store the movie content with proper
representation in the memory, extract relevant information from memory cells in
response to a given query and select correct answers from five choices. The write
network employs a convolutional neural network (CNN) to jointly learn adjacent
embedding into a memory array. In the read network, the memory array is first
transformed into a query-dependent memory by CBP upon query embedding, and
another CNN is used to reconstruct a series of scenes as a whole. Finally, the answer-
generated unit uses both query embedding and memory reconstructed by the read
network to generate answers.

As discussed in Chap. 2, MemNN-based models cannot be trained in an end-to-
end manner. Therefore, the RWMN [14] uses the MemN2N model, thereby refining
the input of the model to obtain the extended end-to-end memory networks (E-MN),
which can capture the temporal relation among actions in the succeeding frames.
The Bi-LSTM is used to encode the input sequence, and the encoded sequences are
input to the MemN2N model.

Gao et al. [2] developed a model based on the architecture of a dynamic mem-
ory network (DMN). The model, named motion-appearance comemory networks,
modifies the input module to generate a contextual representation and changes the
episodic memory module into a motion-appearance comemory module. The input
module considers multiple streams of features as the input and uses the temporal con-
volutional layers to model the temporal contextual information and deconvolutional
layers to recover temporal resolution, therefore, building multiple levels of temporal
representations FL = F1

L , F
2
L , ..., FN

L . To process both appearance and motion rep-
resentations, the motion-appearance comemory module contains two separate mem-
ory modules: mt

b for motion memory and mt
a for appearance memory at iteration

t . At iteration t , the motion-appearance comemory module consists of three steps:
comemory attention, dynamic fact ensemble, and memory update. The comemory
attention motion memory uses the appearance memory and question representation
to separately assign attention over motion facts and appearance facts. The dynamic
fact ensemble calculates the weighted facts based on the attention gate calculated
by comemory attention. Subsequently, the motion memory and appearance memory
are separately updated according to the ensemble fact, current memory and question.
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Finally, the answer module uses a linear regression function that takes the memory
state and outputs the scores of answer candidates.

Kim et al. [8] proposed a progressive attention memory network (PAMN), which
contains the following four main components:

1. Memory embedding module.
2. Progressive attentionmechanism ,which pinpoints temporal parts that are relevant

to answering the question.
3. Dynamic modality fusion.
4. Answer generation.

The memory embedding module uses a feed-forward neural network (FFN) to
separately generate video and subtitle embedding into memory. Subsequently, the
progressive attentionmechanism takes dualmemory, question embedding and answer
embedding as inputs and progressively attends and updates the dual memory. The
dynamic modality fusion module attends the memory with question embedding sep-
arately, generating information from the necessary modality. Finally, a belief correc-
tion answering scheme considers the contextual memory and generates answers.

9.3 Spatiotemporal Graph Neural Networks

In addition to the abovementioned deep learning-based models, graph-based models
exist. Although the number of suchmodels is considerably smaller than those involv-
ing deep structures, graph-based models can achieve promising results. Graphs are
usually built upon videos [3, 4, 6], and graphs generated from both videos and ques-
tions also exist [5]. The most challenging task for graph-based models is to extract
the attributed graph(s) based on rich information and relations inside the videos and
questions.

Gu et al. [3] proposed a graph-based relation-aware neural network to explore a
more fine-grained visual representation, which could explore the relationships and
dependencies between objects spatially and temporally. First, a graph-based video
representation is generated, including objects and object relations. All objects from
all frames in the video are defined as nodes N = {ni } of the graph, while edges
are formed by two kinds of edges, including iteration edges ER , which (i) link all
object pairs in the same frames and trajectory edges, and (ii) link nodes of the same
object that have different positions and appearances over time calculated by the
identification score [19]. The initial states of nodes and edges are defined as object
appearance features and spatial relations between two connected objects. Subse-
quently, the hidden state of the graph is updated considering interactive edges and
trajectory edges, and the final representation of the graph is a list of the hidden states
of all the nodes. In addition, the authors propose a multihead attention mechanism
named multi-interaction to capture both elementwise and segmentwise sequence
interactions to generate question-attendedvideo representations, question representa-
tions, and question-attended graphical representations. Finally, the question-attended
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video representations and question-attended graphical representations are input to
the answer module to generate answers.

In contrast to this model, Huang et al. [4] used graph convolutional networks
(GCNs) to develop a model named location-aware graph convolutional networks,
which explores location and relations among object interactions. A location-aware
graph is a fully connected graph built on K detected objects for each frame as nodes.
Thehidden state of eachnode is combinedwith both appearance and location features.
P-layer graph convolutions are operated on the location-aware graph, the p-th layer of
which can be represented as X (p) = A(p)X (p−1)W (p), where X (p) is the hidden state
of the p-th layer, A(p) is the adjacency matrix calculated from the node features in the
p-th layer and W (p) is the trainable weight matrix, outputting the regional features
FR calculated by FR = X (p) + X (0). Subsequently, visual features are generated
concatenating regional and appearance features.Visual features, togetherwith textual
features extracted from questions, are used to generate answers.

Jin et al. [6] proposed an adaptive spatiotemporal graph-enhanced vision-language
representation learning model to address the VideoQA task, which consists of the
following two components:

• Adaptive spatiotemporal graphmodule for dynamic object representation learning.
• Vision-language transformer module for multimodal representation.

The adaptive spatiotemporal graphmodule generates the spatiotemporal represen-
tations in two steps. First, a spatial graph is built for each frame, the nodes of which
are detected objects. The hidden states of the nodes are generated by appearance fea-
tures, object class information and geometric information, and the adjacent matrix
is the affinity of hidden states of nodes. A GCN is applied on each frame-based spa-
tial graph, generating updated embedding of object nodes V = {vi } of object nodes.
Second, a spatiotemporal graph is progressively built. Starting from the object nodes
in the spatial graph of the first frames, denoted as anchor nodes, an anchor tube
set A = {a1, a2, ..an|ai = {vi }} is initialized, which observes each object node v j in
each subsequent frame to update the anchor tube set A according to the similarity
score between v j and the anchor node. If the object node v j exhibits a high simi-
larity with the anchor node vi , v j is added to ai ; otherwise, v j is marked as a new
anchor tube by adding a j = {v j } to the anchor tube set A. After all the frames are
considered, anchor tubes from the nodes of the spatiotemporal graph and adjacent
matrix represent the similarity matrix of the graph. Another GCN layer is employed
on this graph to capture temporal dynamic information of each spatiotemporal tube,
and the final representation is a set of hidden states for all the nodes. Next, a vision-
language transformer considers final visual representations from the spatiotemporal
graph and question embedding as the input to generate contextual representations
for generating answers.

The abovementioned approaches generate graphs using only the information from
videos. In contrast, the approach proposed by Jiang et al. [5] fuses information from
both questions and videos to build a multimodal graph. The authors propose a deep
heterogeneous graph alignment network over video shots and question words. A
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coattention transformation is implemented on the visual features and textual features
encoded by the GRU to obtain question-attended visual features and video-attended
textual features, in which the feature dimensions are the same and concatenated as a
heterogeneous input matrix X . The heterogeneous graph uses vectors in the matrix
X = {xi } as nodes, and the adjacency matrix G is calculated as G = φ(X)φ(X)T ,
where φ is a learnable transformation for alignment. Later, a one-layer graph convo-
lutional network is operated on the heterogeneous graph, followed by self-attention
pooling to obtain a local result vector that reflects the underlying cross-modal rela-
tions after the local reasoning procedure. The local reasoning result, together with
the global reasoning result calculated by a bilinear fusionmodule over the last hidden
states of the visual and linguistic GRU encoder, is used to generate the answer.

References

1. C. Fan, X. Zhang, S. Zhang, W.Wang, C. Zhang, H. Huang, Heterogeneous memory enhanced
multimodal attention model for video question answering, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2019), pp. 1999–2007

2. J. Gao, R.Ge,K.Chen, R.Nevatia,Motion-appearance co-memory networks for video question
answering, inProceedings of the IEEEConference onComputerVision andPatternRecognition
(2018), pp. 6576–6585

3. M. Gu, Z. Zhao, W. Jin, R. Hong, F. Wu, Graph-based multi-interaction network for video
question answering. IEEE Trans. Image Process. 30, 2758–2770 (2021)

4. D. Huang, P. Chen, R. Zeng, Q. Du, M. Tan, C. Gan, Location-aware graph convolutional
networks for video question answering, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34 (2020), pp. 11021–11028

5. P. Jiang, Y. Han, Reasoning with heterogeneous graph alignment for video question answering,
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34 (2020), pp. 11109–
11116

6. W. Jin, Z. Zhao, X. Cao, J. Zhu, X. He, Y. Zhuang, Adaptive spatio-temporal graph enhanced
vision-language representation for video QA. IEEE Trans. Image Process. (2021)

7. W. Jin, Z. Zhao, Y. Li, J. Li, J. Xiao, Y. Zhuang, Video question answering via knowledge-based
progressive spatial-temporal attention network. ACM Trans. Multimedia Comput. Commun.
Appl. (TOMM) 15(2s), 1–22 (2019)

8. J. Kim, M. Ma, K. Kim, S. Kim, C.D. Yoo, Progressive attention memory network for movie
story question answering, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2019), pp. 8337–8346

9. K.-M.Kim,M.-O.Heo, S.-H. Choi, B.-T. Zhang,Deepstory: video storyQAby deep embedded
memory networks. arXiv preprint arXiv:1707.00836 (2017)

10. T.M. Le, V. Le, S. Venkatesh, T. Tran, Learning to reason with relational video representation
for question answering. arXiv preprint arXiv:1907.04553, 2 (2019)

11. T.M. Le, V. Le, S. Venkatesh, T. Tran, Hierarchical conditional relation networks for video
question answering, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), pp. 9972–9981

12. X. Li, J. Song, L. Gao, X. Liu, W. Huang, X. He, C. Gan, Beyond rnns: positional self-attention
with co-attention for video question answering, in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33 (2019), pp. 8658–8665

13. J.Mun, P. Hongsuck Seo, I. Jung, B. Han,Marioqa: answering questions bywatching gameplay
videos, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp.
2867–2875

http://arxiv.org/abs/1707.00836
http://arxiv.org/abs/1907.04553


References 143

14. S. Na, S. Lee, J. Kim, G. Kim, A read-write memory network for movie story understanding,
in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 677–685

15. X. Song, Y. Shi, X. Chen, Y. Han, Explore multi-step reasoning in video question answering,
in Proceedings of the 26th ACM International Conference on Multimedia (2018), pp. 239–247

16. A.Vaswani,N.Shazeer,N.Parmar, J.Uszkoreit, L. Jones,A.N.Gomez,Ł.Kaiser, I. Polosukhin,
Attention is all you need, in Advances in Neural Information Processing Systems (2017), pp.
5998–6008

17. D. Xu, Z. Zhao, J. Xiao, F. Wu, H. Zhang, X. He, Y. Zhuang, Video question answering
via gradually refined attention over appearance and motion, in Proceedings of the 25th ACM
International Conference on Multimedia (2017), pp. 1645–1653

18. H. Xue, W. Chu, Z. Zhao, D. Cai, A better way to attend: attention with trees for video question
answering. IEEE Trans. Image Process. 27(11), 5563–5574 (2018)

19. J. Zhang, Y. Peng, Object-aware aggregation with bidirectional temporal graph for video cap-
tioning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2019), pp. 8327–8336



Part IV
Advanced Topics in VQA

In addition to traditional, classic VQA problems, which are aimed at answering a
natural language question regarding an image or video, many advanced tasks can
be derived from VQA. In this part, we introduce advanced topics related to VQA.
Several of these aspects are based on different input domains, such as embodied
VQA, medical VQA and text-based VQA. Other topics pertain to different tasks,
such as visual question generation, visual dialog and referring expression.



Chapter 10
Embodied VQA

Abstract It is a long-standing goal for scientists to develop robots that can per-
ceive, communicate with humans in natural language and complete commands as
requested. Several sub-tasks are proposed to achieve this goal in sequential manner,
e.g. Vision-and-LanguageNavigation requires the intelligent agent to follow detailed
instructionswith visual perception,Remote object localization gives the agent shorter
and more abstract instructions, Embodied QA expects the agent to actively explore
the environment and respond to inquiries, Interactive QA hopes the agent actively
interact with a virtual environment to get responses of inquiries. In this chapter, we
first briefly introduce some mainstream simulators, datasets and evaluation criteria
that benchmark applied in this field, such as MatterPort3D, iGibison and Habitat
et al. Subsequently, we describe the motivation, methodology and key performance
of several methods corresponding to each sub-tasks.

10.1 Introduction

Scientists have made unremitting attempts to build an intelligent agent that can
actively perceive the environment through vision, audition and others sensors, com-
municate with users via natural language, and act in virtual or even real scenarios.
With the considerable research on classical visual question answering (VQA), both
the research communities of computer vision and natural language processing have
paid more attention to embodied visual question answering (Embodied VQA).

Visual-and-language tasks for embodied robotics and VQA involve certain simi-
larities. For both tasks, the core scientific problem is multimodal information align-
ment. Notably, the VQA task combines two modalities, i.e. vision and natural lan-
guage, whereas Embodied VQA task combines three modalities, i.e. vision, natural
language and actions. In Embodied VQA tasks, intelligent agents are presented with
virtual or real environments and natural language instructions, then the agents must
respond to the instruction by actively exploring in the environment, thereby obtaining
much more visual information comparing with traditional VQA tasks. According to
the different levels of the tasks, the natural language instruction may be specific and
detailed [1] or abstract and concise [16]. To be more specific, the instruction can be

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Q. Wu et al., Visual Question Answering, Advances in Computer Vision and Pattern
Recognition, https://doi.org/10.1007/978-981-19-0964-1_10

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0964-1_10&domain=pdf
https://doi.org/10.1007/978-981-19-0964-1_10


148 10 Embodied VQA

as detailed as “Go straight along the corridor, and turn left before the white table”
or simply like “how many white chairs are there in this house?”. Intelligent agents
follow the abovementioned instruction and reach the expected destination or explore
the whole environment to determine what the answer is.

In this chapter,we present a comprehensive reviewofEmbodiedVQAconsidering
three categories based on the nature of skills required. According to the degree of
difficulty, it can be divided into the following three progressive tasks: language-
guided visual navigation, embodied question answering and interactive question
answering.

- Language-guided Visual Navigation. The language-guided visual navigation
task aims to enable intelligent agents to follow natural language instruction, combine
visual input from the environment and move to the expected spot. Furthermore, this
task can be divided into two sub-tasks: vision-and-language navigation (VLN) and
remote object localization (ROL).

-EmbodiedQuestionAnswering (EQA). Based on language-guided visual nav-
igation, the embodied question answering task requires intelligent agents to actively
explore an unknown environment, navigate autonomously and give a response to the
question asked.

- Interactive Question Answering (IQA). Interactive question answering is sim-
ilar to an advanced version of embodied question answering, but requires agents to
interact with an unknown environment.

Furthermore, in this chapter, we describe the datasets available for each task,
corresponding evaluation parameters and commonly adopted simulators/platforms.
The datasets vary widely along two dimensions: (i) their size, i.e. the number of
paths and natural language instructions, and (ii) the environment, i.e. virtual or photo-
realistic and indoor or outdoor environment.

10.2 Simulators, Datasets and Evaluation Criteria

A number of simulators, datasets and evaluation criteria have been proposed for
each task. Simulators provide a virtual environment for intelligent agents, and thus
similar simulators are usually used. However, the datasets and evaluation criteria
vary significantly due to the uniqueness of the associated task requirements.

10.2.1 Simulators

Simulators (platforms) are employed to ensure that intelligent agents can cruise,
implement actions and obtain feedback information via certain APIs. Commonly
used simulators include MatterPort3D [1], House3D [20], Habitat [17], AI2-THOR
[10], CHALET [21] and iGibson [14, 18] et al. The main differences include the
vision style, interactivity and continuity (whether the intelligent agent can move
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Table 10.1 Major simulators for Embodied VQA and their main characteristics
Environment Navigable 3D Scene

Scans
3D Asset
Library

Physics-
Based
Interac-
tion

Object
States

Object
Specific
Reactions

Dynamic
Lighting

Multiple
Agents

Real
Counter-
part

AI2-THOR � � � � � � � �
iGibson � � � �
Habitat � � Collisions

Matterport3D � �
Minos � �

to any reachable/navigable points). Details of these simulators are presented in the
following text, and the key characteristics are summarized in Table10.1.

MatterPort3D

The MatterPort3D simulator [1] is based on the MatterPort3D dataset [2], which is a
large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-
D images of 90 building-scale scenes. TheMatterPort3D dataset also includes depth,
camera pose and 2D and 3D semantic segmentations. The MatterPort3D simulator
uses theMatterPort3D dataset as the source of photo-realistic visual data and enables
intelligent agents to observe horizontal 360 degrees and pitch [0-2π ) RGB images
at certain points. Intelligent agents travel by selecting a new viewpoint, nominat-
ing camera heading and adjusting elevation. Notably, the MatterPort3D simulator
prepares a navigation graph to illustrate the connectivity between each viewpoint in
advance.

House3D

House3D [20] is a virtual 3D environment that consists of over 45k indoor scenes
equipped with a diverse set of scene types, layouts and objects sourced from the
SUNCG dataset. All 3D objects are fully annotated with category labels. Agents in
the environment have access to observations of multiple modalities, including RGB
images, depth, segmentation masks and top-down 2D map views.

Habitat

Habitat [17] is a photo-realistic simulation environment based on the MatterPort3D,
Replica and 2D-3D-S datasets, providing real-time renderedRGB,RGB-D and depth
data. Remarkably, Habitat offers a continuous simulation environment and fast ren-
dering performance (over 10,000 fps multi-process on a single GPU). Thus, this
environment is commonly employed in continuous environment language-guided
visual navigation tasks.

AI2-THOR

AI2-THOR [10] is an interactive 3D environment that consists of internet vision-style
3D indoor scenes and interactable objects. The scenes are manually reconstructed
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Fig. 10.1 Types of questions
included in the EQA dataset

by artists from the reference photo, and thus AI2-THOR does not have a bias that
usually exists in scenes generated automatically.

CHALET

CHALET [21] is an internet vision-style 3D indoor scenario simulator with 58
rooms and 10 houses. As an interactable environment, CHALET provides a range of
common household activities, like moving objects, toggling appliances and placing
objects inside closable containers.

iGibson

iGibson [14, 18] is an internet vision-style interactive 3D indoor simulation environ-
ment containing 15 home-sized scenes with 108 rooms. As a replica of real-world
homes, the environment does not involve the bias that exists in automatically gener-
ated environments. In addition to RGB-D images, the environment provides depth,
segmentation, LiDAR and flow data.

In a nutshell, specific simulators are suitable for certain tasks. MatterPort3D and
Habitat are commonly used in VLN tasks since both frameworks provide a photo-
realistic simulation environment. House3D is employed in the Embodied QA task,
while iGibson and AI2-THOR are usually used in the interactive QA task due to their
interactivity capability.

