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Preface

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

This book is built around the thesis that the ability of software
systems to operate at scale is increasingly a driving system quality.
As our world becomes more interconnected, this characteristic will
only accelerate. Hence the goal of the book is to provide the reader
with the core knowledge of distributed and concurrent systems. It will
also introduce a collection of software architecture approaches and
distributed technologies that can be used to build scalable systems.

Why Scalability?
The pace of change in our world is daunting. Innovations appear
daily, creating new capabilities for us all to interact with, conduct
business, be entertained, end pandemics. The fuel for much of this
innovation is software, written by veritable armies of developers in
major internet companies, crack small teams in startups, and all
shapes and sizes of teams in between.

Delivering software systems that are responsive to user needs is
difficult enough, but it becomes an order of magnitude more difficult
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to do for systems at scale. We all know of systems that fail suddenly
when exposed to unexpected high loads - such situations are
minimally bad publicity for organizations, and at worst can lose jobs
and destroy companies.

Software is unlike physical systems in that it’s amorphous—its
physical form (1’s and 0’s) bears no resemblance to its actual
capabilities. We’d never expect to transform a small village of 500
people into a city of 10 million overnight. But we sometimes expect
our software systems to suddenly handle 1000x the number of
requests they were designed for. Not surprisingly, the outcomes are
rarely pretty.



Who This Book Is For
The major target audience for this book is software engineers and
architects who have no or limited experience with distributed,
concurrent systems. They need to deepen both their theoretical and
practical design knowledge in order to meet the challenges of
building larger scale, typically Internet-facing applications.

Much of the content of this book has been developed in the context
of an advanced undergraduate/graduate course at Northeastern
University. It has proven a very popular and effective approach for
equipping students with the knowledge and skills needed to launch
their careers with major Internet companies. Additional materials on
the book web site are available to support educators who wish to use
the book for their course.

What You Will Learn
This book covers the landscape of concurrent and distributed
systems through the lens of scalability. While it’s impossible to totally
divorce scalability from other architectural qualities, scalability is the
main focus of discussion. Of course, other qualities necessarily
come in to play, with performance, availability and consistency
regularly raising their heads.

Building distributed systems requires some fundamental
understanding of distribution and concurrency - this knowledge is a
recurrent theme throughout this book. It’s needed because at their
core, there are two problems in distributed systems that make them
complex, as I describe below.

First, although systems operate perfectly correctly nearly all the time,
an individual part of the system may fail at any time. When a
component fails (hardware crash, network down, bug in server), we
have to employ techniques that enable the system as a whole to
continue operations and recover from failures. And any distributed



system will experience component failure, often in weird and
mysterious and unanticipated ways.

Second, creating a scalable distributed system requires the
coordination of multiple moving parts. Each component of the
system needs to keep its part of the bargain and process requests
as quickly as possible. If just one component causes requests to be
delayed, the whole system may perform poorly and even eventually
crash.

To deal with these problems there is a rich deep body of literature
available to draw on. And luckily for us engineers, there’s a rich,
extensive collection of technologies that are designed to help us
build distributed systems that are tolerant to fail and scalable. These
technologies embody theoretical approaches and complex
algorithms that are incredibly hard to build correctly. Using these
platform level, widely applicable technologies, our applications can
stand on the shoulders of giants, enabling us to build sophisticated
business solutions.

Specifically, readers of this book will learn:

The fundamental characteristics of distributed systems,
including state management, time coordination, concurrency,
communications and coordination

Architectural approaches and supporting technologies for
building scalable, robust services

How distributed databases operate and can be used to build
scalable distributed systems

Architectures and technologies such as Apache Kafka and
Flink for building streaming, event-based systems



Part I. Scalability in Modern
Software Systems

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

The first four chapters in Part 1 of this book motivate the need for
scalability as a key architectural attribute in modern software
systems. The chapters provide broad coverage of the basic
mechanisms for achieving scalability, the fundamental characteristics
of distributed systems, and an introduction to concurrent
programming. This knowledge lays the foundation for what follows,
and if you are new to the areas of distributed, concurrent systems,
you’ll need to spend some time on these four chapters. They will
make the rest of the book much easier to digest.
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Chapter 1. Introduction to
Scalable Systems

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

The last 20 years have seen unprecedented growth in the size,
complexity and capacity of software systems. This rate of growth is
hardly likely to slow in the next 20 years – what these future systems
will look like is close to unimaginable right now. The one thing we
can guarantee is that more and more software systems will need to
be built with constant growth - more requests, more data, more
analysis - as a primary design driver.

Scalable is the term used in software engineering to describe
software systems that can accommodate growth. In this chapter I’ll
explore what precisely is meant by the ability to scale – known, not
surprisingly, as scalability. I’ll also describe a few examples that put
hard numbers on the capabilities and characteristics of
contemporary applications and give a brief history of the origins of
the massive systems we routinely build today. Finally, I’ll describe
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two general principles for achieving scalability, namely replication
and optimization, that will recur in various forms throughout the rest
of this book and examine the indelible link between scalability and
other software architecture quality attributes.

What is Scalability?
Intuitively, scalability is a pretty straightforward concept. If we ask
Wikipedia for a definition, it tells us “scalability is the property of a
system to handle a growing amount of work by adding resources to
the system.” We all know how we scale a highway system – we add
more traffic lanes so it can handle a greater number of vehicles.
Some of my favorite people know how to scale beer production –
they add more capacity in terms of the number and size of brewing
vessels, the number of staff to perform and manage the brewing
process, and the number of kegs they can fill with tasty fresh brews.
Think of any physical system – a transit system, an airport, elevators
in a building – and how we increase capacity is pretty obvious.

Unlike physical systems, software systems are somewhat
amorphous. They are not something you can point at, see, touch,
feel, and get a sense of how it behaves internally from external
observation. It’s a digital artifact. At its core, the stream of 1’s and 0’s
that make up executable code and data are hard for anyone to tell
apart. So, what does scalability mean in terms of a software system?

Put very simply, and without getting into definition wars, scalability
defines a software system’s capability to handle growth in some
dimension of its operations. Examples of operational dimensions are:

The number of simultaneous user or external (e.g. sensor)
requests a system can process

The amount of data a system can effectively process and
manage

https://en.wikipedia.org/wiki/Scalability


The value that can be derived from the data a system stores

The ability to maintain a stable. consistent response time as
the request load grows

For example, imagine a major supermarket chain is rapidly opening
new stores and increasing the number of self-checkout kiosks in
every store. This requires the core supermarket software systems to:

Handle increased volume from item scanning without
decreased response time. Instantaneous responses to item
scans are necessary to keep customers happy.

Process and store the greater data volumes generated from
increased sales. This data is needed for inventory
management, accounting, planning and likely many other
functions.

Derive ‘real-time’ (e.g. hourly) sales data summaries from
each store, region and country and compare to historical
trends. This trend data can help highlight unusual events in
regions (e.g. unexpected weather conditions, large crowds at
events, etc.) and help the stores affected quickly respond.

Evolve the stock ordering prediction subsystem to be able to
correctly anticipate sales (and hence the need for stock
reordering) as the number of stores and customers grow

These dimensions are effectively the scalability requirements of the
system. If, over a year, the supermarket chain opens 100 new stores
and grows sales by 400 times (some of the new stores are big!),
then the software system needs to scale to provide the necessary
processing capacity to enable the supermarket to operate efficiently.
If the systems don’t scale, we could lose sales as customers are
unhappy. We might hold stock that will not be sold quickly, increasing
costs. We might miss opportunities to increase sales by responding



to local circumstances with special offerings. All these reduce
customer satisfaction and profits. None are good for business.

Successfully scaling is therefore crucial for our imaginary
supermarket’s business growth, and likewise is in fact the lifeblood of
many modern internet applications. But for most business and
Government systems, scalability is not a primary quality requirement
in the early stages of development and deployment. New features to
enhance usability and utility become the drivers of our development
cycles. As long as performance is adequate under normal loads, we
keep adding user-facing features to enhance the system’s business
value. In fact, introducing some of the sophisticated distributed
technologies I’ll describe in this book before there is a clear
requirement can actually handicap a project, with the additional
complexity causing development inertia.

Still, it’s not uncommon for systems to evolve into a state where
enhanced performance and scalability become a matter of urgency,
or even survival. Attractive features and high utility breed success,
which brings more requests to handle and more data to manage.
This often heralds a tipping point, where design decisions that made
sense under light loads are now suddenly technical debt. External
trigger events often cause these tipping points – look in the
March/April 2020 media for the many reports of Government
Unemployment and supermarket online ordering sites crashing
under demand caused by the coronavirus pandemic.

Increasing a systems’ capacity in some dimension by increasing
resources is called scaling up or scaling out – I’ll explore the
difference between these later. In addition, unlike physical systems,
it is often equally important to be able to scale down the capacity of a
system to reduce costs.

The canonical example of this is Netflix, which has a predictable
regional diurnal load that it needs to process. Simply, a lot more
people are watching Netflix in any geographical region at 9pm than



are at 5am. This enables Netflix to reduce its processing resources
during times of lower load. This saves the cost of running the
processing nodes that are used in the Amazon cloud, as well as
societally worthy things such as reducing data center power
consumption. Compare this to a highway. At night when few cars are
on the road, we don’t retract lanes (except for repairs). The full road
capacity is available for the few drivers to go as fast as they like. In
software systems, we can expand and contract our processing
capacity in a matter of seconds to meet instantaneous load.
Compared to physical systems, the strategies we deploy are very,
very different.

There’s a lot more to consider about scalability in software systems,
but let’s come back to these issues after examining the scale of
some contemporary software systems circa 2021.

System scale in early 2020’s: Examples
Looking ahead in this technology game is always fraught with
danger. In 2008 I wrote [1]:

While petabyte datasets and gigabit data streams are today’s
frontiers for data-intensive applications, no doubt 10 years from
now we’ll fondly reminisce about problems of this scale and be
worrying about the difficulties that looming exascale applications
are posing.

Reasonable sentiments, it is true, but exascale? That’s almost
commonplace in today’s world. Google reported multiple exabytes of
Gmail in 2014, and by now, do all Google services manage a
yottabyte or more? I don’t know. I’m not even sure I know what a
yottabyte is! Google won’t tell us about their storage, but I wouldn’t
bet against it. Similarly, how much data does Amazon store in the
various AWS data stores for their clients. And how many requests
does, say, DynamoDB process per second collectively, for all client
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applications supported? Think about these things for too long and
your head will explode.

A great source of information that sometimes gives insights into
contemporary operational scales are the major Internet company’s
technical blogs. There are also Web sites analyzing Internet traffic
that are highly illustrative of traffic volumes. Let’s take a couple of
‘point in time’ examples to illustrate a few things we do know today.
Bear in mind these will look almost quaint in a year or four.

Facebook’s engineering blog describes Scribe, their solution
for collecting, aggregating, and delivering petabytes of log
data per hour, with low latency and high throughput.
Facebook’s computing infrastructure comprises millions of
machines, each of which generates log files that capture
important events relating to system and application health.
Processing these log files, for example from a Web server,
can give development teams insights into their application’s
behavior and performance, and support fault finding. Scribe
is a custom buffered queuing solution that can transport logs
from servers at a rate of several terabytes per second and
deliver them to downstream analysis and data warehousing
systems. That, my friends, is a lot of data!

You can see live Internet traffic for numerous services at
www.internetlivestats.com. Dig around and you’ll find
statistics like Google handles around 3.5 billion search
requests a day, Instagram uploads about 65 million photos
per day, and there is something like 1.7 billion web sites. It is
a fun site with lots of information to amaze you. Note the
data is not really ‘live’, just estimates based on statistical
analyses of multiple data sources.

In 2016 Google published a paper describing the
characteristics of their code base. Amongst the many
startling facts reported is: “The repository contains 86TBs of
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data, including approximately two billion lines of code in nine
million unique source files.” Remember, this was 2016.

Still, real, concrete data on the scale of the services provided by
major Internet sites remain shrouded in commercial-in-confidence
secrecy. Luckily, we can get some deep insights into the request and
data volumes handled at Internet scale through the annual usage
report from one tech company. You can browse their incredibly
detailed usage statistics from 2019. It’s a fascinating glimpse into the
capabilities of massive scale systems. Beware though, this is
Pornhub.com.

How Did We Get Here? A Brief History of System
Growth
I am sure many readers will have trouble believing there was
civilized life without Internet search, YouTube and social media. In
fact, the first video upload to YouTube occurred in 2005. Yep, it is
hard for even me to believe. So, let’s take a brief look back in time at
how we arrived at the scale of today’s systems. Below are some
historical milestones of note:

1980s

An age dominated by timeshared mainframe and minicomputers.
PCs emerged in the early 1980s but were rarely networked. By
the end of the 1980s, development labs, universities and
increasingly businesses had email and access to primitive
Internet resources.

1990-95

Networks became more pervasive, creating an environment ripe
for the creation of the World Wide Web (WWW) with HTTP/HTML
technology that had been pioneered at CERN by Tim Berners-
Lee during the 1980s. By 1995, the number of web sites was tiny,

1
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but the seeds of the future were planted with companies like
Yahoo! in 1994 and Amazon and eBay in 1995

1996-2000

The number of web sites grew from around 10,000 to 10 million,
a truly explosive growth period. Networking bandwidth and
access also grew rapidly. Companies like Amazon, eBay, Google,
Yahoo! and the like were pioneering many of the design
principles and early versions of advanced technologies for highly
scalable systems that we know and use today. Everyday
businesses rushed to exploit the new opportunities that e-
business offered, and this brought system scalability to
prominence, as explained in the sidebar.

2000-2006

The number of web sites grew from around 10 to 80 million
during this period, and new service and business models
emerged. In 2005, YouTube was launched. 2006 saw Facebook
become available to the public. In the same year, Amazon Web
Services, which had low key beginnings in 2004, relaunched with
its S3 and EC2 services.

2007-today

We now live in a world with around 2 billion web sites, of which
about 20% are active. There are something like 4 billion Internet
users. Huge data centers operated by public cloud operators like
AWS, GCP and Azure, along with a myriad of private data
centers, for example Twitter’s operational infrastructure, are
scattered around the planet. Clouds host millions of applications,
with engineers provisioning and operating their computational
and data storage systems using sophisticated cloud management
portals. Powerful cloud services make it possible for us to build,
deploy and scale our systems literally with a few clicks of a

https://www.nngroup.com/articles/100-million-websites/
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mouse. All you do is pay your cloud provider bill at the end of the
month.

This is the world that this book targets. A world where our
applications need to exploit the key principles for building scalable
systems and leverage highly scalable infrastructure platforms. Bear
in mind, in modern applications, most of the code executed is not
written by your organization. It is part of the containers, databases,
messaging systems and other components that you compose into
your application through API calls and build directives. This makes
the selection and use of these components at least as important as
the design and development of your own business logic. They are
architectural decisions that are not easy to change.



HOW SCALE IMPACTED BUSINESS SYSTEMS
The surge of users with Internet access in the 1990s brought
new online money making opportunities for businesses. There
was a huge rush to expose business functions - sales, services -
to users through a Web browser. This heralded a profound
change in how we had to think about building systems.

Take for example a retail bank. Before providing online services,
it was possible to accurately predict the loads the bank’s
business systems would experience. You knew how many people
worked in the bank and used the internal systems, how many
terminals/PCs were connected to the bank’s networks, how many
ATMs you had to support, and the number and nature of
connections to other financial institutions. Armed with this
knowledge, we could build systems that support, say, a
maximum of say 3000 concurrent users, safe in the knowledge
that this number could not be exceeded. Growth would also be
relatively slow, and probably most of the time (eg outside
business hours) the load would be a lot less than the peak. This
made our software design decisions and hardware provisioning a
lot easier.

Now imagine our retail bank decides to let all customers have
Internet banking access. And the bank has 5 million customers.
What is our maximum load now? How will load be dispersed
during a business day? When are the peak periods? What
happens if we run a limited time promotion to try and sign up new
customers? Suddenly our relatively simple and constrained
business systems environment is disrupted by the higher
average and peak loads and unpredictability you see from
Internet-based user populations.

Scalability Basic Design Principles



The basic aim of scaling a system is to increase its capacity in some
application-specific dimension. A common dimension is increasing
the number of requests that a system can process in a given time
period. This is known as the system’s throughput. Let’s use an
analogy to explore two basic principles we have available to us for
scaling our systems and increasing throughput: replication and
optimization.

In 1932, one of the world’s great icons, the Sydney Harbor Bridge,
was opened. Now it is a fairly safe assumption that traffic volumes in
2021 are somewhat higher than in 1932. If by any chance you have
driven over the bridge at peak hour in the last 30 years, then you
know that its capacity is exceeded considerably every day. So how
do we increase throughput on physical infrastructures such as
bridges?

This issue became very prominent in Sydney in the 1980s, when it
was realized that the capacity of the harbor crossing had to be
increased. The solution was the rather less iconic Sydney Harbor
tunnel, which essentially follows the same route underneath the
harbor. This provides 4 more lanes of traffic, and hence added
roughly 1/3rd more capacity to harbor crossings. In not too far away
Auckland, their harbor bridge also had a capacity problem as it was
built in 1959 with only 4 lanes. In essence, they adopted the same
solution as Sydney, namely, to increase capacity. But rather than
build a tunnel, they ingeniously doubled the number of lanes by
expanding the bridge with the hilariously named 'Nippon Clipons',
which widened the bridge on each side.

These examples illustrate the first strategy we have in software
systems to increase capacity. We basically replicate the software
processing resources to provide more capacity to handle requests
and thus increase throughput, as shown in Figure 1-1. These
replicated processing resources are analogous to the traffic lanes on
bridges, providing a mostly independent processing pathway for a
stream of arriving requests. Luckily, in cloud-based software
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systems, replication can be achieved at the click of a mouse, and we
can effectively replicate our processing resources thousands of
times. We have it a lot easier than bridge builders in that respect.
Still. we need to take care to replicate resources in order to alleviate
bottlenecks, otherwise our resources will simply cause needless
costs and give no scalability benefit.

Figure 1-1. Increasing Capacity through Replication

The second strategy for scalability can also be illustrated with our
bridge example. In Sydney, some observant person realized that in
the mornings a lot more vehicles cross the bridge from north to
south, and in the afternoon we see the reverse pattern. A smart
solution was therefore devised – allocate more of the lanes to the
high demand direction in the morning, and sometime in the
afternoon, switch this around. This effectively increased the capacity
of the bridge without allocating any new resources – we optimized
the resources we already had available.

We can follow this same approach in software to scale our systems.
If we can somehow optimize our processing, by maybe using more
efficient algorithms, adding extra indexes in our databases to speed
up queries, or even rewriting our server in a faster programming
language, we can increase our capacity without increasing our
resources. The canonical example of this is Facebook’s creation of



(the now discontinued) HipHop for PHP, which increased the speed
of Facebook’s web page generation by up to 6 times by compiling
PHP code to C++.

I’ll revisit these two design principles – namely replication and
optimization - many times in the remainder of this book. You will see
that there are many complex implications of adopting these
principles that arise from the fact that we are building distributed
systems. Distributed systems have properties that make building
scalable systems ‘interesting’, where interesting in this context has
both positive and negative connotations.

Scalability and Costs
Let’s take a trivial hypothetical example to examine the relationship
between scalability and costs. Assume we have a Web-based (e.g.
web server and database) system that can service a load of 100
concurrent requests with a mean response time of 1 second. We get
a business requirement to scale up this system to handle 1000
concurrent requests with the same response time. Without making
any changes, a simple load test of this system reveals the
performance shown in Figure 1-2 (left). As the request load
increases, we see the mean response time steadily grow to 10
seconds with the projected load. Clearly this does not satisfy our
requirements in its current deployment configuration. The system
doesn’t scale.

https://en.wikipedia.org/wiki/HipHop_for_PHP


Figure 1-2. Scaling an application. (Left) – non-scalable performance. (Right) –
scalable performance

Clearly some engineering effort is needed in order to achieve the
required performance. Figure 1-2 (right) shows the system’s
performance after this effort has been modified. It now provides the
specified response time with 1000 concurrent requests. Hence, we
have successfully scaled the system. Party time!

A major question looms however. Namely, how much effort and
resources were required to achieve this performance? Perhaps it
was simply a case of running the Web server on a more powerful
(virtual) machine. Performing such reprovisioning on a cloud might
take 30 minutes at most. Slightly more complex would be
reconfiguring the system to run multiple instances of the Web server
to increase capacity. Again, this should be a simple, low-cost
configuration change for the application, with no code changes
needed. These would be excellent outcomes.

However, scaling a system isn’t always so easy. The reasons for this
are many and varied, but here’s some possibilities:

1. The database becomes less responsive with 1000 requests
per second, requiring an upgrade to a new machine



2. The Web server generates a lot of content dynamically and
this reduces response time under load. A possible solution is
to alter the code to more efficiently generate the content,
thus reducing processing time per request.

3. The request load creates hot spots in the database when
many requests try to access and update the same records
simultaneously. This requires a schema redesign and
subsequent reloading of the database, as well as code
changes to the data access layer.

4. The Web server framework that was selected emphasized
ease of development over scalability. The model it enforces
means that the code simply cannot be scaled to meet the
request load requirements, and a complete rewrite is
required. Use another framework? Use another
programming language even?

There’s a myriad of other potential causes, but hopefully these
illustrate the increasing effort that might be required as we move
from possibility (1) to possibility (4).

Now let’s assume option (1), upgrading the database server,
requires 15 hours of effort and a thousand dollars extra cloud costs
per month for a more powerful server. This is not prohibitively
expensive. And let’s assume option (4), a rewrite of the Web
application layer, requires 10,000 hours of development due to
implementing in a new language (e.g. Java instead of Ruby).
Options (2) and (3) fall somewhere in between options (1) and (4).
The cost of 10,000 hours of development is seriously significant.
Even worse, while the development is underway, the application may
be losing market share and hence money due to its inability to satisfy
client requests loads. These kinds of situations can cause systems
and businesses to fail.

This simple scenario illustrates how the dimensions of resource and
effort costs are inextricably tied to scalability. If a system is not



designed intrinsically to scale, then the downstream costs and
resources of increasing its capacity to meet requirements may be
massive. For some applications, such as Healthcare.gov, these
(more than $2 billion) costs are borne and the system is modified to
eventually meet business needs. For others, such as Oregon’s
health care exchange, an inability to scale rapidly at low cost can be
an expensive ($303 million) death knell.

We would never expect someone would attempt to scale up the
capacity of a suburban home to become a 50 floor office building.
The home doesn’t have the architecture, materials and foundations
for this to be even a remote possibility without being completely
demolished and rebuilt. Similarly, we shouldn’t expect software
systems that do not employ scalable architectures, mechanisms and
technologies to be quickly evolved to meet greater capacity needs.
The foundations of scale need to be built in from the beginning, with
the recognition that the components will evolve over time. By
employing design and development principles that promote
scalability, we can more rapidly and cheaply scale up systems to
meet rapidly growing demands. I’ll explain these principles in Part 2
of this book.

Software systems that can be scaled exponentially while costs grow
linearly are known as hyperscale systems, defined as:

Hyper scalable systems exhibit exponential growth in
computational and storage capabilities while exhibiting linear
growth rates in the costs of resources required to build, operate,
support and evolve the required software and hardware resources.

You can read more about hyperscale systems in this article [3].

Scalability and Architecture Trade-offs
Scalability is just one of the many quality attributes, or non-functional
requirements, that are the lingua franca of the discipline of software
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architecture. One of the enduring complexities of software
architecture is the necessity of quality attribute trade-offs. Basically a
design that favors one quality attribute may negatively or positively
affect others. For example we may want to write log messages when
certain events occur in our services so we can do forensics and
support debugging of our code. We need to be careful however how
many events we capture because logging introduces overheads and
negatively affects performance.

Experienced software architects constantly tread a fine line, crafting
their designs to satisfy high priority quality attributes, while
minimizing the negative effects on other quality attributes.

Scalability is no different. When we point the spotlight at the ability of
a system to scale, we have to carefully consider how our design
influences other highly desirable properties such as performance,
availability, security and the oft overlooked manageability. I’ll briefly
discuss some of these inherent trade-offs below.

Performance
There’s a simple way to think about the difference between
performance and scalability. When we target performance, we
attempt to satisfy some desired metrics for individual requests. This
might be a mean response time of less than 2 seconds, or a worst-
case performance target such as the 99th percentile response time
less than 3 seconds.

Improving performance is in general a good thing for scalability. If we
improve the performance of individual requests, we create more
capacity in our system, which helps us with scalability as we can use
the unused capacity to process more requests.

However, it’s not always that simple. We may reduce response times
in a number of ways. We might carefully optimize our code, by for
example removing unnecessary object copying, using a faster JSON
serialization library, or even completely rewriting your code in a



faster programming language. These approaches optimize
performance without increasing resource usage.

An alternative approach might be to optimize individual requests by
keeping commonly accessed state in memory rather than writing to
the database on each request. Eliminating a database access nearly
always speeds things up. However, if our system maintains large
amounts of state in memory for prolonged periods, we may (and in a
heavily loaded system, will) have to carefully manage the number of
requests our system can handle. This will likely reduce scalability as
our optimization approach for individual requests uses more
resources (in this case, memory) than the original solution, and
hence reduces system capacity.

We’ll see this tension between performance and scalability reappear
throughout this book. In fact, it’s sometimes judicious to make
individual requests slightly slower so we can utilize additional system
capacity. A great example of this is described when I discuss load
balancing in the next chapter.

Availability
Availability and scalability are in general highly compatible partners.
As we scale our systems through replicating resources, we create
multiple instances of services that can be used to handle requests
from any users. If one of our instances fails, the others remain
available. The system just suffers from reduced capacity due to a
failed, unavailable resource. Similar thinking holds for replicating
network links, network routers, disks, and pretty much any resource
in a computing system.

Things start to get complicated with scalability and availability when
state is involved. Think of a database. If our single database server
becomes overloaded, we can replicate it and send requests to either
instance. This also increases availability as we can tolerate the
failure of one instance. This scheme works great if our databases



are read only. But as soon as we update one instance, we somehow
have to figure out how and when to update the other instance. This
is where the issue of replica consistency raises its ugly head.

In fact, whenever state is replicated for scalability and availability, we
have to deal with consistency. This will be a major topic when I
discuss distributed databases in Part 3 of this book.

Security
Security is a complex, highly technical topic worthy of its own book.
No one wants to use an insecure system, and systems that are
hacked and compromise user data cause CTOs to resign, and in
extreme cases companies to fail.

The basic elements of a secure system are authentication,
authorization and integrity. We need to ensure data cannot be
intercepted in transit over networks, and data at rest (persistent
store) cannot be accessed by anyone who does not have
permissions to access that data. Basically I don’t want anyone
seeing my credit card number as it is communicated between
systems or stored in a company’s database.

Hence security is a necessary quality attribute for any Internet facing
systems. The costs of building secure systems cannot be avoided,
so let’s briefly examine how these affect performance and scalability.

At the network level, systems routinely exploit the Transport Layer
Security  (TLS) protocol, which runs on top of TCP/IP (see Chapter
3). TLS provides encryption, authentication and integrity using
asymmetric cryptography.  This has a performance cost for
establishing a secure connection as both parties need to generate
and exchange keys. TLS connection establishment also includes an
exchange of certificates to verify the identity of the server (and
optionally client), and the selection of an algorithm to check the data
is not tampered with in transit. Once a connection is established, in-
flight data is encrypted using symmetric cryptography, which has a
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negligible performance penalty as modern CPUs have dedicated
encryption hardware.

Connection establishment requires usually two message exchanges
between client and server, and is hence comparatively slow. Reusing
connections as much as possible minimizes these performance
overheads.

There are multiple options for protecting data at rest. Popular
database engines such as SQL Server and Oracle have features
such as Transparent Data Encryption (TDE) that provides efficient
file level encryption. Finer grain encryption mechanisms, down to
field level, are increasingly required in regulated industries such as
finance. Cloud providers offer various features too, ensuring data
stored in cloud based data stores is secure. The overheads of
secure data at rest are simply costs that must be borne to achieve
security - studies suggest the overheads are in the 5-10% range.

Another perspective on security is the CIA Triad,  which stands for
Confidentiality, Integrity and Availability. The first two are pretty
much what I have described above. Availability refers to a system’s
ability to operate reliably under attack from adversaries. Such
attacks might be attempts to exploit a system design weakness to
bring the system down. Another attack is a classic Distributed Denial
of Service (DDOS) where an adversary gains control over multitudes
of systems and devices and coordinates a flood of requests that
effectively make a system unavailable.

In general, security and scalability are opposing forces. Security
necessarily introduces performance degradation. The more layers of
security a system emcompasses, then a greater burden is placed on
performance, and hence scalability. This eventually affects the
bottom line—more powerful and expensive resources are required to
achieve a system’s performance and scalability requirements.

Manageability

4
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As the systems we build become more distributed and complex in
their interactions, their management and operations comes to the
fore. We need to pay attention to ensuring every component is
operating as expected, and the performance is continuing to meet
expectations.

The platforms and technologies we use to build our systems provide
a multitude of standards-based and proprietary monitoring tools that
can be used for these purposes. Monitoring dashboards can be used
to check the ongoing health and behavior of each system
component. These dashboards, built using highly customizable and
open tools such as Grafana, can display system metrics, and send
alerts when various thresholds or events occur that need operator
attention. The term used for this sophisticated monitoring capability
is observability.

There are various APIs such as Java’s MBeans, AWS CloudWatch
and Python’s AppMetrics that engineers can utilize to capture
custom metrics for their systems - a typical example is request
response times. Using these APIs, monitoring dashboards can be
tailored to provide live charts and graphs that give deep insights into
a system’s behaviour. Such insights are invaluable to ensure
ongoing operations and highlight parts of the system that may need
optimization or replication.

Scaling a system invariably means adding new system components -
hardware and software. As the number of components grows, we
have more moving parts to monitor and manage. This is never effort-
free. It adds complexity to the operations of the system as and costs
in terms of monitoring code that needs developing and observability
platform evolution.

The only way to control the costs and complexity of manageability as
we scale is through automation. This is where the world of devops
enters the scene. Devops is a set of practices and tooling that
combine software development and system operations. Devops
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reduces the development life cycle for new features, and automates
ongoing test, deployment, management, upgrade and monitoring of
the system. It’s an integral part of any successful scalable system.

Summary and Further Reading
The ability to scale an application quickly and cost-effectively should
be a defining quality of the software architecture of contemporary
Internet-facing applications. We have two basic ways to achieve
scalability, namely increasing system capacity, typically through
replication, and performance optimization of system components.

Like any software architecture quality attribute, scalability cannot be
achieved in isolation. It inevitably involves complex trade-offs that
need to be tuned to an application’s requirements. I’ll be discussing
these fundamental trade-offs throughout the remainder of this book,
starting in fact in the next chapter when I describe concrete
architecture approaches to achieve scalability.
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Chapter 2. Distributed Systems
Architectures: An Introduction

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

In this chapter I’ll broadly cover some of the fundamental
approaches to scaling a software system. You can regard this as a
30,000 feet view of the content that is covered in Parts 2, 3 and 4 of
this book. I’ll take you on a tour of the main architectural approaches
used for scaling a system, and give pointers to later chapters where
these issues are dealt with in depth. You can regard this as a “Why”
we need these architectural tactics, and the remainder of the book
explaining the “How”.

The type of systems this book is oriented towards are the internet-
facing systems we all utilize every day. I’ll let you name your favorite.
These systems accept requests from users through Web and mobile
interfaces, store and retrieve data based on user requests or events
(e.g. a GPS-based system), and have some intelligent features such
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as providing recommendations or notifications based on previous
user interactions.

