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Preface

Perfectly secure cryptography is a branch of information-theoretic cryptography. A
perfectly secure cryptosystem guarantees that the malicious third party cannot guess
anything regarding the plain text or the key, even in the case of full access to the
cipher text. Despite this advantage, there are only a few real-world implementations
of perfect secrecy due to some well-known limitations. Any simple, straightforward
modeling can pave the way for further advancements in the implementation,
especially in environments with time and resource constraints such as IoT. This
book takes one step towards this goal via presenting a hybrid combinatorial-Boolean
model for perfectly secure cryptography in IoT.

In this book, we first present an introduction to information-theoretic cryp-
tography as well as perfect secrecy and its real-world implementations. Then we
take a systematic approach to highlight information-theoretic cryptography as a
convergence point for existing trends in research on cryptography in IoT. Then we
investigate combinatorial and Boolean cryptography and show how they are seen
almost everywhere in the ecosystem and the life cycle of information-theoretic IoT
cryptography. We finally model perfect secrecy in IoT using Boolean functions, and
map the Boolean functions to simple, well-studied combinatorial designs like Latin
squares.

This book is organized in two parts. The first part studies information-theoretic
cryptography and the promise it holds for cryptography in IoT. The second part
separately discusses combinatorial and Boolean cryptography, and then presents

vii
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Fig. 1 The organization of the book along with the purpose of each part and each chapter

the hybrid combinatorial-Boolean model for perfect secrecy in IoT. Figure 1
illustrates the organization of this book along with the purpose of each part and each
chapter.

Guelph, ON, Canada Behrouz Zolfaghari
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Part I
Information-Theoretic Cryptography and

Perfect Secrecy

This part consists of two chapters. The first chapter presents an overview on
information-theoretic and perfectly secure cryptography and studies one-time pad
(OTP) as the only real-world implementation of perfect secrecy.

In the second chapter, we first study the trade-offs between the real-time
requirements of cryptography in IoT systems and the resource constraints in
these environments. Then, we show how these trade-offs can be resolved using
information-theoretic cryptography. We highlight information-theoretic cryptogra-
phy as the convergence point of research on real-time cryptography and resource-
constrained cryptography in IoT.



Chapter 1
Information-Theoretic Cryptography
and Perfect Secrecy

1.1 Introduction

Information theory is about measuring, storing, and transmitting digital information.
The foundation of this discipline was historically built by Nyquist and Hartley
in the 1920s and later by Shannon in the 1940s. Information theory is supported
by statistics, statistical mechanics, probability theory, information engineering,
electrical engineering, and computer science. In this chapter, we present an overview
on the applications of information theory and related concepts in cryptography. We
specifically focus on perfectly secure cryptography, which is a well-studied branch
of information-theoretic cryptography. Our proposed approach for cryptography in
IoT (to be introduced later in this book) is aimed to provide perfect secrecy.

The rest of this chapter is organized as follows: Sect. 1.2 introduces entropy
as the central concept in information theory. This section studies the path of
entropy from thermodynamics through information technology into cryptography.
Section 1.3 sheds light on the role of entropy and information theory in the
ecosystem of cryptography. Section 1.4 discusses perfect secrecy as a well-studied
branch of information-theoretic cryptography. Different notions and variants of
perfect secrecy are studied in this section. Moreover, different approaches to the
implementation of perfect secrecy are reviewed in this section. The discussions of
this section are important as this book proposes an approach toward perfect secrecy
in IoT. Section 1.5 is about one-time pad (OTP) cryptography, the only real-world
implementation of perfect secrecy. In this section, we study the whole ecosystem of
OTP and discuss the role of OTP in the future of cryptography.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Zolfaghari, K. Bibak, Perfect Secrecy in IoT, Signals and Communication
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4 1 Information-Theoretic Cryptography and Perfect Secrecy

1.2 Entropy: From Thermodynamics to Information Theory

The term entropy has its roots in statistical mechanics and thermodynamics, where
the internal disorder of a system in a given macroscopic state is stated as a logarith-
mic function of the number � of possible microscopic system configurations. Such
a definition is given in Eq. (1.1).

S = kB ln �. (1.1)

In Eq. (1.1), S represents the entropy, and kB is referred to as Boltzmann constant.
Obviously, under equiprobability assumptions, � will be an exponential function of
the number of particles able to randomly move within the system. Put alternatively,
ln � is proportional to the number of random particles inside the system, which is a
measure of randomness. This number is converted to the total uncontrolled kinetic
energy of the random particles by Boltzmann constant. Moreover, the number of
randomly moving particles inside a system is a representative of the amount of
information needed to define the exact state of a system given its macroscopic
state. As suggested by the above discussions, the thermodynamic concept of entropy
connects the uncontrolled internal energy of a system to randomness, disorder, and
unavailable information.

Information entropy (information-theoretical entropy) was first introduced by
Shannon [1, 2] working on cryptographic projects in World War. This entropy can
be assigned to a random variable as the average level of self-information in each
possible event of the variable, which represents the inherent level of uncertainty or
surprise in the event. For a random variable X, Shannon defined the self-information
IX of an event xi with probability PX(xi) as shown by Eq. (1.2).

IX (xi) = − logb PX (xi). (1.2)

In Eq. (1.2), the unit of information is determined by the base b. Especially, if
b = 2, IX (xi) is calculated in bits. In Shannon’s theory, the entropy H of X is
defined by Eq. (1.3),

H (X) = E [IX] =
∑

i

PX (xi) IX (xi) = −
∑

i

PX (xi) logb PX (xi). (1.3)

In Eq. (1.3), E [IX] is the mathematical expectation of IX. Von Neumann
suggested the name “entropy” for the concept introduced by Shannon because of
the similarity of its notion and formulation to those of thermodynamic entropy. In
fact, both information-theoretic and thermodynamic entropy are used as measures
of unavailable information, disorder, and randomness. Shannon discussed the role
of entropy and related concepts in the modeling of cryptosystems. Further, he
introduced the notion of perfectly secure cryptosystem on the basis of entropy.
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Different notions of information entropy have been suggested by different
researchers. In the rest of this book, the term “entropy” refers to information-
theoretic entropy, unless we clearly specify thermodynamic entropy.

1.3 Information Theory: Everywhere in the Ecosystem of
Cryptography

Entropy has found its applications in a variety of scientific and technological areas
[3–5]. Many research reports have addressed the role of entropy in the design,
implementation, and analysis of cryptosystems as well as cryptographic applications
and environments [6]. Several survey reports have reviewed the applications of
entropy in a variety of areas, such as economics [7], image processing [8], discrete
mathematics [9], signal processing [10], etc.

Recent research connects different aspects of cryptosystems to entropy. Maurer
has investigated the role of entropy in the calculation of the lower bounds on key
size, and studied the relation between entropy and perfect secrecy [11]. As another
example, a quick overview on some entropy-related notions and their applications in
cryptosystems has been presented by Reyzin [12]. Moreover, the relation between
entropy and true randomness as well as key unpredictability has been investigated by
Vassilev and Hall [13]. In the following, we study some cryptographic applications
of entropy and information theory.

More generally, information theory has many applications in cryptography and
cryptology, among which one may refer to the following:

• Applications in cryptosystems
Information theory has been used in the design of encryption algorithms as
formalization and security proof of cryptosystems [14, 15].

• Applications in evaluation and cryptanalysis [16–18]
• Applications in cryptographic mechanisms

Recent literature highlights the applications of information theory in a variety of
cryptographic mechanisms. To mention a few, we can refer to the following:

– Obfuscation [19, 20]
– Hashing [21–23]
– Random number generation [24]

• Applications in security-related scenarios
In addition to direct applications in cryptography, information theory has found
its applications in several related areas. Some of these areas are mentioned below:

– Data hiding [25, 26]
– Steganography and steganalysis [27, 28]
– Watermarking [29]
– Secret sharing [30–33]
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Fig. 1.1 The ecosystem of cryptography and the role of information theory

The above discussions highlight the role of information theory in the ecosystem
of cryptography, which includes encryption and evaluation, cryptographic mecha-
nisms, and related areas. This role can be seen in Fig. 1.1.

1.4 Perfect Secrecy

Perfect secrecy is a branch of information-theoretic security. A cryptosystem is
perfectly secure if an adversary’s knowledge of the contents of the plain text is the
same both before and after they get unlimited access to the cipher text, inspecting
it via all possible attack approaches with unlimited resources. As a very simple
example, suppose the 1-bit cipher C(P,K) = P ⊕ K defined by the truth table
shown in Table 1.1.

C is perfectly secure as, whether the cipher text is 0 or 1, the plain text can be 0
or 1 both with identical probabilities.
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Table 1.1 A 1-bit perfectly
secure cipher

P K C(P,K) = P ⊕ K

0 0 0

0 1 1

1 0 1

1 1 0

1.4.1 Notions

Different notions of perfect secrecy have been used in research on cryptography. To
mention a few, one may refer to the following notions:

• Shannon notion[34, 35]
As defined by Shannon, perfect secrecy holds if H(P |C) = H(P ) and
H(K|C) = H(K), where P , K , and C are the plain text, the key, and the cipher
text, respectively, and H(P |C) and H(K|C) are the conditional entropies of the
plain text and the key given the cipher text. We use this notion in our approach in
the last chapter of this book.

• Mutual information notion[36]
• Perfect omniscience notion[37]
• Large-deviations notion[38]

1.4.2 Approaches

Different approaches have been taken toward achieving perfect secrecy. Among
these approaches, we can mention jamming [39] or compressed sensing [40].
However, combinatorial approaches [41, 42] are the most relevant to our discussions
in this book.

1.4.3 Variants

In addition to different notions and different approaches, researchers have proposed
and applied different variants of perfect secrecy. Some of these variants are as
follows:

• Relative perfect secrecy [43]
• Asymptotic perfect secrecy [44]
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1.4.4 Applications in Cryptography

The literature comes with several applications of perfect secrecy in cryptography
[45–47]. Some aspects of these applications are mentioned below.

1.4.4.1 Application on Different Content Types

Perfectly secure encryption has been applied on a variety of content types ranging
from analog signals [48] to individual sequences [49].

1.4.4.2 Applications in Cryptography-Related Areas

Different cryptography-related areas can take advantage of perfect secrecy, with
different notions, via different approaches. In the following, we mention some of
these areas:

• Data hiding [50, 51]
• Authentication [52]

1.4.4.3 Applications in Coding and Communication

Applications of perfect secrecy are not limited to cryptography and cryptograph-
related areas. Some other communications are as follows:

• Applications in coding
There are a variety of perfectly secure codes and coding schemes, some of which
are listed below:

– Perfectly secure error-free coding [53]
– Perfectly secure network coding [54, 55]
– Index coding [56, 57]
– Storage coding [58]
– Perfectly secure coded caching [59]
– Other perfectly secure codes [60]

• Applications in communication [61–63]

1.4.4.4 Technological Applications

As suggested by recent research works, perfectly secure cryptography can serve
to the security of different computing environments, some of which are mentioned
below:
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• Unmanned aerial vehicles (UAVs)
Avdonin et al. [64] A method of creating perfectly secure data transmission
channel between unmanned aerial vehicle and ground control station based on
one-time pads 2017

• Wireless sensor networks (WSNs) [65]
• Mobile networks [66]
• Cloud computing environments [67]
• Internet of Things (IoT)[68]

1.5 One-Time Pad (OTP): The Only Real-World
Implementation

Despite its advantages, perfect secrecy is hard to implement. The reason is that a
perfectly secure cryptosystem requires the key to be of identical length with the
plain text.

OTP is the only real-world implementation of perfectly secure cryptography. In
recent years, OTP has been of interest to the cryptography research community [69,
70]. It has been proven to be a suitable choice for different cryptographic scenarios
including the following:

• On-the-fly encryption [71]
• Lightweight encryption [72]
• Instant messaging [73]

Figure 1.2 shows how OTP works.
Figure 1.3 shows the relation among information-theoretic security, perfect

secrecy, and OTP.
In the following, we take a look at the ecosystem and the future of OTP

cryptography.

Fig. 1.2 One-time pad cipher
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Fig. 1.3 Perfect secrecy as a
branch of
information-theoretic security
and OTP as the only
real-world implementation of
perfect secrecy

1.5.1 The Ecosystem of OTP Cryptography

In the following, we study the ecosystem of OTP, consisting of the enablers,
the applications, and the challenges. By enablers, we mean the sciences and
technologies that support the design, implementation, and evaluation of an OTP
system.