10.2.2 Datasets

The datasets for different tasks vary significantly. In this section, we are going to
introduce several datasets.

Commonly used datasets for vision-and-language navigation task include R2R,
RxR, Habitat and REVERE et al.

The R2R dataset [1] is based on the MatterPort3D dataset. The dataset con-
tains 21,567 open-vocabulary crowd-sourced navigation instructions with an aver-
age length of 29 words. Each instruction describes the method to navigate from the
starting point to the corresponding destination. The whole dataset is divided into
training, validation and testing parts. Derivatively, a fine-grained R2R dataset [7] is
proposed, augmenting the original R2R dataset by adding sub-instructions. However,
despite the significant meaning of R2R dataset, which means that it is the first dataset
for VLN task, it works on a discrete environment with only indoor scenarios. The
presence of navigation graphs is not suitable for real application settings.
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Fig. 10.2 Overview of the EQA v1 dataset including dataset split statistics (left) and question type
breakdown (right)

The RxR dataset [12] is proposed for the VLN task. Compared with the first
dataset proposed for the VLN task, the RxR dataset has a (i) significantly larger
scale: the dataset contains more than 126K paths and corresponding instructions;
(ii) finer grain: during the annotation process, the annotator must move and provide
instructions by talking simultaneously, therefore, alignment in time and space can
be attained between the instructions, visual perception and actions.

TheHabitat dataset [17] is proposed for theVLN task in a continuous environment.
Based on the original R2R dataset, Habitat rearranged the action space and rebuilt
the form of paths of R2R.

The EQA dataset [3] is proposed for Embodied QA tasks. The dataset is based on
the House3D simulator [20] and CLEVR dataset [8] to build a virtual environment
and generate grounded questions and answers. The dataset classifies questions into
certain types, as shown in Fig. 10.1. The EQA dataset contains over 5,000 questions
across more than 750 environments, referring to 45 unique objects in 7 unique room
types. The split statistics and question type breakdown of this dataset are shown in
Fig. 10.2.

The interactive question/answer dataset (IQUAD) V1 dataset [5] is proposed for
the interactive QA task. The AI2-THOR simulator has over 75,000 multiple choice
questions and corresponding answers. Similar to theEQAdataset, the IQUADdataset
generates questions in a variety of types, and the overview is shown in Fig. 10.3.

10.2.3 Evaluations

The evaluation metrics for specific tasks are also significantly different.
For the language-guided visual navigation task, the following aspects must be

considered: (i) measurement from the stopping point to the expected destination,
(ii) measurement of the similarity of paths and (iii) reasonable penalty for longer
paths even if the destination is reached. Thus, the following evaluation metrics are
usually used: path length (PL), navigation error (NE), success rate (SR), success
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Fig. 10.3 Statistics of the IQUAD dataset: it has a variety of question types, objects and scene
configurations

weighted by path length (SPL), coverage weighted by length score (CLS) normalized
dynamic time warping (NDTW) and success weighted by normalized dynamic time
warping (SDTW) et al.

Similar to language-guided visual navigation, Embodied QA has the follow-
ing evaluation metrics: (i) distance to the target object at navigation termination,
(ii) change in distance to target from initial to final position, (iii) shortest distance to
the target at any point in the episode, (iv) percentage of questions for which an agent
either terminates in or enters the room containing the target object(s) and (v) percent-
age of episodes in which agents choose to terminate navigation and answer before
reaching the maximum episode length.

Similar to the Embodied QA task, the interactive question answering task has the
following evaluationmetrics: (i) answer accuracy, (ii) path length and (iii) percentage
of invalid action et al.

10.3 Language-Guided Visual Navigation

It is a long-standing goal for AI researchers to enable intelligent agents to navi-
gate to the expected destination point with human natural language instructions and
environmental image/video stream input. Language-guided visual navigation tasks
can be divided into two tasks according to the specificity of the natural language
instructions given, i.e. vision-and-language navigation (VLN) and remote object
localization (ROL), which are introduced in the following sections.

10.3.1 Vision-and-Language Navigation

The vision-and-language navigation (VLN) task requires intelligent agents to listen
to general, verbal instructions and navigate in the virtual environment according to the
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provided instructions.During the navigation process, intelligent agentsmust combine
the information from both vision and natural language for analysis, and then take
actions to move around the environment and acquire new information, repeat such
process until they arrive at the predetermined destinations. Thus, the core scientific
problem of vision-and-language navigation is cross-modal information alignment.
In contrast to the usual VQA task, which usually involves two modalities (vision and
language), the VLN task requires information alignment between three modalities:
vision, natural language and action.

Generally, the methodologies for vision-and-language navigation can be classi-
fied into three paradigms associated with imitation learning, reinforcement learning
and self-supervision. Furthermore, with the development of the VLN task, recent
researches on the VLN task have attempted to combine these paradigms.

10.3.1.1 Imitation Learning Methodology

Motivation

The imitation learning paradigm is a key methodology to solve the VLN task in the
early stage. The basic logic is that intelligent agents learn the strategy of making
decisions according to the existing decision and behavior data provided by human
experts. This process is also known as behavior cloning. In the VLN task, the intel-
ligent agents extract features from the decision data (states and action sequences)
provided by the human experts and evolve the optimal strategy model.

Method

Anderson et al. [1] proposed a recurrent neural network policy using an LSTM-
based sequence-to-sequence architecture with an attention mechanism for intelli-
gent agents. The intelligent agent considers the current image and the previous
action as the encoder input of the model, applies attention to the hidden state of
language encounters and predicts the distribution over the next action. Fried et al.
[4] employed a speaker-follower model to increase the navigation success rate and
noted that when implementing follower data argumentation, the performance will
be improved by more than two times that for the previous benchmark. The authors
employed ground-truth routes and annotation descriptions to train the speaker and
used followers to synthesize instructions to add into the original dataset for argu-
ment, thereby accelerating the training process. The model framework is shown in
Fig. 10.4. Recently, Hong et al. [7] employed sub-instruction attention and shifting
modules to increase the navigation success rate.

Performance and Limitation

The imitation learning methodology provides the most direct and simple solution
for the VLN task. This method represents the first benchmark for future academic
investigation. However, the framework involves a notable limitation. The experts
could and only could sample limited pairs of observations and instructions. If the
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Fig. 10.4 The speaker-followermodel combines an instruction followermodel and a speakermodel.
a The speaker model is trained on ground-truth routes with human-generated descriptions; b the
model provides the follower with additional synthetic instruction data to realize bootstrap training;
c the model helps the follower interpret ambiguous instructions and choose the best route during
inference

agent encounters some cases that don’t appear in the dataset, it may be lost and at
a loss. In other words, the agent will just simply copy every experts’ behavior, even
irrelevant actions through imitation learning because this method takes all errors
equally. Such agents are not intelligent enough in practical use.

10.3.1.2 Reinforcement Learning Paradigm

Motivation

The reinforcement learning (RL) methodology is another key methodology for solv-
ing vision-and-language navigation tasks. The main logic is that by interacting
with the virtual environment and setting a proper reward system, intelligent agents
autonomously explore the environment and learn navigation strategies. Most of the
imitation learning models for VLN tasks fail to address generalization problems due
to the considerable gap between behavior cloning and real-world practices. The intro-
duction of reinforcement learning is vital for further improvement of VLN models.

Method

Wang et al. [19] proposed a planned-ahead hybrid reinforcement learning model
to solve the generalization problem. In this framework, considering the sequen-
tial decision-making nature of the VLN task, a reinforced planning head (RPA) is
employed, as shown in Fig. 10.5. The RPA architecture consists of model-free and
model-based paths. The model-based path consists of multiple look-ahead modules
and one aggregation module. At each step, the recurrent policy model considers the
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Fig. 10.5 Overview of the PRA architecture

word features and states as input and yields information regarding the next proce-
dure (predicted action). Notably, the model-based path framework only predicts the
potential action, and subsequently, the action predictor chooses the final action based
on the information from the model-free and model-based paths.

Performance and Limitation

The proposed model outperforms the existing benchmark on validation of unseen
datasets.

Lansing et al. [13] established a visual language navigation model based on the
RL framework for dialog instructions. This model was successfully lightweight and
applied to indoor navigation scenarios.

10.3.1.3 Self-Supervised Learning Paradigm

Motivation

Self-supervised methodology is the third key methodology to solve the vision-and-
language navigation task. The main logic is that intelligent agents learn from semi-
humanexpert behavior according to certain algorithms and evolve to the optimal strat-
egy policy. Unlike the paradigm of imitation learning, self-supervised methodology
requires the algorithm to produce certain labels, in this case, instructions or routers.
In this domain, researchers have started to combine the self-supervised methodol-
ogy with imitation learning and reinforcement learning methodology as a practical
methodology to enhance the navigation ability of intelligent agents in validation
unseen environments. Notably, the previous models fail to follow instructions prop-
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Fig. 10.6 Overview of the self-monitoring model consisting of visual-textual co-grounding,
progressmonitoring and action selectionmodules. Textual grounding: identify the part of the instruc-
tion that has been completed or is in progress and the part that is potentially required for subsequent
action. Visual grounding: summarize the observed surrounding images. Progress monitor: regular-
ize and ensure that the grounded instruction reflects progress toward the goal. Action selection:
identify the direction in which to proceed

erly; thus, although the agents may reach the endpoint, it is necessary to monitor the
navigation progress.

Method

Ma et al. [15] introduced a self-monitoring agent with two complementary com-
ponents: a visual-textual co-grounding module and a progress monitor. A progress
monitor serves as a regularizer and estimates the navigation process by conditioning
on three inputs: history of grounded images and instructions, current observation of
the surrounding images and positions of grounded instructions (Fig. 10.6).

Performance and Limitation

The self-monitoring method exhibits a significantly high success rate (more than 8%
on an unseen test set). However, this framework is based on a discrete environment
and limited to indoor scenes and thus cannot be applied in real-world application
settings.
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10.3.1.4 New Era: VLN in Continuous Environment

Motivation

The existing approaches to vision-and-language navigation rely on the R2R dataset
proposed by Anderson et al. [1]. However, in real-world application scenarios, a
navigation graphmay not be available in advance, and intelligent agentsmust explore
any point reachable in an unknown environment that they are exposed to. In addition,
a panoramic picture is not provided in a real-world scenario, and the intelligent agent
is provided with only the first-person view (FPV). Thus, it is necessary to rebuild
the action space, which can be used in continuous environment navigation with the
provided FPV.

Method

Krantz et al. [11] eliminated the existing navigation graph (topology) used in the
R2R dataset and proposed a novel action space. This framework regulates certain
actions in advance, including “turn left”, “turn right” and “move forward”. The action
of turning left/right actually means turning left by 15 degrees and that of moving
forward means advancing 0.25m. For example, if the intelligent agent predicts its
next action as turning left 45 degrees, the simulator converts this predicted action into
three instances of the “turn left” action. In this manner, the new vision-and-language
task, vision-and-language navigation in a continuous environment (VLN-CE), has
been defined.

Models for the VLN-CE task include sequence-to-sequence and cross-modal
attention, as shown in Fig. 10.7. The basic architecture of the sequence-to-sequence
model is similar to that of the imitation learningmethodology and is thus not repeated.
The proposed cross-model attention model consists of two recurrent networks: one
network tracks visual observations and the other network makes decisions based on
attended instructions and visual features.

Performance and Limitation

Nearly all evaluation metrics of VLN-CE are considerably inferior to those of the
VLN model for discrete environments (R2R dataset) since the task setting leads
to additional action steps being required to accomplish the same action. Although
research on high-level instructions still remains limited, Krantz et al. contributed to
the development of VLN tasks toward real-world applications.

10.3.2 Remote Object Localization

Motivation

A 10-year-old child can easily follow the instruction “fetch me a pillow”, even in a
completely unknown environment. However, it is fairly difficult for robots to accom-
plish such a task because robots have difficulty in learning knowledge from an envi-
ronment that they have explored and transferring it suitably when encountering a
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Fig. 10.7 Models for the VLN-CE task

new environment. For example, a pillow usually appears on a sofa, which usually
appears in a living room, and the living room is usually connected with another
room via a corridor. In addition, humans can understand high-level natural language
instructions and connect themwith visual perception. To enable robots to exhibit this
ability and interact with human beings in a more flexible and accurate manner, the
remote embedded visual preferring expression task has been established.

In this task, the intelligent agent is placed in a random position, provided an
instruction relevant to a remote object, for example, “bring me the bottom picture
that is next to the top of stairs on level one”, and the robot has to explore and find the
target object according to the instruction and visual images perceived. However, the
referred target remote objects may not always be directly visible. In this scenario,
intelligent agents must have the common-sense reasoning ability to reach the right
position in which the remote object might be found.

Method

Qi et al. [16] introduced an interactive navigator-pointermodel, as shown in Fig. 10.8.
The model consists of pointer instruction and navigation sub-modules. The pointer
(object localization) module includes a local visual perception image and natural
language instruction as the input and returns three objects that best fit the instruc-
tions. The visual features and labels of the three obtained objects are the input of
the navigator module. Furthermore, the navigator module employs natural language
instruction and a perceived image of the current position as the input, and specifies a
stop signal or direction of the next step. If the navigator stops outputting, the suitable
object that the current pointer returns is considered the final result. This framework
adopts the FAST algorithm [9] as the navigator module and MAttNet [23] as the
point module.
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Fig. 10.8 Overview of interactive navigator-pointer model

Performance and Limitation

The success rate of the random algorithm is less than 1% and R2R-TF and R2R-SF
exhibit a success rate of 2% in unknown environments. The proposed algorithm has
a success rate of more than 11% for validation in this environment. However, there
remains a significant gap with the success rate of humans, 77.84%, which highlights
the scope of further work in this domain.

10.4 Embodied QA

Motivation

To build an intelligent agent that can perceive its environment, researchers in both
robotics and computer science domains have attempted to realize communication
with humans via natural language and implement actions in a real-world environment.
Das et al. [3] presented a new task named embodied question answering, in which an
agent is spawned at a random location in a 3D environment and is asked a question
(‘What color is the car?’). To answer this query, the agent must first intelligently
navigate to explore the environment, gather necessary visual information through
first-person (egocentric) vision, and answer the question (‘orange’).

Compared to traditional language-guided visual navigation task, Embodied QA
task requires more of an intelligent agent model. A typical instance is an active per-
ception: the VLN task requires the intelligent agent to follow the instruction given by
humans, while in the Embodied QA task, the intelligent agent is required to actively
explore the virtual environment to determine the answer to the question. Second, the
question presented to the intelligent agent is a high-level natural language instruc-
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Fig. 10.9 The adaptive computation time (ACT) navigator splits the navigation task between a
planner and a controller module. The planner selects actions, and the controller decides to continue
performing that action for a variable number of time steps, resulting in a decoupling of direction
(‘turn left’) and velocity (‘5 times’) and strengthening of the long-term gradient flows of the planner
module

tion. In this scenario, the intelligent agent must realize common-sense processing
and reasoning during the execution of task.

Method

Das et al. [3] introduced a hierarchical model for Embodied QA. Because the model
for Embodied QA involves four forms of information: vision, language, naviga-
tion and answer, four separate nature modules are employed. In particular, different
forms of information demand corresponding neural network architectures, and thus,
in this framework, convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs) are employed. Because of the significant variance between different
questions, the navigation steps for solving the questions are dramatically different.
Adaptive computation time (ACT) RNNs proposed by Graves [6] are used as the
basic framework of the planner and controller, as shown in Fig. 10.9.

A pretrained CNN network and two layers of LSTMs with 128-dimensional hid-
den states are used for vision-and-language encoding, respectively.

Furthermore, to increase the efficiency of intelligent agents in finding the answer
to questions, Yu et al. [22] proposed a generalized task of Embodied QA, named
multi-target embodied question answer. This task is aimed at examining complicated
questions that can be decomposed into two or more meta-questions, such as “Is the
dresser in the bedroom larger than the oven in the kitchen?” Multi-target Embodied
QA has an architecture similar to that of the Embodied QA (Fig. 10.10). RNNs are
used as navigation and controller modules, and convolutional neural networks are
used as future extractors for visual modules. Unlike traditional Embodied QA, the
questions in which are relatively simple, multi-target Embodied QA involves more
complicated questions. Thus, a program generator has been developed to decode the
structural information from complicated questions.
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Fig. 10.10 Model architecture: The proposedmodel is composed of a programgenerator, navigator,
controller and VQA module

Performance and Limitation

Both approaches are of significance to the vision-and-language community, although
the success rate and accuracy of navigation are not satisfactory. In addition, the
questions asked are relatively simple and structural, and in real-world application
scenarios, the variability of the question form cannot be neglected. Thus, additional
research must be performed on embodied questions and answers.

10.5 Interactive QA

Motivation

AI researchers aim to create intelligent agents that can perform manual tasks in
real-world scenarios and communicate with human beings via natural language. In
contrast to the Embodied QA task, interactive question answering requires intelli-
gent agents to interact with the virtual environment and manipulate objects in the
environment, for example, “open the microwave oven”, “open the refrigerator door”
or move an object at a location to answer the questions.

Method

Gordon et al. [5] introduced a hierarchical interactive memory network (HIMN),
as shown in Fig. 10.11. This model decomposes a complicated task into multiple
sub-tasks to reduce the complexity of each task, allowing the system to operate,
learn and reason across multiple time scales. Specifically, the planner is designed to
choose the task to be performed, such as navigation, manipulation, answering and
presenting the specific command. Subsequently, the task is conducted using a set
of low-level controllers, including a navigator, manipulator, detector, scanner and
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Fig. 10.11 Overview of the hierarchical interactive memory network (HIMN)

answerer. When the task or the sub-task is terminated, the controller returns control
to the planner. Therefore, when the model faces certain independent tasks, the tasks
can be conducted independently.

Performance and Limitation

This interactive question and answer task promoted the application of vision-
and-language cross-modal models in the robotics domain. However, this approach
involves the following limitations: first, due to the 2D nature of the segmentation
map, the proposed model can not differentiate whether an object is inside a container
or on top of it. Second, the proposed model is fairly ineffective at exploring the
environment. Third, the virtual environment is not photo-realistic, and there exists a
nonneglectable domain gap when the internet vision-style vision input is transferred
to a photo-realistic input.
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Chapter 11
Medical VQA

Abstract Inspired by the rise of VQA research in general domain, the task of Medi-
calVQAhas received great attention fromcomputer vision, natural language process-
ing and biomedical research communities in recent years. Given a medical image
and clinically related question about the visual elements in the medical image, a
Medical VQA system is required to deeply comprehend both the medical image and
the asked question to predict the correct answer. In this chapter, we first introduce
mainstream datasets used for Medical VQA tasks, such as VQA-RAD, VQA-Med,
PathVQA and SLAKE datasets. Then, we elaborate the prevalent methods for Med-
ical VQA tasks in detail. These methods can be classified into three categories based
on their main characteristics: classical VQA methods, meta-learning methods and
BERT-based methods for Medical VQA.