I’ll start with a simple system design and show how it can be scaled.
In the process, I’ll introduce several concepts that will be covered in
much more detail later in this book. Hence this chapter just gives a
broad overview of these concepts and how they aid in scalability –
truly a whirlwind tour!

Basic System Architecture
Virtually all massive scale systems start off small and grow due to
their success. It’s common, and sensible, to start with a development
framework such as Ruby on Rails or Django or equivalent, which
promotes rapid development to get a system quickly up and running.
A typical, very simple software architecture for ‘starter’ systems
which closely resembles what you get with rapid development
frameworks is shown in Figure 2-1. This comprises a client tier,
application service tier, and a database tier. If you use Rails or
equivalent, you also get a framework which hardwires a Model-View-
Controller (MVC) pattern for Web application processing and an
Object-Relational Mapper (ORM) that generates SQL queries.

With this architecture, users submit requests to the application from
their mobile app or Web browser. The magic of Internet networking
(see Chapter 3) delivers these requests to the application service
which is running on a machine hosted in some corporate or
commercial cloud data center. Communications uses a standard
application-level network protocol, typically HTTP.

The application service runs code that supports an application
programming interface (API) that clients use to format data and send
HTTP requests to. Upon receipt of a request, the service executes
the code associated with the requested API. In the process, it may
read from or write to a database or some other external system,
depending on the semantics of the API. When the request is



complete, the service sends the results to the client to display in their
app or browser.

Figure 2-1. Basic Multi-Tier Distributed Systems Architecture

Many, if not most systems conceptually look exactly like this. The
application service code exploits a server execution environment that
enables multiple requests from multiple users to be processed
simultaneously. There’s a myriad of these application server
technologies – JEE and Spring for Java, Flask for Python – that are
widely used in this scenario.

This approach leads to what is generally known as a monolithic
architecture.  Monoliths tend to grow in complexity as the application
becomes more feature rich. All API handlers are built into the same
server code body. This eventually makes it hard to modify and test
rapidly, and the execution footprint can become extremely
heavyweight as all the API implementations run in the same
application service.

Still, if request loads stay relatively low, this application architecture
can suffice. The service has the capacity to process requests with
consistently low latency. But if request loads keep growing, this
means latencies will increase as the service has insufficient
CPU/memory capacity for the concurrent request volume and hence
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requests will take longer to process. In these circumstances, our
single server is overloaded and has become a bottleneck.

In this case, the first strategy for scaling is usually to ‘scale up’ the
application service hardware. For example, if your application is
running on AWS, you might upgrade your server from a modest
t3.xlarge instance with 4 (virtual) CPUs and 16GBs of memory to a
t3.2xlarge instance which doubles the number of CPUs and memory
available for the application.

Scale up is simple. It gets many real-world applications a long way to
supporting larger workloads. It obviously just costs more money for
hardware, but that’s scaling for you.

It’s inevitable however that for many applications the load will grow
to a level which will swamp a single server node, no matter how
many CPUs and how much memory you have. That’s when you
need a new strategy – namely scaling out, or horizontal scaling, that
I touched on in Chapter 1.

Scale Out
Scaling out relies on the ability to replicate a service in the
architecture and run multiple copies on multiple server nodes.
Requests from clients are distributed across the replicas so that in
theory, if we have N replicas, each server node processes
{#requests/N}. This simple strategy increases an application’s
capacity and hence scalability.

To successfully scale out an application, you need two fundamental
elements in our design. As illustrated in Figure 2-2, these are:

Load balancer

All user requests are sent to a load balancer, which chooses a
service replica target to process the request. Various strategies
exist for choosing a target service, all with the core aim of
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keeping each resource equally busy. The load balancer also
relays the responses from the service back to the client. Most
load balancers belong to a class of Internet components known
as reverse proxies,  which control access to server resources for
client requests. As an intermediary, reverse proxies add an extra
network hop for a request, and hence need to be extremely low
latency to minimize the overheads they introduce. There are
many off-the-shelf load balancing solutions as well as cloud-
provider specific ones, and I’ll cover the general characteristics of
these in much more detail in Chapter 5.

Stateless services

For load balancing to be effective and share requests evenly, the
load balancer must be free to send consecutive requests from the
same client to different service instances for processing. This
means the API implementations in the services must retain no
knowledge, or state, associated with an individual client’s
session. When a user accesses an application, a user session is
created by the service and a unique session is managed
internally to identify the sequence of user interactions and track
session state. A classic example of session state is a shopping
cart. To use a load balancer effectively, the data representing the
current contents of a user’s cart must be stored somewhere –
typically a data store – such that any service replica can access
this state when it receives a request as part of a user session. In
Figure 2-2 this is labeled as a Session Store.
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Figure 2-2. Scale out Architecture

Scale out is attractive as, in theory, you can keep adding new
(virtual) hardware and services to handle increased request loads
and keep request latencies consistent and low. As soon as you see
latencies rising, you deploy another server instance. This requires no
code changes with stateless services and hence is relatively cheap –
you just pay for the hardware you deploy.

Scale out has another highly attractive feature. If one of the services
fails, the requests it is processing will be lost. But as the failed
service manages no session state, these requests can be simply
reissued by the client and sent to another service instance for
processing. This means the application is resilient to failures in the
service software and hardware, thus enhancing the application’s
availability.

Unfortunately, as with any engineering solution, simple scaling out
has limits. As you add new service instances, the request processing
capacity grows, potentially infinitely. At some stage however, reality
will bite and the capability of your single database to provide low
latency query responses will diminish. Slow queries will mean longer
response times for clients. If requests keep arriving faster than they



are being processed, some system component will become
overloaded and fail due to resource exhaustion, and clients will see
exceptions and request timeouts. Essentially your database has
become a bottleneck that you must engineer away in order to scale
your application further.

Scaling the Database with Caching
Scaling up by increasing the number of CPUs, memory and disks in
a database server can go a long way to scaling a system. For
example, at the time of writing Google Cloud Platform can provision
a SQL database on a db-n1-highmem-96 node, which has 96
vCPUs, 624GB of memory, 30TBs of disk and can support 4000
connections. This will cost somewhere between $6K and $16K per
year, which sounds a good deal to me! Scaling up is a very common
database scalability strategy.

Large databases need constant care and attention from highly skilled
database administrators to keep them tuned and running fast.
There’s a lot of wizardry in this job – e.g. query tuning, disk
partitioning, indexing, on-node caching – and hence database
administrators are valuable people that you want to be very nice to.
They can make your application services highly responsive indeed.

In conjunction with scale up, a highly effective approach is querying
the database as infrequently as possible from your services. This
can be achieved by employing distributed caching in the scaled out
service tier. Caching stores recently retrieved and commonly
accessed database results in memory so they can be quickly
retrieved without placing a burden on the database. For example, the
weather forecast for the next hour won’t change, but may be queried
by 100s or thousands of clients. You can use a cache to store the
forecast once it is issued. All client requests will read from the cache
until the forecast expires.



For data that is frequently read and changes rarely, your processing
logic can be modified to first check a distributed cache, such as a
Redis  or memcached  store. These cache technologies are
essentially distributed Key-Value stores with very simple APIs. This
scheme is illustrated in Figure 2-3. Note that the Session Store from
Figure 2-2 has disappeared. This is because you can use a general-
purpose distributed cache to store session identifiers along with
application data.

Accessing the cache requires a remote call from your service. If the
data you need is in the cache, on a fast network you can expect sub-
millisecond cache reads. This is far less expensive than querying the
shared database instance, and also doesn’t require a query to
contend for typically scarce database connections.

Introducing a caching layer also requires your processing logic to be
modified to check for cached data. If what you want is not in the
cache, your code must still query the database and load the results
into the cache as well as return it to the caller. You also need to
decide when to remove or invalidate cached results – this depends
on the nature of your data (e.g. weather forecasts expire naturally)
and your application’s tolerance to serving out of date, known as
stale, results to clients.
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Figure 2-3. Introducing Distributed Caching

A well-designed caching scheme can be absolutely invaluable in
scaling a system. Caching works great for data that rarely changes
and is accessed frequently, such as inventory catalogs, event
information and contact data. If you can handle a large percentage,
like 80% or more, of read requests from your cache, then you
effectively buy extra capacity at your databases as they never see a
large proportion of requests.

Still, many systems need to rapidly access terabyte and larger data
stores that make a single database effectively prohibitive. In these
systems, a distributed database is needed.

Distributing the Database
There are more distributed database technologies around in 2020
than you probably want to imagine. It’s a complex area, and one I’ll
cover extensively later in the chapters in Part 3 of this book. In very
general terms, there are two major categories:



Distributed SQL stores from major vendors such as Oracle
and IBM. These enable organizations to scale out their SQL
database relatively seamlessly by storing the data across
multiple disks that are queried by multiple database engine
replicas. These multiple engines logically appear to the
application as a single database, hence minimizing code
changes. There is also a class of ‘born distributed’ SQL
databases that are commonly known as NewSQL stores that
fit in this category.

Distributed so-called NoSQL stores from a whole array of
vendors. These products use a variety of data models and
query languages to distribute data across multiple nodes
running the database engine, each with their own locally
attached storage. Again, the location of the data is
transparent to the application, and typically controlled by the
design of the data model using hashing functions on
database keys. Leading products in this category are
Cassandra, MongoDB and Neo4j.



Figure 2-4. Scaling the Data Tier using a Distributed Database

Figure 2-4 shows how our architecture incorporates a distributed
database. As the data volumes grow, a distributed database has
features to enable the number of storage nodes to be increased. As
nodes are added (or removed), the data managed across all nodes
is rebalanced to attempt to ensure the processing and storage
capacity of each node is equally utilized.

Distributed databases also promote availability. They support
replicating each data storage node so if one fails or cannot be
accessed due to network problems, another copy of the data is
available. The models utilized for replication and the trade-offs these
require (spoiler – consistency) are covered in later chapters.

If you are utilizing a major cloud provider, there are also two
deployment choices for your data tier. You can deploy your own
virtual resources and build, configure, and administer your own
distributed database servers. Alternatively, you can utilize cloud-
hosted databases. The latter simplifies the administrative effort
associated with managing, monitoring and scaling the database, as



many of these tasks essentially become the responsibility of the
cloud provider you choose. As usual, the no free lunch principle
applies.

Multiple Processing Tiers
Any realistic system that you need to scale will have many different
services that interact to process a request. For example, accessing a
Web page on the Amazon.com web site can require in excess of 100
different services being called before a response is returned to the
user.

The beauty of the stateless, load balanced, cached architecture I am
elaborating in this chapter is that it’s possible to extend the core
design principles and build a multi-tiered application. In fulfilling a
request, a service can call one or more dependent services, which in
turn are replicated and load-balanced. A simple example is shown in
Figure 2-5. There are many nuances in how the services interact,
and how applications ensure rapid responses from dependent
services. Again, I’ll cover these in detail in later chapters.
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Figure 2-5. Scaling Processing Capacity with Multiple Tiers

This design also promotes having different, load balanced services
at each tier in the architecture. For example, Figure 2-6 illustrates
two replicated Internet-facing services that both utilized a core
service that provides database access. Each service is load
balanced and employs caching to provide high performance and
availability. This design is often used to provide a service for Web
clients and a service for mobile clients, each of which can be scaled
independently based on the load they experience. Its commonly
called the Backend For Frontend (BFF) pattern.8



Figure 2-6. Scalable Architecture with Multiple Services

In addition, by breaking the application into multiple independent
services, you can scale each based on the service demand. If for
example you see an increasing volume of requests from mobile
users and decreasing volumes from Web users, it’s possible to
provision different numbers of instances for each service to satisfy
demand. This is a major advantage of refactoring monolithic
applications into multiple independent services, which can be
separately built, tested, deployed and scaled. I’ll explore some of the
major issues in designing systems based on such services, known
as microservices, in Chapter 9.

Increasing Responsiveness
Most client application requests expect a response. A user might
want to see all auction items for a given product category or see the



real estate that is available for sale in a given location. In these
examples, the client sends a request and waits until a response is
received. This time interval between sending the request and
receiving the result is the response time of the request. You can
decrease response times by using caching and precalculated
responses, but many requests will still result in a database access.

A similar scenario exists for requests that update data in an
application. If a user updates their delivery address immediately prior
to placing an order, the new delivery address must be persisted so
that the user can confirm the address before they hit the ‘purchase’
button. The response time in this case includes the time for the
database write, which is confirmed by the response the user
receives.

Some update requests however can be successfully responded to
without fully persisting the data in a database. For example, the
skiers and snowboarders amongst you will be familiar with lift ticket
scanning systems that check you have a valid pass to ride the lifts
that day. They also record which lifts you take, the time you get on,
and so on. Nerdy skiers/snowboarders can then use the resort’s
mobile app to see how many lifts they ride in a day.

As a person waits to get on a lift, a scanner device validates the
pass using an RFID chip reader. The information about the rider, lift,
and time are then sent over the Internet to a data capture service
operated by the ski resort. The lift rider doesn’t have to wait for this
to occur, as the response time could slow down the lift loading
process. There’s also no expectation from the lift rider that they can
instantly use their app to ensure this data has been captured. They
just get on the lift, talk smack with their friends, and plan their next
run.

Service implementations can exploit this type of scenario to improve
responsiveness. The data about the event is sent to the service,
which acknowledges receipt and concurrently stores the data in a



remote queue for subsequent writing to the database. Distributed
queueing platforms can be used to reliably sent data from one
service to another, typically but not always in a First-In First-Out
(FIFO) mode.

Writing a message to a queue is typically much faster than writing to
a database, and this enables the request to be successfully
acknowledged much more quickly. Another service is deployed to
read messages from the queue and write the data to the database.
When the user checks their lift rides – maybe 3 hours or 3 days later
– the data has been persisted successfully in the database.

The basic architecture to implement this approach is illustrated in
Figure 2-7.

Figure 2-7. Increasing Responsiveness with Queueing



Whenever the results of a write operation are not immediately
needed, an application can use this approach to improve
responsiveness and hence scalability. Many queueing technologies
exist that applications can utilize, and I’ll discuss how these operate
in Chapter 7. These queueing platforms all provide asynchronous
communications. A producer service writes to the queue, which acts
as temporary storage, while another consumer service removes
messages from the queue and makes the necessary updates to, in
our example, a database that stores skier lift ride details.

The key is that the data eventually gets persisted. Eventually
typically means a few seconds at most but use cases that employ
this design should be resilient to longer delays without impacting the
user experience.

Systems and Hardware Scalability
Even the most carefully crafted software architecture and code will
be limited in terms of scalability if the services and datastores run on
inadequate hardware. The open source and commercial platforms
that are commonly deployed in scalable systems are designed to
utilize additional hardware resources in terms of CPU cores, memory
and disks. It’s a balancing act between achieving the performance
and scalability you require, and keeping your costs as low as
possible.

That said, there are some cases where upgrading the number of
CPU cores and available memory is not going to buy you more
scalability. For example:

A code is single threaded. Running this on a node with more cores is
not going to improve performance. It’ll just use one care at any time.
The rest are simply not utilized.

A multithreaded code contains many serialized sections, meaning
that only one threaded can proceed at a time to ensure the results



are correct. This phenomena is described by Amdahl’s Law. This
gives us a way to calculate the theoretical speedup of a code when
adding more CPU cores based on the amount of code that executes
serially.

Two data points from Amdahl’s Law are:

If only 5% of a code executes serially, the rest in parallel,
adding more than 2048 cores has essentially no effect

If 50% of a code executes serially, the rest in parallel, adding
more than 8 cores has essentially no effect

This demonstrates why efficient multithreaded code is essential to
achieving scalability. If your code is not running as highly
independent tasks implemented as threads, then not even money
will buy you scalability. That’s why I devote Chapter 4 to the topic of
multithreading - it’s a core knowledge component for building
scalable distributed systems.

To illustrate the effect of upgrading hardware, Figure 2-8 shows how
the throughput of a benchmark system improves as the database is
deployed on more powerful (and expensive) hardware.  The
benchmark employs a Java service which accepts requests from a
load generating client, queries a database and returns the results to
the client. The client, service and database run on different hardware
resources deployed in the same regions in the AWS cloud.

In the tests, the number of concurrent requests grows from 32 to 256
(x-axis) and each line represents the system throughput (y-axis) for a
different hardware configuration on the AWS EC2’s Relational
Database Service (RDS). The different configurations are listed at
the top of the chart, with the least powerful on the left and most
powerful on the right. Each client sends a fixed number of requests
synchronously over HTTP, with no pause between receiving results
from one request and sending the nest. This consequently exerts a
high request load on the server.
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From this chart, it’s possible to make some straightforward
observations:

1. In general, the more powerful hardware selected for the
database, the higher the throughput. That is good

2. The difference between the db.t2.xlarge and db.t2.2xlarge
instances in terms of throughput is minimal. This could be
because the service tier is becoming a bottleneck, or our
data base model and queries are not exploiting the additional
resources of the db.t2.2xlarge RDS instance. Regardless -
more bucks, no bang.

3. The two least powerful instances perform pretty well until the
request load isincreased to 256 concurrent requests. The dip
in throughput for these two instances indicates they are
overloaded and things will only get worse if the request load
increases.



Figure 2-8. An Example of Scaling Up a Database Server

Hopefully this simple example illustrates why scaling through simple
upgrading of hardware needs to be approached carefully. Adding
more hardware always increases costs, but may not always give the
performance improvement you expect. Running simple experiments
and taking measurements is essential for assessing the effects of
hardware upgrades. It gives you solid data to guide your design, and
justify costs to stakeholders.

Summary and Further Reading
In this chapter I’ve provided a whirlwind tour of the major approaches
you can utilize to scale out a system as a collection of
communicating services and distributed databases. Much detail has
been brushed over, and as you have no doubt realized - in software
systems the devil is in the detail. Subsequent chapters will therefore



progressively start to explore these details, starting with some
fundamental characteristics of distributed systems in Chapter 3 that
everyone should be aware of.

Another area this chapter has skirted around is the subject of
software architecture. I’ve used the term services for distributed
components in an architecture that implement application business
logic and database access. These services are independently
deployed processes that communicate using remote
communications mechanisms such as HTTP. In architectural terms,
these services are most closely mirrored by those in the Service
Oriented Architecture (SOA) pattern, an established architectural
approach for building distributed systems. A more modern evolution
of this approach revolves around microservices. These tend to be
more cohesive, encapsulated services that promote continuous
development and deployment.

If you’d like a much more in-depth discussion of these issues, and
software architecture concepts in general, then Mark Richards’ and
Neal Ford’s book  is an excellent place to start.

Finally, there’s a class of big data software architectures that address
some of the issues that come to the fore with very large data
collections. One of the most prominent is data reprocessing. This
occurs when data that has already been stored and analyzed needs
to be re-analyzed due to code or business rule changes. This
reprocessing may occur due to software fixes, or the introduction of
new algorithms that can derive more insights from the original raw
data. There’s a good discussion of the Lambda and Kappa
architectures, both of which are prominent in this space, in Jay
Krepps’s article, Questioning the Lambda Architecture.

1  https://en.wikipedia.org/wiki/Flask_(web_framework)

2  Mark Richards and Neal Ford, Fundamentals of Software Architecture: An
Engineering Approach 1st edition, O’Reilly Media, 2020.
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3  https://aws.amazon.com/ec2/instance-types/

4  https://en.wikipedia.org/wiki/Reverse_proxy

5  https://redis.io/

6  https://memcached.org/

7  https://www.allthingsdistributed.com/2019/08/modern-applications-at-
aws.html

8  https://samnewman.io/patterns/architectural/bff/

9  Results are courtesy of Ruijia Xiao from Northeastern University, Seattle

10  Mark Richards and Neal Ford, Fundamentals of Software Architecture: An
Engineering Approach, 1st Edition, O’Reilly Media, 2020
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Chapter 3. Distributed Systems
Essentials

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

As I described in Chapter 2, scaling a system naturally involves
adding multiple independently moving parts. We run our software
components on multiple machines and our databases across
multiple storage nodes, all in the quest of adding more processing
capacity. Consequently, our solutions are distributed across multiple
machines in multiple locations, with each machine processing events
concurrently, and exchanging messages over a network.

This fundamental nature of distributed systems has some profound
implications on the way we design, build and operate our solutions.
This chapter provides the basic ‘nature of the beast’ information you
need to know to appreciate the issues and complexities of distributed
software systems. We briefly cover communications networks
hardware and software, remote method invocation, how to deal with

mailto:vwilson@oreilly.com


the implications of communications failures, distributed coordination,
and the thorny issue of time in distributed systems.

Communications Basics
Every distributed system has software components that
communicate over a network. If a mobile banking app requests the
user’s current bank account balance, a (very simplified) sequence of
communications occurs along the lines of:

1. The mobile banking app sends a request over the cellular
network addressed to the bank to retrieve the user’s bank
balance.

2. The request is routed across the Internet to where the bank’s
web servers are located.

3. The bank’s web server authenticates the request (checks if it
originated from the supposed user) and sends a request to a
database server for the account balance.

4. The database server reads the account balance from disk
and returns it to the web server

5. The web server sends the balance in a reply message
addressed to the app, which is routed over the Internet and
the cellular network until the balance magically appears on
the screen of the mobile device

It almost sounds simple when you read the above, but in reality,
there’s a huge amount of complexity hidden beneath this sequence
of communications. Let’s examine some of these complexities in the
following sections.

Communications Hardware



The bank balance request example above will inevitably traverse
multiple different networking technologies and devices. The global
Internet is a heterogeneous machine, comprising different types of
network communications channels and devices that shuttle many
millions of messages a second across networks to their intended
destinations.

Different types of communications channels exist. The most obvious
categorization is wired versus wireless. For each category there are
multiple network transmission hardware technologies that can ship
bits from one machine to another. Each technology has different
characteristics, and the ones we typically care about are speed and
range.

For physically wired networks, the two most common types are local
area networks (LANs) and wide area networks (WANs). LANs are
networks that can connect devices at ‘building scale’, being able to
transmit data over a small number (e.g. 1-2) of kilometers.
Contemporary LANs can transport between 100 megabits per
second (Mbps) to 1 gigabits per second (Gbps). This is known as the
network’s bandwidth, or capacity. The time taken to transmit a
message across a LAN – the network’s latency – is sub-millisecond
with modern LAN technologies.

WANs are networks that traverse the globe and make up what we
collectively call the Internet. These long-distance connections are the
high speed data ‘pipelines’ connecting cities and countries and
continents with fiber optic cables. These cables support a networking
technology known as wavelength division multiplexing  which makes
it possible to transmit up 171 Gbps over 400 different channels,
giving more than 70 Terabits per second (Tbps) of total bandwidth for
a single fiber link. The fiber cables that span the world normally
comprise four or more strands of fiber, giving bandwidth capacity of
hundreds of Tbps for each cable.
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Latency is more complicated with WANs however. WANs transmit
data over 100s to 1000s of kilometers, and the maximum speed that
the data can travel in fiber optic cables is the theoretical speed of
light. In reality, these cables can’t reach the speed of light, but do get
pretty close to it as we can see in Table 3-1.

Table 3-1. WAN Speeds

 
            
 
                Path 
              

 
                
Distance 
              

 
                Time - 
Speed of Light 
              

 
                Time - Fiber 
Optic Cable  
              

 
            
 
                New York to San 
Francisco 
              

4,148 km 14 ms 21 ms

 
            
 
                New York to 
London 
              

5,585 km 19 ms 28 ms

 
            
 
                New York to 
Sydney 
              

15,993 km 53 ms 80 ms

 
          

Actual times will be slower than this as the data needs to pass
through networking equipment known as routers . The global
Internet has a complex hub-and-spoke topology, with many potential
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paths between nodes in the network. Routers are therefore
responsible for transmitting data on the physical network
connections to ensure data is transmitted across the Internet from
source to destination.

Routers are specialized, high speed devices that can handle several
hundred Gbps of network traffic, pulling data off incoming
connections and sending the data out to different outgoing network
connections based on their destination. Routers at the core of the
Internet comprise racks of these devices and hence can process 10s
to hundreds of Tbps. This is how you and 1000’s of your friends get
to watch a steady video stream on Netflix at the same time.

Wireless technologies have different range and bandwidth
characteristics. Wi-Fi routers that we are all familiar with in our
homes and offices are wireless ethernet networks and use 802.11
protocols to send and receive data. The most widely used Wi-Fi
protocol, 802.11ac, allows for maximum (theoretical) data rates of up
to 5,400Mbps. The most recent 802.11ax protocol, also known as
Wi-Fi 6, is an evolution of 802.11ac technology that promises
increased throughput speeds of up to 9.6Gbps. The range of Wi-Fi
routers is of the order of 10’s of meters, and of course is affected by
physical impediments like walls and floors.

Cellular wireless technology uses radio waves to send data from our
phones to routers mounted on cell towers, which are generally
connected by wires to the core Internet for message routing. Each
cellular technology introduces improved bandwidth and other
dimensions of performance. The most common technology at the
time of writing is 4G LTE wireless broadband. 4G LTE is around 10
times faster than the older 3G, able to handle sustained download
speeds around 10 Mbps (peak download speeds are nearer 50
Mbps) and upload speeds between 2 and 5 Mbps.

Emerging 5G cellular networks promise 10x bandwidth
improvements over existing 4G, with 1-2 millisecond latencies



between devices and cell towers. This is a great improvement over
4G latencies which are in the 20-40 millisecond range. The trade-off
is range. 5G base station range operates at about 500m maximum,
whereas 4G provides reliable reception at distances of 10-15kms.

This whole collection of different hardware types for networking
comes together in the global Internet. The Internet is a
heterogeneous network, with many different operators around the
world and every type of hardware imaginable. Figure 3-1 shows a
simplified view of the major components that comprise the Internet.
Tier 1 networks are the global high-speed Internet backbone. There
are around 20 Tier 1 Internet Service Providers (ISPs) who manage
and control global traffic. Tier 2 ISPs are typically regional (e.g. one
country), have lower bandwidth than Tier 1 ISPs, and deliver content
to customers through Tier 3 ISPs. Tier 3 ISPs are the ones that
charge your exorbitant fees for your home Internet every month.

Figure 3-1. Simplified view of the Internet

There’s a lot more complexity to how the Internet works than
described here. That level of networking and protocol complexity is
beyond the scope of this chapter. From a distributed systems



software perspective, we need to understand more about the ‘magic’
that enables all this hardware to route messages from say my cell
phone, to my bank and back. This is where the IP protocol comes in.

Communications Software
Software systems on the Internet communicate using the Internet
Protocol suite.  The Internet Protocol suite specifies host
addressing, data transmission formats, message routing and delivery
characteristics. There are four abstract layers, which contain related
protocols that support the functionality required at that layer. These
are, from lowest to highest:

1. The data link layer, specifying communication methods for
data across a single network segment. This is implemented
by the device drivers and network cards that live inside your
devices.

2. The Internet layer specifies addressing and routing protocols
that make it possible for traffic to traverse the independently
managed and controlled networks that comprise the Internet.
This is the IP protocol in the Internet protocol suite.

3. The transport layer, specifying protocols for reliable and
best-effort host-to-host communications. This is where the
well-known TCP and UDP protocols live.

4. The application layer, which comprises several application
level protocols such as HTTP and SCP.

Each of the higher layer protocols builds on the features of the lower
layers. In the following, I’ll briefly cover the IP protocol for host
discovery and message routing, and the TCP and UDP transport
protocols that can be utilized by distributed applications.

Internet Protocol (IP)
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IP defines how hosts are assigned addresses on the Internet and
how messages are transmitted between two hosts who know each
other’s addresses.

Every device on the Internet has its own address. These are known
as Internet Protocol (IP) addresses. The location of an IP address
can be found using an Internet wide directory service known as
Domain Naming Service (DNS). DNS is a widely distributed,
hierarchical database that acts as the address book of the Internet.

The technology currently used to assign IP addresses, known as
Internet Protocol version 4 (IPv4), will eventually be replaced by its
successor, IPv6. IPv4 is a 32-bit addressing scheme that before long
will run out of addresses due to the number of devices connecting to
the Internet. IPv6 is a 128-bit scheme that will offer an (almost)
infinite number of IP addresses. As an indicator, in July 2020 about
33% of the traffic processed by Google.com  is IPv6.

DNS servers are organized hierarchically. A small number of root
DNS servers, which are highly replicated, are the starting point for
resolving an IP address. When an Internet browser tries to find a
web site, a network host known as the local DNS server that is
managed by your employer or ISP, will contact a root DNS server
with the requested host name. The root server replies with a referral
to a so-called authoritative DNS server that manages name
resolution for, in our banking example, .com addresses. There is an
authoritative name server for each top-level Internet domain (e.g.
.com, .org, .net, etc).

Next the local DNS server will query the .com DNS server, which will
reply with the address of the DNS server which knows about all the
IP addresses managed by mybank.com. This DNS is queried, and it
returns the actual IP address we need to communicate with the
application. The overall scheme is illustrated in Figure 3-2.
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Figure 3-2. Example DNS Lookup for mybank.com

The whole DNS database is highly geographically replicated so there
are no single points of failure, and requests are spread across
multiple physical servers. Local DNS servers also remember the IP
addresses of recently contacted hosts, which is possible as IP
addresses don’t change very often. This means the complete name
resolution process doesn’t occur for every site we contact.

Armed with a destination IP address, a host can start sending data
across the network as a series of IP data packets. IP has the task of
delivering data from the source to the destination host based on the
IP addresses in the packet headers. IP defines a packet structure
that contains the data to be delivered, along with header data
including source and destination IP addresses. Data sent by an
application is broken up into a series of packets which are
independently transmitted across the Internet.



IP is known as a best-effort delivery protocol. This means it does not
attempt to compensate for the various error conditions that can occur
during packet transmission. Possible transmission errors include
data corruption, packet loss and duplication. In addition, every
packet is routed across the Internet from source to destination
independently. Treating every packet independently is known as
packet-switching. This allows the network to dynamically respond to
conditions such as network link failure and congestion, and hence is
a defining characteristic of the Internet. This does mean however
that different packets may be delivered to the same destination via
different network paths, resulting in out-of-order delivery to the
receiver.

Because of this design, the IP is unreliable. If two hosts require
reliable data transmission, they need to add additional features to
make this occur. This is where the next layer in the IP protocol suite,
the transport layer, enters the scene.

Transmission Control Protocol (TCP)
Once an application or browser has discovered the IP address of the
server it wishes to communicate with, it can send messages using a
transport protocol API. This is achieved using Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP), which are the
established standard transport protocols for the IP network stack.

Distributed applications can choose which of these protocols to use.
Implementations are widely available in mainstream programming
languages such as Java, Python and C++. In reality, use of these
APIs is not common as higher-level programming abstractions hide
the details from most applications. In fact, the IP protocol suite
application layer contains several of these application-level APIs,
including HTTP, which is very widely used in mainstream distributed
systems.

Still, it’s important to understand TCP, UDP and their differences.
Most requests on the Internet are sent using TCP. TCP is:



Connection-oriented

Stream-oriented

Reliable

I’ll explain each of these below.

TCP is known as a connection-oriented protocol. Before any
messages are exchanged between applications, TCP uses a 3-step
handshake to establish a two-way connection between the client and
server applications. The connection stays open until the TCP client
calls close to terminate the connection with the TCP server. The
server responds by acknowledging the close request before the
connection is dropped.

Once a connection is established, a client sends a sequence of
requests to the server as a data stream. When a data stream is sent
over TCP, it is broken up into individual network packets, with a
maximum packet size of 65535 bytes. Each packet contains a
source and destination address, which is used by the underlying IP
protocol to route the messages across the network.

The Internet is a packet-switched network, which means every
packet is individually routed across the network. The route each
packet traverses can vary dynamically based on the conditions in the
network, such as link congestion or failure. This means the packets
may not arrive at the server in the same order they are sent from the
client. To solve this problem, a TCP sender includes a sequence
number in each packet so the receiver can reassemble packets into
a stream that is identical to the order they were sent.