1.5.1.1 Enablers

Different technologies and branches of science have been used to support OTP
cryptosystems. Among these enablers, one may refer to the following:

• True random number generation (TRNG) [74]
• Logical operations [75]
• Traditional ciphers [76–78]

1.5.1.2 Applications

The applications of OTP cryptography can be divided into the following two
categories:

• Applications in security-related scenarios
Several cryptography-related areas can take advantage of OTP cryptography.
Some of these areas are as follows:

– Authentication [79, 80]
– Watermarking [81]
– Steganography [82]
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• Applications in technological fields
Among potential technological applications of OTP, one may refer to the
following:

– Health and medical technology [83, 84]
– Communication systems [85]
– Coding systems [59, 86]
– Financial technology (FinTech) [87]
– Cloud computing [88]
– IoT (Internet of Things) [89]
– Aerospace technology [90]

1.5.1.3 Challenges

As suggested by recent research works, OTP systems are faced with different
challenges, among which we can mention the following:

• Attack resiliency [91, 92]
• Key updating [93]

The above discussions suggest the ecosystem of Fig. 1.4 for OTP cryptography.
In Fig. 1.4, technology represents health and medical technology, communication

systems, coding systems, financial technology, cloud computing, Internet of Things,
and aerospace technology.

1.5.2 The Role of OTP in the Future of Cryptography

As suggested by recent literature, OTP holds a promise for the following modern
cryptography paradigms:

• Chaotic cryptography
In recent years, research on one-time pad cryptography is converging with
chaotic cryptography, holding a great promise for both [94, 95].

• A promise for quantum cryptography
Recent research works suggest that OTP is a good choice for application in
quantum cryptography [96, 97].

• A promise for homomorphic encryption
Homomorphic encryption is another future branch of cryptography that can take
advantage of OTP cryptography [98].

Figure 1.5 shows the role of OTP in the future of cryptography.
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Fig. 1.4 The ecosystem of OTP cryptography
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Fig. 1.5 The role of one-time pad in the future of cryptography



Chapter 2
Information-Theoretic Cryptography: A
Maneuver in the Trade-Off Space of
Cryptography in IoT

2.1 Introduction and Basic Concepts

IoT systems are resource-constrained environments [99, 99] with real-time require-
ments [100–102]. On the other hand, there is a big trade-off between real-time
and resource-constrained computing [103–105]. This challenging issue shows up
in several design aspects of IoT.

The trade-off between timeliness and resource-constrained awareness can be
studied in terms of the following trade-offs.

• Performance-area trade-off [106, 107]
• Performance-power trade-off [108, 109]
• Performance-cost trade-off [110, 111]

In this chapter, we focus on the impact of this trade-off on cryptography in
IoT. We study the existing trends in research on real-time and resource-constrained
cryptography as well as cryptography in IoT in the context of ecosystems and life
cycles. Then, we show how these trends converge at information-theoretic cryptog-
raphy. Our discussions in this chapter suggest information-theoretic cryptography
as a promising choice for IoT environments.

The rest of this chapter is organized as follows. Section 2.2 studies real-
time cryptography. In this section, we first establish an ecosystem for real-time
cryptography. The ecosystem includes applications and enablers. Under the topic
of enablers, we discuss technological applications, applications on different content
types, and applications in security-related scenarios. Enablers are the sciences
and technologies that support real-time cryptography. The section continues to
develop a life cycle for real-time cryptography and study the existing challenges and
issues in each phase of the cycle. The life cycle consists of three phases, namely,
design, implementation, and evaluation. In the design phase, we highlight the
objectives considered by researchers while designing real-time cryptosystem. We
show that a real-time cryptosystem should be flexible to different design patterns.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Zolfaghari, K. Bibak, Perfect Secrecy in IoT, Signals and Communication
Technology, https://doi.org/10.1007/978-3-031-13191-2_2
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Moreover, we demonstrate that real-time cryptosystems need to be compatible
with the existing cryptosystems and hold a promise for modern cryptography
paradigms. In the implementation phase, different challenges are studied; the
choice of the base cryptosystem, the choice between hardware and software
implementations, and the choice among hardware implementation technologies. In
evaluation phase, we study evaluation routines, including analysis, cryptanalysis,
and attack. Sections 2.3 and 2.4 repeat the above analyses for resource-constrained
(embedded and lightweight) cryptography and cryptography in IoT, respectively.
Section 2.5 discusses the convergence among real-time cryptography, resource-
constrained cryptography, and cryptography in IoT. To this end, this section shows
that a common ecosystem and a common life cycle can be imagined for all the
three areas and common challenges are faced by researchers in all of the mentioned
areas. Lastly, Sect. 2.5.1 shows that information-theoretic cryptography appears
almost everywhere in the common ecosystem and the common life cycle. This
highlights information-theoretic cryptography as a promising solution for the trade-
off between timeliness and resource constraint awareness in IoT cryptography.

2.2 Real-Time Cryptography

In the following, we first study the sciences, technologies, and fields of research
related to real-time cryptography. These areas form the ecosystem of real-time
cryptography when they come together. They are categorized into applications and
enablers. Next, we examine the research challenges and issues related to real-time
cryptography. We categorize these issues based on the related phases in the life
cycle, including design, implementation, and evaluation. These analyses, along with
similar analyses on resource-constrained cryptography and cryptography in IoT,
suggest a common ecosystem and a life cycle for all of the above fields. Further
discussions presented later in this chapter show how the ecosystem and the life
cycle of information-theoretic cryptography match the common ecosystem and the
common life cycle. This will highlight information-theoretic cryptography as a
promising solution for cryptography in IoT.

2.2.1 Ecosystem

• Applications
Real-time cryptography has found its applications in many technological envi-
ronments. It has been successfully applied on several content types. Moreover,
it has been tested in several security-related scenarios. These applications are
mentioned in the following.

– Technological Applications
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Real-time cryptography serves to a variety of technological applications. This
implies that every approach proposed for real-time cryptography needs the
capability of being used in these technological areas. As examples of these
areas, one may refer to the following.

∗ Aerospace Technology [112]
∗ Medical Technology [113, 114]
∗ Traffic Management Systems [115]
∗ Multimedia Technology [116]
∗ Digital Camera [117]

– Applications in Security-Related Scenarios
The following security-related scenarios frequently appear in the ecosystem of
real-time cryptography. This has an implication for every approach proposed
for this purpose; it should be applicable in these scenarios.

∗ Privacy [118]
∗ Authentication [119]
∗ Forensics [120]

– Application on Different Content Types
Every approach toward real-time cryptography needs the capacity applied on
different content types including the following.

∗ Text [121]
∗ Image [122, 123]
∗ Video [124–126]
∗ Voice [127]

• Enablers
Different approaches have been taken toward the design of real-time cryp-
tosystems. These approaches highlight different enablers including the ones
mentioned below. This makes it necessary for an approach (like the information-
theoretic approach) toward real-time cryptography to be capable of taking
advantage of these enablers.

– Chaos Theory [123, 124]
– Hardware Technology [128]
– Provable Security [129]
– Artificial Intelligence [130–132]
– Optical Technology [133]
– Mathematical Transforms [134]
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2.2.1.1 Life Cycle

• Design

– Different Design Objectives Considered
In addition to timeliness, as the primary requirement in the design of real-
time cryptographic systems, several other objectives have been considered by
the research community. Thus, every approach toward real-time cryptography
needs the capability of providing a wide range of design objectives.
Among design objectives of real-time cryptography, we may mention the
following.

∗ Performance [135] [136]
∗ Security [121, 137]
∗ Fault Tolerance [138]
∗ Integrity [139]
∗ Efficiency [140]
∗ Scalability [115]
∗ Dynamicity [141]
∗ Quality of Experience (QoE) [131, 132]

– Flexible to Different Design Patterns
Different pairwise-opposite cryptographic design patterns can be used for
real-time cryptographic purposes. This implies that every approach toward
real-time cryptography needs to be compatible with a rage of design patterns.
Some design patterns used in real-time cryptography are mentioned below.

∗ Block ciphers [142, 143]
∗ Stream ciphers [141, 144, 145]
∗ Symmetric cryptography [146]
∗ Public key cryptography [147, 148]

– Compatible To Existing Cryptosystems
Many existing cryptosystems, including the following ones, can be used as
part of solutions for real-time cryptography. This can be considered as in
implication for approaches to be proposed in the future.

∗ Elliptic curve cryptosystem (ECC) [135, 149]
∗ Advanced encryption standard (AES) [150]

– A Promising Choice for Modern Cryptographic Paradigms

∗ Homomorphic encryption (HE) [112, 151]
∗ Quantum cryptography [152]

• Implementation
According to recent research works, the following choices can be considered as
significant challenges in the implementation phase of real-time cryptosystems.
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– Base Cryptosystem [153, 154]
As mentioned earlier in this section, several existing cryptosystems can be
used as part of real-time cryptography solutions. Choosing among these
cryptosystems is a challenging issue in the implementation phase.

– Hardware/Software Implementation [155]
Once the base cryptosystem is decided, another challenging issue is raised.
Real-time cryptosystems can be implemented in hardware or software. Many
aspects should be considered to choose between these possible implementa-
tions.

– Implementation Technology [156, 157]
Once hardware implementation is chosen, several implementation technolo-
gies, such as FPGA, CMOS, etc., can be used for this purpose. Thus, selecting
the implementation technology is the next issue.

Every approach must be capable of resolving the above implementation chal-
lenges in order to be proper for real-time cryptography.

• Evaluation
Different routines have been considered by researchers in the implementation
phase of real-time systems. Among them, we can mention the following.

– Cryptanalysis [158]
– Attack [159, 160]

A newly-proposed approach toward real-time cryptography should pass the
above routines and similar ones to find its way into the life cycle of real-time
cryptography.

2.3 Resource-Constrained Cryptography

In the following, we take a quick look at different aspects of resource-constrained
cryptography similar to the case of real-time cryptography. We discuss resource-
constrained cryptography in the two following categories.

2.3.1 Embedded Cryptography

Embedded cryptography is a significant trend in research on resource-constrained
cryptography [161–163]. It has received a research focus, especially in recent
decades [164, 165]. This topic has been of interest to the academia [166–169].

In the following, we discuss different issues regarding to embedded cryptogra-
phy, categorized by their related life cycle phases as well as their connection with
the ecosystem.
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2.3.1.1 Ecosystem

• Applications

– Technological Applications

∗ Video surveillance [115]
∗ Multimedia technology [170, 171]
∗ Smart grids [172]

– Applications in Security-Related Scenarios

∗ Law and forensics [173]
∗ Visual cryptography [174, 175]
∗ Information hiding [176, 177]
∗ Authentication [178, 179]

– Application on Different Content Types

∗ Image [175, 180, 181]
∗ Video [171]

• Enablers
Researchers have taken many approaches toward the design of cryptographic
primitives to be used in embedded systems. These approaches introduce a range
of enablers, among which we can mention the following.

– Hardware technology [167, 182]
– Chaos theory [180, 183]
– Artificial intelligence (AI) [184, 185]
– Compressive sensing [186]

2.3.1.2 Life Cycle

• Design

– Different Design Objectives Considered
Resource constraint awareness is obviously the most important design objec-
tive in this field. However, researchers have considered several other objec-
tives, including but not limited to the following.

∗ Power consumption [187, 188]
∗ Performance [168, 189]
∗ Scalability [190]
∗ Efficiency (Area efficiency [191])
Efficiency generally refers to the following design objectives.

· Area efficiency [190, 190]
· Cost efficiency[192, 193]
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∗ Integrity [194]
∗ Dynamicity [195]

– Flexible to Different Design Patterns

∗ Stream ciphers [196]
∗ Block ciphers [197]
∗ Symmetric cryptography [198, 199]
∗ Public key cryptography [192, 200]

– Compatible To Existing Cryptosystems

∗ Elliptic curve cryptography [182, 190]
∗ AES [191, 201]
∗ RSA (Rivest-Shamir-Adleman) cryptosystem [202]
∗ El-Gamal cryptosystem [203]
∗ McEliece cryptosystem [204]

– A Promising Choice for Modern Cryptographic Paradigms

∗ Homomorphic encryption [205]
∗ Pairing-based cryptography [206]
∗ Quantum cryptography [115, 207]

• Implementation

– Base cryptosystem [208]
– Hardware/software implementation [181]
– Implementation technology [209, 210]

• Evaluation

– Analysis and formalization [168, 211]
– Cryptanalysis [169]
– Attack [212, 213]

2.3.2 Lightweight Cryptography

Lightweight cryptography is another branch of resource-constrained cryptography.
It has rendered a significant trend in this area [214, 215].

In the following, we take a quick look at the ecosystem as well as the life cycle
of lightweight cryptography.

2.3.2.1 Ecosystem

• Applications

– Technological Applications
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∗ RFID systems [216, 217]
∗ Smart grids [218]
∗ Cloud computing[219, 220]
∗ Fog computing [221]
∗ Sensor networks [222, 223]
∗ Law forensics [224]
∗ Video surveillance [225]
∗ Communication dystems [226]
∗ Medical technology [227]
∗ Mobile devices [228]
∗ Vehicular technology [221]
∗ Industrial Internet of Things (IIoT) [229]

– Applications in Security-Related Scenarios

∗ Authentication [228, 230]
∗ Secret sharing [231]
∗ Information hiding [231]
∗ Privacy [225] [229]

– Application on Different Content Types

∗ Image [224, 227, 231, 232]
∗ Video [233, 234]

• Enablers

– Hardware technology [235]
– Provable security [236]
– Chaos theory [237–239]
– Lattice theory [240]

2.3.2.2 Life Cycle

• Design

– Different Design Objectives Considered
It is obvious that resource constraint awareness is the most critical design
objective in this realm. However, several other objectives need to be followed
here. To mention a few, we can refer to the following ones.