11.1 Introduction

Medical images play a vital role in clinical diagnosis and treatment, but the need for
diagnosis and the reporting of image-based examinations considerably exceeds the
current medical capabilities of physicians. Recently, a number of computer-assisted
medical diagnosis technologies have been proposed to help relieve the pressure of
healthcare systems. In resource-limited conditions, the medical VQA task can pro-
vide a “second opinion” to radiologists regarding their analysis of the image, and the
responses can be used by patients to obtain basic information regarding the medi-
cal image, without consulting their doctor. As a domain-specific branch of general
VQA task, the Medical VQA task is performed by inputting medical images accom-
panied by clinical-related questions, with the system being expected to correctly
answer these clinical questions in natural language according to the visual clues in
the medical images.

In this chapter, we first review six mainstream datasets specifically proposed for
Medical VQA tasks, namely, VQA-Med-2018 [8], VQA-Med-2019 [3], VQA-Med-
2020 [1],VQA-RAD [13], PathVQA [9] andSLAKE [14].We compare the similarity
and difference between these datasets and give detailed descriptions of each dataset.
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Then, we comprehensively present the review of Medical VQA methods that
are classified into three categories according to their main characteristics and con-
tributions as classical VQA methods, meta-learning methods and vision-language
pre-training methods for Medical VQA.

First, classical VQA methods (Sect. 11.3) for Medical VQA are motivated by the
classical methods proposed for general VQA tasks. These methods usually utilize
convolution networks (CNNs) such as VGGNet and ResNet networks to learn the
embedding of medical images, recurrent networks (RNNs) such as LSTM, Bi-LSTM
networks to learn the embedding of clinical questions and classical feature fusion
strategies such as joint embedding and attentionmechanisms to learn the fusedmulti-
modal features, a multi-layer classifier or sequence-to-sequence encoder-decoder to
predict the answer as classification task or generation task.

Second, meta-learning methods (Sect. 11.4) for Medical VQA utilize meta-
learning to overcome the severe labeled data limitation in Medical VQA. Rather
than using CNN networks pretrained on ImageNet to learn visual features from a
limited number of medical images, these methods train meta-models directly on
medical images, of which the weights can be adapted to Medical VQA tasks more
easily than weights of CNNs pretrained on ImageNet.

Third, BERT-based methods (Sect. 11.5) for Medical VQA are inspired by the
successful application of BERT and vision-language pre-training in general domain.
Most BERT-based methods for Medical VQA simply utilize BERT as language
encoder to learn textual features from clinical questions and share similar fusion
architecture with classical methods. Other work may use Transformer to interact
between the two modalities. And more recently, some work pre-train BERT-like
models on data of medical image-text pairs and finetune these models on several
Medical VQA datasets.

11.2 Datasets

Comparedwith the classicalVQA task that focuses on general domain,MedicalVQA
is specifically designed for answering clinical-related questions based on the visual
elements in the given medical images. In order to achieve this goal, specialized VQA
datasets that concentrate on medical domain should be first constructed. In recent
years, kinds of datasets have been proposed for theMedical VQA task. Most of these
datasets focus on radiology images (including CTs, X-rays andMRIs) such as VQA-
RAD, VQA-Med (2018, 2019, 2020) and SLAKE, while PathVQA dataset focuses
on pathology images. Different from other datasets that only have triplets of image-
question-answer, SLAKE is more comprehensive which has both semantic labels
(e.g., labeled segmentation or bounding boxes of objects in the medical images) and
structural medical knowledge base. Besides, SLAKE is also a bilingual dataset of
both English and Chinese.
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Table 11.1 Major datasets for medical VQA and their main characteristics

Dataset Source of images Number of
images

Number of
questions

Evaluation
metrics

VQA-Med-2018
[8]

PubMed Central
articles

2,866 6,413 BLEU & WBSS
& CBSS

VQA-Med-2019
[3]

MedPix database 4,200 15,292 BLEU & Acc.

VQA-Med-2020
[1]

MedPix5
database

5,000 5,000 BLEU & Acc.

VQA-RAD [13] MedPix database 315 3,515 BLEU & Acc.

PathVQA [9] Textbook of
Pathology &
Basic Pathology

1670 32,799 BLEU & Acc.

SLAKE [14] [11, 20, 24] 642 14,028 BLEU & Acc.

Details of these six datasets are presented in the following text, and the main
characteristics of which are summarized in Table11.1.

VQA-Med-2018

VQA-Med-2018 [8] is the first medical VQA dataset. It contains 6,413 questions-
answer pairs, and 2,866 medical images extracted from PubMed Central articles.
The question-answer pairs are generated from captions of the medical images via a
semi-automatic approach. First, all possible question-answer pairs from captions are
generated using a rule-based question generation (QG) system. The systems contain
four modules: sentence simplification, answer phrase identification, question gen-
eration and candidate questions. Then, since the candidate questions generated by
automatic approach may be noisy because the rules defined may not adequately cap-
ture the complex characteristics of medical field terminologies, two expert human
annotators manually checked all the generated question-answer pairs associated with
the medical images in two passes. In the first pass, one annotator proofreads all the
question answer pairs to ensure grammatical and semantic correctness. In the second
pass, another annotator verifies that all the question-answers are correct, ensuring
that they are clinically relevant to the medical images. The overall set is split into
5,413 question answer pairs (associated with 2,278medical images) for training, 500
question answer pairs (associated with 324 medical images) for validation and 500
questions (associated with 264 medical images) for testing.

VQA-Med-2019

VQA-Med-2019 [3] consists of 4,200 radiology images and 15,292 question-answer
pairs. This dataset focuses on four categories of clinical questions: modality, plane,
organ system and abnormality. These categories have different levels of difficulty
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and utilize classification and text generation methods. And all questions can be
answered from the image content without requiring any additional medical knowl-
edge or domain specific reasoning. The training set contains 3,200 images and 12,792
question-answer (QA) pairs, with three to four questions per image. The validation
set contains 500 medical images and 2,000 QA pairs. The test set consists of 500
medical images and 500 questions.

VQA-Med-2020

For VQA-Med-2020 dataset [1], the images are selected from MedPix5 database
for image-based diagnosis of relevant medical images. Diagnostic methods selected
include CT/MRI imaging, angiography, characteristic imaging appearance, radio-
graphs, imaging features, ultrasound and diagnostic radiology. Each problem appears
in the created VQA data at least 10 times. The training set contains 4,000 radiology
images and 4,000 question-answer pairs. The validation set consists of 500 radiology
images and 500 question answer pairs. The test set consists of 500 radiology images
and 500 questions.

VQA-RAD

VQA-RAD [13] contains 3.5K clinician annotated question-answer pairs and 315
images from MedPix31. It is the first manually constructed dataset in which clini-
cians asked naturally occurring questions regarding radiology images and provided
reference answers. Questions can be classified into modality, plane, organ system,
abnormality, object/condition presence, positional reasoning, color, size, attribute
other, counting and others.

PathVQA

PathVQA [9] consists of 32,799 question-answer pairs generated from 1,670 pathol-
ogy images collected from two pathology textbooks: “Textbook of Pathology” and
“Basic Pathology”, and 3,328 pathology images collected from the PIER7 digital
library. There are seven categories of questions: what, where, when, whose, how,
how much/how many, and yes/no. The first six categories pertain to 16,465 open-
ended questions, accounting for 50.2% of all questions. The remaining questions
are close-ended “yes/no” questions. The numbers of “yes” and “no” answers are
balanced as 8,145 and 8,189, respectively.

SLAKE

SLAKE [14] contains 642 images with 14,028 question-answer pairs and 5,232
medical knowledge triplets for the training and evaluation of medical VQA models.
Question generation uses an annotation system. The system starts with a pre-defined
question template for each body part. Each template provides a number of candidate
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questions for each content type. SLAKE has ten content types (e.g., modality, posi-
tion and color) for the questions. The images are split into 450 for training, 96 for
validation and 96 for testing.

11.3 Classical VQA Methods for Medical VQA

In this section, we will review classical VQA methods that is widely used in general
domain and quickly adapted in Medical VQA tasks. These methods usually use con-
volution networks (CNNs) such as VGGNet and ResNet networks to extract visual
features frommedical images, recurrent networks (RNNs) such as LSTM, Bi-LSTM
or GRU networks to extract textual features from clinical-related questions, clas-
sical multi-modal feature fusion strategies such as joint embedding and attention
mechanisms, and a multi-layer classifier or sequence-to-sequence encoder-decoder
to predict the answer.

Motivation

Inspired by the success application of VQA in general domain, Medical VQA is
proposed to help relieve the pressure of healthcare systems. Medical VQA task can
provide a “second opinion” to radiologists regarding their analysis of the image, and
the responses can be used by patients to obtain basic information regarding the med-
ical image, without consulting their doctor. As a domain-specific branch of general
VQA task, some classical VQA methods in general domain can be quickly adapted
to solve Medical VQA tasks.

Methods

As shown in Fig. 11.1, classical VQA methods usually consist of four primary com-
ponents: a pre-trained CNN-based image feature extractor, a RNN-based question
feature extractor, a classical multi-modal feature fusion module and a classifier or a
generator to predict the answer.

For multi-modal feature fusion, joint embedding is a simple but effective
approach, including element-wise operation, concatenation and bilinear pooling.

Thanki et al. [22] proposed an encoder-decoder architecture, where pre-trained
CNN networks on ImageNet such as VGG19 and DenseNet-201 are used to extract
visual features from themedical images, andpre-trainedword embedding onPubMed
articles along with a 2-layer LSTM network are used to extract textual features from
the question. For multi-modal features fusion, a simple element-wise multiplication
is applied. Finally, the fused features are passed into a LSTM decoder to generate
language in natural language.

Allaouzi et al. [4] used a pre-trained VGG16 network to extract visual features
from the medical images, word embedding followed with a Bi-directional LSTM
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Fig. 11.1 Framework of classical VQA methods adopted for Medical VQA

to embed words in the corresponding questions and extract textual features from
questions. Then, the features of both medical images and questions are concatenated
and passed through dense layers to get a length-fixed vector as the multi-modal
feature vector. At last, a Decision Tree Classifier is used to predict answers based on
this multi-modal feature vector.

Afterward, Allaouzi et al. [5] proposed an encoder-decoder model that predicts
answers by generating eachword of the answer.A pre-trainedDenseNet-121 network
and pre-trained word embedding are used to extract image and question features
respectively. These multi-modal features are concatenated as QI vector, which will
be then concatenated with features of generated words as encoder vector. A decoder
is used to generate answers according to the encoder vector. Similarly, Talafha et
al. [21] proposed an encoder-decoder sequence-to-sequence architecture, in which
pre-trained VGGNet is utilized instead of DesNet.

Abacha et al. [2] adopted the multimodal compact bilinear pooling (MCB) strat-
egy to fuse multi-modal features. ResNet and LSTM are used to extract image and
question features, and these single-modal features are combined by MCB as multi-
modal feature. For answer prediction, a classifier is used.

Attentionmechanisms aremore complicated and powerful in fusingmulti-modal
features than joint embedding methods.

Zhou et al. [27] employed a basic attentionmodule to fuse image and question fea-
tures, enhancing the model’s capability of learning and generalization. Specifically,
the Inception-ResNet-v2 network extracts visual features from medical images and
a Bi-directional LSTM network extract features from questions. The attended visual
features are concatenated with question features as multi-modal feature, which is
then passed through a classifier to predict the answer.

Abacha et al. [2] used stacked attention network (SAN) to implement multi-step
reasoning inMedicalVQA tasks. VGG16 andLSTMare used to extract single-modal
features respectively. Two attention layers are utilized in the adopted SAN to fuse
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image and question features. For answer prediction, a one-layer neural network with
softmax is used as a classifier.

Peng et al. [17] proposed a framework that employed co-attention mechanism
with bilinear pooling. ResNet-152 pre-trained on ImageNet is used to extract visual
features, and the word embedding pre-trained on medical-relevant copora is used
followed by a LSTM network to extract question features. Then, a co-attention is
implemented on the image and question features, where attended image features and
attended question features are obtained. To further fuse the attended multi-modal
features, Multi-modal Factorized Bilinear Pooling (MFB) is used.

Furthermore, Shi et al. [19] used Multi-modal Factorized High-order pooling
(MFH) instead of MFB for multi-modal feature fusion. Besides, more information
sources are taken into account for feature extraction, including question category
and question topic distribution. To be specific, the attended image features and the
attended question features obtained by co-attention mechanism are fused with the
above two extra features using MFH. The fused multi-modal features are used to
predict the answer.

Performance and Limitations

It is simple and efficient to adapt classical VQA methods for Medical VQA tasks.
Even the joint embedding method could make a competitive baseline for Medical
VQA. Similar to the findings in general VQA, the more comprehensive and effective
the fusion methods are, the better performance the model will achieve. The bilinear
pooling methods perform better than the simple element-wise operation and con-
catenation, attention-based methods combined with bilinear pooling performs better
than single attention mechanism or single bilinear pooling methods. However, most
of these methods use pre-trained CNNs on ImageNet to extract visual features from
medical images, which will have a big gap between the general images and medical
images. Thus, the performance may be affected during this transfer learning process.

11.4 Meta-Learning Methods for Medical VQA

In this section, we will review the meta-learning methods utilized for Medical VQA
tasks. Specifically, we give the detailed description of the first proposed framework
based on meta-learning, namely Mixture of Enhanced Visual Features (MEVF).
Then, we introduce a variant of MEVF with conditional reasoning and the other
more advanced meta-learning method called Multiple Meta-model Quantifying for
Medical VQA (MMQ).

Motivation

Large amount of labeled data are often required to train VQA models in general
domain. However, in medical domain, it is not as easy building large-scale and
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Fig. 11.2 Overview of the meta-learning method of MEVF for Medical VQA

well-elaboratedMedical VQAdatasets as building large-scale general VQAdatasets.
In other words, large-scale labeled data are usually lacked for Medical VQA tasks.
Thus, to overcome the limitation of data shortage,meta-learningmethods are adopted
in solving Medical VQA tasks.

Methods

Nguyen et al. [16] first adopted meta-learning in Medical VQA tasks. As shown in
Fig. 11.2, the core of the proposed Medical VQA framework is Mixture of Enhanced
Visual Feature (MEVF), of which the weights of are initialized by Model-Agnostic
Meta-Learning (MAML) and Convolutional Denoising Auto-Encoder (CDAE) pre-
trained onmedical images. Then, it will be fine-tuned onMedical VQA datasets in an
end-to-end way. In fact, when adapting MAML to a new task, the meta-parameters
of MAML can be quickly adapted to the new task. To train MAML, images in
VQA-RAD dataset are manually reviewed and classified into 9 categories. During
each training iteration of MAML, 5 tasks are sampled and for each task 3 classes are
randomly sampled. For each class, 6 images are randomly sampled to update models.
To train CDAE, more than 10K radiology images are collected from the Internet.
Specifically, reconstruction error between the original and reconstructed radiology
images is minimizing when training CDAE. The objective of overall framework is a
multi-task loss function, which takes into account both VQA classification loss and
the reconstruction loss.

Based on the above Medical VQA framework, Zhan et al. [26] proposed a
novel conditional reasoning method for medical VQA, aiming to automatically
learn effective reasoning skills for various Medical VQA tasks. Particularly, a
question-conditioned reasoningmodule is used to guide the importance selection over
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multimodal fusion features. Besides, considering the different natures of close-ended
and open-ended Medical VQA tasks, an extra type-conditioned reasoning module
is proposed to separately learn reasoning skills for different sets of the two types of
Medical VQA tasks.

However, MAML suffers from meta-annotation phase for medical image dataset.
More recently, Do et al. [7] presented a novel multiple meta-model quantifying
method (MMQ) to enhance the metadata by automatically annotating, handle noisy
labels during meta-agnostic process and select meta-models with robust features for
downstreamMedical VQA tasks. Different fromMEVF,MMQ only utilizesMAML
as primary component without CDAE and selects multiple meta-models rather than
only one MAML model. While the meta-training process is similar to MEVF. Then,
the trained meta-models are used to refine initial dataset by auto-annotating labels
and dealing with noisy labels. At last, these meta-models are scored to select which
is useful for Medical VQA tasks.

Performance and Limitations

The novel meta-learning methods could overcome the lack of large-scale labeled
data in Medical VQA datasets. Compared to the classical VQA methods directly
adapted in Medical VQA, these methods could make better use of medical images
and learn more effectively from limited data, which will result in better performance.
However, these methods did not make use of the prevalent and powerful Transformer
and BERT, which may further improve the performance.

11.5 BERT-Based Methods for Medical VQA

In this section, we will review BERT-based methods proposed forMedical VQA.We
first introduce methods that simply take BERT as language encoder for clinically-
related questions, while share similar fusion architectures with other classical VQA
methods. Then, we present detailed description of BERT-based methods that utilize
Transformer layers to interact between two modalities of image and question. At
last, we show methods that pre-train BERT-like models on medical image-text pairs
and fine-tune the pre-trained models on Medical VQA datasets.

Motivation

Recently, a large amount of studies have demonstrated the successful application of
BERT in Natural Language Processing (NLP) and Vision-Language tasks in general
domain. It is with impressive effectiveness either to simply use BERT as language
encoder to extract textual features or to use BERT to preform interactions between
multi-modal features. Thus, it is natural to adopt the prevalent and powerful BERT
to learn better representations of both medical images and clinical-relevant questions
in Medical VQA tasks.
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Methods

The most widely used way of BERT in Medical VQA tasks is simply taking BERT
as language encoder to learn textual embeddings of clinical-related questions while
sharing similar multi-modal fusion architecture with other classical VQA methods
for Medical VQA tasks. Zhou et al. [28] proposed TUA1 which uses Inception-
ResNet-V2 to extract visual features from the medical images and BERT to extract
textural features from the corresponding question. In addition, TUA1 adopts the
sub-task strategy, which first uses a simple classifier to identify the category of each
question. For the question type of Abnormality, TUA1 uses a sequence-to-sequence
generationmodel to predict the answer.While for other types of question, TUA1 uses
a classifier to predict the answer. Vu et al. [23] proposed a method of ensembling
models that either uses Skip-thought vectors or BERT to extract question features
and utilizes multi-glimpse attention mechanisms with bilinear fusion. Yan et al. [25]
proposed Hanlin that uses a modified VGG16 network with Global Average Pooling
strategy to extract visual features, BERT to extract question features and MFB with
co-attention to fuse multi-modal features. Instead of using BERT pre-trained on
general domain to extract question features, Jung et al. [10] and Chen et al. [6]
adopted the domain-specific BioBERT that is pre-trained on large-scale bio-medical
corpora.