Reliability is needed as network packets can be lost or delayed
during transmission between sender and receiver. To achieve
reliable packet delivery, TCP uses a cumulative acknowledgement
mechanism. This means a receiver will periodically send an
acknowledgement packet that contains the highest sequence
number of the packets received without gaps in the packet stream.



This implicitly acknowledges all packets sent with a lower sequence
number, meaning all have been successfully received. If a sender
doesn’t receive an acknowledgement within a timeout period, the
packet is resent.

TCP has many other features, such as checksums to check packet
integrity, and dynamic flow control to ensure a sender doesn’t
overwhelm a slow receiver by sending data too quickly. Along with
connection establishment and acknowledgments, this makes TCP a
relatively heavyweight protocol, which trades off reliability over
efficiency.

This is where UDP comes into the picture. UDP is a simple
connectionless protocol, which exposes the user’s program to any
unreliability of the underlying network. There is no guarantee of in
order delivery, or even delivery for that matter. It can be thought of as
a thin veneer (layer) on top of the underlying IP protocol, and
deliberately trades off raw performance over reliability.

This however is highly appropriate for many modern applications
where the odd lost packet has very little effect. Think streaming
movies, video conferencing and gaming, where one lost packet is
unlikely to be perceptible by a user.



Figure 3-3. Comparing TCP and UDP

Figure 3-3 depicts some of the major differences between TCP and
UDP. TCP incorporates a connection establishment 3-packet
handshake (SYN, SYN ACK), and piggybacks acknowledgements
(ACK) of packets so that any packet loss can be handled by the
protocol. There’s also a TCP connection close phase involving a 4-
way handshake that is not shown in the diagram. UDP dispenses
with connection establishment, tear down, acknowledgements and
retries. Hence applications using UDP need to be tolerant of packet
loss and client or server failures and behave accordingly.

Remote Method Invocation
It’s perfectly feasible to write our distributed applications using low-
level APIs that interact directly with the transport layer protocols TCP
and UDP. The most common approach is the standardized sockets



library - see the brief overview in the sidebar. This is something you’ll
hopefully never need to do, as sockets are complex and error prone.
Essentially sockets create a bi-directional pipe between two nodes
that you can use to send streams of data. There are luckily much
better ways to build distributed communications as I’ll describe in this
section. These approaches abstract away much of the complexity of
using sockets. However sockets lurk underneath, so some
knowledge is necessary.

AN OVERVIEW OF SOCKETS
A socket is one endpoint of a two-way network connection
between a client and a server. Sockets are identified by a
combination of the nodes’ IP address and an abstraction known
as a port. A port is a unique numeric identifier, which allows a
node to support communications for multiple applications running
on the node. Each {IP Address, port} combination can be
associated with an application. This combination forms a unique
address that is used by the transport layer to deliver data to the
correct application.

Each node can support 65,535 TCP ports and another 65,535
UDP ports. A connection is identified by a combination of source
socket and destination socket addresses. Once the connection is
created, the client sends data to the server in a stream, and the
server responds with results. The sockets library supports both
protocols, with the SOCK_STREAM option for TCP, and the
SOCK_DGRAM for UDP.

You can write your distributed applications directly to the sockets
API, which is an operating system core component. Socket APIs
are available in all mainstream programming languages. The
sockets library is however a low level, hard to use API, and
should be avoided unless you have a real need to write system
level code.



Using sockets, in our mobile banking example, the client might
request a balance for the user’s checking account. Ignoring specific
language issues (and security!!), the client could send a message
payload as follows over a connection to the server:
{“balance”, “000169990”}

In this message, “balance” represents the operation we want the
server to execute, and “000169990” is the bank account number.

In the server, we need to know that the first string in the message is
the operation identifier, and based on this value being “balance”, the
second is the bank account number. The server then uses these
values to presumably query a database, retrieve the balance and
send back the results, perhaps as a message formatted with the
account number and current balance, as below:
{“000169990”, “220.77”}

In any complex system, the server will support many operations. In
mybank.com, there might be for example “login”, “transfer”,
“address”, “statement”, “transactions”, and so on. Each will be
followed by different message payloads that the server needs to
interpret correctly to fulfill the client’s request.

What we are defining here is an application specific protocol. As long
as we send the necessary values in the correct order for each
operation, the server will be able to respond correctly. If we have an
erroneous client that doesn’t adhere to our application protocol, well,
our server needs to do thorough error checking.

The socket library provides a primitive, low level method for client-
server communications. It provides highly efficient communications
but is difficult to correctly implement and evolve the application
protocol to handle all possibilities. There are better mechanisms.

Stepping back, if we were defining the mybank.com server interface
in an object-oriented language such as Java, we would have each
operation it can process as a method. Each method is passed an



appropriate parameter list for that operation, as shown in the
example code below.
// Simple mybank.com server interface 
public interface MyBank { 
    public float balance  (String accNo); 
    public boolean  statement(String month) ; 
    // other operations 
}

 

There are several advantages of having such an interface, namely:

Calls from the client to the server can be statically checked
by the compiler to ensure they are of the correct format and
argument types

Changes in the server interface (e.g. add a new parameter)
force changes in the client code to adhere to the new
method signature

The interface is clearly defined by the class definition, and
hence straightforward for a client programmer to understand
and utilize

These benefits of an explicit interface are of course well known in
software engineering. The whole discipline of object-oriented design
is pretty much based upon these foundations, where an interface
defines a contract between the caller and callee. Compared to the
implicit, application protocol we need to program to with sockets, the
advantages are significant.

This fact was recognized reasonably early in the creation of
distributed systems. Since the early 1990’s, we have seen an
evolution of technologies that enable us to define explicit server
interfaces and call these across the network using essentially the
same syntax as we would in a sequential program. A summary of the
major approaches is given in Table 3-2. Collectively they are known



as Remote Procedure Call (RPC), or Remote Method Invocation
(RMI) technologies.

Table 3-2. Summary of major RPC/RMI Technologies



 
          
 
              Technology 
            

 
              Dates 
            

 
              Main features 
            

 
          
 
              Distributed 
Computing 
Environment (DCE) 
               
            

Early 1990s DCE RPC provides a standardized 
approach for client-server systems. 
Primary languages were C/C++. 

 
          
 
              Common 
Object Request 
Broker 
Architecture 
(CORBA) 
               
            

Early 1990s Facilitates language-neutral client-server 
communications based on an object-
oriented Interface Definition Language 
(IDL). Primary language support in C/C++, 
Java, Python, Ada. 

 
          
 
              Java 
Remote Method 
Invocation (RMI) 
               
            

Late 1990s A pure Java-based remote method 
invocation that facilitates distributed client-
server systems with the same semantics 
as Java objects.

 
          
 
              XML 
Web Services  
            

2000 Supports client-server communications based 
on HTTP and XML. Servers define their 
remote interface in the Web Services 
Description Language (WSDL)

 
        

a

b

c



a  http://www.opengroup.org/dce/ 

b  http://www.corba.org 

c  https://docs.oracle.com/javase/9/docs/specs/rmi/index.html 

While the syntax and semantics of these RPC/RMI technologies
vary, the essence of how each operates is the same. Let’s continue
with our Java example of mybank.com to use this as an example of
the whole class of approaches. Java offers a Remote Method
Invocation (RMI) API for building client-server applications.

Using Java RMI, we can trivially make our MyBank interface
example from above into a remote interface, as illustrated below.
import java.rmi.*; 
// Simple mybank.com server interface 
public interface MyBank extends Remote{ 
    public float balance  (String accNo) 
         throws RemoteException; 
    public boolean  statement(String month) 
         throws RemoteException ; 
    // other operations 
 }

The java.rmi.Remote interface serves as a marker to inform the
Java compiler we are creating an RMI server. In addition, each
method must throw java.rmi.RemoteException. These
exceptions represent errors that can occur when a distributed call
between two objects is invoked over a network. The most common
reasons for such an exception would be a communications failure or
the server object having crashed.

We then must provide a class that implements this remote interface.
The sample code below shows an extract of the server
implementation - the complete code for this example is in this book’s
code github repository.
public class MyBankServer extends UnicastRemoteObject 
                          implements MyBank  { 
   // constructor/method implementations omitted 
   public static void main(String args[]){ 

http://www.opengroup.org/dce/
https://docs.oracle.com/javase/9/docs/specs/rmi/index.html


        try{ 
          MyBankServer server=new MyBankServer(); 
          // create a registry in local JVM on default port 
          Registry registry = 
LocateRegistry.createRegistry(1099); 
          registry.bind("MyBankServer", server); 
          System.out.println("server ready"); 
        }catch(Exception e){ 
                 // code omitted for brevity} 
        } 
   }

Points to note are:

The server extends the UnicastRemoteObject class. This
essentially provides the functionality to instantiate a remotely
callable object.

Once the server object is constructed, its availability must be
advertised to remote clients. This is achieved by storing a
reference to the object in a system service known as the RMI
Registry, and associating a logical name with it – in this
example, MyBankServer. The registry is a simple directory
service that enables clients to look up the location (network
address and object reference) of and obtain a reference to
an RMI server by simply supplying the logical name it is
associated with in the registry.

An extract from the client code to connect to the server is shown
below. It obtains a reference to the remote object by performing a
lookup operation (line 3) in the RMI Registry and specifying the
logical name that identifies the server. The reference returned by the
lookup operation can then be used to call the server object in the
same manner a local object. However there is a difference – the
client must be ready to catch a RemoteException that will be
thrown by the Java runtime when the server object cannot be
reached.



 // obtain a remote reference to the server  
 MyBank bankServer= 
        
(MyBank)Naming.lookup("rmi://localhost:1099/MyBankServer"); 
 //now we can call the server 
 System.out.println(bankServer.balance("00169990"));

 

Figure 3-4 depicts the call sequence amongst the components that
comprise a RMI system. The Stub and Skeleton are objects
generated by the compiler from the RMI interface definition, and
these facilitate the actual remote communications. The skeleton is in
fact a TCP network endpoint (host, port) that listens for calls to the
associated server.

The sequence of operations is as follows:

1. When the server starts, its logical reference is stored in the
RMI Registry. This entry contains the Java client stub that
can be used to make remote calls to the server.

2. The client queries the registry, and the stub for the server is
returned.

3. The client stub accepts a method call to the server interface
from the Java client implementation.

4. The stub transforms the request into one or more network
packets that are sent to the server host. This transformation
process is known as marshalling.

5. The skeleton accepts network requests from the client, and
unmarshalls the network packet data into a valid call to the
RMI server object implementation. Unmarshalling is the
opposite of marshalling - it takes a sequence of network
packets and transforms them into a call to an object.

6. The skeleton waits for the method to return a response.



7. The skeleton marshalls the method results into a network
reply packet that is sent the client

8. The stub unmarshalls the data passes the result to the Java
client call site

Figure 3-4. Schematic depicting the call sequence for establishing a connection
and making a call to a RMI server object

This Java RMI example illustrates the basics that are used for
implementing any RPC/RMI mechanism, even in modern languages
like Erlang  and Go . You are most likely to encounter Java RMI
when using the Java Enterprise Edition’s (JEE) Enterprise Java
Bean (EJB) technology. EJB’s are a server side component model
built on RMI, which have seen wide usage in the last 20 or so years
in enterprise systems.

Regardless of the precise implementation, the basic attraction of
RPC/RMI approaches is to provide an abstract calling mechanism
that supports location transparency for clients making remote server
calls. Location transparency is provided by the Registry, or in general
any mechanism that enables a client to locate a server through a
directory service. This means it is possible for the server to update
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its network location in the directory without affecting the client
implementation.

RPC/RMI is not without its flaws. Marshalling and unmarshalling can
become inefficient for complex object parameters. Cross language
marshalling – client in one language, server in another – can cause
problems due to types being represented differently in different
languages, causing subtle incompatibilities. And if a remote method
signature changes, all clients need to obtain a new compatible stub
which can be cumbersome in large deployments.

For these reasons, most modern systems are built around simpler
protocols based on HTTP and using JSON for parameter
representation. Instead of operation names, HTTP verbs (PUT, GET,
POST, etc) have associated semantics that are mapped to a specific
URL. This approach originated in the work by Roy Fielding on the
REST approach . REST has a set of semantics that comprise a
RESTful architecture style, and in reality, most systems do not
adhere to these. We’ll discuss REST and HTTP API mechanisms in
the Chapter 5.

Partial Failures
The components of distributed systems communicate over a
network. In communications technology terminology, the shared local
and wide area networks that our systems communicate over are
known as asynchronous networks.

With asynchronous networks:

Nodes can choose to send data to other nodes at any time

The network is half-duplex, meaning that one node sends a
request and must wait for a response from the other. These
are two separate communications.
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The time for data to be communicated between nodes is
variable, due to reasons like network congestion, dynamic
packet routing and transient network connection failures.

The receiving node may not be available due to a software
or machine crash.

Data can be lost. In wireless networks, packets can be
corrupted and hence dropped due to weak signals or
interference. Internet routers can drop packets during
congestion.

Nodes do not have identical internal clocks, hence they are
not synchronized

(This is in contrast with synchronous networks, which essentially are
full duplex, transmitting data in both directions at the same time with
each node having an identical clock for synchronization .)

What does this mean for our applications? Well, put simply, when a
client sends a request to a server, how long does it wait until it
receives a reply? Is the server node just being slow? Is the network
congested and the packet has been dropped by a router? If the client
doesn’t get a reply, what should it do?

Let’s explore these scenarios in detail. The core problem here,
namely whether and when a response is received, is known as
handling partial failures, and the general situation is depicted in
Figure 3-5.
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Figure 3-5. Handling Partial Failures

Once a client node has established a TCP connection, it can send a
request to a server node and wait for a response. In this situation,
the following outcomes may occur:

1. The request succeeds and a rapid response is received. All
is good. (In reality, this outcome occurs for almost every
request. Almost is the operative word here though.)

2. The destination IP address lookup may fail. In this case the
client rapidly receives an error message and can act
accordingly.

3. The IP address is valid but the destination node or target
server process has failed. Again the sender will receive an
error message and can inform the user.

4. The request is received by the target server, which fails while
processing the request and no response is ever sent.



5. The request is received by the target server, which is heavily
loaded. It processes the request but takes a long time (e.g
34 seconds) to respond.

6. The request is received by the target server and a response
is sent. However, the response is not received by the client
due to a network failure.

Numbers (1) to (3) are easy for the client to handle, as a response is
received rapidly. A result from the server or an error message –
either allows the client to proceed. Failures that can be detected
quickly are easy to deal with.

Numbers (4) to (6) pose a problem for the client. They do not provide
any insight into the reason why a response has not been received.
From the client’s perspective, these three outcomes look exactly the
same. The client cannot know, without waiting potentially forever,
whether the response will arrive eventually, or never arrive. And
waiting forever doesn’t get much work done.

More insidiously, the client cannot know if the operation succeeded
and a server or network failure caused the result to never arrive, or if
the request is on its way - delayed simply due to congestion in the
network/server. These faults are collectively known as crash faults .

The typical solution that clients adopt to handle crash faults is to
resend the request after a configured timeout period. This however is
fraught with danger, as Figure 3-6 illustrates. The client sends a
request to the server to deposit money in a bank account. When it
receives no response after a timeout period, it resends the request.
What is the resulting balance? The server may have applied the
deposit, or it may not, depending on the partial failure scenario.
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Figure 3-6. Client retries a request after timeout

The chance that the deposit may occur twice is a fine outcome for
the customer. The bank though is unlikely to be amused by this
possibility. Hence, we need a way to ensure in our server operations
implementation that retried, duplicate requests from clients only
result in the request being applied once. This is necessary to
maintain correct application semantics.

This property is known as idempotence. Idempotent operations can
be applied multiple times without changing the result beyond the
initial application. This means that for the example in Figure 10, the
client can retry the request as many times as it likes, and the
account will only be increased by $100.

Requests that make no persistent state changes are naturally
idempotent. This means all read requests are inherently safe and no
extra work is needed in the server. Updates are a different matter.
The system needs to devise a mechanism such that duplicate client



requests can be detected by the server, and they do not cause any
state changes. In API terms, these endpoints cause mutation of the
server state and must therefore be idempotent.

The general approach to building idempotent operations is as
follows:

Clients include a unique idempotence-key in all requests that
mutate state. The key identifies a single operation from the
specific client or event source. It is usually a composite of a
user identifier, such as the session key, and a unique value
such as a local timestamp, UUID or a sequence number.

When the server receives a request, it checks to see if it has
previously seen the idempotence key value by reading from
a database that is uniquely designed for implementing
idempotence. If the key is not in the database, this is a new
request. The server therefore performs the business logic to
update the application state. It also stores the idempotence
key in a database to indicate that the operation has been
successfully applied.

If the idempotence key is in the database, this indicates that
this request is a retry from the client and hence should not
be processed. In this case the server returns a valid
response for the operation so that (hopefully) the client won’t
retry again.

The database used to store idempotence keys can be implemented
in, for example:

A separate database table or collection in the transactional
database used for the application data.

A dedicated database that provides very low latency
lookups, such as a simple key-value store.



Unlike application data, idempotence keys don’t have to be retained
forever. Once a client receives an acknowledgement of a success for
an individual operation, the idempotence key can be discarded. The
simplest way to achieve this is to automatically remove idempotence
keys from the store after a specific time period, such as 60 minutes
or 24 hours, depending on application needs and request volumes.

In addition, an idempotent API implementation must ensure that the
application state is modified, and the idempotence key is stored.
Both must occur for success. If the application state is modified and,
due to some failure, the idempotent key is not stored, then a retry will
cause the operation to be applied twice. If the idempotence key is
stored but for some reason the application state is not modified, then
the operation has not been applied. If a retry arrives, it will be filtered
out as duplicate as the idempotence key already exists, and the
update will be lost.

The implication here is that the updates to the application state and
idempotence key store must both occur, or neither must occur. If
you know your databases, you’ll recognize this as a requirement for
transactional semantics. We’ll discuss how distributed transactions
are achieved in Chapter 12. Essentially transactions ensure exactly-
once semantics for operations, which guarantees that all messages
will always be processed exactly once – precisely what we need for
idempotence.

Exactly once does not mean that there are no message transmission
failures, retries and no application crashes. These are all inevitable.
The important thing is that the retries eventually succeed and the
result is always the same.

We’ll return to the issue of communications delivery guarantees in
later chapters. As Figure 3-7 illustrates, there’s a spectrum of
semantics, each with different guarantees and performance
characteristics. At most once delivery is fast and unreliable – this is
what the UDP protocol provides. At least once delivery is the



guarantee provided by TCP/IP, meaning duplicates are inevitable.
Exactly-once delivery, as we’ve discussed here, requires guarding
against duplicates and hence trades off reliability against slower
performance.

As we’ll see, some advanced communications mechanisms can
provide our applications with exactly once semantics. However,
these don’t operate at Internet scale because of the performance
implications. That is why, as our applications are built on the at least
once semantics of TCP/IP, we must implement exactly once
semantics in our APIs that cause state mutation.



Figure 3-7. Communications Delivery Guarantees

Consensus in Distributed Systems
Crash faults have another implication for the way we build distributed
systems. This is best illustrated by the Two Generals Problem ,
which is illustrated in Figure 3-8.

Imagine a city under siege by two armies. The armies lie on opposite
sides of the city, and the terrain surrounding the city is difficult to
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travel through and visible to snipers in the city. In order to overwhelm
the city, it’s crucial that both armies attack at the same time. This will
stretch the city’s defenses and make victory more likely for the
attackers. If only one army attacks, then they will likely be repelled.

Given these constraints, how can the two generals reach agreement
on the exact time to attack, such that both generals know for certain
that agreement has been reached? They both need certainty that the
other army will attack at the agreed time, or disaster will ensue.

To coordinate an attack, the first general sends a messenger to the
other, with instructions to attack at a specific time. As the messenger
may be captured or killed by snipers, the sending general cannot be
certain the message has arrived unless they get an
acknowledgement messenger from the second general. Of course,
the acknowledgement messenger may be captured or killed, so even
if the original messenger does get through, the first general may
never know. And even if the acknowledgement message arrives,
how does the second general know this, unless they get an
acknowledgement from the first general?

Hopefully the problem is apparent. With messengers being randomly
captured or extinguished, there is no guarantee the two generals will
ever reach consensus on the attack time. In fact, it can be proven
that it is not possible to guarantee agreement will be reached. There
are solutions that increase the likelihood of reaching consensus. For
example, Game of Thrones style, each general may send 100
different messengers every time, and even if most are killed, this
increases the probability that at least one will make the perilous
journey to the other friendly army and successfully deliver the
message.



Figure 3-8. The Two Generals Problem

The Two Generals problem is analogous to two nodes in a
distributed system wishing to reach agreement on some state, such
as the value of a data item that can be updated at either. Partial
failures are analogous to losing messages and acknowledgements.
Messages may be lost or delayed for an indeterminate period of time
– the characteristics of asynchronous networks, as I described
earlier in this chapter.

In fact it can be demonstrated that consensus on an asynchronous
network in the presence of crash faults, where messages can be
delayed but not lost, is impossible to achieve within bounded time.
This is known as the FLP Impossibility Theorem .

Luckily, this is only a theoretical limitation, demonstrating it’s not
possible to guarantee consensus will be reached with unbounded
message delays on an asynchronous network. In reality, distributed
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systems reach consensus all the time. This is possible because
while our networks are asynchronous, we can establish sensible
practical bounds on message delays and retry after a timeout period.
FLP is therefore a worst-case scenario, and as I’ll discuss algorithms
for establishing consensus in distributed databases in Chapter 12.

Finally, we should note the issue of Byzantine failures. Imagine
extending the Two Generals problem to N Generals, who need to
agree on a time to attack. However, in this scenario, traitorous
messengers may change the value of the time of the attack, or a
traitorous general may send false information to other generals.

This class of malicious failures are known as Byzantine faults and
are particularly sinister in distributed systems. Luckily, the systems
we discuss in this book typically live behind well-protected, secure
enterprise networks and administrative environments. This means
we can in practice exclude handling Byzantine faults. Algorithms that
do address such malicious behaviors exist, and if you are interested
in a practical example, take a look at Blockchain technologies  and
BitCoin .

Time in Distributed Systems
Every node in a distributed system has its own internal clock. If all
the clocks on every machine were perfectly synchronized, we could
always simply compare the timestamps on events across nodes to
determine the precise order they occurred in. If this were reality,
many of the problems I’ll discuss with distributed systems would
pretty much go away.

Unfortunately, this is not the case. Clocks on individual nodes drift
due to environmental conditions like changes in temperature or
voltage. The amount of drift varies on every machine, but values like
10-20 seconds a day are not uncommon. Or with my current coffee
machine at home, about 5 minutes a day!
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If left unchecked, clock drift would render the time on a node
meaningless – like my coffee machine if I don’t correct it every few
days. To address this problem, a number of time services exist. A
time service represents an accurate time source, such as a GPS or
atomic clock, which can be used to periodically reset the clock on a
node to correct for drift on packet-switched, variable-latency data
networks.

The most widely used time service is NTP , which provides a
hierarchically organized collection of time servers spanning the
globe. The root servers, of which there are around 300 worldwide,
are the most accurate. Time servers in the next level of the hierarchy
(approximately 20,000) synchronize to within a few milliseconds of
the root server periodically, and so on throughout the hierarchy, with
a maximum of 15 levels. Globally there are more than 175,000 NTP
servers.

Using the NTP protocol, a node in an application running an NTP
client can synchronize to an NTP server. The time on a node is set
by a UDP message exchange with one or more NTP servers.
Messages are time stamped and through the message exchange the
time taken for message transit is estimated. This becomes a factor in
the algorithm used by NTP to establish what the time on the client
should be reset to. A simple NTP configuration is shown in Figure 3-
9. On a LAN, machines can synchronize to an NTP server within a
small number of milliseconds accuracy.
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Figure 3-9. Illustrating using the NTP Service

One interesting effect of NTP synchronization for our applications is
that the resetting of the clock can move the local node time forwards
or backwards. This means that if our application is measuring the
time taken for events to occur (e.g. to calculate event response
times), it is possible that the end time of the event may be earlier
than the start time if the NTP protocol has set the local time
backwards.

In fact, a compute node has two clocks. These are:

Time of Day Clock

This represents the number of milliseconds since midnight
January 1970. In Java, you can get the current time using
System.currentTimeMillis(). This is the clock that can
be reset by NTP, and hence may jump forwards or backwards if it
is a long way behind or ahead of NTP time.

Monotonic Clock

This represents the amount of time (in seconds and
nanoseconds) since an unspecified point in the past, such as the
last time the system was restarted. It will only ever move forward,
however it again may not be a totally accurate measure of
elapsed time because it stalls during an event such as virtual



machine suspension. In Java, you can get the current monotonic
clock time using System.nanoTime().

Applications can use an NTP service to ensure the clocks on every
node in the system are closely synchronized. It’s typical for an
application to resynchronize clocks on anything from a one hour to
one day time interval. This ensures the clocks remain close in value.
Still, if an application really needs to precisely know the order of
events that occur on different nodes, clock drift is going to make this
fraught with danger.

There are other time services that provide higher accuracy than NTP.
Chrony  supports the NTP protocol but provides much higher
accuracy and greater scalability than NTP – the reason it has
recently been adopted by Facebook . Amazon has built the
Amazon Time Sync Service by installing GPS and atomic clocks in
its data centers. This service is available for free to all Amazon cloud
customers.

The takeaway from this discussion is that our applications cannot
rely on timestamps of events on different nodes to represent the
actual order of these events. Clock drift even by a second or two
makes cross-node timestamps meaningless to compare. The
implications of this will become clear when we start to discuss
distributed databases in detail.

Summary and Further Reading
This chapter has covered a lot of ground to explain some of the
essential characteristics of communications and time in distributed
systems. These characteristics are important for application
designers and developers to understand.

The key issues that should resonate from this chapter are as follows:
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Communications in distributed systems can transparently
traverse many different types of underlying physical
networks – e.g. Wi-Fi, wireless, WANs and LANs.
Communication latencies are hence highly variable, and
influenced by the physical distance between nodes, physical
network properties, and transient network congestion. At
large scale, latencies between application components are
something that should be minimized as much as possible,
within the laws of physics of course

The IP protocol stack ensures reliable communications
across heterogeneous networks through a combination of
the IP and TCP protocols. Communications can fail due to
network communications fabric and router failures that make
nodes unavailable, as well as individual node failure. Your
code will experience various TCP/IP overheads, for example
for connection establishment, and errors when network
failures occur. Hence understanding the basics of the IP
suite is important for design and debugging.

RMI/RPC technologies build the TCP/IP layer to provide
abstractions for client-server communications that mirror
making local method/procedure calls. However, these more
abstract programming approaches still need to be resilient to
network issues such as failures and retransmissions. This is
most apparent in application APIs that mutate state on the
server, and must be designed to be idempotent.

Achieving agreement, or consensus on state across multiple
nodes in the presence of crash faults is not possible in
bounded time on asynchronous networks. Luckily, real
networks, especially LANs, are fast and mostly reliable,
meaning we can devise algorithms that achieve consensus
in practice. I’ll cover these in Part 3 of the book when we
discuss distributed databases.



There is no reliable global time source that nodes in an
application can rely upon to synchronize their behavior.
Clocks on individual nodes vary and cannot be used for
meaningful comparisons. This means applications cannot
meaningfully compare clocks on different nodes to determine
the order of events.

These issues will pervade the discussions in the rest of this book.
Many of the unique problems and solutions that are adopted in
distributed systems stem from these fundamentals. There’s no
escaping them!

An excellent source for more detailed, more theoretical coverage of
all aspects of distributed systems is George Colouris et al.,
Distributed Systems: Concepts and Design, 5th Edition, Pearson,
2011.

Likewise for computer networking, you’ll find out all you wanted to
know and no doubt more in James Kurose, Keith Ross, Computer
Networking: A Top-Down Approach, 7th Edition, Pearson 2017.
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Chapter 4. An Overview of
Concurrent Systems

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

Distributed systems comprise multiple independent pieces of code
executing in parallel, or concurrently, on many processing nodes
across multiple locations. Any distributed system is hence by
definition a concurrent system, even if each node is processing
events one at a time. The behavior of the various nodes must of
course be coordinated in order to make the application behave as
desired.

As I described in Chapter 3, coordinating nodes in a distributed
system is fraught with dangers. Luckily, our industry has matured
sufficiently to provide complex, powerful software frameworks that
hide many of these distributed system perils from our applications –
most of the time anyway. The majority of this book focuses on
describing how we can utilize these frameworks to build scalable
distributed systems.
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This chapter however is concerned with concurrent behavior in our
systems on a single node. By explicitly writing our software to
perform multiple actions concurrently, we can optimize the
processing and resource utilization on a single node, and hence
increase our processing capacity both locally and system wide.

I’ll use the Java 7.0 concurrency capabilities for examples, as these
are at a lower level of abstraction than those introduced in Java 8.0.
Knowing how concurrent systems operate ‘closer to the machine’ is
essential foundational knowledge when building concurrent and
distributed systems. Once you understand the lower mechanisms for
building concurrent systems, the more abstract approaches are
easier to optimally exploit. And while this chapter is Java specific, the
fundamental problems of concurrent systems don’t change when you
write systems in other languages. Mechanisms for handling
concurrency exist in all mainstream programming languages. The
sidebar Concurrency Models gives some more details on alternative
approaches and how they are implemented in modern languages.

One final point. This chapter is a concurrency primer. It won’t teach
you everything you need to know to build complex, high performance
concurrent systems. It will also be useful if your experience writing
concurrent programs is rusty, or you have some exposure to
concurrent code in another programming language. The further
reading section at the end of the chapter points you to more
comprehensive coverage of this topic for those who wish to delve
deeper.

Why Concurrency?
Think of a busy coffee shop. If everyone orders a simple coffee, then
the barista can quickly and consistently deliver each drink. Suddenly,
the person in front of you orders a soy, vanilla, no sugar, quadruple
shot iced brew. Everyone in line sighs and starts reading their social
media. In two minutes the line is out of the door.



Processing requests in Web applications is analogous to our coffee
example. In a coffee shop, we enlist the help of a new barista to
simultaneously make coffees on a different machine to keep the line
length in control and serve customers quickly. In software, to make
applications responsive, we need to somehow process requests in
our server in an overlapping manner, handling requests concurrently.

In the good old days of computing, each CPU was only able to
execute a single machine instruction at any instant. If our server
application runs on such a CPU, why do we need to structure our
software systems to potentially execute multiple instructions
concurrently? It all seems slightly pointless.

There is actually a very good reason. Virtually every program does
more than just execute machine instructions. For example, when a
program attempts to read from a file or send a message on the
network, it must interact with the hardware subsystem (disk, network
card) that is peripheral to the CPU. Reading data from a modern
hard disk takes around 10 milliseconds (ms). During this time, the
program must wait for the data to be available for processing.

Now, even an ancient CPU such as a circa 1988 Intel 80386  can
execute more than 10 million instructions per second (mips). 10ms is
1/100th of a second. How many instructions could our 80386
execute in 1/100th second. Do the math. It’s a lot! A lot of wasted
processing capacity, in fact.

This is how operating systems such as Linux can run multiple
programs on a single CPU. While one program is waiting for an
input-output (I-O) event, the operating system schedules another
program to execute. By explicitly structuring our software to have
multiple activities that can be executed in parallel, the operating
system can schedule tasks that have work to do while others wait for
I-O. We’ll see in more detail how this works with Java later in this
chapter.
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In 2001, IBM introduced the world’s first multicore processor, a chip
with two CPUs – see Figure 4-1 for a simplified illustration. Today,
even my laptop has 16 CPUs, or cores as they are commonly
known. With a multicore chip, a software system that is structured to
have multiple parallel activities can be executed concurrently on
each core, up the number of available cores. In this way, we can fully
utilize the processing resources on a multicore chip, and hence
increase our application’s processing capacity.