∗ Performance [241, 242]
∗ Power consumption [243]
∗ Efficiency [244, 245]
∗ Robustness [224]
∗ Cost [234]
∗ Fault tolerance [246]
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∗ Scalability [247]

– Flexible to Different Design Patterns

∗ Symmetric [248–250]
∗ Public key [228, 251]
∗ Stream cipher [230, 237]
∗ Block cipher [248] [252]

– Compatible To Existing Cryptosystems

∗ Elliptic curve cryptography (ECC) [236, 253]
∗ AES [254]
∗ Salsa20 [255]
∗ PRESENT [241]

– A Promising Choice for Modern Cryptographic Paradigms

∗ Identity-based encryption (IBE) [256]
∗ Homomorphic encryption [222] [229, 257]
∗ White box cryptography [223]

• Implementation

– Base cryptosystem [258]
– Hardware/software implementation [240, 252, 259]
– Implementation technology [246, 260]

• Evaluation

– Analysis [248, 261, 262]
– Cryptanalysis [218]
– Attack [230, 263]

2.4 Cryptography in IoT

Different requirements and aspects of cryptography in IoT environments have been
of interest to the research community in recent years [264, 265]. In the following,
we overview the related ecosystem and the life cycle.

2.4.1 Ecosystem

• Applications

– Technological Applications
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∗ Cloud computing [266, 267]
∗ Sensor networks [148]
∗ Multimedia technology [268, 269]
∗ Medical technology [270, 271]
∗ Video surveillance [272]
∗ RFID technology [273]

– Applications in Security-Related Scenarios

∗ Authentication[148, 274]
∗ Trust [275]
∗ Privacy [276]
∗ Information hiding [277, 278]

– Application on Different Content Types

∗ Image [279, 280]
∗ Video [268]

• Enablers

– Hardware technology [281]
– Chaos theory [282, 283]
– Lattice theory [267, 284]

2.4.1.1 Life Cycle

• Design

– Different Design Objectives Considered

∗ Performance [285]
∗ Cost [283]
∗ Security [272]
∗ Efficiency [280]

– Flexible to Different Design Patterns

∗ Symmetric cryptography [148, 286]
∗ Public key cryptography [284, 287, 288]
∗ Block ciphers [289]
∗ Stream ciphers [290]

– Compatible To Existing Cryptosystems

∗ Elliptic curve cryptography [291]
∗ AES [292]
∗ RSA [280]
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– A Promising Choice for Modern Cryptographic Paradigms

∗ Quantum cryptography [282, 293]
∗ White box cryptography [294]
∗ Identity-based encryption (IBE) [295]
∗ Attribute-based encryption (ABE) [296]
∗ Homomorphic encryption [297]

• Implementation

– Base cryptosystem [298]
– Hardware/software implementation [279, 299]
– Implementation technology [300]

• Evaluation

– Analysis [297, 301]
– Cryptanalysis [302]

2.4.2 Real-Time Cryptography in IoT

Real-time cryptography in IoT has been of interest to the research community in
recent years [303].

Some researchers have added resource constraint awareness to real-time IoT
cryptography, which leads to the design of embedded [291] and lightweight [304]
IoT cryptography systems. In the following, we establish an ecosystem as well as a
life cycle for real-time cryptography in IoT.

2.4.2.1 Ecosystem

• Applications

– Technological Applications

∗ Video surveillance [305]
∗ Medical technology [306]
∗ Multimedia [305]
∗ Smart home [307]

– Applications in Security-Related Scenarios

∗ Authentication [308]
∗ Privacy [309]

– Application on Different Content Types
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∗ Image [310]
∗ Video [311]

• Enablers

– Chaos theory [305, 307]
– Fuzzy logic [312]
– Hardware technology [313]
– DNA computing [308]

2.4.2.2 Life Cycle

• Design

– Different Design Objectives Considered

∗ Security [305, 313]
∗ Performance [314]

– Flexible to Different Design Patterns

∗ Stream ciphers [315]
∗ Block ciphers [316]
∗ Symmetric cryptography [273]
∗ Public key cryptography [317]

– Compatible To Existing Cryptosystems

∗ Elliptic curve cryptography (ECC) [291]
∗ Advanced encryption standard (AES) [307]

– A Promising Choice for Modern Cryptographic Paradigms

∗ Quantum cryptography [318]
∗ Homomorphic encryption [151]

• Implementation

– Base Cryptosystem [319]
– Hardware/Software Implementation [313]
– Implementation Technology [314]

• Evaluation

– Attack [320]
– Cryptanalysis [321]
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2.4.3 Embedded Cryptography in IoT

Recent literature comes with several works focusing on embedded cryptography in
IoT devices and environments [322]. Different approaches have been taken toward
this purpose [186]. The ecosystem and the life cycle of embedded cryptography in
IoT are studied below.

2.4.3.1 Ecosystem

• Applications

– Technological Applications

∗ Industrial Internet of Things (IIoT) [322]
∗ Mobile Adhoc NETworks (MANETs) [323]

– Applications in Security-Related Scenarios

∗ Authentication [324]
∗ Trust [323]

– Application on different content types

∗ Image [272]
∗ Video [268]

• Enablers

– Compressive sensing [186]
– Chaos theory [281]
– DNA computing [308]

2.4.3.2 Life Cycle

• Design

– Different Design Objectives Considered

∗ Performance [325]
∗ Power [326]
∗ Efficiency [327]

– Flexible to Different Design Patterns

∗ Stream ciphers [315]
∗ Block ciphers [316]
∗ Symmetric cryptography [328]
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∗ Public key cryptography [329]

– Compatible To Existing Cryptosystems

∗ Elliptic curve cryptography (ECC) [291]
∗ ChaCha [315]

– A Promising Choice for Modern Cryptographic Paradigms

∗ White box Cryptography [330]
∗ Homomorphic encryption (HE) [303]
∗ Attribute-base encryption [323, 325]

• Implementation

– Base Cryptosystem [326]
– Implementation Technology [325]
– Hardware/Software Implementation [281, 331]

• Evaluation

– Analysis [332]
– Cryptanalysis [321]

2.4.4 Lightweight Cryptography in IoT

Lightweight cryptography is a recent trend in IoT cryptography [333, 334]. It is
of critical application, especially in resource-constrained applications: [335]. The
research literature suggests the ecosystem and the life cycle mentioned below for
lightweight cryptography in IoT.

2.4.4.1 Ecosystem

• Applications

– Technological Applications

∗ Medical technology [336]
∗ Cloud computing [337]

– Applications in Security-Related Scenarios

∗ Privacy [338]
∗ Authentication [337]

– Application on Different Content Types

∗ Image [339]
∗ Video [304]
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• Enablers

– Chaos Theory [340]
– DNA Technology [341]
– Hardware Technology [342, 343]

2.4.4.2 Life Cycle

• Design

– Different Design Objectives Considered

∗ Performance [338, 344, 345]
∗ Power [346, 347]
∗ Security [339, 348]
∗ Efficiency [349]
∗ Robustness [337]

– Flexible to Different Design Patterns

∗ Stream ciphers [350]
∗ Block ciphers [351–353]
∗ Symmetric cryptography [339, 354]
∗ Public key cryptography [342, 355]

– Compatible To Existing Cryptosystems

∗ Blowfish [339]
∗ Elliptic curve cryptography (ECC) [343]

– A Promising Choice for Modern Cryptographic Paradigms

∗ White box cryptography[356]
∗ Identity-based encryption [357]

• Implementation

– Base Cryptosystem [339, 348]
– Implementation Technology [343]

• Evaluation

– Analysis [338, 345]
– Attack [320, 348]
– Cryptanalysis [358]
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2.5 Convergence: Matching Ecosystems, Life Cycles, and
Challenges

According to the above discussions, the ecosystem of Fig. 2.1 is more or less
applicable to the following areas.

• Real-time cryptography
• Resource-constrained cryptography
• Cryptography in IoT
• Real-time cryptography in IoT
• Resource-constrained cryptography in IoT

Fig. 2.1 The ecosystem (as suggested by research literature) for real-time cryptography, resource-
constrained cryptography, cryptography in IoT, real-time cryptography in IoT, and resource-
constrained cryptography in IoT
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Fig. 2.2 The life cycle and related issues (as suggested by research literature) for real-time
cryptography, resource-constrained cryptography, cryptography in IoT, real-time cryptography in
IoT, and resource-constrained cryptography in IoT

Similarly, the life cycle of Fig. 2.2, as well as the related issues shown in this
figure, is more or less applicable to the areas mentioned above.

• Real-time cryptography
• Resource-constrained cryptography
• Cryptography in IoT
• Real-time cryptography in IoT
• Resource-constrained cryptography in IoT

2.5.1 Information-Theoretic Cryptography: The Convergence
Point

In the following, we discuss the role of information theory in IoT cryptography as
well as real-time and resource-constrained cryptography. These discussions suggest
information theory as a proper approach toward real-time and resource-constrained
cryptography in IoT.
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2.5.1.1 Ecosystem

• Applications

– Technological Applications

∗ Network coding [359]
∗ Cloud computing [360]
∗ Mobile Adhoc NETworks (MANETs) [361]
∗ Power systems [362]

– Applications in Security-Related Scenarios

∗ Privacy [363]
∗ Information hiding [364, 365]URRU-Jour006

– Application on Different Content Types

∗ Digital signals [366]
∗ Video [367, 368]
∗ Image [369–371]

• Enablers

– Provable security [372, 373]
– Mathematical transforms [374]
– Game theory [17, 375]
– Chaos theory [371, 376]
– Compressive sensing [377]

2.5.1.2 Life Cycle

• Design

– Different Design Objectives Considered

∗ Performance [378]
∗ Efficiency [379]
∗ Fault tolerance [380]
∗ Dynamicity [381]

– Flexible to Different Design Patterns

∗ Stream ciphers [363, 373, 382]
∗ Block ciphers [380, 383]
∗ Symmetric cryptography [384]
∗ Public key cryptography [385]

– Compatible To Existing Cryptosystems
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∗ RSA [382]
∗ RC6 [382]
∗ Elliptic curve cryptography [379]

– A Promising Choice for Modern Cryptographic Paradigms

∗ Quantum cryptography [386]
∗ Homomorphic encryption [387]
∗ White box cryptography [388]

• Implementation

– Base cryptosystem [380]

• Evaluation

– Analysis and formalization [15, 389, 390]
– Cryptanalysis [16, 391, 392]

The matching ecosystems and life cycles have made it possible for information-
theoretic cryptography to be successfully tested in the following areas.

2.5.2 Information-Theoretic Cryptography in IoT

Perfect secrecy [393, 394] and especially OTP [89] have been widely used for
cryptography in IoT. Information theory has been specially used in the design of
cryptographic devices, such as physically unclonable functions (PUFs) [395, 395,
396] to be used in IoT. In addition to encryption, information theory has been used
to conduct attacks against IoT cryptography systems [397].

2.5.3 Information-Theoretic Cryptography in Real-Time and
Resource-Constrained Applications

Many researchers have focused on the applications of information-theoretic cryp-
tography in real-time [139], embedded [398], and lightweight [361] applications.

Lightweight
Multimedia [388]
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2.5.4 Information-Theoretic Cryptography in Real-Time and
Resource-Constrained IoT

As expected, information-theoretic cryptography is of great application in real-time
computing environments [139, 139].

Moreover, recent literature highlights information-theoretic cryptography as a
promising solution for embedded [398] and lightweight [72, 72, 399, 400] applica-
tions.



Part II
Combinatorial-Boolean Approach Toward

Perfect Secrecy in IoT

In Part I, we studied information-theoretic cryptography and showed how it can
resolve the trade-off between real-time and resource-constraint requirements of
cryptography in IoT. Part I justifies our choice of information-theoretic cryptog-
raphy to fulfill the requirements of IoT.

In this part, we first take one step forward and state our reasons for choosing a
hybrid combinatorial-Boolean approach toward information-theoretic cryptography.
Then, we formalize our proposed approach.

This part consists of three chapters. The first chapter studies combinatorial
cryptography with a focus on Latin squares and their applications in cryptography.
In this chapter, we first take a look at the role of combinatorics in cryptography.
We continue to introduce some squares with applications in cryptography. Next,
we investigate combinatorial squares and cubes including Latin/magic squares and
cubes and show how they are used in cryptography and related areas. We especially
study Latin squares along with technological applications as well as related theories
and applications in cryptography, variants, generalizations and extensions, related
problems, and challenges.

The second chapter is about Boolean cryptography. In this chapter, we first
explain how the cryptography research community is taking advantage of Boolean
algebra, Boolean functions and mappings, Boolean maskings, Boolean problems,
Boolean permutations and substitutions, and Boolean queries over encrypted data.
Then, we take a look at the position of Boolean cryptography in the ecosystem as
well as the life cycle of information-theoretic cryptography.