Different from the above methods, as shown in Fig. 11.3, Ren and Zhou [18] pro-
posed a new classification and generative model for Medical VQA (CGMVQA)
which utilizes a 4-layer Transformer to interact between multi-modal features.
CGMVQA adopts the sub-task strategy which first uses a classifier to identify the
type of each question. CGMVQA uses ResNet152 to extract visual features from
medical images. Specifically, to obtain richer semantic information from different
dimensions, the visual features are extracted from different convolution layers of
ResNet152 network. Followed by Fully Convolutional Networks and Global Aver-
age Pooling, the output of each 5 blocks in ResNet152 network is taken as visual
token that will be passed through Transformer layers. CGMVQA uses Word Pieces
to tokenize questions and BERT to embed questions. For Abnormality questions,

Fig. 11.3 Overview of the CGMVQA proposed for Medical VQA
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CGMVQA acts as a generator, where answers are predicted based on the output fea-
tures of masked tokens. For other types of questions, CGMVQA acts as a classifier,
where answers are predicted based on the output features of special token [CLS].

Furthermore, Khare et al. [12] proposed multimodal BERT pre-training for
Medical VQA, which pre-trains a model that shares the similar architecture with
CGMVQA on medical image-caption pairs from ROCO dataset, and then fine-tunes
the model on downstream VQA-Med-2019 and VQA-RAD datasets. During pre-
training, Masked Language Modeling (MLM) task is utilized. Specifically, to better
learnmedical knowledge, onlymedical keywords aremasked fromcaptions inROCO
and the model only needs to predict these masked tokens. During fine-tuning, instead
of using the output feature of [CLS] token, MMBERT uses the average pooling of
the last year of the Transformer as fused multi-modal feature. Then, this multi-modal
feature passes through dense layers for answer classification.

Similar to MMBERT, Moon et al. [15] proposed a vision-language pre-training
for medical images and text called MedViLL. Different from MMBERT, MedViLL
uses ResNet50 of which the last feature map (16× 16× 2048) is flattened as visual
features of medical images. Besides, MedViLL is pre-trained on MIMIC-CXR
and Open-I datasets. During pre-training, Masked Language Modeling (MLM) and
Image Report Matching (IRM) tasks are used. During fine-tuning, the output feature
of [CLS] token is used to predict the answer.

Performance and Limitations

So far, the BERT-based methods have achieved state-of-the-art performance than
other kinds of methods. However, the visual feature extractors of these methods
are still pre-trained CNNs on ImageNet such as ResNet, which may neglect the
characteristics ofmedical images andmayhave anegative impact on the performance.

References

1. A.B. Abacha, V. Datla, S.A. Hasan, D. Demner-Fushman, H. Müller, Overview of the vqa-med
task at imageclef 2020: visual question answering and generation in the medical domain, in
CLEF (2020)

2. A.B. Abacha, S. Gayen, J. Lau, S. Rajaraman, D. Demner-Fushman, Nlm at imageclef 2018
visual question answering in the medical domain, in CLEF (2018)

3. A.B.Abacha, S.A.Hasan,V.Datla, J. Liu,D.Demner-Fushman,H.Müller, Vqa-med: overview
of the medical visual question answering task at imageclef 2019, in CLEF (2019)

4. I. Allaouzi, M. Ahmed, Deep neural networks and decision tree classifier for visual question
answering in the medical domain, in CLEF (2018)

5. I. Allaouzi,M.Ahmed, B. Benamrou,An encoder-decodermodel for visual question answering
in the medical domain, in CLEF (2019)

6. G. Chen, H. Gong, G. Li, Hcp-mic at vqa-med 2020: effective visual representation for medical
visual question answering, in CLEF (2020)

7. T. Do, B.X. Nguyen, E. Tjiputra, M.-N. Tran, Q.D. Tran, A. Nguyen, Multiple meta-model
quantifying for medical visual question answering, arXiv:2105.08913 (2021)

http://arxiv.org/abs/2105.08913


176 11 Medical VQA

8. S.A. Hasan, Y. Ling, O. Farri, J. Liu, H. Müller, M. Lungren, Overview of imageclef 2018
medical domain visual question answering task, in CLEF (2018)

9. X. He, Y. Zhang, L. Mou, E. Xing, P. Xie, Pathvqa: 30000+ questions for medical visual
question answering, arXiv:2003.10286 (2020)

10. B. Jung, L. Gu, T. Harada, bumjun_jung at vqa-med 2020: Vqa model based on feature extrac-
tion and multi-modal feature fusion, in CLEF (Working Notes) (2020)

11. A.E. Kavur, N. Gezer, M. Baris, P.-H. Conze, V. Groza, D.D. Pham, S. Chatterjee, P. Ernst,
S. Özkan, B. Baydar, D. Lachinov, S. Han, J. Pauli, F. Isensee, M. Perkonigg, R. Sathish, R.
Rajan, S. Aslan, D. Sheet, G. Dovletov, O. Speck, A. Nürnberger, K. Maier-Hein, G. Akar,
G.B. Ünal, O. Dicle, M.A. Selver, Chaos challenge - combined (ct-mr) healthy abdominal
organ segmentation. Med. Image Anal. 69, 101950 (2021)

12. Y. Khare, V. Bagal, M.Mathew, A. Devi, U.D. Priyakumar, C.V. Jawahar, Mmbert: multimodal
bert pretraining for improved medical vqa, in 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI) (2021), pp. 1033–1036

13. J. Lau, S. Gayen, A.B. Abacha, D. Demner-Fushman, A dataset of clinically generated visual
questions and answers about radiology images. Sci. Data 5 (2018)

14. B.Liu, L.-M.Zhan,L.Xu,L.Ma,Y.Yang,X.-M.Wu,Slake: a semantically-labeled knowledge-
enhanced dataset for medical visual question answering, in 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI) (2021), pp. 1650–1654

15. J.H. Moon, H. Lee, W. Shin, E. Choi, Multi-modal understanding and generation for medical
images and text via vision-language pre-training. CoRR (2021)

16. B.D. Nguyen, T. Do, B.X. Nguyen, T. Do, E. Tjiputra, Q.D. Tran, Overcoming data limitation
in medical visual question answering, inMICCAI (2019)

17. Y. Peng, F. Liu, Umass at imageclef medical visual question answering(med-vqa) 2018 task,
in CLEF (2018)

18. F. Ren, Y. Zhou, Cgmvqa: a new classification and generativemodel formedical visual question
answering. IEEE Access 8, 50626–50636 (2020)

19. L. Shi, F. Liu, M. Rosen, Deep multimodal learning for medical visual question answering, in
CLEF (2019)

20. A. Simpson,M. Antonelli, S. Bakas,M. Bilello, K. Farahani, B. Ginneken, A. Kopp-Schneider,
B. Landman, G. Litjens, B. Menze, O. Ronneberger, R. Summers, P. Bilic, P. Christ, R. Do,
M. Gollub, J. Golia-Pernicka, S. Heckers, W. Jarnagin, M. McHugo, S. Napel, E. Vorontsov,
L. Maier-Hein, M.J. Cardoso, A large annotated medical image dataset for the development
and evaluation of segmentation algorithms. arXiv:1902.09063 (2019)

21. B. Talafha, M. Al-Ayyoub, Just at vqa-med: a vgg-seq2seq model, in CLEF (2018)
22. A. Thanki, K.Makkithaya,Mitmanipal at imageclef 2019 visual question answering inmedical

domain, in CLEF (2019)
23. M.H.Vu,R. Sznitman,T.Nyholm,T.Löfstedt, Ensemble of streamlined bilinear visual question

answering models for the imageclef 2019 challenge in the medical domain, in CLEF (2019)
24. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R. Summers, Chestx-ray8: hospital-scale chest x-

ray database and benchmarks on weakly-supervised classification and localization of common
thorax diseases, in 2017 IEEEConference onComputer Vision andPatternRecognition (CVPR)
(2017), pp. 3462–3471

25. X. Yan, L. Li, C. Xie, J. Xiao, L. Gu, Zhejiang university at imageclef 2019 visual question
answering in the medical domain, in CLEF (2019)

26. L.-M. Zhan, B. Liu, L. Fan, J. Chen, X.-M. Wu, Medical visual question answering via con-
ditional reasoning, in Proceedings of the 28th ACM International Conference on Multimedia
(2020)

27. Y. Zhou, X. Kang, F. Ren, Employing inception-resnet-v2 and bi-lstm for medical domain
visual question answering, in CLEF (2018)

28. Y. Zhou, X. Kang, F. Ren, Tua1 at imageclef 2019 vqa-med: a classification and generation
model based on transfer learning, in CLEF (2019)

http://arxiv.org/abs/2003.10286
http://arxiv.org/abs/1902.09063


Chapter 12
Text-Based VQA

Abstract VQA requires reasoning regarding the visual content of an image.
However, in a large proportion of images, visual content is not the only information.
Texts that can be recognized by optical character recognition (OCR) tools provide
considerably more useful and high-level semantic information, such as the street
name, product brand and prices, which is not available in any other forms in the
scene. Interpreting this written information in human environments is essential for
performing most everyday tasks like making a purchase, using public transportation
and finding a location in a city. Hence, the new task TextVQA has been proposed. In
this chapter, we briefly introduce the main datasets that benchmark progress in this
field, including TextVQA [29], ST-VQA [2] and OCR-VQA [25]. Subsequently, we
describe an important tool (OCR) that is a prerequisite for the reasoning process, as
texts must be first recognized. Next, we select 3 representative and effective models
to address this problem and describe them in a sequential manner.

12.1 Introduction

One benefit of visual question answering is that it can help visually impaired users be
aware about their surroundings. As shown in the VizWiz study [9], up to 21% of these
questions involve reading and analyzing the text captured in a user’s surroundings:
‘what temperature is my oven set to?’ or ‘what denomination is this bill?’ To answer
these questions, the model must have the following abilities:

• to realize when the question includes text,
• to detect image regions containing text,
• to convert pixel representations (convolutional features) of these regions to sym-
bols or textual representations (semantic word embeddings),

• to jointly analyze the detected text and visual content,
• to decide if the detected text needs to be ‘copy-pasted’ as the answer or if the
detected text informs the model about an answer in the answer space.

Notably, the existing VQAmodels cannot answer such questions, as all of the above
skills cannot simply be integrated into a monolithic network. To address this new
challenge, several datasets have been proposed to evaluate the overall performance in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Q. Wu et al., Visual Question Answering, Advances in Computer Vision and Pattern
Recognition, https://doi.org/10.1007/978-981-19-0964-1_12
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terms of the abovementioned abilities, alongwith several classic baselinemodels. To
accomplish reasoning, the model must be able to read. Optical character recognition
(OCR) is a subfield of computer vision and involves many mature algorithms. For
a model to be able to read is a simple task, as only an independent OCR module
needs to be added. We discuss the implementation and importance of the module in
the subsequent sections. Moreover, we highlight the main methods that have been
introduced in the field of TextVQA and can be categorized as simple fusion models,
transformer-based models and graph-based models.

12.2 Datasets

Questions that require reading and reasoning are uncommon in the standard VQA
datasets, as they are not collected in a setting similar to those of visually impaired
users. The existing relevant dataset VizWiz [9] is small in size, which renders its
application as a benchmark challenging. To focus on the understanding and reasoning
of scene texts in images, several datasets have been proposed. We review the existing
TextVQA datasets, describe how the datasets are created and perform a comparative
analysis. A coarse comparison of different datasets is presented in Table12.1.

12.2.1 TextVQA

To study the task of answering questions that require reading text in images, a new
dataset has been established, which is publicly available at the TextVQA official
website.1

The TextVQA dataset contains 28,408 images from the Open Images dataset [18]
(from categories that tend to contain text e.g.“billboard”, “traffic sign”, and “white
board”), with each question accompanied by 10 human annotated answers. The final
accuracy is calculated through soft voting of the 10 answers, similar to VQAv2 [8].

The training and validation set is collected from the training set of the Open
Images’ training set, and the test set is collected from the Open Images’ test set.
To automatically select appropriate images from this large source, an OCR model

Table 12.1 Comparison of three TextVQA datasets

Dataset Images Questions

TextVQA 28,408 45,336

ST-VQA 23,038 31,791

OCR-VQA 207,572 1,002,146

1 https://textvqa.org.

https://textvqa.org
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Rosetta [3] is applied to these images, which computes the average number of OCR
boxes in each category. The categories with the most OCR boxes are selected.

The dataset construction involved three processes. In the first stage, images that
did not contain text were filtered by human annotators. In the second stage, 1–2
questions were provided by annotators. In the third stage, 10 answers for each ques-
tion were collected from the annotators, similar to the VQA [1, 8] and VizWiz [9]
dataset settings. The quality of data was ensured by additional filtering performed by
annotators. In addition, handcrafted questions were considered, and correct answers
were expected to filter the inferior annotators.

In addition, a model known as LoRRA was proposed to be used as the baseline
of this new dataset, as described in Sect. 12.4.

12.2.2 ST-VQA

To highlight the importance of high-level semantic information in the VQA process,
a new dataset, scene text visual question answering (ST-VQA), was proposed. In this
dataset, questions could only be answered based on the text present in the image.

In particular, the ST-VQA dataset [2] contains natural images from multiple
sources, including ICDAR 2013 [17], ICDAR2015 [16], ImageNet [5], VizWiz [9],
IIIT STR [24], Visual Genome [19] and COCO-Text [30]. The questions and answers
were collected throughAmazonMechanical Turk. The format of the ST-VQA is sim-
ilar to that of the TextVQA dataset. Instead of 10 human annotated answers for the
TextVQA dataset, in ST-VQA, each question is accompanied by only one or two
ground-truth answers provided by the question writer. The ST-VQA dataset involves
three tasks, which gradually increase in difficulty: Task 1, strongly contextualized
provides a dynamic candidate dictionary of 100 words per image, while Task 2,
weakly contextualized provides a fixed answer dictionary of 30,000 words for the
whole dataset. For Task 3, open dictionary, the model is supposed to generate an
answer without additional information.

The ST-VQA dataset consists of 23,000 images with up to three questions/answer
pairs per image. A train and test split is implemented. The training set consists of
19,000 images with 26,000 questions, while the test set consists of 3,000 images
with 4,000 questions per task.

To automatically select images from these sources, ST-VQA uses an end-to-end
single shot text retrieval architecture to choose images containing at least 2 text
instances.

To account for reasoning errors and text recognition errors, a new evalua-
tion metric, average normalized Levenshtein similarity (ANLS), is adopted by
ST-VQA as the official evaluation metric. The metric is defined as scores 1−
dL(apred , agt )/max(|apred |, |agt |) (where apred and agt denote the prediction and
ground-truth answers, respectively, and dL is the edit distance) averaged over all
questions. Additionally, all scores below the threshold of 0.5 are truncated to 0
before averaging.
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The dataset, performance evaluation scripts and an online evaluation service are
available through the ST-VQA Web portal.2

12.2.3 OCR-VQA

The OCR-VQA dataset [25] contains 207,572 images of book covers, with template-
based questions querying the title, author, edition, genre, year or other information
regarding the book. Each question has a single ground-truth answer, and the dataset
assumes that the answers to these questions can be inferred from the book cover
images.

This dataset can be explored and downloaded from the project website.3

12.3 OCR Token Representation

Optical character recognition (OCR) is a mature subfield of computer vision, aimed
at detecting and recognizing text. This task sets the starting point for a generalized
VQA system that can integrate the reading ability.

In the field ofOCR, the commonly usedmethods can be divided into two parts: text
detection and recognition. To address the problem of text detection, several methods
[11, 20, 21, 32] that are based on fully convolutional neural networks have been
proposed. Text recognition methods such as [14] address text recognition as a clas-
sification problem in a word-by-word manner. Connectionist temporal classification
(CTC) has also been widely used in scene text recognition [3, 22, 27, 31]. More
recent methods [4, 10, 23] focus on the end-to-end architecture, which mostly con-
sists of a convolutional neural network (CNN) as an encoder and a long short-term
memory (LSTM) as a decoder.

In typical TextVQA models, images are first processed by an independent OCR
model to yield OCR tokens, which are then encoded into OCR token representations.
Intuitively, to represent text in images, it is necessary to encode not only the text
characters but also the text appearance (e.g.color, font, and background) and its
spatial location in the image (e.g.words appearing on the top of a book cover are
more likely to be book titles).

After obtaining a set of N OCR tokens in an image through external OCR systems,
from the nth token (where n = 1, , N ), multiple OCR token representations can be
extracted:
FastText feature. Generated by using pretrained FastText embeddings [15], which
can produce word embeddings even for out-of-vocabulary (OOV) tokens. This word
embedding is a 300-dimensional vector that contains subword information.

2 https://rrc.cvc.uab.es/?ch=11.
3 https://ocr-vqa.github.io/.

https://rrc.cvc.uab.es/?ch=11
https://ocr-vqa.github.io/
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Faster R-CNN feature. Appearance feature obtained from the Faster R-CNN detec-
tor, extracted via RoI-Pooling on the OCR token’s bounding box, which has 2048
dimensions.
Pyramidal histogram of characters (PHOC) feature. A 604-dimensional vector
that captures the characters that are present in the token. This feature is more robust
to OCR recognition errors and can be considered a coarse character model.
Location feature. This 4-dimensional location feature is based on the OCR token’s
relative bounding box coordinates [xmin/Wim, ymin/Him, xmax/Wim, ymax/Him],
where Wim and Him denote the image width and height, respectively.

The use of rich representations for OCR tokens was first proposed by M4C [13],
which corresponded to a considerable enhancement in performance.

12.4 Simple Fusion Models

The simplest and most direct method is based on the simple pairwise fusion of two
modalities. In this section, we introduce the first simple fusionmodel named LoRRA,
which has been proposed as the baseline model for the TextVQA [29] dataset.

12.4.1 LoRRA: Look, Read, Reason & Answer

Look, read, reason & answer (LoRRA) [29] was proposed at the same time as
the TextVQA dataset to be set as a baseline. The code was originally published in
the Pythia framework and subsequently integrated into the more general mmf [28]
framework.4

At a high level, LoRRA contains three components: (i) a VQA component to
analyze and infer the answer based on the image v and question q, (ii) a reading
component that allows the model to read the text in the image, and (iii) an answering
module that obtains predictions from an answer space or points to the text read by
the reading component. The overall model is shown in Fig. 12.1. Thus, LoRRA is a
simple extension of previous VQAmodels, with an additional OCR attention branch.
Consequently, this model adds OCR tokens as a dynamic vocabulary to the answer
classifier and uses a copy mechanism to choose a single OCR token.
VQA Component The question words of question q are first embedded with a
predefined embedding function GloVe [26] and then encoded iteratively with a long
short-termmemory (LSTM [12]) recurrent network to produce a question embedding
fQ(q). For images, two kinds of representations exist for visual features: grid-based
convolutional features and/or features extracted from the bounding box proposals.
These features are referred to as f I (v), where f I is the network that extracts the
image representation. A simple attention mechanism f A is used to assign a weighted

4 https://github.com/facebookresearch/mmf.

https://github.com/facebookresearch/mmf
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Fig. 12.1 Overview of the look, read, reason & answer (LoRRA) approach. The approach looks at
the image, reads its text, analyzes the image and text content and answers, either with an answer a
from the fixed answer vocabulary or by selecting one of the OCR strings s. Dashed lines indicate
components that are not jointly trained. The answer cubes on the right with darker color correspond
to a higher attention weight. The OCR token ‘20’ has the highest attention weight in the example

average over the visual features based on f I (v) and fQ(q) as the output. The output
is combined with question embedding to calculate the VQA features fV QA(v, q).

fV QA(v, q) = fcomb( f A( f I (v), fQ(q)), fQ(q)) (12.1)

A feedforward MLP is applied to the combined embedding to predict the possi-
bility of a certain answer being correct.
Reading Component To allow a model to read text from an image, an independent
OCRmodel that is not jointly trained with the whole system is used. The assumption
is that the OCR model can read and return word tokens from an image.