Figure 4-1. Simplified view of a multicore processor

The primary way to structure a software system as concurrent
activities is to use threads. Virtually every programming language
has its own threading mechanism. The underlying semantics of all
these mechanisms are similar – there are only a few primary
threading models in mainstream use – but obviously the syntax
varies by language. In the following sections, I’ll explain how threads



are supported in Java, and how we need to design our programs to
be safe (i.e correct) and efficient when executing in parallel. Armed
with this knowledge, leaping into the concurrency features supported
in other languages shouldn’t be too arduous.



CONCURRENCY MODELS
This chapter describes one model for concurrent systems, based
on independently executing threads using locks to operate on
shared mutable resources. Concurrency models have been a
much studied and explored topic in computer science for roughly
the last 50 years. Many theoretical proposals have been put
forward, and some of these are implemented in modern
programming languages. These models provide alternative
approaches for structuring and coordinating concurrent activities
in programs. Here’s a sampler that you might well encounter in
your work.

Go: The Communicating Sequential Processes (CSP)
model forms the basis of Go’s concurrency features.  In
CSP, processes synchronize by sending messages using
communication abstractions known as channels. In Go,
the unit of concurrency is a goroutine, and goroutines
communicate by sending messages using unbuffered or
buffered channels. Unbuffered channels are used to
synchronize senders and receivers, as communications
only occur when both goroutines are ready to exchange
data.

Erlang: Erlang implements the Actor model of
concurrency . Actors are lightweight processes that have
no shared state, and communicate by asynchronously
sending messages to other actors. Actors use a mailbox,
or queue, to buffer messages and can use pattern
matching to choose which messages to process.

Node.js: Node.js eschews anything resembling multiple
threads, and instead utilizes a single threaded, non-
blocking model managed by an event loop.  This means
when an input-output (IO) operation is required, such as

2

3

4



accessing a database, Node.js instigates the operation
but does not wait until it completes. Operations are
delegated to the operating system to execute
asynchronously, and upon completion the results are
placed on the main thread’s stack as callbacks. These
callbacks are subsequently executed in the event loop.
This model works well for codes performing frequent IO
requests, as it avoids the overheads associated with
thread creation and management. However if your code
needs to perform a CPU intensive operation, such as
sorting a large list, you only have one thread. This will
therefore block all other requests until the sort is
complete. Rarely an ideal situation.

Hopefully this gives you a feel for the diversity of concurrency
models and primitives in modern programming languages.
Luckily, when you know the fundamentals and one model, the
rest are straightforward to learn.

Threads
Every software process has a single thread of execution by default.
This is the thread that the operating system manages when it
schedules the process for execution. In Java, for example, the
main() function you specify as the entry point to your code defines
the behavior of this thread. This single thread has access to the
program’s environment and resources such as open file handles and
network connections. As the program calls methods in objects
instantiated in the code, the program’s runtime stack is used to pass
parameters and manage variable scopes. Standard programming
language run time stuff, that we all know and love. This is a
sequential process.



In your systems, you can use programming language features to
create and execute additional threads. Each thread is an
independent sequence of execution and has its own runtime stack to
manage local object creation and method calls. Each thread also has
access to the process’ global data and environment. A simple
depiction of this scheme is shown in Figure 4-2.

Figure 4-2. Comparing a single and multithreaded process

In Java, we can define a thread using a class that implements the
Runnable interface and defines the run() method. A simple
example is depicted in the example below:

class NamingThread implements Runnable { 
  
  private String name; 
 
  public NamingThread(String threadName) { 



   name = threadName ; 
    System.out.println("Constructor called: " + threadName) 
; 
  } 
 
  public void run() { 
   //Display info about this  thread 
    System.out.println("Run called : " + name); 
    System.out.println(name + " : " + 
Thread.currentThread()); 
    // and now terminate  .... 
 } 
}

To execute the thread, we need to construct a Thread object using
an instance of our Runnable and call the start() method to
invoke the code in its own execution context. This is shown in the
code example below, along with the output of running the code in
bold text. Note this example has two threads – the main() thread
and the NamingThread. The main thread starts the
NamingThread, which executes asynchronously, and then waits
for 1 second to give our run() method in NamingThread ample
time to complete.
public static void main(String[] args) { 
 
  NamingThread name0 = new NamingThread("My first thread"); 
 
  //Create the thread 
  Thread t0 = new Thread (name0); 
 
  // start the threads 
  t0.start(); 
 
  //delay the main thread for a second (1000 milliseconds) 
  try { 
    Thread.currentThread().sleep(1000); 
  } catch (InterruptedException e) {} 
  
      //Display info about the main thread and terminate 
      System.out.println(Thread.currentThread()); 
 



} 
 
 
    ===EXECUTION OUTPUT=== 
    Constructor called: My first thread 
    Run called : My first thread 
    My first thread : Thread[Thread-0,5,main] 
    Thread[main,5,main]

For illustration, we also call the static currentThread() method,
which returns a string containing:

The system generated thread identifier

The thread priority, which by default is 5 for all threads. We’ll
cover thread priorities later.

The identifier of the parent thread – in this example both
parent threads are the main thread

Note to instantiate a thread, we call the start() method, not the
run() method we define in the Runnable. The start() method
contains the internal system magic to create the execution context
for a separate thread to execute. If we call run() directly, the code
will execute, but no new thread will be created. The run() method
will execute as part of the main thread, just like any other Java
method invocation that you know and love. You will still have a single
threaded code.

In the example, we use sleep() to pause the execution of the
main thread and make sure it does not terminate before the
NamimgThread. This approach, namely coordinating two threads by
delaying for an absolute time period (e.g. 1 second in the example)
is not a very robust mechanism. What if for some reason - a slower
CPU, a long delay reading disk, additional complex logic in the
method – our thread doesn’t terminate in the expected time frame?
In this case, main will terminate first – this is not what we intend. In



general, if you are using absolute times for thread coordination, you
are doing it wrong. Almost always. Like 99.99999% of the time.

A simple and robust mechanism for one thread to wait until another
has completed its work is to use the join() method. We could
replace the try-catch block in the above example with:
t0.join();

This method causes the calling thread (in this case, main) to block
until the thread referenced by t0 terminates. If the referenced thread
has terminated before the call to join(), then the method call
returns immediately. In this way we can coordinate, or synchronize,
the behavior of multiple threads. Synchronization of multiple threads
is in fact the major focus of the rest of this chapter.

Order of Thread Execution
The system scheduler (in Java, this lives in the JVM) controls the
order of thread execution. From the programmer’s perspective, the
order of execution is non-deterministic. Get used to that term, I’ll use
it a lot. The concept of non-determinism is fundamental to
understanding multithreaded code.

I’ll illustrate this by building on the earlier NamingThread example.
Instead of creating a single NamingThread, I’ll create and start up a
few. Three in fact, as shown in the following code example. Again,
sample output from running the code is in bold text beneath.
      NamingThread name0 = new NamingThread("thread0"); 
      NamingThread name1 = new NamingThread("thread1"); 
      NamingThread name2 = new NamingThread("thread2"); 
 
      //Create the threads 
      Thread t0 = new Thread (name0); 
      Thread t1 = new Thread (name1); 
      Thread t2 = new Thread (name2); 
 
      // start the threads 



      t0.start(); 
      t1.start(); 
      t2.start(); 
 
      ===EXECUTION OUTPUT=== 
      Run called : thread0 
      thread0 : Thread[Thread-0,5,main] 
      Run called : thread2 
      Run called : thread1 
      thread1 : Thread[Thread-1,5,main] 
      thread2 : Thread[Thread-2,5,main] 
      Thread[main,5,main]

The output shown is a sample from just one execution. You can see
the code starts three threads sequentially, namely t0, t1 and t2 (lines
11-13). Looking at the output, we see thread t0 completes (line 17)
before the others start. Next t2’s run() method is called (line 18)
followed by t1’s run() method, even though t1 was started before t2.
Thread t1 then runs to completion (line 20) before t2, and eventually
the main thread and the program terminate.

This is just one possible order of execution. If we run this program
again, we will almost certainly see a different execution trace. This is
because the JVM scheduler is deciding which thread to execute, and
for how long. Put very simply, once the scheduler has given a thread
an execution time slot on a CPU, it can interrupt the thread after a
specified time period and schedule another one to run. This
interruption is known as preemption. Preemption ensures each
thread is given an opportunity to make progress. Hence the threads
run independently and asynchronously until completion, and the
scheduler decides which thread runs when based on a scheduling
algorithm.

There’s more to thread scheduling than this, and I’ll explain the basic
scheduling algorithm used later in this chapter. But for now, there is a
major implication for programmers, namely, regardless of the order
of thread execution, which you don’t control, your code should
produce correct results. Sounds easy?



Read on.

Problems with Threads
The basic problem in concurrent programming is coordinating the
execution of multiple threads so that whatever order they are
executed in, they produce the correct answer. Given that threads can
be started and preempted non-deterministically, any moderately
complex program will have essentially an infinite number of possible
orders of executions. These systems aren’t easy to test.

There are two fundamental problems that all concurrent programs
need to avoid. These are race conditions and deadlocks, and these
topics are covered in the next two subsections.

Race Conditions
Non-deterministic execution of threads implies that the code
statements that comprise the threads:

Will execute sequentially as defined within each thread

Can be overlapped in any order across threads. This is
because the number of statements that are executed for
each thread execution slot is determined by the scheduler.

Hence, when many threads are executed on a single processor, their
execution is interleaved. The CPU executes some steps from one
thread, then performs some steps from another, and so on. If we are
executing on a multicore CPU, then we can execute one thread per
core. The statements of each thread execution are still however
interleaved in a non-deterministic manner.

Now, if every thread simply does its own thing, and is completely
independent, this is not a problem. Each thread executes until it
terminates, as in our trivial NamingThread example. This stuff is a
piece of cake! Why are these thread things meant to be complex?



Unfortunately, totally independent threads are not how most
multithreaded systems behave. If you refer back to Figure 4-2, you
will see that multiple threads share the global data within a process.
In Java this is both global and static data.

Threads can use shared data structures to coordinate their work and
communicate status across threads. For example, we may have
threads handling requests from Web clients, one thread per request.
We also want to keep a running total of how many requests we
process each day. When a thread completes a request, it increments
a global RequestCounter object that all threads share and update
after each request. At the end of the day, we know how many
requests were processed. A simple and elegant solution indeed.
Well, maybe?

The code below shows a very simple implementation that mimics the
request counter example scenario. It creates 50k threads to update a
shared counter. Note we use a lambda function for brevity to create
the threads, and a ‘really bad idea’  5 second delay in main to allow
the threads to finish.
public class RequestCounter { 
  final static private int NUMTHREADS = 50000; 
  private int count = 0; 
 
  public  void inc() { 
    count++; 
  } 
 
  public int getVal() { 
    return this.count; 
  } 
 
  public static void main(String[] args) throws 
InterruptedException { 
    final RequestCounter counter = new RequestCounter(); 
 
    for (int i = 0; i < NUMTHREADS; i++) { 
      // lambda runnable creation 
      Runnable thread = () -> {counter.inc(); }; 
     new Thread(thread).start(); 

5



    } 
 
    Thread.sleep(5000); 
    System.out.println("Value should be " + NUMTHREADS + "It 
is: " +     counter.getVal()); 
  } 
}

What you can do at home is clone this code from the book github
repo, run this code a few times and see what results you get. In 10
executions my mean was 49995. I didn’t once get the correct answer
of 50000. Weird.

Why?

The answer lies in how abstract, high-level programming language
statements, in Java in this case, are executed on a machine. In this
example, to perform an increment of a counter, the CPU must (1)
load the current value into a register, (2) increment the register
value, and (3) write the results back to the original memory location.
This simple increment is actually a sequence of three machine-level
operations.

As Figure 4-3 shows, at the machine level these three operations are
independent and not treated as a single atomic operation. By atomic,
we mean an operation that cannot be interrupted and hence once
started will run to completion.

As the increment operation is not atomic at the machine level, one
thread can load the counter value into a CPU register from memory,
but before it writes the incremented value back, the scheduler
premempts the thread and allows another thread to start. This thread
loads the old value of the counter from memory and writes back the
incremented value. Eventually the original thread executes again,
and writes back its incremented value, which just happens to be the
same as what is already in memory.

This means we’ve lost an update. From our 10 tests of the counter
code above, we see this is happening on average 5 times in 50000



increments. Hence such events are rare, but even if it happens 1
time in 10 million, you still have an incorrect result.

Figure 4-3. Increments are not atomic at the machine level

When we lose updates in this manner, it is called a race condition.
Race conditions can occur whenever multiple threads make changes
to some shared state, in this case a simple counter. Essentially,
different interleavings of the threads can produce different results.

Race conditions are insidious, evil errors, because their occurrence
is typically rare, and they can be hard to detect as most of the time
the answer will be correct. Try running the multithreaded counter



code example with 1000 threads instead of 50000, and you will see
this in action. I got the correct answer nine times out of ten.

So, this situation can be summarized as ‘same code, occasionally
different results’. Like I said – race conditions are evil! Luckily,
eradicating them is straightforward if you take a few precautions.

The key is to identify and protect critical sections. A critical section is
a section of code that updates shared data structures, and hence
must be executed atomically if accessed by multiple threads. The
example of incrementing a shared counter is an example of a critical
section. Another is removing an item from a list. We need to delete
the head node of the list, and move the reference to the head of the
list from the removed node to the next node in the list. Both
operations must be performed atomically to maintain the integrity of
the list. This is a critical section.

In Java, the synchronized keyword defines a critical section. If
used to decorate a method, then when multiple threads attempt to
call that method on the same shared object, only one is permitted to
enter the critical section. All others block until the thread exits the
synchronized method, at which point the scheduler chooses the next
thread to execute the critical section. We say the execution of the
critical section is serialized, as only one thread at a time can be
executing the code inside it.

To fix the counter example, you therefore just need to identify the
inc() method as a critical section and make it a synchronized
method, ie:
synchronized public void inc() { 
    count++; 
  }

Test it out as many times as you like. You’ll always get the correct
answer. Slightly more formally, this means any interleaving of the
threads that the scheduler throws at us will always produce the
correct results.



The synchronized keyword can also be applied to blocks of
statements within a method. For example, we could rewrite the
above example as:
public void inc() { 
synchronized(this){ 
           count++; 
        } 
}

Underneath the covers, every Java object has a monitor lock,
sometimes known as an intrinsic lock, as part of its runtime
representation. The monitor is like the bathroom on a long distance
bus – only one person is allowed to (and should!) enter at once, and
the door lock stops others from entering when in use.

In our totally sanitary Java runtime environment, a thread must
acquire the monitor lock to enter a synchronized method or
synchronized block of statements.. Only one thread can own the lock
at any time, and hence execution is serialized. This, very basically, is
how Java and similar languages implement critical sections.

As a rule of thumb, you should keep critical sections as small as
possible so that the serialized code is minimized. This can have
positive impacts on performance and hence scalability. I’ll return to
this topic later, but I’m really talking about Amdahl’s Law again, as
introduced in Chapter 2. Synchronized blocks are the serialized parts
of a system as described by Amdahl, and the longer they execute
for, then the less potential we have for system scalability.

Deadlocks
To ensure correct results in multithreaded code, I explained that we
have to restrict the inherent non-determinism to serialize access to
critical sections. This avoids race conditions. However, if we are not
careful, we can write code that restricts non-determinism so much
that our program stops. And never continues. This is formally known
as a deadlock.

https://en.wikipedia.org/wiki/Amdahl%27s_law


A deadlock occurs when two or more threads are blocked forever,
and none can proceed. This happens when threads need exclusive
access to a shared set of resources, and the threads acquire locks in
different orders. This is illustrated in the example below in which two
threads need exclusive access to critical sections A and B. Thread 1
acquires the lock for critical section A, and thread 2 acquires the lock
for critical section B. Both then block forever as they cannot acquire
the locks they need to continue.

Two threads sharing access to two shared variables via
synchronized blocks

1. thread 1: enters critical section A

2. thread 2: enters critical section B

3. thread 1: blocks on entry to critical section B

4. thread 2: blocks on entry to critical section A

5. Both threads wait forever

A deadlock, also known as a deadly embrace, causes a program to
stop. It doesn’t take a vivid imagination to realize that this can cause
all sorts of undesirable outcomes. I’m happily texting away while my
autonomous vehicle drives me to the bar. Suddenly, the vehicle code
deadlocks. It won’t end well.

Deadlocks occur in more subtle circumstances than the simple
example above. The classic example is the Dining Philosophers
problem. The story goes like this.

Five philosophers sit around a shared table. Being philosophers,
they spend a lot of time thinking deeply. In between bouts of deep
thinking, they replenish their brain function by eating from a plate of
food that sits in front of them. Hence a philosopher is either eating or
thinking, or transitioning between these two states.



In addition, the philosophers must all be physically very close, highly
dexterous and Covid19 vaccinated friends, as they share chopsticks
to eat with. Only five chopsticks are on the table, placed between
each philosopher. When one philosopher wishes to eat, they follow a
protocol of picking up their left chopstick first, then their right
chopstick. Once they are ready to think again, they first return the
right chopstick, then the left.





Figure 4-4. The Dining Philosophers Problem

Figure 4-4 depicts our philosophers, each identified by a unique
number. As each is either concurrently eating or thinking, we can
model each philosopher as a thread. The code is shown in
Example 4-7. The shared chopsticks are represented by instances of
the Java Object class. As only one object can hold the monitor lock
on an object at any time, they are used as entry conditions to the
critical sections in which the philosophers acquire the chopsticks
they need to eat. After eating, the chopsticks are returned to the
table and the lock is released on each so that neighboring
philosophers can eat whenever they are ready.

Example 4-7. The Philosopher Thread
 
1   public class Philosopher implements Runnable { 
2 
3     private final Object leftChopStick; 
4     private final Object rightChopStick; 
5 
6     Philosopher(Object leftChopStick, Object 
rightChopStick) { 
7       this.leftChopStick = leftChopStick; 
8       this.rightChopStick = rightChopStick; 
9     } 
10     private void LogEvent(String event) throws 
InterruptedException { 
11      System.out.println(Thread.currentThread() 
12                                    .getName() + " " + 
event); 
13      Thread.sleep(1000); 
14    } 
15 
16    public void run() { 
17      try { 
18        while (true) { 
19          LogEvent(": Thinking deeply"); 
20          synchronized (leftChopStick) { 
21            LogEvent( ": Picked up left chop stick"); 
22            synchronized (rightChopStick) { 
23              LogEvent(": Picked up right chopstick – 



eating"); 
24              LogEvent(": Put down right chopstick"); 
25            } 
26            LogEvent(": Put down left chopstick. Ate too 
much"); 
27          } 
28        } // end while 
29      } catch (InterruptedException e) { 
30         Thread.currentThread().interrupt(); 
31    } 
32   } 
33  } 
            

To bring the philosophers described in Example 4-7 to life, we must
instantiate a thread for each and give each philosopher access to its
neighboring chopsticks. This is done through the thread constructor
call on line 16 in Example 4-8. In the for loop we create five
philosophers and start these as independent threads, where each
chopstick is accessible to two threads, one as a left chopstick, and
one as a right.

Example 4-8. Dining Philosophers - deadlocked version
private final static int NUMCHOPSTICKS = 5 ; 
private final static int NUMPHILOSOPHERS = 5; 
public static void main(String[] args) throws Exception { 
 
  final Philosopher[] ph = new Philosopher[NUMPHILOSOPHERS]; 
  Object[] chopSticks = new Object[NUMCHOPSTICKS]; 
 
  for (int i = 0; i < NUMCHOPSTICKS; i++) { 
    chopSticks[i] = new Object(); 
  } 
 
  for (int i = 0; i < NUMPHILOSOPHERS; i++) { 
    Object leftChopStick = chopSticks[i]; 
    Object rightChopStick = chopSticks[(i + 1) % 
chopSticks.length]; 
 
    ph[i] = new Philosopher(leftChopStick, rightChopStick); 
            } 
 
    Thread th = new Thread(ph[i], "Philosopher " + (i + 1)); 



    th.start(); 
  } 
}

Running this code produces the following output on my first attempt.
If you run the code you will almost certainly see different outputs, but
the final outcome will be the same.

Philosopher 4 : Thinking deeply 
Philosopher 5 : Thinking deeply 
Philosopher 1 : Thinking deeply 
Philosopher 2 : Thinking deeply 
Philosopher 3 : Thinking deeply 
Philosopher 4 : Picked up left chop stick 
Philosopher 1 : Picked up left chop stick 
Philosopher 3 : Picked up left chop stick 
Philosopher 5 : Picked up left chop stick 
Philosopher 2 : Picked up left chop stick

10 lines of output, then … nothing! We have a deadlock. This is a
classic circular waiting deadlock. Imagine the following scenario:

1. Each philosopher indulges in a long thinking session

2. Simultaneously, they all decide they are hungry and reach
for their left chop stick.

3. No philosopher can eat (proceed) as none can pick up their
right chop stick

Real philosophers in this situation would figure out some way to
proceed by putting down a chopstick or two until one or more of their
colleagues can eat. We can sometimes do this in our software by
using timeouts on blocking operations. When the timeout expires a
thread releases the critical section and retries, allowing other
blocked threads a chance to proceed. This is not optimal though, as
blocked threads hurt performance, and setting timeout values in an
inexact science.



It is much better therefore to design a solution to be deadlock free.
This means that one or more threads will always be able to make
progress. With circular wait deadlocks, this can be achieved by
imposing a resource allocation protocol on the shared resources, so
that threads will not always request resources in the same order.

In the Dining Philosophers problem, we can do this by making sure
one of our philosophers picks up their right chopstick first. Let’s
assume we instruct Philosopher 4 to do this. This leads to a possible
sequence of operations such as below:
Philosopher 0 picks up left chopstick (chopStick[0]) then 
right (chopStick[1]) 
Philosopher 1 picks up left chopstick (chopStick[1]) then 
right (chopStick[2]) 
Philosopher 2 picks up left chopstick (chopStick[2]) then 
right (chopStick[3]) 
Philosopher 3 picks up left chopstick (chopStick[3]) then 
right (chopStick[4]) 
Philosopher 4 picks up right chopstick (chopStick[0]) then 
left (chopStick[4])

In this example, Philosopher 4 must block, as Philosopher 0 already
has acquired access to chopstick[0]. With Philosopher 4 blocked,
Philosopher 3 is assured access to chopstick[4] and can then
proceed to satisfy their appetite.

The fix for the Dining Philosophers solution is shown in Example 4-
10.

Example 4-10. Solving the Dining Philosophers deadlock
if (i == NUMPHILOSOPHERS - 1) { 
  // The last philosopher picks up the right fork first 
  ph[i] = new Philosopher(rightChopStick, leftChopStick);  
} else { 
  // all others pick up the left chop stick first 
  ph[i] = new Philosopher(leftChopStick, rightChopStick); 
} 
            }

 



More formally we are imposing an ordering on the acquisition of
shared resources, such that:

chopStick[0]< chopStick[1]< chopStick[2]< chopStick[3]< 
chopStick[4]

This means each thread will always attempt to acquire chopstick[0]
before chopstick[1], and chopstick[1] before chopstick[2], and so on.
For philosopher 4, this means it will attempt to acquire chopstick[0]
before chopstick[4], thus breaking the potential for a circular wait
deadlock.

Deadlocks are a complicated topic and this section has just
scratched the surface. You’ll see deadlocks in many distributed
systems. For example, a user request acquires a lock on some data
in a Students database table, and must then update rows in the
Classes table to reflect student attendance. Simultaneously another
user request acquires locks on the Classes table, and next must
update some information in the Students table. If these requests
interleave such that each request acquires locks in an overlapping
fashion, we have a deadlock.

I’ll revisit deadlocks later when discussing concurrent database
access and locking in Part 3 of this book.

Thread States
Multithreaded systems have a system scheduler that decides which
threads to run when. In Java, the scheduler is known as a
preemptive, priority-based scheduler. In short this means it chooses
to execute the highest priority thread which wishes to run.

Every thread has a priority (by default 5, range 0 to 10). A thread
inherits its priority from its parent thread. Higher priority threads get
scheduled more frequently than lower priority threads, but in most
applications having all threads as the default priority suffices.



The scheduler cycles threads through four distinct states, based on
their behavior. These are:

Created

A thread object has been created but its start() method has
not been invoked. Once start() is invoked, the thread enters
the runnable state.

Runnable

A thread is able to run. The scheduler will choose which thread(s)
to execute in a first-in first-out (FIFO) manner – one thread can
be allocated at any time to each core in the node. Threads then
execute until they block (e.g. on a synchronized statement),
execute a yield(), suspend() or sleep() statement, the
run() method terminates, or are preempted by the scheduler.
Preemption occurs when a higher priority thread becomes
runnable, or when a system-specific time period, known as a time
slice, expires. Preemption based on time slicing allows the
scheduler to ensure that all threads eventually get a chance to
execute – no execution hungry threads can hog the CPU.

Blocked

A thread is blocked if it is waiting for a lock, a notification event to
occur (e.g. sleep timer to expire, resume() method executed), or
is waiting for a network or disk request to complete. When the
specific event a blocked thread is waiting for occurs, it moves
back to the runnable state.

Terminated

A thread’s run() method has completed or it has called the stop()
method. The thread will no longer be scheduled.



An illustration of this scheme is in Figure 4-5. The scheduler
effectively maintains FIFO queue in the Runnable state for each
thread priority. High priority threads are used typically to respond to
events (eg an emergency timer), and execute for a short period of
time. Low priority threads are used for background, ongoing tasks
like checking for corruption of files on disk through recalculating
checksums. Background threads basically use up idle CPU cycles.

Figure 4-5. Threads states and transitions

Thread Coordination
There are many problems that require threads with different roles to
coordinate their activities. Imagine a collection of threads that each
accept documents from users, do some processing on the
documents (e.g. generate a pdf), and then send the processed
document to a shared printer pool. Each printer can only print one
document at a time, so they read from a shared print queue,
grabbing and printing documents in the order they arrive.

This printing problem is an illustration of the classic producer-
consumer problem. Producers generate and send messages via a
shared FIFO buffer to consumers. Consumers retrieve these
messages, process them, and then ask for more work from the
buffer. A simple illustration of this problem is in Figure 4-6. It’s a bit



like a 24 hour, 365 day buffet restaurant - the kitchen keeps
producing, the wait staff collect the food and put it in the buffet, and
hungry diners help themselves. Forever.

Like virtually all real resources, the buffer has a limited capacity.
Producers generate new items, but if the buffer is full, they must wait
until some item(s) have been consumed before they can add the
new item to the buffer. Similarly, if the consumers are consuming
faster than the producers are producing, then they must wait if there
are no items in the buffer, and somehow get alerted when new items
arrive.

Figure 4-6. The Producer Consumer Problem

One way for a producer to wait for space in the buffer, or a consumer
to wait for an item, is to keep retrying an operation. A producer could
sleep for a second, and then retry the put operation until it succeeds.
A consumer could do likewise.

This solution is called polling, or busy waiting. It works fine, but as
the second name implies, each producer and consumer are using
resources (CPU, memory, maybe network?) each time it retries and



fails. If this is not a concern, then cool, but in scalable systems we
are always aiming to optimize resource usage, and polling can be
wasteful.

A better solution is for producers and consumers to block until their
desired operation, put or get respectively, can succeed. Blocked
threads consume no resources and hence provide an efficient
solution. To facilitate this, thread programming models provide
blocking operations that enable threads to ‘signal’ to other threads
when an event occurs. With the producer-consumer problem, the
basic scheme is as follows:

When a producer adds an item to the buffer, it sends a signal
to any blocked consumers to notify them that there is an item
in the buffer

When a consumer retrieves an item from the buffer, it sends
a signal to any blocked producers to notify them there is
capacity in the buffer for new items.

In Java, there are two basic primitives, namely wait() and
notify(), that can be used to implement this signaling scheme.
Briefly, they work like this:

A thread may call wait() within a synchronized block if some
condition it requires to hold is not true. For example, a thread
may attempt to retrieve a message from a buffer, but if the
buffer has no messages to retrieve, it calls wait() and blocks
until another thread adds a message, sets the condition to
true, and calls notify() on the same object.

notify() wakes up a thread that has called wait() on the
object.

These Java primitives are used to implement guarded blocks.
Guarded blocks use a condition as a guard that must hold before a
thread resumes the execution. The code snippet below shows how



the guard condition, empty, is used to block a thread that is
attempting to retrieve a message from an empty buffer.
while (empty) { 
  try { 
    System.out.println("Waiting for a message"); 
    wait(); 
  } catch (InterruptedException e) {} 
}

 When another thread adds a message to the buffer, it executes
notify() as in the code fragment below.
// Store message. 
this.message = message; 
empty = false; 
// Notify consumer that message is available 
notify();

 The full implementation of this example is given in the code
examples in the book git repository. There are a number of variations
of the wait() and notify() methods, but these go beyond the
scope of what I can cover in this overview. And luckily, Java provides
us with thread-safe abstractions that hide this complexity from your
code.

An example that is pertinent to the producer-consumer problem is
the BlockingQueue interface in
java.util.concurrent.BlockingQueue. A BlockingQueue
implementation provides a thread-safe object that can be used as
the buffer in a producer-consumer scenario. There are 5 different
implementations of the BlockingQueue interface. I’ll use one of
these, the LinkedBlockingQueue, to implement the producer-
consumer. This is shown in Example 4-13.

Example 4-13. Producer-Consumer with a LinkedBlockingQueue
class ProducerConsumer { 
   public static void main(String[] args) 
     BlockingQueue buffer = new LinkedBlockingQueue(); 
     Producer p = new Producer(buffer); 
     Consumer c = new Consumer(buffer); 



     new Thread(p).start(); 
     new Thread(c).start(); 
   } 
 } 
 
class Producer implements Runnable { 
   private boolean active = true; 
   private final BlockingQueue buffer; 
   public Producer(BlockingQueue q) { buffer = q; } 
   public void run() { 
 
     try { 
       while (active) { buffer.put(produce()); } 
     } catch (InterruptedException ex) { // handle exception} 
   } 
   Object produce() { // details omitted, sets active=false } 
 } 
  
 class Consumer implements Runnable { 
   private boolean active = true;  
   private final BlockingQueue buffer; 
   public Consumer(BlockingQueue q) { buffer = q; } 
   public void run() { 
 
     try { 
       while (active) { consume(buffer.take()); } 
     } catch (InterruptedException ex) { // handle exception 
} 
   } 
   void consume(Object x) {  // details omitted, sets 
active=false } 
 }

This solution absolves the programmer from being concerned with
the implementation of coordinating access to the shared buffer, and
greatly simplifies the code.

The java.util.concurrent  package is a treasure trove for
building multithreaded Java solutions. In the following sections, I will
briefly highlight a few of these powerful and extremely useful
capabilities.
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Thread Pools
Many multithreaded systems need to create and manage a collection
of threads that perform similar tasks. For example, in the producer-
consumer problem, we can have a collection of producer threads
and a collection of consumer threads, all simultaneously adding and
removing items, with coordinated access to the shared buffer.

These collections are known as thread pools. Thread pools comprise
several worker threads, which typically perform a similar purpose
and are managed as a collection. We could create a pool of
producer threads which all wait for an item to process, write the final
product to the buffer, and then wait to accept another item to
process. When we stop producing items, the pool can be shut down
in a safe manner, so no partially processed items are lost through an
unanticipated exception.