The third chapter introduces our proposed approach. In this chapter, we first
present a Boolean method based on Resilient Boolean functions for formal descrip-
tion as well as encoding of encryption and decryption algorithms. Next, we use
the method to formalize and encode perfectly secure cryptographic algorithms.
This paves the way for presenting a conceptual model for random key random
algorithm perfectly secure cryptography. In the next step, we connect our method
with Latin squares. Lastly, we reason why our method can be efficiently used in IoT
environments.



Chapter 3
Combinatorial Cryptography and Latin
Squares

3.1 Introduction

Combinatorics refers to a branch of mathematics that discusses methods for
enumerating the number of possible ways for doing something. It has applications
in statistics, probabilities, and many other scientific fields. This section focuses on
the applications of combinatorics in cryptography. There are some combinatorial
puzzles that appear in the form of squares and cubes. Counting the number of
ways to fill each these puzzles is a combinatorial problem. We specially focus on
cryptographic applications of these puzzles. Among these puzzles, Latin squares
will be used in our approach toward information-theoretic cryptography, which is
introduced in the last chapter of this book.

The rest of this chapter is organized as follows. Section 3.2 presents an overview
on the cryptographic applications of combinatorics. Section 3.3 studies some
historical ciphers that use non-combinatorial squares as part of their structures.
In this section, we study different cryptographic squares such as Polybius square,
Playfair square, and Vigenere square. Moreover, we examine some square-based
ciphers including two-square and four-square ciphers. Section 3.4 investigates
cryptographic combinatorial squares and cubes. In this section, we first study
some square combinatorial designs, such as Howell design, Room square, and
Hadamard matrices. Then, we focus on combinatorial square and cube designs
along with their cryptographic applications. Among these designs, Latin squares
are of more importance, as they are used in the approach proposed in this book
toward information-theoretic cryptography in IoT. In Sect. 3.4, we specifically
examine the cryptographic properties of Latin squares as well as their applications
in cryptographic mechanisms. Furthermore, we highlight the random generation of
Latin squares as a highly challenging issue in this area. We will get back to this
problem later in this book while explaining our proposed method for information-
theoretic cryptography in IoT.
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3.2 Combinatorics and Cryptography

The application of combinatorics in cryptography dates back to past decades [401–
403]. Moreover, this branch of cryptography is still of interest to researchers [404,
405].

The applications of combinatorics in cryptography can be explained in the
following categories.

• Applications of combinatorial optimization in cryptography [406]
• Applications of combinatorial group theory in cryptography [407, 408]
• Applications of combinatorial constructs in cryptography [409]
• Applications of combinatorial designs in cryptography [410–412]
• Applications of combinatorial puzzles in cryptography [413]

In this section, we will focus on combinatorial puzzles and especially on square
and cube combinatorial puzzles, along with their cryptographic applications. To
begin our discussions in this area, let us first take a look at the history.

3.3 A Look at the History: Cryptographic Squares and
Square-Based Cryptography

Similar to the case of combinatorics, squares have been historically used in
cryptography. Among (non-combinatorial) squares used in cryptography, one may
refer to the following.

• Polybius Square: Recent Years [414]
The Polybius square plays the role of a substitution box that maps each alphabet
letter to a two-digit number. For each letter, the leftmost digit is the related
row number, and the rightmost one is the column number, both extracted from
Fig. 3.1.

Fig. 3.1 The Polybius square
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Put more formally, suppose the total order� defined as A ≺ B ≺ C ≺ · · · ≺
X ≺ Y ≺ Z. Let function M, defined with following rules, map each element
ω ∈ � to M(ω).

{
∀ω ∈ � : M ∈ [1, 26]

∀ω1, ω2 ∈ � : ω1 ≺ ω2 ⇒ M(ω1) < M(ω2)

Now let us define functions (D)1 and (D)2 as follows.

(D)1(ω) =
{

(M(ω) ÷ 5) + 1 M(ω) ≤ 10

((M(ω) − 1) ÷ 5) + 1 M(ω) > 10

(D)2(ω) =
{
M(ω) mod 5 M(ω) ≤ 10

(M(ω) − 1) mod 5 M(ω) > 10

The Polybius square converts each ω ∈ � to 10(D)2(ω) + (D)1(ω).
• Playfair Square: Recent Years [415]

The Palayfair square is a 5 × 5 square that contains all the alphabet letters except
for J. Playfair cipher uses an agreed-upon key in the form of a character string.
The cells of the square are filled from left to right and from top to down. The first
cells are filled with the key such that each character occurs once. For example, if
CRYPTOGRAPHY is the key, the cells are filled with C, R, Y, P T, O, G, A, and
H (please see the square number (1) in Fig. 3.2). Then, the rest of the remaining
cells are filled with the remaining characters (shown by the square number (2)
in Fig. 3.2). Now the square is ready for encryption according to the following
rules.

1. Any occurrence of J should be dropped from the plain text.
2. Pairs of repeated letters are broken via inserting and X. For example, LL is

converted to LXL.
3. The remaining plain text is broken into pairs of letters.
4. A single letter at the end of the string is paired with an extra Z.
5. Each pair of letters is substituted by another pair of letters after being located

in the Playfair square according to the rules bellow.

(a) If both letters are in the same column, each one is substituted by the letter
below it (going back to the top if necessary).

(b) If both letters are in the same row, each one is substituted by its right side
letter (going back to the left if necessary).

(c) Otherwise, the two letters highlight two opposite corners of a rectangle. In
this case, the two characters in the remaining corners of the same rectangle
are substituted.
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Fig. 3.2 The Playfair cipher
encrypting “HELLO” to
“GIQUDU”

Squares (3), (4), and (5) show how this cipher encrypts HELLO to GIQUDU.
• Two-Square and Four-Square Ciphers [416]

The two-square cipher uses two Playfair squares with two different key strings.
The encryption rules are similar to those of Playfair cipher except that each pair
of letters is searched in both squares (please see [417] for more information). The
four-square cipher is a further extended version of the Playfair cipher [418].

• Vigenere Square [419]
Figure 3.3 shows the Vigenere square.
The Vigenere cipher works as follows. First, the key is repeated until its length
reaches that of the plain text. For example, If the plain text is ATTACKATDAWN,
the key HELLO should be extended to HELLOHELLOHE. Then, each letter in
the cipher text is substituted by the letter in the Vigenere square, whose row
is designated by the plain text character and the column is specified by the
corresponding key letter. For example, the C in the cipher text is encrypted to
Q, which lies in row C and column O.
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Fig. 3.3 The Vigenere square

In addition to squares, some kinds of cubes have been used in cryptography
[420].

3.4 Cryptographic Combinatorial Squares and Cubes
(Puzzles)

So far, different square and cube combinatorial designs have been of interest to the
cryptography research community.

• Howell Design [421]
Let S be a set of 2n symbols; then, a Howell design H(s, 2n) on S is an s × s

square H such that
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1. Every cell in H is either empty or filled with a 2-subset of S.
2. Every symbol of S occurs exactly once in each row and each column of H .
3. Every 2-subset of S occurs in at most one cell of H .

• Room Square [422]
A Room square (named after T. G. Room) of order n = 2k is an (n−1)× (n−1)

square built on a set S of objects (|S| = n) with the following criteria.

1. Each cell is either empty or holds a 2-subset of S.
2. Ech element s ∈ S appears exactly once in each row and each column.
3. Each 2-subset occupies exactly one cell.

The set of Room squares is obviously a subset of the set of Howell designs. A
Room square of order 8 is shown in Fig. 3.4.

• Hadamard Matrices [423–425]
A Hadamard matrix Hd of order n is an n × n square matrix, provided that

∀i, j ∈ [1, n] ,Hd [i, j ] ∈ {−1, 1}, and Hd.HT
d = In.

Two Hadamard matrices of orders 4 and 8 can be seen in Fig. 3.5.

In the rest of this chapter, we focus on Latin/magic squares/cubes because of
their popularity.

Fig. 3.4 A Room square of
order 8

Fig. 3.5 Two Hadamard
matrices of orders 4 and 8
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3.5 Latin/Magic Squares and Cryptography

In this section, we study Latin and magic squares and study their applications in
cryptography.

3.5.1 Latin Square

An n×n matrix
[S(L)

]
n×n

represents a Latin square of order n if it satisfies Eq. (3.1):

∀i, j ∈ {1, 2, . . . , n} :
⎧
⎨

⎩

{x|∃k ∈ {1, 2, . . . , n} : S(L)[i, k] = x} = {1, 2, . . . , n},
{x|∃k ∈ {1, 2, . . . , n} : S(L)[k, j ] = x} = {1, 2, . . . , n}.

(3.1)
As an example,

[S(L)
]

10×10 in Eq. (3.2) is a Latin square of order 10.

S(L) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 8 9 10 2 4 6 3 5 7
7 2 8 9 10 3 5 4 6 1
6 1 3 8 9 10 4 5 7 2
5 7 2 4 8 9 10 6 1 3

10 6 1 3 5 8 9 7 2 4
9 10 7 2 4 6 8 1 3 5
8 9 10 1 3 5 7 2 4 6
2 3 4 5 6 7 1 8 9 10
3 4 5 6 7 1 2 10 8 9
4 5 6 7 1 2 3 9 10 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

A Latin square
[S(L)

]
n×n

is referred to as a normalized (reduced) Latin square

if ∀i, j ∈ {1, 2, . . . , n} : (S(L)[i, 1] = i ∧ S(L)[1, j ] = j
)
. Let

[
S(L)

1

]

n×n
and

[
S(L)

2

]

n×n
be two Latin squares. S(L)

1 and S(L)
2 are said to be orthogonal if

|{(x, y) |∃i, j ∈ {1, 2, . . . , n} : S(L)
1 [i, j ] = x ∧ S(L)

2 [i, j ] = y}| = n2.
In this paper, we represent the set of all Latin squares of order n by USL|n. There

is no easily computable explicit formula for |USL|n|, where n is an arbitrary positive
integer. However, the value of |USL|n| is known for n ∈ {1, 2, . . . , 11} [426], and

it is well-known that |USL|n| = n! (n − 1)!|USL|n|, where U (N)
SL|n is the number of

normalized Latin square of order n. Furthermore, there are some lower and upper
bounds for |USL|n|, such as the ones given by Inequality 3.3 [427],

(n!)2n

nn2 ≤ |USL|n| ≤
n∏

k=1

(k!) n
k . (3.3)
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To cite [428–436]

Related Theories with Applications in Cryptography Some theories supporting
Latin squares have been of interest to the cryptography research community. Among
these theories, we can mention the following.

• Quasigroups Theory [437, 438]
• Permutation Groups Theory [439, 440]
• Symmetric Groups [441]

3.5.1.1 Variants, Generalizations, and Extensions

The literature comes with cryptographic applications for different variants, general-
izations, and extensions of Latin squares, some of which are discussed below.

• Sudoku [442, 443]
A Sudoku is a Latin square of order 9 partitioned into a 3×3 grid of 3×3 regions,
such that each i ∈ {1, 2, · · · , 9} occurs exactly once in each region. For example,
S(S) in Eq. (3.4) demonstrate a Sudoku.

S(S) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎣
8 2 7
9 6 5
3 4 1

⎤

⎦

⎡

⎣
1 5 4
3 2 7
6 8 9

⎤

⎦

⎡

⎣
3 9 6
1 4 8
7 5 2

⎤

⎦

⎡

⎣
5 9 3
4 7 2
6 1 8

⎤

⎦

⎡

⎣
4 6 8
5 1 3
9 7 2

⎤

⎦

⎡

⎣
2 7 1
6 8 9
4 3 5

⎤

⎦

⎡

⎣
7 8 6
1 5 4
2 3 9

⎤

⎦

⎡

⎣
2 3 5
7 9 6
8 4 1

⎤

⎦

⎡

⎣
9 1 4
8 2 3
5 6 7

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

• Frequency Latin Square [444]
An (n,m) frequency Latin square is an n.m × n.m square, where each n symbol
occurs exactly m times in each row and each column.

S(Fq) =

⎡

⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥⎦ (3.5)

• Gerechte Design [445]
A gerechte design is an n × n grid partitioned into n regions (Not necessarily in
the form of squares), each containing n cells of the grid, such that each of the
symbols 1 through n occurs exactly once in each row, column, or region.
Figure 3.6 shows a set of gerechte designs of order 5.
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Fig. 3.6 A set of gerechte designs order 5

All the designs in Fig. 3.6 follow a single partitioning scheme. This scheme is
seen in the upside of the figure.

• KenKen Puzzle [446, 447]
A KenKen puzzle is a Latin square partitioned to a number of cages (regions),
not necessarily of identical sizes.
There is a predefined number along with a predefined algebraic operation.
The numbers in each cage must combine—in any order—to produce the cage’s
target number using the indicated math operation. Numbers may be repeated
within a cage as long as rule 2 isn’t violated.
Figure 3.7 illustrates a sample KenKen puzzle before and after being filled.
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Fig. 3.7 A KenKen puzzle
before and after being filled

3.5.1.2 Related Problems and Challenges

The research community have posed several problems in regard with Latin squares.
Some of these problems are as follows.

• Create[448]
• Enumeration [449]
• Relation with other mathematical constructs [450]

Among the applications of Latin squares, one may refer to the following.