In the process ofweighted attention, because the features aremultiplied byweights
and averaged, the ordering information is lost. To provide the answer module with
the ordering information of the original OCR tokens, the attention weights are con-
catenated with the final weight-averaged features. This framework allows the answer
module to identify the original attention weights for each token in order.
Answer Module With a ?xed answer space, the existing VQA models can only
predict fixed tokens, which limits their generalization to out-of-vocabulary (OOV)
words. As the text in images frequently contains words not encountered during train-
ing, it is difficult to answer text-based questions based on only a prede?ned answer
space. To ensure generalization to arbitrary text, the authors take inspiration from
pointer networks that allow for pointing toOOVwords in context. The authors extend
the answer space through the addition of a dynamic component that corresponds to
M OCR tokens. The model can thus predict probabilities (p1, . . . , pN , . . . , pN+M )
for N + M items in the answer space instead of the original N items.
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12.5 Transformer-Based Models

The transformer architecture has been widely used since it was first proposed. The
architecture exhibits a satisfactory performance across many multimodal tasks, with
no exception to TextVQA. In this section, we introduce the first model, named the
multimodalmulticopymesh (M4C) [13]. Thismodel exploits the popular transformer
architecture to fuse and jointly model multiple modalities and iteratively generate
answers, which also enable the model to generate answers with more than one word.
This model exhibits high performance on various datasets.

12.5.1 Multimodal Multicopy Mesh Model

The M4C model involves three enhancements. The first enhancement pertains to the
adoption of the transformer architecture, which allows for the homogeneous natural
fusion of differentmodalities. The second enhancement pertains to the introduction of
and emphasis onmany rich representations of OCR tokens, as described in Sect. 12.3.
These additional OCR token representations promote the exploitation of OCR token
information from several aspects. The third enhancement pertains to the use of the
iterative decoder along with a dynamic pointer network for answer decoding. The
overall model of M4C is shown in Fig. 12.2.

Fig. 12.2 Overview of the M4C model. All entities (question words, detected visual objects, and
detected OCR tokens) are projected into a common d-dimensional semantic space through domain-
specific embedding approaches, andmultiple transformer layers are applied over the list of projected
entities. Based on the transformer outputs, the answer is predicted through iterative autoregressive
decoding, where at each step, the model either selects an OCR token through the dynamic pointer
network or a word from its fixed answer vocabulary
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Instead of custom pairwise fusion mechanisms between a pair of two modalities,
the multimodal multicopy mesh (M4C) model naturally fuses different modalities
homogeneously by using a multimodal transformer architecture.

Moreover, M4C does not simply view TextVQA as a simple classification prob-
lem, which is restricted to one prediction step. Instead, the model enables iterative
answer decoding with a dynamic pointer network owing to the natural decoding abil-
ity of the transformer architecture. The dynamic pointer network is implemented by
calculating the dot product value (bilinear interaction) of the decoding output and
output representation of each OCR token.

The question words are embedded into the corresponding sequence of d-
dimensional feature vectors {xquesk } (where k = 1, , K ) using a pretrained BERT
model. During training, the BERT parameters are fine-tuned using the question
answering loss.

For visual objects, the set of M objects is obtained by a pretrained Faster R-
CNN detector. The appearance feature x f r

m is extracted using the detector’s output
from the mth object. The location feature xbm is defined as the relative bounding box
coordinates of the mth object: [xmin/Wim, ymin/Him, xmax/Wim, ymax/Him], where
Wim and Him are the image width and height, respectively.

For OCR tokens, M4C uses the rich representations, as described in Sect. 12.3.
All the entities (question words, visual objects, and OCR tokens) are embedded

into the d-dimensional joint embedding space. Subsequently, a stack of L transformer
layers is applied over these entities. Through the multihead self-attentionmechanism
in transformers, each entity can freely attend to all other entities, regardless ofwhether
or not they pertain to the same entity.

12.6 Graph-Based Models

In this section,we introduce a graph-basedmodel named structuredmultimodal atten-
tions for TextVQA (SMA) [7], which uses the question-conditioned graph attention
mechanism to enhance the textual-visual reasoning ability.

12.6.1 Structured Multimodal Attentions for TextVQA

The SMA first uses a structural graph representation to encode the object-object,
object-text and text-text relationships appearing in the image and subsequently
designs a multimodal graph attention network to perform the analysis. Finally, out-
puts from the abovementionedmodules are processed using a global-local attentional
answering module to produce an answer by iteratively splicing together tokens from
both the OCR and general vocabulary.

At a high level, the SMA is composed of three modules: (1) a question self-
attention module that decomposes questions into six subcomponents that have
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Fig. 12.3 Overview of the question-conditioned graph attention module. This module builds a
heterogeneous graphwhosemixed nodes are shown in different colors. Guiding signals help produce
attentionweights, which are fusedwith node representations to obtain question-conditioned features

different roles in the constructed object-text graph, (2) a question-conditioned graph
attention module that reasons over the graph under the guidance of the question
representations and infers the importance of different nodes as well as their relation-
ships, and (3) a global-local attentional answering module that can generate answers
with multiple words stitched together. The answering module of SMA is based on
the iterative answer prediction mechanism in M4C with a modification of the first
step input.

The key component of SMA, namely, the question conditioned graph attention
module, is illustrated in Fig. 12.3.

Formally, given a question Q with T words q = {qt }Tt=1, {xbertt }Tt=1 is obtained
by using pretrained BERT [6]. The decomposed question features (so, soo, sot , st ,
st t , sto) are considered question representations decomposed w.r.t object nodes (o),
object-object (oo) edges, object-text (ot) edges, text nodes (t), text-text (tt) edges
and text-object (to) edges.
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Chapter 13
Visual Question Generation

Abstract To explore how questions regarding images are posed and abstract the
events caused by objects in the image, the visual question generation (VQG) task
has been established. In this chapter, we classify VQGmethods according to whether
their objective is data augmentation or visual understanding.

13.1 Introduction

Natural questions are not focused on what can be seen but rather focused on what
can be inferred given the visible objects. To move beyond the literal description
of image content and understand the abstract concepts of images, researchers have
introduced the novel task of visual question generation (VQG) [11], in which given
an image, the system must ask a natural and engaging question. The VQG task can
not only be used for data augmentation in the VQA task but also enable the machine
to better understand the images. In this chapter, we describe methods for the VQG
task. According to the abovementioned concept, we divide the methods based on the
purpose of the VQG task: data augmentation or visual understanding. VQGmethods
aimed at data augmentation are divided into three categories: generating questions
from answers (Sect. 13.2.1), generating questions from images (Sect. 13.2.2), and
adversarial learning (Sect. 13.2.3).

13.2 VQG as Data Augmentation

The key purpose of VQG as data augmentation is to support the dataset construction
for VQA. The existing approaches typically treat the VQG task as a reversed visual
question answer (VQA) task, requiring an exhaustive match among all the image
regions and the given answer.
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13.2.1 Generating Questions from Answers

Motivation

To enhance the robustness of VQA models, researchers have proposed an answer-
centric approach to focus on only the relevant image regions. This method can
promptly find the core answer area in an image and generate questions that can
be addressed by the given answer. This framework ensures that all generated ques-
tions can be accurately answered.

Methods

Liu et al. [9] proposed an iVQAmodel that can gradually adjust its focus of attention
guided by both a partially generated question and the answer. This framework is a
deep neural network with three subnets: an image encoder (the ResNet-152 model),
an answer encoder (LSTM), and a question decoder (LSTM). The two encoders
provide inputs for the decoder to generate a sentence that fits the conditioned answer
and image content. A multimodal attention module is also a key component that
dynamically directs image attention given the outputs of both encoders and a partial
question encoder.

Shah et al. [18] proposed a question generation module similar to a conditional
image captioning model. The question generation module consists of two linear
encoders that transform attended image features obtained from the VQA model
and distribution over the answer space to lower dimensional feature vectors. These
feature vectors are summed with additive noise and passed through an LSTM that is
trained to reconstruct the original question and optimized byminimizing the negative
log likelihood with teacher forcing. The module does not pass the one-hot vector
representing the answer obtained or an embedding of the answer obtained to the
question generation module but rather the predicted distribution over answers. This
framework enables the question generation module to learn to map the model’s
confidence over answers to the generated question.

Liu et al. [10] proposed a variational iVQA model that can generate diverse,
grammatically correct and content correlated questions that match a given answer.
Specifically, the question encoder encodes the image and questions the mean and
variance of a Gaussian distribution. Subsequently, the decoder takes an image feature
vector, an answer encoding, and a noise vector as the inputs and generates visual
questions. The noise vector is sampled from N (µ,s2•1) and N (0, 1) during training
and sampling, respectively.

Xu et al. [21] proposed an approach named the radial graph convolutional network
(Radial-GCN), which focuses only on the image regions related to the answers. The
Radial-GCNmethod can promptly find the core answer area in an image bymatching
the latent answer with the semantic labels learned from all image regions. Subse-
quently, a novel sparse graph of the radial structure is naturally built to capture the
associations between the core node (i.e., answer area) and peripheral nodes (i.e.,
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other areas). Graphic attention is subsequently adopted to steer the convolutional
propagation toward potentially more relevant nodes for final question generation.

Performance and Limitations

Modules to generate questions from answers only generate corresponding questions
based on answers, ignore global features, and cannot generate more complex and
detailed questions or questions based on more features in images, which decreases
the diversity of questions and is not suitable in cases involving small datasets.

13.2.2 Generating Questions from Images

Motivation

In contrast to generating questions from answers, modules aimed at generating ques-
tions from images can generate varied types of informative questions. This method
uses the answers to annotate the images and generates questions from the annotations.

Methods

Kafle et al. [6] proposed two methods for generating QA pairs regarding images:
(1) a template-based generation method that uses image annotations and (2) a long
short-termmemory (LSTM)-based languagemodel. The template data augmentation
method uses semantic segmentation annotations to generate new QA pairs. The
model synthesizes four kinds of questions from the annotations: yes/no, counting,
object recognition, and scene, activity and sport recognition. One key issue with
the template-based augmentation method is that the questions are rigid and may
not closely resemble the way questions are typically posed in the VQA dataset. To
address this aspect, a stacked LSTM that generates questions regarding images is
trained. The network consists of two LSTM layers, each with 1,000 hidden units
followed by two fully connected layers, with 7,000 units each, corresponding to the
size of the vocabulary constructed by tokenizing training questions into individual
words. The first fully connected layer has a ReLU activation function, while the
second layer has a 7,000-way softmax. The output question is produced one word at
a time until the end-of question token is reached.

Ray et al. [14] proposed a question generator that synthesizes questions with sim-
ilar intent. Specifically, the question generator first concatenates the deep features of
an image and concatenates the QA pair to an embedding. Image features are obtained
using a ResNet152 framework. QA features are obtained using an embedding layer
for each word in the question, which are fed into a 1-layer question-encoder LSTM.
The last output of the question-encoder LSTM is concatenated with the deep image
features. These concatenated features are fed to another 1-layer LSTM to generate
a similar-intent question. The output LSTM is trained using teacher forcing and a
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cross entropy loss. The top 5 probability-weighted random sampling methods are
used in the evaluation process.

Krishna et al. [7] proposed a model that maximizes the mutual information
between the image, expected answer and generated question. In the training phase
of this model, the image and answer are embedded into a latent space z and recon-
structed, thereby maximizing the mutual information with the image and answer.
During inference, given an image input and an answer category (e.g., attribute), the
model encodes both entities into a latent representation. The model obtains samples
from the latent representation with noise to generate questions that are relevant to the
image andwhose answers result in the given answer category. This framework allows
the model to generate goal-driven questions for any image, focused on extracting its
objects and attributes, among other aspects.

Sarrouti et al. [16] introduced an approach to generating visual questions regarding
radiology images, known as VQGR, i.e., an algorithm that can ask a question when
shown an image. VQGR first generates new training data from the existing examples
based on contextual word embeddings and image augmentation techniques. Subse-
quently, the framework uses the variational autoencoder model to encode images
into a latent space and decode natural language questions.

Alwatter et al. [1] proposed a deep multilevel attention model to address inverse
visual question answering. This model generates regional visual and semantic fea-
tures at the object level and enhances them with the answer cue by using attention
mechanisms. Two levels of multiple attention are employed in the model, including
dual attention in the partial question encoding step and dynamic attention in the next
question word generation step.

Performance and Limitations

Although the addition of image features to the task of generating questions from
images allows for the generation of questions containing richer image information,
the main questions are still generated around the answer attention regions with a
limited influence of the global (image-wide) features because the annotations are
generated based on answers.

13.2.3 Adversarial Learning

Motivation

Question answering (QA) and question generation (QG) have intrinsic connections,
and these two tasks can mutually enhance each other. The QAmodel judges whether
the question generated by a QG model is relevant to the answer. In contrast, the QG
model provides the probability of generating a question given the answer, which is
useful evidence that facilitates QA. Adversarial learning regards QA and QG as dual
tasks. The training framework devises an agent for VQG and VQA with pretrained
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models, and the learning tasks of the two agents form a closed loop, the objectives of
which are simultaneously optimized to guide each other via a reinforcement learning
process.

Methods

Xu et al. [20] proposed the dual learning framework of a model for VQG. The
two agents of VQG and VQA are initially equipped with pretraining models. The
learning tasks of the two agents form a closed loop, the objectives of which are
simultaneously optimized to guide each other via a reinforcement learning process
with specific reward signals as feedback to each agent.

Li et al. [8] proposed an end-to-end unified model, the invertible question answer-
ing network (iQAN), which consists of two components for VQA and VQG. The
VQA and VQG components are formulated as inverse processes by introducing a
novel parameter sharing scheme and the duality regularizer. Input questions and
answers are encoded into fixed-length features by using an RNN and a lookup table,
respectively. Predicted features are obtained using the attention and MUTAN fusion
modules. The predicted features are used to obtain the output (by LSTM and a linear
classifier for questions and answers, respectively).

Zhang et al. [22] proposed a deep reinforcement learning framework based on
three new intermediate rewards, namely, goal-achievement, progressiveness and
informativeness, which encourage the generation of succinct questions. A target
object is assigned to Oracle, but it is unknown to the VQG and guesser. Subse-
quently, the VQG generates a series of questions, which are answered by Oracle.
During training, Oracle answers the question based on all the objects in each round
and measures the informativeness reward. Moreover, the guesser generates a prob-
ability distribution to measure the progressiveness reward. Finally, the number of
rounds are considered, and the goal-achievement reward is set based on the success
status. These intermediate rewards are adopted for optimizing the VQG agent by the
reinforcement.

Fan et al. [3] proposed two discriminators, specifically, natural and human-written
discriminators, to enhance the training. The reinforcement learning framework is
used to incorporate scores from the two discriminators as the reward to guide the
training of the question generator.

Guo et al. [4] proposed a new framework for video question generation, which
introduces an attention mechanism to process the inference of the dialog history. A
selection mechanism is used to select a question from the candidate questions gen-
erated by each round of dialog history. A recent video question answering model is
used to predict the answer to the generated question, and the answer quality is used
as the reward to fine-tune the model based on a reinforced learning mechanism.

Performance and Limitations

Adversarial learning is performed by continuously feeding new types of adversarial
samples for training, thereby continuously enhancing themodel robustness. To ensure
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effectiveness, the method requires the use of high-intensity adversarial samples and
a network architecture with sufficient expressiveness. However, imperfections in
the training phase of deep neural networks render these frameworks vulnerable to
adversarial samples, such as inputs crafted by adversaries with the intent of causing
deep neural networks to misclassify.

13.3 VQG as Visual Understanding

In contrast to VQG as data augmentation, VQG as visual understanding no longer
relies on the question’s answer but generates higher cognitive level questions regard-
ing what can be inferred rather than what can be seen from an image on the basis of
scene understanding and prior information regarding the objects.

Motivation

The aim of VQG as visual understanding is to generate questions that have a tightly
focused purpose—questions with the aim of learning something specific regarding
the image. VQG as visual understanding uses image features as the input to generate
questions that have open-ended answers. Since the use of image features alone can
lead to excessive attention, image captioning is often introduced to achieve effective
alignment between visual and textual representations.

Methods

Jain et al. [5] proposed a creative algorithm for visual question generation that com-
bines the advantages of variational autoencoders with long short-term memory net-
works. When a variational autoencoder is used, the choice of appropriate LSTM
models for the encoder (Q-distribution) and decoder (P-distribution) is of crucial
importance. The Q-distribution encodes a given sentence and a given image signal
into a latent representation. The V-dimensional 1-hot encoding of the vocabulary
is linearly embedded. Embedding and F-dimensional image features are the LSTM
inputs, transformed to fit the H-dimensional hidden space. The final hidden represen-
tation is transformed via two linear mappings to estimate the mean and log-variance.
The P-distribution is used to reconstruct a given question, the image representation,
and an M-variate random sample. To obtain a prediction, the H-dimensional latent
space is transformed into V-dimensional logits.

Zhang et al. [23] proposed a model that images and captions generated by a
dense caption model as the input, samples the most probable question types, and
generates the questions in sequence. First, DenseCap is used to construct dense
captions that provide an almost complete coverage of information for questions.
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Subsequently, these captions are fed into the question-type selector to sample the
most likely question types. The question types, dense captions, and visual features
generated by VGG-16 are used as the input, and the question generator decodes this
information to formulate questions.

Rothe et al. [15] proposed a probabilistic generative model aimed at predicting the
questions that peoplemay ormay not ask. Parameters of themodel are fitted to predict
the frequency with which humans ask particular questions in a particular context in
the data set by [asking and evaluating natural language questions]. Formally, fitting
the generative model is a problem of density estimation in the space of question-like
programs, where the space is defined by the grammar.

Patro et al. [12] proposed the use of a multimodal differential network to pro-
duce natural and engaging questions. This model contains three main modules: (a) a
representation module that extracts multimodal features, (b) a mixture module that
fuses the multimodal representation and (c) a decoder that generates questions using
an LSTM-based language model.