In the java.util.concurrent package, thread pools are
supported by the ExecutorService interface. This extends the
base Executor interface with a set of methods to manage and
terminate threads in the pool. A simple producer-consumer example
using a fixed size thread pool is shown in Example 4-14 and
Example 4-15. The Producer class in Example 4-14 is a Runnable
that sends a single message to the buffer and then terminates. The
Consumer simply takes messages from the buffer until an empty
string is received, upon which it terminates.

Example 4-14. Producer and Consumer for thread pool
implementation
class Producer implements Runnable { 
 
  private final BlockingQueue buffer; 
  public Producer(BlockingQueue q) { buffer = q; } 
  @Override 
  public void run() { 
 
  try { 
    sleep(1000); 



    buffer.put("hello world"); 
 
  } catch (InterruptedException ex) { 
    // handle exception 
  } 
 } 
} 
class Consumer implements Runnable { 
  private final BlockingQueue buffer; 
  public Consumer(BlockingQueue q) { buffer = q; } 
  @Override 
   public void run() { 
      boolean active = true; 
      while (active) { 
          try { 
             String  s = (String) buffer.take(); 
             System.out.println(s); 
             if (s.equals("")) active = false; 
          } catch (InterruptedException ex) { 
              / handle exception 
          } 
      } / 
      System.out.println("Consumer terminating"); 
    } 
 }

In Example 4-15, we create a single consumer to take messages
from the buffer. We then create a fixed size thread pool of size 5 to
manage our producers. This causes the JVM to pre-allocate five
threads that can be used to execute any Runnable objects that are
executed by the pool.

In the for() loop, we then use the ExecutorService to run 20
producers. As there are only 5 threads available in the thread pool,
only a maximum of 5 producers will be executed simultaneously. All
others are placed in a wait queue which is managed by the thread
pool. When a producer terminates, the next Runnable in the wait
queue is executed using any available thread in the pool.

Once we have requested all the producers to be executed by the
thread pool, we call the shutdown() method on the pool. This tells the
ExecutorService not to accept any more tasks to run. We next



call the awaitTermination() method, which blocks the calling
thread until all the threads managed by the thread pool are idle and
no more work is waiting in the wait queue. Once
awaitTermination() returns, we know all messages have been
sent to the buffer, and hence send an empty string to the buffer
which will act as a termination value for the consumer.

Example 4-15. Thread pool-based Producer Consumer solution
public static void main(String[] args) throws 
InterruptedException 
  { 
    BlockingQueue buffer = new LinkedBlockingQueue(); 
 
    //start a single consumer 
    (new Thread(new Consumer(buffer))).start(); 
 
    ExecutorService producerPool = 
Executors.newFixedThreadPool(5); 
    for (int i = 0; i < 20; i++) 
      { 
        Producer producer = new Producer(buffer) ; 
        System.out.println("Producer created" ); 
        producerPool.execute(producer); 
      } 
  
      producerPool.shutdown(); 
      producerPool.awaitTermination(10, TimeUnit.SECONDS); 
 
      //send termination message to consumer 
      buffer.put("");        
    }

Like most topics in this chapter, there’s many more sophisticated
features in the Executor framework that can be used to create
multithreaded programs. This description has just covered the
basics. Thread pools are important as they enable our systems to
rationalize the use of resources for threads. Every thread consumes
memory, for example the stack size for a thread is typically around
1MB. Also, when we switch execution context to run a new thread,
this consumes CPU cycles. If our systems create threads in an



undisciplined manner, we will eventually run out of memory and the
system will crash. Thread pools allow us to control the number of
threads we create and utilize them efficiently.

I’ll discuss thread pools throughout the remainder of this book, as
they are a key concept for efficient and scalable management of the
ever increasing request loads that servers must satisfy.

Barrier Synchronization
I had a high school friend whose family, at dinner times, would not
allow anyone to start eating until the whole family was seated at the
table. I thought this was weird, but many years later it serves as a
good analogy for the concept known as barrier synchronization.
Eating commenced only after all family members arrived at the table.

Multithreaded systems often need to follow such a pattern of
behavior. Imagine a multithreaded image processing system. An
image arrives and a distinct segment of the image is passed to each
thread to perform some transformation upon – think Instagram filters
on steroids. The image is only fully processed when all threads have
completed. In software systems, we use a mechanism called barrier
synchronization to achieve this style of thread coordination.

The general scheme is shown in Figure 4-7. In this example, the
main() thread creates four new threads and all proceed
independently until they reach the point of execution defined by the
barrier. As each thread arrives, it blocks. When all threads have
arrived at this point, the barrier is released, and each thread can
continue with its processing.



Figure 4-7. Barrier Synchronization

Java provides three primitives for barrier synchronization. I’ll show
here how just one of the three, namely the CountDownLatch,
works. The basic concepts apply to other barrier synchronization
primitives.

When you create a CountDownLatch, you pass a value to its
constructor that represents the number of threads that must block at
the barrier before they are all allowed to continue. This is called in
the thread which is managing the barrier points for the system – in
Figure 4-7 this would be main().
CountDownLatch  nextPhaseSignal = new 
CountDownLatch(numThreads);

Next you create the worker threads that will perform some actions
and then block at the barrier until they all complete. To do this, you
need to pass each thread a reference to CountDownLatch.



for (int i = 0; i < numThreads; i++) { 
            Thread worker = new Thread(new 
WorkerThread(nextPhaseSignal)); 
            worker.start(); 
        }

After launching the worker threads, the main() thread will call the
.await() method to block until the latch is triggered by the worker
threads.
nextPhaseSignal.await(); 

Each worker thread will complete its task and before exiting call the
.countDown() method on the latch. This decrements the latch
value. When the last thread calls .countDown() and the latch
value becomes zero, all threads that have called .await() on the
latch transition from the blocked to the runnable state. At this stage
we are assured that all workers have completed their assigned task.
nextPhaseSignal.countDown();

Any subsequent calls to .countDown() will return immediately as
the latch has been effectively triggered. Note .countDown() is non-
blocking, which is a useful property for applications in which threads
have more work to do after reaching the barrier.

This example illustrates using a CountDownLatch to block a single
thread until a collection of threads have completed their work. You
can invert this use case with a latch however if you initialize its value
to one. Multiple threads could call .await() and block until another
thread calls .countDown() to release all waiting threads. This
example is analogous to a simple gate, which one thread opens to
allow a collection of others to continue.

CountDownLatch is a simple barrier synchronizer. It’s a single use
tool, as the initializer value cannot be reset. More sophisticated
features are provided by the CyclicBarrier and Phaser classes
in Java. Armed with the knowledge of how barrier synchronization
works from this section, these will be straightforward to understand.



Thread-Safe Collections
Many Java programmers, once they delve into the wonders of
multithreaded programs, are surprised to discover that the
collections in the java.util package  are not thread safe. Why, I
hear you ask? The answer, luckily, is simple. It is to do with
performance. Calling synchronized methods incurs overheads.
Hence to attain faster execution for single threaded programs, the
collections are not thread-safe.

If you want to share an ArrayList, Map or ‘your favorite data
structure’ from java.util across multiple threads, you must
ensure modifications to the structure are placed in critical sections.
This approach places the burden on the client of the collection to
safely make updates, and hence is error prone – a programmer
might forget to make modifications in a synchronized block.

It’s always safer to use inherently thread-safe collections in your
multithreaded code. For this reason, the Java collections framework
provides a factory method that creates a thread-safe version of
java.util collections. Here’s an example of creating a thread-safe
list.
List<String> list = Collections.synchronizedList(new 
ArrayList<>());

What is really happening here is that you are creating a wrapper
around the base collection class, which has synchronized
methods. These delegate the actual work to the original class, in a
thread-safe manner of course. You can use this approach for any
collection in the java.util package, and the general form is:
Collections.synchronized….(new collection<>())

where “….” is List, Map, Set, and so on.

Of course, when using the synchronized wrappers, you pay the
performance penalty for acquiring the monitor lock and serializing
access from multiple threads. This means the whole collection is
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locked while a single thread makes a modification, greatly limiting
concurrent performance (Amdahl’s Law again). For this reason, Java
5.0 included the concurrent collections package, namely
java.util.concurrent. It contains a rich collection of classes
specifically designed for efficient multithreaded access.

In fact we’ve already seen one of these classes – the
LinkedBlockingQueue. This uses a locking mechanism that
enables items to be added to and removed from the queue in
parallel. This finer grain locking mechanism utilizes the
java.util.concurrent.lock.Lock class rather than the
monitor lock approach. This allows multiple locks to be utilized on
the same collection, hence enabling safe concurrent access.

Another extremely useful collection that provides this finer-grain
locking is the ConcurrentHashMap. This provides the similar
methods as the non-thread safe HashMap, but allows non-blocking
reads and concurrent writes based on a concurrencyLevel value
you can pass to the constructor (the default value is 16).
ConcurrentHashMap (int initialCapacity, float loadFactor, 
                     int concurrencyLevel)

Internally, the hash table is divided into individually lockable
segments, often known as shards. Locks are associated with each
shard rather than the whole collection. This means updates can be
made concurrently to hash table entries in different shards of the
collection, increasing performance.

Retrieval operations are non-blocking for performance reasons,
meaning they can overlap with multiple concurrent updates. This
means retrievals only reflect the results of the most recently
completed update operations at the time the retrieval is executed.

For similar reasons, iterators for a ConcurrentHashMap are what
is known as weakly consistent. This means the iterator contains a
copy of the hash map that reflects its state at the time the iterator is
created. While the iterator is in use, new nodes may be added and



existing nodes removed from the underlying hash map. However,
these state changes are not reflected in the iterator.

If you need an iterator that always reflects the current hash map
state while being updated by multiple threads, then there are
performance penalties to pay, and a ConcurrentHashMap is not
the right approach. This is an example of favoring performance over
consistency – a classic design trade-off.

Summary and Further Reading
I’ll draw upon the major concepts introduced in this Chapter
throughout the remainder of this book. Threads are inherently
components of the data processing and database platforms that we
use to build scalable distributed systems. In many cases, you may
not be writing explicitly multithreaded code. However, the code you
write will be invoked in a multithreaded environment, which means
you need to be aware of thread-safety. Many platforms also expose
their concurrency through configuration parameters, meaning that to
tune the system’s performance, you need to understand the effects
of changing the various threading and thread pool settings. Basically,
there’s no escaping concurrency in the world of scalable distributed
systems.

Finally, it is worth mentioning that while concurrent programming
primitives vary across programming languages, the foundational
issues don’t change, and carefully designed multithreaded code to
avoid race conditions and deadlocks is needed. Whether you
grapple with the pthreads  library in C/C++, or the classic
Communicating Sequential Processes  (CSP)-inspired Go
concurrency model , the problems you need to avoid are the same.
The knowledge you have gained from this chapter will regardless
stand you in good stead, whatever language you are using.

This chapter has only brushed the surface of concurrency in general
and its support in Java. The best book to continue learning more
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about the basic concepts of concurrency is the classic Java
Concurrency in Practice (JCiP) by Brian Goetz et al. If you
understand everything in JCiP, you’ll be writing pretty great
concurrent code.

Java concurrency support has moved on considerably however
since Java 5. In the world of Java 12 (or whatever version is current
when you read this), there are new features such as
CompleteableFutures, lambda expressions and parallel streams.
The functional programming style introduced in Java 8.0 makes it
easy to create concurrent solutions without directly creating and
managing threads. A good source of knowledge for Java 8.0
features is Mastering Concurrency Programming with Java 8 by
Javier Fernández González.

Other excellent sources include:

Doug Lea, Concurrent Programming in Java: Design Principles and
Patterns, 2nd Edition

Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft, Java 8 in
Action: Lambdas, Streams, and functional-style programming,
Manning Publications, 1st Edition, 2014.

1  http://www.computinghistory.org.uk/det/6192/Introduction-of-Intel-386/

2  http://www.golang-book.com/books/intro/10

3  https://erlang.org/doc/getting_started/conc_prog.html

4  https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/

5  The correct way to handle these problems, namely barrier synchronization,
is covered later in this chapter.

6  https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-
summary.html

7  Except Vector and HashTable, which are legacy classes, thread safe and
slow!

http://www.computinghistory.org.uk/det/6192/Introduction-of-Intel-386/
http://www.golang-book.com/books/intro/10
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html


8
https://en.wikipedia.org/wiki/POSIX_Threads#:~:text=POSIX%20Threads%2
C%20usually%20referred%20to,work%20that%20overlap%20in%20time.

9  https://en.wikipedia.org/wiki/Communicating_sequential_processes

10  https://www.golang-book.com/books/intro/10



Chapter 5. Application Services

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

At the heart of any system lies the unique business logic that
implements the application requirements. In distributed systems, this
is exposed to clients through Application Programming Interfaces
(APIs) and executed within a runtime environment designed to
efficiently support concurrent remote calls. An API and its
implementation comprise the fundamental elements of the services
an application supports.

In this chapter, I’m going to focus on the pertinent issues for
achieving scalability for the services tier in an application. I’ll explain
API and service design and describe the salient features of
application servers that provide the execution environment for
services. I’ll also elaborate on topics such as horizontal scaling, load
balancing and state management that I introduced briefly in Chapter
2.

Service Design

mailto:vwilson@oreilly.com


In the simplest case, an application comprises one Internet facing
service that persists data to a local data store, as shown in Figure 5-
1. Clients interact with the service through its published API, which is
accessible across the Internet.

Let’s look at the API and service implementation in more detail.

Figure 5-1. A Simple Service

Application Programming Interface (API)
An API defines a contract between the client and server. The API
specifies the types of requests that are possible, the data that is
needed to accompany the requests, and the results that will be
obtained. APIs have many different variations, as I explained in
RPC/RMI discussions in Chapter 3. While there remains some API
diversity in modern applications, the predominant style relies on
HTTP APIs. These are typically, although not particularly accurately,
classified as RESTful.

REST is actually an architectural style that was defined by Roy
Fielding in his PhD thesis . A great source of knowledge on RESTful
APIs and the various degrees to which Web technologies can be
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exploited is REST in Practice by Jim Webber, et al. (O’Reilly). Here
I’ll just briefly touch on the HTTP CRUD API pattern. This pattern
does not fully implement the principles of REST, but it is widely
adopted in Internet systems today. It exploits the four code HTTP
verbs, namely POST, GET, PUT, and DELETE.

CRUD stands for Create, Read, Update, Delete. A CRUD API
specifies how clients perform these operations in a specific business
context. For example, a user might create a profile (POST), read
catalog items (GET), update their shopping cart (PUT) and delete
items from their order (DELETE).

An example HTTP CRUD API for the example ski resort system,
briefly introduced in Chapter 2, that uses these four core HTTP verbs
is shown in Table 5-1 In this example, parameter values are passed
as part of the request address and are identified by the {} notation.
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                POST 
              

/skico.com/skier
s/

Create a new skier profile, with skier details 
provided in the JSON request payload. The 



new skier profile is returned in the JSON 
response

 
            
 
                GET  
              

/skico.com/skier
s/{skierID}

Get the profile information for a skier, returned 
in a JSON response payload

 
            
 
                PUT 
              

/skico.com/skiers/{skierID} Update skier profile 

 
            
 
                
DELETE 
              

/skico.com/skiers/{s
kierID}

Delete a skier’s profile as they didn’t 
renew their pass!

 
          

Additional parameter values can be passed and returned in HTTP
request and response bodies respectively. For example, a
successful request to:

GET /skico.com/skiers/12345

will return an HTTP 200 response code and the following results
formatted in JSON:

{ 
    "username": "Ian123", 
    "email":”i.gorton@somewhere.com” 
    “city”: “Seattle” 
}



To change the skier’s city, the client could issue the following PUT
request to the same URI along with a request body representing the
updated skier profile.

PUT  /skico.com/skiers/12345 
{ 
    "username": "Ian123", 
    "email":”i.gorton@somewhere.com” 
    “city”: “Wenatchee” 
}

More formally, an HTTP CRUD API applies HTTP verbs on
resources identified by Uniform Resource Identifiers (URIs). In Table
5-1 for example, a URI that identifies skier 768934 would be:

/skico.com/skiers/768934

An HTTP GET request to this resource would return the complete
profile information for a skier in the response payload, such as
name, address, number of days visited, and so on. If a client
subsequently sends an HTTP PUT request to this URI, we are
expressing the intent to update the resource for skier 768934 – in
this example it would be the skier’s profile. The PUT request would
provide the complete representation for the skier’s profile as returned
by the GET request. Again, this would be as a payload with the
request. Payloads are typically formatted as JSON, although XML
and other formats are also possible. If a client sends a DELETE
request to the same URI, then the skier’s profile will be deleted.

Hence the combination of the HTTP verb and URI define the
semantics of the API operation. Resources, represented by URIs,
are conceptually like objects in Object Oriented Design (OOD) or
entities in Entity-Relationship (ER) model. Resource identification
and modeling hence follows similar methods to OOD and ER
modeling. The focus however is on resources that need to be
exposed to clients in the API. The Further Reading section at the



end of this chapter points to useful sources of information for
resource design.

HTTP APIs can be specified using a notation called OpenAPI . At
the time of writing the latest version is 3.0. A tool called
SwaggerHub  is the de facto standard to specify APIs in OpenAPI.
The specification is defined in YAML, and an example is shown in
Figure 5-2. It defines the GET operation on the URI /resorts. If the
operation is successful, a 200 response code is returned along with
a list of resorts in a format defined by a JSON schema that appears
later in the specification. If for some reason the query to get a list of
resorts operated by skico.com returns no entries, a 404 response
code is returned along with an error message that is also defined by
a JSON schema.

Example 5-1.   Figure 5-2 OpenAPI Example
paths: 
  /resorts: 
    get: 
      tags: 
        - resorts
      summary: get a list of ski resorts in the database
      operationId: getResorts
      responses: 
        '200': 
          description: successful operation
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/ResortsList'
        '404': 
          description: Resorts not found. Unlikely unless we 
go broke
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/responseMsg' 
         

API design is a complex topic in itself and delving deeply into this
area is beyond the scope of this book. From a scalability
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perspective, a there are some issues that should however be borne
in mind:

Each API request requires a round trip to a service, which
incurs network latency. A common anti-pattern is known as a
chatty API, in which multiple API requests are used to
perform one logical operation. This commonly occurs when
an API is designed following pure object-oriented design
approaches. Imagine exposing get() and set() methods for
individual resource properties as HTTP APIs. Accessing a
resource would require multiple API requests, one for each
property. This is not scalable. Use GET to retrieve the whole
resource and PUT to send back an updated resource. You
can also use the HTTP PATCH verb  to update individual
properties of a resource. PATCH allows partial modification
of a resource representation, in contrast to PUT which
replaces the complete resource representation with new
values.

HTTP APIs that pass large payloads should consider using
compression. All modern Web servers and browsers support
compressed content using the HTTP Accept-Encoding
and Content-Encoding headers . Specific API requests
and responses can utilize these headers by specifying the
compression algorithm that is used for the content – for
example gzip, Compression can reduce network bandwidth
and latencies by 50% or more. The trade off cost is the
compute cycles to compress and decompress the content.
This is typically small compared to the savings in network
transit times.

Designing Services
An application server container receives requests and routes them to
the appropriate handler function to process the request. The handler
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is defined by the application service code and implements the
business logic required to generate results for the request. As
multiple simultaneous requests arrive at a service instance, each is
typically  allocated an individual thread context to execute the
request. The issue of thread handling in application servers is one I’ll
discuss in more detail later in this chapter.

The sophistication of the routing functionality varies widely by
technology platform and language. For example, in Express.js, the
container calls a specified function for requests that match an API
signature – known as a route path - and HTTP method. The code
example below illustrates this with a method that will be called when
the client sends a GET request for a specific skier’s profile, as
identified by the value of :skierID.

app.get('/skiers/:skierID', function (req, res) { 
  // process the GET request 
  ProcessRequest(req.params) 
})

In Java, the widely used Spring framework provides an equally
sophisticated method routing technique. It leverages a set of
annotations that define dependencies and implement dependency
injection to simplify the service code. The code snippet below shows
an example of annotations usage:

@RestController 
public class SkierController { 
     @GetMapping("/skiers/{skierID}",  
                produces = “application/json”) 
    public Profile GetSkierProfile( 
                        @PathVariable String skierID,  
                        ) { 
          // DB query method omitted for brevity 
        return GetProfileFromDB(skierID); 
    } 
} 
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These annotations provide the following functionality:

@RestController

Identifies the class as a controller that implements an API and
automatically serializes the return object into the HttpResponse
returned from the API.

@GetMapping

Maps the API signature to the specific method, and defines the
format of the response body

@PathVariable

Identifies the parameter as a value that originates in the path for
URI that maps to this method

Another Java technology, JEE servlets, also provide annotations, as
shown in Figure 5-3, but these are simplistic compared to Spring and
other higher-level frameworks. The @WebServlet annotation
identifies the base pattern for the URI which should cause a
particular servlet to be invoked. This is /skiers in our example.
The class that implements the API method must extend the
HttpServlet abstract class from the javax.servlet.http
package and override at least one method that implements an HTTP
request handler. The four core HTTP verbs map to methods as
follows:

doGet

HTTP GET requests

doPost

HTTP POST requests

doPut



HTTP PUT requests

doDelete

for HTTP DELETE requests

Each method is passed two parameters, namely an
HttpServletRequest and HttpServletResponse object. The
servlet container creates the HttpServletRequest object, which
contains members that represent the components of the incoming
HTTP request. This object contains the complete URI path for the
call, and it is the servlet’s responsibility to explicitly parse and
validate this, and extract path and query parameters if valid.
Likewise, the servlet must explicitly set the properties of the
response using the HttpServletResponse object.

Servlets therefore require more code from the application service
programmer to implement. However, they are likely to provide a
more efficient implementation as there is less generated code
‘plumbing’ involved in request processing as compared to the more
powerful annotation approaches of Spring et al. This is a classic
performance versus ease-of-use trade-off. You’ll see lots of these in
this book.

Example 5-2. JEE Servlet Example
import javax.servlet.http.*; 
@WebServlet( 
    name = “SkiersServlet“, 
    urlPatterns = “/skiers” 
) 
public class SkierServlet extends HttpServlet ( 
 
protected void doGet(HttpServletRequest request,    
                     HttpServletResponse response) {   
  // handles requests to /skiers/{skierID} 
  try { 
     // extract skierID from the request URI (not shown for 
brevity) 
     String skierID  = getSkierIDFromRequest(request);     



     if(skierID == null) {   
        // request was poorly formatted, return error code 
        
response.setStatus(HttpServletResponse.SC_BAD_REQUEST);    } 
     else {       
        // read the skier profile from the database  
        Profile profile = GetSkierProfile (skierID); 
        // add skier profile as JSON to HTTP response and 
return 200 
        response.setContentType("application/json"); 
        response.getWriter().write(gson.toJson(Profile); 
        response.setStatus(HttpServletResponse.SC_OK);  
     } catch(Exception ex) {          
         response.setStatus 
           (HttpServletResponse.SC_INTERNAL_SERVER_ERROR);    
} 
     
       } 
} }

State Management
State management is a tricky, nuanced topic. The bottom line is that
service implementations that need to scale should avoid storing
conversational state. What on earth does that mean?

Let’s start by examining the topic of state management with HTTP.

HTTP is known as stateless protocol. This means each request is
executed independently, without any knowledge of the requests that
were executed before it from the same client. Statelessness implies
that every request needs to be self-contained, with sufficient
information provided by the client for the Web server to satisfy the
request regardless of previous activity from that client.

The picture is a little more complicated that this simple description
portrays, however. For example:

The underlying socket connection between a client and
server is kept open so that the overheads of connection



creation are amortized across multiple requests from a client.
This is the default behavior for versions HTTP/1 and above.

HTTP supports cookies, which are known as the HTTP State
Management Mechanism . Gives it away really!

HTTP/2 supports streams, compression, and encryption, all
of which require state management.

So, originally HTTP was stateless, but perhaps not anymore? Armed
with this confusion (!), I’ll move on to state management in
application services APIs that are built on top of HTTP.

When a user or application connects to a service, it will typically
send a series of requests to retrieve and update information.
Conversational state represents any information that is retained
between requests such that a subsequent request can assume the
service has retained knowledge about the previous interactions. I’ll
explore what this means in a simple example.

In the skier service API, a user may request their profile by
submitting a GET request to the following URI:

GET /skico.com/skiers/768934

They may then use their app to modify their city attribute and send
a PUT request to a update the resource:

PUT /skico.com/skiers/ 
{ 
    "username": "Ian123", 
    "email":”i.gorton@somewhere.com” 
    “city”: “Wenatchee” 
}

As this URI does not identify the skier, the service must know the
unique identifier of the resource to update, namely 768934. Hence
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for this update operation to succeed, the service must have retained
conversational state from the previous GET request.

Implementing this approach is relatively straightforward. When the
service receives the initial GET request, it creates a session state
object that uniquely identifies the client connection. In reality, this is
often performed when a user first connects to or logs in to a service.
The service can then read the skier profile from the database and
utilize the session state object to store conversational state – in our
example this would be skierID and likely values associated with
the skier profile. When the subsequent PUT request arrives from the
client it uses the session state object to look up the skierID
associated with this session and uses that to update the skier’s
home city.

Services that maintain conversational state are known as stateful
services. Stateful services are attractive from a design perspective
as they can minimize the number of times a service retrieves data
(state) from the database and reduce the amount of data that is
passed between clients and the services.

For services with light request loads they make eminent sense and
are promoted by many frameworks to make services easy to build
and deploy. For example, JEE servlets support session management
using the HttpSession object, and similar capabilities are offered
by the Session object in ASP.NET.

As you scale the service implementations however, the stateful
approach becomes problematic. For a single service instance, you
have two problems to consider:

1. If you have multiple client sessions all maintaining session
state, this will utilize available service memory. The amount
of memory utilized will be proportional to the number of
clients the service is maintaining state for. If a sudden spike
of requests arrives, how can you be certain we will not
exhaust available memory and cause the service to fail?



2. You also must be mindful about how long to keep session
state available. A client may stop sending requests but not
cleanly close their connection to allow the state to be
reclaimed. All session management approaches support a
default session timeout. If you set this to a short time
interval, clients may see their state disappear unexpectedly.
If you set the session time out period to be too long, you may
degrade service performance as it runs low on resources.

In contrast, stateless services do not assume that any conversational
state from previous calls has been preserved. The service should not
maintain any knowledge from earlier requests, so that each request
can be processed individually. This requires the client to provide all
the necessary information for the service to process the request and
provide a response. This is in fact how the skier API is specified in
Table 5-1, namely:

PUT /skico.com/skiers/768934 
{ 
    "username": "Ian123", 
    "email":”i.gorton@somewhere.com” 
    “city”: “Wenatchee” 
}

A sequence diagram illustrating this stateless design is shown in
Figure 5-2.



Figure 5-2. Stateless API Example

Any scalable service will need stateless APIs. The reason why will
become clear when I explain horizontal scaling later in this chapter.
For now, the most important design implication is that for a service
that needs to retain state pertaining to client sessions – the classic
shopping cart example – this state must be stored externally to the
service. This invariably means an external data store.

Applications Servers
Application servers are the heart of a scalable application, hosting
the business services that comprise an application. Their basic role
is to accept requests from clients, apply application logic to the
requests, and reply to the client with the request results. Clients may
be external or internal, as in other services in the application that
require to use the functionality of a specific service.



The technological landscape of application servers is broad and
complex, depending on the language you want to use and the
specific capabilities that each offers. In Java, the Java Enterprise
Edition (JEE)  defines a comprehensive, feature rich standards-
based platform for application servers, with multiple different vendor
and open source implementations.

In other languages, the Express.js  server supports Node, Flask
supports Python , and in GoLang a service can be created by
incorporating the net/http package. These implementations are
much more minimal and lightweight than JEE and are typically
classified as Web application frameworks. In Java, the Apache
Tomcat server  is a somewhat equivalent technology. Tomcat is an
open source implementation of a subset of the JEE platform, namely
the Java Servlet, JavaServer Pages, Java Expression Language and
Java WebSocket technologies.

Figure 5-3 depicts a simplified view of the anatomy of Tomcat.
Tomcat implements a servlet container, which is an execution
environment for application-defined servlets. Servlets are
dynamically loaded into this container, which provides lifecycle
management and a multithreaded runtime environment.

Requests arrive at the IP address of the server, which is listening for
traffic on specific ports. For example, by default Tomcat listens on
port 8080 for HTTP requests and 8443 for HTTPS requests.
Incoming requests are processed by one or more listener threads.
These create a TCP/IP socket connection between the client and
server. If network requests arrive at a frequency that cannot be
processed by the TCP listener, pending requests are queued up in
the Sockets Backlog. The size of the backlog is operating system
dependent. In most Linux versions the default is 100.

Once a connection is established, the TCP requests are marshalled
by, in this example, a HTTP Connector which generates the HTTP
request (HttpServletRequest object as in Figure 5-2) that the
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servlet can process. The HTTP request is then dispatched to an
application container thread to process.

Application container threads are managed in a thread pool,
essentially a Java Executor, which by default in Tomcat is a
minimum size of 25 threads and a maximum of 200. If there are no
available threads to handle a request, the container maintains them
in a queue of runnable tasks and dispatches these as soon as a
thread becomes available. This queue by default is size
Integer.MAX_VALUE – that is, essentially unbounded . By
default, if a thread remains idle for 60 seconds, it is killed to free up
resources in the Java Virtual Machine.

Figure 5-3. Anatomy of a Web application server

For each request, the method that corresponds with the HTTP
request is invoked in a thread. The servlet method processes the
HTTP request headers, executes the business logic, and constructs
a response that is marshalled by the container back into a TCP/IP
packet and sent over the network to the client.

In processing the business logic, servlets often need to query an
external database. This requires each thread executing the servlet
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methods to obtain a database connection and execute database
queries. In many databases, especially relational ones, connections
are limited resources as they consume memory and system
resources in both the client and database server. For this reason, a
fixed size database connection pool is typically utilized. The pool
hands out open connections to requesting threads on demand.

When a servlet wishes to submit a query to the database, it requests
a connection from the pool. If one is available, access to the
connection is granted to the servlet until it indicates it has completed
its work. At that stage the connection is returned to the pool and
made available for another servlet to utilize. As the container thread
pool is typically larger than the database connection pool, a servlet
may request a connection when none are available. To handle this,
the connection pool maintains a request queue and hands out open
connections on a FIFO basis, and threads in the queue are blocked
until there is availability or a timeout occurs.

An application server framework such as Tomcat is hence highly
configurable for different workloads. For example, the size of the
thread and database connection pools can be specified in
configuration files that are read at startup.

The complete Tomcat container environment runs within a single
JVM, and hence processing capacity is limited by the number of
vCPUs available and the amount of memory allocated as heap size.
Each allocated thread consumes memory, and the various queues in
the request processing pipeline consume resources while requests
are waiting. This means that request response time will be governed
by both the request processing time in the servlet business logic as
well as the time spent waiting in queues for threads and connections
to become available.

In a heavily loaded server with many threads allocated, context
switching may start to degrade performance, and available memory
may become limited. If performance degrades, queues grow as



requests wait for resources. This consumes more memory. If more
requests are received than can be queued up and processed by the
server, then new TCP/IP connections will be refused, and clients will
see errors. Eventually, an overloaded server may run out of
resources and start throwing exceptions and crash.

Consequently, time spent tuning configuration parameters to
efficiently handle anticipated loads is rarely wasted. Systems tend to
degrade in performance well before they reach 100% utilization.
Once any resource - CPU utilization, memory usage, network, disk
accesses - gets close to full utilization, systems exhibit less
predictable performance. This is because more time is spent, for
example thread context switching and memory garbage collecting.
This inevitably affects latencies and throughput. Thus, having a
utilization target is essential. Exactly what these thresholds should
be is extremely application dependent.