3.5.1.3 Applications

The research literature suggests the following applications for Latin squares.

• Applications in Coding
Some research works have focused on the applications of Latin squares in the

following categories of codes.

– Liberation codes [451]
– Error correction codes [452–454]
– Erasure codes [455]

• Communication systems [456]
• Control systems [457]
• Computer memory systems [458, 459]

3.5.2 Magic Square

A magic square of order n is represented by an n×n matrix
[S(M)

]
n×n

that satisfies
Eqs. (3.6), (3.7), (3.8), and (3.8),

{x|∃i, j ∈ {1, 2, . . . , n} : S(M) [i, j ] = x} = {1, 2, . . . , n}, (3.6)
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∀i, j ∈ {1, 2, . . . , n} :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

k=1

S(M) [i, k] = M(n),

n∑

k=1

S(M) [k, j ] = M(n),

(3.7)

n∑

k=1

S(M) [k, k] =
n∑

k=1

S(M) [k, n + 1 − k] = M(n), (3.8)

where M(n) =
∑n2

t=1 t

n
= n

(
n2+1

)

2 .
A sample magic square of order 4 is given by Eq. (3.9),

S(M) =

⎡

⎢⎢⎣

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

⎤

⎥⎥⎦ . (3.9)

In recent years, researchers have been interested in several applications of magic
squares [460] as well as several related problems [461]. In this book, USM|n
represents the number of magic squares of order n. This value is known for
1 ≤ n ≤ 5 [462]. However, the problem of calculating |USM|n| for an arbitrary
n is still unsolved.

3.5.2.1 Franklin Squares as Variants of Magic squares

A Franklin square of order n is a magic square of order n, wherein the numbers in

the bend diameters sum up to n(̇n2+1)
2ṅ

, referred to as the magic constant. Moreover,
in a Franklin square, the numbers in the four corners and four central cells sum up
to the magic constant.

As an example,
[
S(Fk)

1

]

8×8
in Eq. (3.10) and

[
S(Fk)

2

]

8×8
in Eq. (3.11) are

Franklin squares of order 8.

S(Fk)
1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

52 61 4 13 20 29 36 45
14 3 62 51 46 35 30 19
53 60 5 12 21 28 37 4
11 66 59 54 43 38 27 22
55 58 7 10 23 26 39 42
9 8 57 56 41 40 25 24
50 63 2 15 18 31 34 47
16 1 64 49 48 33 32 17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)
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Fig. 3.8 A Franklin square of order 16

S(Fk)
2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 47 30 36 21 43 26 40
32 34 19 45 28 38 23 41
33 31 46 20 37 27 42 24
48 18 35 29 44 22 39 25
49 15 62 4 53 11 58 8
64 2 51 13 60 60 55 9
1 63 14 52 5 59 10 56
16 50 3 61 12 54 7 57

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

Moreover, a Franklin square of order 16 is seen in Fig. 3.8.
Franklin squares have been of special interest to the cryptography research

community [463–465].
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3.5.2.2 Solving Magic Squares: The Main Related Problem

As suggested by the research literature, solving the magic square puzzle is the most
critical problem in this area [466–468].

3.5.2.3 Applications

Magic squares have founds their many applications in technology, science, and arts.
Some of their application areas are as follows.

• Applications in Technology

1. Communications [469, 470]
2. Power grid control [471]
3. Image processing [472]
4. Digital to analogue converters [473, 474]
5. Applications in science and art

– Applications in optimization [475]
– Applications in aesthetics [476]

3.6 Latin/Magic Cubes and Cryptography

In this section, we discuss Latin and magic cubes and study their applications in
cryptography.

3.6.1 Latin Cube

Consider n ∈ N \ {1}; an n × n × n matrix
[C(L)

]
n×n×n

represents a Latin cube of
order n if it satisfies Eq. (3.12),

∀i, j, k ∈ {1, 2, . . . , n} :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{x|∃t ∈ {1, 2, . . . , n} : C(L)[i, j, t] = x} = {1, 2, . . . , n},
{x|∃t ∈ {1, 2, . . . , n} : C(L)[i, t, k] = x} = {1, 2, . . . , n},
{x|∃t ∈ {1, 2, . . . , n} : C(L)[t, j, k] = x} = {1, 2, . . . , n}.

(3.12)
Figure 3.9 shows a sample Latin cube of order 3.
Researchers have studied different types [477] and applications [478, 479] of

Latin cubes, along with different related problems [480].
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Fig. 3.9 A Latin cube of
order 3

Fig. 3.10 A Rubik cube

3.6.2 Magic Cube

Rubik’s cube has been of special interest to cryptography research community in
recent years [481, 482]. Magic cube a.k.a Rubik cube was invented by Rubik Erno
in 1974. Using a cube with 54 equally sized squares of 6 different colors on its 6
faces, Rubik cube represents an ordered list of 54 instances of 6 different numbers
(e.g., 1 through 6), where each number is repeated exactly 9 times. In this cube,
colors represent numbers. Figure 3.10 shows a Rubik cube.

Figure 3.11 shows the spread of a Rubik cube. In this figure, the numbers on the
squares show the locations of the fields in the corresponding ordered list.

From a vertical or a horizontal perspective, a Rubik cube consists of three planes
that can rotate clockwise or counterclockwise on top of each other. Let us represent
the six faces of a Rubik cube by F (front), U (up), R (right), B (back), L (left), and
D (down). We can define the 12 basic operations, each of which rotates one of the
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Fig. 3.11 A spread Rubik
cube

Fig. 3.12 A spread Rubik
cube after an F operation
assuming the red face as the
front face

faces by 90◦ clockwise or counterclockwise. We represent the operations of rotating
the front face (by 90◦) clockwise and counterclockwise by F and F ′, respectively.
Similarly, the operations that rotate other faces are represented by U , U ′, R, R′, B,
B′, L, L′, D, and D′. For example, Fig. 3.12 shows the spread of the Rubik cube
in Fig. 3.11 after an F operation assuming that the red face is the front face. Every
other operation can be implemented as a combination of the basic operations.

It can easily be shown that the number of possible patterns for the Rubik cube
satisfies Eq. (3.13),

PR = 8! · 12! · 38 · 212

2 · 3 · 2
= 43252003274489856000. (3.13)

A solution to the Rubik cube is a sequence of valid operations that gathers all
squares of the some color in the same face. It has been shown that a solution to
the Rubik cube consists of GR ≤ 20 face rotation operations (by 90 or 180◦) at
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a minimum, depending on the initial pattern. The original Rubik cube (invented by
Rubik Erno) is a 3×3×3 cube. However, a variety of variants have been introduced
later.

3.6.2.1 Related Problems and Challenges

As suggested by the research literature, the following problems are of important
with respect to Rubik’s cubes.

• Solving challenge [483–485]
• Training challenge [486, 486, 487]

3.6.2.2 Applications in Science and Technology

In recent years, magic cubes have found their applications in several scientific [488]
and technological [489] areas.

3.7 Cryptography Using Latin/Magic Squares and Cubes

In this section, we discuss the cryptographic properties and applications of Latin
and magic squares and cubes.

3.7.1 Latin Squares and Cryptography

Latin squares have been used to build improved variants of traditional ciphers
[490]. Moreover, they have been used in cryptanalysis as well as the evaluation
of cryptosystems [491, 492]. Cryptosystems based upon Latin squares have been
used in some real-world technological environments [493].

Latin squares have many cryptographic properties and applications, some of
which are discussed below.

Cryptographic Properties The reason why Latin squares are of interest to the
cryptography research community is their capability of providing the following
cryptographic properties.

• Confusion and diffusion [494, 495]
• Chaos [496]

There are numerous cryptographic scenarios that depend on confusion and
diffusion [497, 498] as well as chaos [499, 500]. This signifies the role of Latin
squares in cryptography.
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3.7.1.1 Applications in Cryptographic Mechanisms

Latin squares have been used in the following cryptographic mechanisms.

1. Permutation, substitution, and S-boxes [501, 502]
2. Hash functions [503]
3. Cryptographic transformations [504]

Applications on Different Content Types Recent research works show that Latin
squares can be used to encrypt the following content types.

1. Images ciphers [505, 506] and visual cryptography [507, 508]
2. Text encryption [509, 510]

3.7.1.2 Random Latin Square Generation: A Challenging Problem

Generating random Latin squares is one of the most important problems in the field
of Latin square-based cryptography [511–514].

3.7.1.3 Sudoku: A Popular Extension

Different variants and extensions of Latin squares such as Kenken puzzles [515]
have been used in cryptography. However, Sudoku is probably the most common
extension of Latin squares. Cryptographic applications of Sudoku can be divided
into the following categories.

1. Applications in cryptography

• Applications in image encryption [516, 517]
• Applications in key generation [518, 519]

2. Applications in cryptography-related areas
As suggested by existing research works, the following cryptography-related
areas can take advantage of the properties of Sudoku.

• Authentication [520]
• Data hiding [521–523]
• Image scrambling [524]
• Secret sharing [525]

Latin Squares in the Ecosystem and the Life Cycle of IoT Cryptography Latin
square-based cryptography can be found almost everywhere in the common ecosys-
tem of Fig. 2.1. It has found its applications in several technological environments
[526–528]. It has been used in diffeent security-related scenarios [507, 526]. It has
also been successfully tested on different content types [528, 529]. Furthermore,
Latin square-based cryptography is capable of taking advantage of different enablers
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[494, 529, 530]. Moreover, Latin squares-based cryptography plays critical roles
in the common life cycle of Fig. 2.2. For example, it is compatible to different
design patterns [505, 531]. Moreover, it has been evaluated using different routines
[491, 494].

3.7.2 Magic Square and Cryptography

Similar to the case of Latin squares, magic squares have found their applications
in cryptography and related areas. Among these applications, one may refer to the
following.

3.7.2.1 Applications in Cryptography

1. Cryptosystem modeling [532]
2. Image encryption [460]
3. Stream ciphers [533]

3.7.2.2 Applications in Cryptography-Related Areas

1. Data/signal hiding [534, 535]
2. Authentication [536, 537]

3.7.3 Latin Cube and Cryptography

To the best of our knowledge, there only a few research works focusing on the
applications of Latin cubes in cryptography. Some of these works have investigated
the applications of Latin cubes in image encryption [538, 539], random number
generation (RNG) [540], etc.

3.7.4 Magic Cube and Cryptography

Unlike Latin cubes, magic cubes are good choices for application in cryptography.
There are several reasons for this popularity. To mention a few, one may refer to the
following reasons.
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3.7.4.1 A Good Scrambling-Based Transformation for Chaotic
Encryption

Because fo the following applications, magic cubes can be considered as good
scrambling-based transformations to be used in chaotic cryptography.

• Applications in scrambling [541, 542]
• Applications in different transformations [543, 544]
• Applications in the creation of chaotic functions [545, 546]

3.7.4.2 A Good Choice for Improving Existing Cryptosystems

It was shown in [547] that magic cube can be used to improve the security of existing
cryptosystems. Other researchers have been using Rubic cubes for improving some
well-known cryptosystems [548, 549].

3.7.4.3 Tested on Different Kinds of Contents

Rubik’s cubes have been used for encrypting several content types, among which
we can mention the following.

• Text [550, 551]
• Binary contents [552]
• Image [553–556]

3.7.4.4 Tested in Different Computing Platforms

Cryptosystems based upon magic squares have been examined in different comput-
ing platforms. We mention some of these platforms in the following.

• Mobile devices [557]
• Virtual systems [558]
• Cloud storage systems [559]

3.7.4.5 Good for Key Management

Magic cubes have been proven good choices for application in key management
[560, 561]

3.7.4.6 Applications in Cryptography-Related Areas

In addition to cryptography, magic cubes have been used in some related areas
including data hiding [562, 563].



Chapter 4
Boolean Cryptography

4.1 Introduction

Boolean cryptography has been of interest to the research community in recent
decades [564–566].

• Boolean Algebra
Boolean algebra plays a significant role in Boolean cryptography [567, 568].

– Boolean Elements

∗ Boolean predicates
∗ Boolean matrices

– Boolean Operations [569]

∗ Boolean matrix multiplication

• Boolean Functions [570]
Constructing Boolean functions with cryptographic properties is a challenging
problem [571].

– Vectorial Boolean Functions

• Boolean Mappings
• Boolean Maskings [572]

Boolean maskings are used order to protect devices performing cryptographic
algorithms against side-channel attacks.

• Boolean Substitution and Permutation
• Boolean Queries Over Encrypted Data

Recent literature comes with several works focusing on queries over different
kinds of servers [573] and databases [574]. Many researchers have studied
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different aspects of queries over encrypted outsourced and [575] cloud [576, 577]
data.

– Boolean Search
Boolean search is a common type of query over encrypted data[578, 579].
Especially, keyword searching is a significant challenge in this area [580]
[573].

– Boolean Permutation [581]
– Boolean S-Boxes [582]

• Boolean Problems
There are a few Boolean problems with applications in cryptography. As an
example, one may refer to Boolean Satisfiability Problem [583].