Fan et al. [2] proposed a question type-driven framework to produce multiple
questions for a given image with different foci. In this framework, each question
is constructed following the guidance of a sampled question type in a sequence-to-
sequence fashion. To diversify the generated questions, a novel conditional varia-
tional autoencoder is introduced to generate multiple questions with a specific ques-
tion type. Moreover, a strategy is formulated to conduct question type distribution
learning for each image to select the final questions.

Uehara et al. [19] proposed a method for generating questions regarding unknown
objects in an image to obtain information regarding classes that have not been learned.
First, objects in the input image are detected using the object region proposal mod-
ule. Next, the unknown object classification and target selection module identifies
whether each object is unknown and selects an object region to be the target of the
question. Finally, the visual question generation module generates a question using
features extracted from the whole image and target region.

Patro et al. [13] proposed a principled deep Bayesian learning framework that
combines multiple visual and language cues to produce natural questions. The model
has three experts, namely, place experts, caption experts and tag experts, to provide
information (advice) related to different cues. Subsequently, a moderator is used that
weighs this advice and passes the resultant embedding to the decoder to generate a
natural question.

Scialom et al. [17] proposed BERT-gen, an architecture for text generation based
on BERT that can leverage either mono- or multimodal representations. In this work,
textual and visual inputs are considered sequences. Captions are encoded via BERT
embeddings, while visual embeddings are obtained via a linear layer, used to project
image representations to the embedding layer dimensions.
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Performance and Limitations

The limitation of this approach is that it has limited effectiveness despite the introduc-
tion of image caption tasks for improvement. When generating problems in complex
scenarios, challenges associatedwith generating a single type of question andmissing
detailed questions are encountered.
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Chapter 14
Visual Dialogue

Abstract Visual dialogue is an important and complicated vision language task that
processes the visual features of images and textual features of captions, questions
and histories to answer questions. To accomplish this task, the machine must exhibit
the abilities of perception, multimodal reasoning, relationship mining and visual
coreference resolution. In this chapter, we briefly describe the challenges associated
with this method and introduce the two benchmarks. Subsequently, a comprehen-
sive review of the associated methods is presented, which are classified into four
categories.

14.1 Introduction

Visual dialogue (VD) is a cross-modal task lying at the intersection between computer
vision and natural language processing.Given the capacities of reasoning, grounding,
recognition and translation, a visual dialog agent is expected to answer questions
based on an image, caption and history dialog. Hence, a visual dialog task is related to
visual question answering (adding caption and history as the input), visual grounding
(converting the visual information located in bounding boxes into human language)
and image captioning (generating a description according to the history andquestion).

As a classic problem in the field of visual language, visual dialogue must simul-
taneously process inputs from both vision and language modalities. The processing
of multimodal inputs can be divided into two parts: perception and reasoning. Per-
ception emphasizes single-modal feature extraction, while reasoning highlights the
further interaction and association of multimodal features to obtain a multimodal
joint feature representation. Specifically, visual dialogue requires the model to not
only understand the intent of the question but also extract the image content cor-
responding to the question and abstract the historical information related to this
question Therefore, the complicated reasoning associated with multimodal features
is a considerable challenge for visual dialogue. In addition, in visual dialogue, sev-
eral pronouns refer to something or someone that appeared previously, which is easy
for people but difficult for machines to understand. In particular, the machine must
be able to not only resolve the pronouns but also further associate the pronouns
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with the target objects in the visual scene, which is the visual coreference resolution
challenge for visual dialogue. Moreover, visual dialogue encounters a dataset bias
problem, mainly a language bias problem. Specifically, in the training phase, the
visual dialogue model may rely excessively on the correlation between the question
and answer and remember the matching pattern between the question and answer,
thereby ignoring the exploration of the image content. Therefore, the performance
and robustness are considerably restricted. Solving the language bias and enhancing
the versatility and robustness of the model are thus key challenges for the visual
dialogue task.

To solve the above mentioned problems, a series of methods have been pro-
posed since the introduction of the visual dialogue task. For vision language reason-
ing, several attention mechanism-based methods (Sect. 14.3) have been proposed to
focus on question-related information, and graph-based methods (Sect. 14.5) have
been proposed to mine the relationships among different kinds of features. In addi-
tion, a number of visual coreference resolutions (Sect. 14.4) have been proposed
to solve the coreference problem. Furthermore, several researchers have introduced
pretrained models (Sect. 14.6), which learn visual-semantic knowledge from other
vision-language datasets or other tasks to break the dataset bias problem. The exper-
iments are mainly conducted on two benchmarks, i.e., VisDial and GuessWhat?!

In the following section, we describe the datasets and comprehensively review
the four categories of methods.

14.2 Datasets

Aseries of datasets has been established for the task of visual dialogue. In this section,
we describe the existing two mainstream visual dialogue datasets, along with their
construction mechanism and their main characteristics (Table14.1).

VisDial

VisDial [1], one of the benchmarks for visual dialogue, is available in two versions,
v0.9 and v1.0. VisDial-v0.9 is collected through a game, the context of which is
based on the images and captions collected from the MSCOCO dataset [7]. For a
conversation regarding an image, two annotators implement the annotation through

Table 14.1 Major datasets for visual dialog and their main characteristics

Dataset Number of
images

Number of QA
pairs

Number of
dialogues

Source of images

VisDial [1] 133,351 1,261,510 133,351 MSCOCO

GuessWhat?! [2] 66,537 821,889 160,745 MSCOCO and
Flickr
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an interactive game. In the game, one annotator plays the role of the questioner,
and the other annotator plays the role of the answerer. The questioner can only see
the caption and the conversation history, not the image, while the answerer can see
the caption, conversation history and image. To understand the image content, the
questioner asks successive questions regarding the invisible image. The respondent
provides an answer based on the questioner’s questions, combining images and the
conversation history. Through this data collection process, each image is matched
with 10 rounds of question and answer conversations. VisDial-v0.9 is divided into
two subsets: a training set and a validation set. The collection process of VisDial-v1.0
is the same as that of VisDial-v0.9. VisDial-v1.0 is divided into three subsets: the
training set, validation set, and test set. The training set of VisDial-v1.0 is composed
of all the data from VisDial-v0.9, and the images and dialogues are obtained based
on the MSCOCO dataset. The validation and test sets for VisDial-v1.0 are based on
Flickr images [16]. The validation set of VisDial-v1.0 contains 2,000 dialogues, and
the test set contains 8,000 dialogues.

GuessWhat?!

GuessWhat?! [2] is a large-scale dataset consisting of 150K human-played games
with a total of 800K visual question-answer pairs on 66K images. This dataset
pertains to a cooperative two-player game in which both players see the picture of a
rich visual scene with several objects. One player–the oracle–is randomly assigned
an object (which could be a person) in the scene. This object is not known by the
other player–the questioner–whose goal is to locate the hidden object. To this end,
the questioner can ask a series of yes-no questions that are answered by the oracle.

14.3 Attention Mechanism

A general neural network recognizes objects by training a neural network with a
large amount of data. For example, a neural network that has been trained over a
large number of handwritten digits can recognize the value represented by a new
handwritten digit. However, a neural network trained in this way is actually equiva-
lent to processing the full features of a picture. Although the neural network learns
the features of the image for classification, these features are not different in the
“eyes” of the neural network, and the neural network does not focus excessively on
a particular “region”. In general, when humans look at a picture, they focus their
attention on a region of the picture. In addition to grasping a picture as a whole,
humans focus on the local information of the picture, such as the location of a local
table and types of goods, while other information receives less attention. The basic
idea of the attention mechanism in computer vision is to ensure that computers learn
to ignore irrelevant information and focus on the key information. In the visual dia-
logue task, the approach based on the attention mechanism accurately captures the
subject information of questions and images by weighting the attention to the ques-
tion or image and enhancing the interaction between vision and language. Based on
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the understanding of the proposed problem and the historical dialogue, importance
weights are assigned to regions of the image to identify the most relevant region to
the problem. In this section, we introduce several typical approaches based on the
attention mechanism.

14.3.1 Hierarchical Recurrent Encoder with Attention
(HREA) and Memory Network (MN)

Das et al. [1] introduced two baseline models with attention mechanism, i.e., the
hierarchical recurrent encoder with attention and the memory network. The HREA
extracts the features of the conversation history after extracting the features of the
image and question and subsequently performs the attention-weighted calculation
for each word in the conversation history. The MN performs the attention-weighted
calculation for each conversation history based on the features of the image and
question.

Hierarchical Recurrent Encoder with Attention (HREA). The HREA consid-
ers only the last question-answer pair in the past as the conversation history, and
after extracting the features of images and questions, computes the attention weights
for each word in the conversation history to extract the features of the conversation
history. As shown in Fig. 14.1, the HREA involves a dialog-RNN sitting atop a recur-
rent block (Rt ). The recurrent block Rt embeds the question and image jointly via
an LSTM, embeds each round of the history Ht , and passes a concatenation of these
entities to the dialog-RNN above it. The dialog-RNN produces both an encoding for
this round (Et in Fig. 14.1) and a dialog context to pass onto the next round.Moreover,
there exists an attention-over-history mechanism that allows the recurrent block Rt

to choose and attend to the round of the history relevant to the current question. This
attention mechanism consists of a softmax over previous rounds (0, 1, . . . , t − 1)
computed from the history and question+image encoding.

Memory Network (MN). The MN computes attention weights for each con-
versation history based on the features of the image and the question, stores each
question-answer pair as a “fact” and answers the current question based on the facts.

However, all of these methods directly utilize the sentence feature for the dialog
history and question while using the flattened feature for the image, considering only
the overall information of the sentence and image at a high level and ignoring the
detailed information of words in the sentence and regions in the image at a low level.

14.3.2 History-Conditioned Image Attentive Encoder
(HCIAE)

Motivation. A common approach is to use an encoder architecture with an attention
mechanism that implicitly performs coreference resolution by identifying the portion
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Fig. 14.1 Architecture of the HRE encoder with attention

Fig. 14.2 Structure of the history-conditioned image attentive encoder

of the dialog history that can help in answering the current questionwhile considering
a holistic representation for the image. Intuitively, one would expect that the answer
is localized to regions in the image and is consistent with the attended history. With
this motivation, Lu et al. [8] proposed the HCIAE, as shown in Fig. 14.2.
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Method. The HCIAE uses the spatial feature of the image. Specifically, this frame-
work considers the sequential dependency of the dialog and applies an attention
mechanism to select the relevant information of the dialog history to supplement
the information of the question. Subsequently, the method uses another attention
mechanism to select relevant spatial regions of the image to capture the targeted
visual information for question answering. Specifically, the HCIAE uses the spa-
tial image features V ∈ Rd×k from a convolution layer of a CNN. q t is encoded
with an LSTM to obtain a vector mq

t ∈ Rd . Simultaneously, each previous round of
history (H0, . . . , Ht−1) is encoded separately with another LSTM as Mh

t ∈ Rd×t .
Conditioned on question embedding, the model attends to the history. The attended
representation of the history and question embedding are concatenated and used as
input to attend to the image:

zht = wT
a tanh(W hMh

t + (Wqm
q
t )�

T ) (14.1)

αh
t = softmax(zht ) (14.2)

where� ∈ Rt is a vector with all elements set as 1.W h ,Wq ∈ Rt×d andwa ∈ Rk are
parameters to be learned. α ∈ Rk is the attention weight over history. The attended
history feature m̂h

t is a convex combination of columns ofM t , weighted appropriately
by the elements of αh

t . Subsequently, we concatenate m
q
t and m̂

h
t as the query vector

and obtain the attended image feature v̂t in a similar manner. All three components
are used to obtain the final embedding et :

et = tanh(W e[mq
t , m̂

h
t , v̂t ]) (14.3)

where W e ∈ Rd×3d is the weight parameter, and [, ] represents the concatenation
operation.

Limitation. The history-conditioned image attentive encoder only considers the
detailed region information of the image and uses the overall information of the
sentence for the dialog history and question. The framework ignores the fact that
words in the sentence also contain detailed information regarding the dialog history
and question. In addition, this approach directly uses the spatial feature of the image
while ignoring the region-to-region relation in the image.

14.3.3 Sequential Co-Attention Generative Model (CoAtt)

Motivation. The existing visual dialog systems oversimplify the training objectives
and focus only on measuring the word-level correctness. Moreover, the produced
responses tend to be generic and repetitive. For example, a simple response of ‘yes’,
‘no’, or ‘I don’t know’ can safely answer a large number of questions and lead to
a high MLE objective value. The generation of more comprehensive answers and
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Fig. 14.3 Adversarial learning framework with a sequential co-attention generative model. The
model is composed of two components: a sequential co-attention generator that accepts the image,
question and dialog tuples as the input and uses the co-attention encoder to jointly analyze them;
and a discriminator that identifies whether each answer is generated by a human or the generative
model by considering the attention weights. The output from the discriminator is used as a reward
to push the generator to generate responses that are indistinguishable from those that a humanmight
generate

a deeper engagement of the agent in the dialog requires a more engaged training
process. A satisfactory dialog generation model should generate responses indistin-
guishable from those produced by humans. In contrast to VQA, which has only one
round of questioning, visual dialogues have multiple rounds of conversation, and
the conversation history needs to be accessed and understood. In this context, it is
desirable to establish an encoder that can combine multiple sources of information.
A naive approach is to separately represent the input images, histories, and questions
and connect them to learn a joint representation. However, it is more powerful to
ensure that the model selectively focuses on regions of the image and segments of
the conversation history based on the question. Considering these aspects, Wu et al.
[15] proposed an adversarial learning-based approach to generate visual dialog.

Method. As shown in Fig. 14.3, the traditional dialog generator is used; i.e., the
image, question anddialoghistory are encodedusingCNNandLSTM, and aweight is
assigned to each local representation by using the co-attention model. Subsequently,
the local feature is summed with the weights to obtain an attended feature, and the
feature is decoded using the LSTM to obtain a corresponding answer. The key point
in this model is that a discriminator is added to the back of the model to distinguish
whether the input answer is human- or machine-generated. The input is not only the
corresponding question and answer but also the output of the attention to ensure that
the discriminator can analyze whether the question and answer are reasonable under
certain circumstances. The probabilities generated by the discriminator are used as
a reward for the generator to update the parameters of the generator.

The attention model in the generator is a sequential co-attention model, as shown
in Fig. 14.4. Specifically, the framework refers to an encoder-decoder style generative
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Fig. 14.4 Sequential co-attention encoder

model that has been widely used in sequence generation problems. The model first
uses a pretrained CNN [13] to extract the spatial image features V = [v1, . . . , vN ]
from the convolutional layer, where N is the number of image regions. The question
features are Q = [q1, . . . , qL ], where ql = LST M(wl, ql−1), which is the hidden
state of an LSTM at step l given the input word wl of the question. L is the length
of the question. Because the history H is composed of a sequence of utterances,
the model extracts each utterance feature separately to identify the dialog history
features; i.e., U = [u0, . . . , uT ], where T is the number of rounds of the utterance
(QA-pairs). Each u is the last hidden state of an LSTM, which accepts the utterance
word sequences as the input. Given the encoded image, dialog history and question
features V ,U and Q, the proposed model uses a co-attention mechanism to generate
attention weights for each feature type using the other two as the guidance in a
sequential style. Each co-attention operation is denoted as x̃ = CoAtten(X, g1, g2),
which can be expressed as follows:

Hi = tanh(W x xi + W g1g1 + W g2g2) (14.4)

αi = softmax(W T Hi ), i = 1, . . . , M, (14.5)

x̃ = ∑M
i=1αi xi (14.6)

where X is the input feature sequence (i.e., V ,U or Q), and g1, g2 ∈ R
d represent the

guidance as the outputs of previous attention modules. d is the feature dimension.
W x , W g1 , W g2 ∈ R

h×d and W ∈ R
h are learnable parameters. h denotes the size

of the hidden layers of the attention module. M is the input sequence length that
corresponds to N , L and T for different feature inputs.

As shown in Fig. 14.4, in the proposed process, the initial question feature is used
to attend to the image.Theweighted image features and initial question representation
are combined to attend to the utterances in the dialog history to produce the attended
dialog history (ũ). The attended dialog history and weighted image region features
are jointly used to guide the question attention (q̃). Finally, the image attention (ṽ)
is implemented, guided by the attended question and dialog history, to complete the
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circle. All three co-attended features are concatenated and embedded to the final
feature F :

F = tanh(W eg[ṽ; ũ; q̃]) (14.7)

where [;] represents a concatenation operator. Finally, this vector representation is
fed to an LSTM to compute the probability of generating each token in the target
using a softmax function, which forms the response Â. The generation process is
represented as π( Â | V,U, Q).

Limitation. Although the proposed sequential co-attention model leverages co-
attentionmechanisms to capture cross-modal correlations, its reasoning ability is lim-
ited. The model typically concatenates the multimodal features and directly projects
the concatenated feature into the answer feature space by a neural network. The rea-
soning process does not fully utilize the rich relational information in this task due
to the monolithic vector representations of dialog. Moreover, the associated feedfor-
ward network fails to deeply and iteratively mine and reason the information from
different dialog entities over the inherent dialog structures.

14.3.4 Synergistic Network

Motivation. Classical visual dialog systems integrate the image, question, andhistory
to search for or generate the best matched answer, and thus, this approach ignores the
role of the answer. Considering this aspect, Guo et al. [3] proposed a novel image-
question-answer synergistic network to value the role of the answer for precise visual
dialog.

Method. The synergistic network shown in Fig. 14.5 extends the traditional one-
stage solution to a two-stage solution. In the first stage, known as the primary stage,
representative vectors of the image, dialog history, and initial question are learned.

Fig. 14.5 Architecture of the synergistic network. All candidate answers are scored in the primary
stage, and certain selected answers are rescored in the synergistic stage
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Fig. 14.6 Primary stage of synergistic network. The score of each answer is the associated proba-
bility of the word sequence

To this end, objects and their features are detected in the input image using Faster-
RCNN. These features are encoded using a convolutional neural network. As the
question and dialog history contain text data, these entities are encoded using the
LSTM. All the candidate answers that are generated in the primary stage are scored
based on their relevance to the image and question pair. In the second stage, the
synergistic stage is dubbed, and the answers in synergy with the image and question
are ranked based on their probability of correctness.

An encoder-decoder solution is adopted in the primary stage, as shown inFig. 14.6.
The encoder performs two main tasks: dereferencing in multiple turn conversations
and locating the objects in the imagementioned in the current question. The attention
mechanism is commonly used to perform tasks. Instead of linear concatenation,
this framework chooses multimodal factorized bilinear pooling (MFB) [17], as this
framework can overcome the difference between the distributions of the two features
(two LSTMs to encode the question and history; LSTMs for the text feature; and
CNNs for the image feature). In the MFB, the fusion of two features, X and Y,∈ Rd

is calculated as follows:

z = MFB(X,Y ) =
k∑

i=1

(U�
i X ◦ V�

i Y ) (14.8)

whereU andV ∈ Rd×l×k are the parameters to be learned, k is the number of factors,
l is the hidden size, and ◦ is the Hadamard product (elementwise multiplication).
However, Y sometimes represents multiple channel inputs, e.g, detected objects or
history in this model, and thus, the formula can be expressed as follows:

z = MFB(X,Y ) =
k∑

i=1

((U�
i X · �

�) ◦ (V�
i Y )) (14.9)
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where � ∈ Rφ is the vector with all elements equal to one, and φ is the channel
number of Y .