Monitoring tools available with Web application frameworks enable
engineers to gather a range of important metrics, including latencies,
active requests, queue sizes and so on. These are invaluable for
carrying out data-driven experiments that lead to performance
optimization.

Java-based application frameworks such as Tomcat support the
JMX  (Java Management Extensions) framework, which is a
standard part of the Java Standard Edition platform. JMX enables
frameworks to expose monitoring information based on the
capabilities of MBeans (Managed Beans), which represent a
resource of interest (e.g., thread pool, database connections usage).
This enables an ecosystem of tools to offer capabilities for
monitoring JMX-supported platforms. These range from JConsole
which is available in the Java Development Kit by default, to
powerful open source technologies such as JavaMelody  and many
expensive commercial offerings.
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Horizontal Scaling
A core principle of scaling a system is being able to easily add new
processing capacity to handle increased load. For most systems, a
simple and effective approach is deploying multiple instances of
stateless server resources and using a load balancer to distribute the
requests across these instances. This is known as horizontal scaling
and illustrated in Figure 5-4.

Figure 5-4. Simple Load Balancing Example

These two ingredients, namely stateless service replicas and a load
balancer, are both necessary for horizontal scaling. I’ll explain why.

Service replicas are deployed on their own (virtual) hardware. Hence
if we have two replicas, we double our processing capacity. If we
have ten replicas, we have potentially 10x capacity. This enables our
system to handle increased loads. The aim of horizontal scaling is to
create a system processing capacity that is the sum of the total
resources available.

The servers need to be stateless, so that any request can be sent to
any service replica to handle. This decision is made by the load
balancer, which can use various policies to distribute requests. If the
load balancer can keep each service replica equally busy, then we
are effectively using the processing capacity provided by the service
replicas.



If our services are stateful, the load balancer needs to always route
requests from the same server to the same service replica. As client
sessions have indeterminate durations, this can lead to some
replicas being much more heavily loaded than others. This creates
an imbalance and is not effective in using the available capacity
evenly across replicas. I’ll return to this issue in more detail in the
next section on load balancing.

NOTE
Technologies like Spring Session and plugins to Tomcat’s Clustering
platform allow session state to be externalized in general purpose
distributed caches like Redis and Memcached. This effectively makes
our services stateless. Load balancers can distribute requests across all
replicated services without concern for state management. I’ll cover the
topic of distributed caches in Chapter 6.

Horizontal scaling also increases availability. With one service
instance, if it fails, the service is unavailable. This is known as a
single point of failure (SPoF) – a bad thing, and something to avoid
in any scalable distributed system. Multiple replicas increase
availability. If one replica fails, requests can be directed to any – they
are stateless, remember – replica. The system will have reduced
capacity until the failed server is replaced, but it will still be available.
Which is important. The ability to scale is crucial, but if a system is
unavailable, then the most scalable system ever built is still
somewhat ineffective!

Load Balancing
Load balancing aims to effectively utilize the capacity of a collection
of services to optimize the response time for each request. This is
achieved by distributing requests across the available services to



ideally utilize the collective service capacity. The objective is to avoid
overloading some services while underutilizing others.

Clients send requests to the IP address of the load balancer, which
redirects requests to target services, and relays the results back to
the client. This means clients never contact the target services
directly, which is also beneficial for security as the services can live
behind a security perimeter and not be exposed to the Internet.

Load balancers may act at the network level or the application level.
These are often called Layer 4 and Layer 7 load balancers,
respectively. The names refer to network transport layer at Layer 4 in
the Open Systems Interconnection (OSI) Reference Model , and
the application layer at Layer 7. The OSI model defines network
functions in seven abstract layers. Each layer defines standards for
how data is packaged and transported.

Network level load balancers distribute requests at the network
connection level, operating on individual TCP or UDP packets.
Routing decisions are made on the basis of client IP addresses.
Once a target service is chosen, the load balancer uses a technique
called Network Address Translation (NAT). This changes the
destination IP address in the client request packet from that of the
load balancer to that of the chosen target. When a response is
received from the target, the load balancer changes the source
address recorded in the packet header from the target’s IP address
to its own. Network load balancers are relatively simple as they
operate on the individual packet level. This means they are
extremely fast, as they provide few features beyond choosing a
target service and performing NAT functionality.

In contrast, application level load balancers reassemble the
complete HTTP request and base their routing decisions on the
values of the HTTP headers and on the actual contents of the
message. For example, a load balancer can be configured to send
all POST requests to a subset of available services, or distribute
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requests based on a query string in the URI. Application load
balancers are sophisticated reverse proxies. The richer capabilities
they offer means they are slightly slower than network load
balancers, but the powerful features they offer can be utilized to
more than make up for the overheads incurred.

To give you some idea of the raw performance difference between
network and application layer load balancers, Figure 5-5 compares
the two in a simple application scenario. The load balancing
technology under test is the AWS Application and Network Elastic
Load Balancers . Each load balancer routes requests to one of 4
replicas. These execute the business logic and return results to the
clients via the load balancer. Client load varies from a lightly loaded
32 concurrent clients to a moderate 256 concurrent clients. Each
client sends a sequence of requests with no delay between receiving
the results from one request and sending the next request to the
server.

You can see from Figure 5-5 that the network load balancer delivers
on average around 20% higher performance for the 32, 64, and 128
client tests. This validates the expected higher performance from the
less sophisticated network load balancer. For 256 clients, the
performance of the two load balancers is essentially the same. This
is because the capacity of the 4 replicas is exceeded and the system
has a bottleneck. At this stage the load balancers make no
difference to the system performance. You need to add more
replicas to the load balancing group to increase system capacity, and
hence throughput.
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Figure 5-5. Comparing Load Balancer Performance

In general, a load balancer has the following features that will be
explained in the following sections:

Load distribution policies

Health monitoring

Elasticity

Session affinity

Load Distribution Policies
Load distribution policies dictate how the load balancer chooses a
target service to process a request. Any load balancer worth its salt
will offer several load distribution policies – HAProxy offers 10 in
fact . The following are four of the most commonly supported
across all load balancers:

round-robin

The load balancer distributes requests to available servers in a
round-robin fashion

19

20



least connections

The load balancer distributes new requests to the server with the
least open connections

HTTP header field

The load balancer directs requests based on the contents of a
specific HTTP header field. For example all requests with the
header field X-Client-Location:US,Seattle could be routed to a
specific set of servers.

HTTP operation

The load balancer directs requests based on the HTTP verb in
the request

Load balancers will also allow services to be allocated weights. For
example, standard service instances in the load balancing pool may
have 4 vCPUs and each is allocated a weight of 1. If a service
ereplica running on 8 vCPUs is added, it can be assigned a weight of
2 so the load balancer will send twice as many requests its way.

Health Monitoring
A load balancer will periodically send pings and attempt connections
to test the health of each service in the load balancing pool. These
tests are called health checks. If a service becomes unresponsive or
fails connection attempts, it will be removed from the load balancing
pool and no requests will be sent to that host. If the connection to the
service has experienced a transient failure, the load balancer will
reincorporate the service once it becomes available and healthy. If,
however, it has failed, the service will be removed from the load
balancer target pool.



Elasticity
Spikes in request loads can cause the service capacity available to a
load balancer to become saturated, leading to longer response times
and eventually request and connection failures. Elasticity is the
capability of an application to dynamically provision new service
capacity to handle an increase in requests. As load increases, new
replicas are started and the load balancer directs requests to these.
As load decreases the load balancer stops services that are no
longer needed.

Elasticity requires a load balancer to be tightly integrated with
application monitoring, so that scaling policies can be defined to
determine when to scale up and down. Policies may specify for
example that capacity for a service should be increased when the
average service CPU utilization across all instances is over 70%,
and decreased when average CPU utilization is below 40%. Scaling
policies can typically be defined using any metrics that are available
through the monitoring system.

An example of elastic load balancing is the Amazon Web Services
(AWS) Auto-Scaling groups. An Auto Scaling group is a collection of
service instances available to a load balancer that is defined with a
minimum and maximum size. The load balancer will ensure the
group always has the minimum numbers of services available, and
the group will never exceed the maximum number. This scheme is
illustrated in Figure 5-6.



Figure 5-6. Elastic Load Balancing

Typically, there are two ways to control the number of replicas in a
group. The first is based on a schedule, when the request load
increases and decreases are predictable. For example, you may
have an online entertainment guide and publish the weekend events
for a set of major cities at 6pm on Thursday. This generates a higher
load until Sunday at noon. An Auto Scaling group could easily be
configured to provision new services at 6pm Thursday and reduce
the group size to the minimum at noon Sunday.

If increased load spikes are not predictable, elasticity can be
controlled dynamically by defined scaling policies based on
application metrics such as average CPU and memory usage and
number of messages in a queue. If the upper threshold of the policy
is exceeded, the load balancer will start one or more new service
instances until performance drops below the metric threshold.
Instances need time to start – often a minute or more - and hence a
warmup period can be defined until the new instance is considered
to be contributing to the group’s capacity. When the observed metric



value drops below the lower threshold defined in the scaling policy,
scale in or scale down commences and instances will be
automatically stopped and removed from the pool.

Elasticity is a key feature that allows services to scale dynamically as
demand grows. For highly scalable systems with fluctuating
workloads it is pretty much a mandatory capability for providing the
necessary capacity at minimum costs.

Session Affinity
Session affinity, or sticky sessions, are a load balancer feature for
stateful services. With sticky sessions, the load balancer sends all
requests from the same client to the same service instance. This
enables the service to maintain in-memory state about each specific
client session.

There are various ways to implement sticky sessions. For example,
HAProxy provides a comprehensive set of capabilities to maintain
client requests on the same service in the face of service additions,
removals and failures . AWS Elastic Load Balancing generates an
HTTP cookie that identifies the service replica a client’s session is
associated with. This cookie is returned to the client, which must
send it in subsequent requests to ensure session affinity is
maintained.

Sticky sessions can be problematic for highly scalable systems.
They lead to a load imbalance problem, in which, over time, clients
are not evenly distributed across services. This is illustrated in
Figure 5-7, where two clients are connected to one service while
another service remains idle.
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Figure 5-7. Load Imbalance with Sticky Sessions

Load imbalance occurs because client sessions last for varying
amounts of time. Even if sessions are evenly distributed initially,
some will terminate quickly while others will persist. In a lightly
loaded system, this tends to not be an issue. However, in a system
with millions of sessions being created and destroyed constantly,
load imbalance is inevitable. This will lead to some service replicas
being underutilized, while others are overwhelmed and may
potentially fail due to resource exhaustion. To help alleviate load
imbalance, load balancers usually provide policies such as sending
new sessions to instances with the least connections or fastest
response times. These help direct new sessions away from heavily
loaded services.

Stateful services have other downsides. When a service inevitably
fails, how do the clients connected to that server recover the state
that was being managed? If a service instance becomes slow due to
high load, how do clients respond? In general stateful servers create



problems that in large scale systems can be difficult to design
around and manage.

Stateless services have none of these downsides. If one fails, clients
get an exception and retry, with their request routed to another live
service replica. If a service is slow due to a transient network outage,
the load balancer takes it out of the service group until it passes
health checks or fails. All application state is either externalized or
provided by the client in each request, so service failures can be
handled easily by the load balancer.

Stateless services enhance scalability, simplify failure scenarios and
ease the burden of service management. For scalable applications,
these advantages far outweigh the disadvantages, and hence their
adoption in most major large scale Internet sites such as Netflix.

Finally, bear in mind that scaling one collection of services through
load balancing may well overwhelm downstream services or
databases that the load balanced services depend on. Just like with
highways, adding 8 traffic lanes for 50 miles will just cause bigger
traffic chaos if the highway ends at a set of traffic lights with a one
lane road on the other side. We’ve all been there, I’m sure. I’ll
address these issues in Chapter 9.

Summary and Further Reading
Services are the heart of a scalable software system. They define
the contract as an API that specifies their capabilities to clients.
Services execute in an application server container environment that
hosts the service code and routes incoming API requests to the
appropriate processing logic. Application servers are highly
programming language dependent, but in general provide a
multithreaded programming model that allows services to process
many requests simultaneously. If the threads in the container thread
pool are all utilized, the application server queues up requests until a
thread becomes available.
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As request loads grow on a service, we can scale it out horizontally
using a load balancer to distribute requests across multiple
instances. This architecture also provides high availability as the
multiple service configuration means the application can tolerate
failures of individual instances. The service instances are managed
as a pool by the load balancer, which utilizes a load distribution
policy to choose a target service replica for each request. Stateless
services scale easily and simplify failure scenarios by allowing the
load balancer to simply resend requests to responsive targets.
Although most load balancers will support stateful services using a
feature called sticky sessions, stateful services make load balancing
and handling failures more complex. Hence, they are not
recommended for highly scalable services.

API design is a topic of great complexity and debate. An excellent
overview of basic API design and resource modeling is
https://www.thoughtworks.com/insights/blog/rest-api-design-
resource-modeling.

The Java Enterprise Edition (JEE) is an established and widely
deployed server-side technology. It has a wide range of abstractions
for building rich and powerful services. The Oracle tutorial is an
excellent starting place for appreciating this platform -
https://docs.oracle.com/javaee/7/tutorial/.

Much of the knowledge and information about load balancers is
buried in the documentation provided by the technology suppliers.
You choose your load balancer and then dive into the manuals. For
an excellent, broad perspective on the complete field of load
balancing, Server Load Balancing by Tony Bourke (O’Reilly) is a
good resource.
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Chapter 6. Distributed Caching

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 6th chapter of the final book.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

Caches exist in many places in an application. The CPUs that run
your applications have multi-level, fast hardware caches to reduce
relatively slow main memory accesses. Database engines can make
use of main memory to cache the contents of the data store in
memory so that in many cases queries do not have to touch
relatively slow disks.

Distributed caching is an essential ingredient of a scalable system.
Caching makes the results of expensive queries and computations
available for reuse by subsequent requests at low cost. By not
having to reconstruct the cached results for every single request, the
capacity of the system is increased, and it is hence able to scale to
handle greater workloads.

There’s two flavors of caching that I’ll cover in this chapter.
Application caching requires business logic that incorporates the
caching and access of precomputed results using distributed caches.
Web caching exploits mechanisms built into the HTTP protocol to
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enable caching of results within the infrastructure provided by the
Internet. When used effectively, both will protect your services and
databases from heavy read traffic loads.

Application Caching
Application caching is designed to improve request responsiveness
by storing the results of queries and computations in memory so they
can be subsequently served by later requests. For example, think of
an online newspaper site where readers can leave comments. Once
posted, articles change infrequently, if ever. New comments tend to
get posted soon after an article is published, but the frequency drops
quickly with the age of the article. Hence an article can be cached on
first access and reused by all subsequent requests until the article is
updated, new comments are posted, or no one wants to read it
anymore.

In general, caching relieves databases of heavy read traffic, as many
queries can be served directly from the cache. It also reduces
computation costs for objects that are expensive to construct, for
example those needing queries that span several different
databases. The net effect is to reduce the computational load on our
services and databases and create head room, or capacity for more
requests.

Caching requires additional resources, and hence cost, to store
cached results. However, well designed caching schemes are low-
cost compared to upgrading database and service nodes to cope
with higher request loads. As an indication of the value of caches,
approximately 3% of infrastructure at Twitter is dedicated to
application level caches.  At Twitter scale, operating hundreds of
clusters, that is a lot of infrastructure!

Application level caching exploits dedicated distributed cache
engines. The two predominant technologies in this area are
memcached  and Redis.  Both are essentially distributed in-memory
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hash tables designed for arbitrary data (strings, objects) representing
the results of database queries or downstream service API calls.
Common use cases for caches are storing user session data,
dynamic web pages and results of database queries. The cache
appears to application services as a single store, and objects are
allocated to individual cache servers using a hash function on the
object key.

The basic scheme is shown in Figure 6-1. The service first checks
the cache to see if the data it requires is available. If so, it returns the
cached contents as the results – this is known as a cache hit. If the
data is not in the cache – a cache miss - the service retrieves the
requested data from the database and writes the query results to the
cache so it is available for subsequent client requests without
querying the database.

Figure 6-1. Application Level Caching

For example, at a busy winter resort, skiers and boarders can use
their mobile app to get an estimate of the lift wait times across the
resort. This enables them to plan and avoid congested areas where
they will have to wait to ride a lift for say 15 minutes (or sometimes
more!).



Every time a skier loads a lift, a message is sent to the company’s
service that collects data about skier traffic patterns. Using this data,
the system can estimate lift wait times from the number of skiers who
ride a lift and the rate they are arriving. This is an expensive
calculation, taking maybe a second or more at busy times, as it
requires aggregating potentially 10’s of thousands of lift ride records
and performing the wait time calculation. For this reason, once the
results are calculated, they are deemed valid for five minutes. Only
after this time has elapsed is a new calculation performed and
results produced.

Figure 6-2 shows an example of how a stateless
LiftWaitService might work. When a request arrives, the service
first checks the cache to see if the latest wait times are available. If
they are, the results are immediately returned to the client. If the
results are not in the cache, the service calls a downstream service
which performs the lift wait calculations and returns them as a List.
These results are then stored in the cache and then returned to the
client.

Cache access requires a key with which to associate the results
with. In this example the key is constructed with the string
“liftwaittimes:” concatenated with the resort identifier that is
passed by the client to the service. This key is then hashed by the
cache to identify the server where the cached value resides. I’ll
describe how the hash algorithm for most distributed caches typically
works in Chapter 13, as the same approach is commonly used in
distributed databases for key distribution.

When a new value is written to the cache, a value of 300 seconds is
passed as a parameter to the put operation. This is known as a time
to live, or TTL value. It tells the cache that after 300 seconds this
key-value pair should be evicted from the cache as the value is no
longer current – also known as stale.



While the cache value is valid, all requests will utilize it. This means
there is no need to perform the expensive lift wait time calculation for
every call. A cache hit on a fast network will take maybe a
millisecond – much faster than the lift wait times calculation. When
the cache value is evicted after 300 seconds, the next request will
result in a cache miss. This will result in the calculation of the new
values to be stored in the cache. Hence if we get N requests in a 5
minute period, N-1 requests are served from the cache. Imagine if N
is 10000? This is a lot of expensive calculations saved, and CPU
cycles that your database can use to process other queries.

Example 6-1.   Figure 6-2 Caching Example
public class LiftWaitService { 
  public List getLiftWaits(String resort) {  
    List liftWaitTimes = cache.get(“liftwaittimes:” + 
resort);  
      if (liftWaitTimes == null) { 
         liftWaitTimes = skiCo.getLiftWaitTimes(resort);  
         // add result to cache, expire in 300 seconds 
         cache.put("liftwaittimes:" + resort, liftWaitTimes, 
300);  
      }  
    return liftWaitTimes;  
     }  
   }

Using an expiry time like the TTL is a common way to invalidate
cache contents. It ensures a service doesn’t deliver stale, out of date
results to a client. It also enables the system to have some control
over cache contents, which are typically limited. If cached items are
not flushed periodically, the cache may fill up. In this case, a cache
will adopt a policy such as least recently used or least accessed to
choose cache entries to evict and create space for more current,
timely results.

Application caching can provide significant throughput boosts,
reduced latencies, and increased client application responsiveness.
The key to achieving these desirable qualities is to satisfy as many
requests as possible from the cache. The general design principle is



to maximize the cache hit rate and minimize the cache miss rate.
When a cache miss occurs, the request must be satisfied through
querying databases or downstream services. The results of the
request can then be written to the cache and hence be available for
further accesses.

There’s no hard and fast rule on what the cache hit rate should be,
as it depends on the cost of constructing the cache contents and the
update rate of cached items. Ideal cache designs have many more
reads than updates. This is because when an item must be updated,
the application needs to invalidate cache entries that are now stale
because of the update. This means the next request will result in a
cache miss.

When items are updated regularly, the cost of cache misses can
negate the benefits of the cache. Service designers therefore need
to carefully consider query and update patterns an application
experiences, and construct caching mechanisms that yield the most
benefit. It is also crucial to monitor the cache usage once a service is
in production to ensure the hit and miss rates are in line with design
expectations. Caches will provide both management utilities and
APIs to enable monitoring of the cache usage characteristics. For
example, memcached makes a large number of statistics available,
including the hit and miss counts as shown in the snippet of output
below.

STAT get_hits 98567 
STAT get_misses 11001 
STAT evictions 0

Application level caching is also known as the cache-aside pattern.
The name references the fact that the application code effectively
bypasses the data storage systems if the required results are
available in the cache. This contrasts with other caching patterns in
which the application always reads from and writes to the cache.
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These are known as read-through, write-through and write-behind
caches as explained below:

Read- through

The application satisfies all requests by accessing the cache. If
the data required is not available in the cache, a loader is invoked
to access the data systems and load the results in the cache for
the application to utilize.

Write- through

The application always writes updates to the cache. When the
cache is updated, a writer is invoked to write the new cache
values to the database. When the database is updated, the
application can complete the request.

Write- behind

Like write-through, except the application does not wait for the
value to be written to the database from the cache. This
increases request responsiveness at the expense of possible lost
updates if the cache server crashes before a database update is
completed. This is also known as a write-back cache, and
internally is the strategy used by most database engines.

The beauty of these caching approaches is that they simplify
application logic. Applications always utilize the cache for reads and
writes, and the cache provides the ‘magic’ to ensure the cache
interacts appropriately with the backend storage systems. This
contrasts with the cache-aside pattern, in which application logic
must be cognizant of cache misses.

Read-through, write-through and write-behind strategies require a
cache technology that can be augmented with an application-specific
handler to perform database reads and writes when the application
accesses the cache. For example, NCache  supports provider6



interfaces that the application implements. These are invoked
automatically on cache misses for read-through caches and on
writes for write-through caches. Other such caches are essentially
dedicated database caches, and hence require cache access to be
identical to the underlying database model. An example of this is
Amazon’s DynamoDB Accelerator (DAX).  DAX sits between the
application code and DynamoDB, and transparently acts as a high-
speed in memory cache to reduce database access times.

One significant advantage of the cache-aside strategy is that it is
resilient to cache failure. In such circumstances, as the cache is
unavailable, all requests are essentially handled as a cache miss.
Performance will suffer, but services will still be able to satisfy
requests. In addition, scaling cache-aside platforms such as Redis
and Memcached is straightforward due to their simple, distributed
hash table model. For these reasons, the cache-aside pattern is the
primary approach seen in massively scalable systems.

Web Caching
One of the reasons that Web sites are so highly responsive is that
the Internet is littered with Web caches. Web caches store a copy of
a given resource, for example a Web page or an image, for a defined
time period. The caches intercept client requests and if they have a
requested resource cached locally, they return the copy rather than
forwarding the request to the target service. Hence many requests
can be satisfied without placing a burden on the service. Also, as the
caches are physically closer to the client, the requests will have
lower latencies.

Figure 6-2 gives an overview of the Web caching architecture.
Multiple levels of caches exist, starting with the client’s Web browser
cache and local organization-based caches. Internet Service
Providers will also implement general web proxy caches, and
reverse proxy caches can be deployed within the application
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services execution domain. Web browser caches are also known as
private caches (for a single user). Organizational and ISP proxy
caches are shared caches that support requests from multiple users.

Edge caches, also known as CDNs (Content Delivery Networks), live
at various strategic geographical locations globally, so that they
cache frequently accessed data close to clients. For example a video
streaming provider may configure an edge cache in Sydney,
Australia to serve video content to Australasian users rather than
streaming content across the Pacific Ocean from US-based origin
servers. Edge caches are deployed globally by CDN providers. For
example Akamai, the original CDN provider, has over 2000 locations
and delivers up to 30% of Internet traffic globally.  For media rich
sites with global users, edge caches are essential.

Caches typically store the results of GET requests only, and the
cache key is the URI of the associated GET. When a client sends a
GET request, it may be intercepted by one or more caches along the
request path. Any cache with a fresh copy of the requested resource
may respond to the request. If no cached content is found, the
request is served by the service endpoint, which is also called in
Web technology parlance as the origin server.

Figure 6-2. Web Caches in the Internet
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Services can control what results are cached and for how long they
are stored by using HTTP caching directives. Services set these
directives in various HTTP response headers, as shown in the
simple example in Figure 6-4. I will describe these directives in the
following subsections.

Example 6-2. Figure 6-4 Example HTTP Response with caching
directives 
Response: 
HTTP/1.1 200 OK Content-Length: 9842 
Content-Type: application/json  
Cache-Control: public  
Date: Fri, 26 Mar 2019 09:33:49 GMT  
Expires: Fri, 26 Mar 2019 09:38:49 GMT

Cache-Control
The Cache-Control HTTP header can be used by client requests
and service responses to specify how the caching should be utilized
for the resources of interest. Possible values are:

no-store

Specifies that a resource from a request response should not be
cached. This is typically used for sensitive data that needs to be
retrieved from the origin servers each request.

no-cache

Specifies that a cached resource must be revalidated with an
origin server before use. I discuss revalidation in the Etag
subsection below.

P rivate

Specifies a resource can be cached only by a user-specific
device such as a Web browser

P ublic



Specifies a resource can be cached by any proxy server

max-age

Defines the length of time in seconds a cached copy of a
resource should be retained. After expiration, a cache must
refresh the resource by sending a request to the origin server.

Expires and Last-Modified
The Expires and Last-Modified HTTP headers interact with the
max-age directive to control how long cached data is retained.

Caches have limited storage resources and hence must periodically
evict items from memory to create space. To influence cache
eviction, services can specify how long resources in the cache
should remain valid, or fresh. When a request arrives for a fresh
resource, the cache serves the locally stored results without
contacting the origin server. Once any specified retention period for a
cached resource expires, it becomes stale and becomes a candidate
for eviction.

Freshness is calculated using a combination of header values. The
"Cache-Control: max-age=N" header is the primary directive,
and this value specifies the freshness period in seconds.

If max-age is not specified, the Expires header is checked next. If
this header exists, then it is used to calculate the freshness period.
The Expires header specifies an explicit date and time after which
the resource should be considered stale. For example:

Expires: Wed, 26 Oct 2022 09:39:00 GMT

As a last resort, the Last-Modified header can be used to
calculate resource retention periods. This header is set by the origin
server to specify when a resource was last updated, and uses the
same format as the Expires header. A cache server can use



Last-Modified to determine the freshness lifetime of a resource
based on a heuristic calculation that the cache supports. The
calculation uses the Date header, which specifies the time a
response message was sent from an origin server. A resource
retention period subsequently becomes equal to the value of the
Date header minus the value of the Last-Modified header
divided by 10.

Etag
HTTP provides another directive that can be used to control cache
item freshness. This is known as an Etag. An Etag is an opaque
value that can be used by a Web cache to check if a cached
resource is still valid. I’ll explain this using another winter sports
example.

Going back to our winter resort example, the resort produces a
weather report at 6am every day during the winter season. If the
weather changes during the day, the resort updates the report.
Sometimes this happens two or three times each day, and
sometimes not at all if the weather is stable. When a request arrives
for the weather report, the service responds with a maximum age to
define cache freshness, and also an Etag that represents the
version of the weather report that was last issued. This is shown in
Figure 6-5, which tells a cache to treat the weather report resource
as fresh for at least 3600 seconds, or 60 minutes. The Etag value,
namely “blackstone-weather-03/26/19-v1“, is simply
generated using a label that the service defines for this particular
resource. In this example, the Etag represents the first version of
the report for the Blackstone resort on the 26th March, 2019. Other
common strategies are to generate the Etag using a hash algorithm
such as MD5.

Example 6-3. Figure 6-5 HTTP Etag Example



Request:GET /skico.com/weather/Blackstone 
 
Response: 
HTTP/1.1 200 OK Content-Length: ... 
Content-Type: application/json  
Date: Fri, 26 Mar 2019 09:33:49 GMT  
Cache-Control: public, max-age=3600  
ETag: “blackstone-weather-03/26/19-v1" 
<!-- Content omitted -->

For the next hour, the Web cache simply serves this cached weather
report to all clients who issue a GET request. This means the origin
servers are freed from processing these requests – the outcome that
we want from effective caching. After an hour though, the resource
becomes stale. Now, when a request arrives for a stale resource, the
cache forwards it to the origin server with a If-None-Match
directive along with the Etag to enquire if the resource, in our case
the weather report, is still valid. This is known as revalidation.

There are two possible responses to this request.

If the Etag in the request matches the value associated with
the resource in the service, the cached value is still valid.
The origin server can therefore return a 304 (Not
Modified) response, as shown in Figure 6-6. No response
body is needed as the cached value is still current, thus
saving bandwidth, especially for large resources. The
response may also include new cache directives to update
the freshness of the cached resource.

The origin server may ignore the revalidation request and
respond with a 200 OK response code, a response body
and Etag representing the latest version of the weather
report.

Example 6-4.  Figure 6-6 Validating an Etag
Request:  
GET /upic.com/weather/Blackstone  
If-None-Match: “blackstone-weather-03/26/19-v1" 



Response: 
HTTP/1.1 304 Not Modified 
Cache-Control: public, max-age=3600 

In the service implementation, a mechanism is needed to support
revalidation. In our weather report example, one strategy is as
follows:

1. Generate new daily report: The weather report is constructed
and stored in a database, with the Etag as an attribute.

2. GET requests: When any GET request arrives, the service
returns the weather report and the Etag. This will also
populate Web caches along the network response path.

3. Conditional GET requests: For conditional requests with the
If-None-Match: directive, lookup the Etag value in the
database and return 304 if the value has not changed. If the
stored Etag has changed, return 200 along with the latest
weather report and a new Etag value.

4. Update weather report: A new version of the weather report
is stored in the database and the Etag value is modified to
represent this new version of the response.

When used effectively, Web caching can significantly reduce
latencies and save network bandwidth. This is especially true for
large items such as images and documents. Further, as Web caches
handle requests rather than application services, this reduces the
request load on origin servers, creating additional capacity.

Proxy caches such as Squid  and Varnish  are extensively
deployed on the Internet. Web caching is most effective when
deployed for static (images, videos and audio streams) and
infrequently changing data such as weather reports. The powerful
facilities provided by HTTP caching in conjunction with proxy and
edge caches are therefore invaluable tools for building scalable
applications.

9 10



Summary and Further Reading
Caching is an essential component of any scalable distribution.
Caching stores information that is requested by many clients in
memory and serves this information as the results to client requests.
While the information is still valid, it can be served potentially millions
of times without the cost of recreation.

Application caching using a distributed cache is the most common
approach to caching in scalable systems. This approach requires the
application logic to check for cached values when a client request
arrives and return these if available. If the cache hit rate is high, with
most requests being satisfied with cached results, the load on
backend services and databases can be considerably reduced.

The Internet also has a built in, multilevel caching infrastructure.
Applications can exploit this through the use of cache directives that
are part of HTTP headers. These directives enable a service to
specify what information can be cached, for how long it should be
cached, and employ a protocol for checking to see if a stale cache
entry is still valid. Used wisely, HTTP caching can significantly
reduce request loads on downstream services and databases.

Caching is a well-established area of software and systems, and the
literature tends to be scattered across many generic and product
specific sources. A great source of all-things-caching is Gerardus
Blokdyk’s Memcached Third Edition, 2018. While the title gives away
the product-focused content, the knowledge contained can be
translated easily to cache designs with other competing
technologies.

A great source of information on HTTP/2 in general is Learning
HTTP/2: A Practical Guide for Beginners 1st Edition, O’Reilly Media,
2017 by Stephen Ludin and Javier Garza. And while dated, Web
Caching, O’Reilly Media, 2001, by Duane Wessels contains enough
generic wisdom to remain a very useful reference.