The rest of this chapter is organized as follows. Section 4.2 studies the role of
Boolean cryptography in the ecosystem of cryptography (developed in the first part
of this book). In this section under this topic, we show that Boolean cryptography
is used in the same technological environments as IoT cryptography. Similarly,
we highlight the applications of Boolean cryptography in security-related areas
connected to IoT cryptography. Moreover, we show that Boolean cryptography can
be applied on the content types that need to be processed in IoT cryptography.
Section 4.3 connects Boolean cryptography to the life cycle of IoT cryptography.
This section shows that the objectives considered in the design of IoT cryptosystems
are considered in Boolean cryptography as well. We demonstrate that Boolean cryp-
tography is compatible with the dominating design patterns in IoT cryptography.
Moreover, we demonstrate the adaptability of Boolen cryptography with the existing
cryptosystems and modern cryptography paradigms, which is a critical need in IoT
cryptography. Further, we show how the issues in the implementation phase of IoT
cryptography can be resolved using Boolean cryptography. Lastly, we highlight the
role of Boolean cryptography in the design phase routines of IoT cryptography,
namely, analysis, cryptanalysis, and attack.

4.2 The Role in the Ecosystem of Information-Theoretic IoT
Cryptography

Boolean cryptography is frequently seen almost everywhere in the ecosystem
of information-theoretic IoT cryptography. It has many technological applica-
tions in different areas including cloud computing [576] and IoT [584]. Several
security-related scenarios can take advantage of Boolean cryptography. Among
these scenarios, one may refer to authentication [580], information hiding [585],
visual cryptography [569], trust [566, 586], privacy [587, 588], and secret sharing
[589, 590]. Boolean methods can be used to encrypt differed content types including
image [582, 585, 591] and video [592]. Moreover, different enablers such as
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Fig. 4.1 The position of Boolean cryptography in the ecosystem of information-theoretic cryp-
tography

complexity theory [570], artificial intelligence [593, 594], hardware technology
[595], mathematical transforms [591], and chaos theory [582] support Boolean
cryptography.

According to the above discussions, the position of Boolean cryptography in the
ecosystem of information cryptography can be illustrated as shown in Fig. 4.1.

In Fig. 4.1, the rectangles designated by red asterisks show the places, where
Boolean cryptography appears as a solution.

4.3 The Position in the Life Cycle of Information-Theoretic
IoT Cryptography

Similar to the case of the ecosystem, the life cycle of information-theoretic cryptog-
raphy comes with frequent occurrences of Boolean cryptography. Researchers have
worked on the design, implementation, and evaluation of cryptosystems via Boolean
approaches. Various objectives have been considered in the design of cryptosystem,
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Fig. 4.2 The position of Boolean cryptography in the life cycle of information-theoretic cryptog-
raphy

among which we can mention security [577], efficiency [578], and reconfigurability
[596]. Boolean cryptography has been proven to be flexible to different design pat-
terns, such as symmetric cryptography [597], public key cryptography [583, 598],
stream ciphers [596, 599], and block ciphers [592]. Existing cryptosystems includ-
ing AES [600] and RSA [601] have been used to design Boolean cryptographic
systems. Boolean cryptography has exhibited its efficiency in modern cryptography
paradigms, such as homomorphic encryption (HE) [578, 579] and attribute-based
encryption (ABE) [602]. Moreover, different challenges have been investigated in
the implementation phase of Boolean cryptography. These challenges include the
choice among base cryptosystems [603, 604], hardware/software implementation
approaches [596, 605], and implementation technoloies [568]. Furthermore, several
routines including analysis [578, 605] and attack [578, 606] have been studied in the
implementation phase of Boolean cryptography.

The position of Boolean cryptography in the life cycle of information cryptogra-
phy can be illustrated as shown in Fig. 4.2.

In Fig. 4.2, the rectangles highlighted in red show the places, where Boolean
cryptography appears as a solution.



Chapter 5
A Hybrid Combinatorial-Boolean
Approach Toward Perfect Secrecy in IoT

5.1 Introduction and Basic Concepts

Shannon discussed the security of a cryptosystem from the viewpoint of information
theory, which is considered a foundational treatment of modern cryptography [607].
Perfect secrecy states that no information of the probability distribution of plain
text can be gained when the probability distribution of cipher text is known. Let
S be a cryptosystem whose plain text and cipher text sets (finite) are P and C,
respectively. Suppose Pr[x] and Pr[x/y] are the probability of occurring x and
the conditional probability of x given y, respectively, x ∈ P and y ∈ C. From
a statistical perspective, perfect secrecy of a cryptosystem is formally defined as
follows.

Definition 5.1 A cryptosysytem has perfect secrecy or equivalently it is perfectly
secure if Pr[x/y] = Pr[x] for all x ∈ P (plain text) and y ∈ C (cophertext).

Shannon demonstrated that key-dependent perfect secrecy requires a secret key
that is not shorter than the plain text [607]. This keeps perfect secrecy from being
widely implemented in real-world applications despite its intriguing advantages.
One-time pad (OTP) is the only real-world implementation of perfect secrecy
seriously studied by the research community and used by the industry. In OTP,
the transmission of every individual message requires a new random key to be
generated.

In this chapter, we revisit perfectly secure cryptography in real-time, resource-
constrained IoT systems via investigating the possibility of secret algorithm perfect
secrecy. Our proposed approach is based on a combinatorial square design named
Latin square and a class of Boolean functions referred to as resilient functions.

In our approach, perfect secrecy can be achieved using a secret key and/or a secret
algorithm. From a theoretical point of view, the first challenge in secret algorithm
perfectly secure cryptography is the lack of systematic methods for creating
cryptographic algorithms, which are theoretically guaranteed to be perfectly secure.
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A solution to this problem is presented in this chapter. The solution is based
on a framework for exhaustively creating and encoding all theoretically possible
perfectly secure cryptographic algorithms.

In this chapter, we first model a general cryptosystem as a set of reversible (n, n)-
functions, one of which is chosen based on the key value. We use this model to
calculate the number of all cryptographic algorithms, which can theoretically exist.
Since the calculated number is very huge, we argue that we can depend on secret
algorithms instead of or in addition to secret keys. This leads to the notion of secret
algorithm cryptography. We also calculate the minimum average code length for
encoding reversible (n, n)-functions (Sect. 5.1.3). Then, we propose an encoding
scheme, which assigns minimum-length codes to reversible Boolean functions.
Next, we model the set of perfectly secure cryptographic algorithms as a super set of
n-resilient (n, n)-functions. We also propose a procedure that guarantees exhaustive
creation of all theoretically-possible perfectly secure cryptographic algorithms.
Moreover, we calculate the number of these algorithms and prove it to be very
huge. We use this calculation to obtain an upper bound of the number of n-resilient
(2n, n)-functions. In addition, we calculate the minimum average code length for
encoding each perfectly secure cryptographic algorithm. Moreover, we propose an
encoding scheme, which assigns a unique minimum-length code to every individual
perfectly secure algorithm. The construction procedure, the encoding scheme and
the calculations form the basis of a cryptographic scheme that partially depends on
secret algorithms. Next, we take one step forward and propose another perfectly
secure cryptographic scheme that depends only on secret algorithms without the
use of any secret key. We refer to this scheme as secret algorithm cryptography.
Finally, the relation between perfect secrecy and secret algorithm cryptography is
established by proving a theorem stating that the secret algorithm cryptography
presented in this chapter is perfectly-secure.

5.1.1 Motivations, Novelties, and Achievements

To the best of our knowledge, there is no research work focusing on secret
algorithm perfect secrecy in IoT. This is despite the advantages of perfect secrecy
as well as resource constraints in IoT-based systems along with the intensive
amounts of computation needed by key generation and exchange mechanisms.
These shortcomings motivate us to investigate challenges and requirements of secret
algorithm perfectly secure cryptography in IoT. More specifically, there are some
shortcomings in existing research, works which motivate our work in this table.
Among these shortcomings, we can mention the following.

• There is no systematic method for generating a perfectly secure algorithm.
• There is no idea regarding the number of theoretically possible perfectly secure

algorithms.



5.1 Introduction and Basic Concepts 63

• There is no specific method for the specification and numerical encoding of such
algorithms.

• There is no secret algorithm method in the literature for perfectly secure
cryptography.

In the next sections of this chapter, we are going to address the above problems.
The novelties and the achievements of our work in this chapter are as follows.

1. In this chapter, we present the first hybrid combinatorial-Boolean approach
toward perfect secrecy in IoT environments.

2. We present perfectly secure cryptographic algorithms using resilient Boolean
functions for the first time.

3. We present the first systematic framework for creating, counting, and encoding
all theoretically possible perfectly secure cryptographic algorithms.

4. We propose the first secret algorithm perfectly secure method.
5. We obtain an upper bound for the number of n-resilient (2n, n)-functions.
6. As side achievements, we present the first methods for the encoding Latin squares

and the random generation of perfectly secure algorithms.

Figure 5.1 illustrates the proposed approach, its interactions with Latin squares
and perfectly secure algorithms, and its achievements.

5.1.2 Organization

The rest of this chapter is organized as follows. Section 5.1.3 presents some basic
definitions and preliminary discussions needed before introducing the proposed
approach. Section 5.2 introduces the proposed approach. Section 5.2.2 presents the
representation, encoding, and enumeration schemes for generic cryptographic algo-
rithms. Section 5.2.2.4 present the same schemes for perfectly secure cryptographic
algorithms. This subsection connects perfectly secure cryptographic algorithms to
Latin square using a one-to-one mapping and uses the properties of Latin squares to
present the random algorithm cryptography method. Section 5.3 presents the reasons
why the proposed approach is the proper application for IoT environments.

5.1.3 Definitions and Preliminary Discussions

In this section, we are going to present some definitions needed throughout the
chapter and make some preliminary discussions.

Let F2 be a binary field and F
n
2 = {x = (x1, x2, . . . , xn) : xi ∈ F2, 1 ≤ i ≤ n}.

A function f from F
n
2 to F2 is said to be an n-variable Boolean function, and the set

of all n-variable Boolean functions is denoted by Bn. A Boolean function f ∈ Bn

is balanced if its truth table contains an equal number of 1s and 0s. A function
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Fig. 5.1 The proposed approach: interactions with Latin squares and perfectly secure algorithms,
and achievements

g : F
n
2 −→ F

m
2 is said to be vectorial Boolean function and also called (n,m)-

function. An (n,m)-function f is said to be balanced if the cardinality of the sets
f −1(y) is equal to 2n−m for all y ∈ F

m
2 . An (n, n)-function g is said to be reversible

(or bijective) if it is both injective and surjective. A reversible vectorial Boolean
function with n inputs and n outputs is referred to as an (n, n)R-function in this
chapter. It is well-known that the cardinality of the set of all (n, n)R-functions is
equal to 2n!.

For an unsigned binary string b, Dec(b) is defined as the decimal equivalent
of b. On the other hand, for a decimal integer i, 0 ≤ i ≤ 2n − 1, Bin(i, n) is
defined as the unsigned n-bit binary string equivalent to i. We also define V (n) as
V (n) = [vi∈[0,2n−1] = Bin(i, n)] Also for a vector V , length(V ) is defined as the
number of the elements in the vector. Moreover, for a vector V and a set S, V/S

is defined as a vector, which results if we remove elements of S from V . Thus, if
length(V ) = l and r of V elements are elements of S as well, V/S will include
l − −r elements.
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5.1.4 Resilient Functions

A Boolean function f ∈ Bn has α-correlation immunity (correlation immunity of
order α) if its values are statistically independent of any subset of α input variables.

Definition 5.2 An n-variable Boolean function f is said to be resilient of order α

(or α-resilient) if f is balanced and correlation immune of order α, i.e., a Boolean
function is α-resilient if on fixing any k coordinates, 0 ≤ k ≤ α, the restricted
functions are all balanced.

The resilient (n,m)-function of αth order is defined by the following way.

Definition 5.3 Let n,m, and α be positive integers with 0 ≤ α ≤ n, and f be
an (n,m)-function. Then, f is called αth order correlation immune if its output
distribution does not change when at most α coordinates in inputs are kept constant.
It is called α-resilient if it is balanced and αth order correlation immune, that is, if
it stays balanced when at most α coordinates in inputs are kept constant.

When a Boolean function is to be used in a cryptosystem, it is required that the
output of the Boolean function should not be correlated with a subset of input
variables. In other words, the function needs to resist the correlation attack [608].
The concept of resiliency of has been introduced to address such kind of resistance.
Resilient functions play a significant role in cryptosystems. Therefore, they have
appeared in many research works in this area. For instance, Siegenthaler [608]
showed that for an n-variable, Boolean function of degree r and resiliency of
order α satisfied the inequality α + r ≤ n − 1, which is called Siegenthaler’s
inequality. Sarkar and Maitra [609, 610] also derived many results regarding the
relation between the nonlinearity and the order of resiliency of a Boolean function.
Further many highly significant cryptographic Boolean functions were constructed
using resilient functions (see [611–615] and the references therein).