Limitation. The two-stage method is more time intensive than the one-stage method.

14.4 Visual Coreference Resolution

In natural language, people often use pronouns and abbreviations to refer to the same
word to avoid repetition of words. Pronouns lead to a lack of clarity and incomplete
structure and limit the understanding of natural language by machines. Due to the
presence of references, the respondent needs to not only disambiguate the refer-
ence but also associate the reference with the target objects in the visual scene to
accurately understand the questioner’s intent and answer. Therefore, visual pronoun
disambiguation is proposed for machines to realize visual dialogues and complex
visual reasoning. This process of visual reference resolution is key to accurately
localize attention in the presence of ambiguous expressions and is thus of signifi-
cance in extending VQA approaches to the visual dialogue task. To solve the visual
reference resolution problem, many approaches have been proposed in recent years.

Methods

AMEM Seo et al. [12] proposed a visual dialogue model with attention memory-
based reference resolution. This framework uses amemory network tomemorize and
store eachvisual attention computed from the historical question and answer pairs and
weighs the stored visual attention according to the current question to perform visual
referential disambiguation at the sentence level. The framework retrieves the previous
visual attention maps by applying soft attention over all the memory dictionaries and
concatenating it with the current visual attention.

CorefNMN Kottur et al. [6] proposed a neural module network architecture for
visual dialog. CorefNMN combines symbolic computation and neural networks to
decompose the visual inference process into several basic operations and stores the
entities that appear in the conversation history through a referent pool. When a
referent is encountered, CorefNMN correlates the referent with the target visual
object through the querymodule, thereby achieving visual referential disambiguation
at the word level.

RvA Niu et al. [9] proposed the recursive visual attention approach, which adopts
a recursive strategy. Specifically, the approach first determines whether the current
question is clear before answering it. If the question is unclear, the question is back-
tracked to the question that best matches the topic of the current question, and the
process is recursively repeated until the question is clear and the recursion is termi-
nated. Through the process of recursive backtracking, the RvA approach explicitly
implements visual denotational disambiguation at the word level.
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DANDAN [5] consists of two kinds of attentionmodules, REFER and FIND. Specif-
ically, the REFER module learns latent relationships between a given question and
a dialog history by employing a multihead attention mechanism. The FIND module
considers the image features and reference-aware representations (i.e., output of the
REFER module) as the input and performs visual grounding via a bottom-up atten-
tion mechanism.

Limitation

AMEM and CorefNMN use only word-level or sentence-level representations
and encounter limitations in identifying the semantic intent of the question. Both
approaches and RvA also involve limitations in that they store all previous visual
attention, while studies on the humanmemory system show that visual sensorymem-
ory, due to its rapid decay property, does not store all previous visual attention.

14.5 Graph-Based Methods

With the advancement of the extant research, a series of methods have been devel-
oped that are not limited to learning entity representations but can also mine the
relationships among entities. Since graphs have the natural character of representing
entities and their relationships, there are several methods for visual dialogue that
employ graph networks to represent the feature embeddings of images and dialogues
and the relations among them. According to the categories of the entities contained
in the graph network, the graph structure utilized by these methods can be divided
into two types: single-modality and cross-modality graph structures.

14.5.1 Scene Graph for Visual Representations

Motivation

Visual dialogue involvesmultiple questions that cover a broad range of visual content
that can be related to objects, relationships or semantics. Jiang et al. [4] indicated
that the existing models simply extract visual features as monolithic representations
and thus have a limited expressive ability when addressing variant questions. There-
fore, the authors attempted to adaptively capture question-relevant fine-grained visual
information by employing scene graphs to abstract object embeddings and their rela-
tionships.

Method

Since it is necessary to consider the objects in an image and their relationships when
addressing complex questions, DualVD approach simultaneously uses the object
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Fig. 14.7 Overview of the DualVD model for visual dialogue. The model contains two parts: the
visual module and semantic module, where “G” represents the gate operation given a question and
history dialogue. The visual module is constructed using a scene graph

embeddings and the relationships between objects within a scene graph, as shown
in Fig. 14.7. In the scene graph, the objects and relationships between these objects
are represented by nodes and edges, respectively. Furthermore, a pretrained Faster-
RCNN [10] and a pretrained visual relationship encoder [18] are employed to extract
the initial embeddings for the objects and relationships between them. After the ini-
tialization, the scene graph is utilized to capture question-relevant object embeddings
and relationship embeddings to accurately reply to the current question. In practice,
the current question feature is fused with the history dialogue to generate a com-
prehensive history-aware question embedding, which is utilized to guide the capture
of question-relevant object instances and relationships. Thereafter, question-guided
relation attention is adopted to learn a series of critical scores for all the object
relationships according to their correlations to the generated question embedding.
The object relationships are weighted by the corresponding attention scores. Sub-
sequently, the object features, i.e., the nodes in the scene graph, are refined by a
question-guided graph convolution module. During the refinement stage, for each
node, the relationship features with the neighbors of the nodes and the features of
their neighbors are concatenated and used to calculate a relevant score with question
embedding. The obtained relevant score is regarded as the adjacency between the
current node and its neighbor. After this refinement, all the refined relation-aware
object features are fused with the original object features via an object-relation infor-
mation fusion module to ensure the appropriate proportion of object appearance and
the visual relationships contained in the updated object representations. Finally, the
visual feature of the whole image is calculated by fusing all the obtained updated
object representations.
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Limitation

The above mentioned kind of graph network constructs the scene graph only for
visual embeddings and does not mine the fine-grained information of the historical
dialogue and question.

14.5.2 GNN for Visual and Dialogue Representations

Motivation

The underlying semantic dependencies between dialog entities are essential for visual
dialogue, while the existing methods largely neglect the rich relation information in
the dialog. Although a few methods leverage co-attention mechanism to capture
the cross-modal correlations, they fail to deeply and iteratively mine and reason the
information from different dialog entities, and thus, the reasoning ability is limited.
To address this problem, Zheng et al. [19] and Schwartz et al. [11] proposed the
construction of a GNN to represent the visual dialogue, in which the nodes denote
dialog entities and the edges indicate semantic dependencies between dialog entities,
which enables deep and iterative mining and reasoning.

Method

VisDial-GNN. The architecture of VisDial-GNN for visual dialogue is exhibited in
Fig. 14.8. The graph is constructedwith the observedQ&Anodes, unobserved answer
nodes and their relations as edges. First, the embedding for each node is initialized by
fusing the image feature and language embedding of the corresponding sentence(s)
via a co-attention layer, as shown in the feature embeddingmodule in Fig. 14.8. After
initializing the node hidden states with feature embeddings, the iterative inference is
initiated by the expectation-maximization (EM) algorithm,which involves anM-step

Fig. 14.8 The visual dialog is represented by a GNN, in which the nodes represent the dialog
entities (i.e., caption, question and answer pairs, and the unobserved queried answer), and the edges
denote the semantic dependencies between nodes
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(estimating the edge weights) and an E-step (updating the embedding for unobserved
nodes). Subsequently, the hidden state of the unobserved node is regarded as the
answer embedding, which is fused with the predefined answer candidates to compute
the loss. A multiclass cross-entropy loss on the fused embeddings is used to train the
graph neural network.

Factor Graph Attention. The algorithm of factor graph attention is exhibited in
Fig. 14.9. The factor graph is defined over utilities, which, in the visual dialog setting,
include an image I , an answer A, a caption C , and a history of past interactions
(HQt , HAt )t∈{1,...,T }. Each utility consists of basic entities; e.g, a question is composed
of a sequence of words, and an image is composed of spatially ordered regions.

First, the image utility and textual utilities are initialized by the embeddings from
a pretrained CNNmodel and LSTMmodel. Subsequently, the representation of each
utility is updated by the two types of factors in the factor graph, as illustrated in
Fig. 14.10. Local factors capture information within a utility, such as their entity
representation and local interactions, while joint factors capture interactions of any
subset of utilities. The utility representation is updated by the attention mechanism,
in which the attention value is obtained under the guidance of local and joint factors.
Finally, the algorithm fuses the utility representations with each predefined answer
candidate and produces a posterior probability for each answer. The model is trained
using the maximum likelihood method.

Fig. 14.9 Architecture of factor graph attention for visual dialogue
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Fig. 14.10 Graphical representation of the attention-based factor graph. Specifically, Q, A, C ,
I , HA and HQ denote the question, answer, caption, image, history answer and history question,
respectively. There exist two kinds of factors: (1) local factors that capture information within a
utility, such as their entity representation, i.e., ψQ and their local interactions, i.e., ψQ,Q , and (2)
joint factors that capture the interactions of any subset of utilities, i.e., ψQ,A. T is the number of
history dialog interactions

Limitation

This kind of graph-basedmethod only supports answer ranking for predefined answer
candidates.

14.6 Pretrained Models

Pretrained models have been noted to be effective in addressing various vision-
language tasks. In this section, we introduce several representative visual dialogue
algorithms employing pretraining models, which are based on the transformer archi-
tecture.



14.6 Pretrained Models 215

Fig. 14.11 Model architecture of VD-BERT for both discriminative and generative settings

14.6.1 VD_BERT

Motivation

The existing methods mostly focused on unibidirectional attention mechanisms to
model the implicated interactions, i.e., to learn the attention from answer to question,
image regions or dialog history.However, thesemethods cannot comprehensively and
mutually consider the relationship between all the entities (image, question, history
dialogue and answer), thereby failing to exploit the provided multimodality infor-
mation. To fully capture the intricate interactions between all the entities, Wang et
al. [14] proposed a unified visual-dialog architecture that simultaneously receives all
the entities as input and can capture all the mutual relations between these entities
via a transformer-based bidirectional attention mechanism. The authors pretrained
the employed transformer model on a vision-language dataset to ensure that it can
manage multimodality inputs.

Method

The architecture is exhibited in Fig. 14.11. First, a unified vision-dialog transformer
is used to capture the relations between all the entities, in which a pretrained BERT is
employed to preliminarily initialize the designed model. As the employed BERT is
specifically pretrained to address the language input, two visually grounded training
tasks, i.e., masked language modeling (MLM) and next sentence prediction (NSP),
are adopted to pretrain the VD-BERT on the VisDial dataset [1], thereby allow-
ing the model to simultaneously manage multimodality inputs. Thereafter, this fully
pretrained model is fine-tuned in a vision-dialog task with a ranking optimization
module.



216 14 Visual Dialogue

Limitation

The unified vision-dialog transformer architecturewas pretrained only on theVisDial
dataset [1], and thus, its generalization ability is limited.

14.6.2 Visual-Dialog BERT

Motivation

Although considerable progress has been made in the visual dialogue task in recent
years, most of this progress occurred in isolation, and deep neural networks were
trained only on the VisDial dataset. These methods ignored the significant amount of
shared knowledge in related vision-language tasks (e.g, captioning and visual ques-
tion answering) that can benefit visual dialog frameworks. Therefore, Jiang et al. [4]
pretrained their model on other related vision and language datasets and transferred
the knowledge to visual dialog to boost the performance of visual dialog.

Method

To operate the two types of information, i.e., image and text, the authors adapt
the recently proposed ViLBERT, which has two transformer-based encoders, one
encoder for each of the two modalities, i.e., language and vision. The interaction
between the two modalities is enabled by co-attention layers.

The training process is shown in Fig. 14.12. First, the language stream is pretrained
on English Wikipedia and BooksCorpus [20] datasets with the masked language
modeling (MLM) and next sentence prediction (NSP) tasks. Next, to learn power-
ful visually grounded representations before fine-tuning on the VisDial dataset, the
model is trained on the large-scale conceptual captions and visual question answering
datasets with simple yet powerful self-supervised tasks, i.e., masked image region
(MIR), MLM and NSP. Finally, the model is fine-tuned on sparse annotations from
VisDial [1] with the MIR, MLM and NSP losses and optionally fine-tuned on dense
annotations.

Limitation

The model only supports answer ranking and does not support answer generation.
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Fig. 14.12 Visual-dialog BERT
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Chapter 15
Referring Expression Comprehension

Abstract Referring expression comprehension (REC) aims to localize objects in
images based on natural language queries. In contrast to the object detection task, in
which queried object labels are predefined, the REC problem can only observe the
queries during the test. REC is difficult to implement because this task requires a
comprehensive understanding of complicated natural language and various types of
visual information. In this chapter, we first describe this task and subsequently intro-
duce prevalent datasets proposed for REC tasks such as the RefCOCO, RefCOCO+
and RefCOCOg datasets. Finally, we classify the methods in the REC domain into
three main categories: two-stage models, one-stage models and reasoning process
comprehension.

15.1 Introduction

Referring expression comprehension (REC) aims to localize objects in images based
on natural language queries. This aspect is an essential block in the field of human–
machine interaction, and it can also facilitate other downstream tasks such as vision-
language navigation [4], image retrieval [1] and visual dialogue [26]. While sig-
nificant progress has been made in computer vision and natural language process-
ing, REC remains challenging because this task not only needs to address vari-
ous types of visual information but also requires a comprehensive understanding of
attributes, relationships and contextual information by language. More importantly,
unlike object detection, the REC system must use language to select the best objects
from many candidates rather than using predefined category labels to classify these
regions. Therefore, many studies [12, 13, 18, 21, 25, 27] have attempted to better
solve this problem from different perspectives.

In this chapter, we review the referring expression comprehension (REC) from
two aspects: datasets and models. The dataset introduces four kinds of mainstream
datasets: ReferItGame, RefCOCO, RefCOCO+, RefCOCOg and Flickr30k entities.
Subsequently, we comprehensively review the methods to implement REC. These
methods can be divided into two categories: two-stage models (Sect. 15.3) and one-
stage models (Sect. 15.4). The two-stage models can be divided into three categories:
joint embedding, co-attention models and graph-based models.
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15.2 Datasets

A number of datasets have been proposed for the referring expression comprehen-
sion task. In the following sections, we introduce the existing mainstream referring
expression datasets, in terms of the dataset construction and main characteristics of
the datasets. The dataset characteristics are summarized in Table15.1.

ReferItGame

ReferItGame [6] is the first large-scale referring expression dataset for real-world
scenes, which contains natural images from the ImageCLEF IAPR [5] dataset with
segmented regions from the SAIAPR-12 [3] dataset. The dataset is collected by a
two-player interactive game, in which the first player generates expressions referring
to objects in images, and the second player needs to click the correct locations accord-
ing to the descriptions of objects. Based on this game, the ReferItGame dataset has
produced 130,525 expressions referring to 96,654 distinct objects in 19,894 images.
However, this dataset focuses mostly on context rather than objects, and images often
only have one object for a given class, which allows for speaker models to generate
short descriptions without taking into context the ambiguity.

RefCOCO and RefCOCO+

RefCOCO [24] and RefCOCO+ [24] have also been collected in the ReferItGame [6]
scenario, in which players try to generate efficient information to indicate the correct
objects to the other player. In RefCOCO, the type of language used in the referring
expressions is not subject to any limitations, whereas RefCOCO+ disallows the use
of location words and focuses on purely appearance-based descriptions. The images
of these datasets are obtained from the MSCOCO [8] dataset. RefCOCO contains
142,209 referring expressions to 50,000 objects in 19,994 images, and RefCOCO+
generates 141,564 expressions for 49,856 objects in 19,992 images. The datasets are
split into training, validation, testA and testB. The testA and testB sets contain only
people and nonpeople, respectively.

Table 15.1 Major datasets for referring expression comprehension and their main characteristics

Dataset Number of
images

Number of
expressions

Number of
objects

Avg. length
words

Source of
images

ReferItGame [6] 19,894 130,525 96,654 3.61 Image CLEF

RefCOCO [24] 19,994 142,209 50,000 3.61 MSCOCO

RefCOCO+ [24] 19,992 141,564 49,856 3.53 MSCOCO

RefCOCOg [13] 26,711 104,560 54,822 8.43 MSCOCO

Flickr30k
Entities [15]

31,783 158,915 275,775 – Flickr30k
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RefCOCOg

RefCOCOg [13] was collected in noninteractive scenarios on Amazon Mechanical
Turk. A group of workers were required to write natural language expressions of the
object in the images of MSCOCO, and another group of workers was requested to
click on the specified object given the referring expression. If the click area over-
lapped with the correct object, then the referring expression was valid and added to
the data set. If not, then another expressionwas considered for the object. RefCOCOg
introduced 85,474 referring expressions for 54,822 objects in 26,711 images. The
average lengths of referring expressions in RefCOCO and RefCOCO+ are 3.61 and
3.65, respectively, while in RefCOCOg, the average length is 8.43 words.

Flickr30k entities

The Flickr30k entities [15] consist of 31,783 images, which expands the 158k cap-
tions from the Flickr30k dataset [22] with 224k coreference chains and contains
276k bounding box annotations. The annotation process is divided into two stages:
forming coreference chains that refer to the same entities and annotating bounding
boxes for the resulting chains. This workflow can reduce redundancy by identifying
coreferent mentions, and second, coreference annotation is intrinsically valuable,
e.g., for training cross-caption coreference models.

15.3 Two-Stage Models

In this section, we introduce two-stage methods for referring expression comprehen-
sion. These methods are mainly composed of two stages. The first step is to generate
candidate regions using pretrained detectors such as Faster-RCNN [16]. In the sec-
ond stage, each region is compared to the input query, and a similarity score is output.
During inference, the region with the highest similarity score is output as the final
prediction. In the two-stage framework, various studies differ from one another in
terms of the second step based on insights. We describe the two-stage methodology
in three subsections focused on joint embedding methods, co-attention methods and
graph-based methods. The basic idea of each method is introduced in the following
text.

15.3.1 Joint Embedding

Motivation. The main concept of joint embedding is to learn a mapping relation
between vision and language by embedding them into the same feature space. Specif-
ically, as shown in Fig. 15.1 for the representation of images, these methods usually
use convolutional neural networks (CNNs) to generate rich image representations and
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Fig. 15.1 Illustration of the joint embedding method. These methods usually use CNN and LSTM
networks to extract image representations and encode language information, respectively. Subse-
quently, vision and language are embedded in the common space, and the matching score between
regions and textual phrases is calculated to select the best match objects

embed input images into fixed-length vectors. Since language represents sequential
structure data, a long short-term memory (LSTM) network is used, which encodes
the entire language as a single embedding vector. After embedding the visual and
textual representations into a common space, a distance metric is learned, and the
referred regions are ranked by calculating the distance similarity conditioned on the
embedded expression vectors.
Methods. Mao et al. [13] developed the first model to refer to expression compre-
hension by deep learning. This approach utilizes a convolutional neural network to
extract visual representations from proposals and uses an LSTMmodel to encode the
language features. As a baseline model, this method uses a ranking-based approach
to select the best region. The authors generate a set of proposals, and the model ranks
these regions by probability. This strategy is similar to image retrieval [7, 14], with
the only difference being that the images are replaced by regions. Furthermore, this
method can solve the problem of referring expression generation. In this subtask,
the maximum mutual information method is used to generate the reference expres-
sion, which can generate sentences that distinguish the input proposals from other
candidates.