CDN’s are a reasonably complex, vendor-specific topic in
themselves. They come into their own for media-rich websites with a
geographically dispersed group of users that require fast content
delivery. For a highly readable overview, Ogi Djuraskovic site
(https://firstsiteguide.com/cdn-guide/) is well worth checking out.

1  https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-
infrastructure-behind-twitter-scale.html

2  https://memcached.org/

3  https://redis.io/

4  Some application use cases may make it possible for a new cache entry to
be created at the same time an update is made. This can be useful if some
keys are ‘hot’ and will have a great likelihood of being accessed again before
the next update. This is known as an eager cache update.

5  https://www.ehcache.org/documentation/3.3/caching-patterns.html#cache-
aside

6  https://www.alachisoft.com/resources/docs/ncache/prog-guide/server-side-
api-programming.html

7  https://aws.amazon.com/dynamodb/dax/

8  https://www.globaldots.com/resources/blog/content-delivery-network-
explained/

9  http://www.squid-cache.org/

10  https://varnish-cache.org/

https://firstsiteguide.com/cdn-guide/
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://memcached.org/
https://redis.io/
https://www.ehcache.org/documentation/3.3/caching-patterns.html#cache-aside
https://www.alachisoft.com/resources/docs/ncache/prog-guide/server-side-api-programming.html
https://aws.amazon.com/dynamodb/dax/


Chapter 7. Asynchronous
Messaging

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official
release of these titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
vwilson@oreilly.com.

Inevitably for a distributed systems book, I’ve spent a fair bit of time
in the preceding chapters discussing communications issues.
Communication is fundamental to distributed systems, and it is a
major issue that architects need to incorporate into their system
designs.

So far, these discussions have assumed a synchronous messaging
style. A client sends a response and waits for a server to respond.
This is how most distributed communications are designed to occur,
as the client requires an instantaneous response to proceed.

Not all systems have this requirement. For example, when I return
some goods I’ve purchased online, I take them to my local UPS or
FedEx store. They scan my QRCode, and I give them the package
to process. I do not then wait in the store for confirmation that the
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product has been successfully received by the vendor and my
payment returned. That would be dull and unproductive. I trust the
shipping service to deliver my unwanted goods to the vendor and
expect to get a message a few days later when it has been
processed.

We can design our distributed systems to emulate this behavior.
Using an asynchronous communications style, clients, known as
producers, send their requests to an intermediary messaging
service. This acts as a delivery mechanism to relay the request to
the intended destination, known as the consumer, for processing.
Producers fire and forget the requests they send. Once a request is
delivered to the messaging service, the producer moves on to the
next step in their logic, confident that the requests it sends will
eventually get processed. This improves system responsiveness, in
that producers do not have to wait until the request processing is
completed.

In this chapter I’ll describe the basic communication mechanisms
that an asynchronous messaging system supports. I’ll also discuss
the inherent trade-offs between throughput and data safety –
basically making sure your systems don’t lose messages. I’ll also
cover three key messaging patterns that are commonly deployed in
highly scalable distributed systems.

To make these concepts concrete, I’ll describe RabbitMQ
(https://www.rabbitmq.com/), a widely deployed open-source
messaging system. After introducing the basics of the technology, I’ll
focus on the core set of features you need to be aware of in order to
design a high throughput messaging system.

Introduction to Messaging
Asynchronous messaging platforms are a mature area of technology,
with multiple products in the space.  The venerable IBM MQ Series
appeared in 1993 and is still a mainstay of enterprise systems. The
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Java Messaging Service, an API level specification, is supported by
multiple Java Enterprise Edition vendor implementations. RabbitMQ,
which I’ll use as an illustration later in this chapter, is arguably the
most widely deployed open-source messaging system. In the
messaging world, you will never be short of choice.

While the specific features and APIs vary across all these competing
products, the foundational concepts are pretty much identical. I’ll
cover these in the following subsections, and then describe how they
are implemented in RabbitMQ in the next section. Once you
appreciate how one messaging platform works, it is relatively
straightforward to understand the similarities and differences
inherent in the competition.

Messaging Primitives
Conceptually, a messaging system comprises the following:

Message queues: queues store a sequence of messages

Producers: send messages to queues

Consumers: retrieve messages from queues

Message broker: manages one or more queues

This scheme is illustrated in Figure 7-1.

Figure 7-1. A Simple Messaging System



A message broker is a service that manages one or more queues.
When messages are sent from producers to a queue, the broker
adds messages to the queue in the order they arrive – basically a
FIFO approach. The broker is responsible for efficiently managing
message receipt and retention until one or more consumers retrieve
the messages, which are then removed from the queue. Message
brokers that manage many queues and many requests can
effectively utilize many vCPUs and memory to provide low latency
accesses.

Producers send messages to a named queue on a broker. Many
producers can send messages to the same queue. A producer will
wait until an acknowledgement message is received from the broker
before the send operation is considered complete.

Many consumers can take messages from the same queue. Each
message is retrieved by exactly one consumer. There are two modes
of behavior for consumers to retrieve messages, known as pull or
push. While the exact mechanisms are product-specific, the basic
semantics are common across technologies.

In pull mode, also known as polling, consumers send a
request to the broker, which responds with the next message
available for processing. If there are no messages available,
the consumer must poll the queue until messages arrive.

In push mode, a consumer informs the broker that it wishes
to receive messages from a queue. The consumer provides
a callback function that should be invoked when a message
is available. The consumer then blocks (or does other work)
and the message broker delivers messages to the callback
function for processing when they are available.

Generally, utilizing the push mode when available is much more
efficient and recommended. It avoids the broker being potentially
swamped by requests from multiple consumers and makes it



possible to implement message delivery more efficiently in the
broker.

Consumers will also acknowledge message receipt. Upon consumer
acknowledgement, the broker is free to mark a message as
delivered and remove it from the queue. Acknowledgement may be
done automatically or manually.

If automatic acknowledgement is used, messages are acknowledged
as soon as they are delivered to the consumer, and before they are
processed. This provides the lowest latency message delivery as the
acknowledgement can be sent back to the broker before the
message is processed.

Often a consumer will want to ensure a message is fully processed
before acknowledgement. In this case it will utilize manual
acknowledgements. This guards against the possibility of a message
being delivered to a consumer but not being processed due to a
consumer crash. It does of course increase message
acknowledgement latency. Regardless of the acknowledgement
mode selected, unacknowledged messages effectively remain on the
queue and will be delivered at some later time to another consumer
for processing.

Message Persistence
Message brokers can manage multiple queues on the same
hardware. By default, message queues are typically memory based,
in order to provide the fastest possible service to producers and
consumers. Managing queues in memory has minimal overheads, as
long as memory is plentiful. It does however risk message loss if the
server were to crash.

To guard against message loss, known as data safety, queues can
be configured to be persistent. When a message is placed on a
queue by a producer, the operation does not complete until the
message is written to disk. This scheme is depicted in Figure 7-2.



Now, if a message broker should fail, on reboot it can recover the
queue contents to the state they existed in before the failure, and no
messages will be lost. Many applications can’t afford to lose
messages, and hence persistent queues are necessary to provide
data safety and fault tolerance.

Figure 7-2. Persisting Messages to Disk

Persistent queues have an inherent increase in the response time for
send operations, with the tradeoff being enhanced data safety.
Brokers will usually maintain the queue contents in memory as well
as on disk so messages can be delivered to consumers with minimal
overhead during normal operations.

Publish-Subscribe
Message queues deliver each message to exactly one consumer.
For many use cases, this is exactly what you want—my online
purchase return needs to be consumed just once by the originating
vendor—so that I get my money back.



Let’s extend this use case. Assume the online retailer wants to do
analysis of all purchase returns so it can detect vendors who have a
high rate of returns and take some remedial action. To implement
this, you could simply deliver all purchase return messages to the
respective vendor and the new analysis service. This creates a one-
to-many messaging requirement, which is known as a publish-
subscribe architecture pattern. In publish-subscribe systems,
message queues are known as topics. A topic is basically a
message queue that delivers each published message to one of
more subscribers, as illustrated in Figure 7-3.

With publish-subscribe, you can create highly flexible and dynamic
systems. Publishers are decoupled from subscribers, and the
number of subscribers can vary dynamically. This makes the
architecture highly extensible as new subscribers can be added
without any changes to the existing system. It also makes it possible
to perform message processing by a number of consumers in
parallel, thus enhancing performance.

Publish-subscribe places an additional performance burden on the
message broker. The broker is obliged to deliver each message to all
active subscribers. As subscribers will inevitably process and
acknowledge messages at different times, the broker needs to keep
messages available until all subscribers have consumed each
message. Utilizing a push model for message consumption provides
the most efficient solution for publish-subscribe architectures.



Figure 7-3. A Publish-Subscribe Broker Architecture

Publish-subscribe messaging is a key component for building
distributed, event-driven architectures. In event-driven architectures,
multiple services can publish events related to some state changes
using message broker topics. Services can register interest in
various event types by subscribing to a topic. Each event published
on the topic is then delivered to all interested consumer services. I’ll
return to event-driven architectures  when microservices are
covered in Chapter 9.

Message Replication
In an asynchronous system, the message broker is potentially a
single point of failure. A system or network failure can cause the
broker to be unavailable, making it impossible for the systems to
operate normally. This is rarely a desirable situation.

For this reason, most message brokers enable logical queues and
topics to be physically replicated across multiple brokers, each
running on their own node. If one broker fails, then producers and
consumers can continue to process messages using one of the
replicas. This architecture is illustrated in Figure 7-4. Messages
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published to the leader are mirrored to the follower, and messages
consumed from the leader are removed from the follower.

Figure 7-4. Message Queue Replication

The most common approach to message queue replication is known
as a leader-follower architecture. One broker is designated as the
leader, and producers and consumers send and receive messages
respectively from this leader. In the background, the leader
replicates, or mirrors all messages it receives to the follower, and



removes messages that are successfully delivered. This is shown in
Figure 7-4 with the replicate and remove operations. How precisely
this scheme is implemented and the effects it has on broker
performance is inherently implementation, and hence product
dependent.

With leader-follower message replication, the follower is known as a
hot standby, basically a replica of the leader that is available if the
leader fails. In such a failure scenario, producers and consumers can
continue to operate by switching over to accessing the follower. This
is also called fail over. Fail over is implemented in the client libraries
for the message broker, and hence occurs transparently to
producers and consumers.

Implementing a broker that performs queue replication is a
complicated affair. There are numerous subtle failure cases that the
broker needs to handle when duplicating messages. I’ll start to raise
these issues and describe some solutions in Chapters 10 and 11
when discussions turn to scalable data management.

NOTE
Some advice - don’t contemplate rolling your own replication scheme, or
any other complex distributed algorithm for that matter. The software
world is littered with failed attempts to build application-specific
distributed systems infrastructure, just because the solutions available
‘don’t do it quite right for our needs’ or ‘cost too much’. Trust me – your
solution will not work as well as existing solutions and development will
cost more than you could ever anticipate. And you will probably end up
throwing your code away. These algorithms are really hard to implement
correctly at scale.

Example: RabbitMQ 
RabbitMQ is one of the most widely utilized message brokers in
distributed systems. You’ll encounter deployments in all application



domains, from finance to telecommunications and building
environment control systems. It was first released around 2009 and
has developed into a fully featured, open source distributed message
broker platform with support for building clients in most mainstream
languages.

The RabbitMQ broker is built in Erlang, and primarily  provides
support for the Advanced Message Queuing Protocol (AMQP) open
standard. AMQP emerged from the finance industry as a cooperative
protocol definition effort. It is a binary protocol, providing
interoperability between different products that implement the
protocol. Out of the box, RabbitMQ supports AMQP v0-9-1, with v1.0
support via a plugin.

Messages, Exchanges, and Queues
In RabbitMQ, producers and consumers use a client API to send and
receive messages from the broker. The broker provides the store-
and-forward functionality for messages, which are processed in a
FIFO manner using queues. The broker implements a messaging
models based on a concept called exchanges, which provide a
flexible mechanism for creating messaging topologies.

An exchange is an abstraction that receives messages from
producers and delivers them to queues in the broker. Producers only
ever write messages to an exchange. Messages contain a message
payload, and various attributes known as message metadata. One
element of this metadata is the routing key, which is a value used by
the exchange to deliver messages to the intended queues.

Exchanges can be configured to deliver a message to one or more
queues. The message delivery algorithm depends on the exchange
type and rules called binding, which establish a relationship between
an exchange and a queue using the routing key. The three most
commonly used exchange types are shown in Table 7-1.
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Direct  
              

Delivers a message to a queue based on matching the value of 
a routing key which is published with each message

 
            
 
                Topic  
              

Delivers a message to one or more queues based on matching 
the routing key and a pattern used to bind a queue to the 
exchange.

 
            
 
                
Fanout  
              

Delivers a message to all queues that are bound to the 
exchange, and the routing key is ignored.

 
           

Direct exchanges are typically used to deliver each message to one
destination queue based on matching the routing key . Topic
exchanges are a more flexible mechanism based on pattern
matching that can be used to implement sophisticated publish-
subscribe messaging topologies. Fanout exchanges provide a
simple one-to-many broadcast mechanism, in which every message
is sent to all attached queues.

Figure 7-5 depicts how a direct exchange operates. Queues are
bound to the exchange by consumers with three values, namely
“France”, “Spain” and “Portugal”. When a message arrives from a
publisher, the exchange uses the attached routing key to deliver the
message to one of the three attached queues.
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Figure 7-5. An Example of a RabbitMQ Direct Exchange

The following code shows an excerpt of how a direct exchange is
configured and utilized in Java. RabbitMQ clients, namely producer
and consumer processes, use a channel abstraction to establish
communications with the broker (more on channels in the next
section). The producer creates the exchange in the broker and
publishes a message to the exchange with the routing key set to
“France”. A consumer creates an anonymous queue in the broker,
binds the queue to the exchange created by the publisher, and
specifies that messages published with the routing key “France''
should be delivered to this queue.

Producer:
channel.exchangeDeclare(EXCHANGE_NAME, "direct"); 
channel.basicPublish(EXCHANGE_NAME, “France”, null, 
message.getBytes());

Consumer:
String queueName = channel.queueDeclare().getQueue(); 
channel.queueBind(queueName, EXCHANGE_NAME, “France”);

Distribution and Concurrency



To get the most from RabbitMQ in terms of performance and
scalability, you must understand how the platform works under the
covers. The issues of concern relate to how clients and the broker
communicate, and how threads are managed.

Each RabbitMQ client connects to a broker using a RabbitMQ
connection. This is basically an abstraction on top of TCP/IP, and
can be secured using user credentials or TLS. Creating connections
is a heavyweight operation, requiring multiple round trips between
the client and server, and hence a single long-lived connection per
client is the common usage pattern.

To send or receive messages, clients use the connection to create a
RabbitMQ channel. Channels are a logical connection between a
client and the broker, and only exist in the context of a
RabbitMQconnection, as shown in the following code snippet
ConnectionFactory connFactory = new ConnectionFactory(); 
Connection rmqConn = connFactory.createConnection(); 
Channel channel = rmqConn.createChannel();

Multiple channels can be created in the same client to establish
multiple logical broker connections. All communications over these
channels are multiplexed over the same RabbitMQ (TCP)
connection, as shown in Figure 7-6. Creating a channel requires a
network round trip to the broker. Hence for performance reasons,
channels should ideally be long lived, with channel churn, namely
constantly creating and destroying channels, avoided.



Figure 7-6. RabbitMQ Connections and Channels

To increase the throughput of RabbitMQ clients, a common strategy
is to implement multithreaded producers and consumers. Channels,
however, are not thread safe, meaning every thread requires
exclusive access to a channel. This is not a concern if your client has
long lived, stateful threads and can create a channel per thread, as
shown in Figure 7-6. You start a thread, create a channel and
publish or consume away. This is a channel-per-thread model.

In application servers such as Tomcat or Spring however, the
solution is not so simple.The lifecycle and invocation of threads is
controlled by the server platform, not your code. The solution is to
create a global channel pool upon server initialization. This pre-
created collection of channels can be used on demand by server
threads without the overheads of channel creation and deletion per
request. Each time a request arrives for processing, a server thread
takes the following steps:

Retrieves a channel from the pool

Sends the message to the broker



Returns the channel to pool for subsequent reuse

While there is no native RabbitMQ capability to do this, in Java you
can utilize the Apache Commons Pool library  to implement a
channel pool. The complete code for this implementation is included
in the accompanying code repository for this book. The following
code snippet shows how a server thread uses the
borrowObject() and returnObject() methods of the Apache
GenericObjectPool  class. You can tune the minimum and
maximum size of this object pool using setter methods to provide the
throughput your application desires.
private boolean sendMessageToQueue(JsonObject message) { 
  try { 
    Channel channel = pool.borrowObject(); 
    channel.basicPublish(// arguments omitted for brevity) 
    pool.returnObject(channel); 
      return true; 
    } catch (Exception e) { 
      logger.info("Failed to send message to RabbitMQ"); 
      return false; 
    } 
  }

On the consumer side, clients create channels that can be used to
receive messages. Consumers can explicitly retrieve messages on
demand from a queue using the basicGet() API, as shown in the
following example:
boolean autoAck = true; 
GetResponse response = channel.basicGet(queueName, autoAck); 
if (response == null) { 
    // No message available. Decide what to do … 
} else { 
    // process message 
}

This approach uses the pull model, also known as polling. Polling is
inefficient as it involves busy-waiting, obliging the consumer to
continually ask for messages even if none are available. In high
performance systems, this is not the approach to use.
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The alternative and preferable method is the push model. The
consumer specifies a callback function that is invoked for each
message the RabbitMQ broker sends, or pushes, to the consumer.
Consumers issue a call to the basicConsume() API. When a
message is available for the consumer from the queue, the
RabbitMQ client library on the consumer invokes the callback in
another thread associated with the channel. The following code
example shows how to receive messages using an object of type
DefaultConsumer that is passed to basicConsume() to
establish a connection:
boolean autoAck = true; 
channel.basicConsume(queueName, autoAck, "tag", 
     new DefaultConsumer(channel) { 
         @Override 
         public void handleDelivery(String consumerTag, 
                                    Envelope envelope, 
                                    AMQP.BasicProperties 
properties, 
                                    byte[] body) 
             throws IOException 
         { 
             // process the message 
         } 
     });

Reception of messages on a single channel is single threaded. This
makes it necessary to create multiple threads and allocate a
channel-per-thread or channel pool in order to obtain high message
consumption rates. The following Java code extract shows how this
can be done. Each thread creates and configures its own channel
and specifies the callback function – threadCallback() – that
should be called by the RabbitMQ client when a new message is
delivered.
Runnable runnable = () -> { 
      try { 
        final Channel channel = connection.createChannel(); 
        channel.queueDeclare(QUEUE_NAME, true, false, false, 
null); 



        // max one message per receiver 
         
        final DeliverCallback threadCallback = (consumerTag, 
delivery)  
         -> { 
             String message =  
                 new String(delivery.getBody(), 
StandardCharsets.UTF_8); 
  // process the message  
        }; 
        channel.basicConsume(QUEUE_NAME,  
                             false, threadCallback, 
consumerTag -> {}); 
        //  
      } catch (IOException e) { 
        logger.info(e.getMessage()); 
      }

Another important aspect of RabbitMQ to appreciate in order to
obtain high performance and scalability is the thread model used by
the message broker. In the broker, each queue is managed by a
single thread. This means you can increase throughput on a multi-
core node if you have at least as many queues as cores on the
underlying node. And conversely, if you have many more highly
utilized queues than cores on your broker node, you are likely to see
some performance degradation.

Like most message brokers, RabbitMQ performs best when
consumption rates keep up with production rates. When queues
grow long, in the order of 10,000s of messages, the thread
managing a queue will experience more overheads. By default, the
broker will utilize 40% of the available memory of the node it is
running on. When this limit is reached, the broker will start to throttle
producers, slowing down the rate at which the broker accepts
messages, until the memory usage drops below the 40% threshold.
The memory threshold is configurable and again this is a setting that
can be tuned to your workload to optimize message throughput.

Data Safety and Performance Trade-offs
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All messaging systems present a dilemma around a performance
versus reliability trade-off. In this particular case, the core issue is
the reliability of message delivery, commonly known as data safety.
You want your messages to transit between producer and consumer
with minimum latency, and of course you don’t want to lose any
messages along the way. Ever. If only it were that simple. These are
distributed systems, remember.

When a message transits from producer to consumer, there are
multiple failure scenarios you have to understand and cater for in
your design. These are:

Producer sends a message to broker and message is not
successfully accepted by the broker

A message is in a queue and the broker crashes

A message is successfully delivered to the consumer but the
consumer fails before fully processing the message

If your application can tolerate message loss, then you can choose
options that maximize performance. It probably doesn’t matter if
occasionally you lose a message from an instant messaging
application. In this case your system can ignore message safety
issues and run full throttle. This isn’t the case for say a purchasing
system. If purchase orders are lost, the business loses money and
customers. You need to put safeguards in place to ensure data
safety.

RabbitMQ, like basically all message brokers, has features that you
can utilize to guarantee end-to-end message delivery. These are:

Publisher-confirms

A publisher can specify that it wishes to receive
acknowledgements from the broker that a message has been
successfully received. This is not default publisher behavior and
must be set as a channel attribute by calling the



confirmSelect() method. Publishers can wait for
acknowledgements synchronously, or asynchronously by
registering a callback function.

Persistent messages and message queues

If a message broker fails, all messages stored in memory for
each queue are lost. To survive a broker crash, queues need to
be configured as persistent, or durable. This means messages
are written to disk as soon as they arrive from publishers. When a
broker is restarted after a crash, it recovers all persistent queues
and messages. In RabbitMQ, both queues and individual
messages need to be configured as persistent to provide a high
level of data safety.

Consumer manual acknowledgements

A broker needs to know when it can consider a message
successfully delivered to a consumer so it can remove the
message from the queue. In RabbitMQ, this occurs either
immediately after a message is written to a TCP socket, or when
the broker receives an explicit client acknowledgement. These
two modes are known as automatic and manual
acknowledgements respectively. Automatic acknowledgements
risk data safety as a connection or a consumer may fail before
the consumer processes the message. For data safety, it is
therefore important to utilize manual acknowledgements to make
sure a message has been both received and processed before it
is evicted from the queue.

In a nutshell, you need publisher acknowledgements, persistent
queues and messages, and manual consumer acknowledgements
for complete data safety. Your system will almost certainly take a
performance hit, but you won’t lose messages.



Availability and Performance Trade-offs
Another classic messaging system trade-off is between availability
and performance. A single broker is a single point of failure, and
hence the system will be unavailable if the broker crashes or
experiences a transient network failure. The solution, as is typical for
increasing availability, is broker and queue replication.

RabbitMQ provides two ways to support high availability, known as
mirrored queues and quorum queues. While the details in
implementation differ, the basics are the same, namely:

Two or more RabbitMQ brokers need to be deployed and
configured as a cluster.

Each queue has a leader version, and one or more followers.

Publishers send messages to the leader, and the leader
takes responsibility for replicating each message to the
followers.

Consumers also connect to the leader, and when messages
are successfully acknowledged at the leader, they are also
removed from followers.

As all publisher and consumer activity is processed by the
leader, both quorum and mirrored queues enhance
availability but do not support load balancing. Message
throughput is limited by the performance possible for the
leader replica.

There are numerous differences in the exact features supported by
quorum and mirrored queues.  The key difference however revolves
around how messages are replicated and how a new leader is
selected in case of leader failure. Quorum in this context essentially
means a majority. If there are 5 queue replicas, then at least 3
replicas – the leader and 2 followers - need to persist a newly
published message. Quorum queues implement an algorithm known
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as RAFT to manage replication and electing a new leader when a
leader becomes available. I’ll discuss RAFT in some detail in
Chapter 12.

Quorum queues must be persistent, and are therefore designed to
be utilized in use cases when data safety and availability take priority
over performance. They have other advantages over the mirrored
queue implementation in terms of failure handling. For these
reasons, the mirrored queue implementation will be deprecated in
future versions.

Messaging Patterns
With a long history of usage in enterprise systems, a comprehensive
catalog of design patterns  exist for applications that utilize
messaging. While many of these are concerned with best design
practices for ease of construction and modification of systems, and
message security, a number apply directly to scalability in distributed
systems. I’ll explain three of the most commonly utilized patterns in
this section.

Competing Consumers 
A common requirement for messaging systems is to consume
messages from a queue as quickly as possible. With the competing
consumers  pattern, this is achieved by running multiple consumer
threads and/or processes that concurrently processes messages.
This enables an application to scale out message processing by
horizontally scaling the consumers as needed. The general design is
shown in Figure 7-7.

9
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Figure 7-7. The Competing Consumers Pattern

Using this pattern, messages can be distributed across consumers
dynamically using either the push or a pull model. Using the push
approach, the broker is responsible for choosing a consumer to
deliver a message to. A common method, which for example is
implemented in RabbitMQ and ActiveMQ, is a simple round robin
distribution algorithm. This ensures an even distribution of messages
to consumers.

With the pull approach, consumers simply consume messages as
quickly as they can process them. Assuming a multi-threaded
consumer, if one consumer is running on an 8 core node and
another on a 2 core node, we’d expect the former would process
approximately 4 times the amount of messages of the latter. Hence
load balancing occurs naturally with the pull approach.

There are three key advantages to this pattern, namely:

Availability

If one consumer fails, the system remains available, and its share
of messages is simply distributed to the other competing
consumers.

Failure handling

If a consumer fails, unacknowledged messages are delivered to
another queue consumer.



Dynamic load balancing

New consumers can be started under periods of high load, and
stopped when load is reduced, without the need to change any
queue or consumer configurations.

Support for competing consumers will be found in any production-
quality messaging platform. It is a powerful way to scale out
message processing from a single queue.

Exactly-Once Processing
As I discussed in Chapter 3, transient network failures and delayed
responses can cause a client to resend a message. This can
potentially lead to duplicate messages being received by a server. To
alleviate this issue, we need to put in place measures to ensure
idempotent processing.

In asynchronous messaging systems, there are two sources for
duplicate messages being processed. The first is duplicates from the
publisher, and the second is consumers processing a message more
than once. Both need to be addressed to ensure exactly once
processing of every message.

The publisher part of the problem originates from a publisher retrying
a message when it does not receive an acknowledgement from the
message broker. If the original message was received and the
acknowledgement lost or delayed, this may lead to duplicates on the
queue. Fortunately, some message brokers provide support for this
duplicate detection, and thus ensure duplicates do not get published
to a queue. For example, the ActiveMQ Artemis release can remove
duplicates  that are sent from the publisher to the broker. The
approach is based on the solution I described in Chapter 3, using
client generated, unique idempotent-key values for each message.
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Publishers simply need to set a specific message property to a
unique value, as shown in the following code:
ClientMessage msg = session.createMessage(true); 
UUID idKey = UUID.randomUUID();  // use as idempotence key 
msg.setStringProperty(HDR_DUPLICATE_DETECTION_ID, 
idKey.toString() );

The broker utilizes a cache to store idempotent-key values and
detect duplicates. This effectively eliminates duplicate messages
from the queue, solving the first part of your problem.

On the consumer side, duplicates occur when the broker delivers a
message to a consumer, which processes it and then fails to send an
acknowledgement (consumer crashes or the network loses the
acknowledgement). The broker therefore redelivers the message,
potentially to a different consumer if the application utilizes the
competing consumer pattern.

It’s the obligation of consumers to guard against duplicate
processing. Again, the mechanisms I described in Chapter 3, namely
maintaining a cache or database of idempotent-keys for messages
that have been processed. Most brokers will set a message header
that indicates if a message is a redelivery. This can be used in the
consumer implementation of idempotence. It doesn’t guarantee a
consumer has seen the message already. It just tells you that the
broker delivered it and the message remains unacknowledged.

Poison Messages
Sometimes messages delivered to consumers can’t be processed.
There are numerous possible reasons for this. Probably most
common are errors in producers that send messages that cannot be
handled by consumers. This could be for reasons such as a
malformed JSON payload or some unanticipated state change, for
example a StudentID field in a message for a student who has just
dropped out from the institution and is no longer active in the



database. Regardless of the reason, these poison messages have
one of two effects:

They cause the consumer to crash. This is probably most
common in systems under development and test.
Sometimes though these issues sneak into production, when
failing consumers are sure to cause some serious
operational headaches.

They cause the consumer to reject the message as it is not
able to successfully process the payload.

In either case, assuming consumer acknowledgements are required,
the message remains on the queue in an unacknowledged state.
After some broker-specific mechanism, typically a timeout or a
negative acknowledgement, the poison message will be delivered to
another consumer for processing - with predictable, undesirable
results.

If poison messages are not somehow detected, they can be
delivered indefinitely. This at best takes up processing capacity and
hence reduces system throughput. At worst it can bring a system to
its knees by crashing consumers every time a poison message is
received.

The solution to poison message handling is to limit the number of
times a message can be redelivered. When the redelivery limit is
reached, the message is automatically moved to a queue where
problematic requests are collected. This queue is traditionally and
rather macabrely known as the dead-letter queue.

As you no doubt expect by now, the exact mechanism for
implementing poison message handling varies across messaging
platforms. For example, Amazon’s Simple Queueing Service (SQS)
defines a policy that specifies the dead-letter queue that is
associated with an application-defined queue. The policy also states
after how many redeliveries a message should be automatically



moved from the application queue to the dead-letter queue. This
value is known as the maxReceiveCount.

In SQS, each message has a ReceiveCount attribute, which is
incremented when a message is not successfully processed by a
consumer. When the ReceiveCount exceeds the defined
maxReceiveCount value for a queue, SQS moves the message to
the dead-letter queue. Sensible values for redelivery vary with
application characteristics, but a range of three to five is common.

The final part of poison message handling is diagnosing the cause
for messages being redirected to the dead-letter queue. First, you
need to set some form of monitoring alert that sends a notification to
engineers that a message has failed processing. At that stage,
diagnosis will comprise examining logs for exceptions that caused
processing to fail and analyzing the message contents to identify
producer or consumer issues.

Summary and Further Reading
Asynchronous messaging is an integral component of scalable
system architectures. Messaging is particularly attractive in systems
that experience peaks and troughs in request. During peak times,
producers can add requests to queues and respond rapidly to
clients, without having to wait for the requests to be processed.

Messaging decouples producers from consumers, making it possible
to scale them independently. Architectures can take advantage of
this by elastically scaling producers and consumers to match traffic
patterns and balance message throughput requirements with costs.
Message queues can be distributed across multiple brokers to scale
message throughput. Queues can also be replicated to enhance
availability.

Messaging is not without its dangers. Duplicates can be placed on
queues, and messages can be lost if queues are maintained in



memory. Deliveries to consumers can be lost, and a message can
be consumed more than once if acknowledgements are lost. These
data safety issues require attention to detail in design so that
tolerance for duplicate messages and message loss is matched to
the system requirements.

If you are interested in acquiring a broad and deep knowledge of
messaging architectures and systems, the classic book Enterprise
Integration Patterns by Gregor Hohpe and Bobby Woolf (Addison-
Wesley Professional) should be your first stop. Other excellent
sources of knowledge tend to be messaging platform specific, and
as there are a lot of competing platforms, there’s a lot of books to
choose from. My favorite RabbitMQ books for general messaging
wisdom and RabbitMQ specific information are RabbitMQ
Essentials, 2nd Edition by Lovisa Johansson and David Dosset
(Packt) and RabbitMQ In Depth by Gavin Roy (Manning).

On a final note, the theme of asynchronous communications and the
attendant advantages and problems will permeate the remainder of
this book. Messaging is a key component of microservice-based
architectures (Chapter 9) and is foundational to how distributed
databases function. And you’ll certainly recognize the topics of this
chapter when I cover streaming systems and event-driven
processing in Part 4.