We refer to an α-resilient (n,m)-function by an (n,m, α)-function. Let us
consider n = m + α and f is an (n,m, α)-function. Then, if we fixed any α input
coordinates, the restricted function is reversible (or balanced) and these restricted
functions can be consider as an (m,m)-function, which are reversible.

5.2 The Proposed Approach

In this section, we first introduce the notion of secret algorithm cryptography and
then present our approach for secret algorithm perfect secrecy in IoT.
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5.2.1 A Look at Secret Algorithm Cryptography

Kerckhoffs’s principle states that in a key-based cryptosystem, the algorithm should
be exposed and the key should be kept secret. With the emergence of secret
algorithm cryptogaraphy, this principle will no longer be considered as an axiom
in secret algorithm cryptography. Key-dependent algorithm cryptosystems a.k.a
secret algorithm cryptosystems or random algorithm cryptosystems have been
of interest to the research community in recent years [616, 617]. In a secret
algorithm cryptosystem, the encryption and decryption algorithms’ configurations
are functions of the secret key. In such an algorithm, (part of) the secret key is used
for random (secret) configuration of the algorithm in addition to the part directly
combined with the plain text.

Figure 5.2 compares key-dependent algorithm cryptography with traditional
cryptography.

secret algorithm cryptosystems have been tested under different attacks [618].
They have been used in different technological environments, such as sensor
networks [619] and IoT [620, 621]. These algorithms have been applied on different
content types [622]. The literature suggests key-dependent algorithm cryptosystems
as a good choice, especially for lightweight cryptography [617, 620]. Some well-
known cryptosystems have been modified to achieve key-dependent variants [623,
624].

Researchers have studied different elements of cryptographic algorithms to
evaluate the impact of their dependence on the key. Among these elements,

Fig. 5.2 Key-dependent algorithm cryptography versus traditional cryptography
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one may refer to feedback configuration matrices [625], substitution boxes (S-
boxes) [626–628], permutation boxes (P-boxes) [620, 629], linear-feedback shift
registers (LFSRs) [620], and mathematical transforms [622]. Different kinds of
cryptographic algorithms such as block [626] and stream ciphers [620] as well as
symmetric and public key cryptography [630] have been used for this purpose.

5.2.2 Generic Cryptographic Algorithms: Representation,
Encoding, and Enumeration

In this subsection, we present our presentation as well as our enumeration and
encoding schemes for generic cryptographic algorithms.

5.2.2.1 Representation

In the following, we use the properties of (n, n)R-functions to represent a general
cryptographic algorithm. Next, we show the relation between cryptographic algo-
rithms and resilient vectorial Boolean functions. Then we calculate the number of
all theoretically possible cryptographic algorithms. We use the latter calculations to
justify the concept of secret algorithm cryptography.

The following remark shows the relation between (n, n)R-functions and (k, n)-
algorithms, an algorithm with k key bits, n plain text, and cipher text bits. It is clear
that a generic cryptographic algorithm, which is not necessarily perfectly-secure,
can be represented by a (k, n)-algorithm, where k is the length of the key and n is
the length of the plain text.

Remark 5.1 A general (k, n)-algorithm can be modeled by a set of 2k (n, n)R-
functions, one of which is selected according to the fixed value of the key.

The above remark is obvious because a cryptographic algorithm should be reversible
given the key.

5.2.2.2 Encoding

Every (n, n)R-function can obviously be encoded by n · 2n bits. To do this, we can
simply concatenate the output strings in each reversible function to make a numeric
code for that function. But the following theorem states that we should be able to
encode (n, n)R-function by shorter code lengths.

Theorem 5.1 The minimum average code length required to encode all permuta-
tions of V (n) is above bounded by (n − 1)2n + 1 < n · 2n.
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Proof Since the total number of permutations on V (n) is 2n!, we should be able to
encode them with an average code length of log2(2

n!). The minimum average code
length will be obtained from the following equation.
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In fact, since the total number of (n, n)R-functions is 2n!, we should be able to
encode each of them by a minimum average code length of log2(2

n!).
If we chose an encoding scheme with average code length of L > log2(2

n!), there
will be 2L − log2(2

n)! invalid codes. Thus, it is important to design an encoding
scheme with the minimum possible average code length. The following theorem
introduces our proposed encoding scheme. We will show later that the minimum
average code length is met by this encoding scheme.

Algorithm 5.1 PC=PermutationCode(Y )

Begin
Set PC = 0.
For i in [0, 2n − 2]

Set Si = 0.
For j in [i + 1, 2n − 1]

If yj < yi

Set Si = Si + 1.



5.2 The Proposed Approach 69

Set PC = PC + Si.(2n − (i + 1))!.
End

Theorem 5.2 Algorithm 5.1 can assign a unique numeric code in [0, n!−1] to every
individual permutation π of X = [xi∈[0,n−1] = i], where [0,m] = {0, 1, . . . , m} for
any positive integer m.

Proof Algorithm 5.1 creates different codes for different permutations. The reason
is that S · (n− (j +1))! is always smaller that (n− (i +1))! if j > i, and this results
the fact S is smaller than n − i for every j ∈ [i + 1, n − 1] if Si > 0. Therefore,
the Algorithm 5.1 assigns 2n! distinct codes to 2n! distinct permutations. Moreover,
the above algorithm assigns the smallest code (0) to [0, 1, . . . , n − 1] and assigns
the greatest code (n! − 1) to [n! − 1, n! − 2, . . . , 0]. Thus, the codes assigned to the
permutations by this algorithm will be in [0, n − 1]. ��

Lemma 5.1 Algorithm 5.1 assigns codes of length �log2(2
n!)� to permutations of

V (n).

Proof Since the total number of codes assigned by the Algorithm 5.1 is equal to
2n!, they can be assigned codes of length �log2(2

n!)�. ��
Table 5.1 shows the codes assigned by our proposed scheme to all (2, 2, )R-
functions.

5.2.2.3 Enumeration

Lemma 5.2 The number of all (k, n)-algorithms is equal to

(2n!)!(
2n! − 2k

)! .

Proof The total number of (n, n)R-functions is 2n!, and 2k of them is collected in
a (k, n)-algorithm. Thus, the total number of (k, n)-algorithms is equal to (2n!)!

(2n!−2k)! .��
The above lemma states that there can be a huge number of cryptographic
algorithms. The idea of secret-key cryptography comes up here. In fact, keeping
the algorithm confidential can make the cryptosystem harder-to-break from compu-
tational point of view. The problem here is that some of these algorithms may not
satisfy extra criteria, such as resistance to different kinds of attacks. Therefore, we
propose to focus only on perfectly secure algorithms discussed in the next section.
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Table 5.1 Codes assigned to (2, 2)R-functions

Algorithm P C Algorithm P C Algorithm P C
00000 00 00 01000 00 01 10000 00 10

01 01 01 10 01 11

10 10 10 00 10 00

11 11 11 11 11 01

00001 00 00 01001 00 01 10001 00 10

01 01 01 10 01 11

10 11 10 11 10 01

11 10 11 00 11 00

00010 00 00 01010 00 01 10010 00 11

01 10 01 11 01 00

10 01 10 00 10 01

11 11 11 10 11 10

00011 00 00 01011 00 01 10011 00 11

01 10 01 11 01 00

10 11 10 10 10 10

11 01 11 00 11 01

00100 00 00 01100 00 10 10100 00 11

01 11 01 00 01 01

10 01 10 01 10 00

11 10 11 11 11 10

00101 00 00 01101 00 10 10101 00 11

01 11 01 00 01 01

10 10 10 11 10 10

11 01 11 01 11 00

00110 00 01 01110 00 10 10110 00 11

01 00 01 01 01 10

10 10 10 00 10 00

11 11 11 11 11 01

00111 00 01 01111 00 10 10111 00 11

01 00 01 01 01 10

10 11 10 11 10 01

11 10 11 00 11 00

5.2.2.4 Perfectly Secrecy: Representation, Encoding, and Enumeration

We refer to a perfectly secure encryption algorithm with k key bits, n plain text bits,
and n cipher text bits as a (k, n)PS -algorithm. According to Shannon’s prefect-
secrecy theory, a necessary criterion for perfect secrecy is that the length of the key
should be equal to or greater than that of the plain text. Since long keys are difficult
to create, exchange, and manage, we will focus on the shortest possible key length,
i.e., we will focus on (n, n)PS -algorithm.
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Table 5.2 A PS-type truth
table T for n = 2

Key Plain text Cipher text Functions

00 00 11 f0

00 01 01

00 10 00

00 11 10

01 00 01 f1

01 01 00

01 10 10

01 11 11

10 00 00 f2

10 01 10

10 10 11

10 11 01

11 00 10 f3

11 01 11

11 10 01

11 11 00

In this section, we propose a perfectly secure cryptographic scheme, which uses
secret keys as well as secret algorithms. But before beginning our discussions in this
section, we need to present some definitions. A PS-type truth table T is defined as
a truth table with 3n columns (each n for the key, plain text, and cipher text) and 22n

rows (for 2n bits including the key and plain text). The first 2n columns in a PS-type
truth table are considered already filled with the list of 22n possible 2n-bit values in
a natural ascending order of first n bits. A PS-type truth table T is divided into 2n

blocks each containing 2n rows. The blocks are represented by b0, b1, . . . , b2n−1,
say. The j th row of bi block is represented by bi,j . We denote the key part of bi,j by
bi,j,0, the plain text part by bi,j,1, and the cipher text part by bi,j,2. Thus, in a PS-
type truth table T , after filling inside bi,j every i, j ∈ {0, 1 . . . , 2n − 1}, every block
will contain an (n, n)-function. For example, a PS-type truth table T for n = 2 is
represented as in Table 5.2.

5.2.2.5 Representation

Remark 5.2 An (n, n)PS -algorithm can be represented by a set of 2n (n, n)R-
functions selected by a n-length key, in which the perfect secrecy criterion is
satisfied.

The following lemma builds the relation between the set of (2n, n, n)-functions and
the set of (n, n)PS -algorithms.

Lemma 5.3 Let n be a positive integer. If a (2n, n)-function f is n-resilient, then f

is an (n, n)PS -algorithm.
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Table 5.3 A
(2, 2)PS -algorithm not
consisting of
(4, 2, 2)-functions

Key Plain text Cipher text

00 00 00

00 01 10

00 10 01

00 11 11

01 00 01

01 01 11

01 10 10

01 11 00

10 00 11

10 01 01

10 10 00

10 11 10

11 00 10

11 01 00

11 10 11

11 11 01

Proof Suppose f is a (2n, n)-function, which is n-resilient. So fixed first n bits, the
restricted function is balanced and we can consider as a (n, n)R-function. Suppose
all the restricted functions are denoted by f0, f1, . . . , f2n−1, and fi are reversible,
for all 0 ≤ i ≤ 2n − 1. If possible, let there exist i0 �= j0 and x ∈ F

n
2 such that

fi0(x) = fj0(x). Then, we fixed this bit pattern, and the restricted function is not
balanced as this restricted function have at least two same output, which is same as
fi0(x). Thus, all the restricted functions satisfy that fi(x) �= fj (x), for all x ∈ F

n
2

and 0 ≤ i �= j ≤ 2n − 1, so we get our claim. ��
The converse of the Theorem 5.3 is not true in general. For example, let n = 2;
then, the algorithm defined as in Table 5.3 is a (2, 2)PS -algorithm but not 2-resilient
(4, 2)-function.

5.2.2.6 Enumeration and Encoding

Now, we present a procedure for creating (n, n)PS -algorithms through calling a
recursive algorithm. The procedure is followed by a theorem, which proves that all
(n, n)PS -algorithms are exhaustively create by the procedure.

Procedure 5.1 Create-PSP(n)

Begin
Set E = [

ei,j∈[0,2n−1] = ∅] where ∅ indicates an empty set.
Set M = [

mi,j∈[0,2n−1] = V (n)
]
.

Set R = V (n).
Set A = ∅.
Set z = 0.
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Set r = 0.
Set Code = 0.
PSP(t).

End.

In the above procedure, PSP(t) is a recursive algorithm described as follows.

Algorithm 5.2 PSP(r)

Begin
If t == 2n − 1

For b ∈ [0, 2n − 1] Do
Set bb,r,2(T ) = M(b, r, 1).
Set E(b, r) = E(B, t) ∪ M(b, r, 0).
Set M(b, r) = R/E[i].

Set A = A ∪ (T , Code).
Set Code = Code + 1.

Else
Allocate T as a new PS-type truth table.
While length(M(b, r))! = 0

For b ∈ [0, 2n − 1] Do
Set bb,r,2(T ) = M(b, r, 1).
Set E(b, r) = E(b, r) ∪ M(b, r, 0).
Set M(b, r) = R/E(b, r).
For g ∈ [r + 1, 2n − 1] Do

Set E(b, g) = E(b, g) ∪ M(b, r, 0).
Set M(b, g) = RR/E(b, g).

For g ∈ [b + 1, 2n − 1] Do
Set E(g, r) = E(g, r) ∪ M(b, r, 0).
Set M(g, r) = RR/E(g, r).