Yu et al. [24] attempted to simultaneously address the problems of comprehension
and generation. In contrast to the work ofMao et al. [13], the authors focus on encod-
ing comparisons with the most relevant objects instead of using a general feature to
encode the context overall images. The authors introduce a visual appearance dif-
ference representation, which can represent the difference between the target region
and surrounding objects. In particular, the authors select five comparison regions of
the same category as the context information to enhance the performance. In addi-
tion, the authors use the coordinates of regions to encode the relative location and
size differences between the target object and other surrounding objects. With this
context modeling, this model exhibits a high performance for referring expression
generation and comprehension.
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Zhang et al. [25] extended the existing methods to learn context information via
variational Bayesian analysis, which can utilize the relationship between the referent
and surrounding information. The authors considered that either target or context
can influence the estimation of the posterior distribution, and the search space of the
context can be reduced by the proposed approach. Specifically, the model consists of
threemodules: context posterior, referent posterior and context prior. For each object,
the model first computes a coarse context, which can help refine the target object
of the referring expression. Subsequently, each module aligns the image features
with cue-specific textual features to help localize the objects. In this manner, the
framework reduces the complexity of the context and achieves a high performance.
Limitations. The joint embedding framework is effective and simple.However, these
approaches are limited by the use of global vector representations that ignore complex
language semantics and various types of visual information. Therefore, when the
models address complex images (such as images containingmultiple similar objects)
or long sentences, it is difficult to attend to significant image regions and language
words.

15.3.2 Co-Attention Models

Motivation. Attention mechanisms have been applied to many deep-learning frame-
works. This framework ensures that models focus on an important part of the input
when processing high-dimensional features or redundant information. The use of
co-attention has been proposed in VQA [11], as a variant of attention. Co-attention
highlights the areas that the model must seek and words that it must read in the lan-
guage. Through its introduction in the referring expression comprehension field, the
co-attention mechanism has achieved several achievements. Specifically, the model
can build fine-grit connections between visual and textual information to ensure
that the system can utilize the features from several regions of interest (ROIs) when
encoding each word in the text, and vice versa, leading to semantically enriched
visual and textual representations.
Methods. Zhuang et al. [27] considered that conventional frameworks embed visual
and language features into a joint space for one-step reasoning; however, when the
expression is long or complex, such a one-step process cannot relate multiple parts
of the expression to the image. To solve this problem, a parallel attention frame-
work has been established to recurrently attend to objects. This framework includes
two parallel attention mechanisms: image attention and region attention. The image
attention module encodes the entire image and referring text by recurrently attending
to different image regions. This module allows the model to learn helpful context
information. In contrast, the region attention module recurrently attends to the candi-
dates that are conditioned by the referring descriptions. Finally, the matchingmodule
utilizes the image-level and region-level representations as the input to compute a
matching probability for each proposal.
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Fig. 15.2 Illustration of the accumulated attention method. Blue, green and yellow represent the
attention for the query, image, and objects, respectively. A-ATT conducts more rounds to refine the
attention for information communication and accumulation

Deng et al. [2] formulated the referring expression comprehension task into three
sequential subtasks: (1) refine the main concept in the language, (2) understand the
focus in the image, and (3) search the most relevant region. The authors proposed an
accumulated attentionmethod (A-ATT) to simultaneously solve the abovementioned
three problems.As shown in Fig. 15.2, this framework adopts threemodules to extract
the query, images and object attention. Themethod employs an accumulating process
to jointly integrate three types of attention and solve them in a circular manner to
capture the correlations among those subtasks. In this way, each type of attention
module can be utilized as guidance when computing the other two aspects. Finally,
the accumulated attention computes a similarity score between the attended features
of each proposal. The refined representations from the language and image attention
modules are used to select the target regions.

Co-attentionmethods are usually combinedwith other frameworks (such as graph-
based models and one-stage models), as introduced in the following sections.
Limitations. The co-attention mechanism can attend to image regions and textual
information; however, these attention-based methods cannot guarantee a correct
attention assignment since the datasets usually provide no corresponding annota-
tions. Furthermore, these approaches do not consider the complexity of the relation-
ship between multiple regions.
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15.3.3 Graph-Based Models

Motivation. The key to solving the referring expression task is to learn the distin-
guishing object features that can adapt to the expression. To avoid ambiguity, this
expression usually describes not only the properties of the object itself but also the
relationship between the object and its neighbors. The existingmethods manage only
the objects or study only first-order relationships between objects without consider-
ing the potential complexity of expressions. Therefore, graph-based methods have
been proposed, in which the nodes can highlight related objects, and the edges are
used to recognize the object relationship existing in the expression.
Methods. Wang et al. [18] proposed a language-guided graph attention method
(LGRAN). As shown in Fig. 15.3, LGRANs includes three modules, namely, the
language-self attentionmodule, language-guided graph attentionmodule, andmatch-
ing module. The first module utilizes a self-attention mechanism to decompose the
language of three parts (relationships, intraclass relationships and interclass rela-
tionships). The language-guided graph attention constructs candidate objects of a
directed graph, intraclass edges and interclass edges. Finally, each region obtains
three types of expression-relevant representations. The matching module computes
the similarity score for each object. Moreover, the LGRANs can dynamically enrich
the region representations based on the attended graph to suit the language. In addi-
tion, LGRANs visualize the attention distributions over objects and relationships,
which provides an effective basis for understanding the reasoning interpretability of
the method.

Fig. 15.3 Overview of the language-guided graph attention network. This model is composed of
three modules: (1) the language self-attention module parses the expression into subjects, intraclass
relationships and interclass relationships, (2) the language-guided graph attention module estab-
lishes a directed graph between objects, and (3) thematchingmodule, which computes thematching
scores between expressions and objects
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To explore the potential complex relationships between objects and expressions,
Yang et al. [19] proposed a dynamic graph attention network (DGA), which can
achieve multistep reasoning of the interactions between the image and language.
Given an image and language, this model builds a graph of objects in the image,
in which the nodes are objects and edges are relationships. Similarly, the words of
language are also integrated into the graph. Next, the differential analyzer models
the expression guidance of reasoning by exploring the structure of the language and
updates the compound object representation at every node. Through the guidance
of the predicted visual reasoning process, this model performs dynamic inference
in a sequential manner on the graph. Finally, this model calculates the similarity
score between the compound region and referring expression. The DGA method
achieves high performance through this multistep reasoning on top of the relation-
ships between objects in images.

Liu et al. [10] considered that the global context and its interrelationships of
grounding objects are important to achieve the correct reasoning. The authors built
a new language-guided graph to capture the global context of grounding entities and
their relations and learn context-aware cross-modalmatching for the visual grounding
task. This framework is divided into four parts: (1) an encoder network extracts the
features of the language and image, (2) a phrase graph network improves the initial
word embedding features by adding phrase relation clues in the description, (3)
a visual graph network enriches the features of objects and their context through
message propagation over the visual object graph, and (4) the referring expression
task, which is considered a graph matching problem between the phrase and visual
object graph. A graph-based similarity network is introduced to predict the node and
edge similarity scores between the language and regions. In this manner, the method
can perform global matching between the visual and textual graph nodes and relation
edges to learn the cross-modal context for visual grounding.
Limitations. Although graph-based models can effectively manage the relationship
between the multiple related objects conditioning on language, they encounter two
problems: (1) bridging the gap between the unstructured data to structured data (for
instance, the word order is destroyed when we use the graph to model the language
information) and (2) learning the other types of features (such as color, size and
post) in addition to the relationship. Therefore, there remains considerable scope for
improvement in the area of graph-based models.

15.4 One-Stage Models

Motivation. Although the existing two-stage methods exhibit a satisfactory perfor-
mance, these frameworks are capped by the first stage with inevitable error accumu-
lation (if the target object cannot be captured in the first stage, the frameworks fail
regardless of the performance of the second-ranking stage). Moreover, an existing
study [21] demonstrated that two-stage methods incur high computational costs. For
each object proposal, both feature extraction and cross-modality similarity com-
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Fig. 15.4 Overview of the ZSGNet architecture. An image-query pair is input to the network. The
image is used to produce feature maps of different scales, and the query is encoded to language
features through LSTM. The anchor generator produces anchors at different scales and resolutions.
Subsequently, the multimodal feature maps that contain images, anchors and language are input to
the full convolution network to predict anchor matching scores

putation must be conducted. In contrast to the two-stage approaches, one-stage
approaches can directly predict bounding boxes and exhibit a high speed and accu-
racy.
Methods. Yang et al. [21] proposed a one-stage referring expression comprehension
model based onYOLOv3. In particular, a feature pyramid is extracted from the image
using Darknet, and the language features are obtained from the referring expression
by BERT. Subsequently, each level feature map and the entire language feature are
concatenated and fed into the detection head to produce the bounding box of the
target. Furthermore, to ensure that the model has the sensory ability of the location,
spatial features that consist of normalized coordinates also concatenate the feature
map to input the detection head.

Sadhu et al. [17] developed a zero-shot grounding method (ZSGNet) that inte-
grates the detection framework and referring expression comprehension system.
Given an image with fixed candidate boxes, the comprehension task is to select
the best candidate box (also known as the anchor box) and regress it to a tight bound-
ing box. As shown in Fig. 15.4, the authors adopt a ResNet with a feature pyramid
to extract different scales of image feature maps and utilize Bi-LSTM to extract the
language representation. In addition, this model also utilizes the focal loss to classify
the regions inside/outside the target objects. In this manner, ZAGNet directly learns
to locate objects in an end-to-end manner and is significantly superior to the existing
system in the zero-shot setting.

Luo et al. [12] proposed amultitask collaborative network that jointly solves refer-
ring expression comprehension and referring expression segmentation in a one-stage
framework. Specifically, the authors attempt to solve the conflict problem between
the two referring expression tasks by (1) consistency energy maximization, which
compels the two tasks to assign similar attention to the input image, and (2) adaptive
soft nonlocated suppression (ASNLS), which suppresses the response of unrelated
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regions in referring expression segmentation based on referring expression compre-
hension. Furthermore, ASNLS allows the model to have a higher error tolerance in
terms of the detection results.
Limitations.Althoughone-stagemethods have a significantly higher inference speed
and exhibit competitive performance, these methods ignore the contextual informa-
tion, especially in the case of complex expressions. Moreover, the existing one-stage
methods cannot obtain the inference process from themodel, whichmakes it difficult
to realize follow-up research and improvement.

15.5 Reasoning Process Comprehension

Motivation. In the task of referring expression comprehension, the existing studies
mainly focused on how to achieve superior fusion between the cross-model infor-
mation. These methods ignore the interpretability of the reasoning process for the
entire vision-language system. Therefore, several visual grounding methods have
been established to address this problem, and the main concept of these studies is to
link images with the parsed language to obtain a comprehensive understanding of
the referring. In this manner, the process of entire reasoning is captured, which can
facilitate follow-up work and corresponding technical innovation.
Methods. Yu et al. [23] proposed the modular attention network (MAttNet). First,
this method divides the description into three components: subject, location and
relationship. Subsequently, the authors design three corresponding vision modules.
The subjectmodule deals with category, colors, size and other attributes. The location
modulemanages the absolute and relative locations. The relationshipmodule focuses
on contextual relationships. Each module processes a different structure and learns
the parameters within its ownmodular spacewithout affecting the others. In addition,
instead of relying on an external language parser, MAttNet learns to parse language
automatically through an attention mechanism. Finally, the matching scores of the
three visual modules are calculated to measure the similarity between the image and
language. Owing to the use of the modular network, the entire reasoning process can
be easily obtained.

Liu et al. [9] proposed a cross-modal attention-guided erasing strategy for a com-
prehension system. This method adopts MAttNet [23] as the backbone. By erasing
themost attended part fromeither language or image information, this strategy impels
themodel to discovermore latent cues for reasoning.Moreover, severalmodifications
are introduced to the original modular network. Specifically, in contrast to [23] the
model using only the cross-modal information to learn word-level and module-level
attention, thismethod considers the global features of image and language.Moreover,
the method formulates the location and relationship modules into a unified structure
with sentence-level attention.

Yang et al. [20] proposed a recursive subquery construction framework that recur-
sively alleviates the referring ambiguity with differently constructed subqueries. As
shown in Fig. 15.5, this model represents the intermediate understanding of the refer-
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Fig. 15.5 Architecture for the recursive subquery construction framework. This method performs
multiple rounds of reasoning on images and expressions by constructing a subquery learner and a
modulation network to gradually decrease the ambiguity of referring expression

ring in each round as the text-conditional visual feature, which starts as the image
feature and is updated after multiple rounds, terminating as the fused visual-text fea-
ture ready for box prediction. In each round, the model constructs a new subquery
as a group of words attended with scores to refine the visual feature. Such a mul-
tiround solution is in contrast to existing one-stage approaches, as this method can
understand the operations of the model and explain its success or failure.
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Part V
Summary and Outlook

This section represents the last part of this book. We summarize the content of this
book and highlight possible directions for future research in the domain of visual
question answering.



Chapter 16
Summary and Outlook

16.1 Summary

Visual question answering is a significant topic in current AI research and has been
linked to many applications such as AI assistant and dialog systems. As a cross-
disciplinary task, this topic has attracted considerable attention from researchers in
different communities, such as computer vision and natural language processing.
VQA is a typical cross-modal task since it requires machines to simultaneously
understand visual content (images and videos) and natural language, and, in certain
cases, common sense knowledge. Nevertheless, certain challengesmust be addressed
to realize artificial general intelligence.

In this book, we first present preliminary knowledge regarding deep learning
and the task of question-and-answering to provide proper context for the readers.
Subsequently, we describe several typical methods for image-based VQA and video-
basedVQA. For the former, we first describe the classicalVQAproblem and classical
solutions and then focus on the most recent technologies, knowledge base VQA and
pretraining for VQA. For the latter, we mainly focus on video presentation learning
and several heuristic models. Finally, we describe several advanced topics in VQA,
such as embodied VQA, VQA in the form of dialogue, and referring expression
comprehension, to extend the readers’ horizon.

16.2 Future Directions

16.2.1 Explainable VQA

Most existing VQA models work as a black box: It is not clear how and why these
models make predictions or the factors that their decisions are based on. The perfor-
mance enhancement of such black boxmethods tends to level off before the expected
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value. To promote development in this field, it is urgent and necessary to clarify why
and how these models work.

The attention mechanism is promising in this direction; however, this mechanism
only visualizes an attention map (like a heat map) on the image (or question) to
highlight the parts that are important to answer that question. No clear reasoning
chain exists to show how and why the model obtains an answer.

The VQA machine [17] represents one further step. The attention mechanism is
used but not directly applied to the images. Instead, this mechanism is applied to a
collection of supporting facts that are extracted from the image. The attended sup-
porting facts are translated to human readable sentences as the reasons for answering
that question. However, the supporting facts are fragmented.

A trusted and explainableVQAsystemmust be able to collect relevant information
and correlate them to answer questions and provide trusted explanations. To this end,
the machine must fully understand and chain images, questions and knowledge and
perform reasoning on the chain.

16.2.2 Bias Elimination

Bias exists in not only collected datasets but also real-world scenarios. For example,
we see more red apples than green apples, and we more frequently ride a bike than
wheel a bike. Therefore, when a green apple or a person wheeling a bike is present in
a picture, most existing models may answer red or riding if we query the color of the
apples being eating or the activity being performed by the person. To eliminate this
“bias”, two possible solutions are as follows: the inclusion of approximately the same
amount of data across all scenarios and the enhancement of the reasoning ability of
models (i.e., enabling the models to become aware of why they are formulating a
certain prediction).

Several recent studies [2, 8, 13] demonstrated that many VQA models answer
questions without reasoning and relying excessively on superficial correlations (i.e
bias) between the question and answers. To alleviate the challenges associated with
VQA, many existing methods mainly focus on weakening the language bias [3, 12].

For example, many methods [3–7, 9–13, 15, 16, 18, 19] have been proposed
to overcome the language bias in VQA. These methods can be categorized into two
classes, specifically, those with and without data augmentation. Augmentation-based
methods [1, 4, 6, 10, 14, 16, 19] seek to balance the biased dataset for unbiased
training, while non-augmentation-based methods [3, 5, 7, 9, 11–13, 18] seek to
reduce the language bias explicitly or improve attention on the image.

In terms of non-augmentation-based methods, Ramakrishnan et al. [12] adopted
adversarial learning between the VQA model and question-only model to prevent
the VQAmodel from capturing the language bias. Inspired by [12], Cadene et al. [3]
dynamically adjusted the weight of the samples based on how biased the samples
were. In addition, several methods introduced human-based visual [13] and text [18]
explanations to strengthen the visual grounding. However, these methods require
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human annotations that are difficult to obtain. Furthermore, Niu et al. [11] introduced
the cause effect to examine the language bias and proposed a counterfactual inference
framework to reduce the bias. However, this framework led to the introduction of
additional parameters in the inference.

In the context of augmentation-based methods, to ensure that the VQA model
focuses on critical objects and words, Chen et al. [4] proposed a CSS method to
produce massive counterfactual samples by masking critical objects and words and
assigning the corresponding ground-truth answers. To fully exploit the samples,
Liang et al. [10] modeled the relationships among original, factual and counterfac-
tual samples to promote the learning of high-level features. In addition, Mutant [6]
generated the samples by semantic transformations of the original images or ques-
tions. Moreover, without introducing additional annotations, several methods [14,
19] built negative samples from the available samples to balance the dataset.

Furthermore, another issue is that certain “bias” captured from the dataset may
represent the natural rule in the real world, i.e common-sense knowledge. Such bias
is not harmful to themodels, and in fact, themodels may benefit from it. For example,
“dog” is a kind of “animal”, and the color of “oranges” is normally “orange”. Thus,
filtering and removing the true negative biases in language and vision modalities
remain a challenging task.

16.2.3 Additional Settings and Applications

The existingVQA tasks capture only a part of real-world scenarios. Tons of thousands
of areas remain untouched, such as VQA for education scenarios and VQA for
driving/flying/diving.Challenges formodels usually vary as scenario changes. Future
work can focus on applying the existing VQA technologies to more applications to
facilitate our lives.

VQA has been introduced in many domains, such as medical VQA, to address the
questions raised by medical practitioners and patients. Moreover, this concept has
been applied to robotics, for example, in the form of embodied VQA, which enables
a virtual robot to answer questions in a simulated environment. We believe that VQA
can be integrated into more applications under different settings.
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