1  Overview of messaging technologies landscape
(https://www.g2.com/categories/message-queue-mq)

2  Chapter 14 of Fundamentals of Software Architecture by Mark Richards and
Neal Ford is an excellent source of knowledge for Event-Driven
architectures.

3  Other protocols such STOMP and MQTT are supported via plugins.

4  Consumers can call queueBind() multiple times to specify that their
destination should receive messages for more than one routing key value.
This approach can be used to create one-to-many message distribution.
Topic exchanges are more powerful for one to many messaging.



5  Documentation for the Apache Commons library
(https://commons.apache.org/proper/commons-pool/index.html)

6  Generic Object Pool documentation
(https://javadoc.io/doc/org.apache.commons/commons-
pool2/latest/org/apache/commons/pool2/impl/GenericObjectPool.html)

7  A complete description of how the RabbitMQ server memory can be
configured (https://www.rabbitmq.com/memory.html)

8  Detailed Quorum Queues feature descriptions
(https://www.rabbitmq.com/quorum-queues.html#feature-comparison)

9  Messaging patterns main Web site
(https://www.enterpriseintegrationpatterns.com/patterns/messaging/)

10  An general overview of the Competing Consumers pattern
(https://www.enterpriseintegrationpatterns.com/patterns/messaging/Competi
ngConsumers.html)

11  A full description of how ActiveMQ nandles duplicates can be found at this
link
https://activemq.apache.org/components/artemis/documentation/latest/duplic
ate-detection.html



Chapter 8. Serverless Processing
Systems

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of
these titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material within
this chapter, please reach out to the editor at vwilson@oreilly.com.

Scalable systems experience widely varying patterns of usage. For
some applications, load may be high during business hours and low or
non-existent during non-business hours. Other applications, for example
an online concert ticket sales system, might have low background traffic
for 99% of the time. But when tickets for a major series of shows are
released, the demand can spike by 10000 times of average load for a
number of hours before dropping back down to normal levels.

Elastic load balancing, as described in Chapter 5, is one approach for
handling these spikes. Another is serverless computing, which I’ll
examine in this chapter.

The Attractions of Serverless
The transition of major organizational IT systems from on-premise to
public cloud platforms deployments seems inexorable. Organizations
from startups to government agencies to multinationals see clouds as
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digital transformation platforms and a foundational technology to
improve business continuity.

Two of the great attractions of cloud platforms are their pay-as-you-go
billing and ability to rapidly scale up (and down) virtual resources to meet
fluctuating workloads and data volumes. This ability to scale of course
doesn’t come for free. Your applications need to be architected to
leverage the scalable services  provided by cloud platforms. And of
course, as I discussed in Chapter 1, cost and scale are indelibly
connected. The more resources a system utilizes for extended periods,
the larger your cloud bills will be at the end of the month.

Monthly cloud bills can be big. Really big. Even worse, unexpectedly big!
Cases of ‘sticker shock’ for significant cloud overspend are rife – in one
survey  69% of respondents regularly overspent on their cloud budget
by more than 25%. One well known case spent $500K on an Azure
task before it was noticed. Reasons attributed for overspending are
many, including lack of deployment of auto-scaling solutions, poor long-
term capacity planning, and inadequate exploitation of cloud
architectures leading to bloated system footprints.

On a cloud platform, architects are confronted with a myriad of
architectural decisions. These decisions are both broad, in terms of the
overall architectural patterns or styles the systems adopts – for example
microservices, n-tier, event driven – and narrow, specific to individual
components and the cloud services that the system is built upon.

In this sense, architecturally significant decisions pervade all aspects of
the system design and deployment on the cloud. And the collective
consequences of all these decisions are highly apparent when you
receive your monthly cloud spending bill.

Traditionally, cloud applications have been deployed on an
Infrastructure-as-a-Service (IaaS) platform utilizing virtual machines
(VMs). In this case, you pay for the resources you deploy regardless of
how highly utilized they are. If load increases, elastic applications can
spin up new virtual machines to increase capacity, typically using the
cloud-provided load balancing service. Your costs are essentially
proportional to the type of VMs you choose, the duration they are
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deployed for, and the amount of data the application stores and
transmits.

Major cloud providers offer an alternative to explicitly provisioning virtual
processing resources. Known as serverless platforms, they do not
require any compute resources to be statically provisioned. Using
technologies such as AWS Lambda or Google App Engine (GAE), the
application code is loaded and executed on demand, when requests
arrive. If there are no active requests, there are essentially no resources
in use and no charges to meet.

Serverless platforms also manage autoscaling (up and down) for you. As
simultaneous requests arrive, additional processing capacity is created
to handle requests and, ideally, provide consistently low response times.
When request loads drop, additional processing capacity is
decommissioned, and no charges are incurred.

Every serverless platform varies in the details of its implementation. For
example, a limited number of mainstream programming languages and
application server frameworks are typically supported. Platforms provide
multiple configuration settings that can be used to balance performance,
scalability and costs. In general, costs are proportional to the following
factors:

The type of processing instance chosen to execute a request,

The number of requests and processing duration for each
request,

How long each application server instance remains resident on
the serverless infrastructure.

However the exact parameters used vary considerably across vendors.
Every platform is proprietary and different in subtle ways. The devil lurks,
as usual, in the details. So let’s explore some of those devilish details
specifically for the Google App Engine and AWS Lambda platforms

Google App Engine



Google App Engine (GAE) was the first offering from Google as part of
what is now known as the Google Cloud Platform. It has been in general
release since 2011, and enables developers to upload and execute
HTTP-based application services on Google’s managed cloud
infrastructure.

The Basics
GAE supports developing applications in Go, Java, Python, Node.js,
PHP, .NET, and Ruby. To build an application on GAE, developers can
utilize common HTTP-based application frameworks that are built with
the GAE runtime libraries provided by Google. For example, in Python,
applications can utilize Flask, Django and web2py, and in Java the
primary supported platform is servlets built on the Jetty JEE web
container.

Application execution is managed dynamically by GAE, which launches
compute resources to match request demand levels. Applications
generally access a managed persistent storage platform such as
Google’s Firestore (https://cloud.google.com/firestore) or Google Cloud
SQL (https://cloud.google.com/sql), or interact with a messaging service
like Google’s Cloud PubSub (https://cloud.google.com/pubsub).

GAE comes in two flavors, known as the standard environment and the
flexible environment. The basic difference is that the standard
environment is more closely managed by GAE, with development
restrictions in terms of language versions supported. This tight
management makes it possible to scale services rapidly in response to
increased loads. In contrast, the flexible environment is essentially a
tailored version of Google’s Compute Engine service, which runs
applications in Docker containers (https://www.docker.com/) on VMs. As
its name suggests, it gives more options in terms of development
capabilities that can be used, but is not as suitable for rapid scaling.

In the rest of this chapter, I’ll focus on the highly scalable standard
environment.

https://cloud.google.com/firestore
https://cloud.google.com/pubsub


GAE Standard Environment
In the standard environment, developers upload their application code to
a GAE project that is associated with a base project URL. This code
must define HTTP endpoints that can be invoked by clients making
requests to the URL. When a request is received, GAE will route it to a
processing instance to execute the application code. These are known
as resident instances for the application and are the major component of
the cost incurred for utilizing GAE.

Each project configuration can specify a collection of parameters that
control when GAE loads a new instance or invokes a resident instance.
The two simplest settings control the minimum and maximum instances
that GAE will have resident at any instant. The minimum can be zero,
which is perfect for applications that have long periods of inactivity, as
this incurs no costs.

When a request arrives and there are no resident instances, GAE
dynamically loads an application instance and invokes the processing for
the endpoint. Multiple simultaneous requests can be sent to the same
instance, up to some configured limit (more on this when I discuss auto-
scaling later in this chapter). GAE will then load additional instances on
demand until the specified maximum instance value is reached. By
setting the maximum, an application can put a lid on costs, albeit with
the potential for increased latencies if load continues to grow.

Standard environment applications can be built in Go, Java, Python,
Node.js, PHP, and Ruby. As GAE itself is responsible for loading the
runtime environment for an application, it restricts the supported
versions  to a small number per programming language. The language
used also affects the time to load a new instance on GAE. For example,
a lightweight runtime environment such as Go will start on a new
instance in less than a second. In comparison, a more bulky Java Virtual
Machine is of the order of 1-3 seconds on average. This load time is also
influenced by the number of external libraries that the application
incorporates.

Hence, while there is variability across languages, loading new
instances is relatively fast. Much faster than booting a virtual machine
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anyway. This makes the standard environment extremely well suited for
applications that experience rapid spikes in load. GAE is able to quickly
add new resident instances as request volumes increase. Requests are
dynamically routed to instances based on load, and hence assume a
purely stateless application model to support effective load distribution.
Subsequently, instances are released with little delay once the load
drops, again reducing costs.

GAE’s standard environment is an extremely powerful platform for
scalable applications, and one I’ll explore in more detail in the case
study later in this chapter.

AutoScaling
Autoscaling is an option that you specify in an app.yaml file that is
passed to GAE when you upload your server code. An autoscaled
application is managed by GAE according to a collection of default
parameter values, which you can override in your app.yaml. The basic
scheme is shown in Figure 8-1.

GAE basically manages the number of deployed processing instances
for an application based on incoming traffic load. If there are no
incoming requests, then GAE will not schedule any instances. When a
request arrives, GAE deploys an instance to process the request.

Deploying an instance can take anywhere between a few 100
milliseconds to a few seconds depending on the programming language
you are using.  This means latency can be high for initial requests if
there are no resident instances. To mitigate this instance loading latency
effects, you can specify a minimum number of instances to keep
available for processing requests. This of course costs money.

As the request load grows, the GAE scheduler will dynamically load
more instances to handle requests. Three parameters control precisely
how scaling operates, namely:

Target CPU Utilization

Sets the CPU utilization threshold above which more instances will
be started to handle traffic. The range is 0.5 (50%) to 0.95 (95%).
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The default is 0.6 (60%).

Maximum Concurrent Requests

Sets the maximum number of concurrent requests an instance can
accept before the scheduler spawns a new instance. The default
value is 10, and the maximum is 80. The documentation  doesn’t
state the minimum allowed value, but presumably 1 would define a
single-threaded service.

Target Throughput Utilization

This is used in conjunction with the value specified for maximum
concurrent requests to specify when a new instance is started. The
range is 0.5 (50%) to 0.95 (95%). The default is 0.6 (60%). It works
like this: when the number of concurrent requests for an instance
reaches a value equal to maximum concurrent requests value
multiplied by the target throughput utilization, the scheduler tries to
start a new instance.

Got that? As is hopefully apparent, these three settings interact with
each other, making configuration somewhat complex. By default, an
instance will handle 10 x 0.6 = 6 concurrent requests before a new
instance is created. And if these 6 (or less) requests cause the CPU
utilization for an instance to go over 60%, the scheduler will also try to
create a new instance.
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Figure 8-1. GAE Autoscaling

But wait, there’s more!

You can also specify values to control when GAE adds new instances
based on the time requests spend in the request pending queue - see
Figure 8-1 - waiting to be dispatched to an instance for processing. The
max-pending-latency parameter specifies the maximum amount of
time that GAE should allow a request to wait in the pending queue
before starting additional instances to handle requests and reduce
latency. The default value is 30ms. The lower the value, the quicker an
application will scale. And the more it will probably cost you.

These auto scaling parameter settings give us the ability to fine tune a
service’s behavior to balance performance and cost. How modifying
these parameters will affect an application’s behavior is of course
dependent on the precise functionality of the service. The fact that there
are subtle interplays between these parameters makes this tuning
exercise somewhat complicated, however. I’ll return to this topic in the
case study section later in this chapter, and explain a simple, platform-
agnostic approach you can take to service tuning.
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AWS Lambda
AWS Lambda is Amazon’s serverless platform. The underlying design
principles and major features echo that of GAE and other serverless
platforms. Developers upload code which is deployed as services known
as Lambda functions. When invoked, Lambda supplies a language-
specific execution environment to execute the function code.

A simple example of a Python Lambda function is shown in the following
code. This function simply extracts a message from the input event and
returns it unaltered as part of a HTTP 200 response. In general, you
implement a function that takes an event and a context parameter. The
event is a JSON-formatted document encapsulating data for a Lambda
function to process. For example, if the Lambda function handles HTTP
requests, the event will contain HTTP headers and the request body.
The context contains metadata about the function and runtime
environment, such as the function version number and available memory
in the execution environment.
import json 
def lambda_handler(event, context): 
     event_body = json.loads(event[‘body’]) 
     response = { 
        'statusCode': 200, 
        'body': json.dumps({ event_body[‘message’] }) 
    } 
    return response

Lambda functions can be invoked by external clients over HTTP. They
can also be tightly integrated with other AWS services. For example, this
enables Lambda functions to be dynamically triggered when new data is
written to the AWS S3 storage service or a monitoring event is sent to
the AWS CloudWatch service. If your application is deeply embedded in
the AWS ecosystem, Lambda functions can be of great utility in
designing and deploying your architecture.

Given the core similarities between serverless platforms, in this section
I’ll just focus on the differentiating features of Lambda from a scalability
and cost perspective.



Lambda Function Lifecycle
Lambda functions can be built in a number of languages and support
common service containers such as Spring for Java and Flask for
Python. For each supported language, namely Node.js, Python, Ruby,
Java, Go and .NET-based code, Lambda supports a number of run time
versions. The run time environment version is specified at deployment
time along with the code, which is uploaded to Lambda in a compressed
format.

Lambda functions must be designed to be stateless so that the Lambda
runtime environment can scale the service on demand. When a request
first arrives for the API defined by the Lambda function, Lambda
downloads the code for the function, initializes a runtime environment
and any instance specific initialization (e.g. create a database
connection), and finally invokes the function code handler.

This initial invocation is known as a cold start, and the time taken is
dependent on the language environment selected, the size of the
function code, and time taken to initialize the function. Like in GAE,
lightweight languages such as Node.js and Go will typically take a few
hundred milliseconds to initialize, whereas Java or .NET are heavier
weight and can take a second or more.

Once an API execution is completed, Lambda can use the deployed
function runtime environment for subsequent requests. This means cold
start costs are not incurred. However, if a burst of requests arrive
simultaneously, multiple runtime instances will be initialized, one for
each request.  Unlike GAE, Lambda does not send multiple concurrent
requests to the same runtime instance. This means all these
simultaneous requests will incur additional response times due to cold
start costs.

If a new request does not arrive and a resident runtime instance is not
immediately reutilized, Lambda freezes the execution environment. If
subsequent requests arrive, the environment is thawed and reused. If
more requests do not arrive for the function, after a platform-controlled
number of minutes Lambda will deactivate a frozen instance so it does
not continue to consume platform resources.
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Cold start costs can be mitigated by using provisioned concurrency. This
tells Lambda to keep a minimum number of runtime instances resident
and ready to process requests with no cold start overheads. The ‘no free
lunch’ principle applies of course, and charges increase based on the
number of provisioned instances. You can also make a Lambda function
a target of an AWS Application Load Balancer, in a similar fashion to that
discussed in Chapter 5. For example, a load balancer policy can be
defined that increases the provisioned concurrency for a function at a
specified time, in anticipation of an increase in traffic.

Execution Considerations
When you define a Lambda function, you specify the amount of memory
that should be allocated to its runtime environment. Unlike GAE, you do
not specify the number of vCPUs to utilize. Rather, the computation
power is allocated in proportion to the memory specified, which is
between 128MB and 10GB.

Lambda functions are charged for each millisecond of execution. The
cost per millisecond grows with the amount of memory allocated to the
runtime environment. For example, at the time of writing the costs per
millisecond for a 2GB instance are double a 1GB instance.  Lambda
does not specify precisely how much more compute capacity this
additional memory buys your function, however. Still, the larger the
amount of memory allocated, then the faster your Lambda functions will
likely execute.

This situation creates a subtle trade-off between performance and costs.
Let’s examine a simple example based on the costs for 1GB and 2GB
instances mentioned above, and assume that 1 millisecond of execution
on a 1GB instance incurs 1 mythical cost unit, and a millisecond on a
2GB instance incurs 2 units.

With 1GB of memory, I’ll assume this function executes in 40
milliseconds, thus incurring 40 cost units. With 2GB of memory
allocated, and a commensurately more CPU allocation, the same
function takes 10 milliseconds, meaning you part with 20 cost units from
your AWS eWallet. Hence your bills will be reduced by 50% and you will
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get 4 times faster execution by allocating more memory to the function.
Tuning can surely pay dividends.

This is obviously very dependent on the actual processing your Lambda
function performs. Still, if your service is executed several billion times a
month, this kind of somewhat non-intuitive tuning exercise may result in
a significant cost savings and greater scalability.

Finding this ‘sweet spot’ that provides faster response times at similar or
lower costs is a performance tuning experiment that can pay high
dividends at scale. Lambda makes this a relatively straightforward
experiment to perform as there is only one parameter, namely memory
allocation, to vary. The case study later in this chapter will explain an
approach that can be used for platforms such as GAE, which have
multiple interdependent parameters that control scalability and costs.

Scalability
As the number of concurrent requests for a function increases, Lambda
will deploy more runtime instances to scale the processing. If the request
load continues to grow, Lambda reuses available instances and creates
new instances as needed. Eventually, when the request load falls,
Lambda scales down by stopping unused instances. That’s the simple
version anyway. In reality, it is a tad more complicated.

All Lambda functions have a built-in concurrency limit for request bursts.
Interestingly, this default burst limit varies depending on the AWS region
where the function is deployed. For example, in US West (Oregon), a
function can scale up to 3000 instances to handle a burst of requests,
whereas in Europe (Frankfurt) the limit is 1000 instances.

Regardless of the region, once the burst limit is reached, a function can
scale at a rate of 500 instances per minute. This continues until the
demand is satisfied and requests start to drop off. If the request load
exceeds the capacity that can be processed by 500 additional instances
per minute, Lambda throttles the function and returns a HTTP 429 to
clients, who must retry the request.
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This behavior is depicted in Figure 8-2. During the request burst, the
number of instances grows rapidly up to the Region-defined burst limit.
After that, only 500 new instances can be deployed per minute. During
this time, requests that cannot be satisfied by the available instances are
throttled. As the request load drops. Instances are removed from the
platform until a steady state of traffic resumes.

Precisely how many concurrent client requests a function can handle
depends on the processing time for the function. For example, assume
we have 3000 deployed instances, and each request takes on average
100 milliseconds to process. This means that each instance can process
10 requests per second, giving a maximum throughput of:

(3000x10) = 30000 requests per second.

Figure 8-2. Scaling an AWS Lambda Function

To complete the picture, you need to be aware that the burst
concurrency limit actually applies to all functions in the Region
associated with a single AWS account. So, if you deploy 3 different
Lambda functions in the same region under one account, their collective
number of deployed instances is controlled by the burst limit that
determines the scaling behavior. This means if one function is suddenly
unexpectedly heavily loaded, it can consume the burst limit and
negatively impact the availability of other functions that wish to scale at
the same time.



To address this potential conflict, you can fine tune the concurrency
levels associated with each individual Lambda function deployed under
the same AWS account in the same Region.  This is known as
reserved concurrency. Each individual function can be associated with a
value that is less than the burst limit.  This value defines the maximum
number of instances of that function that can be executed concurrently.

Reserved concurrency has two implications:

The Lambda function with reserved concurrency always has
execution capacity available exclusively for its own invocations.
It cannot be unexpectedly starved by concurrent invocations of
other functions in the Region.

The reserved capacity caps the maximum number of resident
instances for that function. Requests that cannot be processed
when the number of instances is at the reserved value fail with a
HTTP 429 error.

As should be apparent from this discussion, AWS Lambda provides a
powerful and flexible serverless environment. With care, the runtime
environment can be configured to scale effectively to handle high
volume, bursty request loads. It has become an integral part of the AWS
toolbox for many organizations internal and customer-facing
applications.

Case Study: Balancing Throughput and Costs
Getting the required performance and scalability at lowest cost from a
serverless platform almost always requires tweaking of the runtime
parameter settings. When your application is potentially processing
many millions of requests per day, even a 10% cost reduction can result
in significant monetary savings. Certainly, enough to make your boss
and clients happy.

All serverless platforms vary in the parameter settings you can tune.
Some are relatively straightforward, such as AWS Lambda in which
choosing the amount of memory for a function is the dominant tuning
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parameter. The other extreme is perhaps Azure Functions, which has
multiple parameter settings and deployment limits that differ based on
which of three hosting plans are selected.

Google App Engine sits between these two, with a handful of
parameters that govern autoscaling behavior. I’ll use this as an example
of how to approach application tuning.

Choosing Parameter Values
There are three main parameters that govern how GAE autoscales an
application, as I explained earlier in this chapter. Table 8-1 lists these
parameters along with possible values ranges.
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                Parameter 
name 
              

 
                
Minimum 
              

 
                
Maximum 
              

 
                
Default 
              

 
            
 
                
target_throughput_utilization 
              

0.5 0.95 0.6

 
            
 
                
target_cpu_utilization 
              

0.5 0.95 0.6

 
            
 
                
max_concurrent_requests 
              

1 80 10



 
           

Given these ranges, the question for a software architect is, simply, how
do you choose the parameter values that provide the required
performance and scalability at lowest cost? Probably the hardest part is
figuring out where to start.

Even with three parameters, there is a large combination of possible
settings that, potentially, interact with each other. How do you know that
you have parameter settings that are serving both your users and your
budgets as close to optimal as possible? There’s some good general
advice available,  but you are still left with the problem of choosing
parameter values for your application.

For just the three parameters listed in Table 8-1, there are approximately
170K different configurations. You can’t test all of them. If you put your
engineering hat on, and just consider values in increments of 0.05 for
throughput and cpu utilization, and increments of 10 for maximum
concurrent requests, you still end up with around 648 possible
configurations. That is totally impractical to explore, especially as we
really don’t know a priori how sensitive our service behavior is going to
be to any parameter value setting. So, what can you do?

One way to approach tuning a system is to undertake a parameter
study.  Also known as a parametric study, the approach comprises
three basic steps:

1. nominate the parameters for evaluation

2. define the parameter ranges and discrete values within those
ranges

3. analyze and compare the results of each parameter variation

To illustrate this approach, I’ll lead you through an example based on the
three parameters in Table 8-1. The aim is to find the parameter settings
that give ideally the highest throughput at the lowest cost. The
application under test was a GAE Go service that performs reads and
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writes to a Google FireStore database. The application logic was
straightforward, basically performing 3 steps:

1. input parameter validation

2. database access

3. formatting and returning results

The ratio of write to read requests was 80%-20%, hence defining a write
heavy workload. I also used a load tester that generated an
uninterrupted stream of requests from 512 concurrent client threads at
peak load, with short warm up and cool down phases of 128 client
threads.

GAE Autoscaling Parameter Study Design
For a well defined parameter study, you need to:

Choose the parameter ranges of interest.

Within the defined ranges for each parameter, choose one or
two intermediate values

For the example Go application with simple business logic and database
access, intuition seems to point to the default GAE CPU utilization and
concurrent request settings to be on the low side. Therefore, I chose
these two parameters to vary, with the following values:

target_cpu_utilization: {0.6, 0.7. 0.8},

max_concurrent_requests: {10, 35, 60, 80}

This defines 12 different application configurations, as shown by the
entries in Table 8-2.
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                Parameter name 
              

 
                max_concurrent_requests 
              

 
            
 
                cpu_utilization 
              
 
            
 
                0.6 
              

10 35 60 80

 
            
 
                0.7 
              

10 35 60 80

 
            
 
                0.8 
              

10 35 60 80

 
           

The next step is to run load tests on each of the 12 configurations. This
was straightforward and took a few hours over 2 days. Your load testing
tool will capture various test statistics. In this example you are most
interested in overall average throughput obtained and the cost of



executing each test. The latter should be straightforward to obtain from
the serverless monitoring tools available

Now, I’ll move on to the really interesting part – the results.

Results
Table 8-3 shows the mean throughput for each test configuration. The
highest throughput of 6178 requests per second is provided by the
(CPU80, max10) configuration. This value is 1.7% higher than that
provided by the default settings (CPU60, max10), and around 9% higher
than the lowest throughput of 5605 requests per second. So the results
show a roughly 10% variation from lowest to highest throughput. Same
code. Same request load. Different configuration parameters.



T
a
b
l
e
 
8
-
3
. 
M
e
a
n
 
T
h
r
o
u
g
h
p
u
t 
f
o
r 
e
a
c
h
 
t
e
s



t 
c
o
n
fi
g
u
r
a
ti
o
n

 
 
            
 
                
Throughput 
              

 
                
max10 
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max60 
              

 
                
max80 
              

 
            
 
                
CPU60 
              

6006 6067 5860 5636

 
            
 
                
CPU70 
              

6064 6121 5993 5793

 
            
 
                
CPU80 
              

6178 5988 5989 5605

 
           



Now I’ll factor in cost. In Table 8-4, I’ve normalized the cost for each test
run by the cost of the default GAE configuration {CPU60, max10}. So for
example, the cost of the {CPU70, max10} configuration was 18% higher
than the default, and the cost of the {CPU80, max80} configuration was
45% lower than the default.
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max10 
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CPU60 
              

100% 72% 63% 63%

 
            
 
                
CPU70 
              

118% 82% 63% 55%

 
            
 
                
CPU80 
              

100% 72% 82% 55%

 
           

There are several rather interesting observations we can make from
these results:



The default settings {CPU60, max10} give neither the highest
performance nor lowest cost. This configuration makes Google
happy but maybe not your client.

We obtain 3% higher performance with the {CPU80, max10}
configuration at the same cost of the default configuration.

We obtain marginally (approximately 2%) higher performance
with 18% lower costs from the {CPU70, max35} configuration as
compared to the default configuration settings.

We obtain 96% of the default configuration performance at 55%
of the costs with the {CPU70, max80} test configuration. That is
a pretty decent cost saving for slightly lower throughput.

Armed with this information, you can choose the configuration settings
that best balance your costs and performance needs. With multiple,
dependent configuration parameters, you are unlikely to find the ‘best’
setting through intuition and expertise. There are too many intertwined
factors at play for that to happen. Parameter studies let you quickly and
rigorously explore a range of parameter settings. With two or three
parameters and three or four values for each, you can explore the
parameter space quickly and cheaply. This enables you to see the
effects of the combinations of values and make educated decisions on
how to deploy your application.

Summary and Further Reading
Serverless platforms are a powerful tool for building scalable
applications. They eliminate many of the deployment complexities
associated with managing and updating clusters of explicitly allocated
virtual machines. Deployment is as simple as developing the service’s
code, and uploading it to the platform along with a configuration file. The
serverless platform you are using takes care of the rest.

In theory anyway.

In practice of course, there are important dials and knobs that you can
use to tune the way the underlying serverless platforms manage your



functions. These are all platform specific, but many relate to
performance and scalability, and ultimately the amount of money you
pay. The case study in this chapter illustrated this relationship and
provided you with an approach you can utilize to find that elusive ‘sweet
spot’ that provides the required performance at lower costs than the
default platform parameter settings provide.

Exploiting the benefits of serverless computing requires you to buy into a
cloud service provider. There are many to choose from, but all come with
the attendant vendor lock-in and downstream pain and suffering if you
ever decide to migrate to a new platform.

There are open source serverless platforms such as Apache OpenWhisk
(https://openwhisk.apache.org/) that can be deployed to on-premise
hardware or cloud-provisioned virtual resources. There are also
solutions such as the Serverless Framework
(https://www.serverless.com/) that are provider-independent. These
make it possible to deploy applications written in Serverless to a number
of mainstream cloud providers, including all the usual suspects. This
delivers code portability but does not insulate the system from the
complexities of different provider deployment environments. Inevitably,
achieving the required performance, scalability and security on a new
platform is not going to be a walk in the park.

A great source of information on serverless computing is Jason Katzer’s
Learning Serverless (2020, O’Reilly Media). I’d also recommend two
extremely interesting articles that discuss the current state of the art and
future possibilities for serverless computing. These are:

D. Taibi, J. Spillner and K. Wawruch, “Serverless Computing-
Where Are We Now, and Where Are We Heading?,” in IEEE
Software, vol. 38, no. 1, pp. 25-31, Jan.-Feb. 2021, doi:
10.1109/MS.2020.3028708.

J. Schleier-Smith et al, 2021. What serverless computing is and
should become: the next phase of cloud computing. Commun.
ACM 64, 5 (May 2021), 76–84.

https://openwhisk.apache.org/
https://www.serverless.com/open-source/


Finally, serverless platforms are a common technology for implementing
microservices architectures. Microservices are an architectural pattern
for decomposing an application into multiple independently deployable
and scalable ‘parts’. This design approach is highly amenable to a
serverless-based implementation, and conveniently, are the topic we
cover in the next chapter.

1  A brief overview of scalable services can be found at this link
https://medium.com/@i.gorton/six-rules-of-thumb-for-scaling-software-
architectures-a831960414f9

2  A survey of cloud bills is an interesting read -
https://www.prnewswire.com/news-releases/survey-enterprises-overspending-by-
millions-on-cloud-bills-300968100.html

3  An example of unexpected cloud bills is at https://www.infotech.com/software-
reviews/research/unexpected-cloud-costs-are-rocking-the-enterprise

4  This link details the supported runtime environments -
https://cloud.google.com/appengine/docs/the-appengine-environments

5  A GAE language comparison illustrates the load times - see
https://medium.com/dev-genius/scalability-and-cost-analysis-for-cloud-based-
software-systems-part-1-472012435b26

6  See this link for the documentation -
https://cloud.google.com/appengine/docs/standard/java/config/appref#automatic_
scaling_max_concurrent_requests

7  There’s also an optional min-pending-latency parameter, with a default value of
zero. If you are brave, how the minimum and maximum values work together is
explained here.
https://cloud.google.com/appengine/docs/standard/python/config/appref#scaling_
elements

8  As of 2021, Lambda also supports services that are built using Docker
containers. This gives the developer the scope to choose language runtime when
creating the container image.

9  A good description of cold start behavioris at this link
https://medium.com/hackernoon/im-afraid-you-re-thinking-about-aws-lambda-
cold-starts-all-wrong-7d907f278a4f

10  This experiment describes how long idle function are kept resident -
https://acloudguru.com/blog/engineering/how-long-does-aws-lambda-keep-your-
idle-functions-around-before-a-cold-start?
utm_source=medium_blog&utm_medium=redirect&utm_campaign=medium_blog

11  https://aws.amazon.com/lambda/pricing/

https://cloud.google.com/appengine/docs/the-appengine-environments
https://medium.com/dev-genius/scalability-and-cost-analysis-for-cloud-based-software-systems-part-1-472012435b26
https://cloud.google.com/appengine/docs/standard/java/config/appref#automatic_scaling_max_concurrent_requests


12  “At 1,769 MB, a function has the equivalent of one vCPU (one vCPU-second of
credits per second).” from
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-
common.html

13  Established customers can negotiate with AWS to increase these limits.

14  Alternatively, if the lambda usage is across different applications, it could be
separated into different accounts. AWS account design and usage is however
outside the scope of this book.

15  Actually, this maximum reserved concurrency for a function is the (Burst Limit
-100). AWS reserves 100 concurrent instances for all functions that are not
associated with explicit concurrency limits. This ensures that all functions have
access to some spare capacity to execute.

16  See https://serverlessfirst.com/real-world-serverless-case-studies/ for an
interesting set of curated case studies from Lambda users.

17  Scaling Azure functions is covered in this link - https://docs.microsoft.com/en-
us/azure/azure-functions/functions-scale

18  https://www.youtube.com/watch?v=eUXUY7QFfAI

19  This is link is a good overview of parameter studies -
http://wiki.analytica.com/Parametric_analysis

https://serverlessfirst.com/real-world-serverless-case-studies/
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