PSP(t + 1)

End

Theorem 5.3 Procedure 5.1 exhaustively creates all possible (n, n)PS -algorithms
and assigns a unique code to each of them.

Proof The proof of this theorem consists of two parts. In the first part, we need to
prove that every (n, n)-algorithm created by Procedure 5.1 is a (n, n)PS -algorithm.
The second part should prove that every theoretically possible (n, n)PS -algorithm
is created and stored by the Algorithm 5.2. To prove the first part, we note that
algorithm PSP fills PS-type truth tables, each with 2n · 2n = 22n empty cells.
It keeps a list of values allowed to be inserted into bb,r,2(T ) in M(b, r) for every
b, r ∈ [0, 2n − 1]. When the algorithm starts working, it assumes that bb,r,2(T ) =
V (n) for every b, r ∈ [0, 2n −1]. Upon inserting any value in bb,r,2(T ), the inserted
value is removed from M(b, r), M([b + 1, 2n − 1], r), and M(b, [r + 1, 2n − 1]).
This guarantees the two following clauses.

• ∀ b ∈ [0, 2n − 1], � r1, r2 ∈ [0, 2n − 1] : r1 �= r2, bb,r1,2(T ) = bb,r2,3(T ).
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• ∀ r ∈ [0, 2n − 1], � b1, b2 ∈ [0, 2n − 1] : b1 �= b2, bb1,r,2(T ) = bb2,r,3(T ).

Since the number of the blocks and the number of rows in each block are both equal
to 2n, the above two clauses together state that each block in table T will contain
a reversible (n, n)-function different from those in other blocks. Thus, every filled
table T will be a (n, n)PS -algorithm. They also state that ∀ x ∈ V (n) : Pr(P =
x/C = c) = Pr(P = x), i.e., every table T filled by the algorithm contains a
(n, n)PS -algorithm. Moreover, in order to prove the second part of the theorem,
we note that each run of algorithm PSP guarantees to fill bb,r,2(T ) with every
V (n) element, except for those inserted in previous rows in the same block or the
same row in previous blocks. Thus, the algorithm guarantees to create every possible
(n, n)PS -algorithm. ��
The following theorem calculates the number of all (n, n)PS -algorithms. This will
help us calculate the minimum average code length required to encode them. We
also make use of this calculation to justify the use of secret algorithms.

Theorem 5.4 The number of all (n, n)PS -algorithms is equal to
∏2n−1

i=0 (2n−i)i+1.

Proof The number of reversible (n, n)-functions, which can be inserted in b0(T ),
is obviously equal to 2n!. The number of allowable values for every b1,j (T ) reduces
by one after filling b0(T ), except for b1,2n−1(T ) for which there still remains one
allowable value. Thus, the number of functions, which can be stored to b0(T ), is
equal to (2n − 1)!. Through a similar reasoning, it can be shown that the number
of functions allowable to be stored in br(T ) will be equal to (2n − r)! for every
b ∈ [0, 2n − 1]. Therefore, the total number of (n, n)PS -algorithms, each of which
is generated by Procedure Create-PSP(n), is equal to Ps = ∏2n−1

i=0 (2n − i)! =∏2n−1
i=0 (2n − i)i+1. ��

The huge number calculated by Theorem 5.4 makes it theoretically justifiable to
keep the algorithm secret in order to achieve larger search space. From Lemma 5.3
and Theorem 5.4, we get the next results.

Corollary 5.1 The number of n-resilient (2n, n)-function is bounded above by the
cardinality of the set (n, n)PS -algorithm, i.e.,

∏2n−1
i=0 (2n − i)i+1.

Every (n, n)PS -algorithm can obviously be encoded by n · 2n · 2n = n · 22n bits.
On the other hand, Theorem 5.4 states that we should be able to encode such an
algorithm by an average code length of log2

(∏2p−1
i=0 (2p − i)i+1

)
. The following

theorem shows that the minimum average code length here should be less than n·22n.

Theorem 5.5 The minimum average code length for encoding (n, n)PS -functions
is above bounded by

LR
m = 11 + 3(n2 − 2n+1) + 3n(n + 3)2n − (3n − 1)22n

6
.
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Proof From Theorem 5.4, we know that the number of all (n, n)PS -algorithms is
equal to

∏2n−1
i=0 (2n − i)i+1 and

⎡

⎢⎢⎢
log2

⎛

⎝
2n−1∏

i=0

(2n − i)i+1

⎞

⎠

⎤

⎥⎥⎥

=
⎡

⎢⎢⎢

2n−1∑

i=0

(i + 1) log2(2
p − i)

⎤

⎥⎥⎥

=
⎡

⎢⎢⎢

2n−1∑

t=0

(2n − t + 1) log2 t

⎤

⎥⎥⎥

=
⎡

⎢⎢⎢

n∑

t=1

2t−1∑

r=2t−1+1

(2n − r + 1) log2 r

⎤

⎥⎥⎥

It is obvious that
⎡

⎢⎢⎢

n∑

t=1

2t−1∑

r=2t−1+1

(2n − r + 1) log2 r

⎤

⎥⎥⎥

≤
n∑

t=1

2t−1∑

r=2t−1+1

(2n − r + 1)�log2 r�.

It can also be shown through simple algebraic operations that

n∑

t=1

2t−1∑

r=2t−1+1

(2n − r + 1)�log2 r� = (2n + 1)
n(n + 1)

2

− 3

2

(
(3n − 1) 4n + 1

9
− (n − 1) 2n − 1

)

= 11 + 3(n2 − 2n+1) + 3n(n + 3)2n − (3n − 1)22n

6
.

��
The following theorem states that the minimum average code length is met by the
built-in encoding scheme inside the procedure of Theorem 5.3.

Theorem 5.6 The algorithm introduced by Theorem 5.3 assigns codes to (n, n)PS -
algorithms with an average length of

⌈
log2

(∏2n−1
i=0 (2n − i)i+1

)⌉
.
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Table 5.4 A
(2, 2)PS -algorithm encoded
as 100011111

Function code Plain text Cipher text

00 00 11

00 01 10

00 10 01

00 11 00

01 00 11

01 01 10

01 10 00

01 11 01

10 00 11

10 01 01

10 10 10

10 11 00

11 00 11

11 01 01

11 10 00

11 11 10

Proof The algorithm assigns 0 to the first created (n, n)PS -algorithm, and thus, the
total number of assigned codes is equal to

∏2n−1
i=0 (2n−i)i+1−1, so we can represent

them by binary sequences of length
⌈

log2

(∏2n−1
i=0 (2n − i)i+1

)⌉
. ��

(n, n)PS -algorithms can be considered as the collection of 2n reversible (n, n)-
functions with satisfy some fixed conditions. Thus, we can use other permutation
encoding methods. Encoding permutations has been research focus during recent
decades [631, 632]. Each of the proposed methods may have its own advantages
and disadvantages. Some of them are purely numeric [631] and some are not [632].
But our encoding scheme was proven to assign codes with the minimum average
lengths. Table 5.4 shows a sample (2, 2)PS -algorithm encoded by this scheme.

5.2.2.7 Decryption Algorithms

So far, we have only discussed encryption algorithms. Another issue to deal
with here is the design of decryption algorithms. Since every (n, n)PS -algorithm
consists as the collection of 2n reversible (n, n)-functions with satisfy some fixed
conditions, the decryption algorithm can be obtained by reversing individual (n, n)-
function in the encryption algorithm. Table 5.5 shows a pair of perfectly secure
encryption/decryption algorithms.
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Table 5.5 A perfectly secure
encryption algorithm along
with the corresponding
decryption algorithm

Encryption Decryption

Key P C Key C P
00 00 00 00 00 00

01 01 01 01

10 11 10 11

11 10 11 10

01 00 01 01 00 10

01 10 01 00

10 00 10 01

11 11 11 11

10 00 10 10 00 11

01 11 01 10

10 01 10 00

11 00 11 01

11 00 11 11 00 01

01 00 01 11

10 10 10 10

11 01 11 00

Fig. 5.3 The Latin squares
corresponding to the
encryption and decryption
algorithms in Table 5.1

5.2.2.8 Mapping to Latin Squares

According to the above discussions, each truth table, representing a (n, n)PS -
algorithm clearly consists of 2n.2n = 22n lines. For each (n, n)PS -algorithm A,
the set LA of lines divided into 2n chunks LA(0),LA(1), · · · ,LA(2n − 1) each
containing 2n consequent individual lines, such that the following conditions hold.

1. ∀i ∈ {0, 1, · · · , 2n−1} : {LA(i)(j)|j ∈ {0, 1, · · · , 2n−1}} = {0, 1, · · · , 2n−1},
2. ∀j ∈ {0, 1, · · · , 2n − 1} : {LA(i)(j)|i ∈ {0, 1, · · · , 2n − 1}} = {0, 1, · · · , 2n −

1}.,
where LA(i)(j) is the decimal representation of the j th entry in the ith chunk.

The above criteria clearly define a Latin square of order n. This maps perfectly
secure algorithms to Latin squares, and the reader can easily verify that the mapping
is one-to-one.

For example, the Latin squares corresponding to the truth tables of the encryption
and decryption algorithms in Table 5.1 are shown in Fig. 5.3.
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5.2.2.9 Secret Algorithm Perfect Secrecy

The following theorem forms the basis of our secret algorithm perfectly secure
cryptographic scheme.

Theorem 5.7 Consider a cryptography scheme in which one among all possible
(n, n)R-functions can be selected to transform the plain text to cipher text according
to a given function code. This cryptography scheme will be perfectly secure.

Proof Since (n, n)R-functions are permutations and the cryptography scheme
selects among all permutations of 2n possible cipher text values, the number of
permutations converting every given plain text to every given cipher text will be the
same and equal to (2n − 1)!. Thus, such a system will be perfectly-secure. ��
On the basis of the above theorem, we define a secret algorithm cryptography
scheme with plain text length equal to n as the collection of all possible (n, n)R-
functions, one among which is selected using a secret function code. If n = 2, such
a collection can be imagine as shown in Table 5.6.

In a cryptography scheme explained in the above theorem, we can consider every
individual (n, n)-function as a distinct encryption algorithm. Moreover, the function
code can be considered as the algorithm code. In fact, such a system can depend on
a secret algorithm code instead of a key for its confidentiality.

A secret algorithm perfectly secure cryptography scheme has a second important
advantage to a traditional cryptography with a n-bit key and n-bit plain/cipher texts
in addition to perfect secrecy. In such a scheme, the malicious third party has to
test (at most) 2n! instead of 2n key values. This requires much more time and more
complex hardware/software.

5.3 Concluding Remarks: The Proposed Approach and IoT

Our work in this chapter is in fact one step toward both perfectly secure and
random algorithm cryptography in resource-constrained IoT-based applications.
We first established a connection between perfectly secure encryption/decryption
algorithms and n-resilient Boolean functions. Then, we solved the problem of
exhaustively creating, counting, and encoding all theoretically possible perfectly
secure cryptographic algorithms. Next, we developed a system model for cryp-
tosystems that depend on secret algorithms instead of or in addition to secret
keys for perfect secrecy. The system model makes it possible to discuss the
advantages, disadvantage, challenges, and requirements of secret algorithm per-
fectly secure cryptosystems. This research work can be continued by research
on hardware/software implementation of the secret algorithm perfectly secure
cryptosystems. Researchers can also continue our work by presenting more efficient
encoding schemes.

Our proposed approach is especially useful for IoT due to the following reasons.
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Table 5.6 Codes assigned to all possible (2, 2)R-functions

Algorithm P C Algorithm P C Algorithm P C
00000 00 00 01000 00 01 10000 00 10

01 01 01 10 01 11

10 10 10 00 10 00

11 11 11 11 11 01

00001 00 00 01001 00 01 10001 00 10

01 01 01 10 01 11

10 11 10 11 10 01

11 10 11 00 11 00

00010 00 00 01010 00 01 10010 00 11

01 10 01 11 01 00

10 01 10 00 10 01

11 11 11 10 11 10

00011 00 00 01011 00 01 10011 00 11

01 10 01 11 01 00

10 11 10 10 10 10

11 01 11 00 11 01

00100 00 00 01100 00 10 10100 00 11

01 11 01 00 01 01

10 01 10 01 10 00

11 10 11 11 11 10

00101 00 00 01101 00 10 10101 00 11

01 11 01 00 01 01

10 10 10 11 10 10

11 01 11 01 11 00

00110 00 01 01110 00 10 10110 00 11

01 00 01 01 01 10

10 10 10 00 10 00

11 11 11 11 11 01

00111 00 01 01111 00 10 10111 00 11

01 00 01 01 01 10

10 11 10 11 10 01

11 10 11 00 11 00

• We have demonstrated (earlier in this book) the efficiency of information-
theoretic cryptography in real-time and embedded IoT cryptography.

• We have already shown the efficiency of Latin squares in IoT cryptography.
• We have discussed the efficiency of Boolean cryptography in real-time and

embedded IoT cryptography.
• The secret algorithm cryptography makes it possible to design robust crypto-

graphic schemes even with shorter word length, which makes it a good choice for
cryptography in real-time and resource-constrained environments such as IoT.